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Abstract

OpenSpiel is an open-source software system for implementing high-performance soft-

ware players for many different computer games. Hex is a two-player game of perfect

information used in a variety of computer games research projects. The OpenSpiel

project has implemented a version of the AlphaZero algorithm used to great success

in the games of Go and chess. Therefore, we use an existing implementation of Hex

in OpenSpiel, along with the AlphaZero algorithm, to train and evaluate strong Hex

players.

We perform experiments with OpenSpiel for both 6×6 and 8×8 Hex where, to

improve the diversity and coverage of self-play games during training, a set of so-

called forced-move openings are used. We show that the forced-move openings allow

OpenSpiel agents to learn faster, as measured by a test suite of positions. We also

developed a set of test positions, with the help of the MoHex system, which can prove

the game theoretic value of a given position. Head-to-head play of game agents is

often used to evaluate player strength, but a test suite based on proven winning moves

(via MoHex) is computationally less expensive.
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Glossary of Terms

Game record A terminal game position together with the sequence of moves which

led to that position.

Game position An arrangement of stones on a Hex board, together with the player

to move next (Black or White). [Notice that the sequence of moves is not part

of this definition.].

Game move A move made by a player, either placing a stone on an empty cell, or

swapping identities with the opponent. [These can also be called actions. In

Smart Game Format (SGF) game notation, a move is describing by giving the

player who moved followed by the move’s cell coordinates or the word swap, e.g

B[a3] or W[swap].].

Losing position For a player, a position in which they have already lost, or have

no winning move.

Losing move A move which leaves the opponent in a winning position.

Move sequence An ordered list indicating the moves played by players. In Hex,

this starts with Black’s first move.

Terminal game position A game position in which the winner is already deter-

mined, and the game has been finished.

Winning position For a player, a position in which they have already won, or in

which they have a at least one winning move.

Winning move A move which leaves the opponent in a losing position.

xi



Chapter 1

Introduction

In this thesis, we explain how to implement an AlphaZero [1] computer Hex player

based on DeepMind’s OpenSpiel [2] open-source reinforcement learning framework.

Building strong game agents is long known to have been an interesting problem

that led to many breakthroughs in artificial intelligence. After Deep Blue, for the first

time ever, defeated the multi-year world chess champion, Garry Kasparov in 1997, the

game of Go became “the new grand test of intelligence” [3]. About two decades later,

in 2016, DeepMind’s AlphaGo [63] won against 18-time world champion Lee Sedol

and emerged as the first computer program to beat a professional human in Go [3].

AlphaGo used a complex hybrid design with supervised learning, reinforcement learn-

ing with a database of self-play games, and multiple neural networks. The very next

year, DeepMind introduced AlphaGo Zero [4], an improved RL Go player trained

on residual neural networks via self-play without any human expert knowledge. The

same training methodology was later generalized and published as AlphaZero, which

achieved superhuman strength in chess and shogi [1, 5].

AlphaZero’s achievement of a general game learning architecture is significant in

different aspects. Plaat [3] lists the following three aspects:

First, it is remarkable that self-play is so powerful that it can learn from

scratch and become so strong that it beats the current world champions.

Second, it is remarkable that different games can be learned by the same
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network architecture. Perhaps, some kind of element of general learning

must be present in the structure of the ResNets of AlphaZero, although

the networks that are learned differ between games: a network trained

for Chess cannot play Go well. Third, for Chess and Shogi all previous

strong programs had been based on the heuristic planning approach of

alpha-beta with domain-specific heuristics, but now they are beaten by a

general learning approach using self-play function approximation.

Even with a powerful algorithm such as AlphaZero, there are still problems that

need to be resolved [7]. We discuss two of such problems as our research questions in

this thesis and propose solutions for them as our main contributions.

The first issue is that achieving perfect play performance might be computation-

ally infeasible in games where the search space is too big to search exhaustively. For

instance, Silver et al. [1] report that training their AlphaZero Go agent to superhu-

man level took 9 days on 5000 tensor processing units (TPUs). Consequently, such

resources are not available to everyone, and quite a few research teams can train their

models for hundreds of thousands of steps with thousands of TPUs and GPUs.

Arguably, this infeasibility is partially because AlphaZero’s search algorithm, the

Monte Carlo tree search (MCTS), explores better moves more frequently than others

when finding the next move to play. So in games with large search space, AlphaZero

requires a significant amount of time and resources to practice all possibilities, in-

cluding bad moves. If such requirements were not met, the agent might not have the

chance to explore all moves but only the good ones.

Exploring only good moves may not be an issue when the agent plays against

another strong player who chooses the best possible move at each board position.

However, the agent may fail and respond with a wrong move if the opponent does

something illogical at its turn, like playing a losing move when a winning move is

available. The agent has not seen such illogical moves often during training and does
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not know how to respond properly. This is mainly because the agent practices only

with good moves (e.g., winning moves) as suggested by the MCTS.

This limited exploration could also be a result of using the information learned

from previous steps to choose the next move at each training step. In the beginning,

the agent may play randomly since no prior information is available yet. However,

as training progresses, it learns that some moves are better than others and chooses

them repeatedly. Since training is done via self-play, the experienced responses will

be limited to those preferred moves. As a result, for example, the agent knows well

how to start a game as the first player and how to respond as the second player when

the opponent chooses one of the agent’s best first moves. But it does not know the

best answer to a wrong move.

Research Question (RQ) 1. What is a smarter way to explore the search space

in AlphaZero?

To answer this question, we propose to enforce one or more moves as the openings

of each training game to expand the explored possibilities. With such openings,

the agent will be exposed to a more diverse set of moves instead of only the moves

that it thinks are the best while keeping the training time and resource usage low

(Section 5.2).

As a case study for our approach, we use the board game of Hex [8]. It is a

two-player connection-based game with a hexagonal grid of n × n hexagons. The

players, represented by the colors black and white, take turns placing stones of their

respective colors in empty cells. If a chain of adjacent black stones connects one side

of the board to the opposing side, the black player wins. Likewise, the white player

wins if they can get a line of neighbouring white stones from the other side of the

board to its opposite side. By convention, black is the first to move [9].

We choose Hex instead of Go for two main reasons. First, while being a compu-

tationally challenging game with a large search space comparable to Go [10–12], Hex

has simple, easily-implemented rules that allow quick game simulations and evalu-
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ation. Second, the game outcome is simple. It is either win or lose, and no tie is

possible [8]. We discuss Hex and its rules in more detail in Section 2.1.

For AlphaZero and Hex implementations, we use the ones included in the OpenSpiel

RL framework. OpenSpiel is an open-source library for research in RL in games. It

offers environments for a variety of perfect and imperfect information games with

one or more players. It also has well-tested implementations of more than ten RL

and multi-agent RL algorithms (like AlphaZero) [48], and three search algorithms

(MCTS, minimax [34] and alpha-beta [39]) [49].

We use OpenSpiel’s AlphaZero implementation instead of writing our own for two

main reasons. First, we argue that its implementation is one of the closest ones to

the code used in the original AlphaZero paper. While the original code has never

been published, the OpenSpiel’s version is developed under the supervision of the

authors of the same paper at DeepMind [1]. Second, OpenSpiel code and all of its

dependencies are open-source. Thus, external researchers require minimal external

information to study our methodology.More details on OpenSpiel are provided in

Chapter 4.

Hyper-parameter tuning is another challenge in training agents with AlphaZero [7].

Section 5.1 provides detailed information on AlphaZero’s hyper-parameters. But

before the impacts of any hyper-parameter configuration on the trained agent can be

observed, a large amount of computing resource commitment is required.

Therefore, we define our second research question as follows:

Research Question (RQ) 2. What hyper-parameters work well for a Hex player

trained with OpenSpiel’s AlphaZero algorithm?

Although the most popular board sizes for Hex are 11×11, 13×13, and 19×19 [13],

we have to use smaller board sizes of 6×6 and 8×8 in this thesis. This is because we

do not have the computing resources and the time required to train strong AlphaZero

agents for larger boards. Hence, using smaller boards allows us to experiment with

different hyper-parameters and approaches more quickly. Moreover, we have access
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to MoHex and its solver (Chapter 3) which can solve Hex 6×6 perfectly and Hex 8×8

near-perfectly.

To address RQ 2, we provide two sets of hyper-parameter values for 6×6 and 8×8

Hex boards that work well for agents trained with OpenSpiel’s AlphaZero implemen-

tation (Chapter 5). We also present our approach for calculating those values, which

could be useful for other board sizes and similar games (Section 5.1). We should note

that the reported hyper-parameter values are based on our experiments with tens

of different combinations, not a result of an exhaustive systematic hyper-parameter

sweep. We also discuss the results of including forced openings in training AlphaZero

Hex agents (Section 7.2).

Once an agent is trained, it should be evaluated. A common way to evaluate game

AIs is to play a set of head-to-head games against benchmarks. However, this method

is time-consuming and may need considerable computing power. Therefore, as our

third research question, we would like to find alternative evaluation methods for our

Hex agents.

Research Question (RQ) 3. How can we evaluate Hex AIs and determine their

strength faster?

Our proposed evaluation method to address RQ 3 is to use a set of carefully chosen

test positions grouped as test suites to quickly test an agent’s response in real-world

situations. These test positions have been selected from actual games using a step-by-

step and reproducible approach. Our approach is thoroughly described in Chapter 6.

Compared to the classic evaluation methods for game AIs, such as head-to-head

games, our new evaluation method using test suites is about 20 times faster (Ta-

ble 7.1). While we provide test suites for Hex 6×6 and Hex 8×8 (Appendix A), our

approach can easily derive test positions for other board sizes.

We can summarize the three main contributions of this work, which all directly

relate to the research questions discussed previously, as below:
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1. As a smarter way to explore the search space, we propose enforcing move open-

ings for each training game to expand the explored moves over the course of

training and improve the quality and speed of training (Section 5.2).

2. To address the challenge of hyper-parameters tuning, we provide two sets of

hyper-parameter values for training strong AlphaZero-style Hex players for 6×6

and 8×8 boards with OpenSpiel (Chapter 5).

3. To evaluate Hex AIs and determine their strength quickly, we propose to use test

suites and present a systematic method for building such test suites (Chapter 6).

Our empirical results (Chapter 7) show that enforcing move openings at the be-

ginning of training games improves agents’ performance. This improvement is, on

average, 10% for Hex 6×6 and 14% for Hex 8×8. Detailed discussion of the results

is provided in Section 7.2.
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Chapter 2

Background and Related Work

In this chapter, we provide an overview of the concepts and techniques that we build

on in the remainder of the thesis. We start with a discussion of the game of Hex,

and why we choose it as a case study for our ideas (Section 2.1). Then, we describe

game trees, and the Monte Carlo tree search algorithm [14] that is used by many

computer Hex programs (Section 2.2). We continue by reviewing AlphaZero [1], a

high-performance reinforcement learning algorithm that uses self-play to build strong

game agents (Section 2.3). In Section 2.4, we briefly explain the retrograde analysis

as a technique for backward searching of the game trees. Finally, in Section 2.5,

we discuss the recent advancements in computer Hex programs and the current Hex

Olympiad champion.

The next two chapters, Chapter 3 and Chapter 4, provide background information

on MoHex [15, 16] and OpenSpiel [2]. The former is one of the strongest Hex programs

that can play near-perfectly for board sizes up to 8×8. The latter is an open-source

software framework for implementing high-performance players for many different

games with a variety of algorithms, including AlphaZero.

2.1 Game of Hex

Hex was invented in 1942 by Danish mathematician Piet Hein and later popularized

by John Nash in 1948 [8]. It is a board game that is played on a rhombus board
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comprised of an n × n array of hexagons. Although the board can be any size, the

popular sizes are 11×11, 13×13, and 19×19 [13]. We use smaller board sizes of 6×6

and 8×8 in this thesis because they are easier to solve and allow us to experiment

with viable approaches more quickly. Moreover, we have access to MoHex and its

solver (Chapter 3) which can solve Hex 6×6 perfectly and Hex 8×8 near-perfectly.

On a Hex board, two opposing sides are black, while the remaining two are white.

One player’s sides and stones are all black. The other player’s sides and stones are

white. Each player takes a turn placing a stone of their own color in an empty cell.

The first player typically uses black stones, while the second player uses white stones.

Whoever successfully reconciles their two sides is the winner [8]. In other words, the

winning player must connect both sides of the board using a line of their color stones.

A game can never be declared a tie [8, 10]. According to Simonsen and Hadde-

land [10], “proving this is equivalent to proving the Brouwer fixed-point theorem for

two dimensions, as done by David Gale [17]. As such, the only way to completely

block the opponent is to form a connection with one’s own pieces.” (p. 6). The first

player always has a winning strategy regardless of the board size [18]. Finding these

strategies becomes more difficult as the board size increases. Current research solves

up to 9×9 boards and also some 10×10 openings [19]. Indeed, it is PSPACE-complete

to solve a particular state [20, 21].

A swap rule is used in one version of Hex to compensate for the first player’s

significant advantage. According to this rule, after the first player places the first

stone, the second player may either continue playing normally with stones and sides

of the opposite color, or may swap stones and sides with the first player. After that,

players take turns as usual [8]. This is the variant that is most frequently used in

competitions [13]. However, in this thesis, we do not consider the swap rule.
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2.2 Monte Carlo Tree Search

Games like chess and Hex have enormous game trees because of their large branching

factor [21, 22]. Therefore, it is almost impossible to exhaustively search trees because

of time and memory constraints. As an alternative to checking all nodes, Coulom [14]

proposes the Monte Carlo tree search (MCTS) which stochastically samples and visits

the nodes to find a desirable root-to-leaf path. The MCTS performs several iterations

known as simulations to find the best next-level node. Each iteration includes four

operations: selection, expansion, simulation (rollout), and backpropagation. After

completing a specific number of iterations, the data from all iterations is aggregated,

and the node with the greatest visit count at the first level after the root is returned

as the search result [9]. In the rest of this section, we discuss the four operations in

detail.

The selection phase traverses the tree from the root node to a leaf, at which point

a new child – that is not yet a member of the tree but has the best chance of winning

is selected [10]. A tree policy determines which action to execute at each internal

stage and which node to explore next [3].

The expansion step then expands the tree by adds one or more edges from the

selected node [3]. While some variations of MCTS add only one child, other add all

descendants of a leaf node [23].

Following that, the simulation step selects nodes down the tree using a default

policy until it reaches a leaf node. At the leaf node, the reward value, e.g., +1 for

a win, 0 for a tie, and -1 for loss is computed. According to Anthony [9], “in the

absence of domain-specific information, the default policy used is simply to choose

actions uniformly from those available. Often hand-crafted default policies using

domain knowledge give sizable performance improvements.” (p. 59).

The backpropagation step propagates the reward value assigned to the leaf node

upwards in the tree via the nodes traversed before. Then, values are updated from
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the leaf node to the root node [3, 10].

According to Anthony [9], “the tree policy is based on statistics stored in the game

tree (such as average values of states), and is designed to explore possible actions and

gradually improve. The default policy is fixed; it is the policy taken in states outside

the partial tree” (p. 59).

For each node s of the tree, we store the number of simulations that visited that

node as n(s). For each edge a, we keep two numbers: n(s, a), the number of times it

has been traversed, and R(s, a), the total reward collected in simulations that trav-

elled through it. The tree policy uses the values stored in the nodes and edges to

determine what branch to visit next [3]. The most frequently used tree policy [9]

is Upper Confidence bounds for Trees (UCT) [23]. The UCT formula, as listed in

Equation 2.1, is sum of two terms known as exploitation and exploration, respec-

tively. The exploitation term, R(s,a)
n(s,a)

, favours actions with a high average reward [3].

The exploration term, cb

√︂
logn(s)
n(s,a)

, favours rarely visited actions [9]. The cb constant

controls the level of exploration, where lower values mean less exploration [3].

UCT(s, a) =
R(s, a)

n(s, a)
+ cb

√︄
log n(s)

n(s, a)
(2.1)

When all iterations are completed, the most visited node after root is returned as

the search result. According to Anthony [9], “because UCT will explore higher value

actions more often, the most explored action [node] is usually also the highest value

[reward] action. However, if an action’s value changes near the end of the search

procedure, then the most explored action and the highest value action differ.” (p.

60). While it is possible to select the node with highest value instead, “but this has

been found to be in practice slightly weaker than taking the most explored action.”

(p. 60) [24].
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2.3 AlphaZero

AlphaZero [1] and AlphaGo Zero [4] are MCTS-based self-play reinforcement learn-

ing (RL) algorithms created by Alphabet’s DeepMind. Without any human expert

knowledge or supervised learning, these algorithms are designed to play board games

like Go, chess, and shogi (Japanese chess). While AlphaGo Zero attained superhuman

performance only in Go, AlphaZero decisively won against world champion programs:

Stockfish [25] in chess, and Elmo [26] in shogi, as well as AlphaGo Zero in Go.

According to Silver et al. [1], “AlphaZero replaces the handcrafted knowledge and

domain-specific augmentations used in traditional game-playing programs with deep

neural networks, a general-purpose reinforcement learning algorithm, and a general-

purpose tree search algorithm.” (p. 1).

The deep neural network that is used instead of custom evaluation functions and

heuristics, “takes the board position s as an input and outputs a vector of move

probabilities p with components pa = Pr(a|s) for each action a and a scalar value

v estimating the expected outcome z of the game from position s, v ≈ E[z|s].” (p.

1) [1]. The neural network parameters, as well as the move probabilities and value

estimates are entirely learned by self-play. The resulting move probabilities and values

are used to drive the MCTS in subsequent self-play games [1].

For all three games of chess, shogi, and Go, AlphaZero uses the same neural network

architecture: “The neural network consists of a ‘body’ followed by both policy and

value ‘heads’. The body consists of a rectified batch-normalized convolutional layer

followed by 19 residual blocks.” (p. 16) [1]. All training hyper-parameters, except the

learning rate and the Dirichlet noise, are the same as well [1]. We discuss AlphaZero

hyper-parameters and their values in Section 5.1.

