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Abstract 

 

This thesis describes the implementation of the physical layer for an 

experimental low-power wireless communication device.  The system utilizes 

differential coherent correlation and threshold-based detection to produce a robust 

random-access packet-based communications protocol.  Prior to implementing the 

system in hardware, the detection algorithm was rigorously simulated with a software 

model in C.  The simulations revealed the tradeoffs between the packet miss 

performance and different system parameters such as input bit precision and threshold 

value.  Having determined a suitable configuration, the detection algorithm was 

implemented on an FPGA platform.  The focus of the FPGA design was on throughput 

and resource utilization.  The final system utilizes approximately 6% of the slices 

available on a Xilinx Virtex II XC2V8000 FPGA and has a throughput of about 5 

MChips/Second. 
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Chapter 1                                                                  

Introduction 

 

Data is the foundation on which knowledge is built.  Our modern society invests 

a lot of time and money to gather, process and securely store data.  Gathering enough 

useful data can be a very painstaking task.  With the help of some technologies the 

collection of data can be an automated process.  One such technology is Wireless Sensor 

Networks (WSNs) [1].        

1.1 Wireless Sensor Networks  

Wireless sensor networks are spatially distributed sensing nodes that 

communicate with one another to accomplish a certain task.  These networks have 

caught the attention of many computer science and telecommunication researchers. 

They offer unique problems in coordination, communication and integration. 

The development of WSNs has enabled researchers in many different fields to 

gather data in a manner that was once impossible.  Companies and industries also use 

WSNs to monitor and control their facilities.  WSNs have found their way into a wide 

range of applications and systems, each having their own unique requirements and 

characteristics.  

1.2 Wireless Sensor Node  

Wireless sensor networks are composed of nodes or “motes”.  A mote is a small 

device that contains a wireless transceiver, a processor and at least one sensor to 

measure anything from motion to temperature to electrochemical signals produced by 

neurons inside the brain.   

Often WSNs operate without the presence of a centralized base station.  In such 

a setting, synchronized communication between nodes becomes very difficult.  It is 

much more effective to use asynchronous random-access communication techniques.  A 
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random-access system allows nodes to easily transmit packets at arbitrary times.  The 

problem arises at the receiver, where the packet must be detected.  To enable the 

receiver to extract the random data, a known sequence called a preamble, is inserted in 

front of the packet.  With a preamble the receiver only has to search for a known 

sequence. 

Typically deployed wireless nodes have low data rates and only transmit or 

receive data intermittently with low duty cycles.  Therefore these motes can usually 

enter an inactive or “sleep” state, where they only have to listen to the channel for 

packets.  These wireless nodes are often battery-powered, and consequently have 

limited operational lifetime.  With the packet detector always on, it is imperative to 

design a detection system with strong emphasis on low-power consumption.  The thesis 

describes the first implementation of a low-power, asynchronous, random-access 

packet detection algorithm first introduced in [2] and [3].  

1.3 Thesis Overview 

This thesis is organized as follows.  Chapter 2 starts by reviewing the 

communication techniques used in this thesis.  The next section describes the related 

work in this field and compares them to the work in this thesis.  This chapter also 

provides a description of the preamble detection algorithm.  The last section reviews 

the effects of signal pulse shaping.  

Chapter 3 describes the simulation performed on the preamble detection 

algorithm and the system’s parameters. 

Chapter 4 describes the implementation of the preamble detection system on 

an FPGA platform.  An overview of the design is given and is followed by a detailed 

description of the transmitter, receiver and noise generator.   

Chapter 5 is the last part of the main body.  This chapter presents the results 

gathered from the simulations and FPGA implementation. 

Chapter 6 provides a conclusion and suggestions for future work. 

 

 

 

 



3 
 

 

Chapter 2                                                                                        

Background  

 

The packet detection system implemented in this thesis employs two  

communication techniques: differential coding [4] and direct sequence spread spectrum 

(DSSS) [5].  Sections 2.1 and 2.2  provide an overview of these two subjects.  A review of 

relevant research is presented in Section 2.3. Sections 2.4 and Section 2.5  provide a 

description of the packet structure and the preamble detection algorithm used in this 

thesis.  Section 2.6 describes the effects of signal pulse shaping when used in digital 

communications. 

2.1 Differential Coding 

Differential encoding is classified under a group of coding schemes that use 

memory.  This means the output signal of the encoder depends not only on the current 

input symbol, but also on the previous output.  The encoder scheme for differential 

coding is given in Equation (2.1).  Here  is the input signal to the differential encoder 

and  is the differential output.  To decode a differentially coded sequence Equation 

(2.2) is used.  In Equation (2.2)   is the differentially encoded input to the decoder and  

 is the decoded output [4]. 

  (2.1) 
 

  (2.2) 
 

Differential coding is a technique used to offset the effects of phase ambiguities 

introduced by the communication channel and oscillator mismatch.  Rather than 

mapping information directly onto individual symbols, differential encoding conveys 

information in the phase difference between two successive symbols.  For example, in 
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differential binary-phase modulation, a 1 is transmitted as a 180o phase shift relative to 

the previous signal and a 0 is transmitted as a zero phase shift relative to the previous 

signal.  When implemented as a BPSK system, there is a 180o of separation between the 

two constellation points in the complex plane as seen in Figure 2.1.  This separation 

allows for ± 90o phase ambiguity in the demodulated signal [5]. 

 

 

 

Another feature of differential coding is that the demodulator does not require 

knowledge of the carrier phase because the phase of each received signal is compared 

relative to the phase of preceding signal.  To illustrate this, take any two sequential 

demodulated outputs as shown in the following complex numbers. 

  (2.3) 

 

  (2.4) 

 

In Equations (2.3) and (2.4), is the phase angle of the received signal and  is 

carrier phase.  After performing differential decoding by multiplying these two signals 

together, the resulting complex number is 

 

 . (2.5) 

 

 

Figure 2.1: Constellation diagram for BPSK 

1 

Q 

0 

I 
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From Equation (2.5), in the absence of noise, the resulting signal would have a phase 

offset of   [5].   

Differential coding eliminates the need for a phase lock loop (PLL) circuit to 

recover the carrier frequency, thereby reducing circuit complexity and lowering the  

power consumption.  The low power capabilities of a differential coded system has been 

shown in [6], where a differential phase shift keying system was implemented that 

operates below 1mW at rates up to 100 kb/s.   

2.2 Direct Sequence Spread Spectrum 

Spread spectrum is a technique used in telecommunications to distribute the 

energy of a signal over a much wider signal band than the original signal.  DSSS is a 

technique to perform spreading, where the information signal is multiplied by a 

pseudorandom sequence of 1s and -1s called chips.  This pseudorandom sequence of 

chips is called the spreading sequence and must be known at both the transmitter and 

receiver.  The resulting sequence has a higher rate than the original information signal.  

The longer the spreading sequence, the wider the band that is occupied by the resulting 

signal.  At the receiver the signal is multiplied by the known spreading sequence and the 

original signal is recovered.  This process is called despreading.   

Signal spreading has many advantages over a non spread signal.   Having the 

signal energy spread over a wider band is beneficial because the signal becomes more 

tolerant to unintentional or intentional jamming [5].  Also, with the use orthogonal 

spreading sequences, multiple users are able to share the same band.  When decoding a 

particular signal, the signals from other users are observed as noise [5].  Furthermore, 

DSSS signals also have the advantage of being stealthy, since the resulting chip signal 

can be below the noise floor [5].  Without knowledge of the spreading sequence, these 

signals are difficult to decode or even to detect.  In this thesis the noise tolerance and 

the channel sharing capabilities of DSSS are exploited [5].       

2.3 Related Work 

Low power communication between wireless nodes is a fundamental issue that 

is continually being researched and developed.  The current dominant communication 

interface that has been adopted by the wireless sensor network research community is 

the 802.15.4-2006 Zigbee Standard [7].  Prior to the standardization of this low rate 
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wireless personal area network LR-WPAN, a wireless embedded system group at the 

University of California, Berkeley made significant contributions to the development of 

wireless sensor nodes [8] [9].  

