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Abstract

The distributed framework has been recognized as a promising framework for handling the

large size and the strong interaction of modern integrated chemical processes. Compared to

distributed process control, its dual problem - distributed state estimation which is equally

important, has received relatively less attention in the process control community. This

thesis deals with distributed state estimation for nonlinear process networks as well as sub-

system structure decomposition and configuration for distributed state estimation. The

contributions of this thesis include the development of distributed state estimation meth-

ods for nonlinear process networks, the development of systematic approaches to properly

decompose general nonlinear processes into subsystems for distributed estimation, and the

application of the developed methods in different processes and output-feedback fault detec-

tion and isolation.

First, two-time-scale nonlinear systems are taken into account. The system is decomposed

into fast and slow subsystems based on the singular perturbation theory. Local observer-

enhanced moving horizon state estimators are designed. A one-directional communication

scheme is used. The convergence and boundedness of the estimation error is rigorously

studied. A benchmark chemical process example is used to illustrate the proposed method.

Then, attention is given to general nonlinear systems that can be divided into smaller sub-

systems. It is assumed that a decentralized state estimation scheme already exists for the

system. And the aim is to form a distributed state estimation scheme based on the existing

one without significant modifications. Compensators are designed for the subsystems and
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augmented estimators that communicate with each other are obtained to form a distributed

network. Stability analysis is carried out. The convergence and ultimate boundedness of the

estimation error dynamics can be ensured subject to reasonable assumptions. The proposed

method is applied to three application examples and good state estimates are obtained.

This distributed state estimation method is also utilized in the development of a distributed

output-feedback fault detection and isolation mechanism for cascade nonlinear processes.

The state estimation scheme provides state estimates that are further used for generating

residual signals for the subsystems. A distributed fault detection and isolation mechanism

is proposed and applied to a froth flotation process.

With the development of distributed state estimation algorithm being completed, we

further explore the decomposition and configuration of subsystem structure for distributed

state estimation. A systematic procedure is proposed to address the considered subsystem

decomposition problem. The procedure is based on the evaluation of physical closeness be-

tween state and output measurement variables. The proposed method is applied to the froth

flotation process and subsystem models are configured. The decomposition result is consis-

tent with physical topology and can be readily used for distributed state estimation design.

Moreover, we consider systematic subsystem decomposition and distributed state estima-

tion for a wastewater treatment plant. Based on an extension of the previously proposed

method, the large-scale plant is decomposed into subsystems and local state estimators are

developed. Good simulation results confirm the effectiveness of the systematic approach.

Finally, to facilitate the synthesis of distributed state estimation and distributed control,

a systematic approach on subsystem decomposition of process networks for simultaneous

distributed estimation and control is presented.

iii



Preface

The results presented in this thesis are part of the research that is under the supervision

of Dr. Jinfeng Liu and is funded by Natural Sciences and Engineering Research Coun-

cil (NSERC) of Canada and Alberta Innovates Technology Futures (AITF). Chapter 2 of

this thesis is a revised version of X. Yin and J. Liu, Distributed moving horizon state es-

timation of two-time-scale nonlinear systems. Automatica, 79:152-161, 2017. Chapter 3 of

this thesis is a revised version of X. Yin, J. Zeng, and J. Liu, Forming distributed state

estimation network from decentralized estimators, IEEE Transactions on Control Systems

Technology, 2018 (in press). Chapter 4 is a revised version of X. Yin and J. Liu, Distributed

output-feedback fault detection and isolation of cascade process networks, AIChE Journal,

63:4329-4342, 2017. Chapter 5 is a revised version of X. Yin, K. Arulmaran, J. Liu, and J.

Zeng, Subsystem decomposition and configuration for distributed state estimation. AIChE

Journal, 62:1995-2003, 2017. Chapter 6 is a revised version of X. Yin, D.-N. Benjamin, and

J. Liu, Subsystem decomposition and distributed moving horizon estimation of wastewater

treatment plants. Chemical Engineering Research and Design, 134:405-419, 2018. Chapter

7 is a revised version of X. Yin and J. Liu, Subsystem decomposition of process networks for

simultaneous distributed state estimation and control, which has been submitted to AIChE

Journal.

iv



Acknowledgements

I would like to express my deepest gratitude to my advisor, Professor Jinfeng Liu for his

tremendous amount of guidance and generous support he has given to me during my graduate

study. He is definitely the greatest advisor I could have had. His great patience, enthusiasm

and determination have made him my role model. His constant encouragement and excellent

guidance have greatly inspired me to move towards a success, significantly improved my

confidence, and made profound impacts on my career goals. Dr. Liu has always been

providing much freedom to me to do interesting research and the excellent opportunities to

attend international conferences and to participate in teaching. Without Dr. Liu’s guidance

and support during my graduate study, this thesis would not have been possible.

I want to gratefully acknowledge Professor Sirish L. Shah, Professor Biao Huang, Pro-

fessor Zukui Li and Professor Qing Zhao who have helped me a lot in terms of study and

research during the past years. In addition, I sincerely thank Professor Biao Huang, Profes-

sor Vinay Prasad, Professor Zukui Li, Professor Joseph Sang-II Kwon, Professor Hyo-Jick

Choi for serving on my doctoral examination.

