

University of Alberta

Simulation of Quantization Noise Effects on the Performance of a Wireless

Preamble Detector and Demonstration of a Functional FPGA Prototype

by

Eric Tien Tze Son

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering

© Eric Tien Tze Son

Fall 2009

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis

and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users

of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatsoever without the author's prior written permission.

Examining Committee

Dr. Vincent Gaudet, Electrical and Computer Engineering

Dr. Christian Schlegel, Computing Science

Dr. Bruce Cockburn, Electrical and Computer Engineering

i

Abstract

This thesis describes the implementation of the physical layer for an

experimental low-power wireless communication device. The system utilizes

differential coherent correlation and threshold-based detection to produce a robust

random-access packet-based communications protocol. Prior to implementing the

system in hardware, the detection algorithm was rigorously simulated with a software

model in C. The simulations revealed the tradeoffs between the packet miss

performance and different system parameters such as input bit precision and threshold

value. Having determined a suitable configuration, the detection algorithm was

implemented on an FPGA platform. The focus of the FPGA design was on throughput

and resource utilization. The final system utilizes approximately 6% of the slices

available on a Xilinx Virtex II XC2V8000 FPGA and has a throughput of about 5

MChips/Second.

iii

Acknowledgement

I would like to express my sincerest gratitude to Dr. Vincent Gaudet and Dr.

Christian Schlegel. This project would not have been possible without their guidance.

I would like to thank Dr. Bruce Cockburn for taking the time to review my thesis

and serving on my final examination committee.

I would also like to thank my fellow lab mates Marcel Jar, Lukasz Kryzmien,

Majid Ghanbarinejad, Malihe Ahmadi, Sumeeth Nagaraj, John Koob, Andrew Hakman,

Brendan Crowley, Ji Sun, Saina Lajevardi and Mitchiko Maruyama for providing a

supportive and wonderful working environment. A special thanks to Saeed Fard for

sharing his knowledge on FPGA design. Furthermore, I would like to thank Russell Dodd

for helping me with a wide variety of random tasks.

 Finally, I must thank my family and Diana for their never-ending support and

love.

v

Table of Contents

Chapter 1 Introduction .. xiii

1.1 Wireless Sensor Networks .. 1

1.2 Wireless Sensor Node ... 1

1.3 Thesis Overview .. 2

Chapter 2 Background .. 3

2.1 Differential Coding .. 3

2.2 Direct Sequence Spread Spectrum ... 5

2.3 Related Work .. 5

2.4 Packet Structure ... 8

2.5 Preamble Detection Algorithm ... 9

2.6 Pulse Shaping .. 11

Chapter 3 Simulations ... 13

3.1 System Parameters ... 13

3.2 Bit-true simulation .. 15

3.3 Chapter Summary ... 21

Chapter 4 FPGA Implementation .. 23

4.1 Platform and Design Overview ... 23

4.2 Transmitter ... 25

4.3 Receiver .. 29

4.4 Noise generator .. 36

4.5 Chapter Summary ... 40

Chapter 5 Results .. 41

5.1 C Simulations .. 41

vi

5.2 FPGA Implementation... 49

Chapter 6 Conclusions and Future Work .. 55

6.1 Future Work .. 55

Bibliography .. 59

vii

List of Tables

Table 2.1: Summary of some wireless sensor nodes. ... 7

Table 2.2: Packet structure comparison ... 9

Table 4.1: Transmitter controller module state description .. 29

Table 4.2: Sign signal operation summary .. 31

Table 5.1: Simulation transmit signal window alignment... 42

Table 5.2: Mutually exclusive events that can occur when detecting preambles 43

Table 5.3: Sequences used in the simulation and hardware implementation 44

Table 5.4: SNR and chip energy values ... 45

Table 5.5: FPGA utilization for preamble detection emulator .. 49

Table 5.6: FPGA utilization for the prototype of the preamble detection system 52

ix

List of Figures

Figure 2.1: Constellation diagram for BPSK .. 4

Figure 2.2: Traditional packet structure ... 8

Figure 2.3: Presented packet structure .. 8

Figure 2.4: Block diagram of the preamble generator .. 9

Figure 2.5: Block diagram of the preamble detector .. 10

Figure 2.6: Block diagram of the preamble receiver... 10

Figure 3.1: Simulator block diagram ... 15

Figure 3.2: Transmit signals (a) first 5 symbols of the preamble sequence (b) first 5

symbols of the differentially-encoded preamble sequence (c) length 16 spreading

sequence (d) differentially-encoded preamble sequence multiplied by the spreading

sequence (e) zoomed in view of 5 chips (f) the real component of the 5 chips after it has

been sampled with amplitude of (g) the imaginary component of the 5 chips after

it has been sampled with amplitude of zero .. 18

Figure 4.1: Block diagram of the SignalMaster C67X FPGA [38] 24

Figure 4.2: Block diagram of the SM-ADAC Master II with programmable gain amplifiers

(PGA) [39] .. 24

Figure 4.3: 16-bit shift register chain used in the preamble generator 26

Figure 4.4: Block diagram of the 16-bit data generator for the transmitter 27

Figure 4.5: Transmitter controller module state diagram .. 28

Figure 4.6: Block diagram of the chip correlator with modified adders/subtractors 30

Figure 4.7: Modified Adder/Subtractor .. 31

Figure 4.8: Chip correlator example with spreading sequence equal to

1100111101000110 .. 32

Figure 4.9: Symbol storage module .. 33

Figure 4.10: Block diagram of the differential decoder .. 34

file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994363
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994366
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994367
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994368
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994369
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994370
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994370
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994370
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994370
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994370
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994370
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994373
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994374
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994375
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994376
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994377
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994378
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994378
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994379
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994380

x

Figure 4.11: Block diagram of the preamble symbol correlator and comparator 35

Figure 4.12: Block diagram of payload extractor .. 36

Figure 4.13: Block diagram of the noise generator for the simulator 37

Figure 4.14: Plot of probability density function of a Gaussian noise generator that uses

twelve 16-bit UDRV with linear y-axis .. 38

Figure 4.15: Plot of probability density function of a Gaussian noise generator that uses

twelve 16-bit ... 39

Figure 4.16: Plot of probability density function of a Gaussian noise generator that uses

48 16-bit UDRV with linear y-axis ... 39

Figure 4.17: Plot of probability density function of a Gaussian noise generator that uses

48 16-bit UDRVs with log y-axis .. 40

Figure 5.1: Simulation test sequence structure .. 42

Figure 5.2: Synchronous System Pmiss VS SNRp – Comparison of Pmiss performance of a

system with B=4 and L=4 to the ideal analytical calculated Pmiss for threshold values 29,

50 and 100. ... 46

Figure 5.3: Synchronous System Pfalse VS SNRp – Illustrates that the measured Pfalse for a

finite precision system are significantly different from the analytical Pfalse 47

Figure 5.4: Asynchronous System Pmiss VS SNRp – Compares the Pmiss performance of

different system .. 47

Figure 5.5: Asynchronous System Pfalse Vs. SNRp– Compares the Pfalse performance of

different system configurations for threshold values 29, 50 and 100. 48

Figure 5.6: Synchronous System Pmiss VS Frequency Offset – Illustrates the effects

frequency offset on Pmiss for different system configurations. SNRp is set to 16dB 48

Figure 5.7: Synchronous System and Hardware comparison Pmiss VS SNRp – Compares the

Pmiss performance of the hardware with the simulation results. 50

Figure 5.8: Synchronous System and Hardware comparison Pfalse VS SNRp – Compares the

Pfalse performance of the hardware with the simulation results 51

Figure 5.9: Packet detection FPGA board setup ... 52

Figure 5.10: The transmitter (top) and receiver (bottom) were implemented on separate

Lyrtech SM-C67X FPGA platforms. A black SMA cable carries the baseband signal from

the transmitter to the RF link. From the RF link a gray SMA cable carries the baseband

file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994381
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994382
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994383
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994388
file:///C:/Documents%20and%20Settings/eson/Desktop/EricSonThesis.docx%23_Toc241994396

xi

signal to the receiver and the oscilloscope. A screen shot of a received baseband signal

is shown on the oscilloscope. ... 53

Figure 5.11: Picture of the radio link comprised of 2 MAX2837 RF transceivers evaluation

kits. The baseband signal from the transmitter FPGA is sent to the RF transmitter board

(right) through the black SMA cable. The receiver board (left) sends the baseband signal

to the receiver FPGA through the gray SMA cable. .. 53

xiii

List of Symbols

 Preamble Sequence
 Differentially-Encoded Preamble Sequence
 Phase Angle

 Carrier Phase
 Sample Energy
 Length of the Spreading Sequence
 Length of the Preamble Sequence

 Spreading Sequence
 Chip Sequence
 Final Correlated Value
 Threshold Value

 Estimated Chip Sequence
 Estimated Preamble Sequence
 Estimated Differentially-Encoded Preamble Sequence
 Chip Timing Duration

 In-Phase Component of the Signal
 Quadrature Phase Component of the Signal

 Probability of Missing a Preamble
 Probability of False Detection of a Preamble

 Number of Bits to Represent the Input Signal
 Upper and Lower Limit of Values for the Signal

 Number of Consecutive Samples Required to Perform a Full Rotation

 Frequency Offset
 Chip Energy
 Number of Samples Per Chip

List of Abbreviations

AWGN Additive White Gaussian Noise
PSK Phase Shift Keying
BPSK Binary Phase Shift Keying
CDMA Code Division Multiple Access
DSSS Direct Sequence Spread Spectrum
MAC Medium Access Control
SNR Signal-to-Noise Ratio
LR-WPAN Low-Rate Wireless Personal Area Networks
SYNC Synchronization
DAC Digital-to-Analog Converter
ADC Analog-to-Digital Converter
ASIC Application-Specific Integrated Circuits
PNG Pseudorandom Number Generator
RF Radio Frequency
UDRV Uniformly-Distributed Random Variables
TP True Positive
FP False Positive
TN True Negative
FN False Negative
PLL Phase Locked Loop
PGA Programmable Gain Amplifier
LUT Look-Up Table
ASK Amplitude Shift Keying
ISI Intersymbol Interference

xvi

1

Chapter 1

Introduction

Data is the foundation on which knowledge is built. Our modern society invests

a lot of time and money to gather, process and securely store data. Gathering enough

useful data can be a very painstaking task. With the help of some technologies the

collection of data can be an automated process. One such technology is Wireless Sensor

Networks (WSNs) [1].

1.1 Wireless Sensor Networks

Wireless sensor networks are spatially distributed sensing nodes that

communicate with one another to accomplish a certain task. These networks have

caught the attention of many computer science and telecommunication researchers.

They offer unique problems in coordination, communication and integration.

The development of WSNs has enabled researchers in many different fields to

gather data in a manner that was once impossible. Companies and industries also use

WSNs to monitor and control their facilities. WSNs have found their way into a wide

range of applications and systems, each having their own unique requirements and

characteristics.