This wireless embedded systems research center under the guidance of David 

Culler has produced several generations of wireless motes,  most of which have been 

developed using off-the-shelf components such as microprocessors and radio frequency 

(RF) transceivers.  The mote project involved an interdisciplinary group, with people 

specializing in areas such as communications, sensors and signal processing.  One of 

their main contributions was developing TinyOS, an open-source operating system 

designed for wireless sensor nodes to handle intensive concurrent operations with 

minimal hardware requirements [10] [11].  TinyOS enabled the motes to adopt a 

generalized wireless sensor node architecture.  This architecture does not rely on 

specific radio or processor technology; instead it arbitrates the relay of data between 

computation and communication.  The earlier generation mote, Mica, used TinyOS and 

a hardware accelerator to offload wireless communication.  The hardware accelerator is 

a flash memory based microcontroller and is connected to the main processor through a 

serial peripheral interface (SPI).  Its role is to search for the start symbols to extract 

packets [9] [8].  The Mica used a short-range amplitude shift keyed based radio 

transceiver, RFM TR1000 [12].  Several generations of this mote were developed and 

they incorporated faster microprocessors and better RF modules [13] [14].  Eventually 

Spec was developed, which was a complete wireless sensor node system all integrated 

on a single integrated circuit [9].   

The Spec integrated RISC CPU, SRAM, RF transmitter, communication hardware 

accelerator and ADC all in one package.  This mote had a fairly simple packet detection 

system.  The communication hardware accelerator searches for a specific start 

sequence, which can be configured up to a length of 24 bits.  In order to detect the start 

sequence, the communication hardware accelerator samples the channel at twice the 

rate of the start symbols. When a start sequence is detected, a signal is sent to the 

microprocessor and the packet data is extracted.  During the early stages of 

development of these motes and TinyOS, a standard communication protocol to 

address the needs of wireless sensor nodes had not yet been created.  However, soon 



7 
 

after the completion of the Spec project at Berkeley, the Zigbee data link layer, which 

operates over top of the IEEE 802.15.4, was standardized [15]. 

By 2003, Zigbee had filled a void in the communication protocol standards.  It 

provided a communication platform with a low data rate and low power, with the 

addition of providing secure networking.  The standard was promoted by an alliance of 

25 firms and many research groups began developing Zigbee-compliant transceivers as 

it quickly gained popularity [16] [17] [18] [19].  

Zigbee is now the most widely used communication protocol for wireless sensor 

networks [20].  Many commercially available motes use Zigbee as their primary 

communication interface [21] [22] [23] [24].  There is a wide selection of Zigbee 

compliant RF-ICs [25] [26] [27] [28] [29] [30] [31].  These RF-ICs have a large range of 

features; some are just simple transceivers, while others have integrated 

microprocessors, memory and ADCs.  The following section introduces the packet 

structure used in this thesis and compares it to the one used in the IEEE 802.15.4-2003 

standard.  A summary of some of the motes developed at Berkeley and some 

commercially available nodes are given in Table 2.1.   

Table 2.1: Summary of some wireless sensor nodes. 

 

Module 
Name 

Communication  
Interface 

Frequency 
Band 

Data 
Rate 

Note 

Mica [15] [8] ASK and 
TinyOS 

916.5 MHz. 50 Kbps Uses RFM TR1000 
[12] and TinyOS 

Mica2 [15] 
[14] 

ASK and 
TinyOS 

868/916 MHz 76 Kbps Uses ChipCon  
CC1000 [13] 
and TinyOS 

Spec [15] [9] ASK and 
TinyOS 

900 MHz 100Kbps ASIC  

Miniaturized 
Mote [32] 

IEEE 802.15.4 
Zigbee 

2.4-2.4835 GHz  ChipCon CC2430 

MicaZ [23] IEEE 802.15.4 
Zigbee 

2.4-2.4835 GHz 250Kbps Mica with ZigBee 

TelosB [24] IEEE 802.15.4 
Zigbee 

2.4-2.4835 GHz 250Kbps Open Source 
Platform 

Imote2 [22] IEEE 802.15.4 
Zigbee 

2.4-2.4835 GHz 250Kbps Advanced wireless 
sensor node 
platform 

IRIS [21] IEEE 802.15.4 
Zigbee 

2.4-2.4835 GHz 250Kbps Large Scale Sensor 
networks (1000+ 
nodes) 
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2.4 Packet Structure 

A traditional packet structure such, as the one used in IEEE 802.15.4 standard 

LR-WPANs, is shown in Figure 2.2.  In this packet structure the preamble facilitates the 

detection of the packet.  It is followed by a synchronization header (SHR), which is used 

to synchronize and lock onto the bit stream after the packet has been detected.   

 

Preamble SHR PLH  Payload  

 
Figure 2.2: Traditional packet structure 

 

Preamble PLH  Payload  

 
Figure 2.3: Presented packet structure 
  

Figure 2.3 shows the packet structure used in this thesis conceived by a research 

group in the High Capacity Digital Communications Lab at the University of Alberta [2] 

[33]. Note how it is similar to the one used in the IEEE 802.15.4 standard.  The packet 

detector in the system is able to perform detection and synchronization concurrently, 

and therefore an SHR is not required in the packet structure.   

The physical layer header (PLH) contains information to facilitate the extraction 

of the payload.  This information usually consists of frame length and packet ID.  The 

PLH is followed by the payload, which contains the medium access control (MAC) 

information and the data.  The PLH and payload can take on a large variety of data 

formats and they do not necessarily have to follow the same format of the preamble 

section. Table 2.2 summarizes and compares the packet format presented in this thesis 

with the packet format used in [7].  This thesis only deals with the detection of the 

preamble and the synchronization to the bit stream. 
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Table 2.2: Packet structure comparison 

 

 802.15.4 BPSK 
Packet Format 

Presented 
Packet Format 

Description 

Preamble  32 symbols 40 symbols 
Allows the device to detect an 
incoming packet 

Synchronization 
Header 

8 symbols None 
Allows the device to synchronize 
and lock onto the data stream 

Physical Layer Header   8 symbols Undetermined Contains frame information 

Payload Variable Variable Carries the data 

 

2.5 Preamble Detection Algorithm  

Each symbol  in the preamble sequence of length is given a value of 1 or    

-1 according to a given maximum length sequence [4].  The preamble sequence  is then 

differentially encoded to form sequence .  Next DSSS is performed on each symbol in  

by up sampling  times and multiplying by a pseudorandom spreading sequence . The 

result is a chip sequence  of length .  A block diagram of how the preamble 

sequence is generated is given in Figure 2.4. In this thesis the length of the preamble 

sequence  is 40 and the length of the spreading sequence  is 16.  These two values 

are chosen so that the preamble length is similar to that of the packet structure in the 

IEEE 802.15.4 standard [7].  

 

 

 

 

In the receiver a threshold-based correlator is used to detect preambles.  The 

received baseband signal  contains both in-phase I and quadrature Q components.  

These two signals are correlated and despread with the known spreading sequence .  

The resulting estimated symbol sequence  is differentially decoded to give the 

 

  

   

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Block diagram of the preamble generator 
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estimated preamble sequence .  The resulting estimate of preamble sequence  is then 

correlated with the known preamble sequence .   The final correlated value is 

compared to a threshold  to determine if a preamble has been detected.  When a 

preamble has been detected the resulting correlation peak is used to synchronize the bit 

stream.  Figure 2.5 shows a block diagram of the preamble detector.  

 

 

 

 

 

 

 

 

 

 

 

To deal with sampling timing issues, two sample points are taken for each chip.  

The two points are separated by , that is half the duration of a chip.  This ensures 

that even in the worst case a sufficient sample point is taken [33].  Since it is not known 

which sample point is better, both points are sent to two individual streams for 

correlation.  A preamble detection occurs when either one of the streams detects a 

preamble. Figure 2.6 shows the two streams to correlate the two samples coming from 

the sampler and analog to digital converter.  To provide samples for both detection 

streams, the sampler and ADC operates at 2 times . 
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Figure 2.5: Block diagram of the preamble detector  
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Figure 2.6: Block diagram of the preamble receiver 
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2.6 Pulse Shaping 

In digital communications, bits or symbols are represented using pulses.  By 

manipulating the pulse’s shape we can adjust the bandwidth required to transmit a 

digital signal.  Additionally, pulse shaping can reduce intersymbol interference (ISI) [34]. 

 The Nyquist criterion addresses ISI. It stipulates that a pulse shape must pass 

through zero at time , where  and is the bit duration.  A 

pulse shape with this property is referred to as a Nyquist pulse.  Using a Nyquist pulse 

reduces ISI since at the sampling interval there is zero contribution from neighboring 

pulses [34].   

There are many different pulse shapes that satisfy the Nyquist criterion for ISI, 

each with their own unique characteristics.  The most common pulse shapes are 

provided in Table 2.3 and Figure 2.7 [34].  The rectangular pulse is simple and easy to 

generate.  However, its spectrum has several high sidelobes which can interfere with 

signals in adjacent frequency bands.  The sinc pulse has a frequency response in which 

all the energy is confined in a very narrow region of the spectrum.  However, the sinc 

pulse is susceptible to ISI when sampling instants are not perfectly aligned to , since  

there are significantly large sidelobes in the time domain signal.  The raised cosine pulse 

has a roll-off factor that allows users to suppress the sidelobes in the time domain.  