There are a number of differences between the AlphaZero algorithm, as described by

Silver et al., and AlphaGo Zero [4]. On one hand, AlphaGo Zero works by evaluating

and optimizing probability of a binary outcome, given that a Go game does not end as
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a tie. AlphaZero on the other hand, “evaluates and optimizes the expected outcome”

(p. 2), since draws are possible in chess and shogi. The other difference is in the

self-play games. Self-play games in AlphaGo Zero involved the best player of all

previous iterations. Conversely, in AlphaZero, self-play games are generated by the

single neural network that is updated continuously. Therefore, there is no need to

wait for iteration completion [1].

To reach superior game play strength in chess, shogi, and Go, Silver et al. “trained

separate instances of AlphaZero . . . for 700,000 steps (in mini-batches of 4,096 training

positions) starting from randomly initialized parameters. During training only, 5,000

first-generation tensor processing units (TPUs) were used for self-play games, and

16 second-generation TPUs were used to train the neural networks. Training lasted

about 9 hours for chess, 12 hours for shogi and 13 days for Go.” (p. 3) [1].

2.4 Retrograde Analysis

As discussed in Section 2.2, games like chess and Hex have game trees that are

too big, and tree search algorithms may not efficiently reach the terminal positions.

To overcome this limitation, heuristics are used to estimate the value of endgame

positions, i.e., win, loss or tie. Alternatively, a database of pre-calculated positions

can be used to quickly look up a position’s value. Retrograde analysis, also known as

backward search, can be employed to create such a database [22].

A backward search contrasts with a forward search. According to Wu and Beal [22],

in forward search, “one starts from an unknown state and tries to determine its value

by recursively searching all successor values. A backward search starts from the

known states and tries to prove the predecessor states’ values.” (p. 1).

Wu and Beal [22] describe an example usage of retrograde analysis in games as

follows:

If you programmed the game using retrograde analysis, you would start
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from an ending position. The position value is defined by the rules of the

game: win, lose, or draw. Next, you look at all the moves that could have

gotten you there. If you can play into a win, the position you are moving

from is also a win. If you play into a loss, there is a possibility that all

moves from that position lead to losses, so you examine them all. If all

other moves lead to losses, the position you are examining is also a loss.

Repeat this backward analysis for all ending positions. You now know the

value of all positions one move away from ending positions. Repeat for

positions one move away, two moves away, etc., until no more new wins

or losses emerge. You now know the best end result you can achieve for

the starting position, and every other position.

Retrograde analysis can be categorized as exhaustive search as well. According to

Wu and Beal [22], we obtain a “full yet perfect knowledge” (p. 1) of a domain once

we have completed the analysis.

So far, the retrograde analysis has been applied successfully in several games. For

instance, Lake et al. [27] used the retrograde analysis in checkers to solve all endgame

positions with up to eight stones [22]. Equipped with this database, their check-

ers player, Chinook, always plays the best move in positions with eight or fewer

stones [28]. In 1994, Chinook became the first program to win a human world cham-

pionship [27].

2.5 State-of-the-art Hex Players

Many computer Hex programs have been developed in the past couple of decades. The

MoHex family, consisting of MoHex 1.0 [15], MoHex 2.0 [16], MoHex-CNN [29] and

MoHex-3HNN [30], had been the champion of the computer Hex Olympiad for about

a decade – from 2009 to 2018. All four versions of MoHex use the MCTS algorithm

for tree search. MoHex 2.0 is equipped with a parallel depth-first number search
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solver [19]. MoHex-CNN and MoHex-3HNN, unlike the other two, use convolutional

and residual neural networks, respectively. These networks are used to learn prior

probability distributions on the actions for the MCTS exploration phase and values

for the states and actions for the MCTS evaluation phase [13]. We discuss the MoHex

family in detail in Chapter 3.

There are also Hex programs that employ RL. NeuroHex [31] uses deep RL [32] to

train an 11-layer CNN for Hex 13×13. The training is performed via self-play after a

supervised initialization over a common Hex heuristic [13]. DeepEZO [33] uses self-

play to train a convolutional neural network for creating value and policy functions.

DeepEZO’s player uses minimax tree search [34] with forward-pruning according to

the moves determined by the policy function in self-play games. DeepEZO’s policy

function is trained directly from the game results and does not involve the search

probabilities [33]. Expert Iteration (ExIt) [9] learns a separate expert policy in addi-

tion to the state values. It does not use any expert knowledge during its convolutional

neural network training [9, 13]. For Hex 9×9, it implements two planning algorithms,

one based on the MCTS, and the other based on policy gradient search, a novel

model-free RL algorithm that works without a search tree [9].

Polygames [35] implements an AlphaZero-style algorithm [1, 4] with the MCTS

algorithm for tree search. Since it uses board-size-invariant neural network architec-

tures, networks trained on smaller board sizes can be scaled to larger ones. Equipped

with some other innovations, Polygames won the gold medals in the 2020 Hex Olympiad

for board sizes of 13×13 and 19×19 [36]. Similar to AlphaZero, Polygames also re-

quires significant computing resources. It was trained for nine days with 500 GPUs

to reach its top performance level [35]. As of 2021, the Hex Olympiad champion in

all three board sizes of 11×11, 13×13 and 19×19 is Ultron [37, 38]. It is a deep RL

player that uses minimax instead of MCTS and only learns state evaluations, not

policy evaluations [37].
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2.6 Concluding Remarks

This chapter reviewed the background information required for understanding the

rest of this thesis. We provided a brief history of Hex, explained its basic rules, and

discussed how having a large-enough search space while being easy to solve made Hex

6×6 and 8×8 good choices for our case study (Section 2.1). We explained the MCTS

algorithm and the four operations of selection, expansion, simulation and backpropa-

gation that it does in each iteration to eventually find the most explored move (Sec-

tion 2.2). We briefly discussed how the AlphaZero algorithm trains high-performance

computer agents via self-play without any prior expert knowledge (Section 2.3). We

also saw that AlphaZero would need thousands of TPUs to reach the superhuman

level, which is out of reach for most people. We explained the retrograde analysis, also

known as backward search, which could be used to efficiently search the game tree

of more complex games like Hex by solving positions endgame positions first (Sec-

tion 2.4). Finally, we quickly reviewed the state-of-the-art in computer Hex programs

and introduced Ultron [37], the 2021 Hex Olympiad winner.

In the following two chapters, we provide detailed information on two essential

tools used in this thesis, the MoHex program (Chapter 3) and the OpenSpiel RL

framework (Chapter 4).

15



Chapter 3

MoHex

In the previous chapter, we covered the basics of the game Hex, the Monte Carlo

tree search and AlphaZero algorithm. In this chapter, we briefly introduce MoHex

2.0 [16], the last Hex player that won the Olympiad championship without using a

neural engine. We also explain the Hex-Go text protocol (Hex GTP) used for com-

municating with Hex engines like MoHex. We use MoHex both in training AlphaZero

Hex agents and in the evaluation step, discussed in detail in Chapter 5 and Chapter 6,

respectively.

The computer Hex player MoHex first appeared as MoHex 1.0 [15] at the 2009

Computer Games Olympiad in Barcelona. MoHex is part of the computer Hex soft-

ware collection Benzene developed at the University of Alberta, which also includes

an alpha-beta [39] player Wolve and a depth-first proof-number search solver called

simply Solver [16, 19, 40]. MoHex is based on the open source collection of Go pro-

grams Fuego [24] developed by Enzenberger et al. at the University of Alberta. From

2009 through 2018, the MoHex family won every Hex Olympiad championship on

11× 11 and 13× 13 board sizes. Today, the MoHex family has been able to solve all

Hex openings for board sizes up to 9 × 9, and two non-isomorphic openings of Hex

10× 10 [8].

There are four versions of MoHex, each built on the top of its ancestor. MoHex

2.0 uses pattern weights trained on human knowledge for its rollout policy instead of
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a hand-crafted policy used in MoHex 1.0 [9]. The weight-based rollout policy guides

both tree exploration and simulations. The next version, MoHex-CNN [29], uses a

convolutional neural network to learn a prior probability distribution on the actions

to play. These prior probabilities guide the exploration of the tree search. The

most recent version, MoHex-3HNN1 [30], replaces the CNN with a residual neural

network and calculates not only the policy but also values for each state and action.

Therefore, the simulation-based MCTS from previous versions is replaced by state

values. Assigning a value to each action improves the overall performance by reducing

the number of neural network calls [13].

Apart from the mentioned differences, all versions of MoHex are equipped with

many Hex-specific techniques enabling them to determine a winning strategy quickly

without expanding the search tree. The virtual connection and inferior cell detection

engines [40] are notable unique features of MoHex 2.0. These engines allow MoHex

2.0 to prune many actions before starting the tree search [9].

In the rest of this thesis, all instances of MoHex refer to MoHex 2.0 unless otherwise

stated.

3.1 Parallel Solver

As mentioned, the Benzene package includes a depth-first proof number (DFPN)

solver [19]. The MoHex’s MCTS itself can be used as a solver since MCTS eventually

converges. However, in practise, it solves a Hex position only when the initial virtual

connection computations at the root of the search tree find a win: the tree search part

of MoHex almost never solves a position that the virtual connection computations

did not detect.

Pawlewicz et al. implemented a parallel version of the Solver [19], which allowed it

to solve all 9×9 and two non-isomorphic 10×10 1-stone positions. The search time

for the 10×10 positions was several months on a 24-processor machine; in general, on

1https://github.com/cgao3/neurobenzene
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a single-processor machine, 8×8 positions can take more than half an hour to solve.

When MoHex is run with its default setting of parameters, it runs on a single

computation thread with the Solver off. To turn the Solver on, the user sets a flag

that specifies the number of additional threads to be used for the Solver. With the

Solver enabled, when MoHex is asked to play a move for a given state, it activates the

parallel solving thread(s). Once the allotted MCTS computation time is up, MoHex

then checks whether the Solver found a solution: if yes, the provably-winning Solver’s

move is returned; if no, the MCTS move (which is not necessarily a winning move)

is returned.

In addition to solving a state, i.e., revealing the winner, the Solver can find all

or some of the winning moves for the current player, if any exists. However, it may

not always find all winning moves. We propose a workaround for this limitation in

Section 6.2.1.

3.2 Hex-Go Text Protocol

The Hex-Go text protocol (Hex GTP) is a textual interface for communication with

Hex software [41]. By providing a standardized protocol based on Go Text Protocol

(GTP), Hex GTP facilitates the separation of graphical user interfaces (GUI) from

Hex strategy engines and bots [42]. Furthermore, it permits humans to interact with

engines over the network directly and perform regression tests automatically. All four

versions of MoHex support this protocol. And can be plugged into any compatible

GUI such as HexGUI [43] and communicate directly with other GTP-compliant bots.

This protocol follows a client-server model and uses textual commands and re-

sponses represented as ASCII characters. The client and server communicate over a

socket where the client writes commands in an input stream and reads the response

from an output stream. Commands are composed of an optional identity number, a

keyword, and zero or more arguments, all separated by a whitespace character. Each

command is sent to the server as one line of text terminated by a newline character.
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A successful response begins with the equal character (=), while a failure starts with

a question mark (?). Immediately after that comes the optional identity number of

the requested command, if any was provided. Finally, the actual response comes after

one whitespace character. In case of an error, the actual response would be a short

description of the failure. Responses can have one or more lines of text. Listing 3.1

shows a sample communication with MoHex over the GTP protocol to play a move

on a 3×3 board using a set of commands discussed below.

Any GTP-compliant Hex bot needs to understand a subset of Hex-GTP commands

related to client-server interaction, board handling, and move making. Although we

are not aware of a minimum specification of such commands for GTP-compliant Hex

bots, Table 3.1 shows the list of such commands that sufficed for our experiments.

The command list commands is used to list all supported commands.

Table 3.2 lists a set of commands provided by MoHex to configure and interact

with its DFPN solver. We use such commands later in Chapters 5 and 6.

3.3 Concluding Remarks

In this chapter, we briefly reviewed the four versions of MoHex, one of the most

successful computer Hex players in the last decade. We discussed the main features

of MoHex: a virtual connection engine, an inferior cell detection engine used to prune

the search tree, and the DFPN solver used to quickly find winning moves near the

end of a game. We also discussed Hex GTP, a text-based protocol for computer Hex

players to communicate with each other (Section 3.2).

In the next chapter, we will discuss OpenSpiel. This open-source software library

allows fast and accurate implementation of AlphaZero-style agents for a wide range

of board games, including Hex.
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1 boardsize 3
2 =
3

4 showboard
5 =
6

7 e987fcd3b3ce7cac
8 a b c
9 1\. . .\1

10 2\. . .\2
11 3\. . .\3
12 a b c
13

14 genmove black
15 = b2
16

17 all_legal_moves
18 = resign swap-pieces a1 b1 c1 a2 c2 a3 b3 c3
19

20 protocol_version
21 = 2
22

23 name
24 = MoHex
25

26 version
27 = 2.0.CMake

Listing 3.1: Playing a Hex 3×3 game via GTP interface of MoHex
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Table 3.1: Generic Hex GTP commands used in this thesis (description provided by
HexWiki [41])

Command Arguments Meaning Category

boardsize n Set the board size to n×n
and remove all stones from
the board.

Board handling

clear board – Remove all stones from the
board.

Board handling

showboard – Display the current board
in a human- and machine-
readable format.

Board handling

play player move Play the provided move for
the specified player.

Making moves

genmove player Generate and play a
proper move for the given
player.

Making moves

undo – Undo the most recent
move.

Making moves

all legal moves – Display a list of all le-
gal moves available for the
current situation.

Making moves

name – Display the name of the
server program.

Server interaction

version – Display the version of the
server program.

Server interaction

protocol version – Display which version of
the GTP protocol the
server program supports.

Server interaction

list commands – Display the list of all com-
mands supported by the
server program.

Server interaction

quit – Shut down the connection
to the server.

Server interaction
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Table 3.2: MoHex-specific Hex GTP commands for configuring and interacting with
the DFPN solver [19]

Command Arguments Meaning

param mohex key value Configure MoHex by setting value
for the requested key. A tuple of
key=use parallel solver, value=1
is used to enable the DFPN solver.

param dfpn key value Configure DFPN solver by setting
value for the requested key. We can
set number of threads to be used by
the solver by passing key=threads.

dfpn-solve-state – Solve the current state using DFPN
solver and return the winner.

dfpn-solver-find-winning player Find zero or more winning moves for
the given player.
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Chapter 4

OpenSpiel

In this chapter, we briefly introduce OpenSpiel [2], a reinforcement learning (RL)

framework for research in games developed by Alphabet’s DeepMind. We also discuss

the reasons for using this framework to train AlphaZero-style Hex players. The next

chapter describes our training process in detail and discusses our methodology for

tuning hyper-parameters.

OpenSpiel is an open-source library for research in RL and search/planning in

games. It offers environments for a variety of perfect and imperfect information

games with one or more players and well-tested implementations of more than ten

RL and multi-agent RL algorithms [48]. For zero-sum turn-taking games with perfect

information like Hex, OpenSpiel has implementations of three classical search algo-

rithms [49]: minimax [34], alpha-beta [39], and Monte Carlo tree search (MCTS) [2,

14, 23, 44]. Furthermore, it includes tools to analyze learning dynamics and other

standard evaluation metrics.

In this thesis, we use the Hex game environment and Python implementations of

the AlphaZero training algorithm with MCTS from OpenSpiel. OpenSpiel provides a

general API implemented in C++ and exposed to Python via pybind11 [47]. Having

this API almost the same in the two languages allows users to translate code if needed

quickly. It contains over 30 different games [48] and more than 20 algorithms [49].

While games are written in C++ to increase memory efficiency and faster runtime,
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most algorithms that require machine learning (ML) are implemented in Python and

use Tensorflow [50] and PyTorch [51].

Perfect-information games like Hex are represented as procedural extensive-form

games [52, 53] in OpenSpiel. A tree symbolises a perfect-information game in its ex-

tensive form, with each node indicating one of the players choice, each edge indicating

a possible action, and the leaves representing final outcomes for all players [53]. If a

game has stochastic events, a special player called chance (also known as nature) is

added to the tree. This player takes actions according to a given probability distri-

bution [54]. In artificial intelligence, these extensive-form games are known simply

as game trees. Because the choice nodes are arranged in a tree structure, we can

precisely identify a node by its history, that is, the series of choices that led to it

from the root node [53]. Therefore, each conceivable sequence of players’ actions is

represented explicitly as a root-to-leaf path in the tree.

Figure 4.1 represents a simple game in extensive form in which two identical indi-

visible objects are shared between two people. Osborne and Rubinstein [52]) describe

this game as follows:

One of them [players] proposes an allocation, which the other then either

accepts or rejects. In the event of rejection, neither person receives either

of the objects. Each person cares only about the number of objects he

obtains. The small circle at the top of the diagram represents the initial

history Ø (the starting point of the game).

. . . The small circle at the top of the diagram represents the initial history

Ø (the starting point of the game). The 1 above this circle indicates that

P (Ø) = 1 (player 1 makes the first move). The three line segments that

emanate from the circle correspond to the three members of A(Ø) (the

possible actions of player 1 at the initial history); the labels beside these

line segments are the names of the actions, (k, 2−k) being the proposal to
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give k of the objects to player 1 and the remaining 2−k to player 2. Each

line segment leads to a small disk beside which is the label 2, indicating

that player 2 takes an action after any history of length one. The labels

beside the line segments that emanate from these disks are the names of

player 2’s actions, y [yes] meaning “accept” and n [no] meaning “reject”.

The numbers below the terminal histories are payoffs that represent the

players’ preferences. (The first number in each pair is the payoff of player

1 and the second is the payoff of player 2.)

