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Abstract. A class of discrete-time branching particle filters is introduced with
individual resampling: If there are Nn particles alive at time n, N0 = N , an ≤
1 ≤ bn, L̂i

n+1 is the current unnormalized importance weight for particle i and

An+1 = 1
N

Nn∑
i=1

L̂i
n+1, then weight is preserved when L̂i

n+1 ∈ (anAn+1, bnAn+1).

Otherwise,

⌊
L̂i
n+1

An+1

⌋
+ ρin offspring are produced and assigned weight An+1, where

ρin is a Bernoulli of parameter
L̂i
n+1

An+1
−
⌊

L̂i
n+1

An+1

⌋
. The algorithm is shown to be

stable with respect to the number of particles. Its performance is significantly
better than the popular bootstrap algorithm as well as the residual, stratified
and systematic resampled variants. Moreover, our branching filters run much
faster than these other particle filters, especially when performing Bayesian model
selection, wherein one not only needs to track but also to select which model
best represents the data. Still, on tracking alone, our best branching filters have
approximately 200 times the power of the bootstrap algorithm on our problems.

1. Introduction

Nonlinear filtering deals with determining the distribution of the current state of
a non-observable, random, dynamic signal X given the history of a distorted, cor-
rupted partial observation process Y living on the same probability space (Ω,F , P )
as X. Bayesian model selection, sometimes done while filtering, deals with deter-
mining which of a class of signal models {X(i)}i∈I best fits the observed values of Y
by pairwise Bayes’ factor comparison. For many practical problems each potential
signal is a time-homogeneous discrete-time Markov process {Xn, n = 0, 1, 2, ...},
living on some complete, separable metric space (E, ρ), with initial distribution π0
and transition probability kernel K. The observation process takes the form (Y0 = 0
and) Yn = h (Xn−1) + Vn for n ∈ N, where {Vn}∞n=1 are independent random vec-
tors with common strictly positive, bounded density g that are independent of X,
and the sensor function h is a measurable mapping from E to Rd. Then, the ob-
jective of filtering (with respect to any given signal model X) is to compute the
conditional probabilities πn (A) = P

(
Xn ∈ A

∣∣FYn ), n = 1, 2, ..., for all Borel sets
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2 M. KOURITZIN

A or, equivalently, the conditional expectations πn (f) = EP
(
f (Xn)

∣∣FYn ) for all

bounded, measurable functions f : E → R, where FYn
.
= σ{Yl, l = 1, ..., n} is the

information obtained from the back observations. On the other hand, the objective

of Bayes’ factor model selection is to compare the ratio B12
n = EQ[Ln(Y |X(1))|FY

n ]

EQ[Ln(Y |X(2))|FY
n ]

of

marginal likelihoods between potential signal models X(1) and X(2) with respect to
some reference probability measure Q. (The metric space E, initial distribution π0,
transition probability K and sensor function h can all depend upon the potential
signal X(i) as long as the observation noise {Vn} is the same.)

Suppose without loss of generality that Ω = (E × Rd)∞ and F = B((E × Rd)∞)

until later extended. Moreover, suppose hereafter F ξ−1
.
= {∅,Ω}, F ξn

.
= σ{ξkl , k ∈

K, l ≤ n} when n ∈ N0 and F ξ∞
.
= σ{ξkl , k ∈ K, l < ∞} for random variables

{ξkn, k ∈ K, n ∈ {0, 1, ...}} on (Ω,F). (This is consistent with FYn defined above if K
has one element.) For unnormalized filters, we transfer the information contained
in the observations to a likelihood process by measure change. In this method, a
reference probability measure Q is introduced under which the signal, observation
process {(Xn, Yn+1), n = 0, 1, ...} has the same distribution as the signal, noise
process {(Xn, Vn+1), n = 0, 1, ...} does under P . Hence, the observations are i.i.d.
random vectors with strictly positive bounded density g and are independent of X
under measure Q. All the observation information is absorbed into the likelihood
process {Ln, n = 1, 2, ...} transforming Q back to P , which in our case has the form

dP

dQ

∣∣∣
FX
∞∨FY

n

= Ln =
n∏
j=1

αj(Xj−1), with αj(x) =
g (Yj − h (x))

g (Yj)
, (1.1)

so Ln = αn(Xn−1)Ln−1 and L0 = 1. The following (well-known) discrete Girsanov’s
theorem constructs the real probability P from the reference Q.

Theorem 1. Suppose that {Xn, n = 0, 1, ...} and {Yn, n = 1, 2, ...} are independent
processes on (Ω,F , Q), the {Yn} are i.i.d. with strictly-positive, bounded density g
on Rd and Vn

.
= Yn − h(Xn−1) for all n = 1, 2, ... Then, there exists a probability

measure P such that (1.1) holds, {Vn, n = 1, 2, ...} are i.i.d. on (Ω,F , P ) with
density g and {Xn} is independent of {Vn} with the same law as on (Ω,F , Q).

Filtering and model selection can be done concurrently using unnormalized filters

σn (f) = EQ
(
Lnf (Xn)

∣∣FYn ) , (1.2)

so σ0 = π0, as L0 = 1 and FY0 = {∅,Ω}. Then, the filter satisfies πn (f) =
σn(f)
σn(1)

by Bayes rule and the Bayes factor satisfies B12
n = σ

(1)
n (1)

σ
(2)
n (1)

, where σ
(i)
n (f) =

EQ

(
L
(i)
n f

(
X

(i)
n

) ∣∣∣∣FYn ) with L
(i)
n =

n∏
j=1

αj(X
(i)
j−1) is the unnormalized filter for sig-

nal model X(i). Therefore, we can combine Bayesian model selection and filtering
(for each potential signal) by constructing approximations (denoted SNn below) to
the unnormalized filter for each candidate signal model as done in Kouritzin and
Zeng (2005a), Kouritzin and Zeng (2005b) and Kouritzin (2015).
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BRANCHING PARTICLE FILTERS 3

Nowadays, particle filters are utilized widely in as diverse areas as econometrics,
defense and clickstream analysis. The original (resampled) interacting particle fil-
ters, starting with the bootstrap filter, have been intensely studied (see e.g. Del
Moral and Miclo (2000) and Cappe et. al. (2007) for an overview and historical
account). However, Del Moral et. al. (2000) show that the performance of a par-
ticle filter depends heavily upon the resampling used and resampling methods are
currently an active area of investigation. Furthermore, resampled particle filters
approximate the actual filter πn so prior filter estimates must be stored to perform
model selection. On the other hand, the weighted particle filter (largely credited to
Handschin (1970) as well as Handschin and Mayne (1969) and studied in Kurtz and
Xiong (1999), Kurtz and Xiong (2000)) approximates the unnormalized particle fil-
ter σn, is the most basic particle filter and is embarassingly computer parallelizable.
More generally, branching particle filters, like those introduced by Crisan and Lyons
(1997), can have model selection capabilities, effective resampling and be highly par-
allelizable. However, branching particle filters suffer from dramatic particle swings
and difficult analysis - or do they? Herein, we introduce and analyze branching par-
ticle filters that avoid the weighted-particle-filter particle spread problems yet still
have immediate model selection capabilities. They include the weighted particle
filter as the extreme zero-resampling case and a branching variation of the better
algorithm in Del Moral et. al. (2000) as the extreme fully-resampled case. They are
relatively stable with respect to particle number swings and can be analyzed using
exchangeability (in lieu of independence).

There are many approaches to reducing resampling noise in the bootstrap filter.
For example, researchers brought in importance sampling and delayed bulk resam-
pling methods (see e.g. Del Moral et. al. (2012)). Others have introduced less noisy
types of resampling, which we discuss below. However, there are few studies like
Ballantyne et. al. (2000) of the practical partially-resampled algorithms where de-
cisions are made on a particle-by-particle basis with the aim of only removing the
poor particles and splitting the best particles (in an unbiased manner). Kouritzin
and Sun (2005) do obtain L2-rates of convergence for a partially-resampled algo-
rithm in a specific setting. Our present work introduces new classes of branching
particle filters, motivates their use and sets up a framework for studying them.

In the next section, we consider resampled (Bootstrap-related) particle filters on
tracking and model selection problems. In particular, multinomial, residual, strati-
fied, systematic and combined residual-stratified schemes are considered. Our class
of branching particle filters is introduced and studied in Section 3. The common
complaints of unstable particle numbers as well as unpredictable results and speed
of branching filters are largely overcome. We also give variants/improvements that
use stratified and state-dependent branching. Indeed, it is illustrated in Section 5
that our most basic branching algorithm is significantly faster and more accurate
at tracking than all the bootstrap variant algorithms considered here. The out-
performance of the branching filter is most extreme when either model selection is
required or the tracking problem is difficult. We then study variants of the branch-
ing algorithm that give yet better performance or require less computation time.
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4 M. KOURITZIN

The appendix contains a proof of our stability result, establishing boundedness of
particle numbers and weights and Section 4 contains a variance analysis.

2. Resampled Particle Filters

In this section, we review the resampled particle filters, starting with the first
and most popular bootstrap algorithm of Gordon et. al. (1993), but also including:
Residual resampling introduced by Liu and Chen (1998), Stratified resampling
introduced by Kitagawa (1996), Combined Residual-Stratified resampling discussed
in Douc et. al. (2005) and Systematic resampling introduced in Carpenter et. al.
(1999). Finally, we explain how to use these algorithms in model selection problems.

2.1. Bootstrap Algorithm. The bootstrap particle filter algorithm is one of the
big breakthroughs in big data sequential estimation and its convergence properties
have been thoroughly studied in e.g. Del Moral and Miclo (2000). It overcomes the
increasing variance weight problem of the weighted filter pointed out in Doucet et. al.
(2000). However, it has its limitations in terms of model selection, parallelizability,
performance and speed. For clarity, we first summarize the bootstrap algorithm:

Initialize:
{
Xk

0

}N
k=1

are independent initial particle samples of π0, VN+1 = 1

Repeat: for n = 0, 1, 2, ... do

(1) Weight by Observation: L̂kn+1 = αn+1

(
Xk
n

)
for k = 1, 2, ..., N

(2) Normalize Weight: wkn+1 =
L̂k
n+1

L̂n+1
for k = 1, 2, ..., N , where L̂n+1 =

N∑
i=1

L̂in+1

(3) Evolve Independently:

P Y (X̂k
n+1 ∈ Γk ∀ k|FX

n ) =
N∏
k=1

K(Xk
n,Γk) for all Γk

(4) Estimate πn+1 by: PNn+1 =
N∑
k=1

wkn+1δX̂k
n+1

.