Furthermore, the raised cosine pulse has a narrow frequency response. 

At this current development stage we are not concerned with spectral 

efficiency.  Therefore, we have decided to implement a system using a simple 

rectangular pulse.    

Table 2.3: Common pulse shapes 

 

Rectangular Pulse   

Sinc Pulse  

 

Raised Cosine Pulse   
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Figure 2.7: Common pulse shapes and their spectra.  The x-axis is normalized to bit duration and bit    
rate 
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Chapter 3                                                        

Simulations  

 

Performance of the system was measured with analytical studies and 

simulations in [33].  The results formulated in [33] were derived using high-precision 

floating-point numbers.  To understand the effects of having bit-limited fixed-point 

operations, such as those available on a hardware implementation, further research is 

required.  

 Since the targeted platform for this packet detection system is a wireless mote, 

it is very desirable to build a system which consumes as little energy as possible.  To 

build such a system requires limiting the complexity and size of logic circuits.  One 

effective way to reduce size of logic circuits is to use fewer bits to represent the signals.  

Signals with a low bit precision require smaller arithmetic circuits, such as adders and 

multipliers.  However, using fewer bits results in data loss, which in turn reduces the 

performance of the system. Simulations are used to determine the tradeoffs between 

hardware complexity and system performance.  The following sections provide a 

detailed description of the system parameters and the simulations used to study the 

effects of quantization on the preamble detection algorithm.  

3.1 System Parameters 

There are many ways the preamble detector system can be configured.  This 

section describes the different parameters that influence the performance of the 

system.  Before explaining the parameters of the system, this section first defines how 

performance is measured.  

There are two metrics that measure the performance of the preamble detector 

system: the probability of missing a packet  and the probability of a false 

detection .  Reducing  is more crucial, since allowing a packet to pass 

undetected can lead to the loss of data.     
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Occasionally, when the system falsely detects a packet when one does not 

actually exist, it would result in an extracted payload that does not make any sense.  

This mistaken payload can be expected to be easily recognized by a high control layer of 

the communication system and simply be discarded.  False detections are a nuisance, 

but do not usually degrade the overall reliability of the system.  The only circumstance 

where  poses a problem is when it becomes high enough such that the system 

starts randomly guessing if a packet is present or not.  For this to happen, the  rate 

needs to be approximately 50%.  These two performance measures,  and , 

are directly related to correlation peak threshold parameter . 

A correlated peak for a certain sequence of chips and symbols is compared to 

the threshold parameter .  If a correlated peak is greater than the detector 

responds with a signal to indicate that a preamble has been detected and a payload is 

ready to be extracted.  The  can be reduced by increasing the value of , but in 

doing so, the likelihood of missing a preamble increases.  On the other hand, if we lower 

the value of , the increases and  decreases.  This strong relationship 

between the threshold and system performance, allows the  and  to be easily 

regulated by adjusting the single parameter . 

The hardware implementation is strongly influenced by the number of bits 

used to represent the incoming signal.  Using fewer bits can decrease the size of the 

arithmetic units required in the hardware implementation of the preamble detector.  

This, however, comes at the cost of decreasing the number of different values the 

preamble detector can receive.  Having fewer values to represent the signal decreases 

the precision of the data entering into the detector, which can lead to degraded system 

performance.   Another parameter that is closely related to is  the upper and lower 

limit of values that the incoming signal can take.  Together these two parameters 

determine the bin width of the ADC using Equation (3.1).  For a fixed , a larger  allows 

the system to represent a wider range of numbers, but with less precision.   The 

converse is also true, that a smaller  causes the system to represent a narrower range 

of numbers, but with increased precision.  The combination of these two parameters  

and , significantly influences the performance of the system as well as the hardware 

implementation.   
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 (3.1) 

 

The final parameters for the preamble detection system simulator are related to 

the distortion caused by the emulated channel.  The channel emulator can be adjusted 

using the following parameters: signal-to-noise ratio (SNR), frequency offset and 

frequency drift.  The noise generator used in the simulation produces additive white 

Gaussian noise (AWGN).  The noise power is constant, so to change the SNR value the 

energy of the samples is adjusted.  The simulator is also able to add a random frequency 

shift to the transmitted signal.  There are two parameters to introduce frequency 

distortion to the signal.  The first is a phase offset, which shifts each sample by a given 

phase increment between 0 and .  The second parameter introduces a frequency 

offset which causes a continuous frequency phase rotation in the signal. 

Each of the parameters described in this section is used to perform a variety of 

simulations to determine a good configuration for the hardware implementation.   The 

following section describes the simulator in detail. 

3.2 Bit-true simulation  

 A bit-true simulation is a program that emulates the same bit operations that 

occur in hardware.  The analytical and simulation results from [33] provide ideal 

performance curves using high-precision floating-point numbers.  The effects of 

converting from floating-point numbers to bit-limited fixed-point quantized numbers 

are investigated using bit-true simulations.  These simulations provide a better picture 

of how a system performs when implemented in hardware.   The simulation is built in 

ANSI C because C programs can be easily compiled and executed quickly on different 

platforms.  There are four main components in the preamble detector simulator: 

channel emulator, transmitter, receiver and statistics monitor.  These components are 

shown in the block diagram in Figure 3.1 and are explained in detail in the following 

sections. 

 

 

 

 

Transmitter 
Channel 
Emulator 

Receiver 
Statistics 
Monitor 

Figure 3.1: Simulator block diagram 
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3.2.1 Channel Emulator 

The channel emulator consists of two main components: the AWGN generator 

and the frequency shifter.   The AWGN generator is implemented using the Box-Muller 

transform [35]. The Box-Muller transform creates two independent standard normally-

distributed random numbers using uniform random numbers.  To generate the uniform 

random numbers we use the Mersenne Twister uniform pseudorandom number 

generator [36]. 

The frequency shifter is implemented with Equations (3.2), (3.3) and (3.4).  

Equations (3.2) and (3.3) produces the real and imaginary components of the frequency 

shifting function , where  is an index value from 1 to the number of samples in 

the  transmitted sequence.  The two parameters that are used to perform the frequency 

shifting are  and .  The frequency offset  is a constant parameter that can be set 

to any value ranging from 0 to .  To simulate frequency drift the simulator uses  

which is the number of consecutive samples required to perform a full  rotation in 

the transmit signal.  The frequency shift is applied by multiplying the transmit signal 

 by the frequency shift function , as shown in Equation (3.4). 

 
 

(3.2) 

 

 
 

(3.3) 

 

  (3.4) 
 

3.2.1 Preamble Generator 

The preamble generator is implemented in three components: differential 

encoder, spreader and up sampler.  The preamble sequence  and the spreading 

sequence  are filled with a random set of 1s and -1s.  

The differential encoder takes the preamble sequence  and creates the 

differential-coded sequence  using Equation (2.1).  To get the sequence started the 

first value in is set to the first value .  The first five bits of  and  are shown in Figure 

3.2a and Figure 3.2b, respectively. 
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The next step is to spread the sequence  by .  At this point all values are 

either 1 or -1.  An example of a length-16 spreading sequence is shown in Figure 3.2c.  In 

Figure 3.2d the first five symbols of the differentially-coded spreading sequence in 

Figure 3.2b is spread with the spreading sequence in Figure 3.2c.  Next we simulate the 

signal as it moves into the analog domain.  To achieve this we up sample each chip by a 

factor of   In this thesis we have chosen to be 8.  Figure 3.2e shows a subset of the 

chips from Figure 3.2d.   Each sample is now represented by both a real and an 

imaginary component.  The real component of each sample is multiplied by the sample 

energy value , which is given in Equation (3.5) and the imaginary component of each 

sample is set to zero.  Figure 3.2f and Figure 3.2g shows the real and imaginary 

components of the sampled chip sequence in Figure 3.2e.   The result is our transmitted 

signal vector with 640 chips each with 8 samples and with value at .   

 

 
(3.5) 

 

The transmit signal then enters into the channel emulator where noise and 

frequency distortion can be added.  After the signal leaves the channel emulator,  the 

preamble sequence is completely buried in the noise.  The next step is for the signal to 

be decoded by the preamble detector. 
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Figure 3.2: Transmit signals (a) first 5 symbols of the preamble sequence (b) first 5 symbols of the 
differentially-encoded preamble sequence (c) length 16 spreading sequence (d) differentially-encoded 
preamble sequence multiplied by the spreading sequence (e) zoomed in view of 5 chips (f) the real 
component of the 5 chips after it has been sampled with amplitude of  (g) the imaginary component 
of the 5 chips after it has been sampled with amplitude of zero 
 



19 
 

3.2.3 Preamble Detector 

The preamble detector’s role is to correlate a given window of the transmitted 

signal with the preamble sequence  and the spreading sequence .  The correlated 

values are compared to the threshold G to determine if a preamble was present or not. 