1.2 Wireless Sensor Node

Wireless sensor networks are composed of nodes or “motes”. A mote is a small

device that contains a wireless transceiver, a processor and at least one sensor to

measure anything from motion to temperature to electrochemical signals produced by

neurons inside the brain.

Often WSNs operate without the presence of a centralized base station. In such

a setting, synchronized communication between nodes becomes very difficult. It is

much more effective to use asynchronous random-access communication techniques. A

2

random-access system allows nodes to easily transmit packets at arbitrary times. The

problem arises at the receiver, where the packet must be detected. To enable the

receiver to extract the random data, a known sequence called a preamble, is inserted in

front of the packet. With a preamble the receiver only has to search for a known

sequence.

Typically deployed wireless nodes have low data rates and only transmit or

receive data intermittently with low duty cycles. Therefore these motes can usually

enter an inactive or “sleep” state, where they only have to listen to the channel for

packets. These wireless nodes are often battery-powered, and consequently have

limited operational lifetime. With the packet detector always on, it is imperative to

design a detection system with strong emphasis on low-power consumption. The thesis

describes the first implementation of a low-power, asynchronous, random-access

packet detection algorithm first introduced in [2] and [3].

1.3 Thesis Overview

This thesis is organized as follows. Chapter 2 starts by reviewing the

communication techniques used in this thesis. The next section describes the related

work in this field and compares them to the work in this thesis. This chapter also

provides a description of the preamble detection algorithm. The last section reviews

the effects of signal pulse shaping.

Chapter 3 describes the simulation performed on the preamble detection

algorithm and the system’s parameters.

Chapter 4 describes the implementation of the preamble detection system on

an FPGA platform. An overview of the design is given and is followed by a detailed

description of the transmitter, receiver and noise generator.

Chapter 5 is the last part of the main body. This chapter presents the results

gathered from the simulations and FPGA implementation.

Chapter 6 provides a conclusion and suggestions for future work.

3

Chapter 2

Background

The packet detection system implemented in this thesis employs two

communication techniques: differential coding [4] and direct sequence spread spectrum

(DSSS) [5]. Sections 2.1 and 2.2 provide an overview of these two subjects. A review of

relevant research is presented in Section 2.3. Sections 2.4 and Section 2.5 provide a

description of the packet structure and the preamble detection algorithm used in this

thesis. Section 2.6 describes the effects of signal pulse shaping when used in digital

communications.

2.1 Differential Coding

Differential encoding is classified under a group of coding schemes that use

memory. This means the output signal of the encoder depends not only on the current

input symbol, but also on the previous output. The encoder scheme for differential

coding is given in Equation (2.1). Here is the input signal to the differential encoder

and is the differential output. To decode a differentially coded sequence Equation

(2.2) is used. In Equation (2.2) is the differentially encoded input to the decoder and

 is the decoded output [4].

 (2.1)

 (2.2)

Differential coding is a technique used to offset the effects of phase ambiguities

introduced by the communication channel and oscillator mismatch. Rather than

mapping information directly onto individual symbols, differential encoding conveys

information in the phase difference between two successive symbols. For example, in

4

differential binary-phase modulation, a 1 is transmitted as a 180o phase shift relative to

the previous signal and a 0 is transmitted as a zero phase shift relative to the previous

signal. When implemented as a BPSK system, there is a 180o of separation between the

two constellation points in the complex plane as seen in Figure 2.1. This separation

allows for ± 90o phase ambiguity in the demodulated signal [5].

Another feature of differential coding is that the demodulator does not require

knowledge of the carrier phase because the phase of each received signal is compared

relative to the phase of preceding signal. To illustrate this, take any two sequential

demodulated outputs as shown in the following complex numbers.

 (2.3)

 (2.4)

In Equations (2.3) and (2.4), is the phase angle of the received signal and is

carrier phase. After performing differential decoding by multiplying these two signals

together, the resulting complex number is

 . (2.5)

Figure 2.1: Constellation diagram for BPSK

1

Q

0

I

5

From Equation (2.5), in the absence of noise, the resulting signal would have a phase

offset of [5].

Differential coding eliminates the need for a phase lock loop (PLL) circuit to

recover the carrier frequency, thereby reducing circuit complexity and lowering the

power consumption. The low power capabilities of a differential coded system has been

shown in [6], where a differential phase shift keying system was implemented that

operates below 1mW at rates up to 100 kb/s.

2.2 Direct Sequence Spread Spectrum

Spread spectrum is a technique used in telecommunications to distribute the

energy of a signal over a much wider signal band than the original signal. DSSS is a

technique to perform spreading, where the information signal is multiplied by a

pseudorandom sequence of 1s and -1s called chips. This pseudorandom sequence of

chips is called the spreading sequence and must be known at both the transmitter and

receiver. The resulting sequence has a higher rate than the original information signal.

The longer the spreading sequence, the wider the band that is occupied by the resulting

signal. At the receiver the signal is multiplied by the known spreading sequence and the

original signal is recovered. This process is called despreading.

Signal spreading has many advantages over a non spread signal. Having the

signal energy spread over a wider band is beneficial because the signal becomes more

tolerant to unintentional or intentional jamming [5]. Also, with the use orthogonal

spreading sequences, multiple users are able to share the same band. When decoding a

particular signal, the signals from other users are observed as noise [5]. Furthermore,

DSSS signals also have the advantage of being stealthy, since the resulting chip signal

can be below the noise floor [5]. Without knowledge of the spreading sequence, these

signals are difficult to decode or even to detect. In this thesis the noise tolerance and

the channel sharing capabilities of DSSS are exploited [5].

2.3 Related Work

Low power communication between wireless nodes is a fundamental issue that

is continually being researched and developed. The current dominant communication

interface that has been adopted by the wireless sensor network research community is

the 802.15.4-2006 Zigbee Standard [7]. Prior to the standardization of this low rate

6

wireless personal area network LR-WPAN, a wireless embedded system group at the

University of California, Berkeley made significant contributions to the development of

wireless sensor nodes [8] [9].

This wireless embedded systems research center under the guidance of David

Culler has produced several generations of wireless motes, most of which have been

developed using off-the-shelf components such as microprocessors and radio frequency

(RF) transceivers. The mote project involved an interdisciplinary group, with people

specializing in areas such as communications, sensors and signal processing. One of

their main contributions was developing TinyOS, an open-source operating system

designed for wireless sensor nodes to handle intensive concurrent operations with

minimal hardware requirements [10] [11]. TinyOS enabled the motes to adopt a

generalized wireless sensor node architecture. This architecture does not rely on

specific radio or processor technology; instead it arbitrates the relay of data between

computation and communication. The earlier generation mote, Mica, used TinyOS and

a hardware accelerator to offload wireless communication. The hardware accelerator is

a flash memory based microcontroller and is connected to the main processor through a

serial peripheral interface (SPI). Its role is to search for the start symbols to extract

packets [9] [8]. The Mica used a short-range amplitude shift keyed based radio

transceiver, RFM TR1000 [12]. Several generations of this mote were developed and

they incorporated faster microprocessors and better RF modules [13] [14]. Eventually

Spec was developed, which was a complete wireless sensor node system all integrated

on a single integrated circuit [9].

The Spec integrated RISC CPU, SRAM, RF transmitter, communication hardware

accelerator and ADC all in one package. This mote had a fairly simple packet detection

system. The communication hardware accelerator searches for a specific start

sequence, which can be configured up to a length of 24 bits. In order to detect the start

sequence, the communication hardware accelerator samples the channel at twice the

rate of the start symbols. When a start sequence is detected, a signal is sent to the

microprocessor and the packet data is extracted. During the early stages of

development of these motes and TinyOS, a standard communication protocol to

address the needs of wireless sensor nodes had not yet been created. However, soon

7

after the completion of the Spec project at Berkeley, the Zigbee data link layer, which

operates over top of the IEEE 802.15.4, was standardized [15].

By 2003, Zigbee had filled a void in the communication protocol standards. It

provided a communication platform with a low data rate and low power, with the

addition of providing secure networking. The standard was promoted by an alliance of

25 firms and many research groups began developing Zigbee-compliant transceivers as

it quickly gained popularity [16] [17] [18] [19].

Zigbee is now the most widely used communication protocol for wireless sensor

networks [20]. Many commercially available motes use Zigbee as their primary

communication interface [21] [22] [23] [24]. There is a wide selection of Zigbee

compliant RF-ICs [25] [26] [27] [28] [29] [30] [31]. These RF-ICs have a large range of

features; some are just simple transceivers, while others have integrated

microprocessors, memory and ADCs. The following section introduces the packet

structure used in this thesis and compares it to the one used in the IEEE 802.15.4-2003

standard. A summary of some of the motes developed at Berkeley and some

commercially available nodes are given in Table 2.1.

Table 2.1: Summary of some wireless sensor nodes.

Module
Name

Communication
Interface

Frequency
Band

Data
Rate

Note

Mica [15] [8] ASK and
TinyOS

916.5 MHz. 50 Kbps Uses RFM TR1000
[12] and TinyOS

Mica2 [15]
[14]

ASK and
TinyOS

868/916 MHz 76 Kbps Uses ChipCon
CC1000 [13]
and TinyOS

Spec [15] [9] ASK and
TinyOS

900 MHz 100Kbps ASIC

Miniaturized
Mote [32]

IEEE 802.15.4
Zigbee

2.4-2.4835 GHz ChipCon CC2430

MicaZ [23] IEEE 802.15.4
Zigbee

2.4-2.4835 GHz 250Kbps Mica with ZigBee

TelosB [24] IEEE 802.15.4
Zigbee

2.4-2.4835 GHz 250Kbps Open Source
Platform

Imote2 [22] IEEE 802.15.4
Zigbee

2.4-2.4835 GHz 250Kbps Advanced wireless
sensor node
platform

IRIS [21] IEEE 802.15.4
Zigbee

2.4-2.4835 GHz 250Kbps Large Scale Sensor
networks (1000+
nodes)

8

2.4 Packet Structure

A traditional packet structure such, as the one used in IEEE 802.15.4 standard

LR-WPANs, is shown in Figure 2.2. In this packet structure the preamble facilitates the

detection of the packet. It is followed by a synchronization header (SHR), which is used

to synchronize and lock onto the bit stream after the packet has been detected.

Preamble SHR PLH Payload

Figure 2.2: Traditional packet structure

Preamble PLH Payload

Figure 2.3: Presented packet structure

Figure 2.3 shows the packet structure used in this thesis conceived by a research

group in the High Capacity Digital Communications Lab at the University of Alberta [2]

[33]. Note how it is similar to the one used in the IEEE 802.15.4 standard. The packet

detector in the system is able to perform detection and synchronization concurrently,

and therefore an SHR is not required in the packet structure.

