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ABSTRACT 

The invasion of mountain pine beetle (Dendroctonus ponderosae Hopk.) into Alberta has been an 

ongoing concern for forest management. The beetle’s recent appearance and spread in Jasper National 

Park now poses ecological and economic threats to forestry in regions to the east. By applying recent 

advances in genetic typing and analysis, we show that the beetle population in Jasper is comprised of 

mixed individuals combining genetic signatures of both northern and southern beetles. Coupled with 

current monitoring methods, genetic markers can be used to identify the origin of novel populations, 

facilitate precise monitoring of beetle expansion and potentially inform targeted management strategies. 
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Introduction 

Jasper National Park is a recently affected area in a long series of irruptions by the mountain pine beetle 

(MPB, Dendroctonus ponderosae Hopk.) in western Canada. At least 21,500 ha of forest has been 

affected (Jasper National Park 2016), creating a corridor for the beetle to potentially spread into highly 

productive Forest Management Areas (FMAs) to the southeast. Damage to these forests would cause 

significant social, economic and ecological losses, as well as providing more MPB habitat that could 

exacerbate the current epidemic. Currently, the source of the Jasper infestation has been debated. The 

infestation may represent a slow spread of beetles from the north, around the Grande Prairie area 

(Hopkins-Hill 2017), which had extremely high numbers of beetles in 2009 (Pellow et al. 2011, Bleiker et 

al. 2011). This northern population is believed to have spread southeast, resulting in an indigenous 

population near the town of Hinton by 2015 (Jasper National Park 2016). Alternatively, the Jasper 

infestation could have arrived through affected forests from the west, around Mt. Robson Provincial Park, 

which have been in active outbreak since at least 2015 (Jasper National Park 2016). Recent research on 

MPB population genetic structure can contribute to identifying and understanding such movements of 

MPB on the landscape. 

MPB numbers have been rising in Canada since the early 1990’s, devastating 16.3 million 

hectares of forest within British Columbia and western USA by 2011 (Bentz et al. 2010, de la Giroday et 

al. 2011). Expansion into northern Alberta in 2006 (Robertson et al. 2009, Safranyik et al. 2010) has 

positioned the beetle to colonize a new host species, jack pine (Pinus banksiana Lambert) (Cullingham et 

al. 2011), a major component of boreal forest across North America. Expanded research on the MPB 

system has targeted better prediction, management, and prevention of outbreaks, including studies on 

their ecological impacts (Carroll et al. 2003, Raffa et al. 2008), fungal associations (Tsui et al. 2010, 

Roe et al. 2010, DiGuistini et al. 2011), host suitability and distribution (Cullingham et al. 2011, 

Erbilgin et al. 2014, Rosenberger et al. 2017a), beetle population dynamics (Hicke et al. 2006, 

Lachowsky & Reid 2014, James et al. 2016, Cooke & Carroll 2017, Rosenberger et al. 2017b), and 

population genetic and genomic structure (Samarasekara et al. 2012, Keeling et al. 2013, Janeset al. 2014, 

Janes et al.2016, Batista et al. 2016, Janes & Batista 2016). 

Here we draw on recent literature and new research to address questions and concerns raised over 

the ‘Jasper beetles’. Using genome-wide sampling of DNA markers, we provide context for the likely 

source populations of MPB in the Jasper region. 

  

Materials and Methods 

A total of 175 MPB were collected from 33 sites throughout British Columbia and Alberta 

between 2007 and 2015 (Fig. 1, Online Supplementary Appendix 1). Beetles were either stored in 95% 

ethanol at -20⁰C or stored dry at -80⁰C. In addition, wild-caught MPB from the Smokey River Lowlands 

(SRL) south of Grande Prairie (54⁰21.376'; N 118⁰19.112' W) and the Burnco Quarry (BQ) near Canmore 

(51⁰04.026' N; 115⁰17.237' W) were used as breeding pairs to produce artificially hybridized individuals 

of northern SRL and southern BQ descent. These sites were chosen to represent the two large-scale beetle 

populations in Alberta known from prior research (Samarasekara et al. 2012, Janes et al. 2014). Thirteen 

offspring from seven of these SRL x BQ crosses (1-3 offspring per pair) were added to the 175 samples, 

giving a total of 188 samples. 