The first step is to perform a matched filter on the transmitted signal.  The 

matched filter is given in Equation (3.6) .  The chip rate is known by the receiver, but the 

detector has no information that can assist it in picking the sample timing with the 

optimal signal strength.  However, it has been shown in [33] that it is sufficient to 

perform two concurrent detections on two sample points separated by half the chip 

interval.  Using two sample points yields similar performance to that of a system which 

samples at the optimal signal strength.   

  

Before the signal can be correlated, we need to move back to the digital domain 

by binning the selected received samples.  Each sample, when it first enters the binning 

stage, is compared to the sample limit  which is the maximum/minimum allowed 

value.  Positive sample values that are greater than , are reassigned to  and 

similarly negative sample values that are less than – , are reassigned to .  Before 

binning can performed, the bin width needs to be determined, which is done using  

Equation (3.1).  After the samples are binned they can be represented digitally by bits.  

To represent the digital binary values we assign the sample values to integers between 

 to  which is the range of a two’s complement binary number with 

bits.  Equation (3.7) is used to perform this mapping from sampled values to integers.  

After the floating-point sample values are converted to integers, the system can begin 

to perform correlation. 

 

  (3.6) 

 
 (3.7) 
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The sample values are first correlated with   To perform this task the simulator 

takes the first  chip samples and multiplies it by  The results are then summed  

together to form an estimate of the first symbol estimate.  Next the simulator moves on 

to the next  chips to obtain the next symbol estimate.  This continues until the system 

has enough estimated symbols to represent a preamble of length   The system is now 

ready to perform differential decoding on the estimated differentially encoded 

preamble sequence .  Equation (2.2) is used to perform differential decoding.  Since 

these are complex signals, it is normally required to perform four multiplication 

operations.  However, the algorithm only requires the real component of the signal after 

the differential decode.  Thus the simulation only performs the multiplication required 

to obtain the real component of the signal; this is shown in Equation (3.8).  After 

differential decoding, the system obtains an estimate of the preamble sequence   

When performing differential decoding, the first symbol in  is skipped since it does not 

have a preceding symbol.  Therefore the length of is one symbol shorter than the 

length of .  The next step is to correlate  with the known preamble sequence   This 

is done by multiplying each value of  by .  Since the preamble sequence is of length 

and we only have   estimated preamble sequences, the system ignores the first 

value and starts correlating at the second value   After the multiplications, the 

products are all added together to obtain a final correlated value   .  This value is 

compared to the threshold value to determine if a preamble was detected or not. 

 

  (3.8) 
 

 

Each of the two sample values per chip are correlated in two separate 

processing streams.   Both processing streams perform the same computations on their 

own sample values.  A preamble is declared to be detected if either stream produces a 

correlation value greater than the threshold .     
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3.2.4 Statistics Monitor 

The statistics monitor module has two main roles.  Its first role is to set up and 

test signals for preambles and the second is to keep track of the statistics.  Details about 

the statistics monitor are given in Section 5.1.  

3.3  Chapter Summary 

Simulating a design in software is a necessary step when implementing a new 

communication algorithm in hardware.  These bit-true simulations provide a good 

understanding of how the system performs in hardware.  More specifically, simulation 

results enable us to analyze the tradeoffs between different system parameters.  The 

following chapter describes the hardware implementation of the preamble detection 

system.  
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Chapter 4                                                                                         

FPGA Implementation 

 

A hardware implementation brings us one step closer to realizing the detection 

algorithm in a real system.  Field-programmable gate arrays are excellent platforms to 

develop initial hardware prototypes.  Their easy reconfigurability and versatility make 

them very effective for developing and verifying hardware designs.   Although their 

clock speeds are lower than those of an ASIC design, they are more than sufficient for 

our system.  These reasons have led to the decision of implementing the preamble 

detection system on FPGAs.  

The following section provides an overview of the FPGA platforms and tools 

used to design the preamble detection system.  The main body of this chapter contains 

a detailed description of each component implemented on the FPGAs.  

4.1 Platform and Design Overview  

The preamble detection system was implemented on two SignalMaster-C67X 

FPGA platforms by Lyrtech [37].  Each of these platforms contains a Xilinx XC2V8000 

Virtex II FPGA [37].  An onboard microcontroller is used to communicate to the FPGA 

and other peripherals including an SM-ADAC Master II, which has dual high performance 

ADCs and DACs with programmable gain amplifiers.  Block diagrams of the SignalMaster 

C67X FPGA platforms [38] and the ADAC Master II [39] are provided in is shown in Figure 

4.1 and Figure 4.2, respectively.  Also included is an onboard Ethernet controller which 

allows access to the platform through a local area network.  
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Figure 4.1: Block diagram of the SignalMaster C67X FPGA [38] 

 

 

 

 

Figure 4.2: Block diagram of the SM-ADAC Master II with programmable gain amplifiers (PGA) [39] 
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Our implementation consists of 3 main components: transmitter, noise 

generator, and receiver.  The complete system was originally developed on one 

SignalMaster-C67X platform.  It was later split onto two FPGA platforms, one containing 

the transmitter and the other the receiver and noise generator.  With the receiver and 

transmitter on two separate boards we are able emulate a real asynchronous system 

with independent clocks.  To connect the two systems together we use the ADAC 

Master II.  The ADAC Master II is used to send the baseband signal from the transmitter 

to the receiver board.  This link is configured so that a RF front-end can be added to 

create a wireless link.  

Both the transmitter and receiver board are controlled using a host computer.  

The host is used to initialize the system, which includes enabling the system and setting 

the chip energy on the transmitter and the threshold value on the receiver.  Other 

than the communication line for the I and Q signals, there is no coordination between 

the transmitter and receiver platform.  Therefore in order to collect statistics for the 

system, we imbedded real data in the payload section of the transmitted signal.  The 

data consists of a simple 16-bit counter which is incremented for every transmitted 

preamble.  The payload is extracted by the receiver and sent to the host computer to be 

analyzed.  Section 5.2  describes how the data is processed. 

From the simulation results we have determined that it would be sufficient to 

implement a system which uses only 2 bits to represent the I and Q signal.  The 

following sections will describe the implementation of a preamble system. 

4.2 Transmitter 

Our transmitter contains three main components: preamble generator, data 

generator and control module.  The control module produces the transmission signal 

using the preamble generator and the data generator.  These components are discussed 

in more detail in the following sections. 

4.2.1 Preamble Generator 

The preamble generator is implemented using the shift registers available on 

the FPGA.  Each slice on the FPGA can be configured as a 16-bit shift register with clock 

enables.  Conveniently, our system uses a 16-bit spreading sequence, which allows each 

symbol to fit perfectly into a slice.  This allows for an efficient implementation of the 
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preamble generator using a chain of 40 16-bit shift registers.  The preamble sequence is 

hard coded into the shift registers when the FPGA is programmed.  The output of these 

chained shift registers is connected to the output of the preamble generator as well as 

back into the input the shift register chain.    This output feedback loop allows the 

preamble generator to be ready again after 640 bits of the preamble have been shifted 

out.     Figure 4.3 illustrates the 40 16-bit chained shift registers.      

 

 

 

 

4.2.2 Data Generator  

The implemented data generator is specifically designed to create a payload 

that can be extracted by the receiver.  Each preamble is attached with a 16-bit number 

that is embedded into the payload.  The number comes from a simple counter, which 

increments every time a new preamble has been transmitted.  Once the 16-bit counter 

reaches 65535, which is the maximum value, it wraps around back to 0.  More detail on 

how this payload is used to gather statistics for the system is given in Section 5.2 .   

The chip energies for the preamble and the data are the same, which makes it 

very difficult to extract the payload without any error.  So to increase the SNR of the 

payload data, the system uses a simple repetition code.  Each bit in the counter is 
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Figure 4.3: 16-bit shift register chain used in the preamble generator 
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repeated 4 times, which produces an approximate gain of 6 dB.  The resulting 64 

symbols are then differentially encoded to compensate for phase offset in the payload.  