The physical layer header (PLH) contains information to facilitate the extraction

of the payload. This information usually consists of frame length and packet ID. The

PLH is followed by the payload, which contains the medium access control (MAC)

information and the data. The PLH and payload can take on a large variety of data

formats and they do not necessarily have to follow the same format of the preamble

section. Table 2.2 summarizes and compares the packet format presented in this thesis

with the packet format used in [7]. This thesis only deals with the detection of the

preamble and the synchronization to the bit stream.

9

Table 2.2: Packet structure comparison

 802.15.4 BPSK
Packet Format

Presented
Packet Format

Description

Preamble 32 symbols 40 symbols
Allows the device to detect an
incoming packet

Synchronization
Header

8 symbols None
Allows the device to synchronize
and lock onto the data stream

Physical Layer Header 8 symbols Undetermined Contains frame information

Payload Variable Variable Carries the data

2.5 Preamble Detection Algorithm

Each symbol in the preamble sequence of length is given a value of 1 or

-1 according to a given maximum length sequence [4]. The preamble sequence is then

differentially encoded to form sequence . Next DSSS is performed on each symbol in

by up sampling times and multiplying by a pseudorandom spreading sequence . The

result is a chip sequence of length . A block diagram of how the preamble

sequence is generated is given in Figure 2.4. In this thesis the length of the preamble

sequence is 40 and the length of the spreading sequence is 16. These two values

are chosen so that the preamble length is similar to that of the packet structure in the

IEEE 802.15.4 standard [7].

In the receiver a threshold-based correlator is used to detect preambles. The

received baseband signal contains both in-phase I and quadrature Q components.

These two signals are correlated and despread with the known spreading sequence .

The resulting estimated symbol sequence is differentially decoded to give the

Figure 2.4: Block diagram of the preamble generator

10

estimated preamble sequence . The resulting estimate of preamble sequence is then

correlated with the known preamble sequence . The final correlated value is

compared to a threshold to determine if a preamble has been detected. When a

preamble has been detected the resulting correlation peak is used to synchronize the bit

stream. Figure 2.5 shows a block diagram of the preamble detector.

To deal with sampling timing issues, two sample points are taken for each chip.

The two points are separated by , that is half the duration of a chip. This ensures

that even in the worst case a sufficient sample point is taken [33]. Since it is not known

which sample point is better, both points are sent to two individual streams for

correlation. A preamble detection occurs when either one of the streams detects a

preamble. Figure 2.6 shows the two streams to correlate the two samples coming from

the sampler and analog to digital converter. To provide samples for both detection

streams, the sampler and ADC operates at 2 times .

Symbol
Despread

Chip
Despread

Chip
Despread

Differential
Decoder

Threshold

Figure 2.5: Block diagram of the preamble detector

Sampler

Preamble
Detector

Preamble
Detector

ADC

OR

Figure 2.6: Block diagram of the preamble receiver

11

2.6 Pulse Shaping

In digital communications, bits or symbols are represented using pulses. By

manipulating the pulse’s shape we can adjust the bandwidth required to transmit a

digital signal. Additionally, pulse shaping can reduce intersymbol interference (ISI) [34].

 The Nyquist criterion addresses ISI. It stipulates that a pulse shape must pass

through zero at time , where and is the bit duration. A

pulse shape with this property is referred to as a Nyquist pulse. Using a Nyquist pulse

reduces ISI since at the sampling interval there is zero contribution from neighboring

pulses [34].

There are many different pulse shapes that satisfy the Nyquist criterion for ISI,

each with their own unique characteristics. The most common pulse shapes are

provided in Table 2.3 and Figure 2.7 [34]. The rectangular pulse is simple and easy to

generate. However, its spectrum has several high sidelobes which can interfere with

signals in adjacent frequency bands. The sinc pulse has a frequency response in which

all the energy is confined in a very narrow region of the spectrum. However, the sinc

pulse is susceptible to ISI when sampling instants are not perfectly aligned to , since

there are significantly large sidelobes in the time domain signal. The raised cosine pulse

has a roll-off factor that allows users to suppress the sidelobes in the time domain.

Furthermore, the raised cosine pulse has a narrow frequency response.

At this current development stage we are not concerned with spectral

efficiency. Therefore, we have decided to implement a system using a simple

rectangular pulse.

Table 2.3: Common pulse shapes

Rectangular Pulse

Sinc Pulse

Raised Cosine Pulse

12

Rectangular Pulse

Time Frequency

Sinc Pulse

Time Frequency

Raised Cosine Pulse

Time Frequency

Figure 2.7: Common pulse shapes and their spectra. The x-axis is normalized to bit duration and bit
rate

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4

13

Chapter 3

Simulations

Performance of the system was measured with analytical studies and

simulations in [33]. The results formulated in [33] were derived using high-precision

floating-point numbers. To understand the effects of having bit-limited fixed-point

operations, such as those available on a hardware implementation, further research is

required.

 Since the targeted platform for this packet detection system is a wireless mote,

it is very desirable to build a system which consumes as little energy as possible. To

build such a system requires limiting the complexity and size of logic circuits. One

effective way to reduce size of logic circuits is to use fewer bits to represent the signals.

Signals with a low bit precision require smaller arithmetic circuits, such as adders and

multipliers. However, using fewer bits results in data loss, which in turn reduces the

performance of the system. Simulations are used to determine the tradeoffs between

hardware complexity and system performance. The following sections provide a

detailed description of the system parameters and the simulations used to study the

effects of quantization on the preamble detection algorithm.

3.1 System Parameters

There are many ways the preamble detector system can be configured. This

section describes the different parameters that influence the performance of the

system. Before explaining the parameters of the system, this section first defines how

performance is measured.

There are two metrics that measure the performance of the preamble detector

system: the probability of missing a packet and the probability of a false

detection . Reducing is more crucial, since allowing a packet to pass

undetected can lead to the loss of data.

14

Occasionally, when the system falsely detects a packet when one does not

actually exist, it would result in an extracted payload that does not make any sense.

This mistaken payload can be expected to be easily recognized by a high control layer of

the communication system and simply be discarded. False detections are a nuisance,

but do not usually degrade the overall reliability of the system. The only circumstance

where poses a problem is when it becomes high enough such that the system

starts randomly guessing if a packet is present or not. For this to happen, the rate

needs to be approximately 50%. These two performance measures, and ,

are directly related to correlation peak threshold parameter .

A correlated peak for a certain sequence of chips and symbols is compared to

the threshold parameter . If a correlated peak is greater than the detector

responds with a signal to indicate that a preamble has been detected and a payload is

ready to be extracted. The can be reduced by increasing the value of , but in

doing so, the likelihood of missing a preamble increases. On the other hand, if we lower

the value of , the increases and decreases. This strong relationship

between the threshold and system performance, allows the and to be easily

regulated by adjusting the single parameter .

The hardware implementation is strongly influenced by the number of bits

used to represent the incoming signal. Using fewer bits can decrease the size of the

arithmetic units required in the hardware implementation of the preamble detector.

This, however, comes at the cost of decreasing the number of different values the

preamble detector can receive. Having fewer values to represent the signal decreases

the precision of the data entering into the detector, which can lead to degraded system

performance. Another parameter that is closely related to is the upper and lower

limit of values that the incoming signal can take. Together these two parameters

determine the bin width of the ADC using Equation (3.1). For a fixed , a larger allows

the system to represent a wider range of numbers, but with less precision. The

converse is also true, that a smaller causes the system to represent a narrower range

of numbers, but with increased precision. The combination of these two parameters

and , significantly influences the performance of the system as well as the hardware

implementation.

15

 (3.1)

The final parameters for the preamble detection system simulator are related to

the distortion caused by the emulated channel. The channel emulator can be adjusted

using the following parameters: signal-to-noise ratio (SNR), frequency offset and

frequency drift. The noise generator used in the simulation produces additive white

Gaussian noise (AWGN). The noise power is constant, so to change the SNR value the

energy of the samples is adjusted. The simulator is also able to add a random frequency

shift to the transmitted signal. There are two parameters to introduce frequency

distortion to the signal. The first is a phase offset, which shifts each sample by a given

phase increment between 0 and . The second parameter introduces a frequency

offset which causes a continuous frequency phase rotation in the signal.

Each of the parameters described in this section is used to perform a variety of

simulations to determine a good configuration for the hardware implementation. The

following section describes the simulator in detail.

3.2 Bit-true simulation

 A bit-true simulation is a program that emulates the same bit operations that

occur in hardware. The analytical and simulation results from [33] provide ideal

performance curves using high-precision floating-point numbers. The effects of

converting from floating-point numbers to bit-limited fixed-point quantized numbers

are investigated using bit-true simulations. These simulations provide a better picture

of how a system performs when implemented in hardware. The simulation is built in

ANSI C because C programs can be easily compiled and executed quickly on different

platforms. There are four main components in the preamble detector simulator:

channel emulator, transmitter, receiver and statistics monitor. These components are

shown in the block diagram in Figure 3.1 and are explained in detail in the following

sections.

Transmitter
Channel
Emulator

Receiver
Statistics
Monitor

Figure 3.1: Simulator block diagram

16

3.2.1 Channel Emulator

The channel emulator consists of two main components: the AWGN generator

and the frequency shifter. The AWGN generator is implemented using the Box-Muller

transform [35]. The Box-Muller transform creates two independent standard normally-

distributed random numbers using uniform random numbers. To generate the uniform

random numbers we use the Mersenne Twister uniform pseudorandom number

generator [36].

The frequency shifter is implemented with Equations (3.2), (3.3) and (3.4).

Equations (3.2) and (3.3) produces the real and imaginary components of the frequency

shifting function , where is an index value from 1 to the number of samples in

the transmitted sequence. The two parameters that are used to perform the frequency

shifting are and . The frequency offset is a constant parameter that can be set

to any value ranging from 0 to . To simulate frequency drift the simulator uses

which is the number of consecutive samples required to perform a full rotation in

the transmit signal. The frequency shift is applied by multiplying the transmit signal

 by the frequency shift function , as shown in Equation (3.4).

(3.2)

(3.3)

 (3.4)

3.2.1 Preamble Generator

The preamble generator is implemented in three components: differential

encoder, spreader and up sampler. The preamble sequence and the spreading

sequence are filled with a random set of 1s and -1s.

The differential encoder takes the preamble sequence and creates the

differential-coded sequence using Equation (2.1). To get the sequence started the

first value in is set to the first value . The first five bits of and are shown in Figure

3.2a and Figure 3.2b, respectively.

17

The next step is to spread the sequence by . At this point all values are

either 1 or -1. An example of a length-16 spreading sequence is shown in Figure 3.2c. In

Figure 3.2d the first five symbols of the differentially-coded spreading sequence in

Figure 3.2b is spread with the spreading sequence in Figure 3.2c. Next we simulate the

signal as it moves into the analog domain. To achieve this we up sample each chip by a

factor of In this thesis we have chosen to be 8. Figure 3.2e shows a subset of the

chips from Figure 3.2d. Each sample is now represented by both a real and an

imaginary component. The real component of each sample is multiplied by the sample

energy value , which is given in Equation (3.5) and the imaginary component of each

sample is set to zero. Figure 3.2f and Figure 3.2g shows the real and imaginary

components of the sampled chip sequence in Figure 3.2e. The result is our transmitted

signal vector with 640 chips each with 8 samples and with value at .