(0, 2)(2, 0)

(1, 1)

2

yes nonoyes yes no

1

2 2 2

2, 0 0, 0 1, 1 0, 0 0, 2 0, 0

Figure 4.1: An extensive-form representation of the game of allocating two identical
objects between two people (recreation of Figure 91.1 of Osborne and Rubinstein [52]).

Figure 4.2 depicts the extensive-form game tree for Hex 2×2 generated by Open-

Spiel’s visualizer tool and slightly modified for the sake of clarity. The blue and red

edges correspond to black and white players. The diamonds correspond to the ter-

minal positions and are labelled by the outcome for black. Since Hex does not have

stochastic events, there is no edge for the chance player.

For more information on extensive-form games and how they are implemented in

OpenSpiel, see Section 5.1 of Shoham et al. [53] and Section 3.1 of Lanctot et al. [2],

respectively.

OpenSpiel describes games using two concepts [2]:

• Game class: It contains the high-level description of a game. Properties like
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Figure 4.2: Hex 2×2 shown as an extensive-form game tree. Blue and red edges
correspond to black and white players. The leaves (shown as diamonds) are terminal
game positions labelled with the game result for black.

the number of players, minimum and maximum scores, and having perfect or

imperfect information are stored in instances of this class. This class also knows

how to initialize and set up the board for a new game.

• State class: In computer games, the current state of the board is referred to

as a game position. In OpenSpiel, game positions are represented by instances

of state class. State objects provide APIs for generating and applying the next

move, and a reward function for scoring a terminal game position. In this thesis,

we use game position and states interchangeably.

Listing 4.1 provides an example of using the game class and the states APIs to play

a complete Hex game between two random players. At lines 6 − 10, we set up two

uniform random bots as players. OpenSpiel includes MCTS and Go Text Protocol

(GTP) compatible bots in addition to multiple kinds of stochastic ones (not shown

on the listing.) At line 13, we initialize an object of a game class that implements

Hex. Each game could be configured by one or more variables. In the case of Hex, the

only configurable variable is board size (line 13.) At line 16, the starting game state,

an empty board, is initialized and returned by the game object. In each iteration of

the loop defined by lines 18 − 38, the following actions happen. First, the current

player is identified by the state object (lines 19 − 20). Second, the current player is
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asked to generate its next move (line 29). Third, the opponent gets informed of the

selected move (line 35) to ensure all players have perfect information about the game.

Finally, the selected move is applied to the state object (line 38). When a terminal

state is reached (line 18), the loop ends, and the print statement of line 41 announces

the winner.

4.1 Advantages of OpenSpiel

We opt to use the OpenSpiel framework instead of writing our game agent for Hex

from scratch for two main reasons:

1. Includes one of the strongest available algorithms: As described in Chap-

ter 1, one of the main goals in this thesis is to train a strong Hex player. From

our discussion in Section 2.3, we know that the AlphaZero is established as a

strong high-performance training algorithm [1]. Therefore, using this algorithm

in our Hex agents allows us to study the effectiveness of our ideas when applied

on an existing high-performance technique.

However, the original AlphaZero implementation has not been released to the

public to date. So we decided to use the one included in OpenSpiel instead

of writing our version based on the original paper. Since it is maintained by

DeepMind and is developed under the supervision of the original AlphaZero

paper’s authors [1].

2. Open-source and flexible: OpenSpiel code and all of its dependencies are

open-source and available online. Thus, external researchers require minimal

information to study our methodology.

Among the other interesting features of OpenSpiel is having a diverse list of sup-

ported games with a similar programming interface. Since its release in September

2019, OpenSpiel has gained much attention and has become popular in the RL com-

munity. Researchers and engineers from across the world have participated in the
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1 import numpy as np
2 import pyspiel
3 from open_spiel.python.bots import uniform_random
4

5 # Set up two random rollout players.
6 rng = np.random.RandomState()
7 players = [
8 uniform_random.UniformRandomBot(player_id, rng)
9 for player_id in range(0, 2)

10 ]
11

12 # Initialize an object of Hex game class.
13 game = pyspiel.load_game('hex(board_size=2)')
14

15 # Initialize the starting game state (an empty board for Hex).
16 state = game.new_initial_state()
17

18 while not state.is_terminal():
19 current_player = state.current_player()
20 player = players[current_player]
21

22 # The algorithm can pick an action based on an observation
23 # (fully observable games) or an information state (information
24 # available for that player).
25 # However, since both players are uniform random players,
26 # they randomly select one of the legal actions in each step.
27 # The body of `UniformRandomBot.step` method looks like the following:
28 # return self.rng.choice(state.legal_actions())
29 action = player.step(state)
30

31 for i, player in enumerate(players):
32 # Hex is a perfect information game,
33 # so all players will be informed of the selected action.
34 if i != current_player:
35 player.inform_action(state, current_player, action)
36

37 # Apply the selected action on the current state.
38 state.apply_action(action)
39

40 # Print the winner when a terminal position is reached.
41 print('Game results: {}'.format(state.returns()))

Listing 4.1: Python code to play a Hex game with OpenSpiel
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project and are actively working on adding new games and algorithms under the di-

rect supervision of DeepMind’s scientists. Currently, more than 30 games other than

Hex are included in OpenSpiel.

4.2 Concluding Remarks

In this chapter, we provided a high-level introduction to the OpenSpiel RL framework

and presented how its use of game/state classes can be used to play the game of Hex.

We also discussed how the strength of OpenSpiel’s implementation of the AlphaZero

algorithm and its open-source nature make it a proper tool for our research. In the

next chapter, our focus will be on using OpenSpiel’s AlphaZero algorithm to train

strong Hex players. We will review AlphaZero’s hyper-parameters and propose our

solution to improve search space exploration.

29



Chapter 5

Training AlphaZero-style Hex
Players with OpenSpiel

As a continuation of our discussion on the AlphaZero algorithm [1] and the Open-

Spiel reinforcement learning (RL) framework [2] in Section 2.3 and Chapter 4, this

chapter describes techniques, such as the forced exploration of search space (Sec-

tion 5.2) to train strong AlphaZero Hex players with OpenSpiel. Since we need to

compare different trained models as part of our discussion, we also briefly introduce

a test method later in the current chapter and leave the complete description of our

evaluation methodology for the next chapter.

For this thesis, we use the Python implementation of OpenSpiel with Tensor-

flow [50] and train and evaluate all Hex models without GPU for the reasons that

follow. However, OpenSpiel is bundled with three implementations of AlphaZero:

One in Python with Tensorflow, and two in C++ using Tensorflow and PyTorch [51]

C++ APIs.

The Python implementation is claimed to be considerably slower than the Tensor-

flow C++ version since it does not support batching for inference and cannot utilize

graphical processing units (GPU) for inference or training [56]. Hence, the C++ ver-

sion should be used to take advantage of additional hardware and train significantly

faster.

However, the current C++ implementation depends on some APIs that are not yet
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fully supported on the open-source version of Tensorflow. Although we attempted to

address this limitation in collaboration with OpenSpiel’s primary engineers [57], we

were unable to completely fix the problem and make the Tensorflow C++ version

work on our systems. The PyTorch C++ implementation was added recently by the

community [58] and was not available at the time this thesis was started.

We do not impose a clock-based or any other time-related restriction in the training

and evaluation of our Hex agents. Therefore, the performance difference between

C++ and Python implementations of the AlphaZero algorithm is irrelevant to our

results.

5.1 Hyper-parameters Tuning

As with any machine learning model, models trained with AlphaZero-style algorithms

have two types of parameters: model parameters and hyper-parameters. The former

are the parameters that the model uses internally and are determined during train-

ing, such as the model weights. The latter are adjustable parameters that must be

tuned manually before starting the training, like the number of layers in a neural

network [59].

The most important hyper-parameters for configuring OpenSpiel’s AlphaZero al-

gorithm are listed in Table 5.1. On the same table, we also include the values that we

think work best for training agents for Hex 6×6 and Hex 8×8. While finding optimal

values for hyper-parameters is non-trivial and requires many years of experience [60],

we derive our proposed values based on the literature [1, 61] and through consultation

with other experts.

The rest of this section discusses hyper-parameters that require additional details:

Learning rate, Dirichlet noise α, temperature and temperature drop, model type

and dimensions, checkpoint frequency, actors and evaluators. Note that some hyper-

parameters, e.g., uct c, max simulations and train batch size are not discussed

in this chapter, even though they are listed on Table 5.1.
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Table 5.1: Most important hyper-parameters that configure OpenSpiel’s AlphaZero
algorithm.

Hy
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De
scr

ipt
ion

Va
lue
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Go

[1]
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[2]
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x 6

×6
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or
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x 8

×8

uct c UCT’s exploration constant. Used
in calculating PUCT value.

Not
listed

1 1.5 1.5

max simulations How many simulations to run. 1600 20 150 150

train batch size Batch size for learning. 2048 128 512 512

replay buffer size How many states to store in the
replay buffer.

Not
listed

214 217 217

replay buffer reuse How many times to learn from
each state.

Not
listed

4 2 2

learning rate (Section 5.1.1) Learning rate. 0.2,
0.02,
0.002,
0.0002

10−2 10−3 10−3

weight decay L2 regularization strength. 10−4 10−4 10−4 10−4

policy epsilon What noise epsilon to use. 0.25 1 0.25 0.25

policy alpha (Section 5.1.2) What Dirichlet noise alpha to use. 0.3
(chess),
0.15
(shogi),
0.03
(Go)

0.25 0.310 0.303

temperature (Section 5.1.3) Temperature for final move selec-
tion.

1 1 1 1

temperature drop (Section 5.1.3) Drop the temperature to 0 after
this many moves.

30 4 8 17

nn model (Section 5.1.4) What type of model should be
used? (resnet, conv2d, mlp)

resnet resnet resnet resnet

nn width (Section 5.1.4) How wide should the network be. 256 128 128 128

nn depth (Section 5.1.4) How deep should the network be. 20 2 7 9

checkpoint freq (Section 5.1.5) Save a checkpoint every N steps. 1000 25 1 1

actors (Section 5.1.6) How many actors to run. Not
listed

4 15 15

evaluators (Section 5.1.7) How many evaluators to run. Not
listed

4 1 1

eval levels (Section 5.1.7) The difficulty level of the built-in
MCTS+Solver evaluator.

Not
listed

7 5 5

evaluation window How many games to average re-
sults over.

400 50 100 100

max steps How many learn steps before exit-
ing.

25000 25 100 200
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5.1.1 Learning Rate

The learning rate corresponds to the same hyper-parameter on Momentum opti-

mizer [62]. In Silver et al. [1], it is initially set to 0.2 for chess and shogi and later

drops to 0.02, 0.002, and 0.0002 during training after 100K, 300K, and 500K steps,

respectively. For Go, the initial rate is 0.02, which later drops to 0.002 and 0.0002

after 300K and 500K steps. In our training of Hex 6×6 and Hex 8×8, we use a value

of 0.001 for the learning rate, which is the default value of OpenSpiel’s AlphaZero

implementation.

5.1.2 Dirichlet Noise α

Adding a Dirichlet noise (Dir(α)) to the prior probabilities of the root node of MCTS

was first proposed by Silver et al. in the original AlphaGo paper [63]. For each game,

the noise is scaled in inverse proportion to the average number of legal moves in a

typical position [61]. Since the exact formula is not mentioned in Silver et al. [63] or

its succeeding papers [1, 4], we use polynomial regression to fit a polynomial to the

existing values we have for chess, shogi and Go (listed on Table 5.2). Equation 5.1

shows the fitted fourth-degree polynomial in which x is average number of legal moves

and y is the α value. Now we use Equation 5.2 to calculate branching factor B(n)

of board size of n as an approximation for the average number of legal moves in a

typical position. Then we put the result as x in Equation 5.1 to calculate the α value.

The last two rows of Table 5.2 show the α values for Hex 6×6 and Hex 8×8.

y =−5.777 144 43× 10−20x4−3.709 983 09× 10−11x3

−4.285 651 27× 10−9x2−3.183 094 43× 10−7x

1.201 152 67× 10−9

(5.1)

B(n) =
n2

2
(5.2)
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Table 5.2: Values for Dirichlet noise α.

Game Average number of legal moves α value

chess 35 [61] 0.3 [1]

shogi 92 [61] 0.15 [1]

Go 250 [61] 0.03 [1]

Hex 6×6 18 0.310

Hex 8×8 32 0.303

5.1.3 Temperature and Temperature Drop

The MCTS keeps track of the number of times each potential next move is visited

during a round of simulations as visit count. The search work such that the good

moves are eventually visited more often than bad moves and have a greater visit

count.

When a standard MCTS agent wants to make a decision about the next move,

visit counts are normalized and used as a distribution to choose the best move [61].

However, AlphaZero’s MCTS agent uses a temperature hyper-parameter (τ) to ex-

ponentiate the distribution proportional to N−τ , where N is the visit count of each

move.

The temperature hyper-parameter ensures diversity in the set of encountered po-

sitions [1]. When τ = 1, a random move is selected according to the visit counts

distribution. And when an infinitesimal temperature is used (τ → 0), the best move

with the greatest visit count is chosen. For our Hex agents, we use the same value of

τ = 1 that was used for chess, shogi and Go in Silver et al. [1].

Another hyper-parameter called temperature drop (τdrop) controls the temperature

value based on the total number of moves played so far in the game. For the first

τdrop moves of each game, the initial temperature value (e.g., τ = 1) is used, and after

that, the temperature will drop to 0.
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Table 5.3: Values for temperature drop hyper-parameter.

Game Average game length Temperature drop

Go 150 [66] 30 [1]

Connect 4 36 [66] 10 [65]

Tic-tac-toe 9 [66] 4 [2]

Hex 6×6 31 8

Hex 8×8 56 17

The current literature does not recommend any particular way to calculate the

temperature drop hyper-parameter to the best of our knowledge. However, consider-

ing the effect of temperature hyper-parameter on move selection, we argue that it is

reasonable to say that τdrop should not be greater than the game length. Otherwise,

the agent continues picking random moves towards the end of the game when the

best moves with maximum visit count are preferred.

Inspired by Jans [64], we calculate temperature drop based on the average game

length. Again, since the exact relationship between this hyper-parameter and the

average game length is not studied in the literature, we use polynomial regression to

devise a value for Hex 6×6 and Hex 8×8 according to AlphaZero implementations of

Go [1], Connect 4 [65] and Tic-tac-toe [2]. Table 5.3 depicts average game lengths

and temperature drop values for the mentioned games. Equation 5.3 shows the fitted

third-degree polynomial in which x is average game length and y is the τdrop value.

We use batches of 10000 games played between two random-play agents to calculate

the average game length for Hex, giving us 31 for Hex 6×6 and 56 for Hex 8×8. The

last two rows of Table 5.3 show the τdrop values calculated using Equation 5.3 for Hex

6×6 and Hex 8×8.

y =−5.789 893 71× 10−16x3 + 1.709 340 71× 10−4x2

+ 6.200 790 34× 10−3x−3.350 045 70× 10−5
(5.3)
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5.1.4 Model Type and Dimensions

OpenSpiel AlphaZero provides three dual-headed residual neural network architec-

tures: a multilayer perceptron (MLP) network, a residual network, and a convolu-

tional network without residual connections [64]. The residual network architecture

works well for the games of Go, chess, and shogi [1], mainly due to its immunity

against the Vanishing Gradient Problem in deep neural networks [64, 67, 68]. There-

fore, we use the same architecture for Hex.

It is possible to configure the width and depth of the network architecture. In

Silver et al. [1], a network with 256 filters and 20 layers is used for Go 19× 19. Since

Hex 6×6 and Hex 8×8 are much smaller than Go 19 × 19 we use only 128 filters.

Having 20 layers for Go 19× 19 inspires us to approximate layer count based on the

board size. So we use D = N + 1 in which D is the number of layers (depth) of the

neural network and N is board size to 7 layers for Hex 6×6 and 9 layers for Hex 8×8.

5.1.5 Checkpoint Frequency

OpenSpiel AlphaZero can be set to save a snapshot of the trained model as a check-

point in specific intervals. Each checkpoint is a complete model that can be used

to play the game independently. Since we want to analyze the training progress

by looking at the performance gain of each training step (Section 7.1), we set this

hyper-parameter to 1 to have one playable model per step.

5.1.6 Actors

The training script creates a set of actor processes to perform self-play games and

puts game states in the replay buffer. Having more actors results in faster training

since it increases the speed of self-play simulations and training data generation.

However, considering that each actor is maintained by a process in OpenSpiel

AlphaZero Python implementation, we should not have more actors than the number

of available processing cores. Otherwise, the performance will decrease due to the
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continued context switches in CPU cores.

We limit the number of actors to 15 because our training machines have 16 CPU

cores. The remaining core is dedicated to an evaluator process which will be discussed

in Section 5.1.7. For detailed information on hardware configuration of our training

machines, see Section 7.1.

5.1.7 Evaluators

It is possible to have a set of evaluator processes continually evaluate the model as

it is being trained to see how training is progressing. These evaluators play games

against vanilla MCTS+Solver players with scalable strength. The strength of the

MCTS opponent is correlated with the number of simulations it is allowed to per-

form per move. For each MCTS player of a level n, the simulations count, S(n),

is calculated using Equation 5.4 [64]. By setting OpenSpiel AlphaZero eval levels

hyper-parameter, we can specify the strength of MCTS opponents.

S(n) = max simulations× 10
n
2 (5.4)

Increasing the number of evaluators means more test games to be played, which

can result in better evaluation accuracy. Similar to the number of actors, the number

of evaluators should not be greater than number of available CPU cores. In fact, the

sum of actors and evaluators should be less than or equal to the number of processing

cores.

In this thesis, we use test positions to evaluate our Hex agents (Chapter 6) and do

not rely on OpenSpiel AlphaZero’s built-in evaluator. Therefore, we use one evaluator

process during training only to get a general idea about the training progress.