(5) Resample: pi =
i∑

k=1

wkn+1 for i = 1, ..., N , j = N − 1

Repeat: for k = N,N − 1, ..., 2, 1 do

• Draw [0, 1]-uniform Uk and set Vk = U
1
k
k Vk+1

• While Vk ≤ pj set j = j − 1

• Set Xk
n+1

.
= X̂j+1

n+1

Remark 1. We extract our estimate before resampling to avoid excess noise.

This algorithm is O(N) in operations per particle. In particular, we utilized a clever
idea credited to Carpenter et. al. (1999) to keep the resampling to O(N). (V1, ..., VN)
has the joint distribution of the order statistics for {Uk}Nk=1.
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BRANCHING PARTICLE FILTERS 5

The bootstrap algorithm is multinomial resampling since, during resampling, all
particles are effectively removed from their locations and then randomly replaced
at any of the locations according to the relative weights at the locations. This
results in multinomial redistribution of the particles based upon the relative weights.
This type of resampling introduces excess noise in the system and tends to degrade
performance. It is well understood that other types of resampling that move particles
around less and introduce less noise into the particle system are desired.

2.2. Improved Resampling Methods. Doucet et. al. (2000) gives an algorithm
that alternates between the weighted and bootstrap algorithms depending upon how
many effective particles there are. This algorithm addresses the tradeoff between
introducing resampling noise into the system and coping with continual weight vari-
ance increase. However, we argue that it is better for performance to make the
resampling decisions on a particle-by-particle basis, which is the focus of this work.
Our particle-by-particle approach will also avoid the two separate time problem: a
fast time when there is no resampling and a slow one when there is. Some real-
time applications are not conducive to sudden switches to slow times. Therefore,
we do not consider their algorithm herein but rather limit ourselves to procedures
where the resampling is essentially evenly spread out over time. Still, Doucet et.
al.’s (2000) effective number of particles is a useful concept that will be used in one
of our better branching particle algorithms to follow.

There are variations to the bootstrap resampling step (see e.g. Del Moral et. al.
(2000); Douc et. al. (2005)) that can be better than the bootstrap algorithm while
maintaining relatively even resampling burden. The four following methods have
been shown to be unbiased in previous work (see e.g. Douc et. al. (2005)).

2.2.1. Residual Resampling. Liu and Chen (1998) introduced residual resampling
to reduce resampling noise in the bootstrap filter. The idea is to keep particles
at the higher-weight sites (those with weight above the average) so fewer particles
are redistributed and less resampling noise is introduced, reducing the number of
uniform random variables used from N to R, where R is defined below.

The bootstrap algorithm, given above, is easily modified for this improvement.
Instead of step (5) in the bootstrap algorithm, we do the following:

(5) Preserve: S = 0

Repeat: for j = 1, 2, ..., N do
– k = 0
– While k < bNwjn+1c set k = k + 1, XS+k

n+1
.
= X̂j

n+1

– S = S + k

(6) Resample: R = N − S; pi =
i∑

k=1

Nwk
n+1−bNwk

n+1c
R

for i = 1, ..., N ; j = N − 1

Repeat: for k = N,N − 1, ..., 2, S + 1 do

– Draw [0, 1]-uniform Uk and set Vk = U
1
k
k Vk+1

– While Vk ≤ pj set j = j − 1

ht
tp

://
hd

l.h
an

dl
e.

ne
t/1

04
02

/e
ra

.4
21

07
   

 E
R

A
: E

du
ca

tio
n 

an
d 

R
es

ea
rc

h 
A

rc
hi

ve
, U

ni
ve

rs
ity

 o
f A

lb
er

ta
   

  2
1/

09
/2

01
5



6 M. KOURITZIN

– Set Xk
n+1

.
= X̂j+1

n+1

While the algorithm is a little more complicated than the bootstrap its perfor-
mance and speed have increased by reducing number of random variables introduced.
It is still O(N) but with a smaller constant in front than for the bootstrap algorithm.

2.2.2. Stratified Resampling. Kitagawa (1996) introduced a different resampling
noise reduction technique. The ideas are to have less randomness in the uniform
random variables and avoid the need for ordering the uniforms. The randomness of
each uniform random variable is reduced to vary over an interval of length 1

N
.

The bootstrap algorithm, given above, is easily modified for this improvement by
replacing Step (5) with:

(5) Resample: pi =
i∑

k=1

wkn+1 for i = 1, ..., N , j = 1

Repeat: for k = 1, 2, ..., N do
– Draw

[
k−1
N
, k
N

]
-uniform Uk

– While Uk ≥ pj set j = j + 1

– Set Xk
n+1

.
= X̂j

n+1

This algorithm is also O(N) with a smaller constant in front than bootstrap. Also,
each uniform above has variance 1

12N2 versus 1
12

for the bootstrap. This smaller
uniform variance translates into smaller particle system variance in the resampling.

2.2.3. Systematic Resampling. Carpenter et. al. (1999) modified the stratified re-
sampling to be more computationally efficient at the cost of giving up conditional
independence. Only one uniform random variable is used. Step (5) simply becomes:

(5) Resample: pi =
i∑

k=1

wkn+1 for i = 1, ..., N , j = 1

Draw
[
− 1
N
, 0
]
-uniform U

Repeat: for k = 1, 2, ..., N do
– Set Uk = U + k

N
– While Uk ≥ pj set j = j + 1

– Set Xk
n+1

.
= X̂j

n+1

One must be warned that there are examples where the systematic resampling
scheme behaves very poorly (see Douc et. al. (2005)). Indeed, it is not one of
the better performers for our problems considered in Section 5.

2.2.4. Combined Resampling. Since the Residual and Stratified resampling methods
reduce the randomness in different ways, the combination might produce a yet better
method (see Douc et. al. (2005)). Step (5) in the bootstrap is replaced with:

(5) Preserve: S = 0

Repeat: for j = 1, 2, ..., N do
– k = 0
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BRANCHING PARTICLE FILTERS 7

– While k < bNwjn+1c set k = k + 1, XS+k
n+1

.
= X̂j

n+1

– S = S + k

(6) Resample: R = N − S; pi =
i∑

k=1

Nwk
n+1−bNwk

n+1c
R

for i = 1, ..., N ; j = 1

Repeat: for k = 1, 2, ..., R do

– Draw
[
k−1
R
, k
R

]
-uniform Uk

– While Uk ≥ pj set j = j + 1

– Set XS+k
n+1

.
= X̂j

n+1

This algorithm is also O(N) with a smaller constant than bootstrap. Combined
Resampling clearly improves Residual Resampling but it is unclear if it improves
Stratified. Stratified uses N random variables with variance 1

12N2 while Combined

resampling uses R random variables with variance 1
12R2 . Which produces less re-

sampling noise is not obvious without further analysis.

2.3. Model Selection. In most real tracking problems, one never knows which is
the best mathematical model of reality so it makes sense to let the data decide. This
leads us to the combined problem of model selection and tracking. As previously
mentioned, the unnormalized filter total mass σn(1) gives Bayes factor of the obser-
vations containing a given signal model (i.e. Yj = h(Xj−1) + Vj for j ≤ n) to pure

noise (i.e. Yj = Vj for j ≤ n). The ratio of two unnormalized filters B12
n = σ

(1)
n (1)

σ
(2)
n (1)

for

two different models (Yj = h(X1
j−1) +Vj for j ≤ n and Yj = h(X2

j−1) +Vj for j ≤ n)
then gives of Bayes factor for signal 1 versus signal 2.

Del Moral and Miclo (2000, p. 16) show us how to recover the unnormalized
filter and thereby do model selection using bootstrap-type algorithms. By Bayes
rule and (1.2), one finds that

πn−1(αn) =
σn−1(αn)

σn−1(1)
=

σn(1)

σn−1(1)
⇒ σn(1) =

n∏
m=1

πm−1(αm), (2.1)

where αm is defined in (1.1). Hence, to do model selection in the bootstrap-type
algorithms, one can just add the following after step (1):

(1a) Model Selection: σn+1(1) = σn(1) L̂n

N
, where L̂n =

N∑
i=1

L̂in.

We then need not calculate L̂n in step (2) but must add σ0(1) = 1 to the initialize.

3. Branching Particle Filters

In this section, we introduce a class of branching particle filters. We no longer
necessarily have full resampling but rather allow partial resampling and weight prop-
agation. In one extreme case, we have the weighted particle filter where no resam-
pling takes place and weights are always propagated. In the other extreme case,
we have a fully resampled particle filter, which can be thought of as a branching
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8 M. KOURITZIN

alternative to the residual resampling or combined resampling particle filter. In be-
tween, we have a whole class of branching particle filters with a flexible amount of
resampling that affords an effective tradeoff between weight variance increase (the
weighted particle issue) and resampling noise (the bootstrap particle issue). We first
describe the branching particle filters in terms of uniform random variables {Uk

n}
used to create the branching variables {ρkn} in two different ways.

The following branching Markov process {SNn , n = 0, 1, ....} approximates the
unnormalized filter {σn, n = 0, 1, ...} in terms of the observations as follows:

Initialize:
{
Xk

0

}N
k=1

are independent samples of π0, N0 = N , Nn = 0 for all n ∈ N
and Lk0 = 1 for k = 1, ..., N .

Repeat: for n = 0, 1, 2, ... do

(1) Weight by Observation: L̂kn+1 = αn+1

(
Xk
n

)
Lkn for k = 1, 2, ...,Nn

(2) Evolve Independently:

P Y (X̂k
n+1 ∈ Γk ∀ k|FX

n ∨ FU
n+1) =

Nn∏
k=1

K(Xk
n,Γk) ∀Γk

(3) Estimate σn+1 by: SNn+1 =
1

N

Nn∑
k=1

L̂kn+1δX̂k
n+1

and πn+1(f) by
SNn+1(f)

SNn+1(1)
.