(3.5)

The transmit signal then enters into the channel emulator where noise and

frequency distortion can be added. After the signal leaves the channel emulator, the

preamble sequence is completely buried in the noise. The next step is for the signal to

be decoded by the preamble detector.

18

1

-1

1

-1

-

1

-1

1

-1

1

-1

(a)

(b)

(c)

(d)

(e)

(f)

-

(g)

t

t

t

t

t

t

t

Si
gn

al
 L

ev
el

Figure 3.2: Transmit signals (a) first 5 symbols of the preamble sequence (b) first 5 symbols of the
differentially-encoded preamble sequence (c) length 16 spreading sequence (d) differentially-encoded
preamble sequence multiplied by the spreading sequence (e) zoomed in view of 5 chips (f) the real
component of the 5 chips after it has been sampled with amplitude of (g) the imaginary component
of the 5 chips after it has been sampled with amplitude of zero

19

3.2.3 Preamble Detector

The preamble detector’s role is to correlate a given window of the transmitted

signal with the preamble sequence and the spreading sequence . The correlated

values are compared to the threshold G to determine if a preamble was present or not.

The first step is to perform a matched filter on the transmitted signal. The

matched filter is given in Equation (3.6) . The chip rate is known by the receiver, but the

detector has no information that can assist it in picking the sample timing with the

optimal signal strength. However, it has been shown in [33] that it is sufficient to

perform two concurrent detections on two sample points separated by half the chip

interval. Using two sample points yields similar performance to that of a system which

samples at the optimal signal strength.

Before the signal can be correlated, we need to move back to the digital domain

by binning the selected received samples. Each sample, when it first enters the binning

stage, is compared to the sample limit which is the maximum/minimum allowed

value. Positive sample values that are greater than , are reassigned to and

similarly negative sample values that are less than – , are reassigned to . Before

binning can performed, the bin width needs to be determined, which is done using

Equation (3.1). After the samples are binned they can be represented digitally by bits.

To represent the digital binary values we assign the sample values to integers between

 to which is the range of a two’s complement binary number with

bits. Equation (3.7) is used to perform this mapping from sampled values to integers.

After the floating-point sample values are converted to integers, the system can begin

to perform correlation.

 (3.6)

 (3.7)

20

The sample values are first correlated with To perform this task the simulator

takes the first chip samples and multiplies it by The results are then summed

together to form an estimate of the first symbol estimate. Next the simulator moves on

to the next chips to obtain the next symbol estimate. This continues until the system

has enough estimated symbols to represent a preamble of length The system is now

ready to perform differential decoding on the estimated differentially encoded

preamble sequence . Equation (2.2) is used to perform differential decoding. Since

these are complex signals, it is normally required to perform four multiplication

operations. However, the algorithm only requires the real component of the signal after

the differential decode. Thus the simulation only performs the multiplication required

to obtain the real component of the signal; this is shown in Equation (3.8). After

differential decoding, the system obtains an estimate of the preamble sequence

When performing differential decoding, the first symbol in is skipped since it does not

have a preceding symbol. Therefore the length of is one symbol shorter than the

length of . The next step is to correlate with the known preamble sequence This

is done by multiplying each value of by . Since the preamble sequence is of length

and we only have estimated preamble sequences, the system ignores the first

value and starts correlating at the second value After the multiplications, the

products are all added together to obtain a final correlated value . This value is

compared to the threshold value to determine if a preamble was detected or not.

 (3.8)

Each of the two sample values per chip are correlated in two separate

processing streams. Both processing streams perform the same computations on their

own sample values. A preamble is declared to be detected if either stream produces a

correlation value greater than the threshold .

21

3.2.4 Statistics Monitor

The statistics monitor module has two main roles. Its first role is to set up and

test signals for preambles and the second is to keep track of the statistics. Details about

the statistics monitor are given in Section 5.1.

3.3 Chapter Summary

Simulating a design in software is a necessary step when implementing a new

communication algorithm in hardware. These bit-true simulations provide a good

understanding of how the system performs in hardware. More specifically, simulation

results enable us to analyze the tradeoffs between different system parameters. The

following chapter describes the hardware implementation of the preamble detection

system.

23

Chapter 4

FPGA Implementation

A hardware implementation brings us one step closer to realizing the detection

algorithm in a real system. Field-programmable gate arrays are excellent platforms to

develop initial hardware prototypes. Their easy reconfigurability and versatility make

them very effective for developing and verifying hardware designs. Although their

clock speeds are lower than those of an ASIC design, they are more than sufficient for

our system. These reasons have led to the decision of implementing the preamble

detection system on FPGAs.

The following section provides an overview of the FPGA platforms and tools

used to design the preamble detection system. The main body of this chapter contains

a detailed description of each component implemented on the FPGAs.

4.1 Platform and Design Overview

The preamble detection system was implemented on two SignalMaster-C67X

FPGA platforms by Lyrtech [37]. Each of these platforms contains a Xilinx XC2V8000

Virtex II FPGA [37]. An onboard microcontroller is used to communicate to the FPGA

and other peripherals including an SM-ADAC Master II, which has dual high performance

ADCs and DACs with programmable gain amplifiers. Block diagrams of the SignalMaster

C67X FPGA platforms [38] and the ADAC Master II [39] are provided in is shown in Figure

4.1 and Figure 4.2, respectively. Also included is an onboard Ethernet controller which

allows access to the platform through a local area network.

24

Figure 4.1: Block diagram of the SignalMaster C67X FPGA [38]

Figure 4.2: Block diagram of the SM-ADAC Master II with programmable gain amplifiers (PGA) [39]

 AD6645
 Single 14-bit
 105MSPS
 ADC

 AD6645
 Single 14-bit
 105MSPS
 ADC

 AD9767
 Dual 14-bit
 125MSPS
 DAC

PGA

PGA

PGA

PGA

V
IM

-2
 C

o
n

n
ec

to
r

To
 C

ar
ri

er
 B

o
ar

d

Fr
o

n
t

P
an

el
 C

o
n

n
ec

ti
o

n

 DSP
 Texas
 Instruments
 TMS320C6201B

 FPGA
 Xilinx
 Virtex II
 XC2V8000

 C6X EMIF BUS

GPIO(59:0) Header

VIM-2
MEZZANINE

 B

iF
IF

O
 N

o
d

e
A

 B

iF
IF

O
 N

o
d

e
B

 V
IM

 B
U

S

 Buffers

25

Our implementation consists of 3 main components: transmitter, noise

generator, and receiver. The complete system was originally developed on one

SignalMaster-C67X platform. It was later split onto two FPGA platforms, one containing

the transmitter and the other the receiver and noise generator. With the receiver and

transmitter on two separate boards we are able emulate a real asynchronous system

with independent clocks. To connect the two systems together we use the ADAC

Master II. The ADAC Master II is used to send the baseband signal from the transmitter

to the receiver board. This link is configured so that a RF front-end can be added to

create a wireless link.

Both the transmitter and receiver board are controlled using a host computer.

The host is used to initialize the system, which includes enabling the system and setting

the chip energy on the transmitter and the threshold value on the receiver. Other

than the communication line for the I and Q signals, there is no coordination between

the transmitter and receiver platform. Therefore in order to collect statistics for the

system, we imbedded real data in the payload section of the transmitted signal. The

data consists of a simple 16-bit counter which is incremented for every transmitted

preamble. The payload is extracted by the receiver and sent to the host computer to be

analyzed. Section 5.2 describes how the data is processed.

From the simulation results we have determined that it would be sufficient to

implement a system which uses only 2 bits to represent the I and Q signal. The

following sections will describe the implementation of a preamble system.

4.2 Transmitter

Our transmitter contains three main components: preamble generator, data

generator and control module. The control module produces the transmission signal

using the preamble generator and the data generator. These components are discussed

in more detail in the following sections.

4.2.1 Preamble Generator

The preamble generator is implemented using the shift registers available on

the FPGA. Each slice on the FPGA can be configured as a 16-bit shift register with clock

enables. Conveniently, our system uses a 16-bit spreading sequence, which allows each

symbol to fit perfectly into a slice. This allows for an efficient implementation of the

26

preamble generator using a chain of 40 16-bit shift registers. The preamble sequence is

hard coded into the shift registers when the FPGA is programmed. The output of these

chained shift registers is connected to the output of the preamble generator as well as

back into the input the shift register chain. This output feedback loop allows the

preamble generator to be ready again after 640 bits of the preamble have been shifted

out. Figure 4.3 illustrates the 40 16-bit chained shift registers.

4.2.2 Data Generator

The implemented data generator is specifically designed to create a payload

that can be extracted by the receiver. Each preamble is attached with a 16-bit number

that is embedded into the payload. The number comes from a simple counter, which

increments every time a new preamble has been transmitted. Once the 16-bit counter

reaches 65535, which is the maximum value, it wraps around back to 0. More detail on

how this payload is used to gather statistics for the system is given in Section 5.2 .

The chip energies for the preamble and the data are the same, which makes it

very difficult to extract the payload without any error. So to increase the SNR of the

payload data, the system uses a simple repetition code. Each bit in the counter is

 b

1

b

2
b

3

b

14
b

15
b

16

 b

1
b

2
b

3

b

14
b

15
b

16

 b

1
b

2
b

3

b

14
b

15
b

16

 b

1
b

2
b

3

b

14
b

15
b

16

 b

1
b

2
b

3

b

14
b

15
b

16

 b

1
b

2
b

3

b

14
b

15
b

16

Preamble
Output

15

 14

 13

2

 1

 0

0

0

1

2

37

38

39

16-bit shift register

Figure 4.3: 16-bit shift register chain used in the preamble generator

27

repeated 4 times, which produces an approximate gain of 6 dB. The resulting 64

symbols are then differentially encoded to compensate for phase offset in the payload.

The data generator module outputs a new chip every clock cycle. Since each

symbol is repeated 4 times and there are 16 chips per symbol, the complete 16-bit data

payload requires 1024 chips. The spreading sequence and its complement are

stored in two different 16-bit shift registers. As the spreading sequence is shifted out,

the output of the shift register is fed back to the input to keep the spreading sequence

for the next symbol. At every positive clock edge the output chip value is set to either

or , depending on the input data. A 16-bit multiplexor is used to sequentially select

each bit of the input data. The output of the 16-bit multiplexor is sent to a differential

encoder. To keep track of which bit to select, a 10-bit counter is used. Since each bit is

repeated four times and each symbol has 16 chips, every new data bit requires 64 clock

cycles. Thus the select lines for the multiplexor require a 4-bit counter that counts up

every 64 cycles. To generate this counter we connect the select lines of the multiplexor

to the 10th, 9th, 8th and 7th bit line of the 10-bit counter. After the data generator

outputs all 1024 chips for the data section, the counter wraps around back to zero and is

ready for the next 16-bit input data. All the components of the data generator are

designed to return back to the initial state after all 1024 chips of the data have created.