Genomic DNA was extracted using QIAGEN (Toronto, ON, Canada) DNEasy Blood & Tissue 

kits according to manufacturer’s instructions. DNA was quality checked using Qubit flourometric assay 

(Waltham, MA, USA) and standardized to 20 ng/µl. Samples were genotyped using a double-digest (PstI-

MspI), 96-plex genotyping-by-sequencing (GBS) protocol (Elshire et al. 2011, Poland et al. 2012) at 

l’Institut de Biologie Intégrative et des Systems (IBIS) of Laval University and the Molecular Biology 

Services Unit (MBSU) of University of Alberta. A total of 63 samples were sequenced with an Illumina 

NextSeq 500 for 75 bp single-end reads, and 125 samples were sequenced using an Illumina HiSeq 2000 

for 100 bp single-end reads. Campbell et al. (2017) contains further details on library preparation, and 

supports the consistency and reproducibility of GBS across both preparations and platforms. 

Reads (short sequences of DNA) were quality checked using FastQC v0.11.05 (Andrews 2010) 

and demultiplexed in theSTACKS v1.41 pipeline (Catchen et al. 2013). Barcodes and adapters were 

removed with Cutadapt v1.10 (Martin 2011) to produce a uniform read length of 62 bp for alignment in 

STACKS (Catchen et al. 2013). After removing reads with poor sequence quality and low alignment to 

the reference genome, 1.1 billion reads remained. GBS data were mapped to the MPB draft reference 

genome (Keeling et al. 2013) using BWA-MEM v0.7.12 (Li and Durbin 2009) with option -c=1 to 

remove reads that did not uniquely map to the reference. Each sample retained an average of 85.0% of its 

unique reads. Variants (variable genetic markers in the form of single nucleotide polymorphisms, SNPs) 

were detected in the STACKS refgen pipeline using default parameters, except for: minor allele 

frequency = 5%, minimum quality score = 20, and minimum read depth = 7. 

VCFtools v0.1.12b (Danecek et al. 2011) was used to identify and remove loci containing 

missing data. A total of 984 variants were identified from these mapped reads, forming the basis for 

further analysis. An individual-by-individual genetic distance matrix (uncorrected “p”) was calculated 

using PAUP v4.0a152 (Swofford 2002). These genetic distances, which relate to genetic similarity, were 

visualized using principal coordinates analysis (PCoA) with the ade4 package (Dray et al. 2007) in R (R 

Core Development Team 2009). PCoA is commonly used to explore and visualize the similarity or 

dissimilarity of among samples, displaying the axes that explain the largest portion of the variation 

present in the data. For each of the resulting sampling clusters, ellipses based on 95% confidence intervals 

from the centroid of the cluster were overlaid using ggplot2 (Wickham 2009). These ellipses provide an 

additional means of assessing confidence in fit to each cluster. 

  

Results and Discussion 

Fig. 2 shows a clear separation of northern (blue and green) and southern (red) populations along axis 1 

(45.7% of total variance), in agreement with prior studies using other genetic markers (Samarasekera et 

al. 2012, Janes et al. 2014). The northern cluster represents populations from the Peace River region 

(including Grande Prairie) to north-central Alberta, with samples from the northwest (Terrace, Smithers, 

and Tumbler Ridge in BC) separated further (Fig. 2). This suggests a degree of separation by distance 

over the vast range of the northern MPB population. Beetles from Jasper (purple) and the SRL x BQ 

(orange) crosses wereintermediate to northern and southern populations. Variability among SRL x BQ 

samples is greater than that of wild-caught Jasper MPB, as shown by its smaller ellipse, nested within 
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SRL x BQ’s ellipse (Fig. 2). Jasper beetles, therefore, fall within the expected variation found within 

artificially hybridized north/south crosses of MPB. The higher degree of variation within SRL x BQ may 

be explained by pre-emergence mating among siblings within a bolt, a known occurrence in MPB 

(Bleiker et al. 2013, Janes et al. 2016). 

