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Abstract

This thesis is based on four main studies. The first two studies present a

detailed methodology for completing dynamical system parameter estimation

using Bayesian inference. The next two studies are about using this method-

ology to investigate critical human immunodeficiency virus-1 therapeutic ini-

tiatives: “Shock and Kill” strategy in the brain and the natural control of the

virus in the plasma.

The first study in this thesis is based on the 2020 paper “Bayesian inference

for dynamical systems” in the journal Infectious Disease Modelling. This pa-

per described a comprehensive methodology for dynamical system parameter

estimation using Bayesian inference and it covered the topics of utilizing dif-

ferent distributions, Markov Chain Monte Carlo (MCMC) sampling, obtaining

credible intervals for parameters, and prediction intervals for solutions. It also

included a logistic growth example to illustrate the methodology. This study

is described in Chapter 2.

The next study in this thesis is about the first MATLAB implementation of

the Diffusive Nested Sampling (DNS) algorithm called “MatlabDiffNestAlg”,

which is available to the community on the MATLAB Central File Exchange

and uploaded into the CERN supported repository Zenodo. DNS is a Bayesian

inference method that is capable of reliably estimating parameters in a high

dimensional space. The DNS algorithm is also able to effectively sample from

multimodal distributions and it provides samples that are estimates of the

actual posterior density. Chapter 3 describes the DNS algorithm, and the

MATLAB implementation of the DNS algorithm is explained in Section 3.C.
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The third study in this thesis is based on the 2021 paper “Modeling the

effects of latency reversing drugs during HIV-1 and SIV brain infection with

implications for the “Shock and Kill” strategy” in the Bulletin of Mathemat-

ical Biology. This was the first mathematical model to qualitatively analyze

the dynamics of latently and productively infected cells in the brain during

human immunodeficiency virus-1 (HIV-1) and simian immunodeficiency virus

(SIV) infection and to quantify the size of the latent reservoir in the brain for

SIV animal studies. After this latent SIV reservoir was estimated, the effect

of latency reversing agents in the brain was evaluated and the mathemati-

cal model indicated that there exists a biologically realistic parameter regime

where the “Shock and Kill” therapy strategy is safe and effective in the brain.

This study is described in Chapter 4 and Chapter 5.

The fourth study in this thesis is about estimating and predicting HIV-1

infection in the plasma for HIV-1 Elite Controllers and a comparison group of

HIV-1 patients from the Northern Alberta HIV Program. This was the first

mathematical modeling study to directly estimate the differences between a

group of HIV-1 Elite Controllers with a comparison group of HIV-1 patients

using empiric data and it is also the first HIV-1 mathematical model to con-

sider both effector cytotoxic CD4 T lymphocytes’ and effector cytotoxic CD8

T lymphocytes’ impact on HIV-1 disease and other diseases present in each

patient. The response function used for the HIV-1 specific effector cytotoxic

T lymphocytes has a biological interpretation based on the phases of antiviral

cytotoxic T lymphocyte response and it was found that this response function

was important for explaining the observed viral load behavior for the HIV-1

patients in this study. The Elite Controller group was found to have a stronger

antiviral immune response than the comparison group. In contrast, the com-
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parison group was found to have more chronic immune activation but a less

effective immune response. The Elite Controller immune response estimates

given in this study quantifies a biologically realistic optimal immune response

goal for HIV-1 therapeutic initiatives. This study is presented in Chapter 6

and Chapter 7.
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Preface

While studying towards my Doctor of Philosophy degree in Applied Mathe-

matics at the University of Alberta, we published eight disease analyses papers

[1, 2, 3, 4, 5, 6, 7, 8]. I was the first author on four of these papers discussed

below. Also, I was the lead developer of a Bayesian inference software program

[9].

I have worked on mathematical and statistical disease models for lentiviral

infections, immunodeficiency-associated lentiviruses include human immunod-

eficiency virus-1 (HIV-1) and simian immunodeficiency virus (SIV). I have also

worked on modeling related to influenza, coronavirus disease (COVID-19), and

multiple sclerosis (MS). My PhD research has been mainly centred on math-

ematical modeling of lentiviral infections, more specifically modeling with the

objective of aiding HIV-1 therapeutic initiatives, and this is the primary fo-

cus of my PhD thesis. I refer to other diseases in this thesis in relation to

mathematical and statistical tools that I have helped to develop, and where

applicable these tools are applied to mathematical modeling of lentiviral in-

fections.

We published the paper “Modeling brain lentiviral infections during an-

tiretroviral therapy in AIDS” in the Journal of NeuroVirology in 2017 [1].

This was the first mathematical model to quantify HIV-1 and SIV infection

dynamics in the brain. This was also the first mathematical model of an infec-

tious disease in the brain. Our study indicated that HIV-1 and SIV pro-virus

burdens in brain increase slowly over time [1]. Assuming cART suppressed

HIV-1 outside the brain, our model showed that an effective cART could sup-
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press HIV-1 infection in the brain, although over a decade for patients without

neurological complications and over two decades for those with HAND [1]. The

research collaboration included the following coauthors: Dr. Michael Y. Li and

Dr. Michael S. Akinwumi at the Department of Mathematical and Statistical

Sciences and Dr. Eugene L. Asahchop and Dr. Christopher Power at the

Division of Neurology, Department of Medicine, at University of Alberta; Dr.

Benjamin B. Gelman at the Texas NeuroAIDS Research Center and Depart-

ment of Pathology at University of Texas Medical Branch; and Dr. Kenneth

W. Witwer at the Department of Molecular and Comparative Pathobiology at

John Hopkins University School of Medicine. This paper covers topics from

my MSc thesis [10].

In 2020, I published the paper “Bayesian inference for dynamical sys-

tems” in the journal Infectious Disease Modelling [2]. This paper presented a

comprehensive methodology for dynamical system parameter estimation using

Bayesian inference and it covered the topics of utilizing different distributions,

Markov Chain Monte Carlo (MCMC) sampling, obtaining credible intervals

for parameters, and prediction intervals for solutions. It also included a lo-

gistic growth example to illustrate the methodology. Chapter 2 is primarily

based on this paper.

When the COVID-19 outbreak began in Wuhan, China, Michael Li’s lab at

University of Alberta was fast to respond with COVID-19 mathematical mod-

els of disease transmission, prediction of the COVID-19 waves, and techniques

to accurately estimate epidemics using mathematical models. We published

the paper “Why is it difficult to accurately predict the COVID-19 epidemic”

in the journal Infectious Disease Modelling in 2020 [3]. Thus far, this paper

remains among the top 4 most cited papers in the journal Infectious Disease
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Modelling. Our study demonstrated that nonidentifiability in model calibra-

tions using the confirmed-case data is the main reason for such wide variations

in COVID-19 modeling studies. This study exemplified the ability of Bayesian

inference, when an efficient algorithm is used, to determine the extent of non-

identifiability in a mathematical model. This study also illustrated that, even

in the presence of nonidentifiability, Bayesian inference can produce workable

credible intervals that significantly reduce the wide parameter ranges found in

the specified prior distribution. Using the Akaike Information Criterion (AIC)

for model selection, we showed that an SIR model performs much better than

an SEIR model in representing the information contained in the confirmed-case

data. This indicated that predictions using more complex models may not be

more reliable compared to using a simpler model. The research collaboration

included the following coauthors: Dr. Michael Y. Li and Ms. Donglin Han

at the Department of Mathematical and Statistical Sciences and Dr. Marie

B. Varughese at the Analytics and Performance Reporting Branch, Govern-

ment of Alberta Ministry of Health. The Bayesian inference tools used in this

COVID-19 paper are covered in Chapter 2.

I have collaborated with the Analytics and Performance Reporting Branch,

Government of Alberta Ministry of Health, in Michael Li’s lab at University

of Alberta since 2016. During the COVID-19 pandemic, we needed to fit large

mathematical models to multiple datasets simultaneously in order to meet

the prediction requests of the Alberta Ministry of Health. These mathemati-

cal models were often age group compartmental models. At times, these age

group compartmental models included separate vaccinated and unvaccinated

compartments within each age group. This resulted in a mathematical model

with more than one hundred parameters that needed to be estimated by data
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fitting. As the COVID-19 mathematical models grew in size, it was neces-

sary to use a data fitting method that could reliably estimate parameters in

a high dimensional parameter space. Diffusive Nested Sampling (DNS) is a

Bayesian inference method that is capable of reliably estimating parameters

in a high dimensional space [11, 12]. The DNS algorithm is also able to ef-

fectively sample from multimodal distributions and it provides samples that

are estimates of the actual posterior density [11, 12]. Since our mathematical

modeling code is written in MATLAB, myself and Ms. Donglin Han at the

Department of Mathematical and Statistical Sciences programmed the first

MATLAB implementation of the DNS algorithm called “MatlabDiffNestAlg”

in 2021 and we have continued updating the software features since its debut

[9]. The “MatlabDiffNestAlg” Bayesian inference software program is available

to the community on the MATLAB Central File Exchange and uploaded into

the CERN supported repository Zenodo, which is capable of DOI versioning

to make academic software programs easily citable. The “MatlabDiffNestAlg”

program was successfully used to fit the large COVID-19 mathematical models

to multiple datasets in order to predict the Alberta COVID-19 waves. Chapter

3 describes the DNS algorithm, and the MATLAB implementation of the DNS

algorithm is explained in Section 3.C. The “MatlabDiffNestAlg” program is

used to effectively fit the HIV-1 plasma infection model with natural immune

responses to empirical patient data and this is presented in Chapters 6 and 7.

We published the paper “Modeling the effects of latency reversing drugs

during HIV-1 and SIV brain infection with implications for the “Shock and

Kill” strategy” in the Bulletin of Mathematical Biology in 2021 [4]. In this

study, a mathematical model was used to analyze the dynamics of latently and

productively infected brain macrophages during viral infection and this math-
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ematical model enabled prediction of the effects of latency reversing agents

applied to the “Shock and Kill” strategy in the brain. The model was cali-

brated using reported data from simian immunodeficiency virus (SIV) studies.

Our model produces the overarching observation that effective cART can sup-

press productively infected brain macrophages but leaves a residual latent vi-

ral reservoir in brain macrophages. In addition, our model demonstrates that

there exists a parameter regime wherein the “Shock and Kill” strategy can

be safe and effective for SIV infection in the brain. The results indicate that

the “Shock and Kill” strategy can restrict brain viral RNA burden associated

with severe neuroinflammation and can lead to the eradication of the latent

reservoir of brain macrophages. The research collaboration included the fol-

lowing coauthors: Dr. Michael Y. Li at the Department of Mathematical and

Statistical Sciences and Dr. Christopher Power at the Division of Neurology,

Department of Medicine, at University of Alberta; Dr. Suli Liu at the School

of Mathematics, Jilin University. Chapters 4 and 5 are based on this paper.

In the study “Modeling the natural control of HIV-1 in the plasma: com-

parative analyses of patients from the Northern Alberta HIV Program”, a

mathematical model was used to estimate and predict HIV-1 infection in the

plasma for HIV-1 Elite Controllers and a comparison group of HIV-1 patients

from the Northern Alberta HIV Program. The response function used for the

HIV-1 specific effector cytotoxic T lymphocytes in the mathematical model has

a biological interpretation based on the phases of antiviral cytotoxic T lym-

phocyte response and it was found that this response function was important

for explaining the observed viral load behavior for the HIV-1 patients in this

study. The Elite Controller group was found to have a stronger antiviral im-

mune response than the comparison group. In contrast, the comparison group
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was found to have more chronic immune activation but a less effective immune

response. The Elite Controller immune response estimates given in this study

quantifies a biologically realistic optimal immune response goal for HIV-1 ther-

apeutic initiatives. The research collaboration included Dr. Michael Y. Li at

the Department of Mathematical and Statistical Sciences, and Dr. Christopher

Power and Dr. Shannon Turvey at the Department of Medicine, at University

of Alberta. Chapters 6 and 7 are based on this study.
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Chapter 1

Introduction

In 2021, an estimated 38.4 (33.9 - 43.8) million people were living with HIV-1

globally with 1.5 (1.1 - 2.0) million people becoming newly infected [13]. Even

with the success of combination antiretroviral therapy (cART), HIV-1 remains

a global health issue [14, 15]. The virus persists in many different cells and

tissues, and tissues that have minimal cART penetration and limited host im-

mune responses make ideal locations for viral reservoirs [16, 17, 14]. These

viral reservoirs contain latently infected long-lived cells [18, 14]. Latency is

defined as the state where individual infected cells do not produce infectious

virus but can become reactivated to produce infectious virus [19, 20]. The

“Shock and Kill” therapy aims to reactivate latently infected cells by latency

reversing agents (LRAs) and eliminate these reactivated cells by strategies in-

volving the host immune system [18, 21]. Other therapeutic initiatives include

developing an HIV-1 vaccine, both therapeutic and prophylactic vaccines, and

increase antiviral immune protection to establish post cART control for pa-

tients [18, 14, 22]. The goal of these therapeutic initiatives either being a

complete sterilizing cure where the virus is eradicated or a functional cure
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where the virus is permanently suppressed in the absence of cART [14, 15].

The brain is a natural anatomical reservoir for HIV-1 infection [23, 24].

The brain is devoid of in situ adaptive immune responses and the blood-

brain barrier (BBB) restricts antiretroviral agents from entering the brain

[24]. Evidence shows HIV-1 can enter the brain through trafficking infected

macrophages [25, 26, 27]. Brain macrophages, including microglia and perivas-

cular macrophages, display productive HIV-1 infections [23]. Brain macrophages

are long-lived cells [28]. Infected brain macrophages can cause neurological

damage by direct and indirect mechanisms [26]. Despite effective cART in

the plasma, HIV-1 infection can lead to neurological disorders including HIV-

associated neurocognitive disorders (HAND) [29]. The extent of cART’s im-

pact on the brain viral reservoir is still under investigation. Certain experi-

mental and clinical studies have suggested that cART is capable of reducing

viral replication, viral RNA, in brain but exerts little impact on HIV-1 and

SIV viral DNA levels in the brain [30, 31], and we have published experimen-

tal and clinical evidence that cART has had diminutive impact on both viral

RNA and DNA levels in the brain [7].

In a recent simian immunodeficiency virus (SIV) study using the “Shock

and Kill” therapy, LRA treatment reactivated latent virus that could be de-

tected in the brain [32]. The authors of the SIV study caution that certain

LRA treatment may cause harmful inflammatory responses in the brain even

in the presence of cART [32]. This study emphasizes the key medical problem

of determining the dynamics of LRA treatment in the brain viral reservoir.

In the plasma, cytotoxic T lymphocytes (CTL), both cytotoxic CD8 T

lymphocytes (CD8 CTL) and cytotoxic CD4 T lymphocytes (CD4 CTL), are

the main adaptive branch of the immune system that eliminate virus-infected
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cells [33, 34, 35, 36, 37]. Precursor CD8 CTLs and precursor CD4 CTLs

are cells that terminally differentiate into effector CD8 CTLs and effector

CD4 CTLs, respectively [37, 38, 39]. Effector CD8 CTLs and effector CD4

CTLs have the capability to recognize and kill infected cells that produce viral

antigens on MHC class I and MHC class II molecules, respectively [35, 36].

HIV-1 experiments have shown that the combined activity of HIV-1 specific

effector CD4 CTLs and HIV-1 specific effector CD8 CTLs, through the killing

of virus-infected cells, maintain viral clearance [40, 41].

Therapeutic initiatives for patients may be advanced by vital information

from HIV-1 Elite Controllers [18, 42, 14]. HIV-1 Elite Controllers are HIV-1

infected patients that can naturally suppress viral replication to undetectable

levels for extended periods of time without cART impeding the development

of acquired immunodeficiency syndrome (AIDS) [18, 42]. There is evidence

that the maintenance of HIV-1 specific effector CD4 CTLs in HIV-1 Elite

Controllers along with HIV-1 specific effector CD8 CTLs contribute to their

control of HIV-1 infection [41]. A crucial medical problem is determining

the differences in the natural immune response of HIV-1 Elite Controllers in

comparison to the natural immune response of typical HIV-1 patients.

Since the beginning of HIV-1 in 1981, mathematical models have been a

core tool used to guide the effectiveness of drug therapy. Mathematical models

can investigate the benefit of particular therapeutic strategies and they supply

essential information for the design of future experiments and clinical trials

[43].
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1.A Review of previous mathematical models

1.A.1 Modeling HIV-1 brain infection

Prior mathematical models have aimed to measure the dynamics of HIV-1

infection by modeling the compartments of peripheral blood, lymph nodes, and

the central nervous system (CNS) together [44, 45, 46]. One study modeled

the migration of monocytes from the peripheral blood to the CNS but the

progression of the disease within the CNS was not modeled [44]. Another study

created a model including the dynamics of uninfected monocytes, infected

monocytes, uninfected macrophages, and infected macrophages in the CNS but

the formulation of the model in the CNS was unclear and the CNS dynamics

were not fit to CNS data [45]. A third study created a model that connected

the same ODE model to each compartment of peripheral blood, lymph nodes,

and the brain together but this model did not consider that the same ODE

model located in each compartment was not biologically appropriate and their

model displays incorrect solutions in the brain based off of current knowledge

about brain derived tissue data [46].

We published the first mathematical model to quantify HIV-1 and SIV

infection dynamics in the brain based off of the current biology and brain

derived tissue data [1]. In our model, the brain macrophage population was

divided into two compartments: susceptible brain macrophages, x, and in-

fected brain macrophages, y. Given the limited data at the time, the infected

brain macrophage population, y, included productively and latently infected

brain macrophages. HIV-1 and SIV infections of brain macrophages were

assumed to spread principally through direct cell-to-cell interaction [26, 47].

Although the brain macrophage population differs in morphology and perhaps

4



cell density depending on the anatomic region, for this study, it was assumed

to be uniform throughout the brain. We followed an established method of

modeling direct transmission between two populations by using the rate βxy

as the number of new infections per unit time, where β is the transmission

coefficient [48, 49]. Without the presence of infection in the model, the num-

ber of susceptible brain macrophages was regulated at the equilibrium value

λ
d
, where λ was the source of new susceptible brain macrophages and k was

the natural death rate for brain macrophages. Susceptible and infected brain

macrophages were presumed to have the same death rate k because our group’s

earlier studies did not observe increased cellular death in HIV-infected versus

uninfected brain macrophages [50]. We considered the percentage of cART

effectiveness ϵ × 100%, where 0 ≤ ϵ ≤ 1. The parameter ϵ was set to zero

when there was no treatment, and βϵ = (1− ϵ)β was the effective transmission

coefficient under cART with effectiveness ϵ. The model was described by the

following set of ODEs:

dx

dt
= λ− kx− (1− ϵ)βxy = λ− kx− βϵxy

dy

dt
= (1− ϵ)βxy − ky = βϵxy − ky

(1.1)

Our model estimation indicated that HIV-1 and SIV proviral burdens in the

brain increase much slower over time in comparison to the proviral burden

among T cells in the peripheral blood.

With the availability of both brain viral DNA and brain viral RNA data,

we further published another mathematical model that was used to analyze

the dynamics of latently and productively infected brain macrophages during

viral infection, and this mathematical model enabled prediction of the effects
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of LRAs applied to the “Shock and Kill” strategy in the brain [4]. Chapters 4

and 5 present this study.

In between the publication of our first [1] and second [4] HIV-1 and SIV

brain infection modeling studies, another study modeled HIV-1 brain infection

with an ODE model connecting plasma, cerebrospinal fluid (CSF), and BBB

together to infer the brain macrophage population dynamics [51]. The model

in their study was fit to plasma viral load and CSF viral load data coming

from three rhesus macaques infected with a mixture of simian-human immun-

odeficiency virus (SHIV) and SIV, but it was not fit to brain derived tissue

data. The idea of including uninfected and infected trafficking macrophages

back and forth through the BBB in the mathematical model is intriguing in

this study and it is an important modeling endeavor to explore. However, the

distinction between infection in brain tissue and infection in CSF is not clear

in this study and the CSF data is used to mainly infer what is occurring inside

the brain as a whole rather than using CSF data and brain derived tissue data

to more accurately describe the infection dynamics in the brain.

1.A.2 Modeling HIV-1 Elite Controllers

The earliest mathematical model of HIV-1 infection in the plasma that at-

tempted to explain the phenomenon of Elite Controllers was developed by

Dominik Wodarz and Martin Nowak [52]. It is an ODE model with the fol-

lowing four compartments: susceptible CD4 T cells, x; HIV-1 infected CD4

T cells, y; precursor CTLs, wp; and effector CTLs, w. It is assumed that the

CD4 T cells are produced at a constant rate λ and become infected by free

virus at a rate βxy, though no viral compartment is included. Infected CD4 T
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cells are killed by CTL effectors at the rate γyw. Proliferation of the precursor

CTL population is based on the help of CD4 T cells and the size of the HIV-

1 infected CD4 T cell population, cxywp, and effector CTLs are stimulated

based on the size of the HIV-1 infected cell and precursor CTL populations,

cqywp. The µ variables are the death rates of the respective populations. The

ODE model is the following:

dx

dt
= λ− µxx− βxy

dy

dt
= βxy − µyy − γyw

dwp

dt
= cxywp − cqywp − µwpwp

dw

dt
= cqywp − µww.

(1.2)

The authors mention that the equilibrium with sustained precursor and

effector CTL populations and viral load at a low level may be attributed to

HIV-1 Elite Controllers.

The first author on this study published a further expansion of this model

that included two types of CTL responses: a helper-independent response

and a helper-dependent response [53]. The helper-independent effector CTLs,

w1, are stimulated based on the size of the HIV-1 infected cell and helper-

independent effector CTL populations, c1yw1 whereas the helper-dependent

effector CTLs, w2, are stimulated based on the size of the HIV-1 infected cell

and precursor CTL populations, c2qywp. It is assumed in the model that

the helper-independent effector CTLs are short lived in comparison to the

precursor CTL population with 1
µwp

> 1
µw1

. The ODE model is the following:
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dx

dt
= λ− µxx− βxy

dy

dt
= βxy − µyy − γ1yw1 − γ2yw2

dw1

dt
= c1yw1 − µw1w1

dwp

dt
= c2xywp − c2qywp − µwpwp

dw2

dt
= c2qywp − µww2.

(1.3)

A couple other theoretical mathematical models used ODE system 1.2 or

1.3 to justify their next step in modeling HIV-1 Elite Controllers [54, 55].

System 1.2, 1.3, and other theoretical ODE models based off of this system

[54, 55] have not been fit to empiric data for a HIV-1 Elite Controller.

A later mathematical model that was fit to empiric data for a untreated

HIV-1 Elite Controller transplant patient was an ODE model with the fol-

lowing six compartments: susceptible CD4 T cells, x; HIV-1 infected CD4 T

cells, y1; productively HIV-1 infected CD4 T cells, y2; long-lived HIV-1 in-

fected cells, M∗; HIV-1 specific effector CD8 CTLs, zE; and virus, v. [56] The

ODE model is the following:
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dx

dt
= rx

(
1− x+ y1 + y2

xmax

)
− β1vx− µxxH(t1 − t)

dy1
dt

= β1vx− γ1zEy1 − αy1

dy2
dt

= αy1 − γ2zEy2 − µy2y2

dM∗

dt
= β2vM − γ3zEM

∗ − µM∗M∗

dzE
dt

= q
(I1 + I2 +M∗)zE

k + zE
dv

dt
= p1y2 + p2M

∗ − µvv.

(1.4)

Since the authors were interested in early infection dynamics after the

transplant, the population of susceptible long-lived cells M was set to a con-

stant value. This model includes a logistic growth term for the growth of

susceptible CD4 T cells, a Heaviside function

H(t1 − t) =

⎧⎪⎨⎪⎩1 0 ≤ t < t1

0 t ≥ t1

multiplied to the death of susceptible CD4 T cells to model the drop of CD4 T

cells during the first six days after the transplant, t1 = 6, and a Monod function

for modeling the saturation effect of the HIV-1 specific effector CD8 CTLs.

CD4 T cells and long-lived cells become infected by virus-to-cell infections with

the transmission rates β1 and β2, respectively. The µ variables are the death

rates of the respective populations. Productively infected CD4 T cells and

infected long-lived cells produce new virus at the rates p1 and p2, respectively.

HIV-1 specific effector CD8 CTLs kill HIV-1 infected CD4 T cells, productively

HIV-1 infected infected CD4 T cells, and HIV-1 infected long-lived cells at the
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rates γ1, γ2, and γ3 respectively.

The initial transplant for the untreated HIV-1 Elite Controller caused their

viral load to increase and afterward their immune system was capable of sup-

pressing the virus. There was about a year of empiric data on the HIV-1 Elite

Controller patient presented in the study. System 1.4 fit to the empiric data

revealed that the untreated HIV-1 Elite Controller suppressed the virus at

rates equivalent to an untreated patient starting cART.

1.B Themes and objectives

1.B.1 Modeling HIV-1 and SIV brain infection

There are very few studies that quantify data for HIV-1 and SIV infection in

the brain. The difficulty of separating the population of latently and produc-

tively infected brain macrophages using a mathematical model is dependent on

the available data. Since there is minimal knowledge regarding the duration of

infection for each HIV-1 patient, it was tougher to separate the population of

latently and productively infected brain macrophages for HIV-1 patients than

for SIV animal models where the duration of infection and start of treatment

is known.

The main objectives of this topic were to develop a mathematical model

of latently and productively infected cells in the brain for HIV-1 patients and

SIV animal models and to simulate the “Shock and Kill” therapy in the brain

using the developed mathematical model.

This was the first mathematical model to qualitatively analyze the dynam-

ics of latently and productively infected cells in the brain during HIV-1 and
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SIV infection and to quantify the size of the latent reservoir in the brain for

SIV animal studies. Furthermore, after this latent reservoir was estimated,

the effect of LRA in the brain was evaluated and the mathematical model

indicated that there exists a biologically realistic parameter regime where the

“Shock and Kill” therapy strategy is safe and effective in the brain.

1.B.2 Modeling the natural control of HIV-1 in the

plasma

The biological theory for how HIV-1 Elite Controllers suppress the virus nat-

urally with their own immune system is still under development and there is

evidence that the maintenance of HIV-1 specific effector CD4 CTLs in HIV-

1 Elite Controllers along with HIV-1 specific effector CD8 CTLs contribute

to their control of HIV-1 infection [41]. Unique attempts to explain mathe-

matically how HIV-1 Elite Controllers suppress the virus naturally are sparse

[52, 53, 54, 55, 56]. It was challenging to create a mathematical model to de-

scribe the important attributes of the immune system to effectively compare

HIV-1 Elite Controllers with other HIV-1 patients.

The main objectives of this topic were to formulate a mathematical model

for HIV-1 infection dynamics in the plasma with natural immune responses,

fit this mathematical model to historical data for HIV-1 Elite Controllers and

a comparison group of HIV-1 patients, and discern the difference in dynamics

and natural immune responses between patients.

This was the first mathematical modeling study to directly estimate the

differences between a group of HIV-1 Elite Controllers with a comparison

group of HIV-1 patients using empiric data and it is also the first HIV-1
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mathematical model to consider both effector CD4 CTLs’ and effector CD8

CTLs’ impact on HIV-1 disease and other diseases present in each patient. The

Elite Controller group was found to have a stronger antiviral immune response

than the comparison group. In contrast, the comparison group was found to

have more chronic immune activation but a less effective immune response.

The Elite Controller immune response estimates given in this study quantifies

a biologically realistic optimal immune response goal for HIV-1 therapeutic

initiatives.

1.C Methods

1.C.1 Modeling HIV-1 and SIV brain infection

Data was collected from research literature, which measured SIV viral RNA

and SIV viral DNA in monkey brains at different time points. The monkeys

were either untreated or treated at the time of collection. This data was used

for fitting the mathematical models.

Mathematical models were developed that include three cell populations:

uninfected brain macrophages, productively infected, and latently infected

brain macrophages. These models incorporated the effect of cART and these

models qualitatively analyzed the dynamics of latently and productively in-

fected cells in the brain during HIV-1 and SIV infection. The models were

used to quantify the size of the latent reservoir in the brain for SIV infected

animals. Furthermore, the “Shock and Kill” therapy on the brain macrophage

population was simulated using the model.

Bayesian inference and Markov Chain Monte Carlo (MCMC) sampling
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methods were used to fit the mathematical model to the data and obtain best-

fit values and 95% credible intervals for the model parameters and prediction

intervals for the model solutions. Mathematical models were calibrated and

simulated using the software MATLAB. Model outcomes were used to estimate

the progression of latently and productively infected brain macrophages, the

size of the reservoir given cART effectiveness, and reactivation rate and addi-

tional kill rate needed to eliminate the burden of infected brain macrophages

using the “Shock and Kill” therapy.

1.C.2 Modeling the natural control of HIV-1 in the

plasma

Data was provided by the Northern Alberta HIV Program, which measured

viral load, total CD4 T cells, and total CD8 T cells for HIV-1 infection in the

plasma for HIV-1 Elite Controllers and a comparison group of HIV-1 patients

at different time points. The ART-näıve (no previous ART had been taken)

time period in the data for each patient was used for fitting the mathematical

model.

A mathematical model was formulated that incorporated the viral dynam-

ics and the natural immune response of CD4 and CD8 T cells. This model was

used to estimate the differences in immune response and dynamics between

HIV-1 Elite Controllers and a comparison group of HIV-1 patients.

Similarly, Bayesian inference and diffusive nested sampling methods were

used to fit the mathematical model to the data and mathematical models

were calibrated and simulated using the software MATLAB. Model outcomes

were used to estimate the dynamics of the host immune responses for HIV-1
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Elite Controllers and a comparison group of HIV-1 patients and fitted model

parameters were used to discern the important differences in how the immune

system behaved.

1.D Chapter overview

Chapters 2 and 3 of this thesis describes the Bayesian inference tools that were

used to fit the brain macrophage infection model with cART (4.1) and the

plasma infection model with natural immune responses (6.1) to data. Chapter

2 is based on the “Bayesian inference for dynamical systems” paper published

in the journal Infectious Disease Modelling in 2020 [2]. Section 3.C contains a

Bayesian inference Diffusive Nested Sampling example that uses the MATLAB

implementation of the DNS algorithm called “MatlabDiffNestAlg” [9].

Chapter 4 is about modeling the progression of the latent HIV-1 and SIV

brain viral reservoir and simulating the “Shock and Kill” therapy. Chapter

5 contains further details about the HIV-1 brain macrophage infection model

with cART (4.1) and the HIV-1 brain macrophage infection model with cART

and “Shock and Kill” therapy (4.5). Chapter 6 is about estimating and predict-

ing HIV-1 infection in the plasma for HIV-1 Elite Controllers and a comparison

group of HIV-1 patients from the Northern Alberta HIV Program. Chapter

7 contains supplementary material about the HIV-1 plasma infection model

with natural immune responses (6.1). Chapter 8 is the conclusion of the thesis.
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Chapter 2

Bayesian inference for

dynamical systems

2.A Introduction

A common method for performing parameter estimation for dynamical systems

is to use Bayesian inference [57, 58, 59, 60, 61]. Despite the popularity of

using Bayesian inference for performing parameter estimation for dynamical

systems and useful computational manuals, there is a need for a formalized

and comprehensive methodology.

The methods described in this paper assume that the behaviors of the

dynamical system of interest have been mathematically analyzed and that

the solutions of the dynamical system are well-behaved. Additionally, it is

assumed that if a numerical scheme is being used to solve the dynamical sys-

tem that the numerical scheme is stable. The methodology is presented from

a mathematical biology perspective and it will focus on systems of ordinary

differential equations (ODEs); however, the Bayesian inference methodology
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presented can be applied to other areas of applied mathematics and other dif-

ferential equations systems such as partial differential equations (PDEs). This

paper will provide a formalized methodology for dynamical system parameter

estimation using Bayesian inference and it will cover utilizing different distri-

butions, Markov Chain Monte Carlo (MCMC) sampling, obtaining credible

intervals for parameters, and prediction intervals for solutions. The method-

ology is illustrated by using a logistic growth example.

2.B Dynamical system

Assume that the dynamical system of interest can be described by the following

autonomous ODE system (2.1) written as a vector differential equation:

x′ = f(x), (2.1)

where x = ⟨x1, . . . , xk⟩ and f = ⟨f1(x), . . . , fk(x)⟩, with the vector of initial

conditions x0 = ⟨x01, . . . , x0k⟩.

It is assumed that the that the unique solution vector, x(t), of system (2.1)

exists and can be obtained either explicitly or using numerical approximation.

If a numerical approximation method is used, it is assumed that the numerical

approximation scheme is stable.

All the parameters in system (2.1) will be denoted by the vector β. If

the initial conditions x01, . . . , x
0
k will also be estimated, then let the initial

conditions x01, . . . , x
0
k be contained in vector β as well.

The dependence of the unique solution vector x on both time, t, and the

vector of parameters, β, will be emphasized and the unique solution vector

16



will be denoted as x(β, t).

2.C Data

Suppose there are m data sets. It is important to ensure that the correct ODE

model solution or combination of ODE model solutions is fit to the jth data

set (j = 1, . . . ,m).

Sometimes a data set is scaled differently than the model solutions or the

data set can be described by a summation of the ODE model solutions. In

order to include these situations, we can use a linear combination of the ODE

model solutions, aj1x1(β, t) + · · · + ajkxk(β, t), to fit to the jth data set. (The

simpler case where only the ith specific ODE model solution xi(β, t) is to be

fit to the jth data set, is included in the linear combination where aji = 1 and

the other constants are zero.) If the nonzero vector of constants, aj, will be

estimated, then let the nonzero vector of constants, aj, for j = 1, . . .m, be

contained in vector

ν =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

β

a1

...

am

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Also, if the jth data set can be described by a nonlinear combination of

the ODE model solutions, then, similarly, let any estimated nonzero vector of

constants, aj, be contained in vector
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ν =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

β

a1

...

am

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

So, in general, we fit the function, F (x1(β, t
j
i ), ..., xk(β, t

j
i ), a

1, ..., am), to

the jth data set.

2.D Distribution of data over time

The distribution of the observations over time for each jth data set must be

chosen before fitting system (2.1) to the data. The following sections will

describe the Gaussian, Poisson, Negative Binomial, and other distribution

options.

2.D.1 Gaussian distribution

Let Y be a random variable from the Gaussian distribution with parameters µ

and σ2 = 1
τ
> 0, Y ∼ N(µ, θ2). The formulation of the Gaussian distribution

is given by the following continuous probability density function (pdf), f(y)

[62]:

f(y) =
1√
2πσ2

exp(− 1

2σ2
(y − µ)2) =

√
τ

2π
exp(−1

2
τ(y − µ)2) (2.2)

The mean, E[Y ], of the Gaussian distribution is given by µ and the variance,

Var[Y ], of this distribution is given by σ2 = 1
τ
.

Assume that the jth data set is given by observations Dj = {dj1, . . . , djnj
}
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with corresponding times Tj = {tj1, . . . , tjnj
} and that the probability of ob-

serving dji is given by the Gaussian distribution:

f(dji ) =

√
τ j

2π
exp(−1

2
τ j(dji − µj

i )
2) (2.3)

where the mean µj
i changes depending on the time, tji and the variance 1

τ j
is

specific to the jth data set.

Given our assumption of fitting the function of the ODE model solutions

and any necessary constants, F (x1(β, t
j
i ), ..., xk(β, t

j
i ), a

1, ..., am), to the jth

data set, we set

E[Dj
i ] = µj

i = F (x1(β, t
j
i ), ..., xk(β, t

j
i ), a

1, ..., am). (2.4)

Equation (2.4) can be thought of as a type of link function. In statistics,

for generalized linear models (GLMs), a link function is defined as the function

that transforms the mean of a distribution to a linear regression model [63].

Equation (2.4) equates the mean of the Gaussian distribution to the ODE

model solutions.

2.D.2 Gaussian distribution with non-constant variance

over time

Assume that the jth data set is given by observations Dj = {dj1, . . . , djnj
} with

corresponding times Tj = {tj1, . . . , tjnj
} and that the probability of observing

dji is given by the Gaussian distribution with non-constant variance:

f(dji ) =

√
τ ji
2π

exp(−1

2
τ ji (d

j
i − µj

i )
2) (2.5)
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with the mean µj
i , the variance

1

τ ji
is given by 1

τ ji
= vjg(µr

i ), v
j > 0 is a constant,

and g(µr
i ) is a positive function of the mean µr

i from the rth data set, for some

r ∈ {1, . . . ,m}. Here both the mean µj
i and the variance 1

τ ji
= vjg(µr

i ) change

depending on the time ti and r is chosen from among the m data sets.

Given our assumption of fitting the function of the ODE model solutions

and any necessary constants, F (x1(β, t
j
i ), ..., xk(β, t

j
i ), a

1, ..., am), to the jth

data set, we set

We will use equation (2.4) to equate the mean, E[Dj
i ] = µj

i , to the ODE

model solutions. Equation (2.4) equates the mean of the Gaussian distribution

with non-constant variance to the ODE model solution(s).

2.D.3 Poisson distribution

Let Y be a random variable from the Poisson distribution with parameter

µ > 0, Y ∼ POI(µ). The formulation of the Poisson distribution is given by

the following discrete pdf, f(y) [62]:

f(y) =
exp(−µ)µy

y!
(2.6)

where y = 0, 1, . . . .

The mean, E[Y ], of the Poisson distribution is given by µ. For the Poisson

distribution, the variance is equal to the mean, Var[Y ] = E[Y ] = µ.

Assume that the jth data set is given by observations Dj = {dj1, . . . , djnj
}

with corresponding times Tj = {tj1, . . . , tjnj
} and that the probability of ob-

serving dji is given by the Poisson distribution:

f(dji ) =
exp(−µj

i )µ
j
i

(dji )

dji !
(2.7)
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where the mean E[Dj
i ] = µj

i changes depending on the time, tji . Hence, the

variance, Var[Dj
i ] = E[Dj

i ] = µj
i , also changes over time.

Again, we will use equation (2.4) to equate the mean, E[Dj
i ] = µj

i , to the

ODE model solutions.

The Poisson distribution is used for count data of rare events. The fact that

the variance is dependent on the mean is particularly useful since in practice

when observing count data over time the count data generally expresses more

variability at higher values than at lower values [64]. The restriction that the

variance is strictly equal to the mean is commonly violated for many types of

count data. Count data where the variance is larger than the mean is called

overdispersed. The negative binomial distribution can be used for count data

with overdispersion.

2.D.4 Negative binomial distribution

Let Y be a random variable from the negative binomial distribution with

parameters 0 < p < 1 and r ≥ 0, Y ∼ NB(r, p). The formulation of the

negative binomial distribution is given by the following discrete pdf, f(y) [65]:

f(y) =
Γ(y + r)

y! Γ(r)
pr(1− p)y (2.8)

where y = 0, 1, 2 . . . .

The interpretation of this formulation of the negative binomial distribu-

tion is that y are the number of failures before the rth success and p is the

probability of success per trial [65].

The mean, E[Y ], of the negative binomial distribution is given by

µ = r(1−p)
p

and the variance, Var[Y ], of this distribution is given by
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σ2 = r(1−p)
p2

= µ
p
.

For count data, the negative binomial distribution can be interpreted as the

mean number of counts E[Y ] = µ with the variance Var[Y ] = µ
p
overdispersed,

since 0 < p < 1, Var[Y ] > E[Y ] [64].

Assume that the jth data set is given by observations Dj = {dj1, . . . , djnj
}

with corresponding times Tj = {tj1, . . . , tjnj
} and that the probability of ob-

serving dji is given by the negative binomial distribution:

f(dji ) =
Γ(dji + rji )

dji ! Γ(r
j
i )

(pj)
(rji )(1− pj)d

j
i (2.9)

where rji =
(pj)(µj

i )

1−(pj)
⇐⇒ µj

i =
(rji )(1−pj)

pj
changes depending on the time, tji

and pj is specific to the jth data set. Hence, the variance, Var[Dj
i ] =

µj
i

pj
, also

changes over time.

As before, we will use equation (2.4) to equate the mean, E[Dj
i ] = µj

i , to

the ODE model solutions.

2.D.5 Other distributions

It is seen from Sections 2.D.1, 2.D.3, and 2.D.4 that in general if the jth data

set is given by observations Dj = {dj1, . . . , djnj
} with corresponding times Tj =

{tj1, . . . , tjnj
} and the probability of observing dji is given by the distribution

with pdf f(dji ) with mean E[Dj
i ] = µj

i , then equation (2.4) is used to equate

the mean, E[Dj
i ] = µj

i , to the ODE model solutions.
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2.E Likelihood function

In a dynamical system, the dependency of solutions x1, . . . , xk on each other

is built into the mathematical model itself. Assuming that the mathematical

model correctly describes the data sets of interest, the data sets can be con-

sidered independent from each other. With m independent data sets, there

will be m likelihood functions associated with each of the independent data

sets and the combined likelihood function is given by

L(θ) = CL1(θ) · . . . · Lm(θ) (2.10)

where θ is the vector of parameters to estimate, and C is any positive constant

not depending on θ used to simplify the likelihood function [66].

2.E.1 Gaussian probability model for m data sets and

combined likelihood function

Assume, for j = 1, . . . ,m, that the jth data set is given by observations

Dj = {dj1, . . . , djnj
} with corresponding times Tj = {tj1, . . . , tjnj

} and that the

probability of observing dji is given by the Gaussian distribution in equation

(2.3) where the mean µj
i changes depending on the time, tji and the variance

1
τ j
> 0 is specific to the jth data set. Then the probability of the observed

counts D = {D1, . . . , Dm} is given by
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P (D|θ) =
m∏
j=1

nj∏
i=1

√
τ j

2π
exp(−1

2
τ j(dji − µj

i )
2)

= (
1

2π
)(
∑m

j=1

nj
2
)(τ 1)

n1
2 · . . . · (τm)

nm
2 exp(−1

2

m∑
j=1

τ j
nj∑
i=1

(dji − µj
i )

2)

(2.11)

where equation (2.4) is used to equate the mean, µj
i , to the ODE model solu-

tions and

θ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ν

τ 1

...

τm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The Gaussian probability model is very beneficial for fitting since even

poor initial guesses of the vector of parameters, θ, will still produce a nonzero

probability.

The combined likelihood function is given by

L(θ) = C(
1

2π
)(
∑m

j=1

nj
2
)(τ 1)

n1
2 · . . . · (τm)

nm
2 exp(−1

2

m∑
j=1

τ j
nj∑
i=1

(dji − µj
i )

2)

= (τ 1)
n1
2 · . . . · (τm)

nm
2 exp(−1

2

m∑
j=1

τ j
nj∑
i=1

(dji − µj
i )

2)

(2.12)

where C = ( 1
2π
)(−

∑m
j=1

nj
2
) simplifies the likelihood function. The value of θ

that maximizes P (D|θ) will also maximize L(θ) [66].

The combined log likelihood function is given by
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log(L(θ)) =
n1

2
log(τ 1) + . . .+

nm

2
log(τm)− 1

2

m∑
j=1

τ j
nj∑
i=1

(dji − µj
i )

2) (2.13)

the value of θ that maximizes log(L(θ)) will also maximize L(θ) [66].

2.E.2 Gaussian probability model with non-constant vari-

ance over time for m data sets and combined like-

lihood function

Assume, for j = 1, . . . ,m, that the jth data set is given by observations

Dj = {dj1, . . . , djnj
} with corresponding times Tj = {tj1, . . . , tjnj

} and that the

probability of observing dji is given by the Gaussian distribution with non-

constant variance in equation (2.3) where the mean µj
i and variance 1

τ ji
changes

depending on the time, tji , and the variance 1

τ ji
= vjg(µr

i ) is specific to the jth

data set and the positive function g depends on the mean µr
i from the rth data

set, for some r ∈ {1, . . . ,m}. For clarity, we will assume that the same g(µr
i )

function is assumed for each jth data set, though the function and value of r

could vary for each jth data set, gj(µ
rj
i ). Then the probability of the observed

counts D = {D1, . . . , Dm} is given by
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P (D|θ) =
m∏
j=1

nj∏
i=1

√
τ ji
2π

exp

(
−1

2
τ ji (d

j
i − µj

i )
2

)

=

(
1

2π

)(
∑m

j=1

nj
2
)
(

m∏
j=1

nj∏
i=1

τ ji

)1/2

exp

(
−1

2

m∑
j=1

nj∑
i=1

τ ji (d
j
i − µj

i )
2

)

=

(
1

2π

)(
∑m

j=1

nj
2
)
(

m∏
j=1

nj∏
i=1

vjg(µr
i )

)−1/2

exp

(
−1

2

m∑
j=1

nj∑
i=1

(vjg(µr
i ))

−1(dji − µj
i )

2

)
(2.14)

where equation (2.4) is used to equate the mean, µj
i , to the ODE model solu-

tions and

θ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ν

v1

...

vm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The combined likelihood function is given by

L(θ) = C

(
1

2π

)(
∑m

j=1

nj
2
)
(

m∏
j=1

nj∏
i=1

vjg(µr
i )

)−1/2

exp

(
−1

2

m∑
j=1

nj∑
i=1

(vjg(µr
i ))

−1(dji − µj
i )

2

)

=

(
m∏
j=1

nj∏
i=1

vjg(µr
i )

)−1/2

exp

(
−1

2

m∑
j=1

nj∑
i=1

(vjg(µr
i ))

−1(dji − µj
i )

2

)
(2.15)

where C =
(

1
2π

)−(
∑m

j=1

nj
2
)
simplifies the likelihood function. The value of θ

that maximizes P (D|θ) will also maximize L(θ) [66].

The combined log likelihood function is given by
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log(L(θ)) = −1

2

m∑
j=1

nj∑
i=1

log(vjg(µr
i ))−

1

2

m∑
j=1

(vj)−1

nj∑
i=1

(g(µr
i ))

−1(dji − µj
i )

2

(2.16)

the value of θ that maximizes log(L(θ)) will also maximize L(θ) [66].