Figure 4.4 is a block diagram of the data generator.

16-Bit Input Data

16 to 1 MUX
4

10-bit Counter

10 9 8 7 6 5 4 3 2 1

Clock

2 to 1
MUX

M

UX

 b1

b2 b3 b14 b15 b16

 b’1

b’2 b’3 b’14 b’15 b’16

Output

REG

Differential Encoder

Figure 4.4: Block diagram of the 16-bit data generator for the transmitter

28

4.2.3 Control Module

The role of the control module is to coordinate the generation of a packet. To

perform this task the control module uses a finite state machine and several counters.

The finite state machine works together with the counters to keep track of the number

of the different chips that are transmitted. There are three different types of chips that

the counters need to keep track of: preamble, payload and delay. The packet consists of

640 preamble chips and 1024 data chips. Delay chips are added onto the end of the

packet to create space between preambles so that the host and the receiver have more

time to process statistical data. There is a two-cycle latency to enable and disable the

preamble and data generators. For this reason we require delay states in the control

module finite state machine to ensure that all of the chips are correctly transmitted.

The state transitions are depicted in Figure 4.5 and the description of each state is in

Table 4.1. The 16384-chip delay in Figure 4.5 was chosen arbitrarily and can be

modified to meet timing constraints.

S0 S1 S2 S3

S7 S6 S5 S4

Start
Transmission

Preamble
Chips = 638

Data
Chips = 1022

Preamble
Chips ≠ 638

Delay
Chips = 16384

Delay
Chips ≠ 16384

Data
Chips ≠ 1022

Figure 4.5: Transmitter controller module state diagram

29

Table 4.1: Transmitter controller module state description

State Description

S0 Wait in this state until the start transmission signal is received. This is also the
default and starting state.

S1 Enable the preamble generator and transmit the preamble chips.
Stay in this state until 638 chips are transmitted.

S2

Transmit the second last chip of the preamble.
Enable the data generator and disable the preamble generator.

S3 Send out last preamble chip.

S4

Transmit the data chips. Stay in this state until 1022 payload chips are
transmitted.

S5 Disable the data generator and transmit the second last payload chip.

S6 Transmit the last payload chip.

S7 Stay in this state until the system transmits 16384 delay chips. Then go back to
the wait state.

The generated transmit sequence is sent to the onboard DAC on the ADAC

Master II. Each binary chip in the packet is converted to either one of two voltages and

sent out on a wire to the receiver platform. The voltage levels can be adjusted using the

integrated programmable gain outputs on the ADAC Master II boards. Currently the

system only transmits data on the in-phase signal. However the system is designed to

utilize both the in-phase and the quadrature component of the signal. The decoding of

the packet is described in the Section 4.3

4.3 Receiver

Our packet receiver contains two main components: the preamble detector and

the payload extractor. The preamble detector correlates the incoming signal. When a

packet has been detected, the preamble detector determines a synchronization point at

the start of the data for the payload extractor. With knowledge of where the data

begins the payload extractor is able to retrieve the packet data. After the data has been

extracted it is sent to the host computer for analysis. The following two sections

describe in detail how the preamble detector and payload extractor are implemented.

4.3.1 Preamble Detector

The preamble detector can be split into four components: chip correlator,

differential decoder, symbol correlator, and threshold comparator. The chip correlator

and differential decoder have two different data paths for both the in-phase and

30

quadrature components of the signal. The differential decoder combines the two signal

paths and the resulting values are correlated and compared with a threshold G. A block

diagram of the preamble detector is shown in Figure 2.5. With a fully pipelined

architecture the preamble detector is able to produce a new correlated value every time

a new chip sample is clocked in.

Figure 4.6 shows the flow of data in the chip correlator. At every positive clock

edge a new 2-bit chip sample is driven into the 16 stage 2-bit shift registers. As each

new data sample is shifted into the registers, a new sequence is created and has to be

correlated. Every time a new sequence appears in the shift registers, new values are

calculated at each level and stored in the register layer above. This pipelined tree

structured design produces a new correlated symbol at every clock cycle. Since there

are 4 layers in this tree structure, there is a latency of 4 cycles. Normally before

summing the values of the shift registers you need to multiply each sample by the

spreading sequence.

The process of multiplying the samples by the spreading sequence can be

simplified to just changing the sign of the samples whenever the spreading sequence

Modified Adder/Subtractor

2-bit
Register

Input Chip Sample

3-bit
Register

5-bit
Register

4-bit
Register

Sixteen 2-bit shift registers

6-bit Correlated Symbol

Figure 4.6: Block diagram of the chip correlator with modified adders/subtractors

31

values is equal to -1, since the system uses BPSK. Changing the sign for a 2’s

complement number is accomplished by inverting the bits and adding one to the

resulting number. To avoid this step we use a modified adder/subtractor, instead of a

simple adder, as shown in Figure 4.7. Changing an adder to an adder/subtractor on a

FGPA requires very little additional logic. Along with the normal input and output

signals associated with an adder/subtractor, this modified version also accepts a sign

change signal for each of the two input values. If the sign change signal is 1, then the

associated value is what it should be. However, if the sign change signal is 0, then the

corresponding value is inverted. Table 4.2 provides a summary of how the modified

adder/subtractor operates. There are 4 different cases, as shown in Table 4.2. If the

sign change signal of input values A and B are the same then we add the two values. On

the other hand if the sign change signal of the two input values are different then we

subtract B from A. The resulting sign change is always the same as the sign change of A.

The sign change signal for each value is initially assigned so that it corresponds to the

spreading sequence. The sign change signal is carried through the adder tree structure.

Figure 4.8 shows an example of what operations would occur at each modified

adder/subtractor when the spreading sequence for the system is 1100 1111 0100 0110.

Table 4.2: Sign signal operation summary

A’s Sign
Change

B’s Sign
Change

Operation Resulting Sign
Change

0 0 A+B 0

0 1 A-B 0

1 0 A-B 1

1 1 A+B 1

ADD/SUB

A B

Result

A’s Sign Change

 A’s sign

B’s Sign Change

Figure 4.7: Modified Adder/Subtractor

32

The output of the chip correlator goes to a storage module which comprises 16-

bit shift registers. We chose to use 16-bit shift registers because they are readily

available on the Xilinx XC2V8000 Virtex II FPGA. Utilizing these 16-bit shift registers we

are able to produce a fast and resource efficient storage module for the symbols. The

shift registers are configured as shown in Figure 4.9. A set of 6 parallel 16-bit shift

registers is required to store the 6-bit symbols coming from the chip correlator. There

are 39 sets of 16-bit shift registers, which are all connected in a long chain to form the

symbol storage module.

Sign Change

1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1

1 0 1 1 0 0 0 1

1 1

1

0 0

0

1

Spreading sequence

Sign Change

Sign Change

Sign Change

Sign Change

Figure 4.8: Chip correlator example with spreading sequence equal to 1100111101000110

33

The chip correlator produces consecutive symbols every 16 clock cycles.

Therefore in order to get sequential symbols that make up a preamble we take every

other 16th value in the symbol storage module. To do this we take the output of each

shift register set along with the output from the chip correlator and feed it into the

differential decoder.

Both the chip correlator and symbol storage module operate independently on

the in-phase and quadrature paths. The differential decoder combines both these paths

by performing complex variable multiplication on every consecutive pair of symbols as,

shown in Figure 4.10. Performing complex variable multiplication requires four

multiplications and two additions. However, the algorithm is only concerned with the

real component of the product, therefore the system only needs to perform two

multiplications and one addition, as shown in Equation (3.8) and Figure 4.10. After

performing differential decoding the system is left with 39 estimated symbols of the

preamble.

 16-bit Shift Registers

 16-bit Shift Registers

 16-bit Shift Registers

 16-bit Shift Registers

 16-bit Shift Registers

 16-bit Shift Registers

16-bit Shift Registers

Differential
Decoder

Symbols From Chip Correlator

Figure 4.9: Symbol storage module

34

 The next step is to correlate the estimated preamble symbols with the known

preamble sequence . The module to perform this correlation is very similar to that of

the chip correlator. The difference is that we have 39 13-bit symbols to correlate. With

39 values to add together we cannot form a perfect binary tree such as the one found in

the chip correlator module. In this case we have to settle for a slightly less efficient

structure. The correlation tree structure is show in Figure 4.11. A perfect binary tree

structure is built for the first 32 values. The remaining 7 values are summed with a

partial tree structure. Delays are added to the structure so that all values for a

particular preamble are added together. With the symbols lining up in each layer we

are able to pipeline the symbol correlator. The resulting sum at the top of the tree

structure is our estimated correlation peak .

 The final module on the preamble detector is a comparator. It compares the

correlated value with a given threshold . If is greater than , a preamble is declared

detected and the signal is sent to the payload extractor to decode the subsequent

payload data.

Estimated Differentially
Encoded Preamble Symbols

Estimated Differentially
Decoded Preamble Symbols

Re

Im

}

}

}

}

Figure 4.10: Block diagram of the differential decoder

35

4.3.2 Payload Extractor

When a preamble has been detected it sets a flag bit to indicate that the

payload is ready for extraction. The same chip correlator module used in the preamble

detector is used to correlate the symbols for the payload. Since the payload consists of

16-bits, with each bit repeated 4 times, we need to add the 4 symbols together. The

symbols come serially from the differential decoder and are shifted into shift registers

so that they can be summed in parallel. Summation is done with a small adder tree

structure, as shown in Figure 4.12. The sign of the each sum represents one bit of the

payload and is shifted into a 16-bit shift register for storage until the complete payload

is extracted. To control the flow of data a counter is used. Every 16 chip clock periods,

Delay
and
Sign

Extend 13-bit
Register

17-bit
Register

14-bit
Register

39 13-bit Preamble Symbols

18-bit
Register

16-bit
Register

15-bit
Register

Delay and Sign
Extend

Delay and Sign
Extend

 Preamble
Detected

Figure 4.11: Block diagram of the preamble symbol correlator and comparator

36

a symbol from the chip correlator is driven into the shift registers. After 4 new symbols

have been shifted into the registers, another clock signal triggers data out of the adders

and into the payload shift registers. The value of the counter is monitored to determine

the end of the payload.

4.4 Noise generator

The noise generator creates Gaussian noise samples by adding 48 uniformly

distributed random variables (UDRV) together. To generate the UDRV we use the

Tausworthe algorithm [40].