(4) Average Weight: An+1 = SNn+1(1)

Repeat (5-6): for k = 1, 2, ...,Nn do

(5) Resampled Case: If L̂kn+1 /∈ (anAn+1, bnAn+1) then

(a) Offspring Number: Nk
n+1 =

⌊
L̂k
n+1

An+1

⌋
+ ρkn+1, with ρkn+1 a

(
L̂k
n+1

An+1
−
⌊
L̂k
n+1

An+1

⌋)
-

Bernoulli
(b) Resample: LNn+1+j

n+1 = An+1,XNn+1+j
n+1 = X̂k

n+1 for j = 1, ...,Nk
n+1

(c) Add Offspring Number: Nn+1 = Nn+1 + Nk
n+1

(6) Non-resample Case: If L̂kn+1 ∈ (anAn+1, bnAn+1) then

Nn+1 = Nn+1 + 1, LNn+1

n+1 = L̂kn+1, X
Nn+1

n+1 = X̂k
n+1

Remark 2. We extract our estimate before resampling to avoid excess noise. Key
steps (5,6) determine the new number of particles Nn+1 and weights Lkn+1 in an un-

biased manner. When the prior weight L̂kn+1 for particle k is extreme we do residual-
style branching, splitting particles as deterministically as possible in (5). The result
is zero or more particles all having the average weight at the same location as the

parent. When the prior weight L̂kn+1 is not extreme we run a weighted particle step
in (6). The flexibility in this class of algorithms is in how we determine “extreme”.

Remark 3. An+1, Lkn+1 and L̂kn+1 actually depend upon the initial number of parti-
cles N . Occasionally, we will stress this fact by relabeling An+1 as AN

n+1.
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BRANCHING PARTICLE FILTERS 9

We are not the first to use branching particle filters for tracking. Indeed, we were
inspired by Crisan and Lyons (1997) and Ballantyne et. al. (2000). However, our
algorithms differ from the ones in those papers and our goals are also different.

After establishing the appropriate bounds on Nn+1 in Theorem 2 to follow, we
can easily see that this algorithm is also O(N). Indeed, a careful comparison of
this algorithm to the prior ones leads us to the believe that the constant implied in
the O(N) notation for the branching algorithm may be smaller than that for the
bootstrap, especially when the Resampled Case does not occur too often. We will
establish this fact experimentally below. Since σn is estimated both model selection
and filtering can be done simultaneously without adding the additional step.

3.1. Residual Branching Filter. Like resampled filters, there are various ways to
introduce the randomness, in this case the {ρkn+1}Nn

k=1 for unbiased branching. The
choice affects performance and implementation ease. A simple possibility is:

i) Let {Uk
n+1}Nn

k=1 be independent [0, 1]-Uniform RVs.
ii) Set ρkn+1 = 1

Uk
n+1≤

(
L̂kn+1
An+1

−
⌊

L̂kn+1
An+1

⌋).

In this way, the {ρkn+1}Nn
k=1 are independent of each other and everything else. The

reason for the Residual Branching labeling is, similar to Residual Resampling, we
first create as many particles as we can deterministically and then we allocate the
remaining offspring using independent uniform random variables.

3.2. Combined Branching Filter. We can add stratified resampling to help con-
trol the number of particles and improve performance. When an ≈ bn, we:

i) Let {Vk
n+1}Nn

k=1 be independent with Vk
n+1 ∼

[
k−1
Nn
, k
Nn

]
-Uniform and Uk

n+1 =

Vp(k)
n+1, where p is a random permutation of {1, 2, ..., Nn} uniformly distributed

over the set of all permutations.
ii) Set ρkn+1 = 1

Uk
n+1≤

(
L̂kn+1
An+1

−
⌊

L̂kn+1
An+1

⌋).

Then, the {ρkn+1}Nn
k=1 are exchangeable but not independent of each other. (They

are actually negatively correlated, which is desireable for particle control.) The
advantage of this approach is it is not possible to get mostly large or mostly small
uniform random numbers so the number of particles will vary less.

In the usual case, where an � bn so many particles are not resampled, there is a
better stratified method. We replace (5-6) in the basic branching algorithm with:

5) Non-resample count: l = 0

6) For k = 1, 2, ...,Nn do

If L̂kn+1 /∈ (anAn+1, bnAn+1) then: L̂k−ln+1 = L̂kn+1, X̂k−l
n+1 = X̂k

n+1

Otherwise: l = l + 1, Lln+1 = L̂kn+1, Xl
n+1 = X̂k

n+1

7) Let Nn+1 = l, {Vk
n+1}Nn

k=l+1 be independent with Vk
n+1 ∼

[
k−1
Nn−l ,

k
Nn−l

]
-Uniform,

p be a random permutation of {l + 1, l + 2, ...,Nn}, Uk
n+1 = Vp(k)

n+1
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10 M. KOURITZIN

8) For k = l + 1, l + 2, ...,Nn do

Nk
n+1 =

⌊
L̂k−l
n+1

An+1

⌋
+ 1

Uk
n+1≤

(
L̂k−l
n+1

An+1
−
⌊

L̂k−l
n+1

An+1

⌋)
LNn+1+j
n+1 = An+1,XNn+1+j

n+1 = X̂k−l
n+1 for j = 1, ...,Nk

n+1

Nn+1 = Nn+1 + Nk
n+1

3.3. Resampling Control. The amount of and conditions for branching is con-
trolled by the parameters an, bn. In one extreme case, we could choose an = 0 and
bn =∞ and find that no resampling takes place. We then have the weighted particle
filter. In the other extreme case, we always resample if an = bn for all n. This case
is the closest to the resampled particle filters considered above.

Generally, an and bn should have geometric center of 1 to keep the number of
particles fairly constant. Suppose otherwise that an = 0 and bn = 1. Then, we only
branch the below-average weight particles and expect fewer particles after branching.

There is some inherent particle control if an and bn to have geometric center of 1
and this is due to the fact that An+1 is normalized by N and not Nn. To see this,
we consider the simplest case where an = bn = 1, which corresponds to complete
branching. Then, examining the branching algorithm, we find (by Step (5a)) that
the total expected number of particles after resampling is:

Nn∑
j=1

E[Nj
n+1

∣∣F L̂
n+1 ∨ F N̂

n ] =
Nn∑
j=1

N L̂jn+1∑Nn

k=1 L̂kn+1

= N (3.1)

regardless of whether residual or combined branching is used. This particle control
becomes yet more pronounced when combined with the negatively correlated ρ’s
produced by the stratified scheme within the combined branching particle algorithm.
More unbiased particle control could be added. However, we are yet to see an
example where it is warranted (see the results below).

Since weights multiply and start at 1, we generically take an = 1
rn

and bn = rn
for some rn ∈ [1,∞]. Moreover, the new multiplicative weight update has the form

αn(Xn−1) = g(Yn−h(Xn−1))
g(Yn)

, which adapts for noisy observations. However, it does

not account well for only having partial measurements of the signal. As a simple
example, if we have range (alternatively bearing) only measurements of a position-
velocity model in the plane, then one observation has no information about velocity
and only partial measurement of position. If complete resampling were used, then
particles would (with high probability) accumulate on an arc (in a line of sight) with
matching velocities and other positional component. If these velocities are all wrong
(which can easily happen with a finite number of particles), then the majority of
the particles will head in the wrong direction. (A similar issue occurs if incorrect
bearings of a few particles matching the observed range are copied to all or most.)
To avoid these types of situations, one should generically choose a larger rn when
it would take several observations to get a good idea about whole signal. In all our
experiments to date, we are yet to see a problem where either no resampling or full
resampling (like the resampled particle filters) preforms best.
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BRANCHING PARTICLE FILTERS 11

In the experiments below, we will first consider the case where rn = r does not
depend upon n. However, we can have adaptive resampling when rn depends upon
the branching particle system. One example of this is dynamic branching, where

rn = exp

c
 1

Nn

Nn∑
k=1

(ln L̂kn+1)
2 −

(
1

Nn

Nn∑
k=1

ln L̂kn+1

)2


q
2

 ,

with c, q > 0. A larger q > 1 (smaller q < 1), with c adjusted to maintain the same
average amount of branching, would be used in the situation where one wanted
more resampling when system entropy low (high). To explain, we imagine ξk =

ln L̂kn+1 − lnAn+1 are independent, zero-mean and Gaussian. Then, rn with q = 1
would correspond to a relatively fixed (67% when c = 1) number of particles being
resampled regardless of disorder. Taking q < 1 and compensating with c > 1 to
maintain the same average amount of resampling would then cause more resampling
at times when there is more entropy. This is investigated further experimentally
below.

Another, more direct, way to handle uneven weights is through the effective num-
ber of particles estimate, N eff , as discussed in Doucet et. al. (2000). In our setting,
the effective and non-effective particle estimates are:

Neff
n+1 =

N2A2
n+1

Nn∑
k=1

(
L̂n+1

)2 , Nnoneff
n+1 = Nn+1 − Neff

n+1.

It very reasonable to anticipate better results when branching either more or fewer
particles in the situation there are few effective ones. A first intuition might lead us
to the conclusion that it is better to branch more in order to obtain more effective
particles immediately. However, reviewing the range (and bearing) only example
mentioned previously also leads us to the realization that this too could be wrong.
We do not assume either a priori but rather in effective particle branching set

rn =
ceffNeff

n+1 + cnoneffNnoneff
n+1

Nn+1

= cnoneff + (ceff − cnoneff )
Neff
n+1

Nn+1

(3.2)

for experimentally determined constants ceff , cnoneff > 0 and let the data decide.