If the m data sets have the same number of observations n = n1, . . . , nm,

then the combined likelihood function can be written in the following way

L(θ) =

(
m∏
j=1

n∏
i=1

vjg(µ
r
i )

)−1/2

exp

(
−1

2

m∑
j=1

n∑
i=1

(vjg(µ
r
i ))

−1(dji − µj
i )

2

)

=

(
m∏
j=1

det(diag(τ j)))

)1/2

exp

(
−1

2
tr (EA)

)
(2.17)

where

τ j =

⎡⎢⎢⎢⎢⎣
(vjg(µr

1))
−1

...

(vjg(µr
n))

−1

⎤⎥⎥⎥⎥⎦,

ϵj =

⎡⎢⎢⎢⎢⎣
dj1 − µj

1

...

djn − µj
n

⎤⎥⎥⎥⎥⎦,

E =

⎡⎢⎢⎢⎢⎣
d11 − µ1

1 . . . d1n − µ1
n

...
...

dm1 − µm
1 . . . dmn − µm

n

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
ϵ1

′

...

ϵm
′

⎤⎥⎥⎥⎥⎦, and

A =

⎡⎢⎢⎢⎢⎣
(v1g(µr

1))
−1 . . . (vng(µr

1))
−1

...
...

(v1g(µr
n))

−1 . . . (vng(µr
n))

−1

⎤⎥⎥⎥⎥⎦ =

[
τ 1 . . . τm

]
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The equation (2.17) can be a helpful way to compute the likelihood computa-

tionally in terms of vectors and matrices.

2.E.3 Poisson probability model for m data sets and

combined likelihood function

Assume, for j = 1, . . . ,m, that the jth data set is given by observations

Dj = {dj1, . . . , djnj
} with corresponding times Tj = {tj1, . . . , tjnj

} and that the

probability of observing dji is given by the Poisson distribution in equation

(2.7) where the mean µj
i (and hence the variance, µj

i ) changes depending on

the time, tji . Then the probability of the observed counts D = {D1, . . . , Dm}

is given by

P (D|θ) =
m∏
j=1

nj∏
i=1

exp(−µj
i )µ

j
i

(dji )

dji !

=
1

d11! · . . . · d1n1
!
· . . . · 1

dm1 ! · . . . · dmnm
!
exp(−

m∑
j=1

nj∑
i=1

µj
i )

m∏
j=1

((µj
1)

dj1 · . . . · (µj
nj
)d

j
nj )

(2.18)

where equation (2.4) is used to equate the mean, µj
i , to the ODE model solu-

tions and θ = ν.

The combined likelihood function is given by

L(θ) = C
1

d11! · . . . · d1n1
!
· . . . · 1

dm1 ! · . . . · dmnm
!
exp(−

m∑
j=1

nj∑
i=1

µj
i )

m∏
j=1

((µj
1)

dj1 · . . . · (µj
nj
)d

j
nj )

= exp(−
m∑
j=1

nj∑
i=1

µj
i )

m∏
j=1

((µj
1)

dj1 · . . . · (µj
nj
)d

j
nj )

(2.19)
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where C = (d11! · . . .·d1n1
! )·. . .·(dm1 ! · . . .·dmnm

! ) simplifies the likelihood function.

The combined log likelihood function is given by

log(L(θ)) =
m∑
j=1

nj∑
i=1

log((µj
i )

dji )− µj
i . (2.20)

2.E.4 Negative binomial probability model for m data

sets and combined likelihood function

Assume, for j = 1, . . . ,m, that the jth data set is given by observations

Dj = {dj1, . . . , djnj
} with corresponding times Tj = {tj1, . . . , tjnj

} and that the

probability of observing dji is given by the negative binomial distribution in

equation (2.9) where the mean µj
i (and hence the variance Var[Dj

i ] =
µj
i

pj
)

changes depending on the time, tji . Then the probability of the observed

counts D = {D1, . . . , Dm} is given by

P (D|θ) =
m∏
j=1

nj∏
i=1

Γ(dji + rji )

dji ! Γ(r
j
i )

(pj)
(rji )(1− pj)d

j
i

=

(
1

d11! · . . . · d1n1
!
· . . . · 1

dm1 ! · . . . · dmnm
!

)
(
Γ(d11 + r11) · . . . · Γ(d1n1

+ r1n1
)

Γ(r11) · . . . · Γ(r1n1
)

· . . . ·
Γ(dm1 + rm1 ) · . . . · Γ(dmnm

+ rmnm
)

Γ(rm1 ) · . . . · Γ(rmnm
)

)
(
(p1)

∑n1
i=1 r

j
i · . . . · (pm)

∑nm
i=1 r

j
i

)(
(1− p1)

∑n1
i=1 d

j
i · . . . · (1− pm)

∑nm
i=1 d

j
i

)
(2.21)

where rji =
(pj)(µj

i )

1−(pj)
⇐⇒ µj

i =
(rji )(1−pj)

pj
, the equation (2.4) is used to equate

the mean, µj
i , to the ODE model solutions and
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θ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ν

p1

...

pm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The combined likelihood function is given by

L(θ) = C

(
1

d11! · . . . · d1n1
!
· . . . · 1

dm1 ! · . . . · dmnm
!

)
(
Γ(d11 + r11) · . . . · Γ(d1n1

+ r1n1
)

Γ(r11) · . . . · Γ(r1n1
)

· . . . ·
Γ(dm1 + rm1 ) · . . . · Γ(dmnm

+ rmnm
)

Γ(rm1 ) · . . . · Γ(rmnm
)

)
(
(p1)

∑n1
i=1 r

1
i · . . . · (pm)

∑nm
i=1 r

m
i

)(
(1− p1)

∑n1
i=1 d

1
i · . . . · (1− pm)

∑nm
i=1 d

m
i

)
=

(
Γ(d11 + r11) · . . . · Γ(d1n1

+ r1n1
)

Γ(r11) · . . . · Γ(r1n1
)

· . . . ·
Γ(dm1 + rm1 ) · . . . · Γ(dmnm

+ rmnm
)

Γ(rm1 ) · . . . · Γ(rmnm
)

)
(
(p1)

∑n1
i=1 r

1
i · . . . · (pm)

∑nm
i=1 r

m
i

)(
(1− p1)

∑n1
i=1 d

1
i · . . . · (1− pm)

∑nm
i=1 d

m
i

)
(2.22)

where C = (d11! · . . .·d1n1
! )·. . .·(dm1 ! · . . .·dmnm

! ) simplifies the likelihood function.

The combined log likelihood function is given by

log(L(θ)) =
m∑
j=1

nj∑
i=1

log(Γ(dji + rji ))− log(Γ(rji )) + rji log(p
j) + dji log(1− pj).

(2.23)

2.F Bayesian framework

The Bayesian framework is set up by first assuming a probability model for

the observed data D given a p × 1 vector of unknown parameters θ, which

is P (D|θ). Then it is assumed that θ is randomly distributed from the prior
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distribution P (θ). Statistical inference for θ is based on the posterior distri-

bution, P (θ|D). Using Bayes’ theorem we have

P (θ|D) =
P (D|θ)P (θ)

P (D)

=
P (D|θ)P (θ)∫

Ω
P (D|θ)P (θ)dθ

∝ L(θ)P (θ) = π(θ|D)

(2.24)

where Ω is the parameter space of θ and L(θ) is the likelihood function.

P (D) =
∫
Ω
P (D|θ)P (θ)dθ is called the prior predictive distribution and it

is the normalizing constant of the posterior distribution P (θ|D) [67]. The

unnormalized posterior distribution is given by π(θ|D) = L(θ)P (θ).

The Bayesian framework is very useful to use for statistical inference that

occurs in mathematical biology since there is generally prior information about

the unknown parameters in the literature.

2.F.1 Prior distribution

In biological applications there may exist literature regarding an appropriate

prior distribution for a parameter of interest. However, in many cases, only

a general range is known from the literature about a parameter of interest

and the uniform distribution is usually chosen as the prior distribution for the

parameter of interest.

For parameters that take positive values and that have an uncertainty that

spans several orders of magnitude, it is useful to use the loguniform distribution

as the prior distribution [68]. The loguniform distribution views the logarithm

range as uniform. Using the loguniform distribution as a prior distribution for

a parameter can help Bayesian inference to more easily explore a parameter’s
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uncertainty. It is usual to view the orders of magnitude in terms of base 10 and

then the loguniform distribution with base 10 would be chosen as the prior.

If there are independent prior distributions, Ψl, chosen for each of the

parameters, then the combined prior distribution is given by

P (θ) =

p∏
l=1

Ψl(θp). (2.25)

2.G Markov Chain Monte Carlo algorithms

Markov Chain Monte Carlo (MCMC) algorithms are designed to sample and

to fully explore the parameter space where the unnormalized posterior dis-

tribution is positive [69]. The MCMC algorithms involve a process where a

new vector of parameter values is sampled from the posterior distribution,

θ(t), based off of the previous vector of parameter values, θ(t−1). A successful

MCMC algorithm results in a sample path (also called a chain or walker)

that has arrived at a stationary process and covers the domain of the target

unnormalized posterior distribution.

2.G.1 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is one of the classic MCMC algorithms [67]:

A starting point θ(0) is selected.

For every iteration t = 1, 2, ..., T :

randomly select a proposal for θ(t), γ, from the proposal distribution
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f(θ(t)|θ(t−1))

proposal for θ(t) is accepted with probability α = min{1, π(γ |D)

π(θ(t−1)
|D)

f(θ(t−1)
|γ)

f(γ |θ(t−1)
)
}

random sample u from U(0, 1)

if u < α, the proposal is accepted and θ(t) = γ.

If not, θ(t) = θ(t−1)

where π(θ|D) is the unnormalized posterior distribution.

2.G.2 Random-walk Metropolis-Hastings algorithm

If a symmetric proposal distribution is chosen in the Metropolis-Hastings Algo-

rithm, then the proposal distribution randomly perturbs the current position

of the vector of unknown parameters, θ(t−1), and these algorithms are called

Random-Walk Metropolis-Hastings algorithms [69].

A symmetric proposal distribution has the property that f(γ|θ(t−1)) =

f(θ(t−1)|γ) and this simplifies the acceptance probability to α = min{1, π(γ |D)

π(θ(t−1)
|D)

}.

2.G.3 Affine invariant ensemble Markov Chain Monte

Carlo algorithm

The affine invariant ensemble MCMC algorithm is shown to perform better

than the Metropolis-Hastings algorithm and other MCMC algorithms [70].

Affine invariance here means that the performance of the algorithm is inde-

pendent of the aspect ratio in anisotropic (directional density) posterior dis-

tributions [70]. The algorithm uses K walkers and the positions of the walkers

are updated based on the present positions of the K walkers [71]. The follow-

ing is the affine invariant ensemble MCMC algorithm:
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A starting point θ
(0)
i is selected for each of the walkers, i = 1, 2, ..., K.

For every iteration t = 1, 2, ..., T :

For i = 1, 2, ..., K:

randomly select a walker j from the K walkers such that j ̸= i

randomly choose z from the distribution f(z) = 1√
az
, 1

a
≤ z ≤ a

proposal for θ
(t)
i is γ = θ

(t−1)
j + z(θ

(t−1)
i − θ

(t−1)
j ) (Stretch Move)

proposal for θ
(t)
i is accepted with probability α = min{1, zp−1 π(γ |D)

π(θ(t−1)

i |D)
}

If the proposal is accepted, θ
(t)
i = γ. If not, θ

(t)
i = θ

(t−1)
i

where π(θ|D) is the unnormalized posterior distribution, a > 1 is adjusted to

improve performance, and f(z) satisfies the symmetry condition f(1
z
) = zf(z).

The equation θ
(t−1)
j + z(θ

(t−1)
i − θ

(t−1)
j ) is the equation of a line parallel to

the vector (θ
(t−1)
i − θ

(t−1)
j ). By randomly choosing z, the stretch move in the

algorithm moves to a vector position, γ, a certain distance up or down the

line. Then the vector proposal, γ, is either accepted or rejected based on the

acceptance probability, α.

The set of samples from each of the K walkers will converge to the unnor-

malized posterior distribution, π(θ|D). After running the method, the set of

samples from each of the K walkers can be pooled together to form a larger

sample from the unnormalized posterior distribution, KT samples. Since the

samples from the first iterations are generally far away from the highest den-

sity of the unnormalized posterior distribution, the first iterations are usually

deleted from each of the K walkers; the deletion of the first iterations is called

burn-in. Let H be the number of pooled samples after the burn-in is completed.
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2.H Diagnostics

The samples from the MCMC provide a sample path. It is important to

diagnose if this sample path produces a sample from the target unnormalized

posterior distribution, π(θ|D). In other words, the sample path converges to

the target unnormalized posterior distribution, π(θ|D). From the plot of the

sample path, it is vital to find that the sample path has arrived at a stationary

process and the sample path covers the domain of the target unnormalized

posterior distribution, π(θ|D).

The sample path for each parameter θi should be plotted. It is ideal to

find that the sample path for each parameter θi is oscillating very fast and

displays no apparent trend; this indicates that the sample path has arrived at

a stationary process. Provided that the sample path for θi has converged, the

samples for θi is a random sample from the marginal posterior distribution for

θi. The samples for each parameter θi can be viewed on separate histograms

and the frequencies on the histogram approximates the marginal posterior

distribution for θi. A robust way to view the posterior distribution is from

the parameter θi perspective and this is accomplished by plotting the sample

unnormalized posterior density values by the θi sample values.

A formalized test of the convergence of the MCMC sampling to the esti-

mated unnormalized posterior distribution for each parameter θi is found by

using a general univariate comparison method [72]. The general univariate

comparison method uses the distance between the upper and lower values of

the 100(1− α)% interval for the pooled samples, S, and divides this distance

by the average of the distances between the upper and lower values of the

100(1 − α)% interval for each of the K walkers, si, to receive the potential
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scale reduction factor, η [72]:

η =
S∑K
i=1

si
K

(2.26)

When the potential scale reduction factor, η, is close to 1 for all the esti-

mated parameters, this indicates that the MCMC sampling converged to the

estimated posterior distribution for each parameter.

2.I Point estimate for parameters

The point estimate is a single vector of the parameters used to summarize

the posterior distribution. The point estimate is generally given by one of

the following [68]: the posterior mean, which is the mean of each marginal

posterior distribution π(θi|D) and it is computed by taking the mean of the θi

samples; the posterior median, which is the median of each marginal posterior

distribution π(θi|D), and it is computed by taking the median of the θi samples;

and the maximum posterior, which is the θ that corresponds to the maximum

of the posterior distribution.

2.J Credible Intervals for parameters

For a marginal posterior distribution, π(θi|D), for θi, the most common 95%

credible interval for θi is given by the 2.5 and 97.5 percentiles of the marginal

posterior distribution π(θi|D) and it is computed by taking the 2.5 and 97.5

percentiles of the θi samples [67, 68]. It is sometimes called the centred 95%

credible interval since there is the same amount of probability lying outside of

the interval on both sides.
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2.J.1 Non-uniqueness

Non-uniqueness occurs when there is more than one solution vector θ that

explains the data, D, equally as well.

When there is non-uniqueness, the marginal posterior distribution, π(θi|D),

for θi is constant over an interval and the credible interval for θi is given by

the upper and lower limits of the interval [67].

The credible intervals resulting from non-uniqueness can still be very ben-

eficial since they are often more specific than the initial prior distributions

specified for the parameters.

2.K Posterior predictive distribution

Let D̃ = {D̃1, . . . , D̃m} be future responses of interest (replicated data) for the

m datasets. The posterior predictive distribution of D̃ is given by

P (D̃|D) =

∫
Ω

P (D̃|θ)P (θ|D)dθ (2.27)

where P (θ|D) is the posterior distribution and P (D̃|θ) is the same probability

model for the data specified in the Bayesian framework (2.24).

To generate the posterior predictive distribution

For each pooled sample t = 1, 2, ..., H:

randomly sample D̃ from the probability distribution specified for the data

P (D|θ(t)) at θ(t)

where H is the number of samples from the unnormalized posterior distribu-
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tion.

The 95% prediction intervals for each data set Dj is found by determining

the 2.5 and 97.5 percentiles of the posterior predictive distribution at each tji .

The posterior predictive mean is found by taking the mean of the replicated

data at each tji .

2.L Bayesian Goodness of Fit

The Bayesian p-value (posterior predictive p-value) is used for testing the

goodness of fit of a model to the data [73, 74]. The Bayesian p-value quantifies

the discrepancies between the data and the model and it gauges whether these

discrepancies could have happened by chance.

In order to carry out the Bayesian p-value test, a discrepancy measure needs

to be chosen. The χ2 discrepancy is a commonly used discrepancy measure.

The χ2 discrepancy is the sum of squares of standardized residuals of the data

with respect to their true unknown expectations and it is a function of the

data, D = {D1, . . . , Dm}, as well as the unknown parameters, θ:

χ2(D,θ) =
m∑
j=1

nj∑
i=1

(dji − E[dji ,θ])
2

Var[dji ,θ]
. (2.28)

The Bayesian p-value, pB, is defined as the probability that the replicated

data could be more extreme than the observed data:

pB = P (χ2(D̃,θ) ≥ χ2(D,θ)|D) (2.29)

where the probability is evaluated over the posterior distribution of θ and the

posterior predictive distribution of D̃.
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To calculate the Bayesian p-value, pB

For each pooled sample t = 1, 2, ..., H:

randomly sample D̃ from the probability distribution specified for the data

P (D|θ(t)) at θ(t)

(This is how the replicated data from the posterior predictive distribution was

generated.)

calculate χ2(D̃,θ(t)) and χ2(D,θ(t))

record if χ2(D̃,θ(t)) exceeds χ2(D,θ(t))

where H is the number of samples from the unnormalized posterior distribu-

tion.

The estimated Bayesian p-value, pB, is the proportion of times that χ2(D̃,θ(t))

exceeds χ2(D,θ(t)).

If the model predictions fit the data, ideally pB will be close to 0.5. If pB

is between 0.05 and 0.95, then the p-value is considered to be in a reasonable

range and there is no evidence against the null hypothesis that the model

predictions fit the data.

If pB is close to 0 or 1, then there is evidence against the null hypothesis

that the model predictions fit the data. Extreme tail-area probabilities, less

than 0.01 or more than 0.99, indicate a major failure of the model predictions

to fit the data.
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Figure 2.1: The true logistic growth model for the spread of viral infection
in the small town with x0 = 3, r = 0.8 and N = 3000

2.M Logistic growth example

Assume there are three people infected with a virus in an isolated town of 3000

people. Furthermore, assume that the true model for the first 15 days of the

virus across the population is plotted in Figure 2.1 and given by the following

differential equation

dx

dt
= x(r − r

N
x) (2.30)

where x0 = 3, r = 0.8 and N = 3000.

Now, this differential equation (2.30) can be solved analytically and we

receive the logistic equation

x(β, ti) =
rx0

r
N
x0 + (r − r

N
x0)e−rti

(2.31)

where
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Figure 2.2: The generated data for the spread of a viral infection in the
small town

β =

⎡⎢⎢⎢⎢⎣
x0

r

N

⎤⎥⎥⎥⎥⎦ .
Now, assume that the town collects count data for the number of people

infected with the virus. We will generate this observed data by randomly

sampling from the Negative Binomial distribution with mean given by (2.31)

with x0 = 3, r = 0.8 and N = 3000, and variance given by the mean divided

by p, where p is chosen as 0.005. The generated observed data for the first 15

days of the virus across the population is plotted in Figure 2.2.

Now, we will use Bayesian inference to determine the following unknown

vector of parameters

θ =

⎡⎢⎣β
p

⎤⎥⎦
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x0

r

N

p

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

In this scenario, equation (2.4) is E[Di] = µi = x(β, ti) and the negative

binomial distribution (2.9) is chosen to describe the observed data.

The following uniform prior distributions are chosen for the parameters:

x0 with distribution U(1, 50)

r with distribution U(0.1, 2)

N with distribution U(100, 6000)

p with distribution U(1× 10−5, 1× 10−1).

The affine invariant ensemble MCMC algorithm is used with T = 100000

iterations and K = 8 walkers. The potential scale reduction factor, η, for each

parameter:

η = 0.9941 for x0

η = 0.9977 for r

η = 0.9963 for N

η = 0.9987 for p.

All potential scale reduction factors are close to 1 and this indicates that the

algorithm converged to the posterior distribution.

The Bayesian p-value, pB, was
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pB = 0.4058

which indicates that there is no evidence against the null hypothesis that the

model predictions fit the data.

The histogram of each parameter is plotted in Figure 2.3. The unnor-

malized posterior distribution from each parameter’s perspective is plotted in

Figure 2.4. The point estimate for the parameters is the maximum posterior.

The point estimate with the 95% credible interval for each parameter are the

following:

x0 is estimated to be 4.13 (1.68, 19.58),

r is estimated to be 0.690 (0.474, 0.834),

N is estimated to be 2.99× 103 (2.46× 103, 4.47× 103), and

p is estimated to be 0.0070 (0.0032, 0.0111).

The true parameter values for x0, r, N , and p all lie within the 95% credible

intervals.

Samples from the posterior predictive distribution and the posterior predic-

tive mean are displayed in Figure 2.5. The true model, best fit model (model

with the highest unnormalized posterior probability), and posterior predictive

mean are compared in Figure 2.6. It is seen that the best fit model (red curve)

lies very close to the posterior predictive mean (black curve) and is near the

true model (blue curve). It is observed that the true model (blue curve) and

all of the generated data (red circles) lie within the 95% prediction intervals

(dashed black curves).
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Figure 2.3: Histogram of (a) x0, (b) r, (c) N , and (d) p
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Figure 2.4: Unnormalized posterior distribution from parameter’s
perspective: (a) x0, (b) r, (c) N , and (d) p
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Figure 2.6: Best fit and true model for the spread of a viral infection in the
small town with 95% prediction interval
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Chapter 3

Bayesian inference using

diffusive nested sampling

3.A Nested sampling

Nested sampling estimates the normalizing constant (called the prior predictive

distribution, marginal likelihood, or evidence),

Z = P (D) =

∫
Ω

P (D|θ)P (θ)dθ, (3.1)

of the posterior distribution P (θ|D), by relating the likelihood function, L, to

the prior mass, X [75]. As a result of estimating the normalizing constant,

Z, with nested sampling, the posterior samples become available as a conse-

quence of this sampling, which provides another way of performing Bayesian

inference. Since the normalizing constant, Z, is being estimated, nested sam-

pling provides an estimate of the true posterior density,
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P (θ|D) =
P (D|θ)P (θ)

P (D)

=
P (D|θ)P (θ)

Z
.

(3.2)

Nested sampling also provides a way to carry out model selection within the

Bayesian framework since normalizing constants are estimated. Consider two

models, M1 and M2, proposed to explain the data D. Suppose that the two

normalizing constants, Z1 and Z2, are estimated for each model, respectively.

Also, it is assumed that the prior distribution attributed to each model is equal,

P (M1) = P (M2), which means that there is no prior belief that one model is

better than the other. Then model selection is performed by comparing the

evidence Z1 to the evidence Z2 with the following ratio called the Bayes’ factor

[76]:

B =
Z1

Z2

. (3.3)

The value of the Bayes factor, B, is interpreted in the following way [77]:

• if 102 < B, then there is decisive evidence against M2

• if 103/2 < B < 102, then there is very strong evidence against M2

• if 10 < B < 103/2, then there is strong evidence against M2

• if 101/2 < B < 10, then there is substantial evidence against M2

• if 1 < B < 101/2, then there is minimal evidence against M2

• if 10−1/2 < B < 1, then there is minimal evidence against M1

• if 10−1 < B < 10−1/2, then there is substantial evidence against M1
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• if 10−3/2 < B < 10−1, then there is strong evidence against M1

• if 10−2 < B < 10−3/2, then there is very strong evidence against M1

• if B < 10−2, then there is decisive evidence against M1

From the Bayes factor, B, interpretation, a model can be selected.

Nested sampling is accomplished by first defining the quantity

X(L∗) =

∫
L(θ)>L∗

P (θ)dθ, (3.4)

which is the cumulant prior mass covering all likelihood values greater than L∗.

It is assumed that the prior distribution is normalized to unit total. Hence,

0 ≤ X(L∗) ≤ 1 and as L∗ increases, the enclosed prior mass X decreases from

1 to 0.

Nested sampling estimates L(X), which is the likelihood, L, as a function of

prior mass, X. The evidence, Z, is estimated by the approximate integration

of

∫ 1

0

L(X)dX. (3.5)

By estimating the normalizing constant, Z with the integral 3.5, nested sam-

pling turns a multidimensional sampling problem into a one dimensional sam-

pling problem.

Let Li = L(Xi) be a right-to-left sequence of m points. Denote Lmax =

Lm+1 as the maximum likelihood. In practice, the true maximum likelihood

is not determined by nested sampling or any other type of sampling; so, the

highest value of the likelihood found during the sampling is used, which is
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Figure 3.1: The nested likelihood, Li, contours are sorted by enclosed prior
mass, Xi with m = 3.

denoted as L̃max). The corresponding sequence of Xi values decrease in value

as m increases

Xm+1 = 0 < Xm < · · · < X2 < X1 < 1 = X0.

Figure 3.1 displays an example of nested likelihood, Li, contours sorted by

enclosed prior mass, Xi with m = 3. The Trapezoidal Rule is used as the

approximate integration method for estimating Z, equation (3.5):

Z =

∫ 1

0

L(X)dX ≈
m−1∑
i=0

(Xi −Xi+1)
Li + Li+1

2
+XmL̃max. (3.6)

Up to this point, it has been assumed that the corresponding constrained

prior mass Xi value is known for each likelihood, Li. However, in practice,
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the corresponding constrained prior mass Xi values are unknown. Thus, the

corresponding constrained prior mass Xi value for each Li needs to be esti-

mated. An estimate for the constrained prior mass Xi value can be found

by using knowledge about the distribution of order statistics and knowledge

about solutions to linear difference equations.

Consider a random sample U1, U2, ..., Un from the standard uniform distri-

bution, U(0, 1). The pdf of the kth order statistic, U(k), is given by

fU(k)
(u) =

n!

(k − 1)! (n− k)!
uk−1(1− u)n−k (3.7)

which is the pdf of a beta distribution with parameters a = k and b = n−k+1

[78]. Therefore, the pdf of the nth order statistic (which is the same as the

maximum), U(n), is given by

fU(n)
(u) = n(u)n−1 (3.8)

which is the pdf of a beta distribution with parameters a = n and b = 1,

BETA(n, 1).

Nested sampling begins by randomly sampling n points θ1,θ2, ...,θn from

the prior distribution with corresponding likelihood values L(θ1), L(θ2), ..., L(θn).

Then the lowest likelihood value is selected (which will enclose the maximum

prior mass among this sample) and this lowest likelihood value is denoted as

L1. Without loss of generality, it is assumed that this lowest likelihood value,

L1, corresponds to the point θk among the n points. Hence, L1 = L(θk).

Given that X0 = 1 and since the lowest likelihood value was selected, then the

random variable for the amount of prior mass enclosed by L1 is
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X1 = ψ1X0,

where 0 < ψ1 < 1 and ψ1 ∼ BETA(n, 1).

Let L1 be the current likelihood cut off value denoted by L∗.

Since θk is on the boundary of the new cut off L∗ = L1 and the other n − 1

points are already inside of the new cut off value L∗ = L1, we randomly draw

a new point θ∗ within the prior with the constraint L > L∗ = L1, save the

original point θk for analysis later, and replace the point θk with θ∗. This

results in a new random sample of size n that is all within the prior with

constraint L > L∗ = L1.

As this process is continued, each next Li will further enclose the prior mass

and we can represent the sequence of enclosed prior mass as the following:

X0 = 1, X1 = ψ1X0, ..., Xm = ψmXm−1

where each ψi ∼ BETA(n, 1).

This leads to needing to solve the following nonhomogeneous linear difference

equation iteratively:

X0 = 1

Xi = ψiXi−1
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i = 0, 1, 2, ... .

By substituting, we receive the expression

Xi = ψiXi−1 = ψi(ψi−1Xi−2) = ψi(ψi−1(ψi−2Xi−3)) = ψi(ψi−1(ψi−2(...(ψ0X0)))).

Hence,

Xi =
i∏

j=0

ψj (3.9)

is the solution of the nonhomogeneous linear difference equation.

After m iterations of nested sampling, from equation 3.9, the enclosed prior

mass above L∗ = Lm is

Xm =
m∏
j=0

ψj. (3.10)

Then

log(Xm) =
m∑
j=0

log(ψj). (3.11)

Since each ψj are random variables, ψj ∼ BETA(n, 1), we need to find the

E[log(ψj)] in order to determine how the enclosed prior mass is expected to

reduce each iteration.

As the domain of g(ψ) = log(ψ) includes the possible values of ψ, by the

definition of the expected value and the pdf of BETA(n, 1), we receive
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E[log(ψ)] =

∫ 1

0

log(ψ)nψn−1dψ = n

∫ 1

0

ψn−1log(ψ)dψ. (3.12)

Now, integrating by parts, we receive

n

∫
ψn−1log(ψ)dψ = n

(
1

n
ψnlog(ψ)−

∫
1

n
ψn 1

ψ
dψ

)
= ψnlog(ψ)−

∫
ψn−1dψ.

(3.13)

By using equation 3.13 into equation 3.12, we have

E[log(ψ)] = lim
a→0+

n

∫ 1

a

ψn−1log(ψ)dψ = lim
a→0+

−anlog(a)− 1

n
+

1

n
an. (3.14)

Using L’Hospital’s rule, we have

lim
a→0+

−anlog(a) = 0. (3.15)

Using equation 3.15 and evaluating the limit in equation 3.14, we have

E[log(ψ)] = − 1

n
. (3.16)

Therefore, after m iterations of nested sampling, from equation 3.11 and 3.16,

we have

E[log(Xm)] = E

[
m∑
j=0

log(ψj)

]
=

m∑
j=0

− 1

n
= −m

n
. (3.17)

54



Hence, deterministically, after m iterations, Xm = exp(−m
n
). After one itera-

tion, the enclosed prior mass is expected to reduce by exp(− 1
n
).

The following is the nested sampling algorithm:

Sample n points θ1,θ2, ...,θn from the prior P (θ)

Initialize Z = 0 and X0 = 1

For every iteration i = 1, 2, ..., T :

Find the point θk that corresponds to the lowest of the current likelihood

values and record this value as Li

From equation 3.17, deterministically Xi is expected to be exp(− i
n
), and we

use the estimate Xi = exp(− i
n
)

Z is incremented by (Xi−1 −Xi)
Li−1+Li

2

Replace the point θk with a new point randomly drawn from the prior with

constraint L > Li

After the T iterations, increment Z by XTL
∗
max, where L

∗
max is the highest

value of the likelihood found during the nested sampling algorithm.

3.A.1 Challenges and limitations of nested sampling

In the nested sampling algorithm, it is difficult to draw a random point from

the prior with constraint L > Li. It is suggested to use MCMC methods

to generate this new point from the prior with constraint L > Li [75]. The

55



idea with using MCMC to draw this new point is that if the MCMC chain is

run long enough within the constrained prior, then the final position should

be independent of the initial position and this final position would effectively

be the random point. In practice, MCMC methods are very efficient at

finding the maximum posterior and as a result, the MCMC chain ends up

being inaccurate in terms of drawing a random point from the constrained

prior. When this new point is inaccurate, the Z value becomes inaccurate.

The major drawback of the nested sampling algorithm is the inability of

the algorithm to effectively explore multimodal distributions. This is because

during the algorithm the nested sampling set of n points can get stuck in a

local maximum area of the posterior surface and this set n points will be unable

to escape due to the constraint L > Li. The user of the algorithm would not

be aware that the set of n points has been trapped in a local maximum area

of the posterior surface. This leads to the need of revising the nested sampling

algorithm to allow for escaping from local maximum areas of the posterior

surface.

3.B Diffusive nested sampling

Diffusive nested sampling (DNS) improves the nested sampling algorithm by

incorporating a multi-level exploration of the likelihood cut off regions into

the algorithm [11, 12]. The DNS algorithm achieves this by having a particle

explore mixtures of constrained distributions determined by the likelihood cut

offs and by introducing a weighting scheme that decides how far a particle

can move between constrained distributions. The target distribution in the

Diffusive Nested Sampling algorithm is not the posterior distribution but a
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joint distribution made up of these constrained distributions, which is related

to the posterior distribution. After the algorithm is run, the DNS samples

obtained from the algorithm are used to determine the representative posterior

distribution.

The Bayesian MCMC methods of Gibbs sampling, Hamiltonian MCMC,

and affine invariant ensemble MCMC have difficulty sampling multimodal pos-

terior distributions [12]. The advantage of the DNS algorithm is that it samples

from the mixture of constrained prior distributions, which is generally easier

than sampling from the posterior distribution, and this allows the DNS algo-

rithm to more easily mix between different modes and more effectively sample

from a multimodal posterior distribution [11, 12].

3.B.1 Multi-level exploration process

Let the constrained distributions be defined as the following:

pLj
(θ) =

P (θ)

Xj

1j(θ) (3.18)

where 1j(θ) =

⎧⎪⎪⎨⎪⎪⎩
1, L(θ) > Lj

0, otherwise

,

P (θ) is the prior distribution, and Xj is the enclosed prior mass above Lj.

The DNS algorithm begins by using MCMC to evolve a particle to obtain

Q number of samples over the entire prior parameter space. Here pL0(θ) =

P(θ)
X0

10(θ) = P (θ) and this is considered level 0. The parameter vector values

and the corresponding likelihood values are saved. When Q number of samples
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are found, the likelihood cut off value L1 is set equal to the (1− e−1) quantile

of the likelihood values in this first sample. The constrained distribution pL1

is considered level 1.

Next, MCMC is used to evolve the particle to sample the mixture of con-

strained distributions, pL0 and pL1 . By sampling from the mixture of dis-

tributions, the particle can have a chance to escape to a lower constrained

distribution and the particle can explore more freely. MCMC sampling from

the mixture of constrained distributions, pL0 and pL1 , is continued until Q

number of samples are obtained from pL1 . The likelihood cut off value L2 is

equal to the (1 − e−1) quantile of the likelihood samples values found in pL1 .

The constrained distribution pL2 is considered level 2.

Then the particle explores a mixture of pL0 , pL1 , and pL2 , and so on. By

continuing to take the (1−e−1) quantile of the likelihood values in the highest

level constrained distribution, the enclosed prior mass above the highest level

likelihood cut off value decreases exponentially.

In order to have the particle explore the mixture of distributions, the cur-

rent particle vector of parameters θ∗ and current level j∗, (θ∗, j∗), need to be

updated according to a joint distribution, p(θ, j). Using Bayes’ theorem and

equation (3.18),

p(θ, j) = p(j)p(θ|j) = p(j)pLj
(θ) = wjpLj

(θ)

= wj
P (θ)

Xj

1j(θ)

=
wj

Xj

P (θ)1j(θ),

(3.19)

where p(j) = wj is a chosen weighting scheme influencing how a particle can

move between constrained distributions.
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During the first phase of the DNS algorithm, which is the level creation

phase, the exponentially-decaying weights are chosen for the weighting scheme:

wj ∝ exp

(
j − J

Λ

)
, (3.20)

where j ∈ 0, 1, 2, 3, ..., J is the level, J is the current highest created level, and

Λ is the diffusive parameter describing how far the particle can backtrack to

a lower distribution.

The exponentially-decaying weights help the particle to continue climbing to

higher likelihood regions and spend more iterations on higher likelihood regions

rather than on lower likelihood regions. If the diffusive parameter Λ is smaller,

then the first phase of the DNS algorithm will more aggressively spend time at

higher likelihood regions. If the diffusive parameter Λ is larger, then the first

phase of the DNS algorithm allows the particle to more easily escape higher

likelihood regions and explore other regions. A larger diffusive parameter Λ is

considered more fail-safe as it allows the particle to escape local maximums,

but the DNS algorithm will also run slower.

The current particle location (θ∗, j∗) is updated in two actions. The order

of these two actions is random, but they must take place one after the other.

With the assumption that the level is fixed at j∗, the action of updating the

current parameter vector θ∗ is done by proposing a new parameter vector θ′

and then accepting with the following Metropolis acceptance probability:
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α = min

[
1,
p(θ′, j∗)

p(θ∗, j∗)

]
= min

[
1,
wj∗

Xj∗
P (θ′)1j∗(θ

′)
Xj∗

wj∗

1

P (θ∗)1j∗(θ
∗)

]
= min

[
1,
P (θ′)

P (θ∗)
1j∗(θ

′)

]
,

(3.21)

where 1j∗(θ
∗) = 1 since θ∗ was already accepted in level j∗.

With the assumption that the parameter vector is fixed at θ∗, the action of

updating the current level j∗ is done by proposing a new level j′ and then

accepting with the following Metropolis acceptance probability:

α = min

[
1,
p(θ∗, j′)

p(θ∗, j∗)

]
= min

[
1,
wj′

Xj′
P (θ∗)1j′(θ

∗)
Xj∗

wj∗

1

P (θ∗)1j∗(θ
∗)

]
= min

[
1,
wj′

Xj′

Xj∗

wj∗
1j′(θ

∗)

]
,

(3.22)

where 1j∗(θ
∗) = 1 since θ∗ was already accepted in level j∗.

As the sampling progresses and more levels are added in the first phase,

the actual Xj values can become different than the theoretical expectation of

Xj+1 = e−1Xj ⇐⇒ Xj+1

Xj
= e−1 , which would be realized if our sampling

were perfect. This causes difficulty for MCMC to explore the mixture of con-

strained distributions. The likelihood values within the level j should exceed

Lj+1 a fraction of the time, with the fraction given by
Xj+1

Xj
. Counting the

number of times that the likelihood values within a particular level j exceed

Lj+1 provides a way to estimate the actual fractions
Xj+1

Xj
.
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Let n(L > Lj+1|j) denote the number of times that the particle likelihood

values within a particular level j exceed Lj+1 and let n(j) denote the number

of times that the particle has visited level j. Hence, the actual fraction
Xj+1

Xj

can be estimated by

n(L > Lj+1|j) + Ce−1

n(j) + C
, (3.23)

where the inclusion of the constant C is used here to stabilize the estimate

when the number of visits to level j is low, n(j), and C represents the amount

of confidence in the theoretical expectation Xj+1 = e−1Xj.

These fractions are continually refined as the DNS algorithm runs.

The first phase of the DNS algorithm is completed when the desired number

of levels are created. The desired maximum number of created levels can be

set by the user or a level creation stopping criteria can be made based on a

tolerance. During the first phase, the number of times that the particle has

been proposed to a particular level j (this does not mean it necessarily went

to this level j) is also tracked, and this number will be denoted by ξ(j).

During the second phase of the DNS algorithm, the weights are generally

chosen to be uniform, though non-uniform weights can also be used, to allow

the particle to freely mix through the constrained distributions. This is done

to further refine the estimates of the actual fractions
Xj+1

Xj
. The number ξ(j) is

continued to be tracked during the second phase and the number ξ(j) is used

to modify the acceptance probability of the jump proposal (3.22) during the

second phase of the DNS algorithm:

61



α = min

[
1,
p(θ∗, j′)

p(θ∗, j∗)

]
= min

[
1,

(
C + ξ(j′)

C + ξ(j∗)

)β
Xj∗

Xj′
1j′(θ

∗)

]
,

(3.24)

where uniform weights have been chosen
(

wj′

wj∗
= 1
)
, C is the same constant

used in equation (3.23), and β controls the strength of the effect
(

C+ξ(j′)
C+ξ(j∗)

)
.

The purpose of
(

C+ξ(j′)
C+ξ(j∗)

)
is to more surely visit those locations that have not

been proposed to as often.

3.B.2 Proposal options

Recall that in the DNS algorithm the current particle location (θ∗, j∗) is up-

dated in two actions. There needs to be a proposal for moving to a new

parameter vector θ′ and there needs to be a proposal for going to a new level

j′.

For proposing a new parameter vector θ′, first a certain number of param-

eters, r ≤ p, are chosen to be moved within the current parameter vector,

θ∗, where p is the total number of parameters. Let the certain number of

parameters to be moved r be a random variable with the following pdf, f(r):

f(r) =
1

r
, (3.25)

where 1 < r < p. The cumulative distribution function (cdf) is given by

F (r) = ln(r), where 1 < r < p.

The pdf, f(r), emphasizes a smaller number of parameters chosen r, while

still allowing for the possibility of a larger number of parameters to be chosen.

62



This helps to speed up the movement of θ within a level in the DNS algorithm.

After r is chosen from the pdf, f(r), a random sample of r parameters

without replacement is chosen to be moved within the current parameter vec-

tor, θ∗ = ⟨θ∗1, θ∗2, ..., θ∗p⟩. For each of the r chosen parameters within θ∗, θ∗i is

moved with either of two recommended options [68, 12, 79]:

θ
′

i = θ∗i +
(
q2i − q1i

)(
101.5−3∗|t|)h, (3.26)

where h ∼ N(0, 1), t = a√
−ln(b)

with a ∼ N(0, 1) and b ∼ U(0, 1) (here t has

a Student’s t distribution with 2 degrees of freedom, t ∼ t(2)), and assuming

that θi has the uniform prior distribution U(q1i , q
2
i ),

or

θ
′

i = θ∗i + (q2i − q1i )
(
10(1−|c|))h, (3.27)

where h ∼ N(0, 1), c = tan(π(b−0.5)) with b ∼ U(0, 1) (here c has a standard

Cauchy distribution, c ∼ CAU(1, 0)), and assuming that θi has the uniform

prior distribution U(q1i , q
2
i ).

Since the standard Cauchy distribution has heavier tails than the Student’s

t distribution with 2 degrees of freedom, this second proposal option will pro-

pose more extreme guesses than the first proposal option.

The main idea of these proposal options is that each time a symmetric

proposal is made the width of the proposal distribution randomly changes and

is drawn from a range [68]. The largest possible width should be roughly

the order of magnitude of the width of the prior as the posterior is generally
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narrower than the prior [68, 12]. Other proposal options for θ are possible.

The type of options mentioned here are recommended [68, 12, 79].

3.B.3 Representative posterior samples

The samples returned from the DNS algorithm are posterior samples in the

sense that the parameter vector samples are from the posterior distribution.

However, since the target distribution in the DNS algorithm is a joint distribu-

tion made up of constrained distributions rather than the posterior distribution

directly, the frequency of the parameter vector samples returned are generally

imbalanced. For instance, there may be many parameter vector samples taken

at the top levels when the algorithm is reaching convergence and this would

lead to an over representation of samples near the maximum posterior. In

order to adjust for this, a post-processing phase is completed after the DNS

algorithm is run.

The first step of this post-processing phase is to order the parameter vector

samples returned from the DNS algorithm by increasing likelihood values. Let

the ordered parameter vector samples be denoted as θ(i) with corresponding

likelihood value L(i). Next, the samples are assigned a level j based off of the

sample’s likelihood value. Then there are nj number of samples in increasing

order of likelihood values within each level. Let n =
∑J

j=0 nj be the total

number of samples returned from the DNS algorithm, where J is the highest

level created. The DNS algorithm provides estimates for the enclosed prior

mass values Xj. Thus, it is known that each of the nj samples has a prior mass

value in between Xj+1 and Xj, but a specific prior mass value is not known for

each sample. Since it is known that the MCMC sampling taking place within
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each level in the DNS algorithm, should effectively be a random sample. Thus,

in each level j, a uniform random sample of size nj between Xj+1 and Xj can

be taken, and then these random samples can be ordered. Let these ordered

prior mass samples be denoted by X(i). These ordered prior mass samples,

X(i), are then assigned to each θ(i) with corresponding likelihood value L(i).

Figure 3.2 illustrates this ordering process.

The fraction of posterior density attributed to each ith ordered DNS sample

can be approximated by

ωi =
L(i)(X(i) −X(i−1))

Z̃
, (3.28)

where Z̃ is given by

Z̃ =
n∑

i=1

L(i)(X(i) −X(i−1)) ≈ Z =

∫ 1

0

L(X)dX. (3.29)

The values ωi in equation (3.28) are called posterior weights.

From equation (3.28),

n∑
i=1

ωi = 1. (3.30)

The cumulative posterior weight is given by

Ωl =
l∑

i=1

ωi. (3.31)

Each cumulative posterior weight, Ωl, corresponds to an ordered parameter

vector sample θ(l) in the sense that θ(l) is the specific parameter vector where

the posterior weight cumulates to the value Ωl.
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To obtain a representative posterior sample of size H, a uniform random

sample of size H is taken between 0 and 1. Let these uniform random sample

values be given by u1, u2, ..., uH . Then the closest cumulative posterior weight

value is found for each u1, u2, ..., uH . Let these closest cumulative posterior

weight values be given by Ω1,Ω2, ...,ΩH . Each of these cumulative posterior

weight values Ω1,Ω2, ...,ΩH corresponds to a specific ordered parameter vec-

tor sample and this set of specific ordered parameter vector samples will be

denoted as θ1, θ2, ..., θH . This set of H parameter vector samples, θ1, θ2, ..., θH ,

is a representative posterior sample of size H.
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Figure 3.2: The parameter vector samples from DNS algorithm are ordered
by increasing likelihood values, L(i). The likelihood level cut offs, Lj,
determine which level each sample is assigned. Within each level j, the
enclosed prior mass is between Xj+1 and Xj. It is unknown what the
enclosed prior mass value is for each DNS sample within a level. Within a
level j, a uniform sample equal to the number of DNS samples within each
level is taken between Xj+1 and Xj. These randomly sampled enclosed prior
mass values within each level are ordered X(i) and then assigned to the
ordered likelihood values, L(i).
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3.C MATLAB implementation of diffusive nested

sampling

3.C.1 Overview of “MatlabDiffNestAlg”

We programmed the first MATLAB implementation of the DNS algorithm

called “MatlabDiffNestAlg” in 2021 and we have continued updating the soft-

ware features since its debut [9]. This program is a derived work based off

of elements of “DNest5” ( c⃝2020 Brendon J. Brewer) [79] and the following

papers: “Diffusive Nested Sampling”, “DNest4: Diffusive Nested Sampling in

C++ and Python”, and “Nested Sampling for General Bayesian Computation”

[11, 12, 75].