The Tausworthe pseudorandom number generator (PNG) provides the system

with a new 32-bit UDRV every clock cycle. The noise generator instantiates two PNGs

with different seed values. Each 32-bit UDRV is split in half to provide the noise

generator with four 16-bit random vectors every clock cycle. The four 16-bit UDRV, are

summed using a two stage adder tree and the result is fed into an accumulator. Using a

pipelined architecture, the PNG is able to create a new sample every 12 cycles by

combining 48 16-bit UDRV. A block diagram of this noise generator is given in Figure

4.13. The Gaussian noise samples have a mean of 0 and a variance of 1. A more

detailed mathematical description of how the noise generator works is given in the

Section 4.4.1.

10-bit Counter

10 9 8 7 6 5 4 3 2 1

Chip Clock

Payload

Input From
Differential

Decoder

 Figure 4.12: Block diagram of payload extractor

37

4.4.1 Tausworthe Pseudorandom Number Generator

Given a 16-bit uniformly distributed random vector we can interpret it as a

two’s complement number representing a value between -0.5 and 0.5. By adding 12 of

this 16-bit UDRV we can obtain a Gaussian random sample with a mean of 0 and

variance of 1.

The above model was simulated in Matlab and plots were generated to

compare our model with a reference Gaussian curve [41]. In one test case 107 sample

points were generated, where twelve 16-bit UDRVs were added together. The sample

points had a mean of and variance of . The plots of the

(4.1)

(4.2)

(4.3)

REG

Accumulator

16-bit
Uniformly Distributed

Random Variables

Tausworthe
PNG 1
32-Bit

Tausworthe
PNG 2
32-Bit

32

16

16

32

16

16
REG

16-bit Gaussian
Noise Sample

Figure 4.13: Block diagram of the noise generator for the simulator

38

probability density function of the sample points are shown Figure 4.14 and Figure 4.15.

From the plots we observe that this model is able to produce a decent Gaussian

distribution going out to approximately 3 standard deviations. Beyond that the PDF of

the samples generated from our model does not align to the reference Gaussian curve.

To improve our model we needed to add more UDRVs together. But in doing so we

would no longer have a unit variance Gaussian noise generator. To obtain a Gaussian

noise generator with unit variance we would have to perform division on our samples.

An implementation of a divider in hardware can be a complex task, unless the divisor is

a power of 2, in which case the operation can be achieved with a simple logical shift.

This simplistic way of performing division has led to our decision of using 48 UDRV to

generate our Gaussian noise samples. Adding 48 UDRV results in a , if

we divide each sample by 2 the will be 1.

Figure 4.14: Plot of probability density function of a Gaussian noise generator that uses twelve 16-bit
UDRV with linear y-axis

-6 -4 -2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

n

p
d

f

Generated

Reference

39

Figure 4.15: Plot of probability density function of a Gaussian noise generator that uses twelve 16-bit
UDRVs with log y-axis

Figure 4.16: Plot of probability density function of a Gaussian noise generator that uses 48 16-bit UDRV
with linear y-axis

-6 -4 -2 0 2 4 6
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

n

p
d

f

Generated

Reference

-6 -4 -2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

n

p
d

f

Generated

Reference

40

Figure 4.17: Plot of probability density function of a Gaussian noise generator that uses 48 16-bit UDRVs
with log y-axis

A simulated test run was performed again with our model, but this time we

used 48 UDRVs. In one test run with 107 sample points the mean was 4.9406

and variance of 0.9995. The PDF of the samples points generated with this model as

shown in Figure 4.16 and Figure 4.17 are a closer match to the reference Gaussian

curve. This Gaussian noise generator model is apparently a fairly reliable in producing

samples points up to about 4 standard deviations.

4.5 Chapter Summary

A description of the hardware implementation was presented in this chapter.

Each component of the transmitter, receiver and noise generator was explained in

detail. Similar to the low-power preamble detection system in [42], our system

operates on a 2-bit preamble correlator. The following chapter shows, that this 2-bit

implementation provides performance curves similar to that of the analytical results in

[33].

-6 -4 -2 0 2 4 6

10
-8

10
-6

10
-4

10
-2

n

p
d

f

Generated

Reference

41

Chapter 5

Results

The chapter is divided into two main sections. Section 5.1 presents the results

gathered from the C simulations and Section 5.2 presents results from the hardware

implementation of the preamble detection emulator.

5.1 C Simulations

The C simulations allowed us to determine tradeoffs between different system

configurations. The section is divided into 2 parts: Experiment Setup and

Results/Observations.

5.1.1 Experiment Setup

Two types of simulations were performed: synchronous and asynchronous. The

synchronous simulation assumes perfect sampling, where each chip is sampled at the

maximum chip energy. In the asynchronous simulation, each chip is split into 8 samples

and discrete rectangular pulse matched filtering is performed. The output of the

matched filter is sampled and sent to the decoder.

The simulator prepares a sequence with two preambles and random data in

between, as shown in Figure 5.1. The preamble sequence and spreading sequence

are randomly determined. The symbols in both the preambles and data are spread by

the same chip spreading sequence. The energy of each chip is set according to a given

SNR value. Once the test sequence is prepared, a particular window of

consecutive chips is sent to the preamble detector. For every test sequence all possible

windows alignments are tested. This test sequence structure was designed to emulate

all the possible alignments for a preamble. The different cases for all possible offsets

are described in Table 5.1.

42

Table 5.1: Simulation transmit signal window alignment

Offset () Window Content

 Contains all of preamble1

Contains only the end of preamble1 and some
random data

 Contains only random data

Contains only the start of preamble2 and some
random data

 Contains all of preamble2

A monitor module counts four mutually exclusive events: true positive (TP),

false positive (FP), true negative (TN) and false negative (FN). A TP event occurs when a

preamble is sent and is subsequently successfully detected. Conversely, if the detector

is unsuccessful, a FN event occurs. When the transmitter has not sent a preamble and

the detector erroneously indicates a detection, this is a FP event. Lastly, the most

common case for the system is a TN event. This occurs when the system is simply

listening to the empty channel and correctly reports that a preamble has not been sent.

The conditions that trigger these events are summarized Table 5.2. The statistics

gathered from counting these events can be aggregated into more useful information.

In particular, it is advantageous to determine the probability of missing a preamble

() and the probability of false alarms ().

Preamble1 Data Preamble2

Figure 5.1: Simulation test sequence structure

43

Table 5.2: Mutually exclusive events that can occur when detecting preambles

Preamble Detected

YES NO

P
re

am
b

le
 S

en
t

YE
S True

Positive
False

Negative

N
O

 False
Positive

True
Negative

 is how often the system does not detect a preamble that was sent.

is how often the system falsely detects a preamble that does not exist. The equations

 and are given in Equation (5.1) and Equation (5.2).

 (5.1)

 (5.2)

5.1.1 Preamble and Spreading Sequence Effects on Performances

The choice of preamble and spreading sequence affects the performance of the

preamble detection system. As long as the preamble is pseudo-random, it has no effect

on the performance. The spreading and preamble sequence does, however,

greatly influence the performance of . A preamble which has an autocorrelation

with many large peaks, produces poor performance. This occurs because the

packet detection system performs threshold based decisions. If a certain preamble has

an autocorrelation with several high peaks, a system with a low threshold value will

indicate several detections for the single preamble, thus increasing the number of false

detections.

44

The ideal preamble would have an autocorrelation with only one large peak at

the instance when the sequences are perfectly aligned and all other positions correlate

to zero. This is impossible to achieve with any practical preamble length. Therefore, we

have to settle for a preamble which correlates to a high value when the sequences are

aligned and every other position correlates to low values. More specifically, we want to

find a sequence with a significantly smaller second highest correlated value when

compared with the top two peaks in its autocorrelation. Since our preamble has an

inner and outer sequence, the highest correlations values only occur when the inner

sequences are align. Therefore, we only need to search for a low correlated outer

sequence.

Given a certain preamble length, it is difficult to determine an optimal sequence

analytically. Researchers have exhaustively searched and found the best low correlated

binary sequences of length 3 to 60 [43]. The sequence of length 39 is provided in Table

5.3 ; its second highest autocorrelation peak is 0.077. This sequence was found in the

literature after the results were gathered and presented in this thesis; we used a

sequence of length 39 with a second highest autocorrelation peak of 0.183.

Table 5.3: Sequences used in the simulation and hardware implementation

Spreading Sequence 1101100111000010

Preamble Sequence 001001001000000111110001010100111001110

5.1.2 Results

This section presents results from the system with different configurations and

parameters. Since we have two values to measure the performance of the system, the

simulation sets the threshold at certain values and reports back the Pmiss and Pfalse.

All results are plotted against different values of preamble SNRp. Calculations

for the symbol SNRs, chip SNRc and chip energy Ec are given in Equations (5.3), (5.4) and

(5.5). Typical SNR and chip energy values are given in Table 5.4.

 (5.3)

 (5.4)

45

(5.5)

Table 5.4: SNR and chip energy values

SNRp SNRs SNRc Ec

10 -6.02 -18.06 0.0156

11 -5.02 -17.06 0.0197

12 -4.02 -16.06 0.0248

13 -3.02 -15.06 0.0312

14 -2.02 -14.06 0.0392

15 -1.02 -13.06 0.0494

16 -0.02 -12.06 0.0622

17 0.98 -11.06 0.0783

18 1.98 -10.06 0.0986

19 2.98 -9.06 0.1241

20 3.98 -8.06 0.1563

21 4.98 -7.06 0.1967

The first set of results is shown in Figure 5.2. This figure shows the performance

curves for a system configured with B=4 (4-bit inputs) and L=4 (limit of ±4). We observe

that the system’s performance curve is within 0.5dB to the performance curve for the

ideal system, which was determined by the analytical studies in [33]. There are three

sets of curves for the 3 different values of 29, 50 and 100. For an ideal synchronous

system that uses high precision floating-point numbers, threshold values of 29, 50 and

100 is suppose to produce a Pfalse of 10-3 , 10-6 and 10-15, respectively [33]. However, the

measured Pfalse for a finite precision system with B=4 and L=4 is significantly different, as

shown in the experiment results plotted in Figure 5.3.

Figure 5.4 and Figure 5.5 show the simulation results for an asynchronous

system. These simulations use the same threshold values as the synchronous system

simulation. Three different systems are simulated to determine the best configuration

to implement in hardware. We have determined in the first set of experiments, that a

synchronous system with B=4 and L=4 is close enough to the ideal system. Simulating a

system using more inputs bits could only yield slightly improved performance, and

would not be justifiable for the extra hardware that would be required to implement

46

the extra bits. However, we are interested in how much performance decreases with

lower input bit precision, thus simulations were carried out on systems configured with

B=2. Two different limit values, L=2 and L=4, were simulated on the system configured

with B=2.

Figure 5.6 illustrates the frequency offsets that the system is able to tolerate.