3.4. Stability and Particle Control. Most authors have rejected branching par-
ticle filters due to possible instability of the number of particles as well as the
computational consequences of this instability. This rejection was too hasty. Yes,
the algorithm can fail. During resampling, there is a possibility of immediately

killing all particles if max
j≤Nn−1

N L̂jn∑Nn

i=1 L̂in
< 1. Ironically, this can only happen if there

are more particles than at start. However, it may still be possible to degenerate
immediately to one particle when Nn ≤ N . Conversely, it is not possible to increase
by more than N − 1 particles in one step. Weight variation is also a big concern:
Ljn can become very uneven as N increases. Some regularity results are required to
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12 M. KOURITZIN

ensure that there are enough effective particles and moment bounds to justify the
anticipation of rate of convergence results as N →∞.

The following one step bounds ensure the risk of such system irregularity decreases
exponentially in the initial number of particles, a first step in disproving the opinion
branching particle filters are unstable in the number of particles. Let B(Rd) be the
bounded and C++(Rd) be the strictly-positive continuous functions on Rd.

Theorem 2. Suppose residual branching; h ∈ B(Rd); and g ∈ C++(Rd). Then,
there are εn > 0, Cn > 1 and DN

n ∈ σ {Nl, l ≤ n} such that DN
n+1 ⊂ DN

n for all
n = 0, 1, 2...; QY

(
DN
n

)
≥ 1− 2ne−εnN for N ≥ 1; and

1

Cn
≤ Nl

N
,Lil,AN

l ≤ Cn ∀ ∈ {1, ...,Nl}, l ∈ {0, ..., n} on DN
n−1.

Remark 4. This result is proved in the appendix. The result bounds the number
of particles and also says that the algorithm is well behaved for at least one step
on the large exchangeable set DN

n . This result is for residual branching. However,
adding stratification as in the combined branching only adds particle control through
the negatively correlated ρ’s.

We now look at particle variation experimentally. The expected number of par-
ticles is always the initial number N by (3.1). There still could be wide variation,
especially for small number of particles, but the following graphs show that this is
not the case. The smallest number of initial particles that we looked at was 500 and
it was in the Range Only model (defined in Section 5). In this case, the particle
number standard deviation of Residual Branching was 120 or 24%. Moreover, the
Combined Branching algorithm showed a significant improvement to 90 or 18%.

0 5 10 15 20 25 30 35
200

300

400

500

600

700

800

Time

P
a
rt

ic
le

 N
u
m

b
e
r

 

 

residual branching

+/− 1 S.D.

combined branching

+/− 1 S.D.

Figure 1. Particle Number of Range Only Model with N=500

While these results are random, they seem typical. Certainly, the results to follow
on speed and performance are supportive of small particle variations.

We then looked at N = 2000 initial particles for the Test Model (see Section 5).
The particle number standard deviations of the Residual Branching and Combined
branching were then 165 and 130 or 8.25% and 6.5%.
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BRANCHING PARTICLE FILTERS 13
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Figure 2. Particle Number of Test Model with N=2000

Finally, we looked at N = 10, 000 intial particles for both models. The particle
number standard deviations of the Residual Branching and Combined branching on
the Test model were then 295 and 45 or 2.95% and 0.45%.
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Figure 3. Particle Number of Test Model with N=10,000

The particle number standard deviations of the Residual Branching and Combined
branching on the Range Only model were then 415 and 320 or 4.15% and 3.2%.

ht
tp

://
hd

l.h
an

dl
e.

ne
t/1

04
02

/e
ra

.4
21

07
   

 E
R

A
: E

du
ca

tio
n 

an
d 

R
es

ea
rc

h 
A

rc
hi

ve
, U

ni
ve

rs
ity

 o
f A

lb
er

ta
   

  2
1/

09
/2

01
5



14 M. KOURITZIN
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Figure 4. Particle Number of Range Only Model with N=10,000

We can make the following experimental conclusions:

(1) The particle numbers did not vary much, provided enough particles were
used to be able to estimate the signal reasonably. Indeed, we will see below
that the particle variations did not adversely affect error nor execution speed.

(2) Combined Branching did a better job of keeping the number of particles
constant than the basic Residual Branching.

(3) The relative variation of the number of particles generally decreased in the
number of initial particles. It is speculated that some law of large numbers
effect takes place.

Further, it is clear that the particles numbers varied less for the Test model than
for the Range Only. It was felt that this was due to the fact that simpler problems
have less variations throughout and are solved well with fewer particles.

4. Variance Analysis

It is difficult to compare the resampled and branching particle filters since they
approximate different things, the regular and the unnormalized filters. Moreover,
many particle filters are hard to analyze due to the lack of independence. However, it
is relatively easy to consider the noise introduced by the first resampling or branching
through a look at the expected conditional variance at that time. Prior to this time
all systems, whether resampling or branching, will have the same particles (locations
and weights). Hence, it is the spot where the first difference occurs.

Even restricting ourselves to this first resampling or branching event, we can not
assume independence since the stratified variables are not independent. Instead, we
recall:

Definition 1. Random variables {ξ1, ξ2, ..., ξN} are exchangeable if {ξ1, ξ2, ..., ξN}
D
=

{ξπ(1), ξπ(2), ..., ξπ(N)} for any permutation π of {1, 2, ..., N}.

I.i.d. random variables are exchangeable. Also, random permuted collections are
clearly exchangeable. Suppose {ξ1, ξ2, ..., ξN} are exchangeable random variables on
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BRANCHING PARTICLE FILTERS 15

(Ω,F , P ) and G ⊂ F is a σ-algebra. Then, the expected conditional variance is

γ = N−2E
{
E
[
(ξ1 + ξ2 + · · ·+ ξN)2

∣∣G]− (E
[
ξ1 + ξ2 + · · ·+ ξN

∣∣G])2} (4.1)

= N−2


N∑
i=1

E
[
ξ2i
]

+
N∑

i,j=1
i6=j

E [ξiξj]−
N∑

i,j=1

E
(
E
[
ξi
∣∣G]E [ξj∣∣G])


=

E[ξ21 ]

N
+
N − 1

N
E [ξ1ξ2]−N−2

N∑
i,j=1

E
(
E
[
ξi
∣∣G]E [ξj∣∣G]) .

When applied to particle filtering, G will be the information in all particles and
weights prior to the resample or branch. In our first-event consideration, G =

σ{(L̂k1, X̂k
1), k = 1, 2, ..., N} and our unbiased construction means

E[ξk|G] = 0

so the expected conditional variance formula (4.1) becomes

γ =
E[ξ21 ]

N
+
N − 1

N
E [ξ1ξ2] . (4.2)

Both terms will depend upon the precise type of resampling or branching.
In stratified resampling, combined resampling and combined (residual-stratified)

branching, we replace independence in our uniform random variables with desired
negative correlations. Indeed, the joint distribution of the randomly-permuted strat-
ified uniforms U1

1,U2
1 becomes:

P (U1
1 ∈ [c1, d1],U2

1 ∈ [c2, d2]) (4.3)

=
R2

R(R− 1)
P (V ∈ [c1, d1])P (V ∈ [c2, d2])

− 1

R(R− 1)

R−1∑
j=0

P

(
V + j

R
∈ [c1, d1]

)
P

(
V + j

R
∈ [c2, d2]

)
,

where V is a [0, 1]-uniform random variable and R (≤ Nn) is the (possibly random)
number of uniform random variables used (which should be at least as many as the
number of particles that are resampled/branched). Intuitively, the formula says that
the joint (condtional) distribution of U1

1,U2
1 is the distribution of two independent

[0, 1]-uniform random variables scaled up by R2

R(R−1) minus the sum of scaled down

distributions of two independent [ j
R
, j+1
R

]-uniform random variables. This implies
the following expectation formula:

E[f(U1
1)g(U2

1)] =
R2

R(R− 1)

∫ 1

0

∫ 1

0

f(u1)g(u2)du1du2 (4.4)

− 1

R(R− 1)

R−1∑
j=0

∫ j+1

j

∫ j+1

j

f

(
u1

R

)
g

(
u2

R

)
du1du2.
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16 M. KOURITZIN

For ease of comparison, we introduce

`k1 =
L̂k1
A1

= Nwk1 , (4.5)

where A1 =
1

N

N∑
i=1

L̂i1 for any particle filter. It is important to remember that while

`k1 is a relative weight for the kth particle it still depends upon the other particles.
Finally, we emphasize that this analysis is done with the real world probability P .

4.1. Resampled Filters. Some conditional variance analysis is done in other works.
However, we redo it in our notation for ease of comparison. Recall from the residual
and combined resampled algorithms given previously that R = N −

∑N
j=1bl

j
1c is the

number of particles resampled when residual (or combined) resampled methods are
used. The change in the filter due to the first resample is

1

N

N∑
j=1

ξj, where ξj =

{ (⌊
`j1
⌋

+ ρj1 − `
j
1

)
f(X̂j

1) if residual, combined(
ρj1 − `

j
1

)
f(X̂j

1) if bootstrap, stratified
. (4.6)

Moreover,

ρj1 =
R∑
k=1

1Uk∈[pj−1,pj), where (4.7)

Method R pj Uk Uk-character

Bootstrap N
∑

i≤j
`i1
N

Uk i.i.d.

Residual R
∑

i≤j
`i1−b`i1c

R
Uk i.i.d.

Stratified N
∑

i≤j
`i1
N

π(Uk) Negatively correlated

Combined R
∑

i≤j
`i1−b`i1c

R
π(Uk) Negatively correlated

Here, Uk are [0, 1]-uniform and π is a random permutation. Note that we did not
include this permutation in the stratified and combined methods. However, since
the particles and weights `i1 are exchangeable, the joint distribution of the ρ’s is
unchanged with or without this permutation.

4.1.1. Residual Resampling. R = 0 is trivial so consider R ∈ N. Here, {ρj1}Nj=1 is

(conditionally on G)
(
R,

`11−b`11c
R

, ...,
`N1 −b`N1 c

R

)
-multinomial. Hence, we find that

E[ξ21 ] = E

[{
`11 −

⌊
`11
⌋
− (`11 − b`11c)

2

R

}
f 2(X̂1

1)

]
(4.8)
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BRANCHING PARTICLE FILTERS 17

and by (4.6,4.7) that

E[ξ1ξ2] = E
[{
ρ11ρ

2
1 −

(
`11 −

⌊
`11
⌋)(

`21 −
⌊
`21
⌋)}

f(X̂1
1)f(X̂2

1)
]

(4.9)

= −E
[

1

R

(
`11 −

⌊
`11
⌋) (

`21 −
⌊
`21
⌋)
f(X̂1

1)f(X̂2
1)

]
.