The “Diff Nest Alg” .m file is the main function that runs the DNS algo-

rithm. The “Diff Nest Alg” .m file explains the input and output functions of

this software. The target distribution in the DNS algorithm is not the poste-

rior distribution but a joint distribution related to the posterior distribution.

The “find level assign”, “find log post weights”, “find log post” .m files are

used after the DNS algorithm is completed to determine the representative

posterior distribution.

This DNS MATLAB implementation is designed to use uniform prior dis-

tributions for each parameter. (Theoretical Example 3 in the “MatlabD-

iffNestAlg” code demonstrates how to use a uniform prior when a parame-

ter is assumed to have a loguniform distribution.) The width of the uniform

prior distributions specified for each parameter are used inside of the algo-

rithm to generate proposals for that parameter during the particle’s “move”

phase. This DNS MATLAB implementation also assumes that the integration
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of the prior over the parameter space equals 1. Since the prior distribution

used in “TheoreticalExample1”, “TheoreticalExample2”, and “TheoreticalEx-

ample3” is a product of uniform distributions, the resulting joint distribution

does integrate to one.

The “Diff Nest Alg key detect” .m file is the function that runs the DNS

algorithm with the option of being able to use the keyboard to select between

different proposal options and to manually exit the level creation step early if

the maximum number of levels specified has not been reached or the tolerance

has not been reached. (The convenience of being able to use the keyboard

while the algorithm is running does impact the speed of the algorithm.)

The “Examples” folder contains three different example subfolders. The

first subfolder is “TheoreticalExample1”, which is a theoretical example for

fitting a multimodal posterior distribution using “MatlabDiffNestAlg” shown

in Section 3.C.2 of this thesis, and this example problem setup is from Sec-

tion 5 of the paper ”Diffusive Nested Sampling” [11]. In the next subfolder is

“TheoreticalExample2”, which is the same logistic growth theoretical example

as presented in Section 2.M of this thesis except the DNS algorithm is used

instead of the affine invariant ensemble MCMC algorithm. The results of the

logistic growth theoretical example using the DNS algorithm are similar to the

affine invariant ensemble MCMC algorithm. In the last subfolder is “Theoreti-

calExample3”, which is a theoretical example motivated by the lentiviral brain

macrophage infection model with cART, system 4.1, and this example illus-

trates how to fit a mathematical model to multiple datasets and how to use a

loguniform distribution as the prior for a positive parameter whose uncertainty

spans multiple magnitudes.

69



3.C.2 Multimodal posterior example

This example problem setup is from Section 5 of the paper ”Diffusive Nested

Sampling” [11]. Consider a 20× 1 vector of unknown parameters

θ =

⎡⎢⎢⎢⎢⎣
x1
...

x20

⎤⎥⎥⎥⎥⎦ ,

where each xl parameter has an independent and identically distributed uni-

form prior U(−0.5, 0.5). Also, assume that the likelihood function is given by

the sum of two Gaussian probability models, one centred at the origin with

standard deviation v = 0.1 and the other centred at (0.031, 0.031, ..., 0.031)

with 100 times more density and smaller standard deviation of u = 0.01,

L(θ) =
20∏
l=1

exp(−1
2
(xl/v)

2)

v
√
2π

+ 100
20∏
l=1

exp(−1
2
((xl − 0.031)/u)2)

u
√
2π

. (3.32)

This likelihood is purposefully structured to create a difficult multimodal

posterior for typical Bayesian inference algorithms to sample, as the smaller

but more dense part of the posterior distribution is harder to locate.

The MATLAB implementation of the DNS algorithm, “MatlabDiffNestAlg”,

was used with the following settings: five particles; the number of samples

needed above the current likelihood cut off to create another level was 1000

with at least 1500 samples per level overall; the diffusivity term λ = 30; the

number of samples used during the second phase of the sampler was 5× 106;

the tolerance used to stop level creation was 1 × 10−4; C = 100, which is
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the number providing the amount of confidence in the theoretical expectation

Xj+1 = exp(−1)Xj; only every 100th sample was saved; β = 100, which is

the parameter that controls the strength of the effect to correct the mass X

values in the second phase of the DNS algorithm; and the combined proposal

distribution discussed in Section 3.B.2 was used for the parameter proposals.

The progress of the DNS algorithm can be seen in Figure 3.3. This plot

shows the particles moving with log likelihood level creation during the first

phase of the algorithm (level values in blue) and then the particles move about

the posterior surface refining the estimated compression of log(X) between

each level in the second phase of the algorithm (level values in black). It can

be seen, in both the first and second phases of the DNS algorithm, that the

particles diffuse through the log likelihood cut off levels when sampling the

posterior surface.

Figure 3.3: Progress of the DNS algorithm, where the level values in blue
show the particles moving with log likelihood level creation during the first
phase of the algorithm and the level values in black show the particles
moving around the posterior surface refining the estimated compression of
log(X) between each level in the second phase of the algorithm.
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Figure 3.4 displays the posterior weights over the log(X) values. There is

a clear peak of the posterior weights and the samples to the left of the peak

have small posterior weights in comparison to the peak weight values, and and

this indicates that the algorithm converged to the posterior distribution.

Figure 3.4: Posterior weights over the log(X) values for multimodal
posterior example

The true value of Z for this distribution is approximately 101. Conse-

quently, the true value of log(Z) is approximately 4.6151. The converged

log(Z) estimates from this DNS algorithm had the median value of 4.3783.

The posterior distribution from parameter x1’s perspective is plotted in

Figure 3.5 and it can be seen that the smaller but denser part of the posterior

distribution is clearly sampled by the DNS algorithm with the posterior dis-

tribution peak centred at (0.031, 0.031, ..., 0.031). The plots of the posterior

distribution from the other parameter perspectives look similar.

The point estimate for the parameters is the maximum posterior. The

point estimate with the 95% credible interval for each parameter are located

in Table 3.1.
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Table 3.1: Fitted parameter estimates and 95% credible intervals for
multimodal posterior example

Symbol Estimate (95% credible interval)

x1 0.0298 (0.0099, 0.0496)
x2 0.0359 (0.0093, 0.0511)
x3 0.0300 (0.0107, 0.0505)
x4 0.0325 (0.0113, 0.0512)
x5 0.0318 (0.0117, 0.0528)
x6 0.0368 (0.0113, 0.0528)
x7 0.0343 (0.0116, 0.0527)
x8 0.0278 (0.0119, 0.0515)
x9 0.0290 (0.0095, 0.0504)
x10 0.0295 (0.0113, 0.0508)
x11 0.0317 (0.0089, 0.0498)
x12 0.0374 (0.0120, 0.0509)
x13 0.0242 (0.0101, 0.0513)
x14 0.0404 (0.0105, 0.0505)
x15 0.0347 (0.0081, 0.0505)
x16 0.0287 (0.0105, 0.0505)
x17 0.0271 (0.0103, 0.0521)
x18 0.0293 (0.0106, 0.0500)
x19 0.0400 (0.0092, 0.0509)
x20 0.0255 (0.0120, 0.0508)
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Figure 3.5: Posterior distribution from the x1 perspective for multimodal
posterior example

Figure 3.6 displays the cut off values of the log likelihood over the log(X)

values. It shows that as the log likelihood cut offs increase the log(X) values

decrease. This is because the amount of log prior mass contained above the

log likelihood cut off decreases as the log likelihood cut offs increase. It is also

seen that near where log(X) = −50 the cut off values of the log likelihood

suddenly continues to increase again until the completion of the algorithm.

This occurs because the DNS algorithm found the smaller but denser part of

this posterior distribution.

Figure 3.7 shows the estimated compression of log(X) between each level. If

the sampling was perfect, then the log(X) difference would be at−1. The visits

matrix helps to correct the imperfect sampling and provides a better estimate

of the actual compression of log(X) between levels and this is displayed in

Figure 3.7.
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Figure 3.6: The cut off values of the log likelihood over the log(X) values
for the multimodal posterior example

Figure 3.7: The estimated compression of log(X) between each level
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Chapter 4

Modeling the effects of latency

reversing drugs during HIV-1

and SIV brain infection with

implications for the “Shock and

Kill” strategy

4.A Introduction

Combination antiretroviral therapy (cART) has greatly reduced the overall

morbidity and mortality among human immunodeficiency virus-1 (HIV-1) in-

fected patients [23, 80]. cART has suppressed the virus in the plasma, im-

proved the immune system, and significantly increased life expectancy for

HIV-1 infected patients worldwide [23, 81]. Even with the success of cART,

the virus persists in many different cells and tissues, and in tissues that dis-
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play minimal cART penetration and limited host immune responses, creating

ideal locations for viral reservoirs [16, 17]. Commonly known viral reservoirs

include latently infected resting memory CD4+ T cells and several anatomical

compartments that harbour HIV-infected cells [18, 82]. Latency is defined as

the state in which individual infected cells do not produce infectious viruses

although they can become reactivated to produce infectious virus by specific

stimuli [19, 20]. Viral reservoirs are a major obstacle for the eradication of

HIV-1 infection. The “Shock and Kill” therapeutic strategy aims to reacti-

vate latently infected cells by latency reversing agents (LRAs) and kill these

reactivated cells by engaging a restored host immune system and using specific

antiretroviral medications [18, 21].

The brain is an established and compelling anatomical reservoir for HIV-1

infection [23, 24, 83]. Indeed, the brain is devoid of in situ adaptive immune

responses and the blood-brain barrier (BBB) restricts many established an-

tiretroviral medications from entering the brain [24]. Evidence shows HIV-1

can enter the brain using trafficking infected macrophages as vehicles [25, 26,

27]. Brain macrophages, including microglia and perivascular macrophages,

display productive HIV-1 infection [23]. Brain macrophages are long-lived cells

[28]. Infected brain macrophages can cause neurological damage by direct and

indirect mechanisms [26]. Despite cART’s effective control of virus in blood,

HIV-1 infection can lead to neurological disorders including HIV-associated

neurocognitive disorders (HAND) [29], indicating an ineffective cART sup-

pression of infection in the brain. A recent meta-analysis study [84] has shown

that the global prevalence of HAND among HIV patients was 42.6% (95% con-

fidence interval 39.7-45.5). These studies also show the importance of studying

the brain reservoir for achieving viral clearance and a cure for HIV-1. Even
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when HIV-1 is cleared from the rest of the body, reactivated latent infections

in the brain can re-seed the infection outside the brain by means of infected

trafficking macrophages.

Experimental and clinical studies suggest that cART is capable of reduc-

ing HIV-1 RNA production and ensuing replication in brain but exerts little

impact on viral DNA levels in the brain [30, 31, 85, 86]. This suggests that pro-

ductive infection in the brain is reduced by cART but there remains persistent

latent virus located in brain cells. In a recent study of simian immunodeficiency

virus (SIV) infection, the premier HIV-1 animal model, using the “Shock and

Kill” therapeutic strategy, LRA treatment reactivated latent virus that could

be detected in the brain [32]. One of the two animals (macaques) that re-

ceived cART and LRA treatment had neurological signs after LRA therapy,

implying that viral reactivation resulted in brain damage. The authors of this

SIV study caution that certain LRA treatments may cause harmful inflam-

matory responses in the brain even in the presence of cART [32]. The study

in [32] emphasizes the key medical challenge of determining the dynamics of

LRA treatment in the brain viral reservoir. Mathematical modeling can be

an effective tool for understanding both qualitatively and quantitatively the

dynamics of latent infections and LRA treatment in the brain.

To realistically study the effectiveness of an experimental strategy such as

“Shock and Kill” using mathematical models, it is imperative that the dy-

namics of the model be investigated in a parameter region that is informed

by clinical or experimental data. The majority of modeling research on the

“Shock and Kill” strategy have focused on the latently infected resting mem-

ory CD4 T cells. Modeling results on the “Shock and Kill” strategy in the

literature include the estimated magnitude of the reservoir reduction needed
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to prevent viral rebound for one year after stoppage of cART [87]. These es-

timates crucially depend on model parameters that were informed by clinical

data from CD4 T cells. For mathematical modeling of the “Shock and Kill”

strategy, we refer the reader to a recent review [87] and references therein.

Resident macrophages are the primary target and main reservoir for HIV-1

and SIV infection in the brain. They have distinct biological properties from

those of T cells in peripheral blood or tissues. This is one of the challenges

in modeling brain infections, since the parameter values from modeling re-

search on T cells in the literature are not applicable to the modeling of brain

macrophages. Another challenge of modeling HIV-1 infection in the brain is

the scarcity of data. Much of the data is from studies on SIV infections in

animal models. For these reasons, establishing parameter regions informed by

clinical and experimental data is a significant first step for modeling HIV-1

and SIV infection in the brain.

In an earlier modeling study, we were able to use a mathematical model

to quantify the progression rate of HIV-1 and SIV infection in the brain [1]

by fitting the model to clinical and experimental brain viral DNA data. Our

model estimation in [1] indicated that HIV-1 and SIV proviral burdens in brain

increase much slower over time in comparison to the proviral burden among T

cells in the peripheral blood. Assuming cART suppressed HIV-1 outside the

brain, the study showed that a marginal increase in the efficacy of the current

cART treatment could suppress HIV-1 infection in the brain, over a decade

for patients without neurological complications and over two decades for those

with HAND [1].

Our previous mathematical model in [1] did not distinguish between la-

tently and productively infected cells and these cell populations were regarded

79



as a single infected cell population. With the availability of both viral DNA

and RNA data, we were able to expand the model in [1] by separating the

infected cell population into productively and latently infected cells. Our cur-

rent study aimed to qualitatively and quantitatively analyze the dynamics of

latently and productively infected cells in the brain during HIV-1 and SIV in-

fection. Our mathematical analysis showed that the expanded model provided

a mechanism for the establishment of a latent viral reservoir among the brain

macrophages under cART. We also calibrated the model at baseline without

LRA treatment using data for SIV infected macaques and estimated model

parameter values with their 95% credible intervals using Bayesian inference.

This establishes a baseline parameter region for the model that is informed by

SIV data. The “Shock and Kill” therapeutic strategy is then incorporated into

the baseline model by including both a reactivation rate of the latent reservoir

and an additional kill rate of productively infected brain macrophages into the

model, and numerical studies were carried out in the data-informed parameter

region to investigate the effectiveness and safety of the “Shock and Kill” ther-

apeutic strategy. Results of our numerical investigation indicates that there

exists a biologically plausible parameter region wherein the “Shock and Kill”

can be safe and effective.
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4.B Mathematical model and analysis

4.B.1 HIV-1 brain macrophage infection model with

cART

Brain macrophages are the primary target for productive HIV-1 infections in

the brain [23]. HIV-1 infection of a target cell by cell-free virion have been

extensively studied in the literature. Evidence from recent research suggest

that intracellular viral transfer through direct cell-to-cell contacts may be the

predominant mode of HIV-1 transmission among cells, because of its high

efficiency in the transfer of viral materials and of its ability to evade immune

responses and cART drugs [26, 47, 83, 88, 89, 90]. Based on the research

evidence, we made the assumption that HIV-1 and SIV infections in the brain

spread principally through direct cell-to-cell contact [83]. Brain macrophages

are long-lived cells and recent data indicate that brain macrophages may die

over months to years [91]. Studies have not observed increased cellular death in

HIV-infected versus susceptible brain macrophages [50] and thus, it is assumed

that the death rates of susceptible, and productively or latently infected brain

macrophages are similar.

To derive our model, we divide the resident brain macrophage population

into three compartments: susceptible brain macrophages, x; productively in-

fected brain macrophages y; and latently infected brain macrophages, l. The

transfer diagram for the model is shown in Figure 4.1. The model structure

and our mathematical results about the global dynamics can be applied to

HIV-1 infection of macrophages in other tissues. We caution that our applica-

tion of the model to the understanding of the effectiveness of the “Shock and
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Kill” strategy was carried out numerically using parameter values informed

by data on SIV infection in the brain, and the resulting conclusions may not

be applicable to the infection of macrophages in other tissues because of the

distinct biology.

Without the presence of infection in the model, the number of suscepti-

ble brain macrophages is regulated at the equilibrium value λ
k
, where λ is the

source of new susceptible brain macrophages and k is the death rate of brain

macrophages. With the presence of infection, it is possible for HIV-1 infected

macrophages from the cerebrospinal fluid (CSF) or blood to enter and exit the

brain [92]. Under cART, the movement of trafficking infected macrophages

is minimal [93]. Even without cART, resident microglia are much more per-

missive to HIV-1 infection and spread than trafficking macrophages [94]. Our

earlier study demonstrates that the persistence of HIV-1 infection in the brain

can be explained by a model that does not rely on an influx of trafficking

infected macrophages [1]. For these reasons, after initial brain infection, it is

assumed there is no influx of trafficking infected macrophages. The interaction

between susceptible versus productively or latently infected brain macrophages

is modeled by the mass action terms β1xy and β2xl respectively. It is assumed

that the majority of newly infected cells will enter the latently infected popu-

lation, only a proportion p of the cells newly infected by productively infected

cells will enter the productively infected population. It is assumed that cART

exerts its effects solely on productively infected cells since latently infected

cells remain largely unaffected by cART [95]. We considered the percentage

of cART effectiveness ϵ× 100%, where 0 ≤ ϵ ≤ 1. The cART effectiveness pa-

rameter ϵ describes the efficacy of cART and the concentration of cART drugs

able to penetrate through the BBB and affect brain macrophages. There is
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always a random baseline exchange, both activation and deactivation, between

latently and productively infected brain macrophages. In the model, it is as-

sumed that the natural net effect of this exchange is negligible. The reduction

of virus in the brain by cART is plausibly related to decreased levels of ac-

tivated brain macrophages [96], and in the model it is assumed that in the

presence of cART there is a strong effect above the baseline exchange that

favours the direction of deactivation. Since cART drugs show variable con-

centrations and efficacies in brain macrophages and tissues [93], it is assumed

that the higher the drug effectiveness the greater the effect on the deactivation

rate of productively infected brain macrophages, ϵγ. The parameter ϵ is set

to zero when there is no cART. The total number of infected macrophages are

called stably infected macrophages given by s(t) = y(t) + l(t). The variable

s(t) is fit to the integrated viral DNA copies in the data. Viral RNA copies is

given by v(t) = Ny(t), where N is a constant, and v(t) is fit to the viral RNA

copies in the data. In brain HIV-1 and SIV infection, the majority of the viral

RNAs reside inside the productively infected macrophages. Using the transfer

diagram, our model is described by the set of ordinary differential equations

(ODEs):

dx

dt
= λ− kx− (1− ϵ)β1xy − β2xl

dy

dt
= p(1− ϵ)β1xy − ky − ϵγy

dl

dt
= (1− p)(1− ϵ)β1xy + β2xl − kl + ϵγy.

(4.1)

By adding all the equations of system (4.1), we have that

(x+ y + l)′ = λ− k(x+ y + l). Therefore,
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kx

x

y

l

ky

kl

p(1
− ǫ)β1xy

(1− p)(1− ǫ)β1xy + β2xl

ǫγy

Figure 4.1: Transfer diagram for model (4.1) that considered both latently
and productively infected cells in the brain with cART.

x(t) + y(t) + l(t) = λ
k
+ Ce−kt,

where C is a constant. When t→ ∞, the total number of brain macrophages

approaches the constant λ
k
. Therefore, the asymptotic behavior of solutions to

system (4.1) can be restricted to the following region:

Γ = {(x, y, l) ∈ R3
+ : x+ y + l =

λ

k
}, (4.2)

Let Γ̊ denote the interior of Γ with respect to the hyperplane x+ y + l = λ
k
.

System (4.1) has three possible equilibria:

P0 = (λ
k
, 0, 0), disease-free equilibrium

P1 = (x1, y1, l1), productive equilibrium

P2 = (x2, 0, l2), latent equilibrium,

where x1 =
k+ϵγ

p(1−ϵ)β1
,

y1 =
(λp(1−ϵ)β1−k(k+ϵγ))(p(1−ϵ)β1k−β2(k+ϵγ))

p(1−ϵ)β1k(k+ϵγ)((1−ϵ)β1−β2)
,

l1 =
((1−p)k+ϵγ)(λp(1−ϵ)β1−k(k+ϵγ))

pk(k+ϵγ)((1−ϵ)β1−β2)
,
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x2 =
k
β2
,

and l2 =
λ
k
− k

β2
.

At equilibrium P0 all the brain macrophages are healthy. At equilibrium P1

the viral infection is chronic with both productively and latently infected brain

macrophages present. At the equilibrium P2, due to cART, the viral infection

is in the latent state wherein productively infected brain macrophages are

suppressed and only latently infected brain macrophages are present.

Let

F1 =

⎡⎢⎣ p(1−ϵ)β1λ
k

0

(1−p)(1−ϵ)β1λ
k

β2λ
k

⎤⎥⎦ and V1 =

⎡⎢⎣k + ϵγ 0

−ϵγ k

⎤⎥⎦ .
Then

F1V
−1
1 =

⎡⎢⎣ p(1−ϵ)β1λ
k(k+ϵγ)

0

(1−p)(1−ϵ)β1λ
k(k+ϵγ)

+ β2λϵγ
k2(k+ϵγ)

β2λ
k2

⎤⎥⎦ . (4.3)

Using the next generation matrix method in [97, 98], the control reproduction

number is given by the spectral radius of the matrix F1V
−1
1 :

Rc = ρ(F1V
−1
1 ) = max{Rc1, Rc2}, (4.4)

where Rc1 = p(1−ϵ)β1λ
(k+ϵγ)k

and Rc2 = β2λ
k2

. The final outcomes of system (4.1) are

determined by the value of these two threshold parameters, Rc1 and Rc2. The

global dynamics of system (4.1) is summarized in Table 4.1 and depicted in

Figure 4.2. The detailed stability analysis is given in Chapter 5.

In the clinical context, the distinction between productively and latently

infected cells is that latently infected cells have no detectable viral produc-

tion. Below the limit of viral detection, there can be a very low level of viral

production among latently infected cells [19]. It is assumed that the infec-
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Rc2

Rc1
o

Rc1 = 1

Rc2 = 1

Rc1 = Rc2

P0 globally stable

P2 globally stable

I (Infection-free)
II (Productive)

P1 globally stable

III (Latent)

Figure 4.2: Parameter regions of distinct model outcomes based on the
stability analysis of the equilibria of model (4.1). Almost all HIV-1 infected
patients cannot clear the virus, and the infection-free region I is not
biological. If no cART is applied, the model outcomes are that productively
infected cells persist (region II). With increasingly more efficacious cART,
the model outcomes gradually shift from the productive region II to the
latent region III, in which the virus persists within latently infected cells.

tivity of latently infected brain macrophages is much lower than that of the

productively infected brain macrophages, namely, β2 < pβ1. Without cART,

the system stays in the productive region (Region II in Figure 4.2). Apply-

ing effective cART will cause Rc1 < Rc2, and the system switches from the

productive region to the latent region (Region III in Figure 4.2). The model

outcomes realistically capture the clinical and experimental outcomes of the

current cART treatment in the brain [30, 31, 85, 86, 83].

4.B.2 HIV-1 brain macrophage infection model with

cART and “Shock and Kill” therapy

A reactivation rate, α, is added to system (4.1) to incorporate the effect of

latency reversing agents (LRAs) during therapy in the brain. In the presence
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Table 4.1: Global dynamics of system (4.1)

Threshold
value

P0 P1 P2 Region

0 < Rc < 1 GAS DNE DNE I
1 < Rc, Rc2 <
Rc1

Unstable GAS DNE or
Unstable∗

II

1 < Rc, Rc1 <
Rc2

Unstable DNE GAS III

GAS: Globally Asymptotically Stable, DNE: Does not exist
∗ If 1 < Rc1, 0 < Rc2 < 1, then P2 DNE. If 1 < Rc2 < Rc1, then P2 is unstable.

of LRA treatment latently infected brain macrophages are reactivated at the

rate α. An additional rate, ω, is put into system (4.1) to include the effect of

killing reactivated cells during the “Shock and Kill” strategy. The parameter

α is set to zero when there is no LRA treatment and the parameter ω is set to

zero if there is no kill treatment strategy. The transfer diagram for the model

including the effect of LRAs and kill treatment strategy is displayed in Figure

4.3. This model is described by the set of ODEs:

dx

dt
= λ− kx− (1− ϵ)β1xy − β2xl

dy

dt
= p(1− ϵ)β1xy − ky − ϵγy + αl − ωy

dl

dt
= (1− p)(1− ϵ)β1xy + β2xl − kl + ϵγy − αl.

(4.5)

As in model (4.1), the variable s(t) is fit to the integrated viral DNA copies

in the data and v(t) is fit to the viral RNA copies in the data.

Let

F2 =

⎡⎢⎣ λp(1−ϵ)β1

k
0

λ(1−p)(1−ϵ)β1

k
λβ2

k

⎤⎥⎦ and V2 =

⎡⎢⎣k + ϵγ + ω −α

−ϵγ k + α

⎤⎥⎦ .
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l

(k + ω)y

kl

p(1
− ǫ)β1xy

(1− p)(1− ǫ)β1xy + β2xl

αlǫγy

Figure 4.3: Transfer diagram for the model given by equations (4.5) that
considered both latently and productively infected cells in the brain with
cART and “Shock and Kill” therapy. The αl term represents the reactivation
of latently infected macrophages by LRA (the “Shock”), and the ωy term
represent the additional death of productively infected cells due to the “Kill”
strategy.

Then

F2V
−1
2 =

⎡⎢⎣ λp(1−ϵ)β1(k+α)
k((k+ϵγ+ω)(k+α)−αϵγ)

λp(1−ϵ)β1α
k((k+ϵγ+ω)(k+α)−αϵγ)

λ(1−p)(1−ϵ)β1(k+α)+λβ2ϵγ
k((k+ϵγ+ω)(k+α)−αϵγ)

λ(1−p)(1−ϵ)β1α+λβ2(k+ϵγ+ω)
k((k+ϵγ+ω)(k+α)−αϵγ)

⎤⎥⎦ . (4.6)

By using the next generation matrix method in [97, 98], we can take the spec-

tral radius of the matrix F2V
−1
2 and derive the control reproduction number

Rc = ρ(F2V
−1
2 )

=

[
λ

2k(k(k + α + ϵγ + ω) + ωα)

]
[((1− ϵ)β1(qk + α) + β2(k + ϵγ + ω))

+
√

((1− ϵ)β1(qk + α) + β2(k + ϵγ + ω))2 − 4k(1− ϵ)β1β2(k(k + ϵγ + α + ω) + ωα)].

(4.7)
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4.C Numerical investigation using brain viral

data from SIV infection

4.C.1 Data and parameter estimates

A summery of the published SIV brain viral data used in this study is listed

in Table 4.2. The SIV studies measuring viral DNA and RNA in brain tissues

used different units for measuring viral DNA and RNA. The conversion of SIV

DNA to the estimated number of stably infected brain macrophages per gram

of brain tissue, and SIV RNA to the estimated SIV RNA copies per gram of

brain tissue are given in Section 5.B. A detailed list of the data is located in

Table 5.1 in Section 5.B.

Uniform prior distributions were specified for β1, β2, k, x0, y0, N , ϵ, and γ

in system (4.1) since there is a general range for these parameters given in the

literature. The uniform prior distributions are based on model estimates in

our earlier study [1]. The prior distributions are listed in Table 5.2 in Section

5.C.

The parameters β1, β2, k, x0, y0, N , ϵ, and γ were estimated by fitting

system (4.1) simultaneously to the SIV brain viral data for untreated and

cART-exposed animals (data in the first eight rows of Table 4.2). For count

data, the negative binomial distribution can be interpreted as the mean num-

ber of counts E[Y ] = µ with the variance Var[Y ] = µ
p
overdispersed, since

0 < p < 1, Var[Y ] > E[Y ] [64]. Since each of the observed SIV brain vi-

ral datasets are overdispersed count data (variance of the data is larger than

the mean of the data), a negative binomial distribution is chosen to describe

each of the datasets except for the untreated SIV brain viral RNA dataset.
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The untreated SIV brain viral RNA dataset is also overdispersed count data;

however, many of the counts in this dataset are very large positive numbers.

For this reason, a normal distribution is used to describe the log10 of the un-

treated SIV brain viral RNA dataset. The probability models describing these

datasets is given in equations (5.13) and (5.14) and the likelihood function is

given by equation (5.15). The estimated parameter values for system (4.1) are

displayed in Table 4.3 and the fit of system (4.1) to the data is visualized in

Figure 4.4. The method of Bayesian inference was used for fitting system (4.1)

simultaneously to the eight datasets and this method is described in Section

5.D. The estimated parameters were used to predict the effects of LRA drugs

in an SIV experiment (study in the last row of Table 4.2) by using system

(4.5) with ω = 0 and varying the reactivation rate, α, from 0.01 to 100. The

mean prediction of the LRA drugs SIV experiment is shown in Figure 4.5. The

estimated parameters were also used to predict the “Shock and Kill” strategy

by varying the reactivation rate, α, and additional kill rate, ω, from 0 to 40.

From the prediction of the “Shock and Kill” strategy, a parameter region is

found wherein the strategy is safe and effective. This parameter region is dis-

played in Figure 4.6 and the mean of the predicted model solutions within this

region are shown in Figure 4.7. Further details about the completion of these

predictions are presented in Section 5.D.

The estimated parameter values in Table 4.3 are consistent with those esti-

mated in our earlier modeling work on HIV-1 and SIV infection in the brain [1].

The use of additional viral RNA data in the fitting allowed narrower credible

intervals for the estimated parameter values than obtain in [1]. Comparisons

between the estimated parameter values in Table 4.3 and those estimated for

HIV-1 infection of CD4+ T cells in the peripheral blood reveal the distinct
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biology and viral dynamics in the brain. More specifically, the transmission

coefficients β1 and β2 for SIV infection in the brain are at least 3 log10 fold

smaller than the transmission rate for the HIV-1 infection of CD4+ T cells in

the peripheral blood after the units are converted from per year to per day

[99]. Our earlier estimates in [1] on HIV-1 and SIV-1 infection in the brain

showed that SIV infection in the brain of macaques from this animal model

can be 10 times faster than HIV-1 infection in human brains. These estimates

together show that the HIV-1 infection rate in the brain is much slower than

the infection rate among T cells in peripheral blood.

Table 4.2: SIV brain viral DNA and RNA data

Type of SIV brain
viral data

Number of animals Treatment* Source and
Reference

DNA 30 untreated [100, 31, 85]
RNA 116 untreated [101, 102, 103, 100,

85, 104, 105, 106,
107, 108, 31]

DNA 6 cART 4 days p.i. [85]
RNA 6 cART 4 days p.i. [85]
DNA 5 cART 12 days p.i. [31]
RNA 5 cART 12 days p.i. [31]
DNA 2 cART 42 days p.i. [86]
RNA 2 cART 42 days p.i. [86]
RNA 2 cART 12 days p.i.,

LRA 530-594 days
p.i.

[32]

∗ p.i. denotes post-innoculation.
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Table 4.3: Fitted parameter estimates with the maximum posterior as the
point estimate and 95% credible intervals

Symbol Parameter Estimate (95% credible
interval)

Unit

β1 Transmission rate between
susceptible and productively
infected brain macrophages

1.17× 10−5

(5.75× 10−6, 1.52× 10−5)
g per year

β2 Transmission rate between
susceptible and latently
infected brain macrophages

2.23× 10−6

(2.92× 10−7, 4.18× 10−6)
g per year

k Natural death rate of brain
macrophages

4.45 (0.627, 9.84) per year

x0 Initial value for x 2.13× 106

(2.09× 106, 3.85× 106)
per g

y0 Initial value for y 11.0 (9.06, 11.1) per g
N viral RNA copies produced

by a productively infected
brain macrophage

1.35× 103 (773, 1.85× 103) per g

ϵ cART effectiveness ϵ× 100% 0.180 (0.150, 0.654) -
γ ϵγ is the rate productive

brain macrophages
deactivate once cART is
applied

124 (27.8, 152) per year
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Table 4.4: Range of SIV RNA copies per gram of brain tissue
corresponding to brain lesion severity for untreated SIV-infected animals in
experimental studies.

Brain
lesion
severity

Range
(minimum to
maximum) of
SIV RNA copies
per gram of
brain tissue

Brain lesion
severity
graphical
visualization
region color**

Brain lesion
severity
graphical
visualization
point color

Source and
Reference

Unknown* 1.25× 101 -
1.10× 108

- Black [103, 100, 85, 105,
106, 108]

None 2.5× 101 -
1.06× 106

No color Blue [101, 102, 104, 106,
107, 31]

Mild 1.97× 103 -
2.86× 107

Yellow Red [101, 102, 106, 31]

Moderate 1.12× 105 -
4.35× 108

Orange Red [102, 104, 106, 107,
31]

Severe 2.97× 107 -
1.18× 109

Red Red [101, 102, 104, 106,
107, 31]

∗ The brain lesion severity status of some animals is unknown because brain
lesions for untreated SIV infection in these experimental studies are historically
observed after 42 days post-inoculation (p.i.) [106]. In other cases, the brain lesion
severity status of some animals is unknown because the brain lesion severity
statuses were not published in the experimental results.

∗∗ The minimum of the brain lesion severity ranges is visualized in the yellow
(mild), orange (moderate), and red (severe) regions found in Figures 4.4, 4.5, and
4.7.
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4.C.2 Establishment of latent reservoir of brain macrophages

in model (4.1)

Untreated SIV-infected animals in experimental studies that showed brain

lesions had a minimum number of SIV RNA copies per gram of brain tissue

of 1.97 × 103 and a maximum number of SIV RNA copies per gram of brain

tissue of 1.18 × 109. A summary of the SIV RNA copies per gram of brain

tissue ranges corresponding to brain lesion severity for these animals is given

in Table 4.4.

The mean model predictions and 95% prediction interval in Figure 4.4 (a -

c) shows the progression of untreated SIV infection in the brain. These SIV ex-

perimental studies use an animal model that consistently results in encephalitis

by 84 days p.i. for untreated SIV infection [31, 85]. SIV encephalitis in these

experimental studies is typically characterized by the formation of moderate

or severe brain lesions [107]. The mean model prediction in Figure 4.4 (c)

at 84 days p.i. shows that the model (4.1) solution for the SIV viral load is

approaching the known range for presenting moderate brain lesions.

The mean model predictions and 95% prediction intervals in Figure 4.4 (d -

f), (g - i), and (j - l) show that once cART is applied the productively infected

brain macrophages are suppressed but there remains persistent and latently

infected brain macrophages. Our model demonstrates that initiation of early

cART at 4 days p.i. (Figure 4.4 (c - d)) and initiation of cART at 12 days p.i.

(Figure 4.4 (e - f)) suppresses the SIV viral load to below the range associated

with presenting mild brain lesions. However, when cART is initiated later at

42 days p.i., our model indicates that after 42 days p.i. there is about 70 days

of exposure to the SIV viral load range associated with presenting mild brain
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lesions before falling below this range. The red points in Figure 4.4 (l) denote

the two animals with brain lesions at autopsy 224 and 231 days p.i. and the

brain lesion severity for these animals is mild [86, 102]. The observation of

both animals having mild brain lesions after cART initiation at 42 days p.i. is

consistent with the model showing that after cART initiation at 42 days p.i.

there is about 70 days of exposure to the SIV viral load range associated with

presenting mild brain lesions Figure 4.4 (l).

Model (4.1) successfully reproduces the effects seen in experimental SIV

studies of the brain viral reservoir: without cART, viral infection increases

slowly over time, and with effective cART, productive infection in the brain is

reduced or suppressed but there remains persistent latent virus in brain cells

(Figure 4.4) [31, 85, 86].

4.C.3 Studying the effects of LRA treatment using model

(4.5)

The prediction in Figure 4.5 (a - c) and (d - f) initially present similar results

as in Figure 4.4 (g - i) where cART is started at 12 days p.i. leading to the

suppression of productively infected brain macrophages and the persistence of

latently infected brain macrophages. The cART is continued throughout the

prediction in Figure 4.5 (a - c) and (d - f). LRA drugs are initiated during

the period between 530-594 days p.i. causing the latently infected brain cells

to reactivate. The prediction in Figure 4.5 (a - c) reactivates latently infected

brain cells at a low reactivation rate (0.01 ≤ α ≤ 0.03) and avoids the SIV

viral load range associated with presenting mild brain lesions (Figure 4.5 (b)).

The blue point in Figure 4.5 (b) represents the average number of SIV RNA
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Figure 4.4: Modeling SIV infection of the brain: first row (a)-(c) untreated animals; second row (d)-(f) cART-exposed animals at
4 days p.i.; third row (g)-(i) cART-exposed animals at 12 days post-inoculation (p.i.); fourth row (j)-(l) cART-exposed animals at 42
days p.i.; first column (a)-(j) stably infected brain macrophages, data (black points), mean model prediction (black curve), 95%
prediction interval (dashed black curves); second column (b)-(k) productively and latently infected brain macrophages are shown in red
and blue respectively, mean model prediction (solid curve), 95% prediction interval (dashed curves); third column (c)-(l) viral load,
unknown brain lesion status data (black points), without brain lesions data (blue points), and with brain lesions data (red points),
mean model prediction (black curve), 95% prediction interval (dashed black curves). Animals that showed mild, moderate, and severe
brain lesions had SIV RNA copies per gram of brain tissue ranges 1.97× 103 to 2.86× 107, 1.12× 105 to 4.35× 108, and 2.97× 107 to
1.18× 109, respectively. (The minimum of these brain lesion severity ranges is visualized in the yellow (mild), orange (moderate), and
dark red (severe) regions in the third column (c)-(l). 96



copies per gram of brain tissue of the macaque without brain lesions [32]. The

prediction in Figure 4.5 (d - f) reactivates latently infected brain cells and

produce SIV RNA copies per gram of brain tissue that reach a dangerous

level (spike into the yellow region with 8.88 ≤ α ≤ 30.9 and into the orange

region 32.7 ≤ α ≤ 73.0) associated with the formation of brain lesions and

neurological disorders (Figure 4.5 (f)). The red open circle in Figure 4.5 (f)

represents the average number of SIV RNA copies per gram of brain tissue

and the red point in Figure 4.5 (f) represents the SIV RNA copies per gram of

brain tissue in the occipital cortex of the macaque with brain lesions [32]. In all

predictions (Figures 4.5 (a - c) and 4.5 (d - f)), after LRA drugs are stopped at

594 days p.i., the number of SIV RNA copies per gram of brain tissue decreases

due to the continued use of cART. In Figure 4.5 (d - f), despite the number of

SIV RNA copies per gram of brain tissue subsiding after the LRA drugs are

stopped, once the number of SIV RNA copies per gram of brain tissue reaches

the high threshold associated with the formation of brain lesions, this acts as

a trigger for continued neuroinflammation and signal disruption in the brain.

4.C.4 Identifying a parameter region for safe and effec-

tive “Shock and Kill” strategy using model (4.5)

The mean control reproduction number for the “Shock and Kill” therapy

model, mean Rc, (4.7) is varied by the reactivation rate, α, and an addi-

tional kill rate, ω, to find a suitable balance between the effect of LRA drugs

and the kill strategy (Figure 4.6). When Rc < 1, both productively and la-

tently infected brain macrophages are eradicated. The turquoise region in

Figure 4.6 displays the values of α and ω that lead to a safe and effective
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Figure 4.5: Mean predicted solution for SIV (a) stably, (b) productively
and latently infected brain macrophages and (c) viral load for cART
exposure at 12 days post-inoculation (p.i.) and LRA initiated during the
period 530-594 days p.i. for macaque without brain lesions (blue point in
(c)). Mean predicted solution for SIV (d) stably, (e) productively and
latently infected brain macrophages and (f) viral load for cART exposure at
12 days p.i. and LRA initiated during the period 530-594 days p.i. for
macaque with brain lesions (red open circle average viral RNA per gram, red
point viral RNA per gram in occipital cortex in (f)). Productively and
latently infected brain macrophages in column two (b)-(e) are shown in red
and blue respectively. Animals that showed mild and moderate brain lesions
had SIV RNA copies per gram of brain tissue ranges 1.97× 103 to 2.86× 107

and 1.12× 105 to 4.35× 108, respectively. (The minimum of these brain
lesion severity ranges is visualized in the yellow (mild) and orange
(moderate) regions in the third column (c)-(f).

98



Figure 4.6: Mean control reproduction number for the “Shock and Kill”
therapy model given by equations (4.5), mean Rc, varied by α and ω. The
turquoise region displays the values of α and ω that lead to a safe and
effective treatment strategy.

treatment strategy, restricting brain viral RNA burden associated with neu-

roinflammation and eradicating the latent reservoir of brain macrophages. In

the prediction displayed in Figure 4.7, cART is started at 12 days p.i. lead-

ing to the suppression of productively infected brain macrophages and the

persistence of latently infected brain macrophages and the cART is contin-

ued throughout the prediction in Figure 4.7. LRA drugs and a kill treatment

strategy are initiated at 175 days p.i. causing the productively and latently

infected brain macrophages to be eradicated while avoiding the SIV viral load

range associated with neuroinflammation (Figure 4.7).

4.D Discussion

Our mathematical model recapitulates the clinical and experimental observa-

tions that effective cART can suppress productive infection of brain macrophages

99



0 100 200 300 400 500 600 700 800 900 1000
Days

10

15

20

25

30

35

SI
V-

in
fe

ct
ed

 b
ra

in
 m

ac
ro

ph
ag

es
 / 

gr
am

(a)

0 100 200 300 400 500 600 700 800 900 1000
Days

0

5

10

15

20

25

30

35

SI
V-

in
fe

ct
ed

 b
ra

in
 m

ac
ro

ph
ag

es
 / 

gr
am

(b)

0 200 400 600 800
Days

0

0.5

1

1.5

2

2.5

3

S
IV

 R
N

A
 c

op
ie

s 
/ g

ra
m

104 (c)

Figure 4.7: Mean predicted solution for SIV (a) stably, (b) productively
and latently infected brain macrophages (shown in red and blue respectively)
and (c) viral load for cART treated macaques at 12 days post-inoculation
(p.i.) and “Shock and Kill” therapy initiated at 175 days p.i. for model
solutions within the turquoise region in Figure 4.6. Macaques with mild
brain lesions have SIV RNA copies/g between 1.97× 103 to 2.86× 107, which
is visualized in the yellow region in (c).

but leaves a latent reservoir of brain macrophages. By adding a reactivation

rate of the latent reservoir into the model, we can assess the LRA strategy,

prompting the model to offer an explanation for the experimental observation

of SIV encephalitis and viral RNA copy number per gram of brain tissue from

LRA-exposed animals. Furthermore, our mathematical model indicates that

there exists a biologically realistic parameter regime where the “Shock and

Kill” strategy is safe and effective in the brain.

There is limited data available for HIV-1 brain infection and there is diffi-

culty in obtaining precise estimates for the duration a person might have had

HIV-1 infection. In SIV studies the duration of infection and time of treatment

are known. SIV studies from the same animal model were used to confirm the

behavior of the mathematical models [101, 102, 103, 100, 85, 104, 105, 106,

107, 108, 31, 86]. In a SIV study from 2011, twelve pigtailed macaques were

inoculated with the virus and three of these macaques were treated with cART
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at 4 days p.i. [85]. It was found that the macaques treated at 4 days p.i. had

reduced brain viral RNA at 21 days p.i. but there was not a reduction in viral

DNA at 21 days p.i. Similarly, in a SIV study from 2010, eleven pigtailed

macaques were inoculated with virus and five of these macaques were treated

with cART at 12 days p.i. [31]. It was discovered that the macaques treated

at 12 days p.i. had reduced brain viral RNA at 175 days p.i. but there was

not a reduction in viral DNA at 175 days p.i. Also, in a SIV study from 2005,

four pigtailed macaques were inoculated with virus and two of these macaques

were treated with cART at 42 days p.i. [86]. It was determined that the

macaques treated at 42 days p.i. had reduced brain viral RNA at 224 and

231 days p.i. but there was not a reduction in viral DNA at 224 and 231 days

p.i. The mathematical model given by system (4.1) produces this phenomenon

(see Section 4.B.1 and 4.C.2). In a SIV study from 2017, two macaques (Mn1

and Mn2) were treated with cART 12 days p.i., LRA was started 530 days

p.i. and LRA therapy was finished 594 days p.i. [32]. Since macaque Mn2

was presenting neurological symptoms after the use of LRA therapy, the two

macaques were euthanized at 612 days p.i. It was found that LRA treatment

reactivated latent virus that could be detected in the brain of macaque Mn2.

The number of viral RNA copies per gram of brain tissue in basal ganglia (75),

parietal cortex (475), and occipital cortex (42500) for Mn2 is lower than RNA

levels historically observed in their SIV animal model of animals with symp-

toms associated with SIV encephalitis (in Section 4.C.2 the range 1.12 × 105

to 1.18× 109 SIV RNA copies per gram of brain tissue was determined to be

associated with moderate or severe brain lesions and SIV encephalitis). The

mathematical model that includes the effect of LRAs, given by system (4.5),

offers an explanation for why macaque Mn2 developed neurological symptoms
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despite having a lower number of viral RNA copies per gram of brain tissue

than expected at autopsy. The mathematical model prediction indicates that

if the experimental conditions of starting cART at 12 days p.i., initiating LRA

at 530 days p.i., finishing LRA therapy at 594 days p.i., and measuring the

viral load at 612 days p.i., then the viral load in the occipital cortex would

have to pass through the region associated with SIV-induced brain disease

(encephalitis) in order to have the level of 42500 viral RNA copies per gram

of brain tissue in the occipital cortex at autopsy (see Section 4.C.3).