5.2 Forced Exploration of Search Space

Our performance analysis shows that although our Hex agents can perform reasonably

well against standard MCTS players like what is shipped with OpenSpiel framework,
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they sometimes make unwise decisions in less-common game states and lose frequently

to stronger players like MoHex. One possible reason could be over-fitting the proof

tree and lack of proper search space exploration due to insufficient training.

AlphaZero, by design, learns to play very well on its own data, i.e., the game

positions that it has seen during training. But it does not quite know what to do

when it faces a completely unfamiliar position. So it tries to generalize its learned

knowledge in order to find the right move.

In cases where AlphaZero has been trained for a long time with enough computing

power on enormous positions, like in Silver et al. [1], it will eventually choose the

correct move. However, with limited training computing power and time, it may not

be able to generalize its knowledge in unknown positions properly.

Since most research teams do not have access to powerful computers and are on

tight timing budgets, we propose the following technique as an alternative to the

long-run trainings.

First, we create a database of opening positions containing up to first three game

moves. Then, for each training game, we select one position from the list randomly

and enforce it as the opening game state. This technique expands AlphaZero search

space exploration, and makes it visit and evaluate positions that otherwise might

have been visited late.

In the rest of this section, first we discuss the openings database (Section 5.2.1).

Then, we describe the two different lists of openings: all winning moves, and all legal

moves, and discuss the way to choose positions from a list to have the best result

(Section 5.2.2). A comparison between models trained on opening databases with

various move and position selections is provided in Chapter 7.

5.2.1 Openings Database Preparation

The opening database has one table and stores one row per position. As shown on

Listing 5.1, the table comprises one column for each move and one for storing current
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1 CREATE TABLE positions (
2 id INTEGER
3 CONSTRAINT first_moves_pk
4 PRIMARY KEY,
5 move TEXT NOT NULL,
6 player INTEGER NOT NULL,
7 first_move INTEGER
8 REFERENCES positions,
9 second_move INTEGER

10 REFERENCES positions
11 );

Listing 5.1: The opening database schema consisting of one table with one column
per move.

PtoP. The move column always contains the last move of a position in textual format,

e.g., a1. The first move and second move contain foreign keys to a previous position,

i.e., the last and the second-to-last positions, respectively. Therefore, for positions

with just one stone on board, only column move is filled with the actual move. For

positions with two stones, both move and first move columns are filled. And for

positions with three stones, all columns are filled.

With the mentioned database design, selecting a random position is as easy as

randomly picking one row from the table. This can be done quickly and has no

negative impact on the training time.

When choosing moves for the opening database, we can consider either all legal

moves from a position (e.g., the blank board) or only a subset of winning moves

available to the current player. A solver like MoHex [19] can be used to find all

winning moves early in the game. For Hex 6×6, we have a total of 541 positions

derived from winning moves and a total of 44136 (= 36× 35× 34) positions from all

legal moves. Solving and finding all wining moves in 8×8 positions with few stones on

board could take considerable time even for MoHex (Section 3.1). Therefore, for Hex

8×8, we cannot extract positions based on winning moves, and we use a database of

254080 (= 64 × 63 × 62) positions generated by following all legal moves. Table 5.4
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Table 5.4: Frequency of opening positions extracted for Hex 6×6 and Hex 8×8.

Game Move selec-
tion criteria

1-stone
positions

2-stone
positions

3-stone
positions

Total

Hex 6×6 Winning moves
only

9 58 474 541

Hex 6×6 All legal moves 36 1260 42840 44136

Hex 8×8 All legal moves 64 4032 249984 254080

explains the frequency of opening positions in more detail.

By limiting the openings to winning moves only, we cap the exploration to a subset

of all positions resulting from constantly playing winning moves. An agent trained

over this kind of openings may learn the winning opening moves better since it re-

peatedly sees them. However, it may not play well against imperfect players who may

play a losing move in the beginning of game. This is because the agent has not seen

enough positions that resulted from losing moves. We include all legal moves in the

opening database to combat this limitation.

5.2.2 Different Openings Combinations

Considering that the opening database includes positions with one, two, and three

stones on board, the question is whether we should use all of them in training or not.

We consider four possible ways to use the forced openings:

• A1: one-move openings only

• A2: two-move openings only

• A3: three-move openings only

• A123: all one-, two- and three-move openings

One-move openings guide AlphaZero to try a variety of first moves throughout the

training instead of sticking with what it eventually learns as the best opening move.
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This way, it learns the consequences of different opening moves and the reasonable

second move in response to a possibly losing first move made by the opponent. Con-

sidering that the number of all first moves is relatively small (< 1000), it is possible

to cover all of them multiple times during training.

Two-move openings include the first two moves of a game and can diversify the

training games up to the second move. Compared to one-move openings, they are

greater in count (1260 for Hex 6×6 and 4032 for Hex 8×8), so it is harder to cover all

of them more than once during training. The risk of not encountering some two-move

openings multiple times is that the agent may not learn the right first, second or third

moves since it has not had the chance to see the results of different choices.

Similar to two-move openings, three-move openings include the first three moves

and improve exploration up to the third move. We have by far a higher number of

them (42840 for Hex 6×6 and 249984 for Hex 8×8), and they are even harder to

cover multiple times than two-move openings. A similar risk of not properly learning

consequences comes with using exclusively three-move openings.

So far, we have discussed the risks of using only two- or three-move openings, and

described the limited advantage of one-move openings on its own. Therefore, we

argue that it is reasonable to include the three categories at the same time to see if

it maximizes the benefits while minimizing the risks.

We train our agents with all four possible combinations to see which one leads to a

greater improvement in terms of training speed and accuracy. We also train one agent

with exact same hyper-parameters but without any forced openings as the baseline

to see if including forced openings always improves training. Finally, we should note

that we use random uniform distribution to select an opening position per game to

ensure that all positions are equally selected.

Our evaluation results, as discussed in Chapter 7, show that including forced open-

ings generally improves the winning-move selection ratios compared to the baseline.

But we found no significant difference among the four combinations.
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5.3 Concluding Remarks

In this chapter, we briefly explained the important hyper-parameters that can be

used to configure OpenSpiel’s implementation of the AlphaZero algorithm. We also

provided the values we used for training AlphaZero-style Hex agents for 6×6 and

8×8 board sizes and described how we calculated them. In Section 5.2, we discussed

how insufficient search space exploration and the possible over-fitting the proof tree

could result in unwise moves by our Hex agents. We proposed using forced-move

openings in training to expand the explored search space to address this issue. We

described our method for creating and using a database of one-, two- and three-move

openings. We also discussed the risks and limitations of using each set of opening

moves separately and suggested using a combination of them instead.

The next chapter will discuss our evaluation methodology based on test positions.

In Chapter 7, we report the results of using forced openings in training Hex agents

as measured by a test suite of positions.
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Chapter 6

Evaluation Methodology

In the previous chapter, we described how we trained AlphaZero agents for the game

of Hex. In this chapter, we describe our methodology for evaluating the performance

of these agents. In Chapter 7, we present and discuss the results.

In order to understand how well the trained agents perform and to provide a way

to compare them systematically, we propose the following two techniques while being

primarily focused on the second one:

1. Head-to-head Games: In this method, an agent plays a fixed number of

complete games, e.g., 1000 games, against a strong or perfect player such as

MoHex with its DFPN solver (Section 3.1).

2. Test Positions: In this method, each agent makes one move against each of a

set of test positions, and is assigned an overall score in [0, 1] that measures the

fraction of time it selected a winning move.

We do not rely solely on head-to-head games to evaluate a Hex agent. This is

because they are expensive in terms of computing power and runtime, mainly due to

high chance of seeing duplicate games during evaluation. Therefore, to cover as many

unique game scenarios as possible, hundreds or thousands of head-to-head games are

needed. Test positions can be used as a shortcut for a more practical evaluation.

Evaluation using test positions takes a fraction of time required for playing complete

games, as the agent plays only one move per each test position.
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In the rest of this chapter, we describe the two techniques in detail. In the next

chapter, we present the evaluation results for our Hex 6×6 and Hex 8×8 agents.

6.1 Head-to-head Games

One traditional way to evaluate the strength of an agent is by looking at head-to-head

games it played versus a strong or perfect player. For example, for Hex boards up to

8×8, it is shown that MoHex can play near-perfectly with its DFPN solver [16, 19].

For this reason, we use MoHex with DFPN solver as the opponent in this method.

To remove the inherent first player advantage, players should switch turns in half of

all played games.

Since one side of the game is a strong or perfect player who tends to play the

same winning moves repeatedly, a random opening move should be enforced in all

games. Similar to enforcing move openings during training to expand the search

space (Section 5.2), a random opening diversifies game records during evaluation and

pushes both players to explore new moves. Considering the number of possible game

positions of a Hex board, we arguably need hundreds or thousands of games for a

proper evaluation. For Hex 6×6 and 8×8, we use batches of 1000 games where the

agent in one half of them (500 games) plays black and in the other half plays white.

Even with a random opening, it is still possible to have duplicate game records. All

duplicates are removed before further analysis. Once we have a set of unique games,

we count the number of wins for each side of the game.

6.2 Test Positions

A test is like a multiple-choice question consists of the following:

• Question: a game position

• Choices: all legal moves at that game position for the current player-to-play

(PtoP)
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• Correct answer(s): all winning move for the current PtoP as proven by Mo-

Hex’s solver (Section 6.2.2)

To evaluate an agent with a group of test positions, we conduct the following proce-

dure for each test:

1. A new game is created.

2. All moves required to reach that position are applied on the board.

3. The agent is asked to play a move.

4. If the chosen move exists in the set of winning moves, the agent gets a reward

of +1. Otherwise, it gets nothing.

To calculate the final score of an agent, called winning-move selection ratio (WMSR),

we divide the total reward by the number of tested positions.

A set of test positions could serve as an accurate way for performance evaluation

and a proper alternative for head-to-head games only if they have been picked pre-

cisely. The rest of this section describes our approach for finding proper test positions.

First, we explain our multi-step process for finding candidate positions (Section 6.2.1),

and second, we describe the criteria for choosing the right positions from the pool of

candidates (Section 6.2.2). Finally, in Section 6.2.3, we discuss our test suites for Hex

6×6 and Hex 8×8.

6.2.1 Candidate Position Extraction

The candidate position extraction process begins with listing all unique positions

that occurred in a set of played games, referred to as source games. Source games

are encoded as game records in the Smart Game Format (SGF) notation. Figure 6.1

visualizes two sample 3×3 games and lists their SGF-encoded game records. Even

though we are working on 6×6 and 8×8 boards in this thesis, we use 3×3 games
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(;AP[HexGui :0.9. GIT]FF[4]GM[11]SZ[3];B[b2];W[b1];B[c1];W[b3];B[a3])

(a)

A B C

1

2

3

(;AP[HexGui :0.9. GIT]FF[4]GM[11]SZ[3];B[c1];W[b1];B[b2];W[a3];B[b3])

(b)

Figure 6.1: Two sample 3×3 games and their SGF-encoded game records

in this chapter’s examples to simplify the discussion. For examples of 6×6 and 8×8

games, see Figures 6.9 to 6.12.

We extract source games from real Hex games involving MoHex, is a strong Hex

player that plays near-perfectly for boards up to 8×8 [16, 19], as opposed to the

made-up games between random players. Detailed information on our Hex 6×6 and

8×8 source games is provided in Section 6.2.3. We use real games since only a subset

of all legal moves, and hence, all possible positions are likely to be seen in competitive

games. This is because Hex is a win-for-black game, and black can win by constantly

playing the winning move. In contrast, all the opponent needs for winning is to block

black’s moves [8].

Listing 6.1 provides our algorithm for processing game records and extracting all

unique positions. In other words, it shows how we find all the unique ways of reaching
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source games’ final position from an empty board. For each game record in the set

of the source games, we do the following (lines 4 − 10). First, at line 5, the entire

game record is copied as a move sequence. Then, in the loop defined by lines 6− 10,

we take out moves from the end of the move sequence one by one (line 10) and store

the result as a new move sequence until the initial game position, an empty board,

is reached (line 6). At line 7, we use a helper function to convert the move sequence

to an SGF-encoded game position by removing moves ordering. If the returned game

position was not found in the final set of game positions, it gets added there (lines

8− 9). Conversion of a move sequence to a game position is simply done by marking

all odd moves as black stones, and all even moves as white stones (lines 19− 20). To

encode a position in SGF notation, we also need to include the current PtoP, which

is easily determined based on the parity of the number of stones on board (line 17).

Figures 6.2 and 6.3 show all unique positions extracted from the two sample games

presented in Figures 6.1a and 6.1b, respectively. Each sample game has five stones on

board. So by removing each of the five moves, we extract a total of six game positions

(including the initial empty board) for each game.

By definition, we only consider the final arrangement of stones on the board for

each game position. So two positions that have the same stone arrangements but

resulted from different move sequences are marked as duplicates. Figure 6.4 shows two

duplicate positions found while processing the previously mentioned sample games.

Note that Figure 6.4b shows an empty board with no stones which is a valid game

position.

Now that we have a set of unique positions, we need to find all winning moves for

them. While the position extraction process starts is about going backwards from an

end position, the winning move finding is about going forwards from a given position.

We use MoHex and its DFPN solver [16, 19, 40] for finding all winning moves for a

position. The DFPN solver is hosted on Compute Canada’s Cedar cluster [69] and

uses 24 processors working at 2.1 GHz frequency. It is allowed to spend up to 5
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1 def extract_unique_positions(R):
2 # R is the set of source game records
3 P = set() # P is the set of all unique positions
4 for r in R:
5 move_seq = r
6 while move_seq is not empty: # an empty value means the blank board
7 p = make_position(move_seq)
8 if p not in P:
9 P.append(p)

10 move_seq = move_seq[:-1] # remove the last move from sequence
11 return P
12

13 def make_position(move_seq):
14 # move_seq is a move sequence
15 # move sequence is BtoP if it has even number of stones on board,
16 # and WtoP otherwise.
17 player_to_play = len(move_seq) % 2
18

19 black_moves = position[0::2] # all odd moves have been made by Black
20 white_moves = position[1::2] # all even moves have been made by White
21

22 # return the position in SGF notation
23 return encode_position_in_sgf(black_moves, white_moves, player_to_play)

Listing 6.1: Pseudocode for unique positions extraction algorithm.
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(f) Board state after remov-
ing all moves

Figure 6.2: All unique positions extracted from Figure 6.1a
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Figure 6.3: All unique positions extracted from Figure 6.1b
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Figure 6.4: Two common positions between the provided sample games in Figure 6.1
that are marked as duplicate by the position extraction algorithm.

50



minutes on any given position.

The MoHex’s command-line interface has a dedicated command for finding winning

moves for a given position (dfpn-solver-find-winning). While every move returned

by this command is a proven winning move, it does not necessarily return all winning

moves. In other words, it only returns a subset of all winning moves, and if one

of available legal moves is not present in the return set, we cannot say whether it

was a losing move or not. We cannot find a way to tell MoHex to return all wining

moves without substantial code changes. Therefore, we propose an alternative way

by solving the resulting position of playing every available legal move.

Our alternative method uses the retrograde analysis (Section 2.4) to solve positions

backwards. Thus, we look at positions that are closer to the end of the game first.

Listing 6.2 describes our algorithm in pseudocode.

First, we sort the set of all unique positions by the number of stones on board in

descending order. This way, the positions with more stones come at the beginning of

the list. Second, we iterate over the sorted list and find all winning moves for each

position. Since we cannot use MoHex’s winning moves finder command, we check

every legal move and ask the solver to solve the position resulting from playing that

move. If the new position was winning for the current player, we would add the

originating move to the winning set. Otherwise, we conclude that the originating

move was a loser and place it in the losing set.

Since we start from the most-crowded positions at the end of the game and head

towards the beginning of the game, it is likely to revisit some positions while checking

their parent positions. In that case, we do not need to ask the solver as we already

know the answer. The total processing time is reduced considerably by following this

technique.

The output of this algorithm is a set of solved positions which is referred to as

the set of candidate positions. Based on the number of source games, we could

have thousands of candidate positions. We cannot use all of them in a test suite
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since checking a great number of positions takes a long time. So we should pick a

fraction of them that can identify the agent’s strengths and weaknesses as accurately

as possible. In the next subsection, we explain some criteria to choose the best test

positions from a pool of candidates.

6.2.2 Test Positions Selection

As described earlier, the extraction process can generate many candidates as it goes

through all unique positions that occurred in source games. However, not every

candidate position is of distinguishing quality that can properly evaluate an agent.

Thus, we define the following criteria for sorting candidates and selecting the most

challenging ones.

1. Having at least one winning move. When there is no winning move for

the current player, all legal moves are considered as losing. In this case, playing

any of them results in losing the game, assuming the opponent plays a winning

move in response. So there is no definitive right move and the position cannot

be used in the test suite.

2. Having only a few winning moves. When many of the legal moves are

winning, the player can quickly find one winning move and go on. Therefore,

challenging positions are usually the ones that have just one or very few winning

moves.