The data generator module outputs a new chip every clock cycle.  Since each 

symbol is repeated 4 times and there are 16 chips per symbol, the complete 16-bit data 

payload requires 1024 chips.  The spreading sequence and its complement  are 

stored in two different 16-bit shift registers.  As the spreading sequence is shifted out, 

the output of the shift register is fed back to the input to keep the spreading sequence 

for the next symbol.  At every positive clock edge the output chip value is set to either 

or , depending on the input data.  A 16-bit multiplexor is used to sequentially select 

each bit of the input data.  The output of the 16-bit multiplexor is sent to a differential 

encoder.  To keep track of which bit to select, a 10-bit counter is used.  Since each bit is 

repeated four times and each symbol has 16 chips, every new data bit requires 64 clock 

cycles.  Thus the select lines for the multiplexor require a 4-bit counter that counts up 

every 64 cycles.  To generate this counter we connect the select lines of the multiplexor 

to the 10th, 9th, 8th and 7th bit line of the 10-bit counter.  After the data generator 

outputs all 1024 chips for the data section, the counter wraps around back to zero and is 

ready for the next 16-bit input data.  All the components of the data generator are 

designed to return back to the initial state after all 1024 chips of the data have created.  

Figure 4.4 is a block diagram of the data generator.  
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Figure 4.4: Block diagram of the 16-bit data generator for the transmitter 
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4.2.3 Control Module 

The role of the control module is to coordinate the generation of a packet.  To 

perform this task the control module uses a finite state machine and several counters.  

The finite state machine works together with the counters to keep track of the number 

of the different chips that are transmitted.  There are three different types of chips that 

the counters need to keep track of: preamble, payload and delay.  The packet consists of 

640 preamble chips and 1024 data chips.  Delay chips are added onto the end of the 

packet to create space between preambles so that the host and the receiver have more 

time to process statistical data.  There is a two-cycle latency to enable and disable the 

preamble and data generators.  For this reason we require delay states in the control 

module finite state machine to ensure that all of the chips are correctly transmitted.  

The state transitions are depicted in Figure 4.5 and the description of each state is in 

Table 4.1.  The 16384-chip delay in Figure 4.5 was chosen arbitrarily and can be 

modified to meet timing constraints. 

 
 

 

 

 

 

S0 S1 S2 S3 

S7 S6 S5 S4 

Start  
Transmission 

# Preamble  
Chips = 638 

# Data  
Chips = 1022 

# Preamble  
Chips ≠ 638 

# Delay  
Chips = 16384 

# Delay  
Chips ≠ 16384 

# Data  
Chips ≠ 1022 

Figure 4.5: Transmitter controller module state diagram 
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Table 4.1: Transmitter controller module state description 

 

State Description 

S0  Wait in this state until the start transmission signal is received.  This is also the 
default and starting state. 

S1  Enable the preamble generator and transmit the preamble chips.   
Stay in this state until 638 chips are transmitted.  

S2  
 

Transmit the second last chip of the preamble.  
Enable the data generator and disable the preamble generator. 

S3  Send out last preamble chip. 

S4  
 

Transmit the data chips. Stay in this state until 1022 payload chips are 
transmitted. 

S5  Disable the data generator and transmit the second last payload chip. 

S6  Transmit the last payload chip. 

S7  Stay in this state until the system transmits 16384 delay chips. Then go back to 
the wait state.  

 

The generated transmit sequence is sent to the onboard DAC on the ADAC 

Master II.  Each binary chip in the packet is converted to either one of two voltages and 

sent out on a wire to the receiver platform.  The voltage levels can be adjusted using the 

integrated programmable gain outputs on the ADAC Master II boards.  Currently the 

system only transmits data on the in-phase signal.  However the system is designed to 

utilize both the in-phase and the quadrature component of the signal.  The decoding of 

the packet is described in the Section 4.3      

4.3 Receiver 

Our packet receiver contains two main components: the preamble detector and 

the payload extractor.  The preamble detector correlates the incoming signal.  When a 

packet has been detected, the preamble detector determines a synchronization point at 

the start of the data for the payload extractor.  With knowledge of where the data 

begins the payload extractor is able to retrieve the packet data.  After the data has been 

extracted it is sent to the host computer for analysis.  The following two sections 

describe in detail how the preamble detector and payload extractor are implemented. 

4.3.1 Preamble Detector 

The preamble detector can be split into four components: chip correlator, 

differential decoder, symbol correlator, and threshold comparator.   The chip correlator 

and differential decoder have two different data paths for both the in-phase and 
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quadrature components of the signal.  The differential decoder combines the two signal 

paths and the resulting values are correlated and compared with a threshold G. A block 

diagram of the preamble detector is shown in Figure 2.5. With a fully pipelined 

architecture the preamble detector is able to produce a new correlated value every time 

a new chip sample is clocked in.   

Figure 4.6 shows the flow of data in the chip correlator.  At every positive clock 

edge a new 2-bit chip sample is driven into the 16 stage 2-bit shift registers.  As each 

new data sample is shifted into the registers, a new sequence is created and has to be 

correlated.  Every time a new sequence appears in the shift registers, new values are 

calculated at each level and stored in the register layer above.  This pipelined tree 

structured design produces a new correlated symbol at every clock cycle.  Since there 

are 4 layers in this tree structure, there is a latency of 4 cycles.  Normally before 

summing the values of the shift registers you need to multiply each sample by the 

spreading sequence.   

 

 

 

 

The process of multiplying the samples by the spreading sequence can be 

simplified to just changing the sign of the samples whenever the spreading sequence 

Modified Adder/Subtractor 

2-bit 
Register 

Input Chip Sample 

3-bit 
Register 

5-bit 
Register 

4-bit 
Register 

Sixteen 2-bit shift registers 

6-bit Correlated Symbol 

Figure 4.6: Block diagram of the chip correlator with modified adders/subtractors 
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values is equal to -1, since the system uses BPSK.  Changing the sign for a 2’s 

complement number is accomplished by inverting the bits and adding one to the 

resulting number.  To avoid this step we use a modified adder/subtractor, instead of a 

simple adder, as shown in Figure 4.7.  Changing an adder to an adder/subtractor on a 

FGPA requires very little additional logic.   Along with the normal input and output 

signals associated with an adder/subtractor, this modified version also accepts a sign 

change signal for each of the two input values.  If the sign change signal is 1, then the 

associated value is what it should be.  However, if the sign change signal is 0, then the 

corresponding value is inverted.  Table 4.2 provides a summary of how the modified 

adder/subtractor operates.  There are 4 different cases, as shown in Table 4.2.  If the 

sign change signal of input values A and B are the same then we add the two values.  On 

the other hand if the sign change signal of the two input values are different then we 

subtract B from A.  The resulting sign change is always the same as the sign change of A.  

The sign change signal for each value is initially assigned so that it corresponds to the 

spreading sequence.  The sign change signal is carried through the adder tree structure.  

Figure 4.8 shows an example of what operations would occur at each modified 

adder/subtractor when the spreading sequence for the system is 1100 1111 0100 0110. 

Table 4.2: Sign signal operation summary 

 

A’s Sign 
Change 

B’s Sign 
Change 

Operation Resulting Sign 
Change 

0 0 A+B 0 

0 1 A-B 0 

1 0 A-B 1 

1 1 A+B 1 
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Figure 4.7: Modified Adder/Subtractor 
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The output of the chip correlator goes to a storage module which comprises 16-

bit shift registers.  We chose to use 16-bit shift registers because they are readily 

available on the Xilinx XC2V8000 Virtex II FPGA.  Utilizing these 16-bit shift registers we 

are able to produce a fast and resource efficient storage module for the symbols.  The 

shift registers are configured as shown in Figure 4.9.  A set of 6 parallel 16-bit shift 

registers is required to store the 6-bit symbols coming from the chip correlator.  There 

are 39 sets of 16-bit shift registers, which are all connected in a long chain to form the 

symbol storage module.   

 

Sign Change 

 
1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 

1 0 1 1 0 0 0 1 

1 1 

1 

0 0 

0 

1 

Spreading sequence 

Sign Change 

 

Sign Change 

 

Sign Change 

 

Sign Change 

 

Figure 4.8: Chip correlator example with spreading sequence equal to 1100111101000110 
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The chip correlator produces consecutive symbols every 16 clock cycles.  

Therefore in order to get sequential symbols that make up a preamble we take every 

other 16th value in the symbol storage module.  To do this we take the output of each 

shift register set along with the output from the chip correlator and feed it into the 

differential decoder.     