A full mathematical analysis of the “Shock and Kill” model given by equa-

tions (4.5) is warranted to further investigate solutions that lead to a safe and

effective “Shock and Kill” strategy in the brain. Indeed, developing mathemat-

ical models that incorporate a more realistic additional kill term in equations

(4.5) to kill reactivated infected brain macrophages by host immune responses

is needed to test different treatment strategies. Potential strategies could be

to bolster the CD8+ T cell response in the brain to kill reactivated infected

brain macrophages or to strengthen the innate mechanisms in the brain that

lead to programmed cell death in reactivated infected brain macrophages. Us-

ing HIV-1 post-mortem patient data and other SIV animal models such as

ones that use Indian rhesus macaques that have a longer duration of infection

would assist in further validating the qualitative behaviors of the mathemati-

cal models for HIV-1 brain infection.
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Chapter 5

Supplementary material for

Chapter 4

5.A Mathematical results and proofs

Using the theory of asymptotically autonomous differential equations [109,

110], the asymptotic behaviors of system (4.1) are the same as the following

2-dimensional system of differential equations in the bounded feasible region

D = {(x, y) ∈ R2
+ : 0 ≤ x+ y ≤ λ

k
}:

dx

dt
= λ− kx− (1− ϵ)β1xy − β2x(

λ

k
− x− y) = g(x, y),

dy

dt
= p(1− ϵ)β1xy − (k + ϵγ)y = h(x, y).

(5.1)

The Jacobian matrix of system (5.1) is
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J =

⎡⎢⎣−k − (1− ϵ)β1y + β2x− β2(
λ
k
− x− y) −(1− ϵ)β1x+ β2x

p(1− ϵ)β1y p(1− ϵ)β1x− k − ϵγ

⎤⎥⎦ . (5.2)

Theorem 5.1: 1. If the control reproduction number Rc < 1, then the

disease-free equilibrium P0 is locally asymptotically stable. If Rc > 1,

then P0 is unstable.

2. If Rc > 1 and Rc1 > Rc2, then the productive equilibrium P1 is locally

asymptotically stable.

3. If Rc > 1 and Rc1 < Rc2, then the latent equilibrium P2 is locally asymp-

totically stable.

Proof. The Jacobian matrix evaluated at P0 is

J(P0) =

⎡⎢⎣−k + β2
λ
k

(β2 − (1− ϵβ1))
λ
k

0 p(1− ϵ)β1
λ
k
− (k + ϵγ)

⎤⎥⎦ . (5.3)

Since the matrix (5.3) is upper triangular, the eigenvalues of the matrix J(P0)

are µ1 = −k+β2
λ
k
and µ2 = p(1− ϵ)β1

λ
k
− (k+ ϵγ). If Rc < 1, then µ1, µ2 < 0

and the disease-free equilibrium P0 is locally asymptotically stable. If Rc > 1,

then max{µ1, µ2} > 0 and P0 is unstable.

The Jacobian matrix evaluated at P1 is
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J(P1) =

⎡⎢⎣−k − (1− ϵ)β1y1 + β2x1 − β2(
λ
k
− x1 − y1) −(1− ϵ)β1x1 + β2x1

p(1− ϵ)β1y1 p(1− ϵ)β1x1 − k − ϵγ

⎤⎥⎦
=

⎡⎢⎣−k − (1− ϵ)β1y1 + β2x1 − β2(
λ
k
− x1 − y1) −(1− ϵ)β1x1 + β2x1

p(1− ϵ)β1y1 0

⎤⎥⎦
(5.4)

since p(1 − ϵ)β1x1 − k − ϵγ = (p(1−ϵ)β1)(k+ϵγ)
p(1−ϵ)β1

− (k + ϵγ) = 0. If Rc > 1 and

Rc1 > Rc2, then Rc1 > 1 > Rc2

Rc1
and by using the productive equilibrium P1,

tr(J(P1)) = −k − λ

k
β2 + 2x1β2 − ((1− ϵ)β1 − β2)y1

= k(
Rc2

Rc1

−Rc1)

< 0

(5.5)

and

det(J(P1)) = ((1− ϵ)β1 − β2)p(1− ϵ)β1x1y1

= (1− 1

Rc1

)(1− Rc2

Rc1

)

> 0.

(5.6)

By the Routh-Hurwitz condition, P1 is locally asymptotically stable.

The Jacobian matrix evaluated at P2 is

J(P2) =

⎡⎢⎣k − λ
k
β2

−(1−ϵ)β1k
β2

+ k

0 p(1− ϵ)β1
k
β2

− k − ϵγ

⎤⎥⎦ . (5.7)

Since the matrix (5.7) is upper triangular, the eigenvalues of the matrix 5.7
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are µ1 = k − λ
k
β2 and µ2 = p(1 − ϵ)β1

k
β2

− k − ϵγ. If Rc > 1 and Rc1 < Rc2,

then µ1, µ2 < 0 and the latent equilibrium P2 is locally asymptotically stable.

Theorem 5.2: If the control reproduction number 0 < Rc ≤ 1, then the

disease-free equilibrium P0 is globally asymptotically stable in Γ.

Proof. When 0 < Rc ≤ 1, P0 is the only equilibrium.

Consider the Lyapunov function L = y. Then

L′ = y′ = p(1− ϵ)β1xy − ky − ϵγy ≤ (k + ϵγ)y(Rc1 − 1)

≤ (k + ϵγ)y(Rc − 1) ≤ 0.

The maximal invariant set in {(x, y, l) ∈ Γ : L′ = 0} is the singleton P0.

By LaSalle’s Invariance Principle, all limit points of solutions belong to the

largest invariant set in {(x, y, l) ∈ Γ : L′ = 0}. Therefore, all solutions in Γ

converge to P0 and P0 is globally asymptotically stable in Γ.

Theorem 5.3: If Rc > 1 and Rc1 > Rc2, then the productive equilibrium P1 is

globally asymptotically stable in Γ̊. If Rc > 1 and Rc1 < Rc2, then the latent

equilibrium P2 is globally asymptotically stable in Γ.

Proof. The asymptotic behaviors of system (4.1) in Γ are the same as the

asymptotic behaviors of system (5.1) in D. In system (5.1), let f(x, y) =

(g(x, y), h(x, y)).

Consider a scalar-valued function α(x, y) = 1
xy(λ

k
−x−y)

,

where (x, y) ∈ D̊ = {(x, y) : 0 < x+ y < λ
k
}. For all (x, y) ∈ D̊,
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div(αf) =
∂

∂x
(αg) +

∂

∂y
(αh)

=
1

xy(λ
k
− x− y)

(−λ
x

+
λ− kx

(λ
k
− x− y)

− (1− p)(1− ϵ)β1xy

(λ
k
− x− y)

− (k + ϵγ)y
λ
k
− x− y

)
<

1

xy(λ
k
− x− y)

(−λ
x

+ k − (1− p)(1− ϵ)β1xy

(λ
k
− x− y)

− (k + ϵγ)y
λ
k
− x− y

)
<

1

xy(λ
k
− x− y)

(−λ
x

+ k
)

=
k

x2y(λ
k
− x− y)

(x− λ

k
)

< 0.

Therefore, by Dulac’s criteria, system (5.1) has no closed orbit lying entirely

in D̊. So, no periodic solutions can exist.

By the Poincare-Bendixson Theorem, if Rc > 1 and Rc1 > Rc2, all solutions

with initial condition in D̊ must have P1 as an ω-limit point. Since P1 is locally

asymptotically stable, solutions that get close to P1 must converge to P1 and

all ω-limit sets in D̊ are equal to the singleton {P1}. Therefore, P1 is globally

stable in D̊ when Rc > 1 and Rc1 > Rc2.

Similarly, by using the Poincare-Bendixson Theorem, if Rc > 1 and Rc1 <

Rc2, then P2 is globally stable in D̊.

5.B Data conversion

SIV brain viral DNA was measured in three different units [100, 31, 85, 86]:

log10 SIV DNA copy equivalents per 2 micrograms of total DNA, log10 SIV
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DNA copy equivalents per 10,000 cells, and SIV DNA copy equivalents per

microgram of total DNA.

The first and second SIV brain viral DNA units were converted to inte-

grated SIV DNA per gram of brain tissue in the same fashion as described

in the supplementary material of our previous modeling study [1]. Since each

SIV-infected brain macrophage is assumed to contain a single copy of inte-

grated viral DNA, the integrated SIV DNA per gram of brain tissue is equal

to the number of stably infected brain macrophages per gram of brain tissue.

For the third SIV brain viral DNA unit, this data was converted to inte-

grated SIV DNA per gram of brain tissue in a similar way to the first SIV

brain viral DNA unit. The SIV DNA copy equivalents per microgram of total

DNA was converted to SIV DNA copy equivalents per gram of brain tissue

by using the conversion that each gram of brain tissue contains 4 micrograms

of total host genomic DNA. By using the ratio of integrated proviral DNA to

total viral DNA (1:86) [111] and our assumption that each SIV-infected brain

macrophage is assumed to contain a single copy of integrated viral DNA, we

obtain the number of stably infected brain macrophages per gram of brain

tissue.

SIV brain viral RNA was measured in five different units [101, 102, 103, 100,

85, 104, 105, 106, 107, 108, 31]: SIV RNA copy equivalents per microgram of

total RNA, log10 SIV RNA copy equivalents per microgram of total RNA, SIV

RNA copy equivalents per 2 micrograms of total RNA, log10 SIV RNA copy

equivalents per 2 micrograms of total RNA, and 106 SIV RNA copy equivalents

per microgram of total RNA.When the SIV brain viral RNA unit is not already

in the form of SIV RNA copy equivalents per microgram of total RNA, they

are converted to SIV RNA copy equivalents per microgram of total RNA by

108



exponentiation. The SIV RNA copy equivalents per microgram of total RNA

was converted to SIV RNA copy equivalents per gram of brain tissue by using

the conversion that each gram of brain tissue contains 25 micrograms of total

host genomic RNA.

Some SIV studies measured SIV brain viral DNA and RNA in multiple

regions of the brain [101, 100, 85, 104, 106, 107, 86]. For these SIV studies,

the average SIV brain viral DNA and RNA across the brain regions was used.

This was done so that the fitted system (4.1) and prediction using system (4.5)

would be projecting the average viral dynamics per gram of brain tissue.

After these conversions are completed, the data for SIV RNA copies per

gram of brain tissue and the estimated number of stably infected brain macrophages

per gram of brain tissue are located in Table 5.1.

Table 5.1: SIV RNA copies per gram of brain tissue and estimated number
of stably infected brain macrophages per gram of brain tissue at different
times post-inoculation (p.i.).

Brain lesion

severity

cART

treatment

start time

(days p.i.)

Time of

collection

(days p.i.)

Viral RNA

copies/g

Estimated

stably infected

brain

macrophages/g*

Reference

Severe Untreated 62 1.22× 108 NA [101]

Severe Untreated 60 3.01× 107 NA [101]

Severe Untreated 50 2.97× 107 NA [101]

Severe Untreated 84 8.19× 107 NA [101]

Mild Untreated 86 2.86× 107 NA [101]

Severe Untreated 84 1.18× 109 NA [102]

Severe Untreated 84 4.64× 108 NA [102]
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Severe Untreated 84 2.62× 108 NA [102]

Moderate Untreated 84 2.51× 108 NA [102]

Moderate Untreated 84 1.58× 108 NA [102]

Moderate Untreated 84 7.72× 107 NA [102]

Moderate Untreated 84 4.36× 107 NA [102]

Mild Untreated 84 3.30× 106 NA [102]

Mild Untreated 84 4.16× 103 NA [102]

Brain lesions

present

Untreated 56 7.31× 105 76 [100]

Severe Untreated 67 4.06× 107 NA [104]

Severe Untreated 73 9.55× 107 NA [104]

Moderate Untreated 84 1.04× 108 NA [104]

Moderate Untreated 84 3.12× 106 NA [104]

Moderate Untreated 84 1.12× 105 NA [104]

Severe Untreated 42 4.12× 108 NA [106]

Severe Untreated 42 7.42× 108 NA [106]

Moderate Untreated 42 5.80× 107 NA [106]

Mild Untreated 42 5.53× 106 NA [106]

Mild Untreated 42 6.46× 106 NA [106]

Severe Untreated 85 1.06× 109 NA [107]

Severe Untreated 94 1.56× 108 NA [107]

Severe Untreated 85 9.13× 108 NA [107]

Moderate Untreated 87 3.77× 108 NA [107]

Moderate Untreated 72 4.35× 108 NA [107]

Moderate/ severe Untreated 84 1.15× 105 NA [108]

Moderate/ severe Untreated 84 2.96× 106 NA [108]
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Moderate/ severe Untreated 84 3.62× 107 NA [108]

Moderate/ severe Untreated 84 7.40× 107 NA [108]

Moderate/ severe Untreated 84 1.02× 108 NA [108]

Severe Untreated 84 8.16× 107 838 [31]

Severe Untreated 84 2.66× 108 1.26× 103 [31]

Moderate Untreated 84 2.83× 107 134 [31]

Mild Untreated 84 1.97× 103 12 [31]

Mild Untreated 84 6.94× 105 13 [31]

None Untreated 85 1.42× 105 NA [101]

None Untreated 83 1.88× 105 NA [101]

None Untreated 79 25 NA [101]

None Untreated 87 25 NA [101]

None Untreated 84 25 NA [101]

None Untreated 84 28 NA [102]

None Untreated 84 1.23× 103 NA [104]

None Untreated 42 1.31× 103 NA [106]

None Untreated 42 6.10× 104 NA [106]

None Untreated 42 2.70× 105 NA [106]

None Untreated 42 1.06× 106 NA [106]

None Untreated 92 25 NA [107]

None Untreated 84 1.66× 103 3 [31]

Unknown Untreated 7 3.06× 103 NA [103]

Unknown Untreated 7 2.28× 103 NA [103]

Unknown Untreated 7 6.08× 104 NA [103]

Unknown Untreated 7 2.62× 103 NA [103]

Unknown Untreated 10 6.52× 103 NA [103]
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Unknown Untreated 10 1.83× 104 NA [103]

Unknown Untreated 10 1.01× 103 NA [103]

Unknown Untreated 10 1.38× 103 NA [103]

Unknown Untreated 21 12 NA [103]

Unknown Untreated 21 12 NA [103]

Unknown Untreated 21 12 NA [103]

Unknown Untreated 21 12 NA [103]

Unknown Untreated 10 2.01× 103 3 [100]

Unknown Untreated 10 3.81× 103 9 [100]

Unknown Untreated 10 2.92× 104 42 [100]

Unknown Untreated 10 679 5 [100]

Unknown Untreated 10 2.34× 104 30 [100]

Unknown Untreated 10 2.48× 104 12 [100]

Unknown Untreated 21 12 22 [100]

Unknown Untreated 21 12 5 [100]

Unknown Untreated 21 12 11 [100]

Unknown Untreated 21 12 12 [100]

Unknown Untreated 21 12 27 [100]

Unknown Untreated 21 12 13 [100]

Unknown Untreated 56 6.68× 103 4 [100]

Unknown Untreated 56 12 2 [100]

Unknown Untreated 56 12 13 [100]

Unknown Untreated 56 12 6 [100]

Unknown Untreated 56 12 32 [100]

Unknown Untreated 21 5.28× 105 5 [85]

Unknown Untreated 21 1.18× 106 13 [85]
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Unknown Untreated 21 1.76× 106 19 [85]

Unknown Untreated 21 4.32× 106 29 [85]

Unknown Untreated 21 4.68× 106 89 [85]

Unknown Untreated 21 2.50× 107 292 [85]

Unknown Untreated 84 25 NA [105]

Unknown Untreated 84 25 NA [105]

Unknown Untreated 84 25 NA [105]

Unknown Untreated 84 1.52× 104 NA [105]

Unknown Untreated 84 3.78× 104 NA [105]

Unknown Untreated 84 2.60× 105 NA [105]

Unknown Untreated 84 3.73× 105 NA [105]

Unknown Untreated 84 1.17× 107 NA [105]

Unknown Untreated 84 2.79× 107 NA [105]

Unknown Untreated 84 4.00× 107 NA [105]

Unknown Untreated 84 1.10× 108 NA [105]

Unknown Untreated 84 1.04× 108 NA [105]

Unknown Untreated 84 1.94× 107 NA [105]

Unknown Untreated 84 3.56× 107 NA [105]

Unknown Untreated 84 4.82× 107 NA [105]

Unknown Untreated 21 2.92× 103 NA [106]

Unknown Untreated 21 2.52× 104 NA [106]

Unknown Untreated 21 4.04× 104 NA [106]

Unknown Untreated 21 6.47× 104 NA [106]

Unknown Untreated 21 9.20× 104 NA [106]

Unknown Untreated 21 5.16× 105 NA [106]

Unknown Untreated 21 1.04× 106 NA [106]
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Unknown Untreated 21 1.74× 106 NA [106]

Unknown Untreated 21 2.78× 106 NA [106]

Unknown Untreated 21 3.66× 106 NA [106]

Unknown Untreated 21 4.46× 106 NA [106]

Unknown Untreated 21 2.60× 107 NA [106]

Unknown Untreated 84 1.14× 103 NA [108]

Brain lesions

present

42 231 25 40 [86]

Brain lesions

present

42 224 25 77 [86]

None 12 175 12 119 [31]

None 12 175 12 133 [31]

None 12 175 12 45 [31]

None 12 175 12 50 [31]

None 12 175 12 62 [31]

Unknown 4 21 25 11 [85]

Unknown 4 21 866 43 [85]

Unknown 4 21 683 67 [85]

Unknown 4 21 1.23× 103 76 [85]

Unknown 4 21 3.82× 103 364 [85]

Unknown 4 21 3.02× 104 4.30× 103 [85]

None 12 (LRA

from

530-594)

628 25 NA [32]
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Moderate/ severe 12 (LRA

from

530-594)

617 1.44× 104 NA [32]

∗ If viral DNA was not measured in a study, then the number of stably infected

brain macrophages per gram of brain tissue cannot be estimated and not

applicable (NA) is written in the cell.

5.C Prior distributions for Bayesian inference.

Uniform prior distributions were specified for β1, β2, k, x0, y0, N , ϵ, and γ in

system (4.1) since there is a general range for these parameters given in the

literature. The prior distributions are listed in Table 5.2. The parameters β1,

β2, k, and x0 used the same uniform prior distributions as described in [1] and

they are the following:

β1 ∼ U(1 × 10−8, 1 × 10−4), β2 ∼ U(1 × 10−8, 1 × 10−4), k ∼ U(0.5, 10.22),

and x0 ∼ U(2.07× 106, 3.94× 106). The constraint β2 < pβ1 was used for the

assumption that infection due to productively infected brain macrophages, β2,

is sufficiently larger than that due to latently infected brain macrophages, β1.

Since x0 =
λ
k
, λ is determined by x0 and k. Simple linear regression is used to

estimate, log10(y0), by fitting the following linear model to the log10 SIV DNA

copies per gram data for untreated infection (row 1 in Table 4.2):

log10(y) = log10(y0) +myty, (5.8)

where log10(y) is the log10 SIV DNA copies per gram data for untreated in-

fection, log10(y0) is the intercept, my is the slope, and ty is the independent
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variable time. The intercept of this regression model, log10(y0), is estimated

to be 1.045, and consequently, y0 is estimated to be 11.1 and the chosen prior

distribution is y0 ∼ U(1, 11.1). It is assumed that l0 = 0. The initial viral

load is given by v0 = Ny0 and consequently, N = v0
y0
. Simple linear regression

is used to estimate, log10(v0), by fitting the following linear model to the log10

SIV RNA copies per gram data for untreated infection (row 2 in Table 4.2):

log10(v) = log10(v0) +mvtv, (5.9)

where log10(v) is the log10 SIV RNA copies per gram data for untreated in-

fection, log10(v0) is the intercept, mv is the slope, and tv is the independent

variable time. The intercept of this regression model, log10(v0), is estimated to

be 3.676 and hence v0 is estimated to be 4.74×103. Since v0 is estimated to be

4.74× 103 and y0 ∼ U(1, 11.1), N ∼ U(427, 4.74× 103). The cART effective-

ness, ϵ, varies between 0 and 1 and the prior distribution is ϵ ∼ U(0.01, 1). The

rate productively infected brain macrophages are deactivated once cART is ap-

plied, ϵγ, is unknown and a broad range is chosen for γ ∼ U(0.01, 200). The

proportion of newly infected susceptible brain macrophages by productively

infected brain macrophages that enter the productively infected population is

assumed to be p = 0.5.
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Table 5.2: Uniform prior distributions for parameters

Symbol Parameter Prior distribution Unit Reference(s)

β1 Transmission rate between

susceptible and

productively infected brain

macrophages

U(1× 10−8, 1× 10−4) g per

year

[48]

β2 Transmission rate between

susceptible and latently

infected brain macrophages

U(1× 10−8, 1× 10−4)

with the constraint

β2 < pβ1

g per

year

[48]

k Natural death rate of brain

macrophages

U(0.5, 10.22) per year [49]

x0 Initial value for x U(2.07× 106, 3.94× 106) per g [112, 113,

114]

y0 Initial value for y U(1, 11.1) per g [100, 31, 85]

N viral RNA copies produced

by a productively infected

brain macrophage

U(427, 4.74× 103) per g [101, 102,

103, 100, 85,

104, 105,

106, 107,

108, 31]

ϵ cART effectiveness

ϵ× 100%

U(0.01, 1) - -

γ ϵγ is the rate productive

brain macrophages

deactivate once cART is

applied

U(0.01, 200) per year -
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5.D Model fitting and prediction using Bayesian

inference.

The parameters β1, β2, k, x0, y0, N , ϵ, and γ were estimated by fitting system

(4.1) simultaneously to the SIV brain viral data for untreated and cART-

exposed animals (data in the first eight rows of Table 4.2). The estimated

parameter values for system (4.1) are displayed in Table 5.3 and the fit of

system (4.1) to the data is visualized in Figure 4.4. The method of Bayesian

inference was used for fitting system (4.1) simultaneously to the eight datasets

and this method is described below. The estimated parameters were used to

predict the effects of LRA drugs in an SIV experiment (study in the last row of

Table 4.2) by using system (4.5) with ω = 0 and varying the reactivation rate,

α, from 0.01 to 100. The mean prediction of the LRA drugs SIV experiment is

shown in Figure 4.5. The estimated parameters were also used to predict the

“Shock and Kill” strategy by varying the reactivation rate, α, and additional

kill rate, ω, from 0 to 40. From the prediction of the “Shock and Kill” strategy,

a parameter region is found wherein the strategy is safe and effective. This

parameter region is displayed in Figure 4.6 and the mean of the predicted

model solutions within this region are shown in Figure 4.7. Further details

about the completion of these predictions are described below.

Bayesian inference is used to fit system (4.1) simultaneously to the SIV

brain viral data for untreated and cART-exposed animals (data in the first

eight rows of Table 4.2). Let Dj = {dj1, . . . , djnj
} and Tj = {tj1, . . . , tjnj

} be the

SIV brain viral data and times corresponding to the jth row of Table 4.2. Let

D = {D1, . . . , D8} and T = {T1, . . . , T8}.

System (4.1) was solved numerically by using the MATLAB function ode45
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with the option setting odeset(’NonNegative’, 2) to ensure that numerically

solved solutions have nonnegative values [115]. The function ode45 is based

on an explicit Runge-Kutta (4,5) formula.

There are four different scenarios being considered when system (4.1) is

being fit simultaneously to the SIV brain viral data for untreated and cART-

exposed animals: untreated SIV infection, SIV infection with cART initiated

at 4 days p.i., SIV infection with cART initiated at 12 days p.i., and SIV

infection with cART initiated at 42 days p.i. For untreated SIV infection, ϵ

is set to zero in system (4.1). For the scenarios when cART is initiated at a

certain time p.i., ϵ is time dependent in system (4.1):

ϵ(t) =

⎧⎪⎪⎨⎪⎪⎩
0 before cART is initiated

ϵ when cART is initiated

(5.10)

where the constant ϵ and is to be estimated. The parameter vector to be esti-

mated in system (4.1) is ν = ⟨β1, β2, k, x0, y0, N, ϵ, γ⟩. For untreated infection,

let the model solution vector over time for stably infected brain macrophages

per gram of brain tissue and SIV RNA copy equivalents per gram of brain

tissue be given by su(ν, t) and vu(ν, t) respectively. The dataset D1 will be

described by the model solution vector over time su(ν, t). The dataset D2 will

be described by the model solution vector over time vu(ν, t). Similarly, for

the scenarios when cART is initiated at a certain time p.i., D3 and D4 will be

described by sg(ν, t) and vg(ν, t) respectively, D5 and D6 will be described by

sz(ν, t) and vz(ν, t) respectively, and D7 and D8 will be described by sc(ν, t)

and vc(ν, t) respectively. The subscript letters g, z, and c are inspired by the

last name of the first author on the SIV studies [85, 31, 86] in order to quickly
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keep track of the corresponding model solution vector for each of the datasets

D3 through D8.

Since each of the observed SIV brain viral datasets D1 and D3 through D8

are overdispersed count data (variance of the data is larger than the mean of

the data), a negative binomial distribution is chosen to describe each of the

datasets D1 and D3 through D8. The observed SIV brain viral RNA dataset

for untreated animals D2 is also overdispersed count data. However, many of

the counts in the dataset D2 are very large positive numbers. For this reason,

a normal distribution is used to describe the log10 of the data D2.

Hence, for j = 1, 3, . . . , 8, the probability of observing dji is given by the

negative binomial distribution:

f(dji ) =
Γ(dji + rji )

dji ! Γ(r
j
i )

(pj)(r
j
i )(1− pj)d

j
i , (5.11)

where rji =
(pj)(µj

i )

1−(pj)
⇐⇒ µj

i =
(rji )(1−pj)

pj
changes depending on the time tji ,

and 0 < pj < 1 is specific to the jth data set Dj and determines the most

likely shape of the negative binomial distribution given the data Dj. Hence,

the variance, V ar[Dj
i ] =

µj
i

pj
, also changes over time. Here µ1

i = su(ν, t
1
i ),

µ3
i = sg(ν, t

1
i ), µ

4
i = vg(ν, t

1
i ), µ

5
i = sz(ν, t

1
i ), µ

6
i = vz(ν, t

1
i ), µ

7
i = sc(ν, t

1
i ),

and µ8
i = vc(ν, t

1
i ).

Based on the data sets D1, D3, . . . , D8, the following uniform prior distri-

butions are chosen for p1, p3, . . . , p8:

p1 ∼ U(1× 10−3, 1), p3 ∼ U(1× 10−4, 1), p4 ∼ U(1× 10−4, 1),

p5 ∼ U(1× 10−2, 1), p6 ∼ U(1× 10−1, 1), p7 ∼ U(1× 10−1, 1), and

p8 ∼ U(1× 10−1, 1).

For j = 2, the probability of observing log10(d
2
i ) is given by the normal

120



distribution:

g(d2i ) =

√
τ

2π
exp(−1

2
τ(log10(d

2
i )− µ2

i )
2), (5.12)

where the mean µ2
i changes depending on the time, t2i , and the variance 1

τ
is

specific to the data set D2. Here µ
2
i = log10(vu(ν, t

2
i )).

Based on the data set D2, the uniform prior distribution for τ is chosen to

be U(1× 10−2, 100).

Let ϕ = ⟨p1, τ, p3, p4, p5, p6, p7, p8⟩. Given the extra parameters in vector

ϕ, we want to estimate the vector θ = ⟨ν,ϕ⟩.

The probability model for data sets D1, D3, . . . , D8 is

P1(D|θ) =
∏

j=1,3,...,8

nj∏
i=1

f(dji ), (5.13)

and the probability model for data set D2 is

P2(D2|θ) =
n2∏
i=1

g(d2i ). (5.14)

The likelihood function for θ is given by

L(θ) = CP1(D|θ)P2(D2|θ), (5.15)

where C is any positive constant not depending on θ used to simplify the like-

lihood function. For more information about Bayesian inference for dynamical

systems and combining probability models, please see Chapter 2.

The prior distribution for θ is equal to the product of the uniform distri-

butions specified for the parameters in θ.

The fitting was completed using an affine invariant ensemble Markov Chain
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Monte Carlo (MCMC) sampling program from the MATLAB Central File Ex-

change [116]. The MCMC program sampled from the following unnormalized

posterior distribution, π(θ|D):

π(θ|D) = L(θ)P (θ), (5.16)

where θ is the vector of unknown parameters, D = {D1, . . . , D8} is the ob-

served data, L(θ) is the likelihood function, and P (θ) is the prior distribution.

The parameters to be estimated in system (4.1) are ν = ⟨β1, β2, k, x0, y0, N, ϵ, γ⟩.

The affine invariant ensemble MCMC sampler was used with T = 375, 000

iterations and K = 32 walkers making a total of KT = 12, 000, 000 samples.

Every 10th sample is thinned from each walker during the MCMC algorithm

to decrease autocorrelation. After the iterations of the MCMC sampler are

completed, a burn-in of 10,000 is used for each walker and the number of

pooled samples after the burn-in is H = 880, 000. Convergence of the MCMC

sampling to the estimated posterior distribution for each parameter in θ was

determined by using a general univariate comparison method [117]. The gen-

eral univariate comparison method uses the distance between the upper and

lower values of the 100(1−α)% interval for the pooled samples, S, and divides

this distance by the average of the distances between the upper and lower

values of the 100(1 − α)% interval for each of the K walkers, si, to receive

the potential scale reduction factor, r [117]. Here the 95% interval (α = 0.05)

is used for the general univariate comparison method. Table 5.3 contains the

estimated parameters in θ with the 95% credible intervals and the potential

scale reduction factors, r, for each parameter. The potential scale reduction

factors, r, are close to 1 and this indicates that the sampler converged to the
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posterior distribution.

The 95% prediction intervals for each data set Dj, j = 1, . . . , 8, are deter-

mined by the posterior predictive distribution as described in [2].

For the scenario when cART is initiated at a certain time p.i. and LRA

drugs are initiated at a later time p.i., ω is set to zero in system (4.5) and ϵ

and α are time dependent in system (4.5). The time dependent ϵ is given by

(5.10) and α(t) is given by

α(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 before LRA drugs are initiated

α when LRA drugs are initiated

0 when LRA drugs are stopped

(5.17)

where α is a constant.

For the model prediction of the LRA drug SIV experiment (data D9), the

vector ν in the pooled samples of θ = ⟨ν,ϕ⟩ in H are used in system (4.5)

with ω = 0 and the reactivation rate, α, in (5.17) is varied from 0.01 to 100

to determine which predicted solutions pass near the points in data D9. The

mean of these predicted solutions is displayed in Figure 4.5.

Likewise, for the scenario when cART is initiated at a certain time p.i. and

the “Shock and Kill” strategy is initiated at a later time p.i., ϵ, α, and ω are

time dependent in system (4.5). The time dependent ϵ is given by (5.10) and

α(t) is given by

α(t) =

⎧⎪⎪⎨⎪⎪⎩
0 before LRA drugs are initiated

α when LRA drugs are initiated,

(5.18)

where α is a constant, and
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ω(t) =

⎧⎪⎪⎨⎪⎪⎩
0 before additional kill strategy is initiated

ω when additional kill strategy is initiated,

(5.19)

where ω is a constant.

Similarly, for the prediction of the “Shock and Kill” strategy, the vector ν

in the pooled samples of θ = ⟨ν,ϕ⟩ in H are used. For each vector ν, system

(4.5) is solved and the control reproduction number, Rc, is calculated as the

reactivation rate, α, in (5.18) and additional kill rate, ω, in (5.19) are varied

from 0 to 40. The mean control reproduction number, mean Rc, is shown in

Figure 4.6 and the mean of the predicted model solutions within the safe and

effective region (turquoise region in Figure 4.6) are shown in Figure 4.7.

Table 5.3: Fitted parameter estimates in θ with the maximum posterior as
the point estimate, 95% credible intervals, and potential scale reduction
factors, r

Symbol Parameter Estimate (95% credible

interval)

Unit r

β1 Transmission rate between

susceptible and

productively infected

brain macrophages

1.17× 10−5

(5.75× 10−6, 1.52× 10−5)

g per year 1.1851

β2 Transmission rate between

susceptible and latently

infected brain

macrophages

2.23× 10−6

(2.92× 10−7, 4.18× 10−6)

g per year 1.1338

k Natural death rate of

brain macrophages

4.45 (0.627, 9.84) per year 1.0842
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x0 Initial value for x 2.13× 106

(2.09× 106, 3.85× 106)

per g 1.3665

y0 Initial value for y 11.0 (9.06, 11.1) per g 1.3636

N viral RNA copies

produced by a

productively infected

brain macrophage

1.35× 103 (773, 1.85× 103) per g 1.0671

ϵ cART effectiveness

ϵ× 100%

0.180 (0.150, 0.654) - 1.0483

γ ϵγ is the rate productive

brain macrophages

deactivate once cART is

applied

124 (27.8, 152) per year 1.0999

p1 parameter determining

most likely shape of NB

distribution given data D1

0.0064 (0.0044, 0.0088) per year 1.0760

τ τ = 1
σ2 , where σ2 is the

variance of the normal

distribution for log10 of

data D2

0.1536 (0.1312, 0.1917) per year 1.0308

p3 parameter determining

most likely shape of NB

distribution given data D3

0.0013 (0.0007, 0.0022) per year 1.0559

p4 parameter determining

most likely shape of NB

distribution given data D4

1.0863× 10−4

(1.0034×10−4, 1.5796×10−4)

per year 1.0964
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p5 parameter determining

most likely shape of NB

distribution given data D5

0.0280 (0.0131, 0.0587) per year 1.0487

p6 parameter determining

most likely shape of NB

distribution given data D6

0.9203 (0.3952, 0.9968) per year 1.0715

p7 parameter determining

most likely shape of NB

distribution given data D7

0.1128 (0.1008, 0.3246) per year 1.2270

p8 parameter determining

most likely shape of NB

distribution given data D8

0.1479 (0.1031, 0.4357) per year 1.2300
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Chapter 6

Modeling the natural control of

HIV-1 in the plasma:

comparative analyses of patients

from the Northern Alberta HIV

Program

6.A Introduction

In 2021, an estimated 38.4 (33.9 - 43.8) million people were living with HIV-

1 globally with 1.5 (1.1 - 2.0) million people becoming newly infected [13].

Even with the success of combination antiretroviral therapy (cART), HIV-

1 remains a global health issue and current therapeutic initiatives include

developing HIV-1 vaccines, both therapeutic and prophylactic vaccines, and

increase antiviral immune protection to establish post cART control for pa-
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tients [18, 14, 15, 22]. The goal of these therapeutic initiatives either being

a complete sterilizing cure where the virus is eradicated or a functional cure

where the virus is permanently suppressed in the absence of cART [14, 15].

Therapeutic initiatives for patients may be advanced by vital information

from HIV-1 Elite Controllers [18, 42, 14]. HIV-1 Elite Controllers are HIV-1

infected patients that can naturally suppress viral replication to undetectable

levels for extended periods of time without cART impeding the development

of acquired immunodeficiency syndrome (AIDS) [18, 42]. A crucial medical

problem is determining the differences in the natural immune response of HIV-

1 Elite Controllers in comparison to the natural immune response of typical

HIV-1 patients.

In the plasma, cytotoxic T lymphocytes (CTL), both cytotoxic CD8 T

lymphocytes (CD8 CTL) and cytotoxic CD4 T lymphocytes (CD4 CTL), are

the main adaptive branch of the immune system that eliminate virus-infected

cells [33, 34, 35, 36, 37]. Precursor CD8 CTLs and precursor CD4 CTLs are

any cells that terminally differentiate into effector CD8 CTLs and effector

CD4 CTLs, respectively [37, 38, 39]. Effector CD8 CTLs and effector CD4

CTLs have the capability to recognize and kill infected cells that produce viral

antigens on MHC class I and MHC class II molecules, respectively [35, 36].

HIV-1 experiments have shown that the combined activity of HIV-1 specific

effector CD4 CTLs and HIV-1 specific effector CD8 CTLs, through the killing

of virus-infected cells, maintain viral clearance [40, 41].

The biological theory for how HIV-1 Elite Controllers suppress the virus

with their own immune system is still under development and there is evidence

that the maintenance of HIV-1 specific effector CD4 CTLs in HIV-1 Elite

Controllers along with HIV-1 specific effector CD8 CTLs contribute to their
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control of HIV-1 infection [41]. Unique attempts to explain mathematically

how HIV-1 Elite Controllers suppress the virus naturally are sparse [52, 53, 54,

55, 56]. The earliest mathematical model of HIV-1 infection in the plasma that

attempted to explain the phenomenon of Elite Controllers was developed by

Dominik Wodarz and Martin Nowak [52]. The ordinary differential equation

(ODE) model contained four compartments: susceptible CD4 T cells; HIV-1

infected CD4 T cells; precursor CTLs; and effector CTLs. The authors mention

that the equilibrium with sustained precursor and effector CTL populations

and viral load at a low level may be attributed to HIV-1 Elite Controllers.

The first author on this study published a further expansion of this model

that included two types of CTL responses: a helper-independent response and

a helper-dependent response [53]. The helper-independent effector CTLs are

stimulated based on the size of the HIV-1 infected cell and helper-independent

effector CTL populations, whereas the helper-dependent effector CTLs are

stimulated based on the size of the HIV-1 infected cell and precursor CTL

populations. It is assumed in the model that the helper-independent effector

CTLs are short lived in comparison to the precursor CTL population. A couple

other theoretical mathematical models used the mathematical model in study

[52] or [53] to justify their next step in modeling HIV-1 Elite Controllers [54,

55]. The mathematical model in study [52], [53], and other theoretical ODE

models based off of this system [54, 55] have not been fit to empiric data for

a HIV-1 Elite Controller. A later mathematical model that was fit to empiric

data for a untreated HIV-1 Elite Controller transplant patient was an ODE

model with the following six compartments: susceptible CD4 T cells; HIV-1

infected CD4 T cells; productively HIV-1 infected CD4 T cells; long-lived HIV-

1 infected cells; HIV-1 specific effector CD8 CTLs; and virus [56]. The initial
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transplant for the untreated HIV-1 Elite Controller caused their viral load to

increase and afterward their immune system was capable of suppressing the

virus. There was about a year of empiric data on the HIV-1 Elite Controller

patient presented in the study. Their mathematical model fit to the empiric

data revealed that the untreated HIV-1 Elite Controller suppressed the virus

at rates equivalent to an untreated patient starting cART.

Our study formulated a mathematical model of the immune system during

HIV-1 infection in the plasma and estimated the disease dynamics among a

group of HIV-1 Elite Controllers and a comparison group of HIV-1 patients

from the Northern Alberta HIV Program (NAP) in Canada. The mathemat-

ical model was fit to the ART-näıve (no previous ART had been taken) time

period for each patient. These ART-näıve time periods varied from 2.32 to

18.17 years. Since these ART-näıve time periods covered a span of years, it

was necessary to consider the effect of the immune system in reducing and

preventing other infections in the plasma besides HIV-1 in order to accurately

model the plasma dynamics over the years. This is the first mathematical

modeling study to directly estimate the differences between a group of HIV-1

Elite Controllers with a comparison group of HIV-1 patients using empiric

data and it is also the first HIV-1 mathematical model to consider both ef-

fector CD4 CTLs and effector CD8 CTLs affect on HIV-1 disease and other

diseases present in each patient.

The modeling results indicated that the Elite Controller group had a stronger

antiviral immune response than the comparison group. In contrast, the com-

parison group was found to have more chronic immune activation but a less

effective immune response. The Elite Controller immune response estimates

given in this study quantifies a biologically realistic optimal immune response
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goal for HIV-1 therapeutic initiatives.

6.B Mathematical model

6.B.1 HIV-1 plasma infection model with natural im-

mune responses

CD4 T cells are the primary target for productive HIV-1 infection in the

plasma [118], and the CD4 T cell population was used as the target cell in

this HIV-1 modeling study. Although macrophages do play a significant part

of HIV-1 infection in tissues and formation of viral reservoirs [119], to reduce

model complexity and focus on the effect of CTLs during HIV-1 infection in

the plasma, this study does not include macrophages in the mathematical

model.

To derive this model, we first divide the total CD4 T cell population into

three compartments: CD4 T cells susceptible to HIV-1, x; HIV-1 specific ef-

fector CD4 CTLs, xE; and CD4 T cells productively infected with HIV-1,

y. While the majority of CD4 T cells in the x compartment are considered

healthy, the model considers that some of the CD4 T cells in the x compart-

ment can get infected with other diseases, which are not HIV-1, naturally over

time. There is one compartment in the model for the HIV-1 replication com-

petent viral particles, v. Lastly, the total CD8 T cell population is divided

into two compartments: CD8 T cells that are non HIV-1 specific, z, and HIV-1

specific effector CD8 CTLs, zE. A compartment for CD4 T cells latently in-

fected with HIV-1 was not included in the mathematical model since a latent

compartment could not be reliably estimated due to there being no available
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Figure 6.1: Transfer diagram for model (6.1) that considered the CD4 T cell
and CD8 T cell natural immune response to HIV-1 infection in the plasma.

viral DNA data for the HIV-1 patients. The transfer diagram for the model is

shown in Figure 6.1.

Without the presence of HIV-1 infection in the model (xE = 0, y = 0,

v = 0, zE = 0), the number of CD4 T cells are regulated by the growth rate

of new CD4 T cells, r1, the kill rate from effector CD8 CTLs and CD4 CTLs

(due to other infections of CD4 T cells that are not HIV-1) [35, 36], c and

b respectively, and the death rate µ1. The CD8 T cells are regulated by the

growth rate, r2, which is affected by the health of both the CD4 T cell and CD8

T cell populations (CD4 T cells act as helper cells to CD8 T cell generation

and function [34]), and the natural death rate µ5.
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With the presence of HIV-1 infection, the interaction between CD4 T cells

susceptible to HIV-1 and HIV-1 replication competent viral particles is mod-

eled by the mass action terms βxv and βxEv. It is assumed that the newly

HIV-1 infected CD4 T cells will enter the productively HIV-1 infected CD4 T

cell population, and the death rate of productively HIV-1 infected CD4 T cells

is µ3. The rate replication competent viral particles are produced by HIV-1

infected CD4 T cells is p and the death rate of replication competent viral

particles is given by µ4.

The production of effector CTLs in response to HIV-1 is modeled by

yg(w), where g(w) is the HIV-1 specific effector CTL response function and

w = xE + zE is the total number of HIV-1 specific effector CTLs. Since the

time of initial HIV-1 infection for the patients is unknown, the HIV-1 specific

effector CTL response function, g(w) is assumed to have already recognized

the infiltration of HIV-1 viral particles and the HIV-1 specific effector CTL

response function reacts in two phases: induction phase and the activation-

induced cell death (AICD) phase [36]. In the induction phase, g(w) = kw, the

response function scales up the differentiation of T cells into HIV-1 specific

effector CTLs. In the AICD phase, effector CTLs are often seen to be at a

stable level before transitioning to the silencing phase. We model this stable

level in the AICD phase with g(w) = ka. The silencing phase, which brings

an end to the immune response, is brought about when the number of HIV-

1 infected CD4 T cells, y, reduces sufficiently causing production of HIV-1

specific effector CTLs yg(w) to become smaller than the death rate of HIV-1

specific effector CTLs, µ2. Upon HIV-1 specific effector CTL differentiation,

a portion of the HIV-1 specific effector CTLs are HIV-1 specific effector CD4

CTLs, δ, and the other portion are HIV-1 specific effector CD8 CTLs, (1− δ).
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An in vitro study of HIV-1 infection found that HIV-1 specific effector CD4

CTLs displayed comparable killing activity to HIV-1 specific effector CD8

CTLs, working together to kill virally infected cells [40], and, consequently, in

this model the rate HIV-1 infected CD4 T cells are killed by HIV-1 specific

effector CTLs is given by γ.

The total number of CD4 T cells are given by x(t) + xE(t) + y(t) and it is

fitted to the CD4 absolute cells/mL data. The viral particles are given by v(t)

and it is fitted to the viral load copies/mL data. The total number of CD8

T cells are given by z(t) + zE(t) and it is fitted to the CD8 absolute cells/mL

data. Using the transfer diagram, our model is described by the set of ordinary

differential equations (ODEs):

dx

dt
= r1x− µ1x− cxz − bx2 − βxv

dxE
dt

= δyg(xE + zE)− µ2xE − βxEv

dy

dt
= β(x+ xE)v − µ3y − γy(xE + zE)

dv

dt
= py − µ4v

dz

dt
= r2xz − µ5z

dzE
dt

= (1− δ)yg(xE + zE)− µ2zE,

(6.1)

where

g(w) =

⎧⎪⎪⎨⎪⎪⎩
kw, w ≤ a

ka, w > a

and w = xE + zE.

Let
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R1 = R̃x1 = R̃
1

b
(r1 − µ1), (6.2)

R2 = R̃x2 = R̃
µ5

r2
, (6.3)

R3 = R̃δµ3 − γ, (6.4)

R4 = R̃µ3 − γ, (6.5)

R5 = ka− µ2
3, (6.6)

R6 = k − R̃µ3, (6.7)

where R̃ = pβ
µ3µ4

.

The local stability of the disease-free equilibria for system 6.1 and the

basic reproduction number of system 6.1 are determined by the values of the

threshold parameters R1 (6.2) and R2 (6.3). R3 (6.4)-R6 (6.7) are suspected

thresholds for system 6.1.

System 6.1 has three possible disease-free equilibria:

P0 = (0, 0, 0, 0, 0, 0),

P1 = (x1, 0, 0, 0, 0, 0)

=
(

R1

R̃
, 0, 0, 0, 0, 0

)
,
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P2 = (x2, 0, 0, 0, z2, 0)

=
(

R2

R̃
, 0, 0, 0, b

cR̃
(R1 −R2), 0

)
.