3. Taking more time to be fully solved. We consider the computational effort

required to completely solve a position, i.e., solve all of its legal moves, as an

indicator for its difficulty. As a proxy for computational effort, we examine the

time it takes to solve every legal move. We argue that having a higher median

solving time per move means a position is harder to solve and hence, a better

candidate for the test suite.
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1 def find_winning_moves(P):
2 # Input is the list of unique positions.
3 # Output is a dictionary of solved positions
4 # in which keys are positions and values are winning sets
5 solved_positions = dict()
6

7 # Sort list of positions by number of stones in descending order.
8 P.sort(key=lambda p: len(p.stones), reverse=True)
9 for p in P:

10 board = Game() # Create a new game.
11

12 # Put Black and White stones on a blank board as described by position.
13 board.put_stones(p.stones)
14

15 # Find all legal moves for current PtoP.
16 legal_moves = board.get_legal_moves(p.player)
17

18 winning_set = set() # Set of winning moves
19 losing_set = set() # Set of losing moves
20

21 for move in legal_moves:
22 board.apply(move, p.player) # Play the one legal move for current PtoP.
23

24 if board in solved_positions:
25 # When we have already solved the new board state,
26 # derive who wins by looking at the set of winning moves.
27 # A non-empty set means the player wins
28 winner = who_wins(solved_positions.get(board))
29 else:
30 # When the new board state has not yet been visited,
31 # ask MoHex to see who wins.
32 winner = MoHex().solve(board)
33

34 if winner == p.player:
35 winning_set.add(move)
36 else:
37 losing_set.add(move)
38

39 # Undo the last move, so we can reuse the board for the next legal move.
40 board.undo()
41

42 # Save the winning and losing sets in the output dictionary.
43 solved_positions[board] = winning_set
44 return solved_positions

Listing 6.2: Pseudocode for winning moves finder algorithm.
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We use median solving time instead of the total solving time of all moves. This

is because the total time correlates with the number of legal moves and cannot

fairly compare positions with different moves. We also decide to use the median

instead of the mean since we find that the distribution of solving times generally

is not normal. Figures 6.5 and 6.6 display the solving time histograms for 10

randomly selected candidate positions for Hex 6×6 and Hex 8×8.

A high-quality test suite should evaluate agents’ performance in different stages of

the game. Therefore, in addition to the three criteria, we also want the test positions

to be as diverse as possible with regard to the number of stones. So we put the

candidates that match the criteria in separate bins by the stones count.

Listing 6.3 provides the pseudocode for applying the selection criteria on candidate

positions and picking test positions. In lines 10− 11, we apply the limitation on the

number of winning moves on candidate positions. The default minimum is 1, but it

can change as needed. In line 14, we put remaining candidates in bins based on the

number of stones on board.

In lines 16−19, we sort positions in each bin by median solving time of their winning

moves (Figures 6.5 and 6.6). We only consider the solving time of the winning moves

and ignore losing moves. This is because losing moves can be found quickly as MoHex

can identify them without searching and just by using its virtual connection/inferior

detection engine. So it makes sense to remove them from calculation to prevent a

great number of near-zero values from affecting the median.

Finally, in lines 21 − 28, we iterate over bins and pick positions with the highest

median solving time as test positions. Not all bins have the same number of can-

didates, so we may encounter an empty bin during iteration. Line 24 checks this

situation and skips the empty bins.
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Figure 6.5: Solving time distributions for 10 randomly selected candidate positions
for Hex 6×6.
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Figure 6.6: Solving time distributions for 10 randomly selected candidate positions
for Hex 8×8.
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1 def pick_positions(C, selection_size, min_wins=1, max_wins=4):
2 # C is the list of all solved candidate positions
3 # selection_size indicates how many positions
4 # should be selected from the list.
5 # Output is a list of test positions selected according to the criteria
6 test_positions = []
7

8 # Filter out any position that does not have minimum number of wins
9 # or has more wins than the allowed maximum.

10 winning_candidates = C.filter(lambda c:
11 min_wins < len(c.winning_moves) < max_wins)
12

13 # Put candidate positions in separate bins by number of stones on board
14 bins, binned_candidates = bin_candidates(winning_candidates)
15

16 for bin_ in binned_candidates:
17 # Sort candidates by median solving time of winning moves
18 # in ascending order
19 bin_.sort(key=lambda c: c.median_time_winning_moves)
20

21 bin_index = 0 # Start picking from the first bin
22 while len(test_positions) < selection_size:
23 # Bin may have been already emptied and should be skipped.
24 if len(binned_candidates[bin_index]) > 0:
25 # Last item in the sorted bin has the greatest solving time.
26 position = binned_candidates[bin_index].pop() # Remove the last item.
27 test_positions.append(position) # Add position to the output list
28 bin_index = (bin_index + 1) % len(bins) # Move to the next bin
29

30 return test_positions

Listing 6.3: Pseudocode for test positions selection algorithm.
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6.2.3 Test Positions for Hex 6×6 and Hex 8×8

In this subsection, we discuss how we prepare test suites for Hex 6×6 and Hex 8×8

agents according to the process explained in the previous subsections.

The candidate position extraction process starts with collecting source games. For

each board size, our best agent plays 500 games against MoHex as black and another

500 games as white. Although we use random opening for all games to avoid duplicate

games as much as possible, only 36 and 39 games are found unique for Hex 6×6 playing

as Black and White, respectively. The number of unique games for Hex 8×8 is 249

for Black and 219 for White. Table 6.1 summarizes the source games we used in the

extraction process.

Table 6.1: Number of games used as source games in test suite generation.

Game
Games played against MoHex Unique games

Black White Black White

Hex 6×6 500 500 36 39

Hex 8×8 500 500 249 219

From the collected source games, we extract a total of 1344 and 10547 unique

positions for Hex 6×6 and Hex 8×8, respectively. As listed in Table 6.2, about 34000

and 496000 legal moves are checked out and solved to find all winning and losing

moves for Hex 6×6 and Hex 8×8. Based on these checks, we removed about half of

all positions from consideration as they were found to be losing moves. The ratio of

winning to losing moves is 0.18 (= 5246
28506

) for Hex 6×6 and 0.25 (= 100505
395304

) for Hex

8×8. Although we use backward search for both board sizes, we found it primarily

helpful in 8×8, where solving game states is generally hard and takes considerable

time.

Figure 6.7 depicts the frequency distribution of unique positions to number of

stones on board for all positions solved in the extraction process. As we see, for both

58



Table 6.2: Detailed numbers of positions and moves used in test suite generation.

Game
Unique Positions Moves (solved with retrograde analysis)

Total Winning Losing Total Winning Losing

Hex
6×6

1344 653 691 33752 5246 28506

Hex
8×8

10547 5285 5262 495854
(1971)

100550
(972)

395304
(999)

board sizes, the positions are almost evenly distributed. While positions with the

lowest and the highest number of stones are less frequent as they are close to the

beginning and end of games, the majority of positions for 6×6 and 8×8 have between

4− 14 and 7− 20 stones on board, respectively.

Now that we have a set of winning positions, we apply the limitation on the number

of winning moves. We determine the upper limit for winning moves count based on

test suite size. In general, we decided that we want a maximum of 250 test positions

for each player. Also, in order to maintain the quality of positions, we should select no

more than half of all candidate positions. So the formula for devising the number of

test positions for each player can be written as min
(︁
250, N

2

)︁
where N is the number

of winning positions.

For Hex 8×8, we have 2650 Black-to-Win (BtoW) 2635 White-to-Win (WtoW)

positions. So the test suite size for Hex 8×8 is 250. For Hex 6×6, although we have

443 BtoW positions, the number of WtoW positions is only 210. So Hex 6×6’s test

suite size would be 105. To simplify further evaluation results analysis, we decide to

have 100 test positions instead of 105.

The frequency distribution of positions to the number of winning moves is displayed

in Figure 6.8. Having set the test suite size, we can use this distribution to determine

the limit for number of winning moves. In addition to setting a maximum, we would

exclude positions with only one winning move if we have enough positions. This is

59



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Num of stones

0

10

20

30

40

50

60

70

Nu
m

 o
f u

ni
qu

e 
po

sit
io

ns

Total number of unique positions: 1344

(a) Among 1344 unique positions found for Hex 6×6.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
Num of stones

0

100

200

300

400

Nu
m

 o
f u

ni
qu

e 
po

sit
io

ns

Total number of unique positions: 10547

(b) Among 10547 unique positions found for Hex 8×8.

Figure 6.7: Frequency distribution of unique positions to number of stones on board
in candidate extraction process.
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because, in those positions it is often relatively obvious what the winning move is.

For Hex 8×8, we have many winning positions with more than one winning move.

So we can select 250 required test positions from candidates with 2, 3, or 4 winning

moves. However, for Hex 6×6, winning positions are already quite limited. So we

include all candidates with 1− 5 winning moves. It is better to include one-winning-

move positions instead of positions with six or more winning moves, since the more

winning moves we have in a position, the easier it would be to solve (Section 6.2.2). To

apply the third criteria in test positions selection process, we sort filtered candidates

by median solving time in descending order.

The complete list of 200 and 500 test positions for Hex 6×6 and Hex 8×8 can be

found be in Appendix A. Figures 6.9 to 6.12 visualize ten sample test positions for

each player and board size. The winning moves are marked with small dots in all

figures.
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(a) Of the selected 6×6 positions, 653 are winning: 443 BtoW, 210 WtoW.

(b) Of the selected 8×8 positions, 5285 are winning: 2650 BtoW, 2635 WtoW.

Figure 6.8: Frequency distribution of unique positions to number of winning moves
in candidate extraction process.
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Figure 6.9: Randomly selected test positions from the test suite of BtoP 6×6 posi-
tions.
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Figure 6.10: Randomly selected test positions from the test suite of WtoP 6×6 posi-
tions.
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Figure 6.11: Randomly selected test positions from the test suite of BtoP 8×8 posi-
tions.

65



A B C D E F G H

1

2

3

4

5

6

7

8

(a)

A B C D E F G H

1

2

3

4

5

6

7

8

(b)

A B C D E F G H

1

2

3

4

5

6

7

8

(c)

A B C D E F G H

1

2

3

4

5

6

7

8

(d)

A B C D E F G H

1

2

3

4

5

6

7

8

(e)

A B C D E F G H

1

2

3

4

5

6

7

8

(f)

A B C D E F G H

1

2

3

4

5

6

7

8

(g)

A B C D E F G H

1

2

3

4

5

6

7

8

(h)

A B C D E F G H

1

2

3

4

5

6

7

8

(i)

A B C D E F G H

1

2

3

4

5

6

7

8

(j)

Figure 6.12: Randomly selected test positions from the test suite of WtoP 8×8 posi-
tions.
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6.3 Relationship between Head-to-head Games and

Test Positions

We discussed the advantages of using test positions over head-to-head games for

evaluation, namely being less resource-intensive, in Section 6.2. However, we have

done no extensive experimentation to compare the results of these two methods.

Therefore, while we may not claim test positions can replace head-to-head games

altogether, we use test positions for evaluating our Hex agents to overcome time and

computing power limitations. For more information on the runtime of each method,

see Section 7.1.

6.4 Concluding Remarks

In this chapter, we explained two methods for evaluating the performance of Hex

agents: Head-to-head games, and test positions. We briefly discussed how requiring

less resources makes test positions a more practical evaluation method for our Hex

agents. In Section 6.2, we explained the four-step procedure required to test an agent

against a given test position. We also introduced the winning-move selection ratio

(WMSR) to assign one value to each agent based on all tested positions. We proposed

the candidate positions extraction process to extract prospect game positions from

game histories (Section 6.2.1). We also provided three criteria of having at least

one winning move, not having too many winning moves, and taking considerable

time to be fully solved for picking proper test positions from the pool of candidates

in Section 6.2.2. Finally, we applied both test positions extraction and selection

processes for Hex 6×6 and Hex 8×8 to generate test suites of 200 and 500 positions

for each board size, respectively (Section 6.2.3).

In the next chapter, we will use these test suites to evaluate our Hex agents and

study the efficacy of enforcing move openings during training.
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Chapter 7

Evaluation Results

The previous chapter explains how we evaluate Hex agents by playing a series of head-

to-head games and testing against a set of test positions. This chapter quantifies the

performance of our Hex agents, trained with different forced-openings combinations

(Chapter 5), against the two test suites prepared according to the test position selec-

tion procedure described in Section 6.2.2. There is one test suite per board size: Our

test suite has 200 test positions (100 per player) for Hex 6×6; and 500 test positions

(250 per player) for Hex 8×8. For detailed information on the test positions, see

Section 6.2.3.

Although we provide two ways for evaluation — head-to-head games and test

positions — we use only the test positions in our analysis and discussions. The

reason is that head-to-head game evaluation is too slow, allowing insufficient time to

consider all trained agents. As shown in Table 7.1, a complete set of head-to-head

games could take up to 33.33 hours, which is at least 20 times higher than checking

all test positions. More details are in Section 7.2.

When evaluating Hex agents on test suites, results are expressed as winning-move

selection ratio (WMSR). It is the ratio of the number of correctly-answered test

positions to the number of tested positions (Section 6.2).

Overall, our findings (Sections 7.2.1 and 7.2.3) show that including forced-move

openings generally improves the winning-move selection ratios. However, we found
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no significant difference among the various forced openings we tested.

7.1 Rationale for Using Test Suite and Evaluation

Configuration

As explained in Chapter 6, our two evaluation methods check an agent’s performance

in two complementary ways. However, playing an adequate number of head-to-head

games between each agent and MoHex takes more time than checking agents against

test positions. For that reason, we compared different agents only on test positions.

Table 7.1 lists the runtime of evaluating Hex 6×6 and Hex 8×8 agents with the

two evaluation methods. While the average runtime of one full game are 30 s and

118 s for Hex 6×6 and Hex 8×8, the average check-time for one test position are just

about 4.5 s and 12 s, respectively.

Comparing agents with a full set of head-to-head games requires 1000 games, to-

talling 30000 s and 120000 s (8.33 hours and 33.33 hours) for the 6×6 and 8×8 boards.

On these board sizes we have 200 and 500 test positions respectively, so comparing

agents requires only 1000 s and 6000 s (0.28 hours and 1.67 hours), at least 20 times

faster than playing head-to-head games.

For this reason we use only our test suites for evaluating agents. Each agent’s

evaluation score is measured as WMSR, a fraction in the interval of [0, 1].

As mentioned in Section 5.1, we train our AlphaZero Hex agents for 100 and 200

steps beyond the initial step (zero) on the Hex 6×6 and Hex 8×8 board sizes. We

also set the checkpoint frequency hyper-parameter to 1 to capture one snapshot per

training step. This allows us to examine an agent’s evolution during training. Rather

than saving data only from the final snapshot, we save data from all 101 and 201

training snapshots for the two board sizes respectively, as maximum agent accuracy

might occur before the last snapshot.

Each test position can be considered an arbitrary position in a game of Hex, requir-

ing the agent to select the next move. AlphaZero uses MCTS for move selection, so
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Table 7.1: Runtime for two evaluation methods of head-to-head games and test po-
sitions.

Measurement Hex 6×6 Hex 8×8

Avg. time of one complete game against MoHex 30 s 120 s

Avg. time of checking one test position 5 s 12 s

Total time required for one full set of 1000 head-
to-head games

30000 s
(8.33 hours)

120000 s
(33.33 hours)

Total time required for checking all test posi-
tions

1000 s
(0.28 hours)

6000 s
(1.67 hours)

Runtime factor of head-to-head games to test
positions

30 20

we configure MCTS-related hyper-parameters in the evaluation step as in the training

step, described in Section 5.1. Table 7.2 lists MCTS hyper-parameter values during

evaluation of Hex 6×6 and Hex 8×8 agents. These values are the default ones defined

by the OpenSpiel framework. We do not know whether these hyper-parameter set-

tings are optimal. We keep the default values fixed to avoid introducing bias during

the evaluation process.

All evaluations have been conducted using OpenSpiel AlphaZero Python imple-

mentation on Compute Canada’s Cedar cluster [69], with 16 CPU cores working at

2.1 GHz frequency with 16 GB of memory.

Table 7.2: Values of MCTS-related hyper-parameters used in evaluation step.

Hyper-parameter Description Value

uct c UCT exploration constant used in PUCT 2

max simulations number of simulations to run 1000

solve whether to back up solved states True
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7.2 Results

For each board size, we have five agents trained with the exact same hyper-parameters

but different combinations of forced openings (Section 5.2.2), as follows:

• A1: all one-move openings only

• A2: all two-move openings only

• A3: all three-move openings only

• A123: all one-, two- and three-move openings

• Baseline: no forced openings

To study the training progress, we evaluate each training snapshot using our test

suite. Considering that we have hundreds of snapshots per each of the five agents, we

need a way to compare them numerically to see which forced-openings combination

works best. We use the average of differences (AOD) in WMSRs for two agents

throughout training as the metric of goodness. The formula for calculating the AOD

for two agents A = {ai, 0 ≤ i ≤ N} and B = {bi, 0 ≤ i ≤ N} over n training steps

is provided in Equation 7.1. A positive AOD means B has a higher WMSR and a

negative one means A has a higher WMSR on average. For a detailed explanation of

WMSR calculation, see Section 6.2.

We bisect these checkpoints because the WMSRs are indistinguishable in the early

steps of training, but they diverge as evaluations progress. We will see this pattern

later in Figures 7.1 and 7.2. Therefore, including all steps increases the risk of having

a skewed and less accurate average value.

AOD(A,B) =

∑︁N
i=0WMSR(bi)−WMSR(ai)

N
(7.1)

Given the properties of Hex, one agent may not play at the same level of strength

for Black and White: the strongest BtoP and WtoP agents could be different.
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In the rest of this section, we discuss the results of evaluating Hex 6×6 and Hex

8×8 models using the described framework in detail (Sections 7.2.1 and 7.2.3.) Here

are the main conclusions:

1. Including forced-move openings in the training of AlphaZero models for Hex

improves the quality of the agents trained to play board sizes of 6×6 and 8×8.

Compared to the baseline, such agents reach higher WMSR values sooner.

2. While all Hex 6×6 and 8×8 agents with forced-move openings have better

WMSR values than the baseline, there is no noticeable difference between the

various forced-move opening combinations.

3. Some agents trained with forced-move openings solve all test positions for Hex

6×6 at some point in a 100-step training period. No Hex 8×8 agent can solve

more than 76% of its related test suite in a 200-step training period.

7.2.1 Results of Evaluating Hex 6×6 Agents

Figures 7.1 and 7.2 show the performance of the five agents for Hex 6×6 in terms

of WMSR based on 100 BtoP and 100 WtoP test positions, respectively. All agents

trained with forced openings start below the baseline (the dotted line on Figure 7.1)

at step 0 but rapidly increase toward the baseline and surpass it at step 4. Four steps

later, at step 8, the baseline regains its position as the best, followed by A1 (the blue

line) as the runner-up. Then it diminishes, and for the rest of the training, it cannot

score higher than the majority of its competitors.