Both the chip correlator and symbol storage module operate independently on 

the in-phase and quadrature paths.  The differential decoder combines both these paths 

by performing complex variable multiplication on every consecutive pair of symbols as, 

shown in Figure 4.10.  Performing complex variable multiplication requires four 

multiplications and two additions.  However, the algorithm is only concerned with the 

real component of the product, therefore the system only needs to perform two 

multiplications and one addition, as shown in Equation (3.8) and Figure 4.10.  After 

performing differential decoding the system is left with 39 estimated symbols of the 

preamble. 
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Figure 4.9: Symbol storage module 
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 The next step is to correlate the estimated preamble symbols  with the known 

preamble sequence .  The module to perform this correlation is very similar to that of 

the chip correlator.  The difference is that we have 39 13-bit symbols to correlate.  With 

39 values to add together we cannot form a perfect binary tree such as the one found in 

the chip correlator module.  In this case we have to settle for a slightly less efficient 

structure.  The correlation tree structure is show in Figure 4.11.  A perfect binary tree 

structure is built for the first 32 values.  The remaining 7 values are summed with a 

partial tree structure.  Delays are added to the structure so that all values for a 

particular preamble are added together.  With the symbols lining up in each layer we 

are able to pipeline the symbol correlator.  The resulting sum at the top of the tree 

structure is our estimated correlation peak . 

 The final module on the preamble detector is a comparator.  It compares the 

correlated value with a given threshold .  If  is greater than , a preamble is declared 

detected and the signal is sent to the payload extractor to decode the subsequent 

payload data. 
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Figure 4.10: Block diagram of the differential decoder 
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4.3.2 Payload Extractor 

When a preamble has been detected it sets a flag bit to indicate that the 

payload is ready for extraction.  The same chip correlator module used in the preamble 

detector is used to correlate the symbols for the payload.  Since the payload consists of 

16-bits, with each bit repeated 4 times, we need to add the 4 symbols together.  The 

symbols come serially from the differential decoder and are shifted into shift registers 

so that they can be summed in parallel.  Summation is done with a small adder tree 

structure, as shown in Figure 4.12.  The sign of the each sum represents one bit of the 

payload and is shifted into a 16-bit shift register for storage until the complete payload 

is extracted.  To control the flow of data a counter is used.  Every 16 chip clock periods, 
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Figure 4.11: Block diagram of the preamble symbol correlator and comparator 
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a symbol from the chip correlator is driven into the shift registers.  After 4 new symbols 

have been shifted into the registers, another clock signal triggers data out of the adders 

and into the payload shift registers.  The value of the counter is monitored to determine 

the end of the payload.  

 

 

 

4.4 Noise generator  

The noise generator creates Gaussian noise samples by adding 48 uniformly 

distributed random variables (UDRV) together.  To generate the UDRV we use the 

Tausworthe algorithm [40].   

The Tausworthe pseudorandom number generator (PNG) provides the system 

with a new 32-bit UDRV every clock cycle.  The noise generator instantiates two PNGs 

with different seed values.  Each 32-bit UDRV is split in half to provide the noise 

generator with four 16-bit random vectors every clock cycle.  The four 16-bit UDRV, are 

summed using a two stage adder tree and the result is fed into an accumulator.  Using a 

pipelined architecture, the PNG is able to create a new sample every 12 cycles by 

combining 48 16-bit UDRV.  A block diagram of this noise generator is given in Figure 

4.13.  The Gaussian noise samples have a mean of 0 and a variance of 1.  A more 

detailed mathematical description of how the noise generator works is given in the 

Section 4.4.1.   
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 Figure 4.12: Block diagram of payload extractor 
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4.4.1 Tausworthe Pseudorandom Number Generator 

Given a 16-bit uniformly distributed random vector we can interpret it as a 

two’s complement number representing a value between -0.5 and 0.5.  By adding 12 of 

this 16-bit UDRV we can obtain a Gaussian random sample with a mean of 0 and 

variance of 1. 

 

 

The above model was simulated in Matlab and plots were generated to 

compare our model with a reference Gaussian curve [41].  In one test case 107 sample 

points were generated, where twelve 16-bit UDRVs were added together.  The sample 

points had a mean of  and variance of .  The plots of the 
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Figure 4.13: Block diagram of the noise generator for the simulator 
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probability density function of the sample points are shown Figure 4.14 and Figure 4.15.  

From the plots we observe that this model is able to produce a decent Gaussian 

distribution going out to approximately 3 standard deviations.  Beyond that the PDF of 

the samples generated from our model does not align to the reference Gaussian curve.  

To improve our model we needed to add more UDRVs together.  But in doing so we 

would no longer have a unit variance Gaussian noise generator.  To obtain a Gaussian 

noise generator with unit variance we would have to perform division on our samples.  

An implementation of a divider in hardware can be a complex task, unless the divisor is 

a power of 2, in which case the operation can be achieved with a simple logical shift. 

This simplistic way of performing division has led to our decision of using 48 UDRV to 

generate our Gaussian noise samples.  Adding 48 UDRV results in a , if 

we divide each sample by 2 the  will be 1. 

 

 

Figure 4.14: Plot of probability density function of a Gaussian noise generator that uses twelve 16-bit 
UDRV with linear y-axis 
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Figure 4.15: Plot of probability density function of a Gaussian noise generator that uses twelve 16-bit  
UDRVs with log y-axis 

 

 
Figure 4.16: Plot of probability density function of a Gaussian noise generator that uses 48 16-bit UDRV 
with linear y-axis 
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Figure 4.17: Plot of probability density function of a Gaussian noise generator that uses 48 16-bit UDRVs 
with log y-axis 

 

A simulated test run was performed again with our model, but this time we 

used 48 UDRVs.  In one test run with 107 sample points the mean was 4.9406  

and variance of 0.9995.   The PDF of the samples points generated with this model as 

shown in Figure 4.16 and Figure 4.17 are a closer match to the reference Gaussian 

curve.  This Gaussian noise generator model is apparently a fairly reliable in producing 

samples points up to about 4 standard deviations.   

4.5  Chapter Summary 

A description of the hardware implementation was presented in this chapter.  

Each component of the transmitter, receiver and noise generator was explained in 

detail.  Similar to the low-power preamble detection system in [42], our system 

operates on a 2-bit preamble correlator.  The following chapter shows, that this 2-bit 

implementation provides performance curves similar to that of the analytical results in 

[33].  
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Chapter 5                                                                           

Results  

 

The chapter is divided into two main sections.  Section 5.1 presents the results 

gathered from the C simulations and Section 5.2 presents results from the hardware 

implementation of the preamble detection emulator.   

5.1 C Simulations 

The C simulations allowed us to determine tradeoffs between different system 

configurations.  The section is divided into 2 parts: Experiment Setup and 

Results/Observations.  

5.1.1 Experiment Setup 

Two types of simulations were performed: synchronous and asynchronous.  The 

synchronous simulation assumes perfect sampling, where each chip is sampled at the 

maximum chip energy.  In the asynchronous simulation, each chip is split into 8 samples 

and discrete rectangular pulse matched filtering is performed.  The output of the 

matched filter is sampled and sent to the decoder. 

The simulator prepares a sequence with two preambles and random data in 

between, as shown in Figure 5.1.  The preamble sequence  and spreading sequence  

are randomly determined.  The symbols in both the preambles and data are spread by 

the same chip spreading sequence.  The energy of each chip is set according to a given 

SNR value.  Once the test sequence is prepared, a particular window of  

consecutive chips is sent to the preamble detector.  For every test sequence all possible 

windows alignments are tested.  This test sequence structure was designed to emulate 

all the possible alignments for a preamble.  The different cases for all possible offsets 

are described in Table 5.1.  
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Table 5.1: Simulation transmit signal window alignment 

 

Offset ( ) Window Content 

 Contains all of preamble1 

 
Contains only the end of preamble1 and some 
random data 

 Contains only random data 

 
Contains only the start of preamble2 and some 
random data 

 Contains all of preamble2 

 

A monitor module counts four mutually exclusive events: true positive (TP), 

false positive (FP), true negative (TN) and false negative (FN).   A TP event occurs when a 

preamble is sent and is subsequently successfully detected.  Conversely, if the detector 

is unsuccessful, a FN event occurs.  When the transmitter has not sent a preamble and 

the detector erroneously indicates a detection, this is a FP event.   Lastly, the most 

common case for the system is a TN event.  This occurs when the system is simply 

listening to the empty channel and correctly reports that a preamble has not been sent.   

The conditions that trigger these events are summarized Table 5.2.   The statistics 

gathered from counting these events can be aggregated into more useful information.  

In particular, it is advantageous to determine the probability of missing a preamble 

( ) and the probability of false alarms ( ). 