System 6.1 also has eight possible productive equilibria:

three possible equilibria of the form

P3 = (0, xE,3, y3, v3, 0, zE,3)

= (0, xE,3, y3, v3, 0, w3 − xE,3),

=
(
0, xE,3, y3, v3, 0,

R4w3−µ3

R̃µ3

)
,

where y3 =
µ4

p
v3, xE,3 =

1

R̃

(
1 + γ

µ3
w3

)
, v3 =

µ2

(1−δ)β

(
R3w3−µ3

µ3+γw3

)
,

positive roots of the function

h3(w3) =
γ(R4)w2

3+µ3(R4−γ)w3−µ2
3

R3w3−1
−g(w3) =

⎧⎪⎪⎨⎪⎪⎩
(γR4−kR3)w2

3+(µ3(R4−γ)+k)w3−µ2
3

R3w3−1
, w4 ≤ a

γR4w2
3+(µ3(R4−γ)−kaR3)w3+R5

R3w3−1
, w4 > a

;

six possible equilibria of the form

P4 = (x4, xE,4, y4, v4, 0, zE,4)

=
(

R1

R̃
− β

b
v4, xE,4, y4, v4, 0, w4 − xE,4

)
,

where y4 =
µ4

p
v4,

xE,4 =
βµ3R̃v4+bγw4+bµ3(1−R1)

bµ3R̃
,

zE,4 =
bR4w4−βµ3R̃v4+bµ3(R1−1)

bµ3R̃
,
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solve for w4 from the following equation

−µ3β
2R̃v24 + µ3bβ(R1 − 1)v4 + bβv4g(w4)− bγβv4w4 − bµ2µ3R̃w4 = 0,

and receive

w4 =

⎧⎪⎪⎨⎪⎪⎩
βµ3(βR̃v4+b(1−R1))v4

b(β(R4+R6)v4−µ3µ2R̃)
, w4 ≤ a

β(−βR̃µ3v4+b(µ3(R1−1)+ka))v4

b(γβv4+µ2µ3R̃)
, w4 > a

,

xE,4 =
βµ3R̃v4+bγw4+bµ3(1−R1)

bµ3R̃
=

⎧⎪⎪⎨⎪⎪⎩
β2R̃kv24+β(b(1−R1)k−µ3µ2R̃2)v4−b(1−R1)µ3µ2R̃

bR̃(β(R4+R6)v4−µ3µ2R̃)
, w4 ≤ a

β(µ2µ2
3R̃

2+γbka)v4+bµ2
3µ2R̃(1−R1)

bµ3R̃(γβv4+µ2µ3R̃)
, w4 > a

,

zE,4 =
bR4w4−βµ3R̃v4+bµ3(R1−1)

bµ3R̃
=

⎧⎪⎪⎨⎪⎪⎩
−β2R̃R6v24+β(R̃2µ3µ2−b(1−R1)R6)v4+b(1−R1)µ3µ2R̃

bR̃(β(R4+R6)v4−µ3µ2R̃)
, w4 ≤ a

−β2µ2
3R̃

2v24+β(R̃bµ2
3(R1−1)+R4bka−µ2µ2

3R̃
2)v4+µ2µ2

3R̃b(R1−1)

bµ3R̃(γβv4+µ2µ3R̃)
, w4 > a

,

w4 can be put into the equation

(1− δ)µ3β
2R̃v24 + β(µ3µ2R̃ + bµ3(1− δ)(1−R1) + b(1− δ)γw4)v4

+ bµ2(µ3(1−R1)−R3w4) = 0,

and we receive

h4(v4) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− δ)β3R̃kv34 + β2(µ2R̃R6 + (1− δ)(1−R1)bk)v
2
4

+µ2β((1−R1)bR6 − µ2R̃
2µ3)v4 − µ2

2(1−R1)µ3bR̃, w4 ≤ a

µ3(1− δ)β3R̃γ(b− 1)v34 + β2(µ2µ
2
3R̃

2(b(1− δ) + δ) + (1− δ)γbka)v24

+µ2β(µ2µ
2
3R̃

2 + b(1−R1)µ
2
3R̃−R3bka)v4 + bµ2

2µ
2
3(1−R1)R̃, w4 > a
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by solving for the positive roots of the function, h4(v4), we can find v4

; and

three possible equilibria of the form

P5 = (x5, xE,5, y5, v5, z5, zE,5)

=
(

R2

R̃
, xE,5, y5, v5,

b

cR̃
(R1 −R2 − R̃β

b
v5), w5 − xE,5

)
,

=
(

R2

R̃
, xE,5, y5, v5,

b

cR̃
(R1 −R2 − R̃β

b
v5),

R4w5−µ3(1−R2)

R̃µ3

)
,

=
(

R2

R̃
, xE,5, y5, v5,

((R1−R2)b(1−δ)γ−R̃µ2R3)w5+µ3(1−R2)((R1−R2)b(1−δ)+R̃µ2)

cR̃(1−δ)(µ3(1−R2)+γw5)
, R4w5−µ3(1−R2)

R̃µ3

)
,

where y5 =
µ4

p
v5, xE,5 =

µ3(1−R2)+γw5

R̃µ3
, v5 =

µ2

(1−δ)β

(
R3w5−µ3(1−R2)
µ3(1−R2)+γw5

)
,

positive roots of the function

h5(w5) =
γR4w2

5+µ3(1−R2)(R4−γ)w5−µ2
3(1−R2)2

R3w5−µ3(1−R2)
− g(w5).

Theorem 6.1: 1. The disease-free equilibrium P0 always exists in R6
+.

2. In order for the disease-free equilibrium P1 to exist in R6
+ it is necessary

and sufficient that R1 > 0.

3. In order for the disease-free equilibrium P2 to exist in R6
+ it is necessary

and sufficient that R2 > 0 and R1 > R2.

4. In order for productive equilibria of the form P3 to exist in R6
+ it is

necessary that R3 > 0 and R4 > 0.
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5. In order for productive equilibria of the form P4 to exist in R6
+ it is

necessary that R1 > 1, or R4 > 0 and 0 < R1 < 1.

6. In order for productive equilibria of the form P5 to exist in R6
+ it is

necessary that

R1 > R2 and one of the following conditions holds:

(a) R2 > 1 and R3 < 0

(b) R2 > 1, R3 > 0, and (R1 −R2)b(1− δ)γ − R̃µ2R3 > 0

(c) 0 < R2 < 1, R3 > 0, and R4 > 0.

Proof. P0 is the origin and always exists in R6
+.

The coordinates xE,1, y1, v1, z1, zE,1 of P1 are zero. Thus, P1 exists in R6
+ if

and only if x1 > 0 ⇐⇒ R1 > 0.

The coordinates xE,2, y2, v2, zE,2 of P2 are zero. Hence, P2 exists in R6
+ if

and only if x2, z2 > 0 ⇐⇒ R2 > 0 and R1 > R2.

The coordinates x3 and z3 of P3 are zero. Productive equilibria of the form

P3 exist in R6
+ if and only if xE,3, y3, v3, zE,3 = w3 − xE,3 > 0.

Suppose xE,3, y3, v3, zE,3 = w3 − xE,3 > 0.

Consequently, v3 > 0 ⇐⇒ R3w3 − µ3 > 0.

Assume R3 > 0. Then R3w3 > µ3 ⇐⇒ w3 >
µ3

R3
.

Assume R3 < 0. Then R3w3 > µ3 ⇐⇒ w3 <
µ3

R3
, which is a contradiction
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since w3 > 0.

Thus, R3 > 0.

As y3 =
µ4

p
v3, then y3 > 0 ⇐⇒ R3 > 0.

Also, zE,3 > 0 ⇐⇒ R4w3 − µ3 > 0.

Assume R4 > 0. Then R4w3 > µ3 ⇐⇒ w3 >
µ3

R4
.

Assume R4 < 0. Then R4w3 > µ3 ⇐⇒ w3 <
µ3

R4
, which is a contradiction

since w3 > 0.

Hence, R4 > 0.

The coordinate xE,3 =
1

R̃

(
1 + γ

µ3
w3

)
is greater than zero.

From equation h3(w3), w3 ̸= 1
R3
. Since w3 >

µ3

R3
from v3 > 0, w3 will be greater

than 1
R3
.

The coordinate z4 of P4 is zero. Productive equilibria of the form P4 exist

in R6
+ if and only if x4, xE,4, y4, v4, zE,4 = w4 − xE,4 > 0.

Suppose x4, xE,4, y4, v4, zE,4 = w4 − xE,4 > 0.

Consequently, x4 > 0 ⇐⇒ R1

R̃
> β

b
v4 > 0, which implies that R1 > 0.

Now, zE,4 > 0 ⇐⇒ bR4w4 + bµ3(R1 − 1) > βµ3R̃v4 > 0, which implies that

bR4w4 + bµ3(R1 − 1) > 0. The inequality, bR4w4 + bµ3(R1 − 1) > 0, has a

solution provided that R1 > 1, or R4 > 0 and R1 < 1.

Productive equilibria of the form P5 exist in R6
+ if and only if all of the
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coordinates in P5 are greater than zero.

Suppose x5, xE,5, y5, v5, z5, zE,5 = w5 − xE,5 > 0.

Consequently, x5 > 0 ⇐⇒ R2 > 0.

Now, zE,5 > 0, xE,5 > 0, and v5 > 0 if and only if

R4w5 − µ3(1−R2) > 0,

µ3(1−R2) + γw5 > 0,

and R3w5 − µ3(1−R2) > 0.

Using the three above inequalities, the solution for w5 using assumptions on

R3, R4, and R2 are the following:

1. R3 > 0, R4 > 0, and R2 > 1

(a) solution is w5 > −µ3(1−R2)
γ

> 0

2. R3 > 0, R4 > 0, and R2 < 1

(a) solution is w5 >
µ3(1−R2)

R3
> 0

3. R3 > 0, R4 < 0, and R2 > 1

(a) solution is 0 < −µ3(1−R2)
γ

< w5 <
µ3(1−R2)

R4

4. R3 > 0, R4 < 0, and R2 < 1

(a) w5 <
µ3(1−R2)

R4
< 0 is a contradiction since w5 > 0
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5. R3 < 0, R4 > 0, and R2 > 1

(a) solution is 0 < −µ3(1−R2)
γ

< w5 <
µ3(1−R2)

R3

6. R3 < 0, R4 > 0, and R2 < 1

(a) w5 <
µ3(1−R2)

R3
< 0 is a contradiction since w5 > 0

7. R3 < 0, R4 < 0, and R2 > 1

(a) solution is 0 < −µ3(1−R2)
γ

< w5 <
µ3(1−R2)

R3

8. R3 < 0, R4 < 0, and R2 < 1

(a) w5 <
µ3(1−R2)

R4
< µ3(1−R2)

R3
< 0 is a contradiction since w5 > 0

The three inequalities are satisfied provided that

R2 > 1 or

R3 > 0, R4 > 0, and R2 < 1.

Therefore, zE,5 > 0, xE,5 > 0, and v5 > 0 if and only if

R2 > 1 or

R3 > 0, R4 > 0, and R2 < 1.

Since v5 > 0, then y5 =
µ4

p
v5 > 0.

Now, z5 =
b

cR̃
(R1 −R2 − R̃β

b
v5) > 0 ⇐⇒ R1 −R2 >

R̃β
b
v5 > 0 ⇒ R1 > R2.

Also, z5 =
((R1−R2)b(1−δ)γ−R̃µ2R3)w5+µ3(1−R2)((R1−R2)b(1−δ)+R̃µ2)

cR̃(1−δ)(µ3(1−R2)+γw5)
.
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We know that µ3(1 − R2) + γw5 > 0 from xE,5 > 0, and that R1 − R2 > 0.

Then z5 > 0 ⇐⇒

((R1 −R2)b(1− δ)γ − R̃µ2R3)w5 + µ3(1−R2)((R1 −R2)b(1− δ) + R̃µ2) > 0.

This inequality has a solution, and hence z5 > 0, provided that one of the

following conditions holds:

1. R2 > 1, R3 > 0, and (R1 −R2)b(1− δ)γ − R̃µ2R3 > 0

2. R2 > 1, R3 < 0

3. R2 < 1, R3 > 0

From equation h5(w5), w5 ̸= µ3(1−R2)
R3

. Since w5 >
µ3(1−R2)

R3
from v5 > 0, w5

will be greater than µ3(1−R2)
R3

.

Equilibria existence conditions of system 6.1 are summarized in Theorem

6.1. At equilibrium P0 all the populations are zero. At equilibrium P1 the viral

infection is gone, but the CD8 T cells are depleted to zero. At equilibrium P2

the CD4 T cells and CD8 T cells are healthy. At equilibria of the form P3, the

viral infection is chronic and both the CD4 T cell and CD8 T cell populations

that are non HIV-1 specific have been eliminated. At equilibria of the form

P4, the viral infection is chronic with the CD8 T cells that are non HIV-1 spe-

cific having been eliminated. At equilibria of the form P5, the viral infection

is chronic and all populations are nonzero. Equilibrium P2 and equilibria of

the form P5 correspond to potential survival states for untreated viral infection.
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The local stability analysis of the disease-free equilibria of system (6.1) is

located in Section 7.A.

Let

F =

⎡⎢⎣0 βxDFE

0 0

⎤⎥⎦ and V =

⎡⎢⎣µ3 0

−p µ4

⎤⎥⎦ ,
where xDFE is equal to x0, x1, or x2 from the disease-free equilibria P0, P1, P2.

Then

FV −1 =

⎡⎢⎣pβxDFE
µ3µ4

βxDFE
µ4

0 0

⎤⎥⎦ . (6.8)

Using the next generation matrix method in [97, 98], the basic reproduction

number is given by the spectral radius of the matrix FV −1:

R0 = ρ(FV −1) = max{0, R̃xDFE} = max{0, R1, R2}. (6.9)

6.C Numerical investigation using HIV-1 pa-

tient data from the Northern Alberta HIV

Program

6.C.1 Definition of an Elite Controller

A literature review study from 2014, evaluated the definitions used for an Elite

Controller and determined that there were four definitions that best identified

this phenotype (all definitions require that the patient is AIDS-free and ART-
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näıve) [42]:

(Definition A) HIV-1 positive ≥ 6 months, with ≥ 2 consecutive HIV-1 RNA

< 75 copies/ml

(Definition E) HIV-1 positive ≥ 1 year, with ≥ 3 consecutive HIV-1 RNA <

75 copies/ml spanning ≥ 12 months

(Definition F) HIV-1 positive ≥ 1 year, with ≥ 3 consecutive HIV-1 RNA <

75 copies/ml spanning ≥ 12 months with no previous blips ≥ 1000 copies/ml

(Definition J) HIV-1 positive ≥ 10 years, with 90% of HIV-1 RNA (≥ 2 HIV-1

RNA ever) < 400 copies/ml.

(Definition F implies definition E and definition E implies definition A).

In this study, a patient is considered an Elite Controller if at least one

of the definitions A, E, F, or J applies for that patient’s laboratory data.

Otherwise, a patient is not considered an Elite Controller and that patient is

in the comparison group.

6.C.2 Data and parameter estimates

The historical HIV-1 patient data used in this study came from the Northern

Alberta HIV Program (NAP) in Canada. The data extraction request was to

identify patients in the NAP who had laboratory tests taken during an ART-
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näıve time period. Given this data request, data for thirty HIV-1 patients

was received from the NAP. Sixteen of these patients had an ART-näıve time

period with usable data for fitting a mathematical model, and these sixteen

patients will comprise the group of HIV-1 patients that are the focus of this

study. The HIV-1 group data used in this study is listed in Table 6.2. A

detailed list of the data is located in Table 7.1 in Section 7.B. There were

nine patients that met the criteria for an Elite Controller by at least one of

the definitions A, E, F, J from the 2014 literature review study [42]: patient

numbers 1 (met definitions A, E, and F), 6 (met definitions A and E), 14 (met

definition A), 16 (met definitions A, E, F, and J), 17 (met definitions A, E, and

F), 18 (met definitions A, E, and F), 24 (met definitions A and E), 25 (met

definitions A, E, and F), and 28 (met definitions A, E, and F). There were

seven patients that did not qualify as Elite Controllers based on the definitions

from the 2014 literature review study [42] and these patients comprised the

comparison group used in this study: patient numbers 2, 7, 10, 11, 12, 21,

and 23. There were two extraction dates. The initial data extraction was

received on August 30, 2019. The mathematical model (6.1) was fit to this

initial extraction data. The second data extraction was received on January

24, 2023 and its purpose was to obtain any other viral load, CD4 absolute,

and CD4/CD8 ratio measurements for HIV-1 patients that had still not taken

cART. The mathematical model (6.1) fitted to the initially extracted data

was projected forward and the second data extraction was used to validate the

model.

The units of the viral load were measured in copies/mL. The units of CD4

absolute were measured in cells/mm3. The CD4/CD8 ratio was used to convert

the CD4 absolute cells/mm3 measurement to CD8 absolute cells/mm3. The
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conversion 1 mL = 1000 mm3 was used to convert the CD4 absolute cells/mm3

and CD8 absolute cells/mm3 measurements to CD4 absolute cells/mL and

CD8 absolute cells/mL.

The clinical and demographic features of the HIV-1 group used in this

study are listed in Table 6.1. Continuous variables were reported as the mean

and standard deviation. The categorical variable was reported with counts and

percentages. The Wilcoxon-Mann-Whitney test was used to compare the me-

dians of the two populations for the continuous variables and Fisher’s exact test

was used to compare the proportions of the two populations for the categorical

variable. The female:male ratio was comparable in the HIV-1 Elite Controller

patient group (4:5) and the comparison patient group (4:3), as was the duration

of recorded HIV-1 from the seropositive date to the last time an ART-näıve

laboratory test was collected (12.14 ± 4.24 yr, Elite Controller; 9.91 ± 3.99

yr, comparison group) and the CD4 absolute count (6.65 × 105 ± 2.31 × 105

cells/mL, Elite Controller; 7.07×105±1.81×105 cells/mL, comparison group).

The patients in the Elite Controller group were older (53.56± 10.04 yr) than

the comparison group (41.28± 8.64 yr) (P<0.05). Also, the patients in the

Table 6.1: Clinical and demographic features for the NAP HIV-1 patients

Variables HIV-1 Elite Controllers

(n=9)

HIV-1 Comparison Group

(n=7)

P-value

Age from birth date to last

ART-näıve time collected (yr)

53.56 (10.04) 41.28 (8.64) 0.0283

Gender: NS

Female 4 (44.44%) 4 (57.14%)

Male 5 (55.56%) 3 (42.86%)
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Duration of recorded HIV-1

from seropositive date to last

ART-näıve time collected (yr)

12.14 (4.24) 9.91 (3.99)∗ NS

CD4 absolute (cells/mL) 6.65× 105 (2.31× 105) 7.07× 105 (1.81× 105) NS

CD8 absolute (cells/mL) 6.42× 105 (3.10× 105) 1.05× 106 (5.06× 105) < 0.0001

CD4/CD8 ratio 1.28 (0.691) 0.788 (0.319) < 0.0001

Data are mean (SD) or number (percentage). Wilcoxon-Mann-Whitney test was used to

compare the medians of the two populations for the continuous variables. Fisher’s exact

test was used to compare the proportions of the two populations for the categorical

variable. The α level was 0.05 for the statistical tests.

∗ The seropositive date was not available for Patient 7. Consequently, the first time

collected was used in place of the seropositive date when calculating the duration of

recorded HIV-1 for this patient.

Elite Controller group had a higher CD4/CD8 ratio (1.28 ± 0.691) than the

comparison group (0.788 ± 0.319) (P<0.05). The patients in the comparison

group had a higher CD8 absolute count (1.05×106±5.06×105 cells/mL) than

the Elite Controller group (6.42 × 105 ± 3.10 × 105 cells/mL) (P<0.05). The

range of CD4 absolute and CD8 absolute for a healthy individual is 5 × 105

to 1.2 × 106 cells/ml and 1.5 × 105 to 1 × 106 cells/ml, respectively, and a

healthy individual generally has a CD4/CD8 ratio greater than 1.0 [120]. The

mean CD4 absolute count for both the Elite Controller (6.65× 105 cells/mL)

and comparison group (7.07 × 105 cells/mL) was within the healthy range

of 5 × 105 to 1.2 × 106 cells/ml. The mean CD8 absolute count for the Elite

Controller group (6.42×105 cells/mL) was within the healthy range of 1.5×105

to 1×106 cells/ml, however the mean CD8 absolute count was slightly outside

the healthy range for the comparison group (1.05× 106 cells/mL). The mean
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CD4/CD8 ratio was greater than 1.0 for the Elite Controller group (1.28), but

the mean CD4/CD8 ratio was below 1.0 for the comparison group (0.788).

Uniform or loguniform prior distributions were specified for the parameters

in model (6.1) since there is a general range for these parameters given in the

literature. The prior distributions are listed in Section 7.C.

The model parameters were estimated by fitting system (6.1) simultane-

ously to the viral load, CD4 absolute, and CD8 absolute initial extraction data

for each patient in Table 6.2. Since the HIV-1 patient data as visualized in

Sections 7.D.6 and 7.D.7 display a variety of patterns and scatter around the

trends, a Gaussian distribution with non-constant variance over time is chosen

to describe each of the datasets for every patient. As this HIV-1 patient data

can still be considered count data, which is most likely overdispersed (variance

of the data is larger than the mean of the data), the non-constant variance over

time in the Gaussian distribution is described by a constant multiplied by the

mean. The probability model describing these datasets is given by equation

(7.4) and the likelihood function is given by equation (7.5). The estimated pa-

rameter values for system (6.1) for each patient are listed in Sections 7.D.4 and

7.D.5 and the fit of system (6.1) to each patient is visualized in Sections 7.D.6

and 7.D.7. Figure 6.3 displays the prediction for the HIV-1 Elite Controllers.

The method of Bayesian inference was used for fitting system simultaneously

to the three datasets for each patient and this method is described in Section

7.D.

A pooled estimate of the parameter values for system (6.1) for the HIV-1

Elite Controller group and HIV-1 comparison group is located in Table 6.3.

Table 6.3 also contains the probability that an Elite Controller group param-

eter is greater than a comparison group parameter, P
(
θECi > θCi

)
. These
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Table 6.2: NAP HIV-1 patient data

Patient number Elite Controller

status

Viral load

(No. obs.)

CD4 absolute

(No. obs.)

CD8 absolute

(No. obs.)

1 Yes 7 7 7

6 Yes 13 15 9

14 Yes 15 (+ 2)* 16 (+ 2)* 16 (+ 2)*

16 Yes 21 (+ 2)* 21 (+ 5)* 21 (+ 5)*

17 Yes 9 (+ 1)* 8 (+ 1)* 8 (+ 1)*

18 Yes 7 7 7

24 Yes 30 28 28

25 Yes 8 (+ 6)* 8 (+ 6)* 8 (+ 6)*

28 Yes 9 (+ 1)* 9 (+ 1)* 9 (+ 1)*

2 No 11 10 10

7 No 29 (+ 7)* 29 (+ 7)* 28 (+ 7)*

10 No 14 16 16

11 No 30 31 31

12 No 19 18 16

21 No 6 5 5

23 No 31 32 32

∗ The additional patient observations received from the second data extraction.

probabilities provide the following information about the parameter differ-

ences between the Elite Controller group and the comparison group: there is

a 71.10% chance that the growth rate of new CD4 T cells, r1, is greater for

the comparison group than for the Elite Controller group; there is a 72.00%

chance that the stable level in the HIV-1 specific effector CTL response func-
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tion, g(E) = ka, is higher for the Elite Controller group than for the com-

parison group; there is a 63.50% chance that the number of HIV-1 specific

effector CTLs, a, at which the response function switches to a maximum rate

is larger for the comparison group than for the Elite Controller group; there is

a 63.10% chance that the death rate of productively infected CD4 T cells, µ3,

is faster for the Elite Controller group than for the comparison group; there

is a 73.80% chance that the rate infected CD4 T cells are killed by effector

CTLs, γ, is greater for the Elite Controller group than for the comparison

group; and there is a 65.90% chance that the death rate of the general popula-

tion of CD8 T cells that are non-HIV-1 specific, µ5, is more rapid for the Elite

Controller group than for the comparison group. The probabilities also indi-

cate the following parameter similarities between the Elite Controller group

and the comparison group: the death rate of total CD4 T cells, µ1; kill rate

of CD4 T cells by effector CD8 CTLs due to other infections, c; kill rate of

CD4 T cells by effector CD4 CTLs due to other infections, b; transmission

rate of HIV-1 to CD4 T cells, β; portion of generated HIV-1 specific effector

CTLs that are HIV-1 specific effector CD4 CTLs, δ; death rate of effector

CTLs, µ2; rate replication competent viral particles were produced by HIV-1

infected CD4 T cells, p; death rate of HIV-1 replication competent viral par-

ticles, µ4; and growth rate of new CD8 T cells, r2. Figure 6.2 displays the

model parameter estimates with the median as the point estimate and 95%

credible intervals for each of the patients along with the pooled parameter

estimates and probabilities P
(
θECi > θCi

)
. Overall the estimated parameter

values in Table 6.3 and those estimated for the HIV-1 Elite Controller trans-

plant patient study are consistent [56]. The HIV-1 Elite Controller transplant

patient study does have an estimated rate replication competent viral parti-
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cles were produced by HIV-1 infected CD4 T cells (p), 7.3 × 106 per year,

that is larger than the pooled estimated p from either the Elite Controller

group, 1.51× 104 (1.17× 103, 1.76× 105), or the comparison group, 7.04× 103

(1.00 × 103, 1.24 × 106). Also, the HIV-1 Elite Controller transplant patient

study has an estimated death rate of productively infected CD4 T cells (µ3),

328.5 per year, that is larger than the pooled estimated µ3 from either the

Elite Controller group, 1.89 × 102 (4.47 × 101, 3.19 × 102), or the comparison

group, 1.49× 102 (2.81× 101, 2.87× 102).

Table 6.3: Pooled parameter estimates with the median as the point
estimate and 95% credible intervals for the HIV-1 Elite Controller group and
the HIV-1 comparison group (the last column displays the probability that
the Elite Controller group parameter in that row is greater than the
comparison group parameter in that row)

Symbol Parameter Elite Controller group

estimate (95% credible

interval)

Comparison group estimate

(95% credible interval)

Unit P
(
θECi > θCi

)

r1 Growth rate of

new CD4 T

cells

1.38× 102

(1.84× 101, 7.35× 102)

5.80× 102 (8.26, 1.32× 103) per year 0.289

µ1 Death rate of

total CD4 T

cells

1.46× 101 (4.09, 5.44× 101) 2.32× 101

(2.67× 10−1, 4.92× 101)

per year 0.461
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c Kill rate of

CD4 T cells

by effector

CD8 CTLs

due to other

infections

1.89× 10−4

(4.07× 10−6, 7.65× 10−4)

3.47× 10−4

(6.82× 10−6, 9.61× 10−4)

mL per

year

0.386

b Kill rate of

CD4 T cells

by effector

CD4 CTLs

due to other

infections

3.48× 10−6

(1.03× 10−15, 2.39× 10−5)

3.39× 10−6

(1.12× 10−14, 2.22× 10−4)

mL per

year

0.421

β Transmission

rate of HIV-1

to CD4 T cells

2.05× 10−4

(1.10× 10−5, 1.23× 10−2)

2.32× 10−4

(3.74× 10−6, 2.74× 10−3)

mL per

year

0.583

δ Portion of

generated

HIV-1 specific

effector CTLs

that are HIV-1

specific

effector CD4

CTLs

2.37× 10−1

(1.31× 10−2, 4.85× 10−1)

2.74× 10−1

(1.48× 10−2, 4.77× 10−1)

- 0.459
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ka Maximum

proliferation

rate of the

HIV-1 specific

effector CTL

response

1.52× 102 (1.88, 8.53× 102) 7.76× 101 (4.23, 7.69× 102) per year 0.72

a Number of

HIV-1 specific

effector CTLs

at which the

proliferation

switches to a

maximum rate

3.04× 10−1

(1.01× 10−4, 2.37× 103)

1.34× 101

(1.31× 10−4, 1.22× 104)

per mL 0.365

µ2 Death rate of

effector CTLs

8.11× 101

(5.32× 101, 9.99× 101)

8.41× 101

(5.83× 101, 1.00× 102)

per year 0.493

µ3 Death rate of

productively

infected CD4

T cells

1.89× 102

(4.47× 101, 3.19× 102)

1.49× 102

(2.81× 101, 2.87× 102)

per year 0.631

γ Rate infected

CD4 T cells

are killed by

effector CTLs

9.82 (3.98× 10−2, 5.47× 101) 2.24× 10−1

(1.71× 10−2, 6.26× 101)

mL per

year

0.738
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p Rate

replication

competent

viral particles

were produced

by HIV-1

infected CD4

T cells

1.51× 104

(1.17× 103, 1.76× 105)

7.04× 103

(1.00× 103, 1.24× 106)

per year 0.435

µ4 Death rate of

HIV-1

replication

competent

viral particles

6.23× 103

(1.71× 103, 9.96× 103)

4.61× 103

(1.31× 103, 9.62× 103)

per year 0.568

r2 Growth rate of

new CD8 T

cells

9.83× 10−5

(1.94× 10−5, 1.77× 10−4)

7.36× 10−5

(4.23× 10−5, 1.17× 10−4)

mL per

year

0.593

µ5 Death rate of

total CD8 T

cells

6.15× 101

(1.50× 101, 8.18× 101)

5.11× 101

(2.28× 101, 7.09× 101)

per year 0.659

6.C.3 Natural immune response to HIV-1 in the plasma

The figures from Sections 7.D.6 and 7.D.7 display the mean model predictions

and 95% prediction intervals of the progression of untreated HIV-1 in the

plasma. Panel (a)-(c) show the fitted data (circle points) and if available

unfitted data (star points) for the total CD4 T cells/ml, total CD8 T cells/ml,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 6.2: Model parameter estimates with the median as the point estimate (blue squares, Elite Controller patients;
blue diamond, Elite Controller group pooled; red squares, comparison group patients; red diamond, comparison group
pooled), 95% credible intervals (black squares), and P is the probability that the Elite Controller group parameter is greater
than the comparison group parameter, P

(
θECi > θCi

)
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Figure 6.3: Prediction of HIV-1 infection in the plasma for Elite Controllers: row (a)-(c) Patient 14; row (d)-(f) Patient 16; row
(g)-(i) Patient 17; row (j)-(l) Patient 25; row (m)-(o) Patient 28; column (a)-(m) total CD4 T cells/ml; column (b)-(n) total CD8 T
cells/ml; column (c)-(o) viral copies/ml. Predictive mean solution (solid black curve), 95% prediction interval (dashed black curves),
fitted data (circle points), unfitted data (star points), viral load below detection (black points).
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and viral copies/ml, respectively. The CD4 T cell populations are shown

in panels (d)-(f). The CD8 T cell populations are shown in panels (g) and

(h). The effector response function over time is displayed in panel (i) and

the effector response function over the number of effector CTLs is presented in

panel (j). Further details about the completion of these predictions are located

in Section 7.D.

Figure 6.3 displays the prediction for the HIV-1 Elite Controllers. It is

seen in Figure 6.3 that the second data extraction (star points) for the Elite

Controllers lie within the 95% prediction intervals, with the exception of the

two total CD4 T cells/ml points for Patient 14. In Figure 7.27, the second

data extraction (star points) for Patient 7 (which was the only comparison

patient that had additional viral load, CD4 absolute, and CD4/CD8 ratio

measurements in the second extraction) was also contained within the 95%

prediction intervals, except for one total CD8 T cells/ml point.

The estimated values of the parameters, R1, R2, and R3 for each patient

are presented in Table 6.4. All patients have an estimated R1 > 1, R3 < 0, and

R4 < 0. All patients, except for Patient 6, always have an estimated R1 > R2.

All patients, except for Patient 11, have an estimated R2 > 1. Thus, for the

majority of patient models, disease-free equilibriums P0, P1, P2 exist (Theorem

6.1) and are unstable (Theorem 7.1) in R6
+. Also, for the majority of patient

models, the necessary criteria for the existence of productive equilibria of the

form P4 and P5 is satisfied (Theorem 6.1), though this does not fully guarantee

their existence. For Patient 6, there is a slight overlap of R2 with the lower

bound of R1 such that there is a small possibility that R2 > R1 instead of

R1 > R2; in this situation, the disease-free equilibriums P0, P1 exist, the

disease-free equilibrium P2 may or may not exist, the necessary criteria for
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productive equilibria of the form P4 to exist is satisfied, and the necessary

criteria for productive equilibria of the form P5 to exist may or may not be

satisfied (Theorem 6.1), and disease-free equilibriums P0, P1 are unstable, with

the disease-free equilibrium P2 being unstable if it exists (Theorem 7.1). For

Patient 11, the estimated R2 value is slightly less than 1, which indicates

that the disease-free equilibriums P0, P1, P2 exist, the necessary criteria for

productive equilibria of the form P4 to exist is satisfied, P5 does not exist

(Theorem 6.1), and disease-free equilibriums P0, P1 are unstable while the

disease-free equilibrium P2 is locally asymptotically stable (Theorem 7.1). This

evidence supports that Patient 11 is on course to achieving productive control

of HIV-1 infection in the plasma leading to the disease-free equilibrium, P2,

where there is no productive infection, no HIV-1 specific effector CTLs, and

CD4 T cells and CD8 T cells are healthy. (Since latently HIV-1 infected cells

are not included in the model, it cannot be suggested that Patient 11 is on

course for a complete eradication of HIV-1 in the plasma.) Figure 7.29 displays

Patient 11’s plausible trajectory to productive control of HIV-1 infection in

the plasma.

Table 6.4: Estimated values of the threshold parameters, R1, R2, R3, and
R4 for each patient with the median as the point estimate and 95% credible
intervals

Patient

number

Elite

Controller

status

R1 R2 R3 R4

1 Yes 1.67× 107 (1.92×

101, 3.71× 1011)

9.75

(9.06, 1.01× 101)

−1.17× 101

(−6.40×

101,−5.49×10−2)

−1.17× 101

(−6.40×

101,−5.40×10−2)
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6 Yes 5.13× 104 (3.01×

101, 6.03× 1011)

3.18× 101 (3.02×

101, 3.30× 101)

−1.22 (−1.47×

101,−2.09×10−2)

−1.22 (−1.47×

101,−1.57×10−2)

14 Yes 1.21× 102 (2.44×

101, 3.34× 102)

2.23 (2.22, 2.39) −7.06× 10−1

(−3.54,−5.85×

10−1)

−7.06× 10−1

(−3.54,−5.85×

10−1)

16 Yes 9.13× 102

(6.71, 1.49× 1010)

1.39 (1.30, 1.66) −5.18 (−4.09×

101,−1.61×10−1)

−5.18 (−4.09×

101,−1.61×10−1)

17 Yes 1.76× 101 (1.11×

101, 2.05× 101)

7.58 (6.27, 8.36) −2.42× 101

(−5.75×

101,−1.76× 101)

−2.42× 101

(−5.75×

101,−1.76× 101)

18 Yes 7.23× 101 (7.22×

101, 7.39× 101)

1.44 (1.44, 1.44) −3.89× 101

(−3.89×

101,−3.89× 101)

−3.89× 101

(−3.89×

101,−3.89× 101)

24 Yes 1.32× 107 (6.63×

102, 5.52× 109)

1.00 (1.00, 1.00) −8.69× 10−1

(−9.91×

10−1,−7.64×

10−1)

−8.69× 10−1

(−9.91×

10−1,−7.64×

10−1)

25 Yes 9.84× 101 (1.02×

101, 1.31× 103)

8.01 (7.63, 8.64) −2.26× 101

(−6.37×

101,−3.55×10−1)

−2.26× 101

(−6.37×

101,−3.53×10−1)

28 Yes 5.19× 107 (1.97×

101, 3.14× 1011)

4.61 (3.99, 5.06) −2.25× 101

(−8.89×

101,−1.14×10−2)

−2.25× 101

(−8.89×

101,−1.08×10−2)

2 No 5.02× 106

(5.89, 3.27× 1010)

3.32 (2.78, 3.34) −2.64× 10−1

(−3.47,−1.26×

10−2)

−2.64× 10−1

(−3.47,−1.20×

10−2)
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7 No 1.71× 105 (3.99×

102, 1.69× 1013)

8.20× 101 (7.88×

101, 8.36× 101)

−2.36 (−5.46×

101,−1.12×10−2)

−2.35 (−5.46×

101,−5.70×10−3)

10 No 1.61× 101

(7.31, 2.35× 102)

1.82 (1.67, 1.97) −1.18× 10−1

(−1.18,−1.70×

10−2)

−1.18× 10−1

(−1.17,−1.67×

10−2)

11 No 4.87 (3.58, 7.56) 9.88× 10−1

(9.83×

10−1, 9.94× 10−1)

−2.38× 10−2

(−4.40×

10−2,−1.03×

10−2)

−2.37× 10−2

(−4.40×

10−2,−1.03×

10−2)

12 No 4.51× 103 (1.54×

101, 4.86× 103)

2.31 (2.28, 2.31) −3.83× 10−2

(−3.35,−3.81×

10−2)

−3.77× 10−2

(−3.35,−3.77×

10−2)

21 No 5.01× 105 (2.11×

101, 7.12× 1011)

7.05 (6.26, 7.95) −1.41× 10−1

(−1.16×

101,−4.17×10−2)

−1.39× 10−1

(−1.16×

101,−4.07×10−2)

23 No 2.24× 101 (2.24×

101, 2.30× 101)

3.09 (3.09, 3.10) −6.26× 101

(−6.26×

101,−6.26× 101)

−6.26× 101

(−6.26×

101,−6.26× 101)

The figures from Sections 7.F.1 and 7.F.2 display the global sensitivity

analysis completed for each patient model in order to determine the most im-

portant model parameters explaining the total CD4 T cell, total CD8 T cell,

and viral load behavior. Panel (a)-(c) show the mean total-order sensitivity

index for each parameter along with +/- 2 standard deviations for the total

CD4 T cell, total CD8 T cell, and viral load. The symbol ∗ indicates pa-

rameters with significant total-order sensitivity index values. The total-order
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sensitivity index is the total contribution, main effect and any interactions, of

a parameter to the sensitivity outcome of interest. Further information about

the completion of the global sensitivity analysis can be found in Section 7.E.

The most important model parameters explaining the total CD4 T cell

behavior for the Elite Controller group were the growth rate of new CD8 T cells

(r2) and the death rate of total CD8 T cells (µ5) with certain Elite Controller

patients having importance for the growth rate of new CD4 T cells (r1) and

the death rate of total CD4 T cells (µ1). This indicates that the observed

total CD4 T cell behavior for the Elite Controller group is greatly affected

by the population of CD8 T cells that are non HIV-1 specific. Similarly, the

most important model parameters explaining the total CD4 T cell behavior

for the comparison group were the death rate of total CD8 T cells (µ5) and

the growth rate of new CD8 T cells (r2). Additionally, the transmission rate

of HIV-1 to CD4 T cells (β) and rate HIV-1 infected CD4 T cells are killed

by effector CTLs (γ) were also important in explaining the total CD4 T cell

behavior for certain comparison group patients, which indicates that HIV-1

infection effects the observed total CD4 T cell behavior for certain comparison

group patients.

The most important model parameters explaining the total CD8 T cell

behavior for the Elite Controller group were the kill rate of CD4 T cells by

effector CD8 CTLs due to other infections (c), the growth rate of new CD4

T cells (r1), and the death rate of total CD4 T cells (µ1), and certain Elite

Controller patients also had the kill rate of CD4 T cells by effector CD4 CTLs

due to other infections (b) and the death rate of total CD8 T cells (µ5) as

important. This implies that the observed total CD8 T cell behavior for the

Elite Controller group is greatly affected by the population of CD4 T cells

162



not infected with HIV-1 and the natural killing of other infections that are

not HIV-1 by effector CTLs. Similarly, the most important model parameters

explaining the total CD8 T cell behavior for the comparison group were the kill

rate of CD4 T cells by effector CD8 CTLs due to other infections (c) and the

growth rate of new CD4 T cells (r1), and certain comparison group patients

also have the kill rate of CD4 T cells by effector CD4 CTLs due to other

infections (b) and the death rate of total CD4 T cells (µ1) as important. In

contrast, the transmission rate of HIV-1 to CD4 T cells (β), rate HIV-1 infected

CD4 T cells are killed by effector CTLs (γ), and death rate of HIV-1 replication

competent viral particles (µ4) were also important in explaining the total CD4

T cell behavior for certain comparison group patients, which indicates that

HIV-1 infection also effects the observed total CD8 T cell behavior for certain

comparison group patients.

The most important model parameters explaining the viral load behavior

for the Elite Controller group were the transmission rate of HIV-1 to CD4 T

cells (β), rate HIV-1 infected CD4 T cells are killed by effector CTLs (γ), rate

replication competent viral particles were produced by HIV-1 infected CD4

T cells (p), death rate of HIV-1 replication competent viral particles (µ4),

and maximum proliferation rate of the HIV-1 specific effector CTL response

ka. In a similar way, the most important model parameters explaining the

viral load behavior for the comparison group were the death rate of HIV-

1 replication competent viral particles (µ4), transmission rate of HIV-1 to

CD4 T cells (β), and rate HIV-1 infected CD4 T cells are killed by effector

CTLs (γ), and certain comparison group patients also had the rate replication

competent viral particles were produced by HIV-1 infected CD4 T cells (p) and

the maximum proliferation rate of the HIV-1 specific effector CTL response
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(ka) as important.

6.D Discussion

This mathematical model reproduces and predicts HIV-1 plasma infection with

natural immune responses. This is the first mathematical modeling study to

precisely estimate the differences between a group of HIV-1 Elite Controllers

and a comparison group of HIV-1 patients using empiric data and it is also

the first HIV-1 mathematical model to consider both effector CD4 CTLs’ and

effector CD8 CTLs’ impact on HIV-1 disease and other diseases present in

each patient. The response function used for the HIV-1 specific effector CTLs

has a biological interpretation based on the phases of antiviral CTL response

and it was found that this response function was important for explaining the

observed viral load behavior for the HIV-1 patients in this study. The Elite

Controller immune response estimates given in this study quantifies a biologi-

cally realistic optimal immune response goal for HIV-1 therapeutic initiatives.

These biologically realistic estimates can be compared to what current HIV-1

therapies are providing and elucidate gaps where potential improvements can

be made to bring HIV-1 patients closer to an Elite Controller type outcome.

The Elite Controller group was found to have a stronger antiviral immune

response than the comparison group. Specifically, the pooled estimate of the

parameter values for the Elite Controller group indicated that the HIV-1 spe-

cific effector CTL response was more effective (the slope of the response func-

tion was larger and had a higher stable level) than the comparison group.

Also, the pooled estimate of the parameter values for the Elite Controller

group revealed that the death rate of productively HIV-1 infected CD4 T cells
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was faster (possibly due to a more effective programmed cell death of HIV-1

infected CD4 T cells [121]) and the rate HIV-1 infected CD4 T cells are killed

by effector CTLs is greater than the comparison group. The sensitivity anal-

ysis further implied the strong natural control of HIV-1 infection of the Elite

Controller group by indicating that the observed total CD4 T cell and total

CD8 T cell behavior was mainly being explained by immune responses due to

other infections and hardly influenced by HIV-1 infection.

In contrast, the comparison group was found to have more chronic immune

activation but a less effective immune response. More precisely, the pooled

estimate of the parameter values for the comparison group showed that the

growth rate of new CD4 T cells and the death rate of the general population

of CD8 T cells was more rapid than the Elite Controller group, but the HIV-1

specific effector CTL response, the rate HIV-1 infected CD4 T cells are killed

by effector CTLs, and the death rate of productively HIV-1 infected CD4 T

cells were all slower than the Elite Controller group. The sensitivity analysis

provided further evidence that the immune response of the comparison group

was functioning in a less effective manner since the observed total CD4 T cell

and total CD8 T cell behavior was being notably influenced by HIV-1 infection.

It was found that the Elite Controller group was significantly older (53.56±

10.04 yr) than the comparison group (41.28± 8.64 yr). Since the definition of

being an Elite Controller from the 2014 literature review study [42] requires

a sufficient time period of observation (HIV-1 positive for ≥ 6 months, HIV-1

positive for ≥ 1 year, or HIV-1 positive for ≥ 10 years) and viral suppression,

it is possible that the definition of being an Elite Controller causes the Elite

Controller group to be significantly older than the comparison group in this

study.

165



It was determined that the comparison group had a significantly lower

CD4/CD8 ratio (0.788± 0.319) than the Elite Controller group (1.28± 0.691)

and the mean CD4/CD8 ratio for the comparison group was below the healthy

value of 1.0. Additionally, it was found that the comparison group had a

significantly higher CD8 absolute count (1.05 × 106 ± 5.06 × 105 cells/mL)

than the Elite Controller group (6.42 × 105 ± 3.10 × 105 cells/mL) and the

mean CD8 absolute count for the comparison group was outside the healthy

range of 1.5 × 105 to 1 × 106 cells/ml. These results further highlight that

the comparison group had more chronic immune activation but a less effective

immune response than the Elite Controller group.

The Elite Controller group and the comparison group in this study also

shared a number of parameter similarities and these parameters were the fol-

lowing: the death rate of total CD4 T cells, kill rate of CD4 T cells by effector

CD8 CTLs due to other infections, kill rate of CD4 T cells by effector CD4

CTLs due to other infections, transmission rate of HIV-1 to CD4 T cells,

portion of generated HIV-1 specific effector CTLs that are HIV-1 specific ef-

fector CD4 CTLs, death rate of effector CTLs, rate replication competent viral

particles were produced by HIV-1 infected CD4 T cells, death rate of HIV-1

replication competent viral particles, and growth rate of new CD8 T cells. It is

plausible that this implies that the patients comprising the comparison group

are in some sense special as well. Even though the comparison group patients

did not qualify as Elite Controllers based on the definitions from the 2014 lit-

erature review study [42], the comparison group patients all had an adequately

long ART-näıve time period indicating their immune responses’ limited ability

to control HIV-1 without cART. Indeed comparison group Patient 11 certainly

displays early signs of being an Elite Controller, with a maintenance of total
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CD4 and CD8 T cells and strong reduction of viral load; however, there were

not, as of yet, enough laboratory tests for Patient 11 which showed the viral

load below the threshold required for an Elite Controller designation.