Combining these with (4.2), we find that

γRR1 = E

[{
`11 −

⌊
`11
⌋
− (`11 − b`11c)

2

R

}
f 2(X̂1

1)

N

]
(4.10)

− N − 1

N
E

[
1

R

(
`11 −

⌊
`11
⌋) (

`21 −
⌊
`21
⌋)
f(X̂1

1)f(X̂2
1)

]
.

Example 1. (4.10) could appear to produce (impossible) negative values with fixed
weights. However, this is not a real possibility when exchangeability is taken into
account. For simplicity, suppose l11 = 1.99, l21 = 0.01, l31 = 1 and f ≡ 1 so γRR1

should be 0. Then, R = 1 and (4.10) becomes:

γRR1 =
0.99× 0.01

3
− 2

3
(0.99)(0.01) < 0, (4.11)

which is impossible. However, these fixed l are also not exchangeable. Instead
suppose l11, l21 and l31 took on these three values and each of the six combinations was
equally likely. Then, (4.10) becomes:

γRR1 =
1

3

{
0.01− 0.012

3
+ 0 +

0.99− 0.992

3

}
− 2

3

1

3
{0 + 0.0099 + 0} = 0, (4.12)

as expected. Note: we could bypass the final simplication in (4.1) and allow more
general `’s. However, more complicated formulae would result.

4.1.2. Bootstrap Filter. Following the arguments in the prior Residual Resampling
Subsection, we find that

γBS1 = E

[{
`11 −

(`11)
2

N

}
f 2(X̂1

1)

N

]
− N − 1

N2
E
[
`11`

2
1f(X̂1

1)f(X̂2
1)
]
.

4.1.3. Combined Resampling. Take R 6= 0 again. The {ρj1}Rj=1 are not multinomial
so we have to work with the Ui and use (4.4). Consequently, it follows that

E[ξ21 ] = E
[
{(ρ11)2 − (`11 −

⌊
`11
⌋
)2}f 2(X̂1

1)
]

(4.13)

= E

[{
R∑
k=1

1Uk∈[0,p1) +
∑
i6=k

1Uk∈[0,p1)1Ui∈[0,p1) −
(
`11 −

⌊
`11
⌋)2}

f 2(X̂1
1)

]

= E

[{
`11 −

⌊
`11
⌋
−

R−1∑
j=0

∫ j+1

j

∫ j+1

j

1u1∈[0,`11−b`11c)1u2∈[0,`11−b`11c)du
1du2

}
f 2(X̂1

1)

]
= E

[{
`11 −

⌊
`11
⌋
−
(
`11 −

⌊
`11
⌋)2}

f 2(X̂1
1)
]
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18 M. KOURITZIN

and by the calculation in (4.9) one finds that

E[ξ1ξ2] = E
[{
ρ11ρ

2
1 −

(
`11 −

⌊
`11
⌋)(

`21 −
⌊
`21
⌋)}

f(X̂1
1)f(X̂2

1)
]
. (4.14)

Next, it follows by (4.7,4.4) that

= E
[
ρ11ρ

2
1f(X̂1

1)f(X̂2
1)
]

(4.15)

= E

[∑
i6=k

1Uk∈[0,p1)1Ui∈[p1,p1+p2)f(X̂1
1)f(X̂2

1)

]

= E

[
R2 (`11 − b`11c)

R

(`21 − b`21c)
R

f(X̂1
1)f(X̂2

1)

]
− E

[
R−1∑
j=0

∫ j+1

j

∫ j+1

j

1[0,`11−b`11c)(u1)1[`11−b`11c,`11−b`11c+`21−b`21c)(u2)du1du2f(X̂1
1)f(X̂2

1)

]
= E

[(
`11 −

⌊
`11
⌋)(

`21 −
⌊
`21
⌋)
f(X̂1

1)f(X̂2
1)
]

− E
[{

1 ∧
(
`11 + `21 −

⌊
`11
⌋
−
⌊
`21
⌋)

(`11 −
⌊
`11
⌋
)− (`11 −

⌊
`11
⌋
)2
}
f(X̂1

1)f(X̂2
1)
]
.

Hence, by (4.14) and (4.15)

E[ξ1ξ2] = −E
[{

1∧
(
`11 + `21 −

⌊
`11
⌋
−
⌊
`21
⌋)

(`11 −
⌊
`11
⌋
)− (`11 −

⌊
`11
⌋
)2
}
f(X̂1

1)f(X̂2
1)
]
(4.16)

and so by (4.16,4.13,4.2) the combined resampling expected conditional variance is:

γCR1 = E

[{
`11 −

⌊
`11
⌋
−
(
`11 −

⌊
`11
⌋)2} f 2(X̂1

1)

N

]

− N − 1

N
E
[{

1 ∧
(
`11 + `21 −

⌊
`11
⌋
−
⌊
`21
⌋)

(`11 −
⌊
`11
⌋
)− (`11 −

⌊
`11
⌋
)2
}
f(X̂1

1)f(X̂2
1)
]
.

4.1.4. Stratified Resampling Filter. Following the Combined Resampling arguments,
we find that

E[ξ21 ] = E

[{
`11 −

N−1∑
j=0

(∫ j+1

j

1u∈[0,`11)du

)2
}
f 2(X̂1

1)

]
(4.17)

= E
[{
`11 −

⌊
`11
⌋
−
(
`11 −

⌊
`11
⌋)2}

f 2(X̂1
1)
]

and

E[ξ1ξ2] = −E

[
R−1∑
j=0

∫ j+1

j

1[0,`11)
(u)du

∫ j+1

j

1[`11,`11+`21)
(v)dvf(X̂1

1)f(X̂2
1)

]
(4.18)

= −E
[
(`11 −

⌊
`11
⌋
)
{

(
⌊
`11
⌋

+ 1) ∧ (`11 + `21)− `11
}
f(X̂1

1)f(X̂2
1)
]
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BRANCHING PARTICLE FILTERS 19

so

γSR1 = E

[{
`11 −

⌊
`11
⌋
−
(
`11 −

⌊
`11
⌋)2} f 2(X̂1

1)

N

]

− N − 1

N
E
[
(`11 −

⌊
`11
⌋
)
{

(
⌊
`11
⌋

+ 1) ∧ (`11 + `21)− `11
}
f(X̂1

1)f(X̂2
1)
]
.

4.2. Branching Filters. The change in the unnormalized filter due to the first
branch is

1

N

N∑
k=1

((⌊
L̂k1
A1

⌋
+ ρk1

)
A1 − L̂k1

)
f(X̂k

1)1L̂k
1 6∈(a0A1,b0A1)

and this translates into the change

1

N

N∑
k=1

(⌊
L̂k1
A1

⌋
+ ρk1 −

L̂k1
A1

)
f(X̂k

1)1L̂k
1 6∈(a0A1,b0A1)

for the normalized filter, which can be compared to the error for the resampled
particle filters. Moreover, we can use (4.1,4.2) with

ξk =
(⌊
`k1
⌋

+ ρk1 − `k1
)
f(X̂k

1)1L̂k
1 6∈(a0A1,b0A1)

.

Furthermore, in both our branching models ρk1 is (`k1 −
⌊
`k1
⌋
)-Bernoulli,

E[ξ21 ] = E
[{
`11 −

⌊
`11
⌋
−
(
`11 −

⌊
`11
⌋)2

,
}
f 2(X̂1

1)1`11 6∈(a0,b0)

]
E [ξ1ξ2] = E

[(⌊
`11
⌋

+ 1U1
1≤`11−b`11c − `

1
1

)
f(X̂1

1)1`11 6∈(a0,b0)

×
(⌊
`21
⌋

+ 1U2
1≤(`21−b`21c) − `

2
1

)
f(X̂2

1)1`21 6∈(a0,b0)

]
.

4.2.1. Residual Branching. In this case, the U’s are i.i.d. and independent of every-
thing so the two particle correlation and the expected conditional variance are:

E [ξ1ξ2] = 0

γRB1 = E

[{
`11 −

⌊
`11
⌋
−
(
`11 −

⌊
`11
⌋)2} f 2(X̂1

1)

N
1`11 6∈(a0,b0)

]
.

4.2.2. Combined Branching. We use stratified random variables in combined branch-
ing. (4.3) implies the combined branching correlations:

E [ξ1ξ2] = E

[
R2

R(R− 1)

(⌊
`11
⌋

+ 1U≤(`11−b`11c) − `
1
1

)
f(X̂1

1)1`11 6∈(a0,b0) (4.19)

×
(⌊
`21
⌋

+ 1V≤(`21−b`21c) − `
2
1

)
f(X̂2

1)1`21 6∈(a0,b0)

]
− E

[
1

R(R− 1)

R−1∑
j=0

(⌊
`11
⌋

+ 1Uj≤(`11−b`11c) − `
1
1

)
f(X̂1

1)1`11 6∈(a0,b0)

×
(⌊
`21
⌋

+ 1Vj≤(`21−b`21c) − `
2
1

)
f(X̂2

1)1`21 6∈(a0,b0)

]
.
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20 M. KOURITZIN

Here, U, V are independent [0, 1]-uniform random variables and each Uj, Vj are in-
dependent pairs of

[
j
R
, j+1
R

]
-uniform random variables. However, the first term of

(4.19) is zero by independence so

E [ξ1ξ2] (4.20)

= E

[
f(X̂1

1)f(X̂2
1)

R− 1

{
`11 − b`11c

R

R−1∑
j=0

1Vj≤`21−b`21c +
`21 − b`21c

R

R−1∑
j=0

1Uj≤`11−b`11c

−
(
`11 −

⌊
`11
⌋)(
`21 −

⌊
`21
⌋)
− 1

R

R−1∑
j=0

1Uj≤`11−b`11c,Vj≤`21−b`21c

}
1`11,`21 6∈(a0,b0)