MPB from Yellowhead County, east of Jasper Park, were most similar to the northern cluster 

(Fig. 2), suggesting a northern source for Yellowhead beetles in 2014, a year before MPB numbers were 

recognized as an outbreak in Jasper. Thus, our data supports the earlier movement of beetles from the 

Grande Prairie area into Yellowhead County, largely confirming a northern origin for this area. In 

contrast, the intermediate position of the wild-collected MPB from Jasper suggests either an existing 

admixed population from BC expanding eastward or converging invasive fronts meeting secondarily in 

Jasper. The presence of previously identified intermediate populations around Valemount (Janes et 

al. 2014), in addition to increasing numbers of beetles west of Jasper appears to support a central BC 

origin for the Jasper area. While this study has considerably fewer individuals than previous studies of 

MPB (i.e. Samarasekera et al. 2012, Janes et al. 2014, Batista et al. 2016), we find very similar patterns 

of genetic diversity and structure suggesting that larger numbers of variants can increase precision and 

power for low sample numbers. This effect could reduce the need for intensive sampling in future genetic 

studies. However, to determine the trajectory and genetic composition of the most recent outbreaks 

additional sampling in leading-edge populations will be necessary. 

Regardless of its exact source, the intermediate nature of the MPB population in Jasper provides 

unique challenges and advantages. For example, hybrid populations, even within the same species, are 

recognized as important evolutionary components in both plants and animals because they can rapidly 

generate novel genetic material for adaptation (Rieseberg & Burke 2001, Mallet 2007, Janes & Hamilton 

2017). Janes et al. (2014) and Batista et al. (2016) have consistently identified strong selection differences 

on known metabolic genes between northern and southern populations. Thus, the intermediate nature of 

beetles in the Jasper area, if left unmanaged, may contribute to an increased adaptive potential for MPB in 

Alberta, further facilitating their expansion eastward. 

The severity of infestation along the Jasper west park gate suggests the possibility of a new wave 

of invasion into Alberta (Jasper National Park, 2016) that could, if left unchecked, continue to threaten 

valuable natural and managed forest resources. In the long term, the signature of admixture may assist 

future work on management and population genetics in two ways. First, distinct genetic signatures 

provide a means of tracking beetles as they spread further east and help to identify which areas are 

contributing to that spread (i.e. south, north, central). This approach could be used in tandem with 

traditional assessment methods (i.e. aerial surveys and pheromone traps). Second, the methods we 

describe could potentially be extendedto manage spread risk of MPB long-term. For example, populations 

of pest species could be managed with the aim of reducing genetic diversity, an inverse of conservation 

management practices that try to promote genetic diversity in populations to ensure sufficient genetic 

variation for selection to act on. In conclusion, we describe a means of identifying mixed populations and 

tracking their spread across the landscape – outcomes that could complement existing management by 

predicting and reducing spread risk of MPB in the long term. 
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Fig 1. Map of mountain pine beetle collection sites organized by collection year. A total of 175 MPB 

were collected from 33 sites at 25 localities. Number of specimens sampled is in parentheses. Three U.S. 

localities are not shown (one specimen from each of Wyoming, Nevada and Washington). 

 

  



Fig 2. Principal coordinate analysis of 175 wild-caught mountain pine beetles, plus 13 lab-bred specimens 

added to simulate intermediates between northern and southern populations. Ellipses give 95% 

confidence intervals for populations, with the overall northern population sub-divided by colour for areas 

of particular management interest.  