The simulation sets the preamble SNR value to 16dB, while measurements of Pmiss are

taken for frequency offsets of 10 to 1000Hz. An analytical curve is also provided for

reference [33]. This chart shows that finite bit precision systems offer similar tolerance

to frequency offsets as an ideal system.

From the simulation results we have decided that a system configured using B=2

and L=2 produces results that are good enough to proceed with the hardware

implementation. This configuration has a good balance between hardware complexity

and performance. Although we can achieve better performance with B=4 and L=4

system, the extra hardware required to implement this system is not worth the 1dB

gain.

Figure 5.2: Synchronous System Pmiss VS SNRp – Comparison of Pmiss performance of a system with B=4 and
L=4 to the ideal analytical calculated Pmiss for threshold values 29, 50 and 100.

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

10 11 12 13 14 15 16 17 18 19 20 21

P
m

is
s

SNRp (dB)

G=100 Analytical

G=100 B=4 L=4

G=50 Analytical

G=50 B=4 L=4

G=29 Analytical

G=29 B=4 L=4

47

Figure 5.3: Synchronous System Pfalse VS SNRp – Illustrates that the measured Pfalse for a finite precision
system are significantly different from the analytical Pfalse

Figure 5.4: Asynchronous System Pmiss VS SNRp – Compares the Pmiss performance of different system
configurations for threshold values 29, 50 and 100.

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

10 15 20 25 30 35 40

P
fa

ls
e

SNRp (dB)

G=100 B=4 L=4

G=50 B=4 L=4

G=29 B=4 L=4

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

P
m

is
s

SNRp (dB)

G=100 B=4 L=4

G=100 B=2 L=4

G=100 B=2 L=2

G=50 B=4 L=4

G=50 B=2 L=4

G=50 B=2 L=2

G=29 B=4 L=4

G=29 B=2 L=4

G=29 B=2 L=2

48

Figure 5.5: Asynchronous System Pfalse Vs. SNRp– Compares the Pfalse performance of different system
configurations for threshold values 29, 50 and 100.

Figure 5.6: Synchronous System Pmiss VS Frequency Offset – Illustrates the effects frequency offset on
Pmiss for different system configurations. SNRp is set to 16dB

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

10 15 20 25 30 35 40

P
fa

ls
e

SNRp (dB)

G=100 B=4 L=4

G=100 B=2 L=4

G=100 B=2 L=2

G=50 B=4 L=4

G=50 B=2 L=4

G=50 B=2 L=2

G=29 B=4 L=4

G=29 B=2 L=4

G=29 B=2 L=2

1.E-3

1.E-2

1.E-1

1.E+0

0.001 0.01 0.1

P
m

is
s

ΔfTc

Analytical

Simulation B=2 L=2

Simulation B=2 L=4

Simulation B=4 L=4

49

5.2 FPGA Implementation

Two different systems were implemented on the FPGA platforms. Section 5.2.1

describes an implementation of the preamble detection system in hardware. In this

setup the whole system, including transmitter, noise generator and receiver, were

implemented on one FPGA platform. A second implementation is described in Section

5.2.3. This implementation was developed as a proof of concept, to show that the

preamble detection system could reliably detect packets asynchronously over two

wireless platforms.

5.2.1 Hardware Emulation

An emulator was built to simulate the performance of the preamble detection

algorithm in hardware. This hardware implementation consists of a transmitter, AWGN

generator and receiver. Running at maximum clock speed the system produces

approximately 75 MChips per second. At this rate the emulator simulates about 15000

packets per second. The emulator has two configurable parameters: SNR and threshold.

To gather statistics the emulator uses 3 counters to keep track of missed packets, false

detections and total packets generated. A software interface, running on a host

computer, monitors these values and manipulates the parameters. Table 5.5 provides a

summary of the FPGA utilization for the packet detection hardware emulator. Values

are shown for a two different implementations, one that makes use of available

onboard multipliers and another that only uses look-up tables (LUTs). Both sets of

utilization values are given to provide an estimate of the additional resources that

would be required if the system was implemented on a FPGA without on board

multipliers.

 Table 5.5: FPGA utilization for preamble detection emulator

 Preamble Detection System
Using onboard multipliers

Preamble Detection System
Using LUTs

Flip Flops 10685 (13%) 10763 (11%)

Look Up Tables 10745 (11%) 13943 (14%)

Multipliers 78 (46%) 0 (0%)

50

5.2.2 Hardware Emulation Results

In Figure 5.7 and Figure 5.8 the emulation results are plotted against the

software simulation curves for a synchronous system with B=2 and L=2. Also included in

the Pmiss plots are analytical curves for reference. To maintain consistency, the same

threshold values used in Section 5.1 are used here. Figure 5.7 and Figure 5.8 shows that

software simulation and the hardware emulation produce similar Pmiss and Pfalse

performance curves. In Figure 5.8 all the curves follow a similar trend, which is as SNR

increases so does the probability of false detections. Overall the results from the

hardware emulations and software simulations agree.

Figure 5.7: Synchronous System and Hardware comparison Pmiss VS SNRp – Compares the Pmiss
performance of the hardware with the simulation results.

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

10 11 12 13 14 15 16 17 18 19 20 21 22

P
m

is
s

SNRp (dB)

G=100 Hardware
G=100 Simulation
G=100 Analytical
G=50 Hardware
G=50 Simulation
G=50 Analytical
G=29 Hardware
G=29 Simulation
G=29 Analytical

51

Figure 5.8: Synchronous System and Hardware comparison Pfalse VS SNRp – Compares the Pfalse
performance of the hardware with the simulation results

5.2.3 Prototype

The system was implemented on two Lyrtech SignalMaster-C67X FPGA

platforms, one for the transmitter and the other for the receiver. Figure 5.9 shows the

setup of the system. Packets are generated by the transmitter on the FPGA platform.

The baseband signal of these packets is sent to the onboard DAC, where the digital

sequence is converted to voltage levels and is sent to the radio link. The RF link is

created using MAX2837 transceivers and is described in more detail in the next

paragraph [44]. On the receiver platform, the voltage levels are converted back to a

digital sequence with an ADC. The baseband signal is then passed to the packet

receiver, where the preamble is detected and the payload is extracted. The two boards

are connected to a host computer through a DSP to monitor and configure the system.

A picture of the Pictures of the SM-C67X FPGA platform is shown in Figure 5.10.

Furthermore the estimated utilization values are provided in Table 5.6.

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

10 15 20 25 30 35 40

P
fa

ls
e

SNRp (dB)

G=100 Hardware

G=100 Simulation

G=50 Hardware

G=50 Simulation

G=29 Hardware

G=29 Simulation

52

Table 5.6: FPGA utilization for the prototype of the preamble detection system

 Preamble Receiver
Using MULTs

Preamble Receiver
Using LUTs

Preamble Transmitter

Flip Flops 5672 (6%) 5828 (6%) 73 (< 1%)

Look Up Tables 3730 (4%) 10126 (10%) 140 (< 1%)

Multipliers 156 (92%) 0 (0%) 0 (0%)

The RF front end consists of 2 MAX2837 RF transceivers. One transceiver is

configured as a transmitter while the other is configured as a receiver. The baseband

from the transmitter FPGA platform is sent through a SMA cable to the RF transmitter.

The RF transmitter converts the baseband signal and sends it wirelessly over the 2.4GHz

ISM band to the RF receiver. At the RF receiver module the signal is converted back to

baseband and sent to the receiver FPGA platform. The process of transmitting the

baseband sign from one FPGA platform to the other introduces an unknown amount of

noise into the system. This makes it difficult to produce any meaningful performance

curves. However this implementation does show that the preamble detection algorithm

works. The Max 2837 evaluation kit setup is shown in Figure 5.11.

Transmitter Receiver

C67XX C67XX

FPGA

DSP DAC

FPGA

DSP ADC
MAX2837
Eval. Kit

MAX2837
Eval. Kit

Host

Figure 5.9: Packet detection FPGA board setup

53

Figure 5.10: The transmitter (top) and receiver (bottom) were implemented on separate Lyrtech SM-C67X
FPGA platforms. A black SMA cable carries the baseband signal from the transmitter to the RF link. From
the RF link a gray SMA cable carries the baseband signal to the receiver and the oscilloscope. A screen
shot of a received baseband signal is shown on the oscilloscope.

Figure 5.11: Picture of the radio link comprised of 2 MAX2837 RF transceivers evaluation kits. The
baseband signal from the transmitter FPGA is sent to the RF transmitter board (right) through the black
SMA cable. The receiver board (left) sends the baseband signal to the receiver FPGA through the gray
SMA cable.

54

5.2.4 Chapter Summary

In this chapter we presented results from both the C simulation and the

hardware implementation. It was shown that both systems had similar performance

curves to that of the analytical results found in [33]. The Pfalse has been shown to

steadily increase with SNR. This undesirable phenomenon can be resolved using an

adaptive threshold base detection system, as presented in [45] [46] [47] and [48]. Also

presented is this chapter was a prototype of the preamble detection system. This

prototype demonstrated the functionality of the detection algorithm over a wireless RF

link. The next chapter summarizes this thesis and presents some possible future

directions.

55

Chapter 6

Conclusions and Future Work

In this thesis we present an implementation of a low-power, asynchronous,

random-access packet detector. The system was first developed in a series of bit-true C

simulations. From these simulations, it was determined that a system configured with

2-bit inputs and a limit of ±2, had sufficient Pmiss and Pfalse performance to continue on to

a hardware implementation.

The hardware implementations are on FPGA platforms. Two different systems

were developed. The first system is a hardware emulation of the preamble detection

algorithm. In this implementation the whole packet detection system, consisting of the

transmitter, noise generator and receiver, is implemented on a single FPGA.

Measurements taken from this system closely track the fixed-point simulations. The

second system was designed as a proof of concept. The packet detection system was

implemented on two FPGA platforms. One platform consisted of the transmitter while

the other platform consisted of the receiver. Packets are sent from the transmitter to

the receiver through a wireless radio link. This system demonstrates the functionality of

the packet detection algorithm.

This thesis has described the design of an operational FPGA implementation of

the preamble detection algorithm present in [33]. With some minor adjustments, the

register transfer level code, for the core components of this system are ready to be

added to an ASIC design.

6.1 Future Work

The work of thesis is only a small part of a much larger project. Since this work

concentrates mainly on the detection of packets, not much effort was put in to the

design of the payload section. Additional research will be required to determine the

most appropriate coding scheme for the payload. Furthermore this physical layer

56

design will eventually require some higher level control. There is still much more work

to be done before the preamble detection system can be truly appreciated. The

following sections describe specific future work for the simulations and FPGA

implementation.

6.1.1 Simulation

The simulation described in Chapter 3 is the preliminary study of how the

preamble detection system performs in the real world. There are more studies that can

be conducted to further our understanding of the system. This section describes some

of the future work that can be done for the simulator.