]

= E

[
f(X̂1

1)f(X̂2
1)

R− 1

{(
`11 −

⌊
`11
⌋)(
`21 −

⌊
`21
⌋)
−
(
`11 −

⌊
`11
⌋)
∧
(
`21 −

⌊
`21
⌋)}

1`11,`21 6∈(a0,b0)

]
Hence, the combined branching expected conditional variance is:

γCB1 = E

[[
`11 −

⌊
`11
⌋
−
(
`11 −

⌊
`11
⌋)2] f 2(X̂1

1)

N
1`11 6∈(a0,b0)

]

− N − 1

N
E

[
f(X̂1

1)f(X̂2
1)

R− 1
1`11,`21 6∈(a0,b0)

{
bR (`11 − b`11c)∧(`21 − b`21c)c

R
−
(
`11 −

⌊
`11
⌋)(
`21 −

⌊
`21
⌋)

+
1∧{R(`11 −b`11c)−bR(`11 −b`11c)∧(`21 −b`21c)c}{R(`21 −b`21c)−bR(`11 −b`11c)∧(`21 −b`21c)c}∧1

R

}]
4.3. Discussion of Particle Methods. In all cases, the second term of the ex-
pected conditional variance could be positive or negative, depending upon f and
how close the particles are. Hence, we look at the first term:

Method First term of γ1

Bootstrap E

[{
`11 −

(`11)
2

N

}
f2(X̂1

1)

N

]
Residual Resampling E

[{
`11 − b`11c −

(`11−b`11c)2

R

}
f2(X̂1

1)

N

]
Stratified Resampling E

[{
`11 − b`11c − (`11 − b`11c)

2
}

f2(X̂1
1)

N

]
Combined Resampling E

[{
`11 − b`11c − (`11 − b`11c)

2
}

f2(X̂1
1)

N

]
Residual Resampling E

[{
`11 − b`11c − (`11 − b`11c)

2
}

f2(X̂1
1)

N
1`11 6∈(a0,b0)

]
Combined Resampling E

[{
`11 − b`11c − (`11 − b`11c)

2
}

f2(X̂1
1)

N
1`11 6∈(a0,b0)

]
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BRANCHING PARTICLE FILTERS 21

We listed these in order of improvement: `11−b`11c−(`11 − b`11c)
2

can not be more than
1
4

and is expected to be small. Notice the Stratified Resampling method achieves this
even though the residual technique of deterministically keeping as many particles is
not used. Stratified and Combined Resampling are clearly superior to Residual Re-
sampling and Bootstrap. However, we do not recommend either but rather strongly
suggest switching to branching algorithms like those introduced in this paper. The
two branching methods have the factor 1`11 6∈(a0,b0), which when a0, b0 are chosen intel-

ligently can get rid of most of the resampling/branching noise. Naturally, the speed
improvements in switching to branching is also important. The negative correlations
introduced in the Combined Branching will help the number of particles stay more
constant and thereby improve performance over the Residual Branching.

5. Comparison of Tracking and Model Selection

Effective parallelization of resampled particle filters is difficult (see e.g. Vergé et.
al. (2013) for a good attempt). This is reason enough to choose our branching
particle filters over the resampled ones as they are fundamentally more paralleliz-
able (as will be shown in future work). However, we can also consider all algorithms
with single-processor implementations on tracking problems and on model selection.
The rest of this section is organized as follows: We first introduce the two simple
problems, our Test and Range-Only problems, that will be used for comparison pur-
poses. Then, we compare the various resampled particle systems discussed above on
these problems. Next, we compare the worst of our branching algorithms to the best
resampled particle system discussed above and show even this most basic branching
algorithm significantly outperforms all resampled particle systems. Finally, we com-
pare all our branching algorithms to determine which variation performs the best.
For consistency, all results herein are either a typical path or an average over 200
different sample paths of 35 time steps.

5.1. Test Model. The Test Model refers to the scalar signal and observation pair:

Xn = 0.95Xn−1 + 0.3Wn, Yn = Xn−1 + Vn,

where X0, {Wn} and {Vn} are independent with standard Cauchy distribution. This
is a linear, non-Gaussian filtering problem. The Kalman filter does not apply since
the noise is Cauchy. Indeed, conditional expectations of state do not exist since the
noise is heavy-tailed. However, this problem is in other respects simple.

For model selection, we introduce alternative models and show that we select the
correct one. We keep most of the Test Model the same and just vary two coefficients:

Model Number Signal Equation Observation Equation
-2 Xn = 0.93Xn−1 + 0.28Wn Yn = Xn−1 + Vn
-1 Xn = 0.94Xn−1 + 0.29Wn Yn = Xn−1 + Vn
0 Xn = 0.95Xn−1 + 0.3Wn Yn = Xn−1 + Vn
1 Xn = 0.96Xn−1 + 0.31Wn Yn = Xn−1 + Vn
2 Xn = 0.97Xn−1 + 0.32Wn Yn = Xn−1 + Vn

ht
tp

://
hd

l.h
an

dl
e.

ne
t/1

04
02

/e
ra

.4
21

07
   

 E
R

A
: E

du
ca

tio
n 

an
d 

R
es

ea
rc

h 
A

rc
hi

ve
, U

ni
ve

rs
ity

 o
f A

lb
er

ta
   

  2
1/

09
/2

01
5



22 M. KOURITZIN

Hence, the real model is model 0, the null model.

5.2. Range Only Model. The Range Only Model refers to the four dimensional
signal and scalar observation model:

Position Velocity

Xn = αXn−1 + Un−1 + 0.3αn Un = 0.95Un−1 + γn−1

Zn = αZn−1 + Vn−1 + 0.3βn Vn = 0.95Vn−1 + θn−1

α = 0.5, Yn =
√
X2
n−1 + Z2

n−1 + 0.1ψn,

Table 1. Range Only Model

where X0, Z0, U0, V0, {γn}, {θn}, {αn}, {βn}, {ψn} are independent. X0, Z0 have 10
times the standard Cauchy distribution and U0, V0 have 5 times the standard Normal
distribution. Signal noise sources γn and θn have standard normal distribution while
αn and βn have standard Cauchy distribution. ψn is the observation noise with
standard Cauchy distribution. This is a nonlinear problem but otherwise simple.

The idea of this model comes from radar detection. Suppose that there is a radar
station at the origin in the plane, (Xn, Zn) describes the position of a ship and
(Un, Vn) its velocity. The radar produces a noise-corrupted distance observation
between the ship and itself, which is Yn in our model. The objective of this problem
is to estimate the state of the ship using the (back) observations.

For model-selection alternative models, we will keep most of the Range Only Model
the same and just vary the coefficient in front of Xn−1 and Zn−1 slightly:

Model Number Signal Parameter Observation Equation

-2 α = 0.48 Yn =
√
X2
n−1 + Z2

n−1 + 0.1ψn
-1 α = 0.49 Yn =

√
X2
n−1 + Z2

n−1 + 0.1ψn
0 α = 0.50 Yn =

√
X2
n−1 + Z2

n−1 + 0.1ψn
1 α = 0.51 Yn =

√
X2
n−1 + Z2

n−1 + 0.1ψn
2 α = 0.52 Yn =

√
X2
n−1 + Z2

n−1 + 0.1ψn

Hence, the real model is model 0 with the others differing slightly through α.

5.3. Comparison within Resampled Particle Systems. First, we compare re-
sampled particle systems based on both error (of root-mean-square type between
positional tracking estimation and the real value) and execution time.

For our Test Model, the error is defined as

error =

√√√√ 1

n

n∑
k=1

(πNk (f)− f(Xk))2, f(x) =

 30 : x > 30
x : −30 ≤ x ≤ 30

−30 : x < −30
.
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BRANCHING PARTICLE FILTERS 23

where πNk is the filter approximation at time instant k and N particles and Xk is
the signal. For our Range Only Model, the error is

error =
1

n

n∑
k=1

√
(πNk (gx)− g(Xk))2 + (πNk (gz)− g(Zk))2,

where πNk is the normalized filter approximation at time instant k and N initial
particles, Xk, Zk are the positional components of the real signal,

g(x) =

 1000 : x > 1000
x : −1000 ≤ x ≤ 1000

−1000 : x < −1000
.

and gx, gz denote g applied to the x and z (positional) components of the signal.
The result for error of Test Model and Range Only Model are shown in Table 2

and Table 3 respectively for the algorithms defined in Section 2.

Particle Number N 100 400 2000 10000

Bootstrap 8.5360 7.8759 6.9974 5.2674

Residual Resampling 7.4110 6.6604 5.8705 5.2170

Stratified Resampling 7.3761 6.5142 5.8674 5.2597

Systematic Resampling 7.3743 6.5818 5.8898 5.2655

Combined Resampling 7.3752 6.5018 5.8723 5.2192

Table 2. Average Error of Test Model

All four improved resampling methods show a significant improvement over the
bootstrap in the Test Model and the Range Only Model. All these methods ap-
proach the optimal filter as the number of particles increases. In difficult real life
problems, one often has to limit the number of particles for computational reasons
and performance with lower particle numbers are most important.
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24 M. KOURITZIN

Particle Number N 500 2000 10000 50000

Bootstrap 54.0456 48.9549 47.8813 46.7844

Residual Resampling 52.3962 48.5324 47.6532 46.0332

Stratified Resampling 49.7957 47.9813 46.2924 45.6042

Systematic Resampling 51.3571 48.6998 47.3571 46.0677

Combined Resampling 51.7296 48.0274 47.2888 45.9658

Table 3. Average Error of Range Only Model

We should not just pick the method with lowest error as speed is also important.
Average execution time results are shown in Table 4 and Table 5 respectively.