This study focused on the ART-näıve time period for the Elite Controller

and comparison group patients from the Northern Alberta HIV Program. It

would be useful to incorporate cART into system (6.1) and fit the HIV-1

plasma infection model during ART-näıve and cART time periods for each

patient and note the difference cART has on the antiviral immune response of

the patients.

Since plasma viral DNA measurements were not available for the HIV-1

patients in this study, it was not feasible to reasonably estimate the number

of CD4 T cells latently infected with HIV-1 for these patients. If plasma

viral DNA measurements were available for HIV-1 Elite Controller patients

from other clinics, it would be beneficial to include a latent compartment into

system (6.1) and estimate the number of CD4 T cells latently infected with

HIV-1 for these other patients.

Macrophages were not included in system (6.1) because this would have

increased the complexity and uncertainty in the mathematical model. Given

that macrophages have a significant role in the formation of viral reservoirs, if

plasma viral DNA measurements were available, the inclusion of macrophage

compartments into system (6.1) would be enlightening to further assess the

size of the latent HIV-1 reservoir.

Approximately 1 % of HIV-1 patients are considered Elite Controllers [42].

Consequently, there is a small amount of data available for modeling Elite

Controllers. Furthermore, in order to assess the natural course of HIV-1 in-

fection in the plasma, it is important to have Elite Controller data during an
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ART-näıve time period, which is even rarer data to find. This is the reason

for the limited number of HIV-1 patients in this study. Fitting system (6.1)

with the possible incorporation of cART, latently HIV-1 infected cells, and/or

macrophages to a larger group of HIV-1 Elite Controllers and HIV-1 compar-

ison patients from several clinics would be an insightful next step to further

confirm the important components of the Elite Controller immune response

and provide additional biologically realistic immune response estimates to help

with HIV-1 therapeutic objectives.
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Chapter 7

Supplementary material for

Chapter 6

7.A Local stability of disease-free equilibria

The Jacobian matrix of system (6.1) is

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1 − µ1 − cz − 2bx− βv 0 0 −βx −cx 0

0 δy ∂g
∂xE

− µ2 − βv δg(xE + zE) −βxE 0 δy ∂g
∂zE

βv βv − γy −µ3 − γ(xE + zE) β(x+ xE) 0 −γy

0 0 p −µ4 0 0

r2z 0 0 0 r2x− µ5 0

0 (1− δ)y ∂g
∂xE

(1− δ)g(xE + zE) 0 0 (1− δ)y ∂g
∂zE

− µ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

g(xE + zE) =

⎧⎪⎪⎨⎪⎪⎩
k(xE + zE), xE + zE ≤ a

ka, xE + zE > a

,
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∂g
∂xE

= ∂g
∂zE

=

⎧⎪⎪⎨⎪⎪⎩
k, xE + zE ≤ a

0, xE + zE > a

.

Theorem 7.1: 1. If R1 < 0, then the disease-free equilibrium P0 is locally

asymptotically stable. If R1 > 0, then P0 is unstable.

2. If 0 < R1 < 1, then the disease-free equilibrium P1 is locally asymptoti-

cally stable. If R1 > 1, then P1 is unstable.

3. If R2 < 1 and R1 > R2, then the disease-free equilibrium P2 is locally

asymptotically stable. If R2 > 1 and R1 > R2, then P2 is unstable.

Proof. The Jacobian matrix evaluated at P0 is

J(P0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1 − µ1 0 0 0 0 0

0 −µ2 0 0 0 0

0 0 −µ3 0 0 0

0 0 p −µ4 0 0

0 0 0 0 −µ5 0

0 0 0 0 0 −µ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since J(P0) is lower triangular, the eigenvalues of the matrix J(P0) lie on the

main diagonal. If R1 < 0, then all of the eigenvalues are negative and the

disease-free equilibrium P0 is locally asymptotically stable. If R1 > 0, then

the first eigenvalue µ1 = r1 − µ1 > 0 and P0 is unstable.

The Jacobian matrix evaluated at P1 is
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J(P1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ1 − r1 0 0 −β
b
(r1 − µ1) − c

b
(r1 − µ1) 0

0 −µ2 0 0 0 0

0 0 −µ3
β
b
(r1 − µ1) 0 0

0 0 p −µ4 0 0

0 0 0 0 −µ5 0

0 0 0 0 0 −µ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then

det(J(P1)−λI) = (λ−(µ1−r1))(µ2+λ)
2(µ5+λ)

(
λ2 + (µ4 + µ3)λ+ µ3µ4 −

pβ

b
(r1 − µ1)

)
= 0.

(7.1)

Solving (7.1), we receive the following eigenvalues:

λ1 = µ1 − r1,

λ2,3 = −µ2 < 0,

λ4 = −µ5 < 0, and

λ5,6 =
−(µ4+µ3)±(µ4+µ3)

√
1− 4µ3µ4

(µ4+µ3)
2 (1−R1)

2
.

If 0 < R1 < 1, then the real part of every eigenvalue is negative and the

disease-free equilibrium P1 is locally asymptotically stable. If R1 > 1, then

the eigenvalue λ5 > 0 and P1 is unstable.

The Jacobian matrix evaluated at P2 is
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J(P2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− bµ5

r2
0 0 −β µ5

r2
−cµ5

r2
0

0 −µ2 0 0 0 0

0 0 −µ3 β µ5

r2
0 0

0 0 p −µ4 0 0

r2
c

(
r1 − µ1 − bµ5

r2

)
0 0 0 0 0

0 0 0 0 0 −µ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then

det(J(P2)−λI) = (µ2+λ)
2(λ2+

bµ5

r2
λ+µ5(r1−µ1−

bµ5

r2
))(λ2+(µ4+µ3)λ+µ3µ4−

βµ5p

r2
) = 0.

(7.2)

Solving (7.2), we receive the following eigenvalues:

λ1,2 = −µ2 < 0,

λ3,4 =
− bµ5

r2
± bµ5

r2

√
1−4

r22
bµ5R̃

(R1−R2)

2
, and

λ5,6 =
−(µ4+µ3)±(µ4+µ3)

√
1− 4µ3µ4

(µ4+µ3)
2 (1−R2)

2
.

If R2 < 1 and R1 > R2, then the real part of every eigenvalue is negative and

the disease-free equilibrium P2 is locally asymptotically stable. If R2 > 1 and

R1 > R2, then the eigenvalue λ5 > 0 and P2 is unstable.

7.B Data

The data for the NAP HIV-1 patient viral copies, total CD4 T cells, and total

CD8 T cells are located in Table 7.1. The University of Alberta ethics protocol
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number for the data was Pro0094810.

Table 7.1: NAP HIV-1 patient viral copies, total CD4 T cells, and total
CD8 T cells at different times.

Patient Elite

Controller

status

Second

extraction

Years Viral

copies per

ml*

Viral

copies

below

detection

Total

CD4 T

cells per

ml*

Total

CD8 T

cells per

ml*

1 1 0 2.74E-3 5.70E1 0 7.00E5 4.46E5

1 1 0 3.42E-1 4.00E1 1 5.90E5 3.86E5

1 1 0 8.41E-1 4.00E1 1 6.00E5 3.87E5

1 1 0 1.16 4.00E1 1 7.00E5 5.43E5

1 1 0 1.48 4.00E1 1 6.90E5 4.63E5

1 1 0 1.75 4.40E1 0 6.90E5 4.39E5

1 1 0 2.32 4.00E1 1 5.50E5 3.42E5

6 1 0 2.74E-3 5.20E2 0 6.00E5 NA

6 1 0 4.08E-1 5.00E2 0 7.70E5 NA

6 1 0 1.07 5.00E1 0 6.00E5 NA

6 1 0 1.38 5.00E1 0 4.30E5 NA

6 1 0 3.00 5.00E1 0 6.10E5 NA

6 1 0 4.41 NA 0 8.10E5 NA

6 1 0 4.70 5.00E1 0 5.70E5 4.79E5

6 1 0 5.29 NA 0 7.10E5 5.59E5

6 1 0 6.24 4.00E2 0 8.40E5 6.22E5

6 1 0 1.05E1 1.70E2 0 6.40E5 6.40E5

6 1 0 1.12E1 1.20E2 0 8.60E5 8.35E5

6 1 0 1.60E1 2.40E2 0 8.60E5 9.45E5
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6 1 0 1.68E1 8.74E2 0 7.00E5 4.86E5

6 1 0 1.70E1 2.94E3 0 8.50E5 1.09E6

6 1 0 1.82E1 5.70E2 0 6.90E5 1.01E6

14 1 0 2.74E-3 NA 0 7.10E5 7.17E5

14 1 0 3.32E-1 4.00E1 0 1.09E6 9.91E5

14 1 0 7.89E-1 4.00E1 0 9.80E5 8.75E5

14 1 0 1.10 4.00E1 0 9.10E5 7.40E5

14 1 0 1.42 1.50E2 0 1.03E6 9.63E5

14 1 0 1.67 1.70E2 0 1.27E6 1.12E6

14 1 0 1.94 2.50E2 0 1.12E6 8.82E5

14 1 0 2.19 3.30E2 0 8.60E5 6.56E5

14 1 0 2.60 2.00E3 0 NA NA

14 1 0 2.61 NA 0 1.07E6 1.04E6

14 1 0 2.92 4.00E1 0 1.22E6 1.04E6

14 1 0 3.26 4.00E1 0 1.27E6 1.02E6

14 1 0 3.63 2.48E2 0 1.17E6 8.80E5

14 1 0 4.64 1.42E2 0 8.40E5 8.08E5

14 1 0 5.25 1.12E2 0 8.90E5 9.08E5

14 1 0 6.50 7.10E1 0 5.10E5 4.95E5

14 1 0 6.90 5.30E1 0 1.01E6 8.86E5

14 1 1 1.03E1 9.30E1 0 5.23E5 6.71E5

14 1 1 1.05E1 2.68E2 0 5.46E5 7.69E5

16 1 0 2.74E-3 4.00E2 1 5.00E5 3.68E5

16 1 0 1.24 NA 0 6.40E5 4.27E5

16 1 0 1.46 4.00E2 1 4.10E5 2.36E5

16 1 0 4.24 4.00E1 1 3.80E5 4.81E5
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16 1 0 4.45 4.00E1 1 NA NA

16 1 0 4.64 4.00E1 1 6.50E5 3.63E5

16 1 0 5.13 4.00E1 1 5.00E5 4.35E5

16 1 0 5.39 4.00E1 1 3.50E5 2.46E5

16 1 0 5.52 4.00E1 1 5.20E5 3.31E5

16 1 0 5.79 4.00E1 1 2.20E5 1.51E5

16 1 0 6.20 4.00E1 1 1.20E5 8.33E4

16 1 0 7.40 2.00E1 1 2.30E5 1.58E5

16 1 0 7.56 2.00E1 1 3.90E5 2.31E5

16 1 0 7.79 4.00E1 1 6.00E4 5.77E4

16 1 0 7.93 4.00E1 1 2.90E5 1.75E5

16 1 0 8.13 4.00E1 1 5.40E5 3.14E5

16 1 0 8.65 4.00E1 1 6.80E5 3.54E5

16 1 0 9.10 4.00E1 1 6.40E5 3.44E5

16 1 0 9.60 4.00E1 1 5.10E5 3.33E5

16 1 0 9.81 4.00E1 1 6.60E5 4.18E5

16 1 0 1.06E1 4.00E1 1 7.60E5 4.47E5

16 1 0 1.12E1 4.00E1 1 6.00E5 5.04E5

16 1 1 1.35E1 4.00E1 1 5.00E5 3.97E5

16 1 1 1.57E1 NA 0 3.82E5 3.78E5

16 1 1 1.65E1 4.00E1 1 2.95E5 2.59E5

16 1 1 1.68E1 NA 0 4.55E5 1.70E5

16 1 1 1.72E1 NA 0 5.16E5 1.32E5

17 1 0 2.74E-3 1.20E2 0 5.90E5 1.34E6

17 1 0 1.06 4.00E1 1 6.20E5 1.27E6

17 1 0 1.58 4.00E1 1 NA NA
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17 1 0 2.12 7.00E1 0 5.30E5 1.06E6

17 1 0 2.46 4.40E1 0 5.80E5 1.09E6

17 1 0 2.84 4.00E1 1 4.60E5 1.05E6

17 1 0 3.95 4.00E1 1 3.80E5 9.50E5

17 1 0 5.41 NA 0 3.20E5 8.21E5

17 1 0 5.46 4.00E1 1 NA NA

17 1 0 6.42 4.00E1 1 2.40E5 7.06E5

17 1 1 6.95 4.00E1 1 2.40E5 7.27E5

18 1 0 2.74E-3 7.60E2 0 4.30E5 6.94E5

18 1 0 1.06 1.79E2 0 5.20E5 8.81E5

18 1 0 1.48 4.56E2 0 5.30E5 9.64E5

18 1 0 2.06 4.00E1 1 5.40E5 1.04E6

18 1 0 2.59 4.00E1 1 4.20E5 9.77E5

18 1 0 3.55 4.00E1 1 4.40E5 1.10E6

18 1 0 5.34 4.60E1 0 4.10E5 1.46E6

24 1 0 2.74E-3 5.00E1 1 1.18E6 9.83E5

24 1 0 2.74E-1 2.10E2 0 7.60E5 6.44E5

24 1 0 5.48E-1 4.00E2 1 8.10E5 9.20E5

24 1 0 7.53E-1 1.20E2 0 7.80E5 7.03E5

24 1 0 9.51E-1 1.20E2 0 9.70E5 1.08E6

24 1 0 1.12 4.00E2 0 NA NA

24 1 0 1.21 NA 0 5.60E5 6.15E5

24 1 0 1.42 5.80E1 0 6.40E5 5.77E5

24 1 0 1.62 2.40E2 0 NA NA

24 1 0 1.73 NA 0 8.70E5 8.29E5

24 1 0 1.90 1.50E2 0 1.07E6 1.14E6
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24 1 0 1.98 4.00E1 1 8.80E5 8.46E5

24 1 0 2.25 2.10E2 0 6.60E5 6.29E5

24 1 0 2.52 4.00E1 1 8.50E5 8.33E5

24 1 0 2.77 6.30E1 0 8.70E5 7.98E5

24 1 0 3.15 4.00E1 1 7.30E5 7.85E5

24 1 0 3.40 1.90E2 0 7.90E5 7.45E5

24 1 0 3.61 1.90E2 0 8.30E5 7.35E5

24 1 0 3.98 4.00E1 1 6.00E5 5.71E5

24 1 0 4.21 4.00E1 1 8.30E5 7.35E5

24 1 0 5.09 4.00E1 1 4.40E5 3.93E5

24 1 0 5.81 2.00E1 1 8.80E5 7.59E5

24 1 0 6.28 4.00E1 1 4.90E5 6.20E5

24 1 0 6.66 4.00E1 1 7.40E5 5.83E5

24 1 0 6.70 4.00 1 NA NA

24 1 0 7.06 4.00E1 1 9.10E5 1.08E6

24 1 0 7.41 6.30E1 0 8.30E5 7.61E5

24 1 0 7.76 1.14E2 0 8.00E5 7.08E5

24 1 0 8.43 1.93E2 0 7.50E5 8.52E5

24 1 0 8.79 4.00E1 1 7.80E5 9.75E5

24 1 0 9.37 9.00E1 0 7.20E5 6.73E5

24 1 0 9.83 1.82E3 0 NA NA

25 1 0 2.74E-3 4.00E1 1 5.30E5 1.90E5

25 1 0 3.73E-1 4.00E1 1 6.70E5 2.67E5

25 1 0 9.40E-1 4.00E1 1 6.70E5 2.83E5

25 1 0 1.77 4.00E1 1 7.60E5 2.76E5

25 1 0 2.53 4.00E1 1 9.20E5 3.31E5
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25 1 0 2.94 4.00E1 1 6.70E5 2.47E5

25 1 0 4.10 4.00E1 1 9.40E5 3.72E5

25 1 0 5.34 4.00E1 1 7.40E5 2.81E5

25 1 1 5.89 4.00E1 1 6.93E5 2.30E5

25 1 1 6.31 4.00E1 1 6.72E5 2.32E5

25 1 1 6.91 4.00E1 1 8.98E5 3.12E5

25 1 1 8.00 4.00E1 1 6.62E5 2.45E5

25 1 1 8.29 4.00E1 1 7.20E5 2.42E5

25 1 1 8.92 4.00E1 1 6.26E5 2.17E5

28 1 0 2.74E-3 4.40E1 0 6.50E5 9.85E5

28 1 0 3.12E-1 4.00E1 1 7.40E5 8.31E5

28 1 0 1.35 NA 0 6.50E5 8.67E5

28 1 0 3.13 4.00E1 1 5.00E5 6.76E5

28 1 0 3.53 4.00E1 1 4.40E5 5.50E5

28 1 0 3.78 NA 0 5.00E5 6.41E5

28 1 0 4.07 4.00E1 1 6.90E5 1.05E6

28 1 0 4.65 4.00E1 1 NA NA

28 1 0 5.11 4.00E1 1 6.50E5 9.03E5

28 1 0 6.11 4.00E1 1 5.20E5 6.84E5

28 1 0 8.67 4.00E1 1 NA NA

28 1 1 9.83 4.00E1 1 4.63E5 7.12E5

2 0 0 2.74E-3 5.80E2 0 5.70E5 1.19E6

2 0 0 3.40E-1 5.10E2 0 5.00E5 9.62E5

2 0 0 6.30E-1 1.60E3 0 7.80E5 1.15E6

2 0 0 9.34E-1 9.30E2 0 NA NA

2 0 0 1.16 1.40E3 0 6.70E5 1.12E6
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2 0 0 1.40 2.00E3 0 5.70E5 1.02E6

2 0 0 1.69 2.80E3 0 6.70E5 1.14E6

2 0 0 1.96 9.70E2 0 7.20E5 1.26E6

2 0 0 2.32 1.88E3 0 6.80E5 1.00E6

2 0 0 2.66 7.70E3 0 6.60E5 1.02E6

2 0 0 3.14 9.51E3 0 6.30E5 1.34E6

7 0 0 2.74E-3 NA 0 8.40E5 NA

7 0 0 1.89E-1 2.28E3 0 NA NA

7 0 0 3.70E-1 3.20E3 0 6.70E5 9.18E5

7 0 0 6.52E-1 6.80E3 0 7.70E5 1.08E6

7 0 0 9.07E-1 6.90E3 0 8.20E5 1.01E6

7 0 0 1.32 8.40E3 0 7.10E5 1.16E6

7 0 0 1.60 3.10E4 0 7.10E5 9.34E5

7 0 0 1.78 3.50E3 0 6.70E5 1.14E6

7 0 0 2.05 2.90E3 0 8.00E5 1.14E6

7 0 0 2.30 3.70E3 0 6.80E5 1.05E6

7 0 0 2.59 5.70E3 0 8.30E5 1.32E6

7 0 0 2.92 1.20E4 0 5.70E5 8.77E5

7 0 0 3.20 4.50E3 0 7.70E5 1.18E6

7 0 0 3.53 3.10E3 0 7.10E5 1.34E6

7 0 0 3.91 5.70E3 0 6.00E5 9.38E5

7 0 0 4.24 2.10E3 0 7.90E5 1.30E6

7 0 0 4.53 7.20E3 0 5.90E5 9.52E5

7 0 0 4.85 1.40E4 0 8.20E5 1.17E6

7 0 0 5.16 1.10E4 0 6.10E5 1.07E6

7 0 0 5.60 6.20E3 0 8.50E5 1.60E6
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7 0 0 6.04 5.40E3 0 7.70E5 1.18E6

7 0 0 6.43 4.90E3 0 6.90E5 1.21E6

7 0 0 6.93 9.12E3 0 8.00E5 1.27E6

7 0 0 7.40 7.69E3 0 8.80E5 1.49E6

7 0 0 7.90 2.60E3 0 7.30E5 1.33E6

7 0 0 8.48 2.05E3 0 7.30E5 1.28E6

7 0 0 9.04 5.93E3 0 7.00E5 1.15E6

7 0 0 9.65 3.07E3 0 8.60E5 1.37E6

7 0 0 1.03E1 9.06E2 0 7.60E5 1.27E6

7 0 0 1.07E1 1.07E3 0 8.00E5 1.54E6

7 0 1 1.16E1 1.40E3 0 8.80E5 1.49E6

7 0 1 1.24E1 4.63E3 0 8.33E5 1.46E6

7 0 1 1.29E1 2.57E3 0 6.29E5 1.14E6

7 0 1 1.38E1 1.82E3 0 7.52E5 1.63E6

7 0 1 1.44E1 6.05E2 0 6.40E5 1.19E6

7 0 1 1.49E1 2.95E3 0 7.05E5 1.41E6

7 0 1 1.53E1 1.13E3 0 7.01E5 1.35E6

10 0 0 2.74E-3 7.50E2 0 7.50E5 1.21E6

10 0 0 1.95E-1 1.70E3 0 8.60E5 1.46E6

10 0 0 4.05E-1 6.60E2 0 9.20E5 1.59E6

10 0 0 7.07E-1 2.60E3 0 8.00E5 1.51E6

10 0 0 9.97E-1 1.10E3 0 1.29E6 2.53E6

10 0 0 1.44 3.00E3 0 1.23E6 2.86E6

10 0 0 1.78 2.20E3 0 1.51E6 2.90E6

10 0 0 2.45 NA 0 1.06E6 2.12E6

10 0 0 3.70 2.80E3 0 1.03E6 2.51E6
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10 0 0 4.87 3.40E2 0 8.70E5 1.93E6

10 0 0 6.21 2.70E2 0 7.90E5 1.80E6

10 0 0 7.54 6.35E2 0 8.10E5 1.88E6

10 0 0 8.00 1.82E3 0 1.05E6 2.19E6

10 0 0 8.36 2.60E3 0 5.70E5 1.36E6

10 0 0 9.45 NA 0 7.82E5 1.40E6

10 0 0 9.53 3.00E2 0 7.06E5 6.79E5

11 0 0 2.74E-3 3.70E3 0 6.40E5 6.27E5

11 0 0 2.52E-1 NA 0 5.50E5 4.82E5

11 0 0 5.40E-1 3.50E3 0 5.60E5 4.87E5

11 0 0 8.05E-1 2.60E3 0 4.50E5 4.41E5

11 0 0 1.13 6.90E2 0 5.60E5 4.79E5

11 0 0 1.38 8.80E2 0 4.10E5 3.18E5

11 0 0 1.62 2.10E3 0 5.80E5 4.79E5

11 0 0 2.09 4.00E2 0 8.70E5 5.96E5

11 0 0 2.57 1.60E3 0 6.70E5 5.73E5

11 0 0 2.81 6.60E2 0 5.50E5 4.30E5

11 0 0 3.11 5.70E2 0 7.10E5 5.73E5

11 0 0 3.49 4.50E2 0 7.20E5 5.33E5

11 0 0 3.84 4.70E2 0 5.30E5 4.27E5

11 0 0 4.10 1.30E2 0 5.50E5 4.66E5

11 0 0 4.37 3.30E2 0 7.70E5 5.35E5

11 0 0 4.69 1.10E2 0 7.40E5 6.32E5

11 0 0 5.00 1.30E2 0 5.60E5 4.55E5

11 0 0 5.58 4.80E1 0 5.00E5 4.39E5

11 0 0 5.98 1.20E2 0 7.00E5 3.93E5
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11 0 0 6.25 1.50E2 0 5.90E5 4.01E5

11 0 0 6.56 1.70E2 0 4.90E5 3.16E5

11 0 0 6.87 4.90E1 0 6.20E5 4.43E5

11 0 0 7.13 2.20E2 0 5.00E5 3.14E5

11 0 0 7.49 2.40E2 0 6.80E5 4.63E5

11 0 0 7.84 1.20E2 0 5.20E5 3.47E5

11 0 0 8.16 1.60E2 0 4.70E5 3.13E5

11 0 0 8.66 5.20E1 0 4.40E5 2.99E5

11 0 0 9.04 8.30E1 0 5.90E5 4.18E5

11 0 0 9.38 1.25E2 0 6.50E5 4.45E5

11 0 0 9.68 3.83E2 0 5.20E5 4.37E5

11 0 0 1.02E1 4.00E1 1 5.46E5 3.79E5

12 0 0 2.74E-3 8.20E3 0 6.64E5 NA

12 0 0 3.62E-1 3.60E3 0 5.20E5 NA

12 0 0 7.62E-1 3.70E3 0 3.50E5 6.25E5

12 0 0 9.32E-1 2.40E4 0 5.40E5 1.86E6

12 0 0 1.07 5.10E3 0 5.00E5 1.06E6

12 0 0 1.32 1.70E3 0 NA NA

12 0 0 1.74 4.50E3 0 5.90E5 1.31E6

12 0 0 2.28 3.70E3 0 6.00E5 1.18E6

12 0 0 2.78 8.20E2 0 7.40E5 1.28E6

12 0 0 3.96 1.60E3 0 8.20E5 1.22E6

12 0 0 4.45 5.10E2 0 6.90E5 9.32E5

12 0 0 5.68 5.16E2 0 4.10E5 4.71E5

12 0 0 6.69 1.46E3 0 5.10E5 5.86E5

12 0 0 6.95 8.37E2 0 3.40E5 3.95E5
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12 0 0 7.95 3.45E3 0 4.90E5 6.81E5

12 0 0 8.20 4.34E2 0 3.40E5 4.47E5

12 0 0 8.57 1.25E2 0 3.50E5 4.17E5

12 0 0 8.85 1.39E3 0 5.30E5 5.89E5

12 0 0 9.47 6.31E2 0 2.90E5 4.03E5

21 0 0 2.74E-3 5.10E3 0 6.60E5 9.43E5

21 0 0 4.99E-1 8.30E3 0 4.70E5 7.12E5

21 0 0 1.00 7.80E3 0 6.20E5 1.03E6

21 0 0 1.73 1.14E4 0 NA NA

21 0 0 2.01 7.30E3 0 5.30E5 1.00E6

21 0 0 2.55 9.92E3 0 7.90E5 1.23E6

23 0 0 2.74E-3 7.80E2 0 NA NA

23 0 0 5.84E-1 7.80E2 0 7.60E5 8.17E5

23 0 0 8.85E-1 7.70E2 0 7.90E5 1.41E6

23 0 0 1.25 6.80E2 0 9.50E5 1.64E6

23 0 0 1.57 5.40E2 0 9.70E5 1.67E6

23 0 0 2.02 4.00E2 0 9.50E5 1.56E6

23 0 0 2.38 3.00E2 0 9.90E5 1.65E6

23 0 0 2.75 6.40E2 0 6.40E5 1.19E6

23 0 0 3.07 2.10E2 0 6.50E5 1.25E6

23 0 0 3.47 2.20E2 0 5.90E5 1.07E6

23 0 0 3.76 4.50E2 0 9.20E5 1.53E6

23 0 0 4.13 6.60E2 0 8.40E5 1.18E6

23 0 0 4.42 1.60E2 0 8.60E5 1.46E6

23 0 0 4.87 9.20E2 0 9.10E5 1.25E6

23 0 0 5.35 1.60E3 0 8.50E5 1.12E6
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23 0 0 5.91 1.40E3 0 8.50E5 1.01E6

23 0 0 6.47 NA 0 6.20E5 7.47E5

23 0 0 6.87 1.90E3 0 9.90E5 1.10E6

23 0 0 7.08 NA 0 8.40E5 1.02E6

23 0 0 7.37 2.80E3 0 9.40E5 1.15E6

23 0 0 7.89 2.20E3 0 8.20E5 1.09E6

23 0 0 8.40 NA 0 8.30E5 1.09E6

23 0 0 9.02 3.00E3 0 8.30E5 9.88E5

23 0 0 9.38 3.00E3 0 8.40E5 9.44E5

23 0 0 9.94 2.00E3 0 7.80E5 1.01E6

23 0 0 1.04E1 9.80E3 0 7.40E5 1.00E6

23 0 0 1.09E1 3.80E3 0 6.70E5 8.59E5

23 0 0 1.14E1 2.70E3 0 8.30E5 1.17E6

23 0 0 1.19E1 1.60E3 0 7.70E5 7.94E5

23 0 0 1.25E1 1.61E3 0 7.00E5 8.86E5

23 0 0 1.30E1 1.68E3 0 9.00E5 1.20E6

23 0 0 1.35E1 1.38E3 0 6.60E5 6.41E5

23 0 0 1.38E1 5.04E2 0 6.70E5 8.82E5

23 0 0 1.43E1 1.11E3 0 NA NA

∗ If the variable was not measured at a particular time point, then not applicable

(NA) is written in the cell.

7.C Prior distributions for Bayesian inference

For parameters that take positive values and that have an uncertainty that

spans several orders of magnitude, it is useful to use the loguniform distribution
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as the prior distribution [68]. The loguniform distribution views the logarithm

range as uniform. Using the loguniform distribution as a prior distribution for

a parameter can help Bayesian inference to more easily explore a parameter’s

uncertainty. It is usual to view the orders of magnitude in terms of base

10. The loguniform distribution is used for certain parameters in this study

and it is done by using the following method: the logarithm base 10 of these

parameters is fit, consequently the prior of the logarithm base 10 of these

parameters is still uniform, and then the logarithm base 10 of these parameters

are exponentiated by 10 to transform these parameters back to their original

scale inside the likelihood function [68].

Uniform or loguniform prior distributions were specified for the parameters

in model (6.1) since there is a general range for these parameters given in the

literature. The uniform and loguniform prior distributions used for the model

parameters were the same for all of the patients and these are displayed in Ta-

ble 7.2. The uniform prior distributions for the model initial conditions varied

for each patient. The tables displaying the initial condition prior distributions

for the HIV-1 Elite Controller patients are located in Section 7.C.1 and the

tables displaying the initial condition prior distributions for the HIV-1 patient

comparison group are located in Section 7.C.2.

The estimated lifespan of CD4 T cells and CD8 T cells vary across studies

[122, 123, 124, 125, 126]. In humans, the estimates are that memory CD4 T

cells and CD8 T cells live 0.449 (range, 0.194 - 1.37) and 0.430 (range, 0.310

- 0.633) years, respectively [122]. In humans, effector memory CD4 T cells

are found to be able to live for more than 17 years [125]. A mathematical

modeling study determined that healthy patients had an average CD4 T cell

lifespan of 0.0623 years and an average CD8 T cell lifespan of 0.0685 years
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[126]. Another study fit a mathematical model to ten HIV-1 patients and the

death rate of activated CD4 T cells was estimated to be in the range from 1.6

to 7.3 per year [127]. An animal model, estimating the lifespan of memory

T cells in different locations in the body, found that the average lifespan of

memory CD4 T cells in the blood was 0.120 years and the average lifespan of

memory CD8 T cells in the blood was 0.0877 years [124]. The range of the

lifespan of the total CD4 T cells, total CD8 T cells, and effector CTLs in this

study were each given a range from 0.01 to 17 years. Consequently, the uniform

prior distributions for the death rate of total CD4 T cells (µ1), death rate of

total CD8 T cells (µ5), and death rate of effector CTLs (µ2) in this study were

each U(0.0588, 100). In the HIV-1 Elite Controller transplant patient study,

the death rate of productively infected CD4 T cells was estimated to be 328.5

per year and the death rate of HIV-1 replication competent viral particles

was estimated to be 8395 per year [56]. In the study that fit a mathematical

model to ten HIV-1 patients, the death rate of productively infected CD4 T

cells was estimated to be in the range from 47.45 to 292 per year [127]. From

these estimates, uniform prior distributions for the death rate of productively

infected CD4 T cells (µ3) and the death rate of HIV-1 replication competent

viral particles (µ4) were chosen to be U(4, 330) and U(1× 103, 1× 104).

In the HIV-1 Elite Controller transplant patient study, the estimated trans-

mission rate of HIV-1 to CD4 T cells was 6.059 × 10−6 mL per year [56]. In

the study that fit a mathematical model to ten HIV-1 patients, the trans-

mission rate of HIV-1 to CD4 T cells was estimated to be in the range from

6.9× 10−5 to 1.8× 10−3 mL per year [127]. An earlier mathematical modeling

study estimated the transmission rate of HIV-1 to CD4 T cells as 8.8 × 10−6

mL per year [128] and later reports have used the estimate of 3.65 × 10−5

186



mL per year [129, 130]. Given these estimates, the loguniform prior distri-

bution chosen for the transmission rate of HIV-1 to CD4 T cells (β) was

log10(β) ∼ U(log10(1× 10−8), log10(1× 10−1)).

The estimated rate replication competent viral particles were produced by

HIV-1 infected CD4 T cells was 7.3×106 per year in the HIV-1 Elite Controller

transplant patient study [56] and had the range from 3.6×104 to 2.6×106 per

year in the ten HIV-1 patient mathematical modeling study [127]. From these

estimates, the loguniform prior distribution chosen for the rate replication

competent viral particles were produced by HIV-1 infected CD4 T cells (p)

was log10(p) ∼ U(log10(1× 103), log10(1× 107)).

Also, in the HIV-1 Elite Controller transplant patient study, the estimated

growth rate of new CD4 T cells was 292 per year and the estimated rate

infected CD4 T cells are killed by effector CTLs was 0.365 mL per year [56].

From these estimates, the loguniform prior distribution chosen for the growth

rate of new CD4 T cells (r1) was log10(r1) ∼ U(log10(1× 10−5), log10(5× 103))

and the loguniform prior distribution chosen for the rate infected CD4 T cells

are killed by effector CTLs (γ) was log10(γ) ∼ U(log10(0.01), log10(100)).

The majority of HIV-1 specific effector CTLs generated by the immune

system are HIV-1 specific effector CD8 CTLs [41]. Consequently, the uniform

prior distribution chosen for the portion of generated HIV-1 specific effector

CTLs that are HIV-1 specific effector CD4 CTLs (δ) was U(0, 0.5).

The kill rate of CD4 T cells by effector CD8 CTLs due to other infections

that are not HIV-1 (c), the kill rate of CD4 T cells by effector CD4 CTLs

due to other infections that are not HIV-1 (b), the growth rate of new CD8 T

cells (r2), the maximum proliferation rate of the HIV-1 specific effector CTL

response (ka), and the number of HIV-1 specific effector CTLs at which the
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proliferation switches to a maximum rate (a) were not previously estimated

and a broad range was chosen for these parameters. The loguniform prior

distribution chosen for the kill rate of CD4 T cells by effector CD8 CTLs

due to other infections that are not HIV-1 (c) was log10(c) ∼ U(log10(1 ×

10−8), log10(1×10−3)), the loguniform prior distribution chosen for the kill rate

of CD4 T cells by effector CD4 CTLs due to other infections that are not HIV-

1 (b) was log10(b) ∼ U(log10(1× 10−15), log10(1× 10−3)), the loguniform prior

distribution chosen for the growth rate of new CD8 T cells (r2) was log10(r2) ∼

U(log10(1 × 10−15), log10(1 × 10−3)), the loguniform prior distribution chosen

for the maximum proliferation rate of the HIV-1 specific effector CTL response

(ka) was log10(ka) ∼ U(log10(1×10−5), log10(1×103)), and the loguniform prior

distribution chosen for the number of HIV-1 specific effector CTLs at which

the proliferation switches to a maximum rate (a) was log10(a) ∼ U(log10(1 ×

10−4), log10(2× 104)).

The range of each patient CD4 absolute cells/mL data is used to inform

the uniform prior distribution of the initial number of CD4 T cells susceptible

to HIV-1 (x0). The range of each patient CD8 absolute cells/mL data is

used to inform the uniform prior distribution of the initial number of CD8

T cells that are non HIV-1 specific (z0). The range of each patient viral

load copies/mL data is used to help inform the uniform prior distribution of

the initial number of HIV-1 replication competent viral particles (v0). It is

expected that the initial viral load for each patient is also closely related to

the initial number of CD4 T cells productively infected with HIV-1, the initial

number of HIV-1 specific effector CD4 CTLs, and the initial number of HIV-1

specific effector CD4 CTLs. As a result, the upper bound of the uniform prior

distribution range chosen for v0 was also used for the uniform prior distribution
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of the initial number of CD4 T cells productively infected with HIV-1 (y0),

the initial number of HIV-1 specific effector CD4 CTLs (xE0), and the initial

number of HIV-1 specific effector CD8 CTLs (zE0).

Table 7.2: Uniform and loguniform prior distributions for model parameters

Symbol Parameter Prior distribution Unit Reference(s)

log10(r1) Growth rate of new CD4 T

cells

U(log10(1× 10−5), log10(5× 103)) per year [56]

µ1 Death rate of total CD4 T

cells

U(0.0588, 100) per year [122, 123,

124, 125, 126]

log10(c) Kill rate of CD4 T cells by

effector CD8 CTLs due to

other infections

U(log10(1×10−8), log10(1×10−3)) mL per

year

-

log10(b) Kill rate of CD4 T cells by

effector CD4 CTLs due to

other infections

U(log10(1×10−15), log10(1×10−3)) mL per

year

-

log10(β) Transmission rate of HIV-1

to CD4 T cells

U(log10(1×10−8), log10(1×10−1)) mL per

year

[56]

δ Portion of generated HIV-1

specific effector CTLs that

are HIV-1 specific effector

CD4 CTLs

U(0, 0.5) - -

log10(ka) Maximum proliferation rate

of the HIV-1 specific effector

CTL response

U(log10(1× 10−5), log10(1× 103)) per year -
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log10(a) Number of HIV-1 specific

effector CTLs at which the

proliferation switches to a

maximum rate

U(log10(1× 10−4), log10(2× 104)) per mL -

µ2 Death rate of effector CTLs U(0.0588, 100) per year [122, 123,

124, 125, 126]

µ3 Death rate of productively

infected CD4 T cells

U(4, 330) per year [56]

log10(γ) Rate infected CD4 T cells are

killed by effector CTLs

U(log10(0.01), log10(100)) mL per

year

[56]

log10(p) Rate replication competent

viral particles were produced

by HIV-1 infected CD4 T

cells

U(log10(1× 103), log10(1× 107)) per year [56]

µ4 Death rate of HIV-1

replication competent viral

particles

U(1× 103, 1× 104) per year [56]

log10(r2) Growth rate of new CD8 T

cells

U(log10(1×10−15), log10(1×10−3)) mL per

year

-

µ5 Death rate of total CD8 T

cells

U(0.0588, 100) per year [122, 123,

124, 125, 126]

7.C.1 Prior distributions for HIV-1 Elite Controller pa-

tient initial conditions
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Table 7.3: Uniform prior distributions for Patient 1 initial conditions

Symbol Parameter Prior distribution Unit

x0 Initial number of CD4 T cells

susceptible to HIV-1

U(5.50× 105, 8× 105) per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

U(0, 1× 103) per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

U(0, 1× 102) per mL

v0 initial number of HIV-1

replication competent viral

particles

U(4× 101, 1× 102) per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

U(3× 105, 8× 105) per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

U(0, 1× 103) per mL

Table 7.4: Uniform prior distributions for Patient 6 initial conditions

Symbol Parameter Prior distribution Unit

x0 Initial number of CD4 T cells

susceptible to HIV-1

U(4.50× 105, 8× 105) per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

U(0, 1× 103) per mL
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y0 Initial number of CD4 T cells

productively infected with

HIV-1

U(0, 1× 103) per mL

v0 initial number of HIV-1

replication competent viral

particles

U(5× 101, 1× 103) per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

U(4.5× 105, 8× 105) per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

U(0, 1× 103) per mL

Table 7.5: Uniform prior distributions for Patient 14 initial conditions

Symbol Parameter Prior distribution Unit

x0 Initial number of CD4 T cells

susceptible to HIV-1

U(7× 105, 1.30× 106) per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

U(0, 4× 102) per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

U(0, 4× 102) per mL

v0 initial number of HIV-1

replication competent viral

particles

U(1, 4× 102) per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

U(6.5× 105, 1.2× 106) per mL
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zE0 Initial number of HIV-1 specific

effector CD8 CTLs

U(0, 4× 102) per mL

Table 7.6: Uniform prior distributions for Patient 16 initial conditions

Symbol Parameter Prior distribution Unit

x0 Initial number of CD4 T cells

susceptible to HIV-1

U(3.5× 105, 6.4× 105) per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

U(0, 5× 102) per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

U(0, 5× 102) per mL

v0 initial number of HIV-1

replication competent viral

particles

U(1, 5× 102) per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

U(2.35× 105, 4.9× 105) per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

U(0, 5× 102) per mL

Table 7.7: Uniform prior distributions for Patient 17 initial conditions

Symbol Parameter Prior distribution Unit
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x0 Initial number of CD4 T cells

susceptible to HIV-1

U(5.9× 105, 7× 105) per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

U(0, 2× 102) per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

U(0, 2× 102) per mL

v0 initial number of HIV-1

replication competent viral

particles

U(1, 2× 102) per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

U(1.3× 106, 1.4× 106) per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

U(0, 2× 102) per mL

Table 7.8: Uniform prior distributions for Patient 18 initial conditions

Symbol Parameter Prior distribution Unit

x0 Initial number of CD4 T cells

susceptible to HIV-1

U(4.1× 105, 5.5× 105) per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

U(0, 8.5× 102) per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

U(0, 8.5× 102) per mL
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v0 initial number of HIV-1

replication competent viral

particles

U(1, 8.5× 102) per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

U(6.5× 105, 7.5× 105) per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

U(0, 8.5× 102) per mL

Table 7.9: Uniform prior distributions for Patient 24 initial conditions

Symbol Parameter Prior distribution Unit

x0 Initial number of CD4 T cells

susceptible to HIV-1

U(5.5× 105, 1.2× 106) per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

U(0, 4× 102) per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

U(0, 4× 102) per mL

v0 initial number of HIV-1

replication competent viral

particles

U(1, 4× 102) per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

U(5.6× 105, 1.1× 106) per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

U(0, 4× 102) per mL

195



Table 7.10: Uniform prior distributions for Patient 25 initial conditions

Symbol Parameter Prior distribution Unit

x0 Initial number of CD4 T cells

susceptible to HIV-1

U(5× 105, 6.8× 106) per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

U(0, 3.9× 101) per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

U(0, 3.9× 101) per mL

v0 initial number of HIV-1

replication competent viral

particles

U(1, 3.9× 101) per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

U(1× 105, 3× 105) per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

U(0, 3.9× 101) per mL

Table 7.11: Uniform prior distributions for Patient 28 initial conditions

Symbol Parameter Prior distribution Unit

x0 Initial number of CD4 T cells

susceptible to HIV-1

U(6× 105, 8× 105) per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

U(0, 5× 101) per mL
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y0 Initial number of CD4 T cells

productively infected with

HIV-1

U(0, 5× 101) per mL

v0 initial number of HIV-1

replication competent viral

particles

U(1, 5× 101) per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

U(7× 105, 1.1× 106) per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

U(0, 5× 101) per mL

7.C.2 Prior distributions for HIV-1 patient comparison

group initial conditions

Table 7.12: Uniform prior distributions for Patient 2 initial conditions

Symbol Parameter Prior distribution Unit

x0 Initial number of CD4 T cells

susceptible to HIV-1

U(4.5× 105, 8× 105) per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

U(0, 1.5× 103) per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

U(0, 1.5× 103) per mL
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v0 initial number of HIV-1

replication competent viral

particles

U(1× 102, 1.5× 103) per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

U(8× 105, 1.25× 106) per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

U(0, 1.5× 103) per mL

Table 7.13: Uniform prior distributions for Patient 7 initial conditions

Symbol Parameter Prior distribution Unit

x0 Initial number of CD4 T cells

susceptible to HIV-1

U(6× 105, 1× 106) per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

U(0, 3× 103) per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

U(0, 3× 103) per mL

v0 initial number of HIV-1

replication competent viral

particles

U(1× 103, 3× 103) per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

U(8× 105, 1.1× 106) per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

U(0, 3× 103) per mL
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Table 7.14: Uniform prior distributions for Patient 10 initial conditions

Symbol Parameter Prior distribution Unit

x0 Initial number of CD4 T cells

susceptible to HIV-1

U(5.5× 105, 1× 106) per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

U(0, 2× 103) per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

U(0, 2× 103) per mL

v0 initial number of HIV-1

replication competent viral

particles

U(1× 102, 2× 103) per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

U(1.1× 106, 1.4× 106) per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

U(0, 2× 103) per mL

Table 7.15: Uniform prior distributions for Patient 11 initial conditions

Symbol Parameter Prior distribution Unit

x0 Initial number of CD4 T cells

susceptible to HIV-1

U(4.5× 105, 8× 105) per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

U(0, 4.5× 103) per mL
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y0 Initial number of CD4 T cells

productively infected with

HIV-1

U(0, 4.5× 103) per mL

v0 initial number of HIV-1

replication competent viral

particles

U(3× 103, 4.5× 103) per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

U(4.5× 105, 8× 105) per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

U(0, 4.5× 103) per mL

Table 7.16: Uniform prior distributions for Patient 12 initial conditions

Symbol Parameter Prior distribution Unit

x0 Initial number of CD4 T cells

susceptible to HIV-1

U(4× 105, 9× 105) per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

U(0, 1× 104) per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

U(0, 1× 104) per mL

v0 initial number of HIV-1

replication competent viral

particles

U(1× 103, 1× 104) per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

U(4× 105, 2× 106) per mL
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zE0 Initial number of HIV-1 specific

effector CD8 CTLs

U(0, 4.5× 103) per mL

Table 7.17: Uniform prior distributions for Patient 21 initial conditions

Symbol Parameter Prior distribution Unit

x0 Initial number of CD4 T cells

susceptible to HIV-1

U(4× 105, 7.5× 105) per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

U(0, 1× 104) per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

U(0, 1× 104) per mL

v0 initial number of HIV-1

replication competent viral

particles

U(1, 1× 104) per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

U(7× 105, 1.1× 106) per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

U(0, 1× 104) per mL

Table 7.18: Uniform prior distributions for Patient 23 initial conditions

Symbol Parameter Prior distribution Unit
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x0 Initial number of CD4 T cells

susceptible to HIV-1

U(5.9× 105, 9.9× 105) per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

U(0, 1.5× 103) per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

U(0, 1.5× 103) per mL

v0 initial number of HIV-1

replication competent viral

particles

U(1× 102, 1.5× 103) per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

U(7× 105, 1.6× 106) per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

U(0, 1.5× 103) per mL

7.D Model fitting and prediction using Bayesian

inference

For each HIV-1 patient, the parameters in system (6.1) were fit simultane-

ously to that patient’s viral load, CD4 absolute, and CD8 absolute data. The

estimated parameter values for system (6.1) for each patient are located in Sec-

tions 7.D.4 and 7.D.5 with the point estimate in the tables being the maximum

posterior. The fit of system (6.1) to the data for each patient are visualized

in Sections 7.D.6 and 7.D.7. The method of Bayesian inference was used for
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fitting system (6.1) simultaneously to three datasets for each patient and this

method is described below.