At step 16, A123 (the red line) and A2 (the orange line) experience a sudden

drop followed by a fast recovery. For A123, the drop is almost three times sharper

than A2. A123 drops by about 8% (8 test positions), while A2 drops by only 3% (3

test positions). At the same time, both A1 and A3 show an increase of 8% (8 test

positions) and 2% (2 test positions.) Overall, agents trained with A1, A3, and A123

follow a steadily improving trend, but A2 has a wildly fluctuating upward trend.
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Figure 7.1: Winning-move selection ratio (WMSR)-Training step curves on BtoP test
positions for Hex 6×6 agents trained with different forced-openings combinations.
First global maximum value for baseline is 85.0% (85 correct out of 100 test positions)
at step 28.
First global maximum value for A1 is 96.0% (96 correct out of 100 test positions) at
step 27.
First global maximum value for A2 is 96.0% (96 correct out of 100 test positions) at
step 67.
First global maximum value for A3 is 100.0% (correct answers for all test positions)
at step 97.
First global maximum value for A123 is 99.0% (99 correct out of 100 test positions)
at step 90.
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Figure 7.2: Winning-move selection ratio (WMSR)-Training step curves on WtoP test
positions for Hex 6×6 agents trained different with forced-openings combinations.
First global maximum value for baseline is 89.0% (89 correct out of 100 test positions)
at step 22.
First global maximum value for A1 is 99.0% (99 correct out of 100 test positions) at
step 62.
First global maximum value for A2 is 95.0% (95 correct out of 100 test positions) at
step 35.
First global maximum value for A3 is 100.0% (correct answers for all test positions)
at step 93.
First global maximum value for A123 is 100.0% (correct answers for all test positions)
at step 88.
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Regarding maximum values, the baseline reaches the maximum value of 85% rel-

atively soon at step 28, but it cannot maintain that value and loses it immediately.

Later it reaches the exact maximum two more times, at steps 38 and 58, but it ends

at 77% after 100 training steps.

A1 also attains its maximum of 96% very early at step 27. Nevertheless, this peak

is followed by a sharp decrease of 7%. After that, it reaches the same maximum a few

more times, at steps 34, 86, 89−92, and 94. Finally, it finishes at the same maximum

of 96% at step 100.

The maximum for A2 only happens once. At step 67, it peaks at 96%. However,

it cannot maintain that value for the rest of the training and closes 90% at step 100.

A3 reaches its maximum of 100% quite late at step 97. Although it drops by 2%

in the next two steps, it finishes at the same maximum value of 100% at the end of

training. The behaviour of A123 is a little different. Like A3, it reaches its peak of

99% at step 90, but it maintains that value for four steps before starting a downward

trend. This trend continues until the end of the training, where the final WMSR is

90%.

We see a new set of trends for WtoP. Like BtoP, all agents with forced openings

start below the baseline but surpass at step 5. Then, at step 12, all agents, including

the baseline, experience a peak followed by a deep valley.

The baseline peaks only once, reaching 89% at step 22. It then follows a fluctuating

trend and concludes training with a WMSR value of 80%. A1 reaches the maximum

value of 99% for the first time at step 62. It maintains that peak value in the next

step, then a downward trend begins, which leads to 95% at the end of training. A2

peaks relatively early at step 35 with a WMSR value of 95%. Although it reaches

the same maximum value 52 steps later at step 87, its training ends with a WMSR

of 90%.

Both A3 and A123 peak late at steps 93 and 88 by solving all test positions and

scoring 100% WMSR. However, none of them can keep this maximum to the end of
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Figure 7.3: Smoothed version of Winning-move selection ratio (WMSR)-Training step
curves on BtoP test positions for Hex 6×6 agents.

the training, and they both finish at 99% after 100 steps.

Due to the high fluctuation rate in winning-move selection ratios, it is not easy to

compare agents or discuss trends using the WMSR-Training step curves (Figures 7.1

and 7.2). To make things easier, we smooth the curves using the Locally Weighted

Scatterplot Smoothing (LOWESS) technique [70] with a fraction value equal to 0.1.

The smoothed versions of Figures 7.1 and 7.2 are provided in Figures 7.3 and 7.4.

From Figure 7.3, it is clear that all agents, including the baseline, rise sharply until

step 18. After that, the baseline starts a fluctuating pattern which continues until

the end of training (step 100) and makes the agent finish at an even lower value than

step 18. Conversely, the three agents of A1, A3, and A123 continue their upward

trend at a reduced pace to a WMSR of 90% at step 30. From this point to the end of

the training, the increasing trend for the group of three gets slower. By contrast, the

rate for A2 behaves differently, where it maintains a steady rising trend from step 18

to the end (step 100.) However, since it gets to higher values (above 90%) 30 steps

later than the other three at around step 60, even with a steady increasing trend, it
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Figure 7.4: Smoothed version of Winning-move selection ratio (WMSR)-Training step
curves on WtoP test positions for Hex 6×6 agents.

cannot surpass them until the end of training.

Figure 7.4 shows the smoothed version of WMSR curves for WtoP. The trends

visible on that figure are comparable with what we see on the smoothed version of

BtoP curves (Figure 7.3). From the beginning until step 20, the WMSR values for

all five agents increase sharply. Then, the baseline starts fluctuating for the rest

of the training and finishes at a lower value than step 20. A1 and A123 continue

their upward trend until step 42, when they pass 90% in WMSR. From that point to

the end, A1 remains almost stable, while A123 experiences a gradually-rising trend.

Similarly, A3 continues its slowly-increasing trend until the end. In contrast, A2

fluctuates gradually to the end of the training after reaching a peak at step 25 and

finishes below its maximum value.

7.2.2 Discussion of Hex 6×6 Results

Overall, evaluation of all four 6×6 agents trained with forced openings over BtoP

and WtoP test positions shows a similar increasing trend throughout training. The
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WMSR curves tend to stay close to each other. Based on this observation, there

is no significant difference between the different combinations of opening moves. To

support this observation with quantitative data, we calculate the average of differences

(AOD) for winning-move selection ratios of each agents’ pair using Equation 7.1.

The calculated AODs for BtoP and WtoP test positions are provided in Tables 7.3

and 7.4, respectively. We should remember that the sign of an AOD has significance.

For example, in AOD(A,B), a positive number indicates the superiority of B (on

average) while a negative one indicates otherwise.

As shown in Table 7.3.a, in the first half of training, the pairwise AOD of WMSR

over BtoP test positions between A1, A3, and A123 is negligible and ranges from

0.06% to 2.9%. However, A1 performs best by 2.87% WMSR on average among these

three. At the same time, A2 has the most negative pairwise AOD among all four

agents trained with forced openings. Its performance is worse than A3 and A123 by

an average WMSR of 2.87%. The difference between A2 and A1 is almost double,

where A2 falls behind by 5.74%. All forced-openings agents outperform the baseline

by an AOD ranging from 4.88% (for A2) to 10.62% (for A1).

We see a similar trend in the second half, as listed in Table 7.3.b. There is still a

minor pairwise AOD of WMSR between A1, A3, and A123. Nevertheless, this time,

A123 is the best among the group of three. A1 and A123 underperform A2 by about

4.44%, and A1 by 2.65%. Again, all agents with forced openings surpass the baseline

by at least 12.90% WMSR.

Table 7.4 shows the pairwise AOD of WMSR for WtoP test positions. In the first

half of training (Table 7.4.a), all four forced-opening agents perform better than the

baseline, by about 7%. At the same time, the difference between the four agents is

insignificant (under 1%.), to the point that A3 and A123 have AOD of zero.

In the second half of training (Table 7.4.b), the pairwise AOD between A1, A3,

and A123 is still below 1%. However, A2 performs relatively poorly against the other

three, with a pairwise AOD of at least -5.43%. Similar to the first half, all four agents
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surpass the baseline by an AOD ranging from 9.41% (for A2) to 15.59% (for A3).

The quantitative analysis discussed above confirms our observation from WMSR-

Training step curves (Figures 7.1 to 7.4). Therefore, we can conclude that using

forced-move openings in the training step improves the quality of a Hex 6×6 agent.

This allows the agent to achieve better results in test positions evaluation than the

baseline with no forced-move openings, even when all training and testing hyper-

parameters were unchanged. However, there is no evidence of a significant difference

between the various combinations of forced-move openings for Hex 6×6 agents.

Table 7.3: Average of differences (AOD) of BtoP Winning-move selection ratios
(WMSR) for different 6×6 agents

(a) First half: Training steps 0− 50

Table is symmetric. A1
23

A1 A2 A3 Ba
sel
ine

A123 0 -2.9 2.84 -0.06 7.72

A1 2.9 0 5.74 2.84 10.62

A2 -2.84 -5.74 0 -2.9 4.88

A3 0.06 -2.84 2.9 0 7.78

Baseline (no openings) -7.72 -10.62 -4.88 -7.78 0

(b) Second half: Training steps 51− 100

Table is symmetric. A1
23

A1 A2 A3 Ba
sel
ine

A123 0 2.039 4.686 0.49 17.588

A1 -2.039 0 2.647 -1.549 15.549

A2 -4.686 -2.647 0 -4.196 12.902

A3 -0.49 1.549 4.196 0 17.098

Baseline (no openings) -17.588 -15.549 -12.902 -17.098 0
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Table 7.4: Average of differences (AOD) of WtoP Winning-move selection ratios
(WMSR) for different 6×6 agents

(a) First half: Training steps 0− 50

Table is symmetric. A1
23

A1 A2 A3 Ba
sel
ine

A123 0 -0.2 -0.84 0 6.74

A1 0.2 0 -0.64 0.2 6.94

A2 0.84 0.64 0 0.84 7.58

A3 0 -0.2 -0.84 0 6.74

Baseline (no openings) -6.74 -6.94 -7.58 -6.74 0

(b) Second half: Training steps 51− 100

Table is symmetric. A1
23

A1 A2 A3 Ba
sel
ine

A123 0 -0.059 5.431 -0.745 14.843

A1 0.059 0 5.49 -0.686 14.902

A2 -5.431 -5.49 0 -6.176 9.412

A3 0.745 0.686 6.176 0 15.588

Baseline (no openings) -14.843 -14.902 -9.412 -15.588 0
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7.2.3 Results of Evaluating Hex 8×8 Agents

The WMSR curves over BtoP test positions for Hex 8×8 agents, as shown in Fig-

ure 7.5, are considerably fluctuating and close to each other. Therefore, we cannot

extract many meaningful trends from this graph. However, it can be seen that all

agents experience a sharp increase in the first 30 steps of training. From that point,

the rising pace of the baseline (the dotted line) and A2 (the orange line) slows down

until it disappears at around step 62. After that, both curves start a fluctuating

pattern with sharp ups and downs until the end of training (step 200.) At the same

time, A1, A3, and A123 show an overall rising trend through the training. Although

they also experience sharp peaks and valleys, their overall trend is increasing. We see

that they move together and stay close to each other in almost all training steps.

Regarding the peak WMSR values, the baseline reaches its maximum of 48.4%

relatively soon at step 62. However, it loses this maximum immediately at the next

step. Later it reaches the exact maximum again at step 103, but it stands at 42% at

the end of the 200-step training period. All four forced-opening agents attain their

peaks in the last twenty steps: 72.8% for A1 at step 188, 54.8% for A2 at step 199,

72.0% for A3 at step 186, and 70.8% for A123 at step 196.

The WMSR curves for WtoP test positions (Figure 7.6) are not much different from

BtoP ones. Again, all agents have an increasing trend until step 64. At that point,

the baseline starts a strong downward trend that continues for ten steps and finishes

at a local minimum of 38% at step 74. From this point to the end of the training, the

baseline shows continuous fluctuations between 35% and 52% and eventually stands

at 43%. A2 also experiences strong fluctuations between 48% and 60.8% from step

64 to step 200 (the last training step). It finishes close to the baseline at 45.5%.

The other three agents with forced openings follow an overall rising trend through-

out the training. Like in BtoP evaluation, they have sharp fluctuations, but overall,

they increase slowly while staying close to each other. Their only peak happens rel-
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Figure 7.5: Winning-move selection ratio (WMSR)-Training step curves on BtoP test
positions for Hex 8×8 agents trained with different forced-openings combinations.
First global maximum value for baseline is 48.4% (121 correct out of 250 test positions)
at step 62.
First global maximum value for A1 is 72.8% (182 correct out of 250 test positions) at
step 188.
First global maximum value for A2 is 54.8% (137 correct out of 250 test positions) at
step 199.
First global maximum value for A3 is 72.0% (180 correct out of 250 test positions) at
step 186.
First global maximum value for A123 is 70.8% (177 correct out of 250 test positions)
at step 196.
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Figure 7.6: Winning-move selection ratio (WMSR)-Training step curves on WtoP test
positions for Hex 8×8 agents trained different with forced-openings combinations.
First global maximum value for baseline is 52.0% (130 correct out of 250 test positions)
at step 128.
First global maximum value for A1 is 75.6% (189 correct out of 250 test positions) at
step 179.
First global maximum value for A2 is 60.8% (152 correct out of 250 test positions) at
step 167.
First global maximum value for A3 is 74.4% (186 correct out of 250 test positions) at
step 200.
First global maximum value for A123 is 70.8% (177 correct out of 250 test positions)
at step 199.
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Figure 7.7: Smoothed version of Winning-move selection ratio (WMSR)-Training step
curves on BtoP test positions for Hex 8×8 agents.

atively late: A1 reaches its maximum WMSR of 75.6% at step 179, A123’s peak of

70.8% occurs at step 199 (the end of training), and A3 develops its maximum at the

end of the training, at step 200.

As mentioned earlier, the Hex 8×8 BtoP and WtoP evaluation trends are not easily

visible by looking at the WMSR-Training step curves (Figures 7.5 and 7.6) due to

the high fluctuation rates. Therefore, we smooth them using the LOWESS method

with fraction = 0.1 to see the generalized trends.

Figure 7.7 displays the smoothed version of BtoP WMSR curves. An aggressive

rising trend can be seen until step 30 for all agents. After that, the baseline begins

to fluctuate, but other curves continue going up. At around step 70, A2 starts a

fluctuation while the other three rise steadily. A1, A3, and A123 keep increasing

until the end of the training period.

Figure 7.8 shows the smoothed version of WtoP WMSR curves. Again, they look

very similar to the smoothed BtoP ones. The main difference is that A2 keeps in-

creasing steadily with the rest of the forced-opening agents until step 55 before it
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Figure 7.8: Smoothed version of Winning-move selection ratio (WMSR)-Training step
curves on WtoP test positions for Hex 8×8 agents.

begins to fluctuate for the remaining training period.

7.2.4 Discussion of Hex 8×8 Results

Overall, based on Figures 7.5 to 7.8, we can see that agents trained with forced-move

openings perform better than the baseline with no openings on both BtoP and WtoP

test positions. Besides, while A1, A3, and A123 score closely and follow the same

increasing trend to the end of the training, A2 falls behind them and stops developing

relatively early.

To examine our observations with quantitative data, we calculate the average of

differences (AOD) for both BtoP and WtoP evaluations using Equation 7.1. Ta-

bles 7.5 and 7.6 list pairwise AODs of the five evaluated agents over BtoP and WtoP

test positions.

In the first half of training, A123 has the highest AOD against all other agents over

BtoP test positions (Table 7.5.a.) However, the pairwise AOD between A1, A3 and

A123 is relatively tiny. Conversely, A2 has an AOD of -5.86% (on average) against the
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other three forced-opening agents. All forced-opening agents outperform the baseline

by a minimum of 4.03% (for A2) and a maximum of 10.68% (for A123.) In the second

half (Table 7.5.b), A3 takes the lead while A1, A3, and A123 show a slightly higher

pairwise AOD than the first half. At the same time, the gap between A2 and the

other three almost triples at a minimum of -17.34%. While the AOD of the baseline

and A2 doubles at 7.8%, the AOD of the baseline and the other three agents increases

2.5 times to 25%.

The AODs are mostly similar on WtoP test positions (Table 7.6) In the first half,

the AOD between A1, A3, and A123 is negligible (under 1%.) A2 falls behind them

by a minor absolute AOD of about 2%. The baseline ranks last with an AOD ranging

from 5.6% (against A2) to 8.27% (against A123.) In the second half, A3 scores slightly

higher than A1 and A123 by a minimum AOD of 2.82%. The gap between A1 and

A123 remains relatively low at 1.14%. The difference between A2 and the other three

becomes six times greater than the first half and ranges from -15.46% to -11.5%. The

gap between the baseline and others also increases to a minimum of 8.27% (with A2)

and 23.72% (with A3.) It is almost 2.5 times the first half.

Our quantitative analysis confirms our observations from the WMSR-Training step

curves (Figures 7.5 to 7.8) regarding Hex 8×8 agents. Therefore, we conclude that

using forced-move openings in the training of a Hex 8×8 agent improves its results in

test positions evaluation. Such agent scores better than the baseline when all training

and testing hyper-parameters were unchanged. The one with all 2-move openings

scores the worst between various combinations of forced openings. No combination

seems better than the others.