 

 

 

 

 

 

 

Preamble1 Data Preamble2 

   

Figure 5.1: Simulation test sequence structure 
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Table 5.2: Mutually exclusive events that can occur when detecting preambles 

 

 
Preamble Detected 

YES NO 

P
re

am
b

le
 S

en
t 

YE
S True 

Positive 
False 

Negative 

N
O

 False 
Positive 

True 
Negative 

   

 is how often the system does not detect a preamble that was sent.     

is how often the system falsely detects a preamble that does not exist.   The equations 

 and  are given in Equation (5.1) and Equation (5.2).  

 

 
 (5.1) 

 

 
 (5.2) 

 

5.1.1 Preamble and Spreading Sequence Effects on Performances 

The choice of preamble and spreading sequence affects the performance of the 

preamble detection system.  As long as the preamble is pseudo-random, it has no effect 

on the  performance.  The spreading and preamble sequence does, however, 

greatly influence the performance of .  A preamble which has an autocorrelation 

with many large peaks, produces poor  performance.  This occurs because the 

packet detection system performs threshold based decisions.  If a certain preamble has 

an autocorrelation with several high peaks, a system with a low threshold value will 

indicate several detections for the single preamble, thus increasing the number of false 

detections.    



44 
 

The ideal preamble would have an autocorrelation with only one large peak at 

the instance when the sequences are perfectly aligned and all other positions correlate 

to zero.  This is impossible to achieve with any practical preamble length.  Therefore, we 

have to settle for a preamble which correlates to a high value when the sequences are 

aligned and every other position correlates to low values.  More specifically, we want to 

find a sequence with a significantly smaller second highest correlated value when 

compared with the top two peaks in its autocorrelation.  Since our preamble has an 

inner and outer sequence, the highest correlations values only occur when the inner 

sequences are align.  Therefore, we only need to search for a low correlated outer 

sequence.  

Given a certain preamble length, it is difficult to determine an optimal sequence 

analytically.  Researchers have exhaustively searched and found the best low correlated 

binary sequences of length 3 to 60 [43].  The sequence of length 39 is provided in Table 

5.3 ; its second highest autocorrelation peak is 0.077.  This sequence was found in the 

literature after the results were gathered and presented in this thesis; we used a 

sequence of length 39 with a second highest autocorrelation peak of 0.183.          

Table 5.3: Sequences used in the simulation and hardware implementation 

 

Spreading Sequence 1101100111000010 

Preamble Sequence 001001001000000111110001010100111001110 
             

5.1.2 Results 

This section presents results from the system with different configurations and 

parameters.  Since we have two values to measure the performance of the system, the 

simulation sets the threshold  at certain values and reports back the Pmiss and Pfalse.    

All results are plotted against different values of preamble SNRp.  Calculations 

for the symbol SNRs, chip SNRc and chip energy Ec are given in Equations (5.3), (5.4) and 

(5.5).  Typical SNR and chip energy values are given in Table 5.4. 

  (5.3) 
  

  (5.4) 
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(5.5) 

   

Table 5.4: SNR and chip energy values 

    
SNRp SNRs SNRc Ec 

10 -6.02 -18.06 0.0156 

11 -5.02 -17.06 0.0197 

12 -4.02 -16.06 0.0248 

13 -3.02 -15.06 0.0312 

14 -2.02 -14.06 0.0392 

15 -1.02 -13.06 0.0494 

16 -0.02 -12.06 0.0622 

17 0.98 -11.06 0.0783 

18 1.98 -10.06 0.0986 

19 2.98 -9.06 0.1241 

20 3.98 -8.06 0.1563 

21 4.98 -7.06 0.1967 

 

The first set of results is shown in Figure 5.2.  This figure shows the performance 

curves for a system configured with B=4 (4-bit inputs) and L=4 (limit of ±4).  We observe 

that the system’s performance curve is within 0.5dB to the performance curve for the 

ideal system, which was determined by the analytical studies in [33].  There are three 

sets of curves for the 3 different values of  29, 50 and 100.  For an ideal synchronous 

system that uses high precision floating-point numbers, threshold values of 29, 50 and 

100 is suppose to produce a Pfalse of 10-3 , 10-6 and 10-15, respectively [33].  However, the 

measured Pfalse for a finite precision system with B=4 and L=4 is significantly different, as 

shown in the experiment results plotted in Figure 5.3. 

Figure 5.4 and Figure 5.5 show the simulation results for an asynchronous 

system.  These simulations use the same threshold values as the synchronous system 

simulation.  Three different systems are simulated to determine the best configuration 

to implement in hardware.  We have determined in the first set of experiments, that a 

synchronous system with B=4 and L=4 is close enough to the ideal system.  Simulating a 

system using more inputs bits could only yield slightly improved performance, and 

would not be justifiable for the extra hardware that would be required to implement 
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the extra bits.  However, we are interested in how much performance decreases with 

lower input bit precision, thus simulations were carried out on systems configured with 

B=2.  Two different limit values, L=2 and L=4, were simulated on the system configured 

with B=2.   

Figure 5.6 illustrates the frequency offsets that the system is able to tolerate.  

The simulation sets the preamble SNR value to 16dB, while measurements of Pmiss are 

taken for frequency offsets of 10 to 1000Hz.  An analytical curve is also provided for 

reference [33]. This chart shows that finite bit precision systems offer similar tolerance 

to frequency offsets as an ideal system. 

From the simulation results we have decided that a system configured using B=2 

and L=2 produces results that are good enough to proceed with the hardware 

implementation.  This configuration has a good balance between hardware complexity 

and performance.  Although we can achieve better performance with B=4 and L=4 

system, the extra hardware required to implement this system is not worth the 1dB 

gain.  

 

 
 
Figure 5.2: Synchronous System Pmiss VS SNRp – Comparison of Pmiss performance of a system with B=4 and 
L=4 to the ideal analytical calculated Pmiss for threshold values 29, 50 and 100. 
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Figure 5.3: Synchronous System Pfalse VS SNRp  – Illustrates that the measured Pfalse for a finite precision 
system are significantly different from the analytical Pfalse 

 

 

 

Figure 5.4: Asynchronous System Pmiss VS SNRp  – Compares the Pmiss performance of different system  
configurations for threshold values 29, 50 and 100. 
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Figure 5.5: Asynchronous System Pfalse Vs. SNRp– Compares the Pfalse performance of different system 
configurations for threshold values 29, 50 and 100. 

 

 

 

Figure 5.6: Synchronous System Pmiss  VS Frequency Offset – Illustrates the effects  frequency offset on 
Pmiss for different system configurations.  SNRp is set to 16dB 
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5.2 FPGA Implementation 

Two different systems were implemented on the FPGA platforms.  Section 5.2.1 

describes an implementation of the preamble detection system in hardware.  In this 

setup the whole system, including transmitter, noise generator and receiver, were 

implemented on one FPGA platform.  A second implementation is described in Section 

5.2.3.  This implementation was developed as a proof of concept, to show that the 

preamble detection system could reliably detect packets asynchronously over two 

wireless platforms.    

5.2.1 Hardware Emulation 

An emulator was built to simulate the performance of the preamble detection 

algorithm in hardware.  This hardware implementation consists of a transmitter, AWGN 

generator and receiver.  Running at maximum clock speed the system produces 

approximately 75 MChips per second.  At this rate the emulator simulates about 15000 

packets per second.  The emulator has two configurable parameters: SNR and threshold.  

To gather statistics the emulator uses 3 counters to keep track of missed packets, false 

detections and total packets generated.  A software interface, running on a host 

computer, monitors these values and manipulates the parameters.  Table 5.5 provides a 

summary of the FPGA utilization for the packet detection hardware emulator.   Values 

are shown for a two different implementations, one that makes use of available 

onboard multipliers and another that only uses look-up tables (LUTs).  Both sets of 

utilization values are given to provide an estimate of the additional resources that 

would be required if the system was implemented on a FPGA without on board 

multipliers. 

       Table 5.5: FPGA utilization for preamble detection emulator 

 

 Preamble Detection System 
Using onboard multipliers 

Preamble Detection System 
Using LUTs 

Flip Flops 10685 (13%) 10763 (11%) 

Look Up Tables  10745 (11%) 13943 (14%) 

Multipliers  78    (46%) 0     (0%) 
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5.2.2 Hardware Emulation Results 

In Figure 5.7 and Figure 5.8 the emulation results are plotted against the 

software simulation curves for a synchronous system with B=2 and L=2.  Also included in 

the Pmiss plots are analytical curves for reference.  To maintain consistency, the same 

threshold values used in Section 5.1 are used here.  Figure 5.7 and Figure 5.8 shows that 

software simulation and the hardware emulation produce similar Pmiss and Pfalse 

performance curves.  In Figure 5.8  all the curves follow a similar trend, which is as SNR 

increases so does the probability of false detections.  Overall the results from the 

hardware emulations and software simulations agree.  