Let Dj = {dj1, . . . , djnj
} and Tj = {tj1, . . . , tjnj

} denote the patient data

and times, where index j = 1 indicates the patient’s viral load data, index

j = 2 indicates the patient’s CD4 absolute data, and index j = 3 indicates the

patient’s CD8 absolute data. Let D = {D1, D2, D3} and T = {T1, T2, T3}.

System (6.1) was solved numerically by using the MATLAB function ode15s

with the option setting odeset(’Vectorized’, ’on’) to speed up the numerical

solver and an additional ODE solving event that would stop the ode15s nu-

merical solver if it was taking longer than 10 seconds to solve system (6.1)

[115]. Parameter vector guesses that caused the ode15s numerical solver to

take longer than 10 seconds to solve system (6.1) were considered to be poor

parameter vector guesses and assigned a log likelihood value of -Inf in MAT-

LAB.

The parameter vector to be estimated in system (6.1) is

ν = ⟨log10(r1), µ1, log10(c), log10(b), log10(β), δ, log10(ka), log10(a), µ2, µ3, log10(γ), log10(p),

µ4, log10(r2), µ5, x0, xE0, y0, v0, z0, zE0⟩.

Let the model solution vector over time for HIV-1 replication competent

viral particles per ml, CD4 T cells susceptible to HIV-1 per ml, and CD8 T

cells that are non HIV-1 specific per ml, be given by v(ν, t), x(ν, t), and z(ν, t)

respectively. The dataset D1 will be described by the model solution vector

over time v(ν, t), the dataset D2 will be described by the model solution vector

over time x(ν, t), and datasetD3 will be described by the model solution vector

over time z(ν, t).
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Since the HIV-1 patient data as visualized in Sections 7.D.6 and 7.D.7

display a variety of patterns and scatter around the trends, a Gaussian distri-

bution with non-constant variance over time is chosen to describe each of the

datasets D1, D2, and D3 for every patient. As this HIV-1 patient data can

still be considered count data, which is most likely overdispersed (variance of

the data is larger than the mean of the data), the non-constant variance over

time in the Gaussian distribution is described by a constant multiplied by the

mean, 1

τ ji
= vjµj

i .

Hence, for each HIV-1 patient, with j = 1, 2, 3 datasets, the probability of

observing dji is given by the Gaussian distribution with non-constant variance

over time, 1

τ ji
= vjµj

i :

f(dji ) =

√
τ ji
2π

exp(−1

2
τ ji (d

j
i − µj

i )
2) =

√
1

2πvjµj
i

exp(− 1

2vjµj
i

(dji − µj
i )

2) (7.3)

with the mean µj
i > 0, the variance 1

τ ji
= vjµj

i > 0, and vj ≥ 1 is a constant.

In this distribution, both the mean µj
i and the variance 1

τ ji
= vjµj

i change

depending on the time tji . The constant vj ≥ 1 is specific to the jth data

set Dj and determines the most likely shape of the Gaussian distribution

with non-constant variance over time given the data Dj. Here µ1
i = v(ν, t1i ),

µ2
i = x(ν, t2i ), and µ

3
i = z(ν, t3i ).

For each dataset Dj, the following loguniform prior distribution was chosen

for vj:

log10(v
j) ∼ U(log10(1), log10(ζ)),
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where ζ =
1
nj

∑nj
i=1(d

j
i−Dj)

2

Dj

, and Dj is the mean of the dataset Dj. The nu-

merator here is the estimated variance that would result from using the mean

Dj as the model to describe the dataset Dj. The denominator is the mean

Dj. The value of ζ represents the largest anticipated amount of overdispersion

needed to describe the dataset Dj.

Let ϕ = ⟨log10(v1), log10(v2), log10(v3)⟩. Given the extra parameters in

vector ϕ, we want to estimate the vector θ = ⟨ν,ϕ⟩.

The probability model for data sets D = {D1, D2, D3} is

P (D|θ) =
∏

j=1,2,3

nj∏
i=1

f(dji ). (7.4)

The likelihood function for θ is given by

L(θ) = CP (D|θ), (7.5)

where C is any positive constant not depending on θ used to simplify the like-

lihood function. For more information about Bayesian inference for dynamical

systems and combining probability models, please see Chapter 2.

If any of the ode compartment solutions from the numerical solver con-

tained negative values, the parameter vector guesses that caused the ode com-

partment solution(s) to contain negative values were penalized in the likelihood

function in the following way: for each ode compartment solution that went

below zero, the log likelihood was subtracted by −1×106

6
.

When the viral load data that was used for the fitting was below detection,

parameter vector guesses that caused the v model solution to be above the limit

of detection of the viral load data were penalized in the likelihood function
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in the following way: at each time point that the v model solution was above

the limit of detection of the viral load data, the log likelihood was subtracted

by −1×106

n1
. Also, to ensure a realistic fit of the viral load data, if a parameter

vector guess caused the v model solution to go above two times the maximum

of the viral load data, the log likelihood was subtracted by −1× 106.

In humans, the lifespan of memory CD4 T cells, 0.449 (range, 0.194 - 1.37)

years, is generally longer than for the lifespan of memory CD8 T cells, 0.430

(range, 0.310 - 0.633) years [122]. Also, activated effector T cells are short-

lived cells in comparison to memory T cells [131]. Productively HIV-1 infected

CD4 T cells and viral particles die rapidly in comparison to non HIV-1 infected

CD4 T cells [56]. It is assumed based off of the literature that µ1 < µ5 < µ2

and that µ1 < µ3 < µ4. If a parameter vector guess caused these death rate

inequalities to not be true, then the log likelihood was subtracted by −1×106.

The prior distribution for θ is equal to the product of the uniform distri-

butions specified for the parameters in θ.

The fitting for each patient was completed using the Diffusive Nested Sam-

pling (DNS) program “MatlabDiffNestAlg” discussed in Section 3.C [9].

The MATLAB implementation of the DNS algorithm, “MatlabDiffNestAlg”,

was used with the following settings: five particles; the number of samples

needed above the current likelihood cut off to create another level was 1000

with at least 1500 samples per level overall; the diffusivity term λ = 90; the

number of samples used during the second phase of the sampler was 1× 105;

the tolerance used to stop level creation was generally set to 1×10−2 (patients

1, 2, 7, 10, 11, 12 only needed a tolerance of 10−1, and patient 24 needed a

lower tolerance of 10−3); C = 100, which is the number providing the amount

of confidence in the theoretical expectation Xj+1 = exp(−1)Xj; every iteration
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sample was saved; β = 100, which is the parameter that controls the strength

of the effect to correct the mass X values in the second phase of the DNS

algorithm; and the proposal distribution that utilized the standard Cauchy

distribution discussed in Section 3.B.2 was used for the parameter proposals.

Figure 3.4 displays the posterior weights over the log(X) values. There is

a clear peak of the posterior weights and the samples to the left of the peak

have small posterior weights in comparison to the peak weight values, and this

indicates that the algorithm converged to the posterior distribution.

For parameters that used an assumed loguniform prior distribution, the

resulting samples from the DNS algorithm for these parameters can be expo-

nentiated by 10 to transform these parameter samples back to their original

scale.

The Bayesian p-value, pB, for each patient are located in Table 7.19. The

Bayesian p-values indicate that there is no evidence against the null hypothesis

that the model predictions fit the data at the α level of 0.05.

Table 7.19: Bayesian p-value, pB, for each mathematical model fit to the
NAP HIV-1 patient data

Patient number pB

1 0.4115

6 0.3248

14 0.2864

16 0.2534

17 0.2645

18 0.3698

24 0.0900
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25 0.3436

28 0.4685

2 0.2785

7 0.2327

10 0.2124

11 0.3242

12 0.4190

21 0.2605

23 0.3718

The 95% prediction intervals for each HIV-1 patient, with j = 1, 2, 3

datasets, are determined by the posterior predictive distribution as described

in Section 2.K.

7.D.1 HIV-1 Elite Controller patients DNS convergence

plots
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Figure 7.1: Posterior weights over the log(X) values for Patient 1 fitting

Figure 7.2: Posterior weights over the log(X) values for Patient 6 fitting
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Figure 7.3: Posterior weights over the log(X) values for Patient 14 fitting

Figure 7.4: Posterior weights over the log(X) values for Patient 16 fitting
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Figure 7.5: Posterior weights over the log(X) values for Patient 17 fitting

Figure 7.6: Posterior weights over the log(X) values for Patient 18 fitting
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Figure 7.7: Posterior weights over the log(X) values for Patient 24 fitting

Figure 7.8: Posterior weights over the log(X) values for Patient 25 fitting
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Figure 7.9: Posterior weights over the log(X) values for Patient 28 fitting

7.D.2 HIV-1 patient comparison group DNS conver-

gence plots

Figure 7.10: Posterior weights over the log(X) values for Patient 2 fitting
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Figure 7.11: Posterior weights over the log(X) values for Patient 7 fitting

Figure 7.12: Posterior weights over the log(X) values for Patient 10 fitting
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Figure 7.13: Posterior weights over the log(X) values for Patient 11 fitting

Figure 7.14: Posterior weights over the log(X) values for Patient 12 fitting

215



Figure 7.15: Posterior weights over the log(X) values for Patient 21 fitting

Figure 7.16: Posterior weights over the log(X) values for Patient 23 fitting
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7.D.3 Pooled estimates

The pooled estimate of the parameter values for system (6.1) for the HIV-

1 Elite Controller group and HIV-1 comparison group was found by taking

1 × 104 random samples from each patient’s posterior distribution. The pos-

terior random samples were combined for all of the HIV-1 Elite Controller

patients and the posterior random samples were combined for all of the HIV-1

comparison group patients. The median of the combined posterior distribution

for each of the groups was used as the point estimate and the 95% credible

intervals for each of the combined posterior distributions was also determined.

The probability that an Elite Controller group parameter is greater than a

comparison group parameter, P
(
θECi > θCi

)
, was found by taking 1× 103 ran-

dom samples from each parameter’s combined marginal posterior distribution.

The probability was estimated by finding the proportion of times that θECi

exceeded θCi in each of the group’s combined marginal posterior distributions.

7.D.4 HIV-1 Elite Controller patients fitted parameters

Table 7.20: Fitted parameter estimates in θ with the maximum posterior
as the point estimate and 95% credible intervals for Patient 1

Symbol Parameter Estimate (95% credible

interval)

Unit

r1 Growth rate of new CD4 T cells 1.07× 102

(1.07× 102, 1.43× 102)

per year

µ1 Death rate of total CD4 T cells 4.63× 101 (3.67, 4.90× 101) per year
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c Kill rate of CD4 T cells by

effector CD8 CTLs due to other

infections

1.32× 10−4

(1.23× 10−4, 3.11× 10−4)

mL per

year

b Kill rate of CD4 T cells by

effector CD4 CTLs due to other

infections

1.13× 10−9

(1.13× 10−15, 6.23× 10−6)

mL per

year

β Transmission rate of HIV-1 to

CD4 T cells

9.76× 10−3

(3.19× 10−5, 9.81× 10−3)

mL per

year

δ Portion of generated HIV-1

specific effector CTLs that are

HIV-1 specific effector CD4

CTLs

2.04× 10−1

(7.55× 10−4, 4.77× 10−1)

-

ka Maximum proliferation rate of

the HIV-1 specific effector CTL

response

9.41× 102 (1.66, 7.86× 102) per year

a Number of HIV-1 specific

effector CTLs at which the

proliferation switches to a

maximum rate

4.71× 101

(1.03× 10−4, 8.82× 101)

per mL

µ2 Death rate of effector CTLs 8.48× 101

(2.51× 101, 9.95× 101)

per year

µ3 Death rate of productively

infected CD4 T cells

1.60× 102

(2.78× 101, 3.13× 102)

per year

γ Rate infected CD4 T cells are

killed by effector CTLs

9.60 (5.59× 10−2, 6.40× 101) mL per

year
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p Rate replication competent viral

particles were produced by

HIV-1 infected CD4 T cells

6.75× 103

(1.02× 103, 8.13× 103)

per year

µ4 Death rate of HIV-1 replication

competent viral particles

9.04× 103

(1.85× 103, 9.91× 103)

per year

r2 Growth rate of new CD8 T cells 1.07× 10−4

(2.96× 10−5, 1.11× 10−4)

mL per

year

µ5 Death rate of total CD8 T cells 6.71× 101

(1.93× 101, 6.81× 101)

per year

x0 Initial number of CD4 T cells

susceptible to HIV-1

6.61× 105

(6.25× 105, 7.43× 105)

per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

4.29× 101

(3.77× 101, 9.76× 102)

per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

3.93× 101

(8.28× 10−1, 9.58× 101)

per mL

v0 initial number of HIV-1

replication competent viral

particles

5.39× 101

(4.05× 101, 9.01× 101)

per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

5.06× 105

(4.03× 105, 5.54× 105)

per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

3.47× 102 (3.39, 9.32× 102) per mL
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v1 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given viral load data

1.81 (1.00, 1.15× 103) per mL

v2 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD4 T cell

data

5.25× 102

(4.81× 102, 4.88× 103)

per mL

v3 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD8 T cell

data

8.25× 103

(3.16× 103, 8.58× 103)

per mL

Table 7.21: Fitted parameter estimates in θ with the maximum posterior
as the point estimate and 95% credible intervals for Patient 6

Symbol Parameter Estimate (95% credible

interval)

Unit

r1 Growth rate of new CD4 T cells 2.04× 102

(1.34× 102, 4.59× 102)

per year

µ1 Death rate of total CD4 T cells 4.63× 101 (3.68, 4.71× 101) per year

c Kill rate of CD4 T cells by

effector CD8 CTLs due to other

infections

1.79× 10−4

(1.70× 10−4, 5.63× 10−4)

mL per

year
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b Kill rate of CD4 T cells by

effector CD4 CTLs due to other

infections

4.28× 10−7

(1.30× 10−15, 1.01× 10−5)

mL per

year

β Transmission rate of HIV-1 to

CD4 T cells

1.23× 10−2

(9.90× 10−5, 1.23× 10−2)

mL per

year

δ Portion of generated HIV-1

specific effector CTLs that are

HIV-1 specific effector CD4

CTLs

2.20× 10−1

(1.46× 10−2, 4.75× 10−1)

-

ka Maximum proliferation rate of

the HIV-1 specific effector CTL

response

1.51× 102 (9.13, 1.51× 102) per year

a Number of HIV-1 specific

effector CTLs at which the

proliferation switches to a

maximum rate

8.40× 103

(3.71× 10−4, 8.40× 103)

per mL

µ2 Death rate of effector CTLs 6.21× 101

(5.86× 101, 9.47× 101)

per year

µ3 Death rate of productively

infected CD4 T cells

9.15× 101

(4.70× 101, 2.61× 102)

per year

γ Rate infected CD4 T cells are

killed by effector CTLs

3.61 (2.19× 10−2, 1.47× 101) mL per

year

p Rate replication competent viral

particles were produced by

HIV-1 infected CD4 T cells

1.38× 103

(1.35× 103, 7.38× 103)

per year
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µ4 Death rate of HIV-1 replication

competent viral particles

9.68× 103

(1.37× 103, 9.68× 103)

per year

r2 Growth rate of new CD8 T cells 6.68× 10−5

(6.67× 10−5, 9.83× 10−5)

mL per

year

µ5 Death rate of total CD8 T cells 5.04× 101

(4.96× 101, 7.13× 101)

per year

x0 Initial number of CD4 T cells

susceptible to HIV-1

6.58× 105

(5.30× 105, 7.28× 105)

per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

4.87× 102

(1.15× 102, 1.00× 103)

per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

1.68× 102

(5.63× 101, 9.32× 102)

per mL

v0 initial number of HIV-1

replication competent viral

particles

4.91× 102

(1.02× 102, 8.34× 102)

per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

7.49× 105

(5.61× 105, 7.95× 105)

per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

1.22× 102

(5.83× 101, 9.80× 102)

per mL

v1 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given viral load data

1.57× 102

(2.08× 102, 9.39× 102)

per mL
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v2 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD4 T cell

data

1.54× 104

(1.15× 104, 2.18× 104)

per mL

v3 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD8 T cell

data

3.94× 104

(2.04× 104, 3.93× 104)

per mL

Table 7.22: Fitted parameter estimates in θ with the maximum posterior
as the point estimate and 95% credible intervals for Patient 14

Symbol Parameter Estimate (95% credible

interval)

Unit

r1 Growth rate of new CD4 T cells 1.03× 102

(1.03× 102, 7.95× 102)

per year

µ1 Death rate of total CD4 T cells 4.90× 101 (4.22, 4.90× 101) per year

c Kill rate of CD4 T cells by

effector CD8 CTLs due to other

infections

5.39× 10−5

(5.32× 10−5, 8.62× 10−4)

mL per

year

b Kill rate of CD4 T cells by

effector CD4 CTLs due to other

infections

5.08× 10−6

(5.08× 10−6, 1.75× 10−5)

mL per

year
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β Transmission rate of HIV-1 to

CD4 T cells

1.18× 10−3

(2.00× 10−4, 1.17× 10−3)

mL per

year

δ Portion of generated HIV-1

specific effector CTLs that are

HIV-1 specific effector CD4

CTLs

4.60× 10−1

(3.35× 10−2, 4.92× 10−1)

-

ka Maximum proliferation rate of

the HIV-1 specific effector CTL

response

1.41× 102

(1.07× 102, 3.29× 102)

per year

a Number of HIV-1 specific

effector CTLs at which the

proliferation switches to a

maximum rate

2.13× 103

(2.75× 102, 2.37× 103)

per mL

µ2 Death rate of effector CTLs 9.00× 101

(8.47× 101, 9.25× 101)

per year

µ3 Death rate of productively

infected CD4 T cells

2.16× 102

(1.90× 102, 2.29× 102)

per year

γ Rate infected CD4 T cells are

killed by effector CTLs

1.09 (5.86× 10−1, 3.54) mL per

year

p Rate replication competent viral

particles were produced by

HIV-1 infected CD4 T cells

3.51× 103

(1.83× 103, 3.51× 103)

per year

µ4 Death rate of HIV-1 replication

competent viral particles

9.27× 103

(1.16× 103, 9.28× 103)

per year

r2 Growth rate of new CD8 T cells 7.30× 10−5

(4.18× 10−5, 7.81× 10−5)

mL per

year
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µ5 Death rate of total CD8 T cells 7.43× 101

(3.94× 101, 7.42× 101)

per year

x0 Initial number of CD4 T cells

susceptible to HIV-1

1.18× 106

(7.64× 105, 1.18× 106)

per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

3.51× 102

(6.75× 101, 3.72× 102)

per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

1.71× 102

(1.76× 101, 2.98× 102)

per mL

v0 initial number of HIV-1

replication competent viral

particles

1.31× 102 (7.73, 3.80× 102) per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

7.09× 105

(6.69× 105, 1.08× 106)

per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

3.23× 101

(1.10× 101, 2.93× 102)

per mL

v1 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given viral load data

4.56× 101

(3.87× 101, 6.58× 102)

per mL

v2 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD4 T cell

data

3.56× 104

(2.22× 104, 3.78× 104)

per mL
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v3 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD8 T cell

data

2.67× 104

(1.74× 104, 2.65× 104)

per mL

Table 7.23: Fitted parameter estimates in θ with the maximum posterior
as the point estimate and 95% credible intervals for Patient 16

Symbol Parameter Estimate (95% credible

interval)

Unit

r1 Growth rate of new CD4 T cells 1.13× 102

(9.18× 101, 1.30× 102)

per year

µ1 Death rate of total CD4 T cells 3.52× 101 (8.61, 3.54× 101) per year

c Kill rate of CD4 T cells by

effector CD8 CTLs due to other

infections

2.58× 10−4

(2.26× 10−4, 4.03× 10−4)

mL per

year

b Kill rate of CD4 T cells by

effector CD4 CTLs due to other

infections

9.32× 10−8

(1.49× 10−15, 1.85× 10−5)

mL per

year

β Transmission rate of HIV-1 to

CD4 T cells

8.04× 10−5

(2.74× 10−5, 3.07× 10−3)

mL per

year

δ Portion of generated HIV-1

specific effector CTLs that are

HIV-1 specific effector CD4

CTLs

3.78× 10−1

(2.46× 10−2, 4.84× 10−1)

-
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ka Maximum proliferation rate of

the HIV-1 specific effector CTL

response

6.79× 102

(1.24× 102, 8.84× 102)

per year

a Number of HIV-1 specific

effector CTLs at which the

proliferation switches to a

maximum rate

1.59× 10−4

(1.07× 10−4, 2.62× 101)

per mL

µ2 Death rate of effector CTLs 8.74× 101

(8.08× 101, 9.98× 101)

per year

µ3 Death rate of productively

infected CD4 T cells

4.40× 101

(2.04× 101, 2.98× 102)

per year

γ Rate infected CD4 T cells are

killed by effector CTLs

8.72× 101

(1.61× 10−1, 4.09× 101)

mL per

year

p Rate replication competent viral

particles were produced by

HIV-1 infected CD4 T cells

3.23× 104

(1.33× 103, 5.50× 104)

per year

µ4 Death rate of HIV-1 replication

competent viral particles

9.52× 103

(5.28× 103, 9.98× 103)

per year

r2 Growth rate of new CD8 T cells 1.74× 10−4

(1.58× 10−4, 1.95× 10−4)

mL per

year

µ5 Death rate of total CD8 T cells 8.23× 101

(7.80× 101, 8.89× 101)

per year

x0 Initial number of CD4 T cells

susceptible to HIV-1

4.05× 105

(3.55× 105, 5.72× 105)

per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

7.18× 101

(2.62× 101, 4.84× 102)

per mL
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y0 Initial number of CD4 T cells

productively infected with

HIV-1

2.03× 102

(1.78× 101, 4.84× 102)

per mL

v0 initial number of HIV-1

replication competent viral

particles

1.48× 102

(2.42× 101, 3.75× 102)

per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

3.04× 105

(2.40× 105, 4.27× 105)

per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

3.19× 102

(1.49× 101, 4.81× 102)

per mL

v1 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given viral load data

6.33 (1.01, 1.21× 102) per mL

v2 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD4 T cell

data

7.01× 104

(4.35× 104, 7.36× 104)

per mL

v3 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD8 T cell

data

3.94× 104

(2.65× 104, 4.94× 104)

per mL
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Table 7.24: Fitted parameter estimates in θ with the maximum posterior
as the point estimate and 95% credible intervals for Patient 17

Symbol Parameter Estimate (95% credible

interval)

Unit

r1 Growth rate of new CD4 T cells 2.24× 101

(2.23× 101, 2.28× 101)

per year

µ1 Death rate of total CD4 T cells 1.49× 101

(1.29× 101, 1.49× 101)

per year

c Kill rate of CD4 T cells by

effector CD8 CTLs due to other

infections

5.42× 10−6

(2.99× 10−6, 5.55× 10−6)

mL per

year

b Kill rate of CD4 T cells by

effector CD4 CTLs due to other

infections

5.63× 10−6

(6.58× 10−6, 1.22× 10−5)

mL per

year

β Transmission rate of HIV-1 to

CD4 T cells

4.12× 10−4

(1.35× 10−4, 1.20× 10−3)

mL per

year

δ Portion of generated HIV-1

specific effector CTLs that are

HIV-1 specific effector CD4

CTLs

2.79× 10−1

(4.63× 10−2, 4.98× 10−1)

-

ka Maximum proliferation rate of

the HIV-1 specific effector CTL

response

7.42× 102

(4.58× 102, 7.42× 102)

per year

a Number of HIV-1 specific

effector CTLs at which the

proliferation switches to a

maximum rate

3.40× 101

(1.10× 10−4, 2.14× 101)

per mL
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µ2 Death rate of effector CTLs 9.43× 101

(7.03× 101, 9.93× 101)

per year

µ3 Death rate of productively

infected CD4 T cells

3.07× 102

(1.42× 101, 2.97× 102)

per year

γ Rate infected CD4 T cells are

killed by effector CTLs

9.09× 101

(1.76× 101, 5.75× 101)

mL per

year

p Rate replication competent viral

particles were produced by

HIV-1 infected CD4 T cells

2.49× 104

(1.51× 104, 4.80× 104)

per year

µ4 Death rate of HIV-1 replication

competent viral particles

2.82× 103

(3.11× 103, 5.97× 103)

per year

r2 Growth rate of new CD8 T cells 1.65× 10−4

(1.39× 10−4, 1.68× 10−4)

mL per

year

µ5 Death rate of total CD8 T cells 6.83× 101

(5.33× 101, 7.69× 101)

per year

x0 Initial number of CD4 T cells

susceptible to HIV-1

6.14× 105

(5.96× 105, 6.99× 105)

per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

2.92× 101 (4.10, 1.73× 102) per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

1.76× 102 (6.34, 1.92× 102) per mL

v0 initial number of HIV-1

replication competent viral

particles

1.27× 102

(8.93× 101, 1.90× 102)

per mL
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z0 Initial number of CD8 T cells

that are non HIV-1 specific

1.34× 106

(1.30× 106, 1.40× 106)

per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

5.59× 101 (9.98, 1.93× 102) per mL

v1 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given viral load data

6.94 (4.20, 1.11× 101) per mL

v2 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD4 T cell

data

2.55× 104

(1.55× 104, 2.85× 104)

per mL

v3 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD8 T cell

data

1.20× 104

(6.81× 103, 2.80× 104)

per mL

Table 7.25: Fitted parameter estimates in θ with the maximum posterior
as the point estimate and 95% credible intervals for Patient 18

Symbol Parameter Estimate (95% credible

interval)

Unit

r1 Growth rate of new CD4 T cells 2.34× 102

(2.34× 102, 2.34× 102)

per year
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µ1 Death rate of total CD4 T cells 7.97 (7.92, 7.98) per year

c Kill rate of CD4 T cells by

effector CD8 CTLs due to other

infections

1.89× 10−4

(1.89× 10−4, 1.89× 10−4)

mL per

year

b Kill rate of CD4 T cells by

effector CD4 CTLs due to other

infections

9.85× 10−6

(9.63× 10−6, 9.85× 10−6)

mL per

year

β Transmission rate of HIV-1 to

CD4 T cells

1.11× 10−5

(1.11× 10−5, 1.11× 10−5)

mL per

year

δ Portion of generated HIV-1

specific effector CTLs that are

HIV-1 specific effector CD4

CTLs

4.11× 10−1

(1.32× 10−2, 4.73× 10−1)

-

ka Maximum proliferation rate of

the HIV-1 specific effector CTL

response

8.98× 101

(8.98× 101, 3.33× 102)

per year

a Number of HIV-1 specific

effector CTLs at which the

proliferation switches to a

maximum rate

9.11 (9.10, 9.13) per mL

µ2 Death rate of effector CTLs 8.11× 101

(8.02× 101, 8.11× 101)

per year

µ3 Death rate of productively

infected CD4 T cells

1.95× 102

(1.95× 102, 1.95× 102)

per year

γ Rate infected CD4 T cells are

killed by effector CTLs

3.89× 101

(3.89× 101, 3.89× 101)

mL per

year
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p Rate replication competent viral

particles were produced by

HIV-1 infected CD4 T cells

1.76× 105

(1.76× 105, 1.76× 105)

per year

µ4 Death rate of HIV-1 replication

competent viral particles

3.23× 103

(3.23× 103, 3.23× 103)

per year

r2 Growth rate of new CD8 T cells 1.35× 10−4

(1.35× 10−4, 1.35× 10−4)

mL per

year

µ5 Death rate of total CD8 T cells 6.15× 101

(6.15× 101, 6.15× 101)

per year

x0 Initial number of CD4 T cells

susceptible to HIV-1

4.79× 105

(4.51× 105, 5.07× 105)

per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

7.19× 102

(1.29× 102, 7.19× 102)

per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

2.51× 102

(2.35× 102, 3.40× 102)

per mL

v0 initial number of HIV-1

replication competent viral

particles

5.65× 102

(4.94× 102, 5.66× 102)

per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

6.75× 105

(6.51× 105, 6.85× 105)

per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

6.16× 102

(6.16× 102, 8.31× 102)

per mL
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v1 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given viral load data

2.30× 101 (6.15, 2.00× 102) per mL

v2 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD4 T cell

data

5.88× 103

(3.01× 103, 5.93× 103)

per mL

v3 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD8 T cell

data

3.64× 104

(1.87× 104, 4.69× 104)

per mL

Table 7.26: Fitted parameter estimates in θ with the maximum posterior
as the point estimate and 95% credible intervals for Patient 24

Symbol Parameter Estimate (95% credible

interval)

Unit

r1 Growth rate of new CD4 T cells 1.85× 101

(1.84× 101, 1.85× 101)

per year

µ1 Death rate of total CD4 T cells 7.09 (7.06, 7.11) per year

c Kill rate of CD4 T cells by

effector CD8 CTLs due to other

infections

1.46× 10−5

(1.45× 10−5, 1.50× 10−5)

mL per

year
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b Kill rate of CD4 T cells by

effector CD4 CTLs due to other

infections

2.56× 10−11 (1.03E − 15×

10−15, 1.82× 10−9)

mL per

year

β Transmission rate of HIV-1 to

CD4 T cells

2.57× 10−5

(2.57× 10−5, 2.57× 10−5)

mL per

year

δ Portion of generated HIV-1

specific effector CTLs that are

HIV-1 specific effector CD4

CTLs

4.70× 10−2

(1.32× 10−2, 4.86× 10−1)

-

ka Maximum proliferation rate of

the HIV-1 specific effector CTL

response

1.95× 101

(1.82× 101, 2.13× 101)

per year

a Number of HIV-1 specific

effector CTLs at which the

proliferation switches to a

maximum rate

8.92× 10−4

(1.02× 10−4, 2.28× 10−1)

per mL

µ2 Death rate of effector CTLs 6.38× 101

(6.00× 101, 7.90× 101)

per year

µ3 Death rate of productively

infected CD4 T cells

1.62× 102

(1.62× 102, 1.62× 102)

per year

γ Rate infected CD4 T cells are

killed by effector CTLs

8.80× 10−1

(7.64× 10−1, 9.91× 10−1)

mL per

year

p Rate replication competent viral

particles were produced by

HIV-1 infected CD4 T cells

5.45× 104

(5.45× 104, 5.45× 104)

per year
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µ4 Death rate of HIV-1 replication

competent viral particles

6.65× 103

(6.65× 103, 6.65× 103)

per year

r2 Growth rate of new CD8 T cells 1.94× 10−5

(1.94× 10−5, 1.94× 10−5)

mL per

year

µ5 Death rate of total CD8 T cells 1.50× 101

(1.50× 101, 1.50× 101)

per year

x0 Initial number of CD4 T cells

susceptible to HIV-1

8.18× 105

(8.17× 105, 8.31× 105)

per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

8.23× 101

(7.01× 10−1, 3.15× 102)

per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

3.23× 102

(6.13× 101, 4.00× 102)

per mL

v0 initial number of HIV-1

replication competent viral

particles

1.52× 101 (1.04, 4.66× 101) per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

6.95× 105

(6.79× 105, 6.98× 105)

per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

1.92× 101

(1.58× 10−1, 3.36× 102)

per mL

v1 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given viral load data

5.71× 102

(5.45× 102, 5.71× 102)

per mL
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v2 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD4 T cell

data

2.57× 104

(1.92× 104, 2.66× 104)

per mL

v3 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD8 T cell

data

3.29× 104

(2.69× 104, 3.31× 104)

per mL

Table 7.27: Fitted parameter estimates in θ with the maximum posterior
as the point estimate and 95% credible intervals for Patient 25

Symbol Parameter Estimate (95% credible

interval)

Unit

r1 Growth rate of new CD4 T cells 1.81× 102

(9.71× 101, 3.14× 102)

per year

µ1 Death rate of total CD4 T cells 4.43× 101 (9.45, 5.05× 101) per year

c Kill rate of CD4 T cells by

effector CD8 CTLs due to other

infections

4.62× 10−4

(1.75× 10−4, 9.31× 10−4)

mL per

year

b Kill rate of CD4 T cells by

effector CD4 CTLs due to other

infections

1.29× 10−6

(1.09× 10−6, 2.66× 10−4)

mL per

year
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β Transmission rate of HIV-1 to

CD4 T cells

6.27× 10−3

(3.34× 10−6, 3.30× 10−2)

mL per

year

δ Portion of generated HIV-1

specific effector CTLs that are

HIV-1 specific effector CD4

CTLs

2.88× 10−1

(3.69× 10−2, 4.98× 10−1)

-

ka Maximum proliferation rate of

the HIV-1 specific effector CTL

response

5.06× 101 (7.68, 9.20× 102) per year

a Number of HIV-1 specific

effector CTLs at which the

proliferation switches to a

maximum rate

3.10 (1.17× 10−4, 6.31× 101) per mL

µ2 Death rate of effector CTLs 9.74× 101

(4.75× 101, 9.95× 101)

per year

µ3 Death rate of productively

infected CD4 T cells

6.87× 101

(4.94× 101, 3.29× 102)

per year

γ Rate infected CD4 T cells are

killed by effector CTLs

5.28× 101

(3.56× 10−1, 6.37× 101)

mL per

year

p Rate replication competent viral

particles were produced by

HIV-1 infected CD4 T cells

1.15× 103

(1.02× 103, 5.75× 104)

per year

µ4 Death rate of HIV-1 replication

competent viral particles

9.13× 103

(2.16× 103, 9.42× 103)

per year

r2 Growth rate of new CD8 T cells 7.17× 10−5

(3.92× 10−5, 8.23× 10−5)

mL per

year
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µ5 Death rate of total CD8 T cells 5.76× 101

(2.98× 101, 6.33× 101)

per year

x0 Initial number of CD4 T cells

susceptible to HIV-1

5.29× 105

(5.11× 105, 6.63× 105)

per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

2.71 (2.70, 3.89× 101) per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

6.61 (9.99× 10−1, 3.63× 101) per mL

v0 initial number of HIV-1

replication competent viral

particles

3.69× 101 (1.01, 3.71× 101) per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

2.75× 105

(1.48× 105, 2.89× 105)

per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

2.33× 101 (1.20, 3.76× 101) per mL

v1 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given viral load data

3.15 (1.08, 9.14) per mL

v2 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD4 T cell

data

3.79× 102

(3.55× 103, 2.08× 104)

per mL
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v3 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD8 T cell

data

8.57× 103

(3.05× 103, 8.07× 103)

per mL

Table 7.28: Fitted parameter estimates in θ with the maximum posterior
as the point estimate and 95% credible intervals for Patient 28

Symbol Parameter Estimate (95% credible

interval)

Unit

r1 Growth rate of new CD4 T cells 1.47× 102

(1.46× 102, 5.87× 102)

per year

µ1 Death rate of total CD4 T cells 5.42× 101 (6.16, 5.46× 101) per year

c Kill rate of CD4 T cells by

effector CD8 CTLs due to other

infections

1.20× 10−4

(1.14× 10−4, 6.69× 10−4)

mL per

year

b Kill rate of CD4 T cells by

effector CD4 CTLs due to other

infections

2.57× 10−8

(1.01× 10−15, 5.31× 10−7)

mL per

year

β Transmission rate of HIV-1 to

CD4 T cells

1.85× 10−2

(1.10× 10−5, 1.46× 10−2)

mL per

year

δ Portion of generated HIV-1

specific effector CTLs that are

HIV-1 specific effector CD4

CTLs

1.35× 10−1

(2.53× 10−2, 4.93× 10−1)

-
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ka Maximum proliferation rate of

the HIV-1 specific effector CTL

response

7.37× 102 (7.93, 9.44× 102) per year

a Number of HIV-1 specific

effector CTLs at which the

proliferation switches to a

maximum rate

7.49× 10−4

(1.01× 10−4, 3.93× 101)

per mL

µ2 Death rate of effector CTLs 9.84× 101

(6.83× 101, 9.92× 101)

per year

µ3 Death rate of productively

infected CD4 T cells

2.26× 102

(5.87× 101, 3.18× 102)

per year

γ Rate infected CD4 T cells are

killed by effector CTLs

2.50× 101

(1.18× 10−2, 8.89× 101)

mL per

year

p Rate replication competent viral

particles were produced by

HIV-1 infected CD4 T cells

1.11× 103

(1.09× 103, 1.80× 105)

per year

µ4 Death rate of HIV-1 replication

competent viral particles

6.93× 103

(2.15× 103, 9.82× 103)

per year

r2 Growth rate of new CD8 T cells 1.08× 10−4

(9.89× 10−5, 1.26× 10−4)

mL per

year

µ5 Death rate of total CD8 T cells 6.73× 101

(6.44× 101, 7.34× 101)

per year

x0 Initial number of CD4 T cells

susceptible to HIV-1

6.08× 105

(6.00× 105, 7.30× 105)

per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

4.09× 101

(3.83× 10−1, 4.66× 101)

per mL
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y0 Initial number of CD4 T cells

productively infected with

HIV-1

3.63× 101

(1.63× 10−1, 4.71× 101)

per mL

v0 initial number of HIV-1

replication competent viral

particles

4.40× 101

(4.27× 101, 4.60× 101)

per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

8.98× 105

(7.76× 105, 9.26× 105)

per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

3.92× 101

(6.63× 10−1, 4.74× 101)

per mL

v1 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given viral load data

1.09× 10−4

(1.03× 10−4, 2.74× 10−2)

per mL

v2 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD4 T cell

data

3.64× 103

(2.06× 103, 1.23× 104)

per mL

v3 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD8 T cell

data

1.27× 104

(5.98× 103, 2.57× 104)

per mL
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7.D.5 HIV-1 patient comparison group fitted parame-

ters

Table 7.29: Fitted parameter estimates in θ with the maximum posterior
as the point estimate and 95% credible intervals for Patient 2

Symbol Parameter Estimate (95% credible

interval)

Unit

r1 Growth rate of new CD4 T cells 2.33× 102 (8.26, 2.33× 102) per year

µ1 Death rate of total CD4 T cells 1.34 (2.37× 10−1, 6.37× 101) per year

c Kill rate of CD4 T cells by

effector CD8 CTLs due to other

infections

1.96× 10−4

(2.45× 10−6, 1.96× 10−4)

mL per

year

b Kill rate of CD4 T cells by

effector CD4 CTLs due to other

infections

6.85× 10−15

(1.01× 10−15, 1.01× 10−7)

mL per

year

β Transmission rate of HIV-1 to

CD4 T cells

1.09× 10−3

(1.23× 10−4, 3.73× 10−3)

mL per

year

δ Portion of generated HIV-1

specific effector CTLs that are

HIV-1 specific effector CD4

CTLs

6.25× 10−2

(5.43× 10−6, 4.68× 10−1)

-

ka Maximum proliferation rate of

the HIV-1 specific effector CTL

response

4.41× 101 (4.23, 5.03× 101) per year
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a Number of HIV-1 specific

effector CTLs at which the

proliferation switches to a

maximum rate

5.03× 102

(3.87× 10−4, 3.41× 102)

per mL

µ2 Death rate of effector CTLs 9.71× 101

(6.58× 101, 9.96× 101)

per year

µ3 Death rate of productively

infected CD4 T cells

1.35× 102

(5.17× 101, 3.17× 102)

per year

γ Rate infected CD4 T cells are

killed by effector CTLs

3.35 (1.26× 10−2, 3.47) mL per

year

p Rate replication competent viral

particles were produced by

HIV-1 infected CD4 T cells

5.93× 103

(1.00× 103, 2.52× 104)

per year

µ4 Death rate of HIV-1 replication

competent viral particles

2.34× 103

(2.34× 103, 9.55× 103)

per year

r2 Growth rate of new CD8 T cells 3.58× 10−5

(3.46× 10−5, 1.43× 10−4)

mL per

year

µ5 Death rate of total CD8 T cells 2.31× 101

(2.28× 101, 9.21× 101)

per year

x0 Initial number of CD4 T cells

susceptible to HIV-1

5.66× 105

(5.30× 105, 7.11× 105)

per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

1.18× 103

(2.56× 10−1, 1.34× 103)

per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

6.45× 101

(3.96× 101, 1.39× 103)

per mL
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v0 initial number of HIV-1

replication competent viral

particles

6.07× 102

(1.93× 102, 1.47× 103)

per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

1.05× 106

(9.37× 105, 1.24× 106)

per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

1.18× 103

(2.15× 101, 1.45× 103)

per mL

v1 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given viral load data

2.76× 103

(4.42× 102, 3.06× 103)

per mL

v2 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD4 T cell

data

4.90× 102

(1.62× 103, 8.35× 103)

per mL

v3 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD8 T cell

data

8.98× 103

(6.22× 103, 1.20× 104)

per mL

Table 7.30: Fitted parameter estimates in θ with the maximum posterior
as the point estimate and 95% credible intervals for Patient 7
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Symbol Parameter Estimate (95% credible

interval)

Unit

r1 Growth rate of new CD4 T cells 6.76× 102

(3.46× 101, 8.46× 102)

per year

µ1 Death rate of total CD4 T cells 6.55× 101 (3.76, 4.97× 101) per year

c Kill rate of CD4 T cells by

effector CD8 CTLs due to other

infections

4.75× 10−4

(1.70× 10−5, 7.08× 10−4)

mL per

year

b Kill rate of CD4 T cells by

effector CD4 CTLs due to other

infections

8.24× 10−5

(5.22× 10−15, 1.73× 10−4)

mL per

year

β Transmission rate of HIV-1 to

CD4 T cells

4.78× 10−5

(2.04× 10−5, 2.74× 10−3)

mL per

year

δ Portion of generated HIV-1

specific effector CTLs that are

HIV-1 specific effector CD4

CTLs

9.14× 10−2

(2.65× 10−2, 4.65× 10−1)

-

ka Maximum proliferation rate of

the HIV-1 specific effector CTL

response

7.83× 102

(1.21× 102, 9.95× 102)

per year

a Number of HIV-1 specific

effector CTLs at which the

proliferation switches to a

maximum rate

8.57× 103

(1.52× 10−4, 6.68× 103)

per mL

µ2 Death rate of effector CTLs 7.98× 101

(6.63× 101, 9.55× 101)

per year
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µ3 Death rate of productively

infected CD4 T cells

2.36× 102

(2.80× 101, 3.03× 102)

per year

γ Rate infected CD4 T cells are

killed by effector CTLs

8.51× 10−2

(1.25× 10−2, 5.46× 101)

mL per

year

p Rate replication competent viral

particles were produced by

HIV-1 infected CD4 T cells

1.05× 104

(1.10× 104, 7.69× 104)

per year

µ4 Death rate of HIV-1 replication

competent viral particles

1.30× 103

(1.29× 103, 9.15× 103)

per year

r2 Growth rate of new CD8 T cells 8.89× 10−5

(4.42× 10−5, 8.80× 10−5)

mL per

year

µ5 Death rate of total CD8 T cells 6.59× 101

(3.28× 101, 6.59× 101)

per year

x0 Initial number of CD4 T cells

susceptible to HIV-1

8.27× 105

(7.32× 105, 9.73× 105)

per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

1.41× 103

(8.33× 101, 2.44× 103)

per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

1.41× 103

(2.15× 102, 2.98× 103)

per mL

v0 initial number of HIV-1

replication competent viral

particles

1.30× 103

(1.01× 103, 2.89× 103)

per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

9.09× 105

(8.30× 105, 1.08× 106)

per mL
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zE0 Initial number of HIV-1 specific

effector CD8 CTLs

3.05× 102

(1.37× 102, 2.72× 103)

per mL

v1 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given viral load data

1.84× 103

(2.57× 103, 4.63× 103)

per mL

v2 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD4 T cell

data

9.02× 103

(5.41× 103, 8.61× 103)

per mL

v3 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD8 T cell

data

2.50× 104

(1.87× 104, 2.66× 104)

per mL

Table 7.31: Fitted parameter estimates in θ with the maximum posterior
as the point estimate and 95% credible intervals for Patient 10

Symbol Parameter Estimate (95% credible

interval)

Unit

r1 Growth rate of new CD4 T cells 9.25× 102

(6.53× 102, 9.89× 102)

per year

µ1 Death rate of total CD4 T cells 2.70× 101 (1.40, 5.88× 101) per year
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c Kill rate of CD4 T cells by

effector CD8 CTLs due to other

infections

4.18× 10−4

(2.61× 10−4, 4.40× 10−4)

mL per

year

b Kill rate of CD4 T cells by

effector CD4 CTLs due to other

infections

6.43× 10−5

(4.04× 10−12, 2.05× 10−4)

mL per

year

β Transmission rate of HIV-1 to

CD4 T cells

2.34× 10−4

(1.17× 10−4, 1.33× 10−3)

mL per

year

δ Portion of generated HIV-1

specific effector CTLs that are

HIV-1 specific effector CD4

CTLs

2.14× 10−1

(3.44× 10−2, 4.94× 10−1)