Particle Number N 100 400 2000 10000

Bootstrap 0.0084 0.0363 0.1680 0.9321

Residual Resampling 0.0081 0.0331 0.1557 0.8189

Stratified Resampling 0.0078 0.0295 0.1496 0.7947

Systematic Resampling 0.0065 0.0261 0.1123 0.5398

Combined Resampling 0.0080 0.0335 0.1302 0.6976

Table 4. Average Execution Times for Test Model

Residual and combined resampling preserve some particles without resampling
saving some of the resampling computations. The stratified, combined and system-
atic resampling, save computations related to ordering the uniform random variables
in the bootstrap method. For simple signal models (like Test), a large portion of
the time is consumed generating and ordering the uniform resampling random num-
bers. This is efficiently done with stratification so it is reasonable that stratified,
combined and systematic method can improve the speed of the Test Model greatly.
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BRANCHING PARTICLE FILTERS 25

Particle Number N 500 2000 10000 50000

Bootstrap 0.0812 0.2597 1.1837 5.8093

Residual Resampling 0.0581 0.2128 1.0122 5.0141

Stratified Resampling 0.0735 0.2618 1.1844 6.0746

Systematic Resampling 0.0602 0.1932 1.0381 4.5857

Combined Resampling 0.0823 0.2127 1.0617 5.7658

Table 5. Average Execution Times for Range Only Model

With slightly larger signals such as our Range Only Model, which has a four
dimensional signal, a lot of time is spent copying particles. Thus, the execution
time may depend more on how many particles need to be copied or resampled.
Hence, it is also reasonable that residual and combined methods, which reduce the
number of particles resampled, can improve execution time a lot. Naturally, the
systematic method is very fast as it only uses one uniform random variable.

To combine performance and speed, we define the “Bootstrap Factor” as:

Bootstrap Factor =
tbootstrap

t
,

where tbootstrap and t are the execution times for the bootstrap and method of interest
to reach a fixed error. We use error = 5.0 in the Test Model and error = 46.0 in
the Range Only Model, then show the minimum particle number, execution time
and “Bootstrap Factor” for both in Tables 6 and 7.

N Time Bootstrap Factor

Bootstrap 20000 1.9152 1
Residual Resampling 20000 1.6399 1.1679
Stratified Resampling 10000 0.7947 2.4099

Systematic Resampling 25000 1.5582 1.2291
Combined Resampling 10000 0.6976 2.7454

Table 6. Bootstrap Factor of Test Model with fixed Error = 5.0

The Bootstrap Factor compares speed of a method to the bootstrap filter for a
given performance, combining accuracy and efficiency factors. Combined Resam-
pling is the best method for both models with Bootstrap Factors of 2.7454 and
6.5116. However, every branching algorithm will significantly outperform this.
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26 M. KOURITZIN

N Time Bootstrap Factor

Bootstrap 60000 6.9134 1
Residual Resampling 50000 5.0141 1.3788
Stratified Resampling 10000 1.1844 5.8522

Systematic Resampling 50000 4.5857 1.5076
Combined Resampling 10000 1.0617 6.5116

Table 7. Bootstrap Factor of Range Only Model with fixed Error = 46.0

5.4. Comparison between Branching and Resampled Particle Systems.
In this section, we compare the bootstrap and best resampled particle system to
residual branching, the most basic branching system. We show that our residual
branching can improve both performance and execution time. For now, we define
(an, bn) = (1/r, r), where r ∈ [1,∞], and refer to r as the resampling parameter. All
particles will resample when r = 1, which we call complete resampling. No particle
will resample when r = ∞, which means we have the weighted particle filter. We
found a good fixed choice of r for the Test Model was 2.25 and for the Range Only
Model was 5. (Later, we will explore better methods with state-dependent r.)

The error comparison is shown in Tables 8 and 9. Residual branching is much
better than the bootstrap and even the best resampled system, combined resampling.

Particle Number N 100 400 2000 10000

Bootstrap 8.5360 7.8759 6.9974 5.2254

Combined Resampling 7.3752 6.5018 5.8723 5.2192

Residual Branching 5.4284 4.9177 4.6479 4.5395

Table 8. Average Error of Test Model

Particle Number N 500 2000 10000 50000

Bootstrap 54.0456 48.9549 47.8813 46.7844

Combined Resampling 51.7296 48.0274 47.2888 45.9658

Residual Branching 46.8439 45.9416 45.6183 45.0748

Table 9. Average Error of Range Only Model
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BRANCHING PARTICLE FILTERS 27

Speed is compared in Tables 10 and 11. Branching is fastest for both models.

Particle Number N 100 400 2000 10000

Bootstrap 0.0084 0.0363 0.1680 0.9321

Combined Resampling 0.0080 0.0335 0.1302 0.6976

Residual Branching 0.0060 0.0210 0.1153 0.4672

Table 10. Average Execution Time of Test Model

Particle Number N 500 2000 10000 50000

Bootstrap 0.0812 0.2597 1.1837 5.8093

Combined Resampling 0.0823 0.2127 1.0617 5.7658

Residual Branching 0.0644 0.1883 0.9203 4.4107

Table 11. Average Execution Time of Range Only Model

To evaluate the advantage of branching on both performance and speed, we pro-
vide the Bootstrap Factor in Tables 12 and 13. In the Test Model, residual branching
is 91.2 and 33.2 times better than bootstrap and combined resampled respectively.
In Range Only Model, the improvement is also significant at 36.7148 and 5.64. Our
better branching algorithms will be shown below to outperform yet a lot more.

N Time Bootstrap Factor

Bootstrap 20000 1.9152 1
Combined Resampling 10000 0.6976 2.7454

Residual Branching 400 0.0210 91.2000

Table 12. Bootstrap Factor of Test Model with Error 5.0

N Time Bootstrap Factor

Bootstrap 60000 6.9134 1
Combined Resampling 10000 1.0617 6.5116

Residual Branching 2000 0.1883 36.7148

Table 13. Bootstrap Factor of Range Only Model with Error 46
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28 M. KOURITZIN

Model selection ability is also extremely important. For comparison purposes,
we fix the initial number of particles to be N = 10, 000 for all model selection
experiments and show the execution time for model selection in Table 14. Residual
branching is the fastest for model selection as it was for tracking. Indeed, branching
has another small inherent advantage here since model selection is based upon the
unnormalized filter, which is already computed in the branching methods.

Model Test Model Range Only Model

Bootstrap 1.213 1.613
Combined Resampling 0.960 1.602

Residual Branching 0.736 1.347

Table 14. Average Execution Time of Model Selection

Inasmuch as the performance results are very similar for both the Test and Range
Only models, we just demonstrate these three algorithm on our Range Only Model.

We define Bayes Factor = σ0(1)
σk(1)

, where k ∈ {−2,−1, 0, 1, 2} is the index for the

different models described in Sections 5.1 and 5.2. All three algorithms select the
correct model rather convincingly. It appears from these single-outcome pictures
that bootstrap had the hardest time distinguishing models, Combined Resampling
distinguished the correct model from model 1 the best, while Residual Branching
distinguished the other three models best.
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Figure 5. Bootstrap Model Selection of Range Only Model

Typically, bootstrap has the most difficult time distinguishing models and residual
branching is slightly better at distinguishing models than combined resampling.
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Figure 6. Combined Resampling Model Selection of Range Only Model
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Figure 7. Residual Branching Model Selection of Range Only Model

5.5. Comparison within Branching Particle Systems. There are many ways
to produce unbiased branching filters. The residual branching and combined branch-
ing algorithms, introduced in Sections 3.1 and 3.2, are two of the simplest to imple-
ment. Hitherto, we have taken an and bn in these algorithms constant. However, the
performance and speed can improve if an and bn depend on the system state at time
step n. Hence, now we consider a dynamic rn such that an = 1

rn
and bn = rn will

depend on system state in two different ways. We call these two implementations
Dynamic Branching and Effective Particle Branching as mentioned in Section 3.3.

We continue comparing error, speed and “Bootstrap Factor” but now within
branching particle systems. First, we consider simple residual branching and com-
bined branching on our test model and show combined is much better than residual
and hence two levels above the resampled particle systems.
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30 M. KOURITZIN

Particle Number N 100 400 2000 10000

Residual Branching 5.4284 4.9177 4.6479 4.5395

Combined Branching 5.1690 4.5548 4.2728 4.1494

Table 15. Average Error of Test Model

The error, execution times and bootstrap factors are in Tables 15, 16 and 17.

Particle Number N 100 400 2000 10000

Residual Branching 0.0060 0.0210 0.1153 0.4672

Combined Branching 0.0079 0.0312 0.1063 0.5010

Table 16. Average Execution Time of Test Model

N Time Bootstrap Factor

Residual Branching 400 0.0210 91.2100
Combined Branching 150 0.0085 225.3176

Table 17. Bootstrap Factor of Test Model with fixed Error 5.0

It is clear that the combined method is superior to the Residual one on the Test
model. Insomuch as the conclusions to be formed on the Test and Range Only
models would be very similar, we conserve space and only present our experimental
results on the dynamic and effective particle methods for the Range Only model.

Next, we apply residual branching (with r = 5), combined branching (with r = 5),
dynamic branching and effective particle branching to our Range Only Model. It
turns out that this good choice of r = 5 translates into branching about three
quarters of the time in the residual and combined methods. Also, since combined
branching (where stratified random numbers are used) outperforms residual branch-
ing, we use both residual and stratified techniques within dynamic and effective
particle branching. For clarity, these approaches differ from combined branching by
replacing a fixed r with a state dependent rn as defined in Section 3.3.

For dynamic branching, we set q to be different value and find the best c, which
means the minimum error, and show the results in Table 18. It shows that the
resampling percentage is always around 76%, which is a similar amount as used in
with the good choice of static r in the residual and combined branching filters.
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BRANCHING PARTICLE FILTERS 31

q c Error resampling percent

0.5 0.80 46.3298 76.19%

1.0 0.60 45.8457 76.21%

1.5 0.36 45.9732 76.51%

2.0 0.25 46.3665 76.52%

Table 18. Average Error of dynamic branching method with 500 particles

However, this table demonstrates that the conditions for branching, not just the
overall amount of branching, affect error. The error is minimal with q = 1, which
corresponds to a constant amount of branching regardless of system entropy. The
Residual and Combined methods would correspond to the case of more branching
when there is more entropy and the case q = 2 would correspond to the case of more
branching when there is less entropy. Indeed, we will see below that this dynamic
branching with q = 1 beats combined branching at all particle numbers considered.