 

 

Figure 5.7: Synchronous System and Hardware comparison Pmiss VS SNRp – Compares the Pmiss 
performance of the hardware with the simulation results. 
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Figure 5.8: Synchronous System and Hardware comparison Pfalse VS SNRp – Compares the Pfalse 
performance of the hardware with the simulation results 

5.2.3 Prototype 

The system was implemented on two Lyrtech SignalMaster-C67X FPGA 

platforms, one for the transmitter and the other for the receiver.  Figure 5.9 shows the 

setup of the system.  Packets are generated by the transmitter on the FPGA platform.  

The baseband signal of these packets is sent to the onboard DAC, where the digital 

sequence is converted to voltage levels and is sent to the radio link.  The RF link is 

created using MAX2837 transceivers and is described in more detail in the next 

paragraph [44].  On the receiver platform, the voltage levels are converted back to a 

digital sequence with an ADC.  The baseband signal is then passed to the packet 

receiver, where the preamble is detected and the payload is extracted.  The two boards 

are connected to a host computer through a DSP to monitor and configure the system.  

A picture of the Pictures of the SM-C67X FPGA platform is shown in Figure 5.10.  

Furthermore the estimated utilization values are provided in Table 5.6. 
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Table 5.6: FPGA utilization for the prototype of the preamble detection system 

 

 Preamble Receiver 
Using MULTs 

Preamble Receiver 
Using LUTs 

Preamble Transmitter 
 

Flip Flops 5672 (6%) 5828  (6%) 73  (< 1%) 

Look Up Tables  3730 (4%) 10126 (10%) 140 (< 1%) 

Multipliers  156  (92%) 0     (0%) 0   (0%) 

 

The RF front end consists of 2 MAX2837 RF transceivers.  One transceiver is 

configured as a transmitter while the other is configured as a receiver.  The baseband 

from the transmitter FPGA platform is sent through a SMA cable to the RF transmitter.  

The RF transmitter converts the baseband signal and sends it wirelessly over the 2.4GHz 

ISM band to the RF receiver.  At the RF receiver module the signal is converted back to 

baseband and sent to the receiver FPGA platform.  The process of transmitting the 

baseband sign from one FPGA platform to the other introduces an unknown amount of 

noise into the system.  This makes it difficult to produce any meaningful performance 

curves.  However this implementation does show that the preamble detection algorithm 

works.  The  Max 2837 evaluation kit setup is shown in Figure 5.11. 

 

 

Transmitter  Receiver  

C67XX  C67XX  

FPGA 

DSP DAC 

FPGA 

DSP ADC 
MAX2837 
Eval. Kit 

MAX2837 
Eval. Kit 

Host 

Figure 5.9: Packet detection FPGA board setup 
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Figure 5.10: The transmitter (top) and receiver (bottom) were implemented on separate Lyrtech SM-C67X 
FPGA platforms.   A black SMA cable carries the baseband signal from the transmitter to the RF link.  From 
the RF link a gray SMA cable carries the baseband signal to the receiver and the oscilloscope.  A screen 
shot of a received baseband signal is shown on the oscilloscope. 

 

 

Figure 5.11: Picture of the radio link comprised of 2 MAX2837 RF transceivers evaluation kits.  The 
baseband signal from the transmitter FPGA is sent to the RF transmitter board (right) through the black 
SMA cable.  The receiver board (left) sends the baseband signal to the receiver FPGA through the gray 
SMA cable.  
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5.2.4  Chapter Summary 

In this chapter we presented results from both the C simulation and the 

hardware implementation.   It was shown that both systems had similar performance 

curves to that of the analytical results found in [33].  The Pfalse has been shown to 

steadily increase with SNR.  This undesirable phenomenon can be resolved using an 

adaptive threshold base detection system, as presented in [45] [46] [47] and [48].  Also 

presented is this chapter was a prototype of the preamble detection system.  This 

prototype demonstrated the functionality of the detection algorithm over a wireless RF 

link.  The next chapter summarizes this thesis and presents some possible future 

directions. 
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Chapter 6                                                                      

Conclusions and Future Work 

 

In this thesis we present an implementation of a low-power, asynchronous, 

random-access packet detector.  The system was first developed in a series of bit-true C 

simulations.  From these simulations, it was determined that a system configured with 

2-bit inputs and a limit of ±2, had sufficient Pmiss and Pfalse performance to continue on to 

a hardware implementation.   

The hardware implementations are on FPGA platforms.  Two different systems 

were developed.  The first system is a hardware emulation of the preamble detection 

algorithm.  In this implementation the whole packet detection system, consisting of the 

transmitter, noise generator and receiver, is implemented on a single FPGA.  

Measurements taken from this system closely track the fixed-point simulations.  The 

second system was designed as a proof of concept.  The packet detection system was 

implemented on two FPGA platforms.  One platform consisted of the transmitter while 

the other platform consisted of the receiver.  Packets are sent from the transmitter to 

the receiver through a wireless radio link.  This system demonstrates the functionality of 

the packet detection algorithm. 

This thesis has described the design of an operational FPGA implementation of 

the preamble detection algorithm present in [33].  With some minor adjustments, the 

register transfer level code, for the core components of this system are ready to be 

added to an ASIC design.   

6.1 Future Work 

The work of thesis is only a small part of a much larger project.  Since this work 

concentrates mainly on the detection of packets, not much effort was put in to the 

design of the payload section.  Additional research will be required to determine the 

most appropriate coding scheme for the payload.  Furthermore this physical layer 
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design will eventually require some higher level control.  There is still much more work 

to be done before the preamble detection system can be truly appreciated.   The 

following sections describe specific future work for the simulations and FPGA 

implementation.  

6.1.1 Simulation   

The simulation described in Chapter 3 is the preliminary study of how the 

preamble detection system performs in the real world.  There are more studies that can 

be conducted to further our understanding of the system.  This section describes some 

of the future work that can be done for the simulator.  

The channel model used in this simulation deals with the effects of AWGN and 

some frequency distortion.  A better model can be implemented to study other effects 

of a real channel, such as fading.  Multi-path fading is a physical phenomenon that 

occurs as a result of multiple copies of the transmitted signal traversing different paths 

in the environment before arriving at the receiver.  Fading is a random process and can 

change with time, geographical position and carrier frequency.  The effects of fading can 

sometimes be helpful, but more often than not the results are destructive [4]. 

Another issue that can be further studied is the effect of interference.  

Interference occurs as different transmitters send packets concurrently and the signals 

overlap at the receiver.  A more specific case in interference to study is the near-far 

problem.  Picture a scenario where two devices are transmitting a signal with equal 

power.  One of the transmitters is very far away from the receiver, while the other is 

closer.  Due to the inverse square law the signal strength of the closer transmitter is 

considerably stronger, in some cases the signal might be orders of magnitude greater.  

Since the signal from one transmitter contributes noise to another, the closer 

transmitter is essentially jamming the channel for further away transmitters.  The near-

far effect needs to be simulated to understand its significance on our system 

performance [49].    

6.1.2  FPGA Implementation 

The FPGA implementation in Chapter 4 was designed as a proof of concept and 

contains many modules that can be redesigned to become more compact and power 

efficient.   
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The symbol storage module currently implemented on the system uses shift 

registers to hold the data.  At every positive clock edge all the data shifts over one slot, 

which causes a lot of switching activity in the registers.  High switching activity 

consumes more power and thus is an undesirable feature.  One way to reduce the 

switching activity on the registers is to set up a structure similar to random-access 

memory.  In such a structure we would be able to update a single individual symbol 

periodically.  With only one symbol being updated each cycle the switching activity on 

the registers would be significantly reduced.  Implementing such a structure would 

require a memory access control module which would increase the complexity of the 

storage module.   

To ensure that no data loss occurs inside the preamble detector, additional bits 

are added to the intermediate results at each stage by the arithmetic processing units.  

The end result is a correlated value represented by 19 bits, which can represent values 

between -262 145 to 262 144.  This range is much larger than the typical correlated 

values that have been observed in simulation.  Further research is required to 

determine at which stages bits can be truncated without significant performance lost. 

Another module that can be redesigned is the preamble generator.  The current 

design uses forty 16-bit shift registers to store the preamble sequence.  The preamble 

sequence is hardcoded and initialized into the shift registers when the FPGA is 

programmed.  Without reprogramming the FPGA we cannot change the preamble 

sequence or structure.  This module in the future may require designing to allow for the 

runtime configuration of the preamble sequence.    
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