The channel model used in this simulation deals with the effects of AWGN and

some frequency distortion. A better model can be implemented to study other effects

of a real channel, such as fading. Multi-path fading is a physical phenomenon that

occurs as a result of multiple copies of the transmitted signal traversing different paths

in the environment before arriving at the receiver. Fading is a random process and can

change with time, geographical position and carrier frequency. The effects of fading can

sometimes be helpful, but more often than not the results are destructive [4].

Another issue that can be further studied is the effect of interference.

Interference occurs as different transmitters send packets concurrently and the signals

overlap at the receiver. A more specific case in interference to study is the near-far

problem. Picture a scenario where two devices are transmitting a signal with equal

power. One of the transmitters is very far away from the receiver, while the other is

closer. Due to the inverse square law the signal strength of the closer transmitter is

considerably stronger, in some cases the signal might be orders of magnitude greater.

Since the signal from one transmitter contributes noise to another, the closer

transmitter is essentially jamming the channel for further away transmitters. The near-

far effect needs to be simulated to understand its significance on our system

performance [49].

6.1.2 FPGA Implementation

The FPGA implementation in Chapter 4 was designed as a proof of concept and

contains many modules that can be redesigned to become more compact and power

efficient.

57

The symbol storage module currently implemented on the system uses shift

registers to hold the data. At every positive clock edge all the data shifts over one slot,

which causes a lot of switching activity in the registers. High switching activity

consumes more power and thus is an undesirable feature. One way to reduce the

switching activity on the registers is to set up a structure similar to random-access

memory. In such a structure we would be able to update a single individual symbol

periodically. With only one symbol being updated each cycle the switching activity on

the registers would be significantly reduced. Implementing such a structure would

require a memory access control module which would increase the complexity of the

storage module.

To ensure that no data loss occurs inside the preamble detector, additional bits

are added to the intermediate results at each stage by the arithmetic processing units.

The end result is a correlated value represented by 19 bits, which can represent values

between -262 145 to 262 144. This range is much larger than the typical correlated

values that have been observed in simulation. Further research is required to

determine at which stages bits can be truncated without significant performance lost.

Another module that can be redesigned is the preamble generator. The current

design uses forty 16-bit shift registers to store the preamble sequence. The preamble

sequence is hardcoded and initialized into the shift registers when the FPGA is

programmed. Without reprogramming the FPGA we cannot change the preamble

sequence or structure. This module in the future may require designing to allow for the

runtime configuration of the preamble sequence.

59

Bibliography

[1] K. Romer and F. Mattern, "The Design Space of Wireless Sensor Networks," IEEE
Wireless Communications, vol. 11, no. 6, pp. 54-61, December 2004.

[2] S. Nagaraj, S. Khan, C. Schlegel, and M. Burnashev, "Differential Preamble Detection
in Packet-Based Wireless Networks," IEEE Transactions on Wireless
Communications, vol. 8, no. 2, pp. 599-607, February 2009.

[3] E. Son, B. Crowley, C. Schlegel, and V. Gaudet, "Architecture and FPGA
Implementation of a Packet Detector for RF Motes," in IEEE Military
Communications Conference, 2009.

[4] J. G. Proakis, Digital Communications, Fourth Edition ed.: McGraw Hill, 2001.

[5] J. G. Proakis and M. Salehi, Fundamentals of Communication Systems, 1st ed.:
Pearson Prentice Hall, 2005.

[6] M. Yuce, W. Liu, J. Damiano, B. Bharath, P. Franzon, and N. Dogan, "SOI CMOS
Implementation of a Multirate PSK Demodulator for Space Communications," IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 2, pp. 420-433,
February 2007.

[7] IEEE std. 802.15.4-2006, "Part 15.4: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks
(WPANs)," 2006.

[8] J. Hill and D. Culler, "MICA: A Wireless Platform For Deeply Embedded Networks,"
IEEE MICRO, vol. 22, no. 6, pp. 12-24, Nov/Dec 2002.

[9] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy, "The Platforms Enabling Wireless
Sensor Networks," Communications of the ACM, vol. 47, no. 6, pp. 41-46, June
2004.

[10] TinyOS. (2009, August) TinyOS Community Forum. [Online].
http://webs.cs.berkeley.edu/tos/

[11] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, "System Architecture
Directions for Networked Sensors," ACM SIGPLAN Notices, vol. 35, no. 11, pp. 93-
104, November 2000.

[12] RFM. (April, 2008) TR1000 916.50 MHz Hybrid Transceiver Datasheet.
http://www.wirelessis.com.

[13] Chipcon. (2009, Feb) CC1000 Datasheet Single Chip Very Low Power RF Transceiver.
www.ti.com/lprf.

[14] Crossbow. (2009, August) MICA2 Datasheet. http://www.xbow.com.

[15] J. Hill, System Architecture for Wireless Sensor Networks,PhD Thesis Dissertation.:
University of California, Berkeley, 2003.

[16] C. Evan-Pughe, "Bzzzz zzz [ZigBee wireless standard]," IEE Review, vol. 49, pp. 28-
31, March 2003.

60

[17] W. Kluge, F. Poegel, H. Roller, M. Lange, T. Ferchland, L. Dathe, and D. Eggert, "A
Fully Integrated 2.4-GHz IEEE 802.15.4-Compliant Transceiver for ZigBee™
Applications," IEEE Journal of Soild-State Circuits, vol. 41, no. 12, pp. 2767-2775,
December 2006.

[18] T. Nguyen, N. Oh, V. Le, and S. Lee, "A Low-Power CMOS Direct Conversion Receiver
With 3-dB NF and 30-kHz Flicker-Noise Corner for 915-MHz Band IEEE 802.15.4
ZigBee Standard," IEEE Transactions on Mircowave Theory And Techniques, vol. 54,
no. 2, pp. 735-741, February 2006.

[19] B. Guthrie, J. Hughes, T. Sayers, and A. Spencer, "A CMOS Gyrator Low-IF Filter for a
Dual-Mode Bluetooth/ZigBee Transceiver," IEEE Journal of Solid-State Circuits, vol.
40, no. 9, pp. 1872-1879, September 2005.

[20] IEEE Computer Society, IEEE Std 802.15.4™-2003: Part 15.4: Wireless Medium
Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless
Personal Area Networks (LR-WPANs)., 2003.

[21] Crossbow. (2009, August) IRIS Datasheet. http://www.xbow.com.

[22] Crossbow. (2009, August) Imote2 Datasheet. http://www.xbow.com.

[23] Crossbow. (2009, August) MICAZ Datasheet. http://www.xbow.com.

[24] Crossbow. (2009, August) TELOSB Datasheet. http://www.xbow.com.

[25] Chipcon. (2008) CC2420 Datasheet: 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF
Transceiver. http://focus.ti.com.

[26] Texas Instruments. (2009) CC2480 Datasheet: Z-Accel 2.4 GHz ZigBee® Processor.
http://focus.ti.com.

[27] Chipcon. (2008) CC2431 Datasheet: System-on-Chip for 2.4 GHz ZigBee®/ IEEE
802.15.4 with Location Engine. http://focus.ti.com/.

[28] Texas Instruments. (2009, April) CC2530 Datasheet: A True System-on-Chip Solution
for 2.4-GHz IEEE 802.15.4 and ZigBee Applications. http://focus.ti.com.

[29] Freescale Semiconductor. (2009, August) MC13211/212/213 Datasheet: ZigBee™-
Compliant Platform -2.4 GHz Low Power Transceiver for the IEEE® 802.15.4
Standard plus Microcontroller. http://www.freescale.com.

[30] ember. (2006, July) EM260 Datasheet: ZigBee/802.15.4 Network Processor.
http://www.ember.com.

[31] ember. (2004) EM2420 Datasheet: 2.4 GHz IEEE 802.15.4 / ZigBee RF Transceiver.
http://www.ember.com.

[32] K. J. Choi and S. Jong-In, "A Miniaturized Mote for Wireless Sensor Networks," in
International Conference of Advanced Communication Technology, 2008, pp. 514-
516.

[33] S. Khan, Joint Packet Detection and Frame Synchronization for Asynchronous
Wireless Networks, MSc Thesis Dissertation.: University of Alberta, 2007.

[34] P. M. Shankar, Introduction to Wireless Systems., 2002.

[35] G. Box and M. Muller, "A Note on the Generation of Random Normal Deviates," The
Annals of Mathematical Statistics, vol. 29, no. 2, pp. 610-611, 1958.

[36] M. Matsumoto and T. Nishimura, "Mersenne twister: A 623-Dimensionally
Equidistributed Uniform Pseudo-Random Number Generator," ACM Transactions

61

on Modeling and Computer Simulation (TOMACS), vol. 8, no. 1, pp. 3-30, 1998.

[37] Lyrtech Signal Processing, "SM-C67X-CPCI Technical Reference Manual v2.0,"
Lyrtech Inc., 2002.

[38] Lyrtech Signal Processing, "SignalMaster Hardware Technical Reference Guide
V2.0," Lyrtech Inc., 2001.

[39] Lyrtech Signal Processing, "SM-ADAC Master II," Lyrtech Inc., 2005.

[40] P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe Generators,"
Mathematics of Computation, vol. 65, no. 213, pp. 203-213, January 1996.

[41] A. L. Garcia, Probability and Random Processes for Electrical Engineering, Second
Edition ed., 1994.

[42] K. Gunnam, G. Choi, M. Yeary, and Y. Zhai, "A Low-Power Preamble Detection
Methodology for Packet Based RF Modems on All-Digital Sensor Front-Ends," in
IEEE Instrumentation and Measurement Technology Conference, 2007, pp. 1-4.

[43] H. Schotten and H. Luke, "On the search for low correlated binary sequence,"
International Journal of Electronics and Communications, vol. 59, no. 2, pp. 67-78,
May 2005.

[44] MAXIM. (2007, August) MAX2837 Evaluation Kit Datasheet.
http://datasheets.maxim-ic.com.

[45] A. Swaminathan and D. Noneaker, "The Effect of Automatic Gain Control on Serial,
Matched-Filter Acquisition in Direct-Sequence acket Radio Communications," IEEE
Journal on Selected Areas in Communications, vol. 23, no. 5, pp. 909-919, May
2001.

[46] S. G. Glisic, "Automatic Decision Threshold Level Control in Direct-Sequence Spread-
Spectrum Systems," IEEE Transactions on Communications, vol. 39, no. 2, pp. 187-
192, February 1991.

[47] S. G. Glisic, "Automatic Decision Threshold Level Control (ADTLC) in Direct-
Sequence Spread-Spectrum Systems Based on Matched Filtering," IEEE
Transactions on Communications, vol. 36, no. 4, pp. 519-527, April 1998.

[48] E. Brigant and A. Mammela, "Adaptive Threshold Control Scheme for Packet
Acquisition," IEEE Transactions on Communications, vol. 46, no. 12, pp. 1580-1582,
December 1998.

[49] H. Simon, Communications Systems, Fourth Edition ed., 2001.