7.3 Concluding Remarks

In this chapter, we compared the runtime of the two proposed evaluation methods –

head-to-head games and test positions. We showed that evaluation with test positions

takes 0.28− 1.67 hours (for Hex 6×6 and 8×8) which is at least 20 times faster than
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Table 7.5: Average of differences (AOD) of BtoP Winning-move selection ratios
(WMSR) for different 8×8 agents

(a) First half: Training steps 0− 100

Table is symmetric. A1
23

A1 A2 A3 Ba
sel
ine

A123 0 1.69 6.64 0.66 10.68

A1 -1.69 0 4.95 -1.03 8.98

A2 -6.64 -4.95 0 -5.98 4.03

A3 -0.66 1.03 5.98 0 10.01

Baseline (no openings) -10.68 -8.98 -4.03 -10.01 0

(b) Second half: Training steps 101− 200

Table is symmetric. A1
23

A1 A2 A3 Ba
sel
ine

A123 0 -1.11 16.23 -2.77 24.03

A1 1.11 0 17.34 -1.66 25.14

A2 -16.23 -17.34 0 -19 7.8

A3 2.77 1.66 19 0 26.8

Baseline (no openings) -24.03 -25.14 -7.8 -26.8 0
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Table 7.6: Average of differences (AOD) of WtoP Winning-move selection ratios
(WMSR) for different 8×8 agents

(a) First half: Training steps 0− 100

Table is symmetric. A1
23

A1 A2 A3 Ba
sel
ine

A123 0 0.82 2.67 0.58 8.27

A1 -0.82 0 1.85 -0.24 7.45

A2 -2.67 -1.85 0 -2.09 5.6

A3 -0.58 0.24 2.09 0 7.69

Baseline (no openings) -8.27 -7.45 -5.6 -7.69 0

(b) Second half: Training steps 101− 200

Table is symmetric. A1
23

A1 A2 A3 Ba
sel
ine

A123 0 -1.14 11.5 -3.96 19.76

A1 1.14 0 12.64 -2.82 20.9

A2 -11.5 -12.64 0 -15.46 8.27

A3 3.96 2.82 15.46 0 23.72

Baseline (no openings) -19.76 -20.9 -8.27 -23.72 0
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head-to-head games with 8.33−33.33 hours (Table 7.1). Therefore, we used only test

positions for evaluating our models.

To analyze the efficacy of using forced-move openings (Section 5.2) in AlphaZero’s

search space exploration, we evaluated five agents with the same hyper-parameters but

different combinations of forced openings: all one-move openings only, all two-move

openings only, all three-move openings only, all one-, two- and three-move openings,

and the baseline with no forced openings. As described in Section 6.2, the results of

testing agents against test positions were expressed in WMSR.

Considering that the maximum agent accuracy might have occurred before the last

snapshot, we studied agents’ performance during the whole training period (101 steps

for Hex 6×6 and 201 steps for Hex 8×8.) rather than evaluating only from the final

snapshot of each agent. To compare the agents’ performance over multiple snapshots,

we defined a new pairwise metric called the average of differences (AOD) for WMSR.

Our experiments showed notable improvements in WMSR values and positive

AODs compared to the baseline for all four agents trained with forced-move openings

for both board sizes of 6×6 and 8×8 regardless of the player’s color. While the base-

line was never succeed in solving all test positions, one agent (A3) was able to solve

all test positions for 6×6 BtoP (Figure 7.1) and two agents (A3 and A123) did the

same for 6×6 WtoP test positions. No tested agent could solve all test positions for

either colors of 8×8 and the maximum WMSR values were 72.8 for BtoP (Figure 7.5)

and 75.6 for WtoP (Figure 7.6) both scored by A1.

The pairwise AOD of WMSR between the four agents and the baseline had a range

of 4.88−17.588 for Hex 6×6 BtoP (Table 7.3) and 6.74−15.588 for WtoP (Table 7.4).

The same value for Hex 8×8 ranged from 4.03 to 26.8 for BtoP (Table 7.5) and from

5.6 to 23.72 for WtoP (Table 7.6).

Despite the improvement over the baseline, we found no significant difference be-

tween the four combinations of forced-move openings. Therefore, we could not draw

a conclusion about the superiority of one combination over the others.
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Chapter 8

Summary and Conclusions

In this thesis we have tried to improve search space exploration during the training

phase of AlphaZero agents by enforcing short opening-move sequences for each game,

called a forced-move opening. During training, agents trained with this technique are

exposed to a diverse range of moves and can learn the proper response to a broader set

of opponent’s actions in less time. As we showed in our experiments, this led to faster

learning in the first 100 and 200 training steps for Hex 6×6 and 8×8, respectively.

In this thesis, we use the game of Hex as a case study for our proposed ap-

proach. Hex is a computationally challenging game with a large search space, easily-

implemented rules, and a simple win-or-lose outcome. Such properties made it a good

choice for a case study allowing quick game simulations and evaluation.

This thesis presents a set of hyper-parameters that work well for training AlphaZero

agents for Hex 6×6 and 8×8, although an extensive hyper-parameter sweep is not

part of this work. It also provides brief documentation on DeepMind’s OpenSpiel RL

framework and how it should be tuned for training AlphaZero agents.

In order to speed up the evaluation of trained agents, we propose to use test suites

consisting of carefully chosen test positions instead of classical methods such as head-

to-head games. By following four simple steps for each test position, we calculate the

winning-move selection ratio (WMSR) for an agent evaluated with a test suite. Our

experiments showed that such evaluation is significantly faster than playing complete
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games and can be used as a comparison tool.

We present a systematic and repeatable method to extract a test suite from actual

game histories. We also provide three criteria for selecting worthy positions from a

pool of thousands of candidates for Hex boards of 6×6 and 8×8.

We trained Hex 6×6 and Hex 8×8 agents with four different combinations of forced

move openings: all 1-move openings, all 2-move openings, all 3-move openings, and all

1-, 2-, 3-move openings. Our evaluation showed that all four combinations reached

higher WMSR values sooner than the baseline with no forced openings. However,

the difference between the four combinations was not significant enough to firmly

conclude that one combination worked better than the others. We also observed that

while the baseline never reached a WMSR of 1 (i.e., solving all test positions), some

forced openings combinations were able to solve all test positions for Hex 6×6 in a

100-step training period, e.g., Figures 7.1 and 7.2. Conversely, no agent could solve

more than 76% of the 8×8 test suite in a 200-step training period, e.g., Figures 7.5

and 7.6.

Overall, we can conclude that this thesis’s goals – presented in Chapter 1 as re-

search questions are addressed as follows. For RQ 1, we have explored and presented

some empirical evidence that a forced-move opening technique improves search space

exploration and training speed. With respect to RQ 2, we have presented hyper-

parameters that work well for training Hex AlphaZero agents. For RQ 3, we have

proposed using test positions as a faster way to evaluate Hex agents and provided a

systematic approach to create test suites for different Hex board sizes.

We discuss some possible avenues for future work in the rest of this chapter.

8.1 Directions for Future Work

• Due to time and resource constraints, we are limited to small Hex board sizes.

With more time and computing power, we can study our approach on compet-

itive board sizes like 11×11 and 13×13.
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• We exclusively used OpenSpiel’s implementation of AlphaZero algorithm which

is based on the original AlphaZero paper [1]. In the past couple of years, new

variations of AlphaZero have been introduced [35]. It would be interesting to

see whether including forced-move openings would be beneficial for them.
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Appendix A: Test Positions for
Hex 6×6 and Hex 8×8

In this appendix, we list the visual representations of our test suites for of 200 test

positions for Hex 6×6 and 500 test positions for Hex 8×8. The test suites are available

online in JSON format at https://github.com/mrdaliri/hex-testsuite.
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A.1 Hex 6×6
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A.1.2 White-to-play Test Positions
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6

(4)

A B C D E F

1

2

3

4

5

6

(5)

A B C D E F

1

2

3

4

5

6

(6)

A B C D E F

1

2

3

4

5

6

(7)

A B C D E F

1

2

3

4

5

6

(8)

A B C D E F

1

2

3

4

5

6

(9)

A B C D E F

1

2

3

4

5

6

(10)
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A B C D E F

1

2

3

4

5

6

(11)

A B C D E F

1

2

3

4

5

6

(12)

A B C D E F

1

2

3

4

5

6

(13)

A B C D E F

1

2

3

4

5

6

(14)

A B C D E F

1

2

3

4

5

6

(15)

A B C D E F

1

2

3

4

5

6

(16)

A B C D E F

1

2

3

4

5

6

(17)

A B C D E F

1

2

3

4

5

6

(18)

A B C D E F

1

2

3

4

5

6

(19)

A B C D E F

1

2

3

4

5

6

(20)
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A B C D E F

1

2

3

4

5

6

(21)

A B C D E F

1

2

3

4

5

6

(22)

A B C D E F

1

2

3

4

5

6

(23)

A B C D E F

1

2

3

4

5

6

(24)

A B C D E F

1

2

3

4

5

6

(25)

A B C D E F

1

2

3

4

5

6

(26)

A B C D E F

1

2

3

4

5

6

(27)

A B C D E F

1

2

3

4

5

6

(28)

A B C D E F

1

2

3

4

5

6

(29)

A B C D E F

1

2

3

4

5

6

(30)
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A B C D E F

1

2

3

4

5

6

(31)

A B C D E F

1

2

3

4

5

6

(32)

A B C D E F

1

2

3

4

5

6

(33)

A B C D E F

1

2

3

4

5

6

(34)

A B C D E F

1

2

3

4

5

6

(35)

A B C D E F

1

2

3

4

5

6

(36)

A B C D E F

1

2

3

4

5

6

(37)

A B C D E F

1

2

3

4

5

6

(38)

A B C D E F

1

2

3

4

5

6

(39)

A B C D E F

1

2

3

4

5

6

(40)
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A B C D E F

1

2

3

4

5

6

(41)

A B C D E F

1

2

3

4

5

6

(42)

A B C D E F

1

2

3

4

5

6

(43)

A B C D E F

1

2

3

4

5

6

(44)

A B C D E F

1

2

3

4

5

6

(45)

A B C D E F

1

2

3

4

5

6

(46)

A B C D E F

1

2

3

4

5

6

(47)

A B C D E F

1

2

3

4

5

6

(48)

A B C D E F

1

2

3

4

5

6

(49)

A B C D E F

1

2

3

4

5

6

(50)
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A B C D E F

1

2

3

4

5

6

(51)

A B C D E F

1

2

3

4

5

6

(52)

A B C D E F

1

2

3

4

5

6

(53)

A B C D E F

1

2

3

4

5

6

(54)

A B C D E F

1

2

3

4

5

6

(55)

A B C D E F

1

2

3

4

5

6

(56)

A B C D E F

1

2

3

4

5

6

(57)

A B C D E F

1

2

3

4

5

6

(58)

A B C D E F

1

2

3

4

5

6

(59)

A B C D E F

1

2

3

4

5

6

(60)
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A B C D E F

1

2

3

4

5

6

(61)

A B C D E F

1

2

3

4

5

6

(62)

A B C D E F

1

2

3

4

5

6

(63)

A B C D E F

1

2

3

4

5

6

(64)

A B C D E F

1

2

3

4

5

6

(65)

A B C D E F

1

2

3

4

5

6

(66)

A B C D E F

1

2

3

4

5

6

(67)

A B C D E F

1

2

3

4

5

6

(68)

A B C D E F

1

2

3

4

5

6

(69)

A B C D E F

1

2

3

4

5

6

(70)
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A B C D E F

1

2

3

4

5

6

(71)

A B C D E F

1

2

3

4

5

6

(72)

A B C D E F

1

2

3

4

5

6

(73)

A B C D E F

1

2

3

4

5

6

(74)

A B C D E F

1

2

3

4

5

6

(75)

A B C D E F

1

2

3

4

5

6

(76)

A B C D E F

1

2

3

4

5

6

(77)

A B C D E F

1

2

3

4

5

6

(78)

A B C D E F

1

2

3

4

5

6

(79)

A B C D E F

1

2

3

4

5

6

(80)
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A B C D E F

1

2

3

4

5

6

(81)

A B C D E F

1

2

3

4

5

6

(82)

A B C D E F

1

2

3

4

5

6

(83)

A B C D E F

1

2

3

4

5

6

(84)

A B C D E F

1

2

3

4

5

6

(85)

A B C D E F

1

2

3

4

5

6

(86)

A B C D E F

1

2

3

4

5

6

(87)

A B C D E F

1

2

3

4

5

6

(88)

A B C D E F

1

2

3

4

5

6

(89)

A B C D E F

1

2

3

4

5

6

(90)
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A B C D E F

1

2

3

4

5

6

(91)

A B C D E F

1

2

3

4

5

6

(92)

A B C D E F

1

2

3

4

5

6

(93)

A B C D E F

1

2

3

4

5

6

(94)

A B C D E F

1

2

3

4

5

6

(95)

A B C D E F

1

2

3

4

5

6

(96)

A B C D E F

1

2

3

4

5

6

(97)

A B C D E F

1

2

3

4

5

6

(98)

A B C D E F

1

2

3

4

5

6

(99)

A B C D E F

1

2

3

4

5

6

(100)
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A.2 Hex 8×8

A.2.1 Black-to-play Test Positions

A B C D E F G H

1

2

3

4

5

6

7

8

(1)

A B C D E F G H

1

2

3

4

5

6

7

8

(2)

A B C D E F G H

1

2

3

4

5

6

7

8

(3)

A B C D E F G H

1

2

3

4

5

6

7

8

(4)

A B C D E F G H

1

2

3

4

5

6

7

8

(5)

A B C D E F G H

1

2

3

4

5

6

7

8

(6)

A B C D E F G H

1

2

3

4

5

6

7

8

(7)

A B C D E F G H

1

2

3

4

5

6

7

8

(8)

A B C D E F G H

1

2

3

4

5

6

7

8

(9)

A B C D E F G H

1

2

3

4

5

6

7

8

(10)
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A B C D E F G H

1

2

3

4

5

6

7

8

(11)

A B C D E F G H

1

2

3

4

5

6

7

8

(12)

A B C D E F G H

1

2

3

4

5

6

7

8

(13)

A B C D E F G H

1

2

3

4

5

6

7

8

(14)

A B C D E F G H

1

2

3

4

5

6

7

8

(15)

A B C D E F G H

1

2

3

4

5

6

7

8

(16)

A B C D E F G H

1

2

3

4

5

6

7

8

(17)

A B C D E F G H

1

2

3

4

5

6

7

8

(18)

A B C D E F G H

1

2

3

4

5

6

7

8

(19)

A B C D E F G H

1

2

3

4

5

6

7

8

(20)
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A B C D E F G H

1

2

3

4

5

6

7

8

(21)

A B C D E F G H

1

2

3

4

5

6

7

8

(22)

A B C D E F G H

1

2

3

4

5

6

7

8

(23)

A B C D E F G H

1

2

3

4

5

6

7

8

(24)

A B C D E F G H

1

2

3

4

5

6

7

8

(25)

A B C D E F G H

1

2

3

4

5

6

7

8

(26)

A B C D E F G H

1

2

3

4

5

6

7

8

(27)

A B C D E F G H

1

2

3

4

5

6

7

8

(28)

A B C D E F G H

1

2

3

4

5

6

7

8

(29)

A B C D E F G H

1

2

3

4

5

6

7

8

(30)
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A B C D E F G H

1

2

3

4

5

6

7

8

(31)

A B C D E F G H

1

2

3

4

5

6

7

8

(32)

A B C D E F G H

1

2

3

4

5

6

7

8

(33)

A B C D E F G H

1

2

3

4

5

6

7

8

(34)

A B C D E F G H

1

2

3

4

5

6

7

8

(35)

A B C D E F G H

1

2

3

4

5

6

7

8

(36)

A B C D E F G H

1

2

3

4

5

6

7

8

(37)

A B C D E F G H

1

2

3

4

5

6

7

8

(38)

A B C D E F G H

1

2

3

4

5

6

7

8

(39)

A B C D E F G H

1

2

3

4

5

6

7

8

(40)
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A B C D E F G H

1

2

3

4

5

6

7

8

(41)

A B C D E F G H

1

2

3

4

5

6

7

8

(42)

A B C D E F G H

1

2

3

4

5

6

7

8

(43)

A B C D E F G H

1

2

3

4

5

6

7

8

(44)

A B C D E F G H

1

2

3

4

5

6

7

8

(45)

A B C D E F G H

1

2

3

4

5

6

7

8

(46)

A B C D E F G H

1

2

3

4

5

6

7

8

(47)

A B C D E F G H

1

2

3

4

5

6

7

8

(48)

A B C D E F G H

1

2

3

4

5

6

7

8

(49)

A B C D E F G H

1

2

3

4

5

6

7

8

(50)
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A B C D E F G H

1

2

3

4

5

6

7

8

(51)

A B C D E F G H

1

2

3

4

5

6

7

8

(52)

A B C D E F G H

1

2

3

4

5

6

7

8

(53)

A B C D E F G H

1

2

3

4

5

6

7

8

(54)

A B C D E F G H

1

2

3

4

5

6

7

8

(55)

A B C D E F G H

1

2

3

4

5

6

7

8

(56)

A B C D E F G H

1

2

3

4

5

6

7

8

(57)

A B C D E F G H

1

2

3

4

5

6

7

8

(58)

A B C D E F G H

1

2

3

4

5

6

7

8

(59)

A B C D E F G H

1

2

3

4

5

6

7

8

(60)
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A B C D E F G H

1

2

3

4

5

6

7

8

(61)

A B C D E F G H

1

2

3

4

5

6

7

8

(62)

A B C D E F G H

1

2

3

4

5

6

7

8

(63)

A B C D E F G H

1

2

3

4

5

6

7

8

(64)

A B C D E F G H

1

2

3

4

5

6

7

8

(65)

A B C D E F G H

1

2

3

4

5

6

7

8

(66)

A B C D E F G H

1

2

3

4

5

6

7

8

(67)

A B C D E F G H

1

2

3

4

5

6

7

8

(68)

A B C D E F G H

1

2

3

4

5

6

7

8

(69)

A B C D E F G H

1

2

3

4

5

6

7

8

(70)
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A B C D E F G H

1

2

3

4

5

6

7

8

(71)

A B C D E F G H

1

2

3

4

5

6

7

8

(72)

A B C D E F G H

1

2

3

4

5

6

7

8

(73)

A B C D E F G H

1

2

3

4

5

6

7

8

(74)

A B C D E F G H

1

2

3

4

5

6

7

8

(75)