-

ka Maximum proliferation rate of

the HIV-1 specific effector CTL

response

1.05× 102 (8.24, 7.75× 101) per year

a Number of HIV-1 specific

effector CTLs at which the

proliferation switches to a

maximum rate

2.24× 103

(1.17× 10−4, 3.18× 102)

per mL

µ2 Death rate of effector CTLs 7.83× 101

(6.41× 101, 9.95× 101)

per year

µ3 Death rate of productively

infected CD4 T cells

2.09× 102

(4.61× 101, 2.73× 102)

per year

γ Rate infected CD4 T cells are

killed by effector CTLs

1.74× 10−2

(1.71× 10−2, 1.18)

mL per

year
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p Rate replication competent viral

particles were produced by

HIV-1 infected CD4 T cells

2.99× 103

(1.29× 103, 3.01× 103)

per year

µ4 Death rate of HIV-1 replication

competent viral particles

3.13× 103

(1.17× 103, 3.00× 103)

per year

r2 Growth rate of new CD8 T cells 5.31× 10−5

(5.14× 10−5, 7.68× 10−5)

mL per

year

µ5 Death rate of total CD8 T cells 5.15× 101

(4.78× 101, 7.70× 101)

per year

x0 Initial number of CD4 T cells

susceptible to HIV-1

8.06× 105

(5.71× 105, 9.78× 105)

per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

1.36× 102

(1.16× 102, 1.96× 103)

per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

8.02× 101

(6.92× 101, 1.91× 103)

per mL

v0 initial number of HIV-1

replication competent viral

particles

5.97× 102

(1.64× 102, 1.81× 103)

per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

1.35× 106

(1.11× 106, 1.39× 106)

per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

2.98× 102

(4.09× 101, 1.90× 103)

per mL
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v1 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given viral load data

1.97× 102

(3.37× 102, 5.51× 102)

per mL

v2 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD4 T cell

data

5.08× 104

(3.44× 104, 5.88× 104)

per mL

v3 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD8 T cell

data

1.21× 105

(8.40× 104, 1.90× 105)

per mL

Table 7.32: Fitted parameter estimates in θ with the maximum posterior
as the point estimate and 95% credible intervals for Patient 11

Symbol Parameter Estimate (95% credible

interval)

Unit

r1 Growth rate of new CD4 T cells 2.35× 101

(2.30× 101, 2.50× 101)

per year

µ1 Death rate of total CD4 T cells 1.38× 101 (9.84, 1.43× 101) per year

c Kill rate of CD4 T cells by

effector CD8 CTLs due to other

infections

1.78× 10−5

(1.66× 10−5, 2.59× 10−5)

mL per

year

251



b Kill rate of CD4 T cells by

effector CD4 CTLs due to other

infections

2.84× 10−6

(2.64× 10−6, 4.91× 10−6)

mL per

year

β Transmission rate of HIV-1 to

CD4 T cells

3.77× 10−6

(3.75× 10−6, 3.78× 10−6)

mL per

year

δ Portion of generated HIV-1

specific effector CTLs that are

HIV-1 specific effector CD4

CTLs

4.70× 10−1

(2.56× 10−2, 4.98× 10−1)

-

ka Maximum proliferation rate of

the HIV-1 specific effector CTL

response

1.46× 101 (3.59, 7.13× 101) per year

a Number of HIV-1 specific

effector CTLs at which the

proliferation switches to a

maximum rate

4.07× 10−3

(1.00× 10−4, 7.14× 10−1)

per mL

µ2 Death rate of effector CTLs 7.92× 101

(5.78× 101, 1.00× 102)

per year

µ3 Death rate of productively

infected CD4 T cells

2.97× 101

(2.97× 101, 2.99× 101)

per year

γ Rate infected CD4 T cells are

killed by effector CTLs

2.54× 10−2

(1.03× 10−2, 4.40× 10−2)

mL per

year

p Rate replication competent viral

particles were produced by

HIV-1 infected CD4 T cells

1.30× 105

(1.30× 105, 1.31× 105)

per year
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µ4 Death rate of HIV-1 replication

competent viral particles

9.61× 103

(9.45× 103, 9.63× 103)

per year

r2 Growth rate of new CD8 T cells 8.65× 10−5

(8.62× 10−5, 8.67× 10−5)

mL per

year

µ5 Death rate of total CD8 T cells 4.98× 101

(4.92× 101, 4.99× 101)

per year

x0 Initial number of CD4 T cells

susceptible to HIV-1

5.84× 105

(5.06× 105, 6.65× 105)

per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

8.65× 102

(1.44× 101, 3.96× 103)

per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

2.73× 103

(9.65× 102, 4.50× 103)

per mL

v0 initial number of HIV-1

replication competent viral

particles

3.79× 103

(3.01× 103, 4.38× 103)

per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

5.28× 105

(4.66× 105, 7.11× 105)

per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

2.76× 102

(7.10× 101, 4.07× 103)

per mL

v1 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given viral load data

2.23× 102

(1.25× 102, 7.30× 102)

per mL
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v2 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD4 T cell

data

1.76× 104

(1.25× 104, 1.85× 104)

per mL

v3 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD8 T cell

data

1.57× 104

(1.05× 104, 1.81× 104)

per mL

Table 7.33: Fitted parameter estimates in θ with the maximum posterior
as the point estimate and 95% credible intervals for Patient 12

Symbol Parameter Estimate (95% credible

interval)

Unit

r1 Growth rate of new CD4 T cells 5.80× 102

(5.79× 102, 6.18× 102)

per year

µ1 Death rate of total CD4 T cells 4.03× 101

(2.34× 101, 4.28× 101)

per year

c Kill rate of CD4 T cells by

effector CD8 CTLs due to other

infections

5.66× 10−4

(5.60× 10−4, 5.74× 10−4)

mL per

year

b Kill rate of CD4 T cells by

effector CD4 CTLs due to other

infections

5.49× 10−7

(1.10× 10−10, 1.79× 10−4)

mL per

year
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β Transmission rate of HIV-1 to

CD4 T cells

1.33× 10−3

(1.33× 10−3, 1.33× 10−3)

mL per

year

δ Portion of generated HIV-1

specific effector CTLs that are

HIV-1 specific effector CD4

CTLs

6.32× 10−2

(1.74× 10−2, 3.98× 10−1)

-

ka Maximum proliferation rate of

the HIV-1 specific effector CTL

response

1.33× 102

(9.38× 101, 1.34× 102)

per year

a Number of HIV-1 specific

effector CTLs at which the

proliferation switches to a

maximum rate

1.22× 104

(7.68× 103, 1.22× 104)

per mL

µ2 Death rate of effector CTLs 9.30× 101

(8.41× 101, 9.30× 101)

per year

µ3 Death rate of productively

infected CD4 T cells

1.49× 102

(1.49× 102, 1.50× 102)

per year

γ Rate infected CD4 T cells are

killed by effector CTLs

3.84× 10−2

(3.84× 10−2, 3.35)

mL per

year

p Rate replication competent viral

particles were produced by

HIV-1 infected CD4 T cells

2.15× 103

(2.12× 103, 2.15× 103)

per year

µ4 Death rate of HIV-1 replication

competent viral particles

3.89× 103

(3.77× 103, 5.54× 103)

per year

r2 Growth rate of new CD8 T cells 1.04× 10−4

(1.04× 10−4, 1.08× 10−4)

mL per

year
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µ5 Death rate of total CD8 T cells 5.11× 101

(5.11× 101, 5.24× 101)

per year

x0 Initial number of CD4 T cells

susceptible to HIV-1

7.99× 105

(6.57× 105, 8.98× 105)

per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

8.49× 103

(8.46× 103, 8.68× 103)

per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

2.04× 103

(2.03× 103, 7.41× 103)

per mL

v0 initial number of HIV-1

replication competent viral

particles

5.98× 103

(4.82× 103, 6.99× 103)

per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

1.37× 106

(1.22× 106, 1.52× 106)

per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

3.42× 103

(1.97× 103, 3.44× 103)

per mL

v1 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given viral load data

1.63× 103

(1.12× 103, 4.78× 103)

per mL

v2 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD4 T cell

data

2.32× 104

(1.57× 104, 3.88× 104)

per mL
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v3 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD8 T cell

data

1.54× 105

(9.47× 104, 1.77× 105)

per mL

Table 7.34: Fitted parameter estimates in θ with the maximum posterior
as the point estimate and 95% credible intervals for Patient 21

Symbol Parameter Estimate (95% credible

interval)

Unit

r1 Growth rate of new CD4 T cells 1.05× 102

(1.03× 102, 6.35× 102)

per year

µ1 Death rate of total CD4 T cells 3.12× 101

(1.46× 10−1, 4.45× 101)

per year

c Kill rate of CD4 T cells by

effector CD8 CTLs due to other

infections

7.38× 10−5

(6.93× 10−5, 5.99× 10−4)

mL per

year

b Kill rate of CD4 T cells by

effector CD4 CTLs due to other

infections

2.38× 10−8

(1.37× 10−15, 1.54× 10−4)

mL per

year

β Transmission rate of HIV-1 to

CD4 T cells

4.73× 10−5

(4.95× 10−5, 1.57× 10−2)

mL per

year
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δ Portion of generated HIV-1

specific effector CTLs that are

HIV-1 specific effector CD4

CTLs

1.86× 10−1

(2.85× 10−2, 5.00× 10−1)

-

ka Maximum proliferation rate of

the HIV-1 specific effector CTL

response

6.72× 102

(8.14× 10−1, 9.43× 102)

per year

a Number of HIV-1 specific

effector CTLs at which the

proliferation switches to a

maximum rate

8.18× 102

(1.12× 10−4, 1.46× 103)

per mL

µ2 Death rate of effector CTLs 5.54× 101

(3.97× 101, 9.94× 101)

per year

µ3 Death rate of productively

infected CD4 T cells

1.87× 102

(4.38× 101, 3.22× 102)

per year

γ Rate infected CD4 T cells are

killed by effector CTLs

7.28× 10−2

(4.26× 10−2, 1.16× 101)

mL per

year

p Rate replication competent viral

particles were produced by

HIV-1 infected CD4 T cells

1.50× 105

(1.39× 103, 1.88× 105)

per year

µ4 Death rate of HIV-1 replication

competent viral particles

8.02× 103

(1.69× 103, 8.76× 103)

per year

r2 Growth rate of new CD8 T cells 8.55× 10−5

(4.49× 10−5, 1.17× 10−4)

mL per

year

µ5 Death rate of total CD8 T cells 5.31× 101

(2.81× 101, 7.45× 101)

per year
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x0 Initial number of CD4 T cells

susceptible to HIV-1

6.69× 105

(5.32× 105, 7.47× 105)

per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

3.89× 103

(7.79× 102, 9.93× 103)

per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

5.13× 103

(1.28× 102, 9.51× 103)

per mL

v0 initial number of HIV-1

replication competent viral

particles

5.20× 103

(3.32× 103, 6.98× 103)

per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

7.56× 105

(7.40× 105, 1.10× 106)

per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

8.65× 103

(2.02× 102, 9.60× 103)

per mL

v1 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given viral load data

4.98 (2.91× 101, 4.54× 102) per mL

v2 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD4 T cell

data

8.73× 103

(6.64× 103, 1.65× 104)

per mL
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v3 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD8 T cell

data

1.70× 104

(1.03× 104, 2.38× 104)

per mL

Table 7.35: Fitted parameter estimates in θ with the maximum posterior
as the point estimate and 95% credible intervals for Patient 23

Symbol Parameter Estimate (95% credible

interval)

Unit

r1 Growth rate of new CD4 T cells 1.33× 103

(1.32× 103, 1.33× 103)

per year

µ1 Death rate of total CD4 T cells 4.92× 101

(3.67× 101, 4.92× 101)

per year

c Kill rate of CD4 T cells by

effector CD8 CTLs due to other

infections

9.61× 10−4

(9.61× 10−4, 9.61× 10−4)

mL per

year

b Kill rate of CD4 T cells by

effector CD4 CTLs due to other

infections

2.17× 10−4

(2.17× 10−4, 2.22× 10−4)

mL per

year

β Transmission rate of HIV-1 to

CD4 T cells

4.16× 10−6

(4.16× 10−6, 4.41× 10−6)

mL per

year
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δ Portion of generated HIV-1

specific effector CTLs that are

HIV-1 specific effector CD4

CTLs

3.90× 10−1

(1.08× 10−1, 4.67× 10−1)

-

ka Maximum proliferation rate of

the HIV-1 specific effector CTL

response

7.76× 101

(7.75× 101, 7.76× 101)

per year

a Number of HIV-1 specific

effector CTLs at which the

proliferation switches to a

maximum rate

1.34× 101

(1.34× 101, 1.52× 101)

per mL

µ2 Death rate of effector CTLs 7.02× 101

(7.02× 101, 7.02× 101)

per year

µ3 Death rate of productively

infected CD4 T cells

2.00× 102

(1.89× 102, 2.00× 102)

per year

γ Rate infected CD4 T cells are

killed by effector CTLs

6.26× 101

(6.26× 101, 6.26× 101)

mL per

year

p Rate replication competent viral

particles were produced by

HIV-1 infected CD4 T cells

1.35× 106

(1.24× 106, 1.35× 106)

per year

µ4 Death rate of HIV-1 replication

competent viral particles

7.39× 103

(7.39× 103, 7.42× 103)

per year

r2 Growth rate of new CD8 T cells 7.36× 10−5

(7.35× 10−5, 7.36× 10−5)

mL per

year

µ5 Death rate of total CD8 T cells 5.92× 101

(5.90× 101, 5.92× 101)

per year
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x0 Initial number of CD4 T cells

susceptible to HIV-1

9.67× 105

(9.67× 105, 9.78× 105)

per mL

xE0 Initial number of HIV-1 specific

effector CD4 CTLs

1.41× 103

(6.39× 102, 1.41× 103)

per mL

y0 Initial number of CD4 T cells

productively infected with

HIV-1

1.19× 103

(7.17× 102, 1.19× 103)

per mL

v0 initial number of HIV-1

replication competent viral

particles

2.67× 102

(2.67× 102, 6.96× 102)

per mL

z0 Initial number of CD8 T cells

that are non HIV-1 specific

1.41× 106

(1.19× 106, 1.41× 106)

per mL

zE0 Initial number of HIV-1 specific

effector CD8 CTLs

5.20× 102

(5.20× 102, 5.80× 102)

per mL

v1 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given viral load data

7.37× 102

(4.79× 102, 1.05× 103)

per mL

v2 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD4 T cell

data

1.46× 104

(1.06× 104, 1.48× 104)

per mL
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v3 parameter determining most

likely shape of Gaussian

distribution with non-constant

variance given total CD8 T cell

data

5.29× 104

(4.24× 104, 5.93× 104)

per mL

7.D.6 HIV-1 Elite Controller patients mathematical model

plots
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Figure 7.17: Modeling HIV-1 infection in the plasma for Patient 1: (a) total CD4 T cells/ml, (b) total CD8 T
cells/ml, (c) viral copies/ml; (d) CD4 T cells susceptible to HIV-1/ml, (e) HIV-1-specific effector CD4 CTLs/ml,
(f) CD4 T cells productively infected with HIV-1/ml; (g) CD8 T cells (non HIV-1-specific)/ml, and (h)
HIV-1-specific effector CD8 CTLs/ml; (i) effector response function over time, and (j) effector response function
over the number of effector CTLs. The predictive mean solution is given by the solid black curve, the 95%
prediction interval is given by the dashed black curves, and the circle points denote the fitted data. (Note: the
black points on the viral copies figure denote that the viral load was below detection and the value of each black
point was the limit of detection at that time)
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Figure 7.18: Modeling HIV-1 infection in the plasma for Patient 6: (a) total CD4 T cells/ml, (b) total CD8 T
cells/ml, (c) viral copies/ml; (d) CD4 T cells susceptible to HIV-1/ml, (e) HIV-1-specific effector CD4 CTLs/ml,
(f) CD4 T cells productively infected with HIV-1/ml; (g) CD8 T cells (non HIV-1-specific)/ml, and (h)
HIV-1-specific effector CD8 CTLs/ml; (i) effector response function over time, and (j) effector response function
over the number of effector CTLs. The predictive mean solution is given by the solid black curve, the 95%
prediction interval is given by the dashed black curves, and the circle points denote the fitted data.
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Figure 7.19: Modeling HIV-1 infection in the plasma for Patient 14: (a) total CD4 T cells/ml, (b) total CD8 T
cells/ml, (c) viral copies/ml; (d) CD4 T cells susceptible to HIV-1/ml, (e) HIV-1-specific effector CD4 CTLs/ml,
(f) CD4 T cells productively infected with HIV-1/ml; (g) CD8 T cells (non HIV-1-specific)/ml, and (h)
HIV-1-specific effector CD8 CTLs/ml; (i) effector response function over time, and (j) effector response function
over the number of effector CTLs. The predictive mean solution is given by the solid black curve, the 95%
prediction interval is given by the dashed black curves, the circle points denote the fitted data, and the star points
display the unfitted data.
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Figure 7.20: Modeling HIV-1 infection in the plasma for Patient 16: (a) total CD4 T cells/ml, (b) total CD8 T
cells/ml, (c) viral copies/ml; (d) CD4 T cells susceptible to HIV-1/ml, (e) HIV-1-specific effector CD4 CTLs/ml,
(f) CD4 T cells productively infected with HIV-1/ml; (g) CD8 T cells (non HIV-1-specific)/ml, and (h)
HIV-1-specific effector CD8 CTLs/ml; (i) effector response function over time, and (j) effector response function
over the number of effector CTLs. The predictive mean solution is given by the solid black curve, the 95%
prediction interval is given by the dashed black curves, the circle points denote the fitted data, and the star points
display the unfitted data. (Note: the black points on the viral copies figure denote that the viral load was below
detection and the value of each black point was the limit of detection at that time)

267



0 1 2 3 4 5 6 7
Years

2

3

4

5

6

7

8

9
To

ta
l C

D
4 

T 
ce

lls
/m

l
105

(a)

0 1 2 3 4 5 6 7
Years

0.6

0.8

1

1.2

1.4

1.6

1.8

To
ta

l C
D

8 
T 

ce
lls

/m
l

106

(b)

0 1 2 3 4 5 6 7
Years

0

50

100

150

200

250

Vi
ra

l c
op

ie
s/

m
l

(c)

0 1 2 3 4 5 6 7
Years

3

3.5

4

4.5

5

5.5

6

6.5

7

C
D

4 
T 

ce
lls

 s
us

ce
pt

ib
le

 to
 H

IV
-1

/m
l

105

(d)

0 1 2 3 4 5 6 7
Years

0

20

40

60

80

100

120

140

160

180

H
IV

-1
-s

pe
ci

fic
 e

ffe
ct

or
 C

D
4 

C
TL

s/
m

l

(e)

0 1 2 3 4 5 6 7
Years

0

20

40

60

80

100

120

140

160

180

200

C
D

4 
T 

ce
lls

 p
ro

du
ct

iv
el

y 
in

fe
ct

ed
 w

ith
 H

IV
-1

/m
l (f)

0 1 2 3 4 5 6 7
Years

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

C
D

8 
T 

ce
lls

 (n
on

 H
IV

-1
-s

pe
ci

fic
)/m

l

106

(g)

0 1 2 3 4 5 6 7
Years

0

50

100

150

200

250

H
IV

-1
-s

pe
ci

fic
 e

ffe
ct

or
 C

D
8 

C
TL

s/
m

l

(h)

0 1 2 3 4 5 6 7
Years

400

450

500

550

600

650

700

750

g(
w

) f
un

ct
io

n

(i)

0 5 10 15 20 25 30 35 40 45 50
w

0

100

200

300

400

500

600

700

800

g(
w

) f
un

ct
io

n

(j)

Figure 7.21: Modeling HIV-1 infection in the plasma for Patient 17: (a) total CD4 T cells/ml, (b) total CD8 T
cells/ml, (c) viral copies/ml; (d) CD4 T cells susceptible to HIV-1/ml, (e) HIV-1-specific effector CD4 CTLs/ml,
(f) CD4 T cells productively infected with HIV-1/ml; (g) CD8 T cells (non HIV-1-specific)/ml, and (h)
HIV-1-specific effector CD8 CTLs/ml; (i) effector response function over time, and (j) effector response function
over the number of effector CTLs. The predictive mean solution is given by the solid black curve, the 95%
prediction interval is given by the dashed black curves, the circle points denote the fitted data, and the star point
displays the unfitted data. (Note: the black points on the viral copies figure denote that the viral load was below
detection and the value of each black point was the limit of detection at that time)
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Figure 7.22: Modeling HIV-1 infection in the plasma for Patient 18: (a) total CD4 T cells/ml, (b) total CD8 T
cells/ml, (c) viral copies/ml; (d) CD4 T cells susceptible to HIV-1/ml, (e) HIV-1-specific effector CD4 CTLs/ml,
(f) CD4 T cells productively infected with HIV-1/ml; (g) CD8 T cells (non HIV-1-specific)/ml, and (h)
HIV-1-specific effector CD8 CTLs/ml; (i) effector response function over time, and (j) effector response function
over the number of effector CTLs. The predictive mean solution is given by the solid black curve, the 95%
prediction interval is given by the dashed black curves, and the circle points denote the fitted data. (Note: the
black points on the viral copies figure denote that the viral load was below detection and the value of each black
point was the limit of detection at that time)
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Figure 7.23: Modeling HIV-1 infection in the plasma for Patient 24: (a) total CD4 T cells/ml, (b) total CD8 T
cells/ml, (c) viral copies/ml; (d) CD4 T cells susceptible to HIV-1/ml, (e) HIV-1-specific effector CD4 CTLs/ml,
(f) CD4 T cells productively infected with HIV-1/ml; (g) CD8 T cells (non HIV-1-specific)/ml, and (h)
HIV-1-specific effector CD8 CTLs/ml; (i) effector response function over time, and (j) effector response function
over the number of effector CTLs. The predictive mean solution is given by the solid black curve, the 95%
prediction interval is given by the dashed black curves, and the circle points denote the fitted data. (Note: the
black points on the viral copies figure denote that the viral load was below detection and the value of each black
point was the limit of detection at that time)

270



0 1 2 3 4 5 6 7 8 9
Years

3

4

5

6

7

8

9

10

11
To

ta
l C

D
4 

T 
ce

lls
/m

l
105

(a)

0 1 2 3 4 5 6 7 8 9
Years

1

1.5

2

2.5

3

3.5

4

To
ta

l C
D

8 
T 

ce
lls

/m
l

105

(b)

0 1 2 3 4 5 6 7 8 9
Years

0

10

20

30

40

50

60

Vi
ra

l c
op

ie
s/

m
l

(c)

0 1 2 3 4 5 6 7 8 9
Years

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

C
D

4 
T 

ce
lls

 s
us

ce
pt

ib
le

 to
 H

IV
-1

/m
l

105

(d)

0 1 2 3 4 5 6 7 8 9
Years

0

20

40

60

80

100

120

140

H
IV

-1
-s

pe
ci

fic
 e

ffe
ct

or
 C

D
4 

C
TL

s/
m

l

(e)

0 1 2 3 4 5 6 7 8 9
Years

0

20

40

60

80

100

120

140

160

C
D

4 
T 

ce
lls

 p
ro

du
ct

iv
el

y 
in

fe
ct

ed
 w

ith
 H

IV
-1

/m
l (f)

0 1 2 3 4 5 6 7 8 9
Years

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

C
D

8 
T 

ce
lls

 (n
on

 H
IV

-1
-s

pe
ci

fic
)/m

l

105

(g)

0 1 2 3 4 5 6 7 8 9
Years

0

50

100

150

200

250

300

350

400

450

H
IV

-1
-s

pe
ci

fic
 e

ffe
ct

or
 C

D
8 

C
TL

s/
m

l

(h)

0 1 2 3 4 5 6 7 8 9
Years

0

100

200

300

400

500

600

700

800

900

1000

g(
w

) f
un

ct
io

n

(i)

0 100 200 300 400 500 600 700 800 900 1000
w

0

100

200

300

400

500

600

700

800

900

1000

g(
w

) f
un

ct
io

n

(j)

Figure 7.24: Modeling HIV-1 infection in the plasma for Patient 25: (a) total CD4 T cells/ml, (b) total CD8 T
cells/ml, (c) viral copies/ml; (d) CD4 T cells susceptible to HIV-1/ml, (e) HIV-1-specific effector CD4 CTLs/ml,
(f) CD4 T cells productively infected with HIV-1/ml; (g) CD8 T cells (non HIV-1-specific)/ml, and (h)
HIV-1-specific effector CD8 CTLs/ml; (i) effector response function over time, and (j) effector response function
over the number of effector CTLs. The predictive mean solution is given by the solid black curve, the 95%
prediction interval is given by the dashed black curves, the circle points denote the fitted data, and the star points
display the unfitted data. (Note: the black points on the viral copies figure denote that the viral load was below
detection and the value of each black point was the limit of detection at that time)
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Figure 7.25: Modeling HIV-1 infection in the plasma for Patient 28: (a) total CD4 T cells/ml, (b) total CD8 T
cells/ml, (c) viral copies/ml; (d) CD4 T cells susceptible to HIV-1/ml, (e) HIV-1-specific effector CD4 CTLs/ml,
(f) CD4 T cells productively infected with HIV-1/ml; (g) CD8 T cells (non HIV-1-specific)/ml, and (h)
HIV-1-specific effector CD8 CTLs/ml; (i) effector response function over time, and (j) effector response function
over the number of effector CTLs. The predictive mean solution is given by the solid black curve, the 95%
prediction interval is given by the dashed black curves, the circle points denote the fitted data, and the star point
displays the unfitted data. (Note: the black points on the viral copies figure denote that the viral load was below
detection and the value of each black point was the limit of detection at that time)
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Figure 7.26: Modeling HIV-1 infection in the plasma for Patient 2: (a) total CD4 T cells/ml, (b) total CD8 T
cells/ml, (c) viral copies/ml; (d) CD4 T cells susceptible to HIV-1/ml, (e) HIV-1-specific effector CD4 CTLs/ml,
(f) CD4 T cells productively infected with HIV-1/ml; (g) CD8 T cells (non HIV-1-specific)/ml, and (h)
HIV-1-specific effector CD8 CTLs/ml; (i) effector response function over time, and (j) effector response function
over the number of effector CTLs. The predictive mean solution is given by the solid black curve, the 95%
prediction interval is given by the dashed black curves, and the circle points denote the fitted data.
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Figure 7.27: Modeling HIV-1 infection in the plasma for Patient 7: (a) total CD4 T cells/ml, (b) total CD8 T
cells/ml, (c) viral copies/ml; (d) CD4 T cells susceptible to HIV-1/ml, (e) HIV-1-specific effector CD4 CTLs/ml,
(f) CD4 T cells productively infected with HIV-1/ml; (g) CD8 T cells (non HIV-1-specific)/ml, and (h)
HIV-1-specific effector CD8 CTLs/ml; (i) effector response function over time, and (j) effector response function
over the number of effector CTLs. The predictive mean solution is given by the solid black curve, the 95%
prediction interval is given by the dashed black curves, the circle points denote the fitted data, and the star points
display the unfitted data.
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Figure 7.28: Modeling HIV-1 infection in the plasma for Patient 10: (a) total CD4 T cells/ml, (b) total CD8 T
cells/ml, (c) viral copies/ml; (d) CD4 T cells susceptible to HIV-1/ml, (e) HIV-1-specific effector CD4 CTLs/ml,
(f) CD4 T cells productively infected with HIV-1/ml; (g) CD8 T cells (non HIV-1-specific)/ml, and (h)
HIV-1-specific effector CD8 CTLs/ml; (i) effector response function over time, and (j) effector response function
over the number of effector CTLs. The predictive mean solution is given by the solid black curve, the 95%
prediction interval is given by the dashed black curves, and the circle points denote the fitted data.
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Figure 7.29: Modeling HIV-1 infection in the plasma for Patient 11: (a) total CD4 T cells/ml, (b) total CD8 T
cells/ml, (c) viral copies/ml; (d) CD4 T cells susceptible to HIV-1/ml, (e) HIV-1-specific effector CD4 CTLs/ml,
(f) CD4 T cells productively infected with HIV-1/ml; (g) CD8 T cells (non HIV-1-specific)/ml, and (h)
HIV-1-specific effector CD8 CTLs/ml; (i) effector response function over time, and (j) effector response function
over the number of effector CTLs. The predictive mean solution is given by the solid black curve, the 95%
prediction interval is given by the dashed black curves, and the circle points denote the fitted data. (Note: the
black points on the viral copies figure denote that the viral load was below detection and the value of each black
point was the limit of detection at that time)
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Figure 7.30: Modeling HIV-1 infection in the plasma for Patient 12: (a) total CD4 T cells/ml, (b) total CD8 T
cells/ml, (c) viral copies/ml; (d) CD4 T cells susceptible to HIV-1/ml, (e) HIV-1-specific effector CD4 CTLs/ml,
(f) CD4 T cells productively infected with HIV-1/ml; (g) CD8 T cells (non HIV-1-specific)/ml, and (h)
HIV-1-specific effector CD8 CTLs/ml; (i) effector response function over time, and (j) effector response function
over the number of effector CTLs. The predictive mean solution is given by the solid black curve, the 95%
prediction interval is given by the dashed black curves, and the circle points denote the fitted data.
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Figure 7.31: Modeling HIV-1 infection in the plasma for Patient 21: (a) total CD4 T cells/ml, (b) total CD8 T
cells/ml, (c) viral copies/ml; (d) CD4 T cells susceptible to HIV-1/ml, (e) HIV-1-specific effector CD4 CTLs/ml,
(f) CD4 T cells productively infected with HIV-1/ml; (g) CD8 T cells (non HIV-1-specific)/ml, and (h)
HIV-1-specific effector CD8 CTLs/ml; (i) effector response function over time, and (j) effector response function
over the number of effector CTLs. The predictive mean solution is given by the solid black curve, the 95%
prediction interval is given by the dashed black curves, and the circle points denote the fitted data.
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Figure 7.32: Modeling HIV-1 infection in the plasma for Patient 23: (a) total CD4 T cells/ml, (b) total CD8 T
cells/ml, (c) viral copies/ml; (d) CD4 T cells susceptible to HIV-1/ml, (e) HIV-1-specific effector CD4 CTLs/ml,
(f) CD4 T cells productively infected with HIV-1/ml; (g) CD8 T cells (non HIV-1-specific)/ml, and (h)
HIV-1-specific effector CD8 CTLs/ml; (i) effector response function over time, and (j) effector response function
over the number of effector CTLs. The predictive mean solution is given by the solid black curve, the 95%
prediction interval is given by the dashed black curves, and the circle points denote the fitted data.
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7.E Extended Fourier amplitude sensitivity test

The extended Fourier amplitude sensitivity test (eFAST) was used to deter-

mine the most important parameters in system (6.1) that explained the total

CD4 T cells/ml, total CD8 T cells/ml, and viral copies/ml for each HIV-1 pa-

tient. The sensitivity analysis results for each patient are displayed in Sections

7.F.1 and 7.F.2.

eFAST is a variance-based global sensitivity analysis method. Global sen-

sitivity analysis quantifies the importance of model parameters and the inter-

actions of model parameters with respect to a specific model outcome [132].

Variance-based methods quantify the fraction of a model outcome’s variance

that can be explained by the variation of the model parameters [133, 134].

In eFAST, the model outcome variance is partitioned by varying different pa-

rameters at different frequencies, and then Fourier analysis is used to measure

the strength of each parameter’s frequency in the model outcome’s variance

[134]. Therefore, how strongly a parameter’s frequency propagates through to

the model outcome of interest is a measure that indicates the sensitivity of

the model outcome of interest to the parameter [134]. In the eFAST method,

the total-order sensitivity index was used to rank the importance of the model

parameters to the outcome of interest; the total-order sensitivity index is a

necessary and sufficient index to use for assessing the sensitivity of non-linear

models [133]. The sum of the total-order sensitivity indexes is equal to 1 if the

model is linear and greater than 1 if the model is non-linear [133]. The eFAST

method is a recommended global sensitivity analysis method to use when non-

monotonicities are present in the model outcomes, and global sensitivity meth-

ods such as partial rank correlation coefficient (PRCC) are less accurate when
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non-monotonicities are present in the model outcomes [133, 134].

Since the total CD4 T cells/ml (x(t) + xE(t) + y(t)), total CD8 T cells/ml

(z(t) + zE(t)), and viral copies/ml (v(t)) from the model output varies over

time, a single measure given by the integration of total CD4 T cells/ml, total

CD8 T cells/ml, and viral copies/ml over the time period was used as the

model outcome of interest for the eFAST global sensitivity analysis method.

The sensitivity of the total CD4 T cells/ml, total CD8 T cells/ml, and

viral copies/ml for each patient was assessed for the following parameters in

system (6.1): r1, µ1, c, b, β, δ, ka, a, µ2, µ3, γ, p, µ4, r2, µ5. A dummy parameter

that does not affect the model was included in the sensitivity analysis in or-

der to more accurately discern the important parameters [133, 134]. For the

sensitivity analysis, the initial conditions in system (6.1) for each patient were

fixed at their estimated maximum posterior values contained in Sections 7.D.4

and 7.D.5.

A relevant hyperrectangle for the parameters was chosen for each patient

to run this global sensitivity analysis. The range of a (1 − α)100% credible

interval for each parameter from the Bayesian inference fitting for each patient

was used to inform the end points of each side of the hyperrectangle. A

hyperrectangle which has the same side values as a (1−α)100% credible interval

for each parameter will, in general, cover more high dimensional space than

the posterior density bounded by the (1−α)100% credible interval values. As

a result, the hyperrectangle will, in general, include parameter regions that

correspond to very low posterior density values and these parameter regions

can cause the numerical solving of system (6.1) to fail. In order to lessen the

possibility of the numerical solver failing in the sensitivity analysis method, a

90% credible interval was used for each parameter from the Bayesian inference
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fitting to inform the end points of each side of the hyperrectangle. For the

following patients it was necessary to narrow the end points of each side of the

hyperrectangle further in order to complete the sensitivity analysis: Patient 2,

a 60% credible interval was used; Patient 6, a 80% credible interval was used;

Patient 7, a 60% credible interval was used; Patient 14, a 65% credible interval

was used; Patient 21, a 35% credible interval was used; and Patient 28, a 75%

credible interval was used. The dummy parameter was always given the range

from 1 to 10.

The eFAST method used in this study runs in the following way [134, 133,

135]:

• a sinusoidal function of a certain frequency is used for each parameter,

which is called a search curve

■ Ns denotes the total number of samples on each search curve

• since the sinusoidal function is a symmetric function, the sinusoidal func-

tion will at some point repeat the same samples, and hence a resampling

technique using a phase-shift is employed to be more efficient with model

evaluations

■ Nr denotes the number of times search curve resampling is com-

pleted for each parameter

• Fourier analysis is done independently over each of the search curves

for each parameter obtaining Nr number of total-order sensitivity index

samples for each parameter
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• a multiple comparison test is used to test if the total-order sensitivity

index samples for each model parameter are statistically greater than

the total-order sensitivity index samples of the dummy parameter

■ one-way ANOVA is used first to test if the means of the total-order

sensitivity index for each parameter are statistically not all the same

■ if the one-way ANOVA test concludes that the means are statis-

tically not all the same, then a one-sided Dunnett’s test was used

with the control as the total-order sensitivity index from the dummy

parameter and alternative hypothesis that the mean total-order

sensitivity index for the compared model parameter is statistically

greater than the mean total-order sensitivity index from the dummy

parameter

The eFAST method sampling was completed using an eFAST MATLAB

implementation code [136]. Once the eFAST method sampling was performed

for each patient the multiple comparison test was run on MATLAB using the

functions “anova1” and “multcompare”. A previous sensitivity analysis study

determined that Nr = 40 was an appropriate value to find the important

parameters in a eFAST method sampling [133] and the value of Nr = 40

was used in this study. Furthermore, the previous sensitivity analysis study

advised using the following settings for eFast [133]: M = 4, which is the

maximum number of terms in the truncated Fourier series; ωmax = 8, which

is the largest frequency that gets assigned to a parameter currently being

examined for sensitivity to the outcome of interest; a well-balanced sampling

scheme satisfies the equation ωmax =
Ns−NR−1

2M
and this equation implies, given

the other values, that Ns = 105. These recommendations were used in the
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eFAST method sampling for this study.

7.F Sensitivity analysis plots for each patient

7.F.1 HIV-1 Elite Controller patients sensitivity analy-

sis plots
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Figure 7.33: eFAST sensitivity analysis for the (a) total CD4 T cells, (b)
total CD8 T cells and (c) viral load for Patient 1. The blue bar denotes the
mean total-order STi

and the error bar displays +/- 2 standard deviations for
each parameter. The symbol ∗ indicates parameters with total-order values
significantly different (p < 0.05) than the dummy parameter.
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Figure 7.34: eFAST sensitivity analysis for the (a) total CD4 T cells, (b)
total CD8 T cells and (c) viral load for Patient 6. The blue bar denotes the
mean total-order STi

and the error bar displays +/- 2 standard deviations for
each parameter. The symbol ∗ indicates parameters with total-order values
significantly different (p < 0.05) than the dummy parameter.
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Figure 7.35: eFAST sensitivity analysis for the (a) total CD4 T cells, (b)
total CD8 T cells and (c) viral load for Patient 14. The blue bar denotes the
mean total-order STi

and the error bar displays +/- 2 standard deviations for
each parameter. The symbol ∗ indicates parameters with total-order values
significantly different (p < 0.05) than the dummy parameter.
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Figure 7.36: eFAST sensitivity analysis for the (a) total CD4 T cells, (b)
total CD8 T cells and (c) viral load for Patient 16. The blue bar denotes the
mean total-order STi

and the error bar displays +/- 2 standard deviations for
each parameter. The symbol ∗ indicates parameters with total-order values
significantly different (p < 0.05) than the dummy parameter.
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Figure 7.37: eFAST sensitivity analysis for the (a) total CD4 T cells, (b)
total CD8 T cells and (c) viral load for Patient 17. The blue bar denotes the
mean total-order STi

and the error bar displays +/- 2 standard deviations for
each parameter. The symbol ∗ indicates parameters with total-order values
significantly different (p < 0.05) than the dummy parameter.
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Figure 7.38: eFAST sensitivity analysis for the (a) total CD4 T cells, (b)
total CD8 T cells and (c) viral load for Patient 18. The blue bar denotes the
mean total-order STi

and the error bar displays +/- 2 standard deviations for
each parameter. The symbol ∗ indicates parameters with total-order values
significantly different (p < 0.05) than the dummy parameter.
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Figure 7.39: eFAST sensitivity analysis for the (a) total CD4 T cells, (b)
total CD8 T cells and (c) viral load for Patient 24. The blue bar denotes the
mean total-order STi

and the error bar displays +/- 2 standard deviations for
each parameter. The symbol ∗ indicates parameters with total-order values
significantly different (p < 0.05) than the dummy parameter.
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Figure 7.40: eFAST sensitivity analysis for the (a) total CD4 T cells, (b)
total CD8 T cells and (c) viral load for Patient 25. The blue bar denotes the
mean total-order STi

and the error bar displays +/- 2 standard deviations for
each parameter. The symbol ∗ indicates parameters with total-order values
significantly different (p < 0.05) than the dummy parameter.

293



r 1 mu 1 c b
be

ta
de

lta k a a
mu 2 mu 3

ga
mma p

mu 4 r 2 mu 5

du
mmy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eF
AS

T 
se

ns
iti

vi
ty

 C
D

4

mean total-order STi
+/- 2 standard deviations
significant (p < 0.05)

(a)

r 1 mu 1 c b
be

ta
de

lta k a a
mu 2 mu 3

ga
mma p

mu 4 r 2 mu 5

du
mmy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eF
AS

T 
se

ns
iti

vi
ty

 C
D

8

mean total-order STi
+/- 2 standard deviations
significant (p < 0.05)

(b)

r 1 mu 1 c b
be

ta
de

lta k a a
mu 2 mu 3

ga
mma p

mu 4 r 2 mu 5

du
mmy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eF
AS

T 
se

ns
iti

vi
ty

 v
iru

s

mean total-order S Ti
+/- 2 standard deviations
significant (p < 0.05)

(c)

Figure 7.41: eFAST sensitivity analysis for the (a) total CD4 T cells, (b)
total CD8 T cells and (c) viral load for Patient 28. The blue bar denotes the
mean total-order STi

and the error bar displays +/- 2 standard deviations for
each parameter. The symbol ∗ indicates parameters with total-order values
significantly different (p < 0.05) than the dummy parameter.

294



7.F.2 HIV-1 patient comparison group sensitivity anal-

ysis plots
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Figure 7.42: eFAST sensitivity analysis for the (a) total CD4 T cells, (b)
total CD8 T cells and (c) viral load for Patient 2. The blue bar denotes the
mean total-order STi

and the error bar displays +/- 2 standard deviations for
each parameter. The symbol ∗ indicates parameters with total-order values
significantly different (p < 0.05) than the dummy parameter.
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Figure 7.43: eFAST sensitivity analysis for the (a) total CD4 T cells, (b)
total CD8 T cells and (c) viral load for Patient 7. The blue bar denotes the
mean total-order STi

and the error bar displays +/- 2 standard deviations for
each parameter. The symbol ∗ indicates parameters with total-order values
significantly different (p < 0.05) than the dummy parameter.
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Figure 7.44: eFAST sensitivity analysis for the (a) total CD4 T cells, (b)
total CD8 T cells and (c) viral load for Patient 10. The blue bar denotes the
mean total-order STi

and the error bar displays +/- 2 standard deviations for
each parameter. The symbol ∗ indicates parameters with total-order values
significantly different (p < 0.05) than the dummy parameter.
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Figure 7.45: eFAST sensitivity analysis for the (a) total CD4 T cells, (b)
total CD8 T cells and (c) viral load for Patient 11. The blue bar denotes the
mean total-order STi

and the error bar displays +/- 2 standard deviations for
each parameter. The symbol ∗ indicates parameters with total-order values
significantly different (p < 0.05) than the dummy parameter.
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Figure 7.46: eFAST sensitivity analysis for the (a) total CD4 T cells, (b)
total CD8 T cells and (c) viral load for Patient 12. The blue bar denotes the
mean total-order STi

and the error bar displays +/- 2 standard deviations for
each parameter. The symbol ∗ indicates parameters with total-order values
significantly different (p < 0.05) than the dummy parameter.
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Figure 7.47: eFAST sensitivity analysis for the (a) total CD4 T cells, (b)
total CD8 T cells and (c) viral load for Patient 21. The blue bar denotes the
mean total-order STi

and the error bar displays +/- 2 standard deviations for
each parameter. The symbol ∗ indicates parameters with total-order values
significantly different (p < 0.05) than the dummy parameter.
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Figure 7.48: eFAST sensitivity analysis for the (a) total CD4 T cells, (b)
total CD8 T cells and (c) viral load for Patient 23. The blue bar denotes the
mean total-order STi

and the error bar displays +/- 2 standard deviations for
each parameter. The symbol ∗ indicates parameters with total-order values
significantly different (p < 0.05) than the dummy parameter.
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Chapter 8

Conclusion

This thesis has presented a detailed methodology for completing dynamical

system parameter estimation using Bayesian inference and this methodology

was used to investigate critical HIV-1 therapeutic initiatives: “Shock and Kill”

strategy in the brain and the natural control of the virus in the plasma. Both

the HIV-1 brain macrophage infection model (4.1) and the HIV-1 plasma in-

fection model (6.1) recapitulated the observed infection process in the brain

and plasma, respectively.

The HIV-1 brain macrophage infection model was the first mathematical

model to qualitatively analyze the dynamics of latently and productively in-

fected cells in the brain during HIV-1 and SIV infection and quantify the size

of the latent reservoir in the brain for SIV animal studies. Moreover, after this

latent reservoir was estimated, the effect of LRA in the brain was evaluated

and the mathematical model indicated that there exists a biologically realistic

parameter regime where the “Shock and Kill” therapy strategy is safe and

effective in the brain.

A full mathematical analysis of the “Shock and Kill” model given by equa-
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tions (4.5) is warranted to further investigate solutions that lead to a safe and

effective “Shock and Kill” strategy in the brain. Indeed, developing mathemat-

ical models that incorporate a more realistic additional kill term in equations

(4.5) to kill reactivated infected brain macrophages by host immune responses

is needed to test different treatment strategies. Potential strategies could be

to bolster the CD8+ T cell response in the brain to kill reactivated infected

brain macrophages or to strengthen the innate mechanisms in the brain that

lead to programmed cell death in reactivated infected brain macrophages. Us-

ing HIV-1 post-mortem patient data and other SIV animal models such as

ones that use Indian rhesus macaques that have a longer duration of infection

would assist in further validating the qualitative behaviors of the mathematical

models for HIV-1 brain infection.

The HIV-1 plasma infection model was the first HIV-1 mathematical model

to consider both effector CD4 CTLs’ and effector CD8 CTLs’ impact on HIV-1

disease and other diseases present in each patient, and this was the first math-

ematical modeling study to directly estimate the differences between a group

of HIV-1 Elite Controllers with a comparison group of HIV-1 patients using

empiric data. The Elite Controller group was found to have a stronger antivi-

ral immune response than the comparison group. In contrast, the comparison

group was found to have more chronic immune activation but a less effective

immune response. The Elite Controller immune response estimates provided

in this study quantifies a biologically realistic optimal immune response goal

for HIV-1 therapeutic initiatives.

It would be useful to incorporate cART into the HIV-1 plasma infection

model and fit the HIV-1 plasma infection model during ART-näıve and cART

time periods for each patient and note the difference cART has on the an-
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tiviral immune response of the patients. If plasma viral DNA measurements

were available for HIV-1 Elite Controller patients from other clinics, it would

be beneficial to include a latent compartment into system (6.1) and estimate

the number of CD4 T cells latently infected with HIV-1 for these other pa-

tients. Given that macrophages have a significant role in the formation of viral

reservoirs, if plasma viral DNA measurements were available, the inclusion of

macrophage compartments into system (6.1) would be enlightening to further

assess the size of the latent HIV-1 reservoir. Fitting system (6.1) with the

possible modifications mentioned to a larger group of HIV-1 Elite Controllers

and HIV-1 comparison patients from several clinics would be an insightful next

step to further confirm the important components of the Elite Controller im-

mune response and provide additional biologically realistic immune response

estimates to help with HIV-1 therapeutic objectives.
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