For effective particle branching, we consider the following cnoneff and ceff choices:

ceff cnon Error ceff cnon Error ceff cnon Error

1 2 64.5101 1 16 45.7550 2 8 45.9141

2 1 46.2599 16 1 46.4342 8 2 47.7404

1 4 45.9427 1 32 48.2642 2 16 45.8674

4 1 53.0337 32 1 50.0621 16 2 53.2428

1 8 45.9082 2 4 56.0850 2 32 46.5672

8 1 46.1202 4 2 49.2555 32 2 54.7030

Table 19. Average Error with Different ceff and cnoneff and 500 particles

The results in Table 19 show that ceff = 1 and cnoneff = 16 for rn in (3.2) is
the best choice to minimize error. This means that more resampling would be done
when there are fewer effective particles for the Range Only problem.
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32 M. KOURITZIN

We compare residual, combined, dynamic and effective particle branching errors
in Table 20. It shows that the effective particle method performs slightly better than
the dynamic method and both of these are considerably better than the combined
branching. We conclude that state-dependent branching is worthwhile.

Particle Number N 500 2000 10000 50000

Residual Branching 46.8439 45.9416 45.6183 45.0748

Combined Branching 45.9928 45.5704 45.1756 44.9879

Dynamic Branching 45.8457 45.4156 44.9498 44.5768

Effective Particle 45.7550 45.4107 44.8365 44.5617

Table 20. Average Error of Range Only Model

Before we declare the Effective Particle Branching method to be the best, we need
to consider execution time. The results are shown in Table 21.

Particle Number N 500 2000 10000 50000

Residual Branching 0.0644 0.1883 0.9203 4.4107

Combined Branching 0.0480 0.2090 0.9310 4.5120

Dynamic Branching 0.0658 0.2155 1.1496 4.9783

Effective Particle Branching 0.0693 0.2451 1.1527 5.0135

Table 21. Average Execution Time of Range Only Model

Since dynamic branching is faster than effective particle branching while the per-
formance of effective particle branching is slightly better, we need to consider Boot-
strap Factor. Table 22 shows dynamic branching is best on a performance per com-
putation point of view. Still, Combined branching and Effective Particle branching
have the advantages of simplicity and best (non-time normalized) performance.

ht
tp

://
hd

l.h
an

dl
e.

ne
t/1

04
02

/e
ra

.4
21

07
   

 E
R

A
: E

du
ca

tio
n 

an
d 

R
es

ea
rc

h 
A

rc
hi

ve
, U

ni
ve

rs
ity

 o
f A

lb
er

ta
   

  2
1/

09
/2

01
5



BRANCHING PARTICLE FILTERS 33

N Time Bootstrap Factor

Residual Branching 2000 0.1883 36.7148
Combined Branching 500 0.0480 144.0292
Dynamic Branching 350 0.0412 167.8009

Effective Particle Branching 320 0.0465 148.6753

Table 22. Bootstrap Factor of Range Only with Error 46.0

To demonstrate the significant improvement of branching systems over resampled
systems, we show typical Test Model and Range Only Model error versus time.

Figure 8. typical case in Test Model

Figure 9. typical case in Range Only Model

6. Conclusions

Based upon our experimental and theoretical results, we suggest the following:
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34 M. KOURITZIN

(1) There are branching particle methods that do not suffer terribly from wild
particle swings.

(2) There are branching particle methods whose tracking performance and exe-
cution times can compare most favorably to the traditional resampled par-
ticle systems that have widespread appeal.

(3) Practioners should now consider the Combined, Dynamic and Effective Par-
ticle branching algorithms introduced herein.

(4) The Bootstrap Factor defined herein is a reasonable way to compare particle
filtering methods.

(5) Branching particle filters also compare favorably on model selection problems
and have the added advantage of using the unnormalized filter for ease of
computing Bayes factor.

7. Appendix: Proof of Theorem 2

Proof. Initial Setup: Let pl+1(j) denote the parent of the jth particle at time l+1,

Wi
l = αl(Xi

l−1), Hk
l+1 = {L̂kl+1 /∈ (alAl+1, blAl+1)} and χkl =

Wk
l+1L

k
l

AN
l+1

1Hk
l+1

+ 1(Hk
l+1)

C .

Since

0 < inf
x∈E

g(Yl − h(x))

g(Yl)
, sup
x∈E

g(Yl − h(x))

g(Yl)
<∞

there is a C = C(Y1, ..., Yn) > 1 such that

1

C
≤Wi

l ≤ C ∀1 ≤ i ≤ Nl−1; 1 ≤ l ≤ n;N ≥ 1. (7.1)

For l ≥ 1, we define υC(l), τC(l),DN
l recursively by

υC(l) = CυC(l − 1)τC(l − 1), subject to υC(0) = 1, (7.2)

τC(l) = 2τC(l − 1)(CυC(l)υC(l − 1) + 1) subject to τC(0) = 1, (7.3)

DN
l =

{
1

τC(l)
≤ Nl

N
≤ τC(l)

}
∩ DN

l−1 subject to DN
0 = Ω. (7.4)

Clearly, DN
l ∈ FXUV

l . Now, recall from the Residual branching algorithm that

AN
l+1 =

1

N

Nl∑
i=1

Wi
l+1Lil (7.5)

AN
l+1 ∧ Wpl+1(j)

l+1 Lpl+1(j)
l ≤ Ljl+1 ≤ AN

l+1 ∨Wpl+1(j)
l+1 Lpl+1(j)

l (7.6)

Nk
l+1 ≤

[
LklWk

l+1

AN
l+1

+ 1

]
(7.7)
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BRANCHING PARTICLE FILTERS 35

for j = 1, ...,Nl+1. These imply by induction and (7.1) that

1

υC(l + 1)
≤ AN

l+1 ≤ υC(l + 1) (7.8)

1

υC(l + 1)
≤ Lil+1 ≤ υC(l + 1) ∀i ∈ {1, ...,Nl+1} (7.9)

1

CυC(l)
≤ Wi

l+1Lil ≤ CυC(l) i ∈ {1, ...,Nl+1} (7.10)

Nk
l+1 ≤ MC(l + 1)

.
= υC(l + 1)υC(l)C + 1 ∀k ∈ {1, 2, ...,Nl} (7.11)

on DN
l for all l = 0, 1, 2..., n.

Base Case: {Nk
1} are bounded by MC(1) (since DN

0 = Ω) and conditionally inde-
pendent (since the Uk

1’s are independent) so Hoeffding’s inequality applies to find

QY

(∣∣∣∣∣ 1

N

N∑
k=1

[
Nk

1 −
[
Wk

1

AN
1

1Hk
1

+ 1(Hk
1)

C

]]∣∣∣∣∣ > t

∣∣∣∣FX0 ∨ FV1
)

(7.12)

≤ 2 exp

(
− 2Nt2

M2
C(1)

)
a.s.

Next, by (7.1), (7.8), (7.2), (7.3) and (7.12)

QY

({
1

τC(1)
≤ 1

N

N∑
k=1

Nk
1 ≤ τC(1)

})
(7.13)

≥ QY

({
2

τC(1)
≤ 1

N

N∑
k=1

[
Wk

1

AN
1

1Hk
1

+ 1(Hk
1)

C

]
≤ τC(1)

2

})

− EY

[
QY

(
1

N

∣∣∣∣∣
N∑
k=1

[
Nk

1 −
[
Wk

1

AN
1

1Hk
1

+ 1(Hk
1)

C

]]∣∣∣∣∣ > 1

τC(1)

∣∣∣∣FX
0 ∨ FV

1

)]

≥ 1− 2 exp

(
− 2N

M2
C(1)τ 2C(1)

)
.

Inductive Step: Suppose that

QY (DN
l ) ≥ 1− 2l exp

(
− 2N

M2
C(l)τ 2C(l)τ 2C(l − 1)

)
, (7.14)
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36 M. KOURITZIN

which is true when l = 1. Then, it follows by (7.10), (7.8) (7.3) and (7.2) that

QY

({
1

τC(l + 1)
≤ 1

N

Nl∑
k=1

Nk
l+1 ≤ τC(l + 1)

}
∩ DN

l

)
(7.15)

≥ QY

({
2

τC(l + 1)
≤ 1

N

Nl∑
k=1

χkl ≤
τC(l + 1)

2

}
∩ DN

l

)

− QY

({∣∣∣∣∣ 1

N

Nl∑
k=1

[
Nk
l+1 − χkl

]∣∣∣∣∣ > 1

τC(l + 1)

}
∩ DN

l

)

≥ QY
(
DN
l

)
−QY

({∣∣∣∣∣ 1

N

Nl∑
k=1

[
Nk
l+1 − χkl

]∣∣∣∣∣ > 1

τC(l + 1)

}
∩ DN

l

)
.

However, we have by the independence of the U’s in the Residual branching algo-
rithm, (7.11) and Hoeffding’s inequality that

QY

(∣∣∣∣∣ 1

N

Nl∑
k=1

[
Nk
l+1 − χkl

]∣∣∣∣∣ > t

∣∣∣∣FX,V
∞ ∨ FU

l

)
(7.16)

= QY

(∣∣∣∣∣ 1

Nl

Nl∑
k=1

[
Nk
l+1 − χkl

]∣∣∣∣∣ > N

Nl

t

∣∣∣∣FX,V
∞ ∨ FU

l

)

≤ 2 exp

(
− 2Nt2

M2
C(l + 1)τ 2C(l)

)
on DN

l

so by (7.15), (7.14) and (7.16) with t = 1
τC(l+1)

QY

({
τC(l + 1) ≤ 1

N

Nl∑
k=1

Nk
l+1 ≤ τC(l + 1)

}
∩ DN

l

)
(7.17)

≥ 1− 2(l + 1) exp

(
− 2N

M2
C(l + 1)τ 2C(l + 1)τ 2C(l)

)
.

Conclusion: The result follows by induction, (7.4), (7.8) and (7.9). �
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