A B C D E F G H

1

2

3

4

5

6

7

8

(76)

A B C D E F G H

1

2

3

4

5

6

7

8

(77)

A B C D E F G H

1

2

3

4

5

6

7

8

(78)

A B C D E F G H

1

2

3

4

5

6

7

8

(79)

A B C D E F G H

1

2

3

4

5

6

7

8

(80)

127



A B C D E F G H

1

2

3

4

5

6

7

8

(81)

A B C D E F G H

1

2

3

4

5

6

7

8

(82)

A B C D E F G H

1

2

3

4

5

6

7

8

(83)

A B C D E F G H

1

2

3

4

5

6

7

8

(84)

A B C D E F G H

1

2

3

4

5

6

7

8

(85)

A B C D E F G H

1

2

3

4

5

6

7

8

(86)

A B C D E F G H

1

2

3

4

5

6

7

8

(87)

A B C D E F G H

1

2

3

4

5

6

7

8

(88)

A B C D E F G H

1

2

3

4

5

6

7

8

(89)

A B C D E F G H

1

2

3

4

5

6

7

8

(90)
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A B C D E F G H

1

2

3

4

5

6

7

8

(91)

A B C D E F G H

1

2

3

4

5

6

7

8

(92)

A B C D E F G H

1

2

3

4

5

6

7

8

(93)

A B C D E F G H

1

2

3

4

5

6

7

8

(94)

A B C D E F G H

1

2

3

4

5

6

7

8

(95)

A B C D E F G H

1

2

3

4

5

6

7

8

(96)

A B C D E F G H

1

2

3

4

5

6

7

8

(97)

A B C D E F G H

1

2

3

4

5

6

7

8

(98)

A B C D E F G H

1

2

3

4

5

6

7

8

(99)

A B C D E F G H

1

2

3

4

5

6

7

8

(100)
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A B C D E F G H

1

2

3

4

5

6

7

8

(101)

A B C D E F G H

1

2

3

4

5

6

7

8

(102)

A B C D E F G H

1

2

3

4

5

6

7

8

(103)

A B C D E F G H

1

2

3

4

5

6

7

8

(104)

A B C D E F G H

1

2

3

4

5

6

7

8

(105)

A B C D E F G H

1

2

3

4

5

6

7

8

(106)

A B C D E F G H

1

2

3

4

5

6

7

8

(107)

A B C D E F G H

1

2

3

4

5

6

7

8

(108)

A B C D E F G H

1

2

3

4

5

6

7

8

(109)

A B C D E F G H

1

2

3

4

5

6

7

8

(110)
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A B C D E F G H

1

2

3

4

5

6

7

8

(111)

A B C D E F G H

1

2

3

4

5

6

7

8

(112)

A B C D E F G H

1

2

3

4

5

6

7

8

(113)

A B C D E F G H

1

2

3

4

5

6

7

8

(114)

A B C D E F G H

1

2

3

4

5

6

7

8

(115)

A B C D E F G H

1

2

3

4

5

6

7

8

(116)

A B C D E F G H

1

2

3

4

5

6

7

8

(117)

A B C D E F G H

1

2

3

4

5

6

7

8

(118)

A B C D E F G H

1

2

3

4

5

6

7

8

(119)

A B C D E F G H

1

2

3

4

5

6

7

8

(120)
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A B C D E F G H

1

2

3

4

5

6

7

8

(121)

A B C D E F G H

1

2

3

4

5

6

7

8

(122)

A B C D E F G H

1

2

3

4

5

6

7

8

(123)

A B C D E F G H

1

2

3

4

5

6

7

8

(124)

A B C D E F G H

1

2

3

4

5

6

7

8

(125)

A B C D E F G H

1

2

3

4

5

6

7

8

(126)

A B C D E F G H

1

2

3

4

5

6

7

8

(127)

A B C D E F G H

1

2

3

4

5

6

7

8

(128)

A B C D E F G H

1

2

3

4

5

6

7

8

(129)

A B C D E F G H

1

2

3

4

5

6

7

8

(130)

132



A B C D E F G H

1

2

3

4

5

6

7

8

(131)

A B C D E F G H

1

2

3

4

5

6

7

8

(132)

A B C D E F G H

1

2

3

4

5

6

7

8

(133)

A B C D E F G H

1

2

3

4

5

6

7

8

(134)

A B C D E F G H

1

2

3

4

5

6

7

8

(135)

A B C D E F G H

1

2

3

4

5

6

7

8

(136)

A B C D E F G H

1

2

3

4

5

6

7

8

(137)

A B C D E F G H

1

2

3

4

5

6

7

8

(138)

A B C D E F G H

1

2

3

4

5

6

7

8

(139)

A B C D E F G H

1

2

3

4

5

6

7

8

(140)

133



A B C D E F G H

1

2

3

4

5

6

7

8

(141)

A B C D E F G H

1

2

3

4

5

6

7

8

(142)

A B C D E F G H

1

2

3

4

5

6

7

8

(143)

A B C D E F G H

1

2

3

4

5

6

7

8

(144)

A B C D E F G H

1

2

3

4

5

6

7

8

(145)

A B C D E F G H

1

2

3

4

5

6

7

8

(146)

A B C D E F G H

1

2

3

4

5

6

7

8

(147)

A B C D E F G H

1

2

3

4

5

6

7

8

(148)

A B C D E F G H

1

2

3

4

5

6

7

8

(149)

A B C D E F G H

1

2

3

4

5

6

7

8

(150)
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A B C D E F G H

1

2

3

4

5

6

7

8

(151)

A B C D E F G H

1

2

3

4

5

6

7

8

(152)

A B C D E F G H

1

2

3

4

5

6

7

8

(153)

A B C D E F G H

1

2

3

4

5

6

7

8

(154)

A B C D E F G H

1

2

3

4

5

6

7

8

(155)

A B C D E F G H

1

2

3

4

5

6

7

8

(156)

A B C D E F G H

1

2

3

4

5

6

7

8

(157)

A B C D E F G H

1

2

3

4

5

6

7

8

(158)

A B C D E F G H

1

2

3

4

5

6

7

8

(159)

A B C D E F G H

1

2

3

4

5

6

7

8

(160)
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A B C D E F G H

1

2

3

4

5

6

7

8

(161)

A B C D E F G H

1

2

3

4

5

6

7

8

(162)

A B C D E F G H

1

2

3

4

5

6

7

8

(163)

A B C D E F G H

1

2

3

4

5

6

7

8

(164)

A B C D E F G H

1

2

3

4

5

6

7

8

(165)

A B C D E F G H

1

2

3

4

5

6

7

8

(166)

A B C D E F G H

1

2

3

4

5

6

7

8

(167)

A B C D E F G H

1

2

3

4

5

6

7

8

(168)

A B C D E F G H

1

2

3

4

5

6

7

8

(169)

A B C D E F G H

1

2

3

4

5

6

7

8

(170)
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A B C D E F G H

1

2

3

4

5

6

7

8

(171)

A B C D E F G H

1

2

3

4

5

6

7

8

(172)

A B C D E F G H

1

2

3

4

5

6

7

8

(173)

A B C D E F G H

1

2

3

4

5

6

7

8

(174)

A B C D E F G H

1

2

3

4

5

6

7

8

(175)

A B C D E F G H

1

2

3

4

5

6

7

8

(176)

A B C D E F G H

1

2

3

4

5

6

7

8

(177)

A B C D E F G H

1

2

3

4

5

6

7

8

(178)

A B C D E F G H

1

2

3

4

5

6

7

8

(179)

A B C D E F G H

1

2

3

4

5

6

7

8

(180)
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A B C D E F G H

1

2

3

4

5

6

7

8

(181)

A B C D E F G H

1

2

3

4

5

6

7

8

(182)

A B C D E F G H

1

2

3

4

5

6

7

8

(183)

A B C D E F G H

1

2

3

4

5

6

7

8

(184)

A B C D E F G H

1

2

3

4

5

6

7

8

(185)

A B C D E F G H

1

2

3

4

5

6

7

8

(186)

A B C D E F G H

1

2

3

4

5

6

7

8

(187)

A B C D E F G H

1

2

3

4

5

6

7

8

(188)

A B C D E F G H

1

2

3

4

5

6

7

8

(189)

A B C D E F G H

1

2

3

4

5

6

7

8

(190)
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A B C D E F G H

1

2

3

4

5

6

7

8

(191)

A B C D E F G H

1

2

3

4

5

6

7

8

(192)

A B C D E F G H

1

2

3

4

5

6

7

8

(193)

A B C D E F G H

1

2

3

4

5

6

7

8

(194)

A B C D E F G H

1

2

3

4

5

6

7

8

(195)

A B C D E F G H

1

2

3

4

5

6

7

8

(196)

A B C D E F G H

1

2

3

4

5

6

7

8

(197)

A B C D E F G H

1

2

3

4

5

6

7

8

(198)

A B C D E F G H

1

2

3

4

5

6

7

8

(199)

A B C D E F G H

1

2

3

4

5

6

7

8

(200)
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A B C D E F G H

1

2

3

4

5

6

7

8

(201)

A B C D E F G H

1

2

3

4

5

6

7

8

(202)

A B C D E F G H

1

2

3

4

5

6

7

8

(203)

A B C D E F G H

1

2

3

4

5

6

7

8

(204)

A B C D E F G H

1

2

3

4

5

6

7

8

(205)

A B C D E F G H

1

2

3

4

5

6

7

8

(206)

A B C D E F G H

1

2

3

4

5

6

7

8

(207)

A B C D E F G H

1

2

3

4

5

6

7

8

(208)

A B C D E F G H

1

2

3

4

5

6

7

8

(209)

A B C D E F G H

1

2

3

4

5

6

7

8

(210)
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A B C D E F G H

1

2

3

4

5

6

7

8

(211)

A B C D E F G H

1

2

3

4

5

6

7

8

(212)

A B C D E F G H

1

2

3

4

5

6

7

8

(213)

A B C D E F G H

1

2

3

4

5

6

7

8

(214)

A B C D E F G H

1

2

3

4

5

6

7

8

(215)

A B C D E F G H

1

2

3

4

5

6

7

8

(216)

A B C D E F G H

1

2

3

4

5

6

7

8

(217)

A B C D E F G H

1

2

3

4

5

6

7

8

(218)

A B C D E F G H

1

2

3

4

5

6

7

8

(219)

A B C D E F G H

1

2

3

4

5

6

7

8

(220)
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A B C D E F G H

1

2

3

4

5

6

7

8

(221)

A B C D E F G H

1

2

3

4

5

6

7

8

(222)

A B C D E F G H

1

2

3

4

5

6

7

8

(223)

A B C D E F G H

1

2

3

4

5

6

7

8

(224)

A B C D E F G H

1

2

3

4

5

6

7

8

(225)

A B C D E F G H

1

2

3

4

5

6

7

8

(226)

A B C D E F G H

1

2

3

4

5

6

7

8

(227)

A B C D E F G H

1

2

3

4

5

6

7

8

(228)

A B C D E F G H

1

2

3

4

5

6

7

8

(229)

A B C D E F G H

1

2

3

4

5

6

7

8

(230)
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A B C D E F G H

1

2

3

4

5

6

7

8

(231)

A B C D E F G H

1

2

3

4

5

6

7

8

(232)

A B C D E F G H

1

2

3

4

5

6

7

8

(233)

A B C D E F G H

1

2

3

4

5

6

7

8

(234)

A B C D E F G H

1

2

3

4

5

6

7

8

(235)

A B C D E F G H

1

2

3

4

5

6

7

8

(236)

A B C D E F G H

1

2

3

4

5

6

7

8

(237)

A B C D E F G H

1

2

3

4

5

6

7

8

(238)

A B C D E F G H

1

2

3

4

5

6

7

8

(239)

A B C D E F G H

1

2

3

4

5

6

7

8

(240)
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A B C D E F G H

1

2

3

4

5

6

7

8

(241)

A B C D E F G H

1

2

3

4

5

6

7

8

(242)

A B C D E F G H

1

2

3

4

5

6

7

8

(243)

A B C D E F G H

1

2

3

4

5

6

7

8

(244)

A B C D E F G H

1

2

3

4

5

6

7

8

(245)

A B C D E F G H

1

2

3

4

5

6

7

8

(246)

A B C D E F G H

1

2

3

4

5

6

7

8

(247)

A B C D E F G H

1

2

3

4

5

6

7

8

(248)

A B C D E F G H

1

2

3

4

5

6

7

8

(249)

A B C D E F G H

1

2

3

4

5

6

7

8

(250)
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A.2.2 White-to-play Test Positions

A B C D E F G H

1

2

3

4

5

6

7

8

(1)

A B C D E F G H

1

2

3

4

5

6

7

8

(2)

A B C D E F G H

1

2

3

4

5

6

7

8

(3)

A B C D E F G H

1

2

3

4

5

6

7

8

(4)

A B C D E F G H

1

2

3

4

5

6

7

8

(5)

A B C D E F G H

1

2

3

4

5

6

7

8

(6)

A B C D E F G H

1

2

3

4

5

6

7

8

(7)

A B C D E F G H

1

2

3

4

5

6

7

8

(8)

A B C D E F G H

1

2

3

4

5

6

7

8

(9)

A B C D E F G H

1

2

3

4

5

6

7

8

(10)
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A B C D E F G H

1

2

3

4

5

6

7

8

(11)

A B C D E F G H

1

2

3

4

5

6

7

8

(12)

A B C D E F G H

1

2

3

4

5

6

7

8

(13)

A B C D E F G H

1

2

3

4

5

6

7

8

(14)

A B C D E F G H

1

2

3

4

5

6

7

8

(15)

A B C D E F G H

1

2

3

4

5

6

7

8

(16)

A B C D E F G H

1

2

3

4

5

6

7

8

(17)

A B C D E F G H

1

2

3

4

5

6

7

8

(18)

A B C D E F G H

1

2

3

4

5

6

7

8

(19)

A B C D E F G H

1

2

3

4

5

6

7

8

(20)
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A B C D E F G H

1

2

3

4

5

6

7

8

(21)

A B C D E F G H

1

2

3

4

5

6

7

8

(22)

A B C D E F G H

1

2

3

4

5

6

7

8

(23)

A B C D E F G H

1

2

3

4

5

6

7

8

(24)

A B C D E F G H

1

2

3

4

5

6

7

8

(25)

A B C D E F G H

1

2

3

4

5

6

7

8

(26)

A B C D E F G H

1

2

3

4

5

6

7

8

(27)

A B C D E F G H

1

2

3

4

5

6

7

8

(28)

A B C D E F G H

1

2

3

4

5

6

7

8

(29)

A B C D E F G H

1

2

3

4

5

6

7

8

(30)
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A B C D E F G H

1

2

3

4

5

6

7

8

(31)

A B C D E F G H

1

2

3

4

5

6

7

8

(32)

A B C D E F G H

1

2

3

4

5

6

7

8

(33)

A B C D E F G H

1

2

3

4

5

6

7

8

(34)

A B C D E F G H

1

2

3

4

5

6

7

8

(35)

A B C D E F G H

1

2

3

4

5

6

7

8

(36)

A B C D E F G H

1

2

3

4

5

6

7

8

(37)

A B C D E F G H

1

2

3

4

5

6

7

8

(38)

A B C D E F G H

1

2

3

4

5

6

7

8

(39)

A B C D E F G H

1

2

3

4

5

6

7

8

(40)
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A B C D E F G H

1

2

3

4

5

6

7

8

(41)

A B C D E F G H

1

2

3

4

5

6

7

8

(42)

A B C D E F G H

1

2

3

4

5

6

7

8

(43)

A B C D E F G H

1

2

3

4

5

6

7

8

(44)

A B C D E F G H

1

2

3

4

5

6

7

8

(45)

A B C D E F G H

1

2

3

4

5

6

7

8

(46)

A B C D E F G H

1

2

3

4

5

6

7

8

(47)

A B C D E F G H

1

2

3

4

5

6

7

8

(48)

A B C D E F G H

1

2

3

4

5

6

7

8

(49)

A B C D E F G H

1

2

3

4

5

6

7

8

(50)
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A B C D E F G H

1

2

3

4

5

6

7

8

(51)

A B C D E F G H

1

2

3

4

5

6

7

8

(52)

A B C D E F G H

1

2

3

4

5

6

7

8

(53)

A B C D E F G H

1

2

3

4

5

6

7

8

(54)

A B C D E F G H

1

2

3

4

5

6

7

8

(55)

A B C D E F G H

1

2

3

4

5

6

7

8

(56)

A B C D E F G H

1

2

3

4

5

6

7

8

(57)

A B C D E F G H

1

2

3

4

5

6

7

8

(58)

A B C D E F G H

1

2

3

4

5

6

7

8

(59)

A B C D E F G H

1

2

3

4

5

6

7

8

(60)
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A B C D E F G H

1

2

3

4

5

6

7

8

(61)

A B C D E F G H

1

2

3

4

5

6

7

8

(62)

A B C D E F G H

1

2

3

4

5

6

7

8

(63)

A B C D E F G H

1

2

3

4

5

6

7

8

(64)

A B C D E F G H

1

2

3

4

5

6

7

8

(65)

A B C D E F G H

1

2

3

4

5

6

7

8

(66)

A B C D E F G H

1

2

3

4

5

6

7

8

(67)

A B C D E F G H

1

2

3

4

5

6

7

8

(68)

A B C D E F G H

1

2

3

4

5

6

7

8

(69)

A B C D E F G H

1

2

3

4

5

6

7

8

(70)
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A B C D E F G H

1

2

3

4

5

6

7

8

(71)

A B C D E F G H

1

2

3

4

5

6

7

8

(72)

A B C D E F G H

1

2

3

4

5

6

7

8

(73)

A B C D E F G H

1

2

3

4

5

6

7

8

(74)

A B C D E F G H

1

2

3

4

5

6

7

8

(75)

A B C D E F G H

1

2

3

4

5

6

7

8

(76)

A B C D E F G H
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