Moreover, I would like to thank my colleagues whom I have worked with during my

past four years in PSACE group, including Jing Zhang, Su Liu, Jannatun Nahar, Moham-

mad Rashedi, Kevin Arulmaran, Jayson McAllister, Benjamin Decardi-Nelson, Tianrui An,

Guoyang Yan, An Zhang, Nirwair Bajwa, Yawen Mao, Soumya Sahoo, Song Bo, Rui Nian,

Mengzhi Wang, as well as Mengqi Fang, Xiaodong Xu, Yuan Yuan, Zheyuan Liu, Lei Fan,

Ming Ma and Yaojie Lu.

v



I would also like to gratefully acknowledge the financial support from Natural Sciences and

Engineering Research Council of Canada (NSERC), Alberta Innovative Technology Futures

(AITF), and the scholarships/awards offered by Faculty of Graduate Studies and Research,

University of Alberta.

Last but not least, I am very grateful to my family for their constant encouragement and

unconditional support.

vi



Contents

1 Introduction 1

1.1 Motivation and research overview . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions and thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Distributed moving horizon state estimation of two-time-scale nonlinear

systems 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Two-time-scale decomposition . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 Decomposition of slow dynamics . . . . . . . . . . . . . . . . . . . . . 16

2.2.5 Nonlinear observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 DMHE design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Distributed state estimation algorithms . . . . . . . . . . . . . . . . . 20

2.3.2 Reference state estimate calculation for s-MHEs . . . . . . . . . . . . 22

2.3.3 Design of s-MHEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.4 Reference state estimate calculation for f-MHE . . . . . . . . . . . . . 24

2.3.5 Design of f-MHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vii



2.4.1 Stability analysis of s-MHEs . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Stability analysis of f-MHE . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Application to a chemical process . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Forming distributed state estimation network from decentralized estima-

tors 42

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2 System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.3 Problem formulation and assumptions . . . . . . . . . . . . . . . . . 46

3.1.4 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Forming distributed state estimation network . . . . . . . . . . . . . . . . . 52

3.2.1 Proposed distributed state estimation network . . . . . . . . . . . . . 52

3.2.2 Design of subsystem compensators . . . . . . . . . . . . . . . . . . . 53

3.2.3 Design of augmented estimators . . . . . . . . . . . . . . . . . . . . . 55

3.2.4 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Applications of the proposed approach . . . . . . . . . . . . . . . . . . . . . 65

3.3.1 Application to the illustrative example . . . . . . . . . . . . . . . . . 65

3.3.2 Application to a froth flotation process example . . . . . . . . . . . . 69

3.3.3 Application to a hybrid-tank plant . . . . . . . . . . . . . . . . . . . 73

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Distributed output-feedback fault detection and isolation of cascade pro-

cess networks 82

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.2 System description and problem formulation . . . . . . . . . . . . . . 83

viii



4.2 Distributed state estimation design . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.1 Description of the distributed state estimation system . . . . . . . . . 86

4.2.2 Assumed local observers/estimators . . . . . . . . . . . . . . . . . . . 87

4.2.3 Compensator and augmented estimator design . . . . . . . . . . . . . 88

4.2.4 Integral input-to-state stability of the augmented estimators . . . . . 89

4.2.5 Boundedness and Convergence of the estimation error . . . . . . . . . 92

4.3 Distributed fault detection and isolation design . . . . . . . . . . . . . . . . 97

4.3.1 Distributed state predictors and residual generators . . . . . . . . . . 97

4.3.2 Fault detection and isolation . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.3 Detectable faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3.4 Fault isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4 Application to a froth flotation process example . . . . . . . . . . . . . . . . 109

4.4.1 Process description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4.2 Simulation settings and results . . . . . . . . . . . . . . . . . . . . . . 111

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5 Subsystem decomposition and configuration for distributed state estima-

tion 119

5.1 System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 Proposed decomposition procedure . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.1 Observability consideration . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.2 Identifiable states of each output . . . . . . . . . . . . . . . . . . . . 122

5.2.3 Subsystem decomposition candidates . . . . . . . . . . . . . . . . . . 124

5.2.4 Relative degree analysis . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2.5 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2.6 Update of identifiable states . . . . . . . . . . . . . . . . . . . . . . . 132

5.2.7 Reduction of feasible solutions . . . . . . . . . . . . . . . . . . . . . . 133

5.2.8 Further considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 134

ix



5.2.8.1 Time-scale multiplicity . . . . . . . . . . . . . . . . . . . . . 134

5.2.8.2 Direct graph . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3 Application to a chemical process example . . . . . . . . . . . . . . . . . . . 135

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6 Subsystem decomposition and distributed moving horizon estimation of

wastewater treatment plants 141

6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.1.2 Model description of wastewater treatment plants . . . . . . . . . . . 142

6.1.3 Measurement selection for state estimation . . . . . . . . . . . . . . . 144

6.1.4 Compact form of the WWTP model . . . . . . . . . . . . . . . . . . 145

6.1.5 Relative degree analysis . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2 Process decomposition and subsystem configuration . . . . . . . . . . . . . . 148

6.2.1 Observability of the WWTP . . . . . . . . . . . . . . . . . . . . . . . 149

6.2.2 Process decomposition and subsystem configuration . . . . . . . . . . 149

6.3 Distributed MHE design for WWTPs . . . . . . . . . . . . . . . . . . . . . . 155

6.3.1 Iterative distributed state estimation algorithm . . . . . . . . . . . . 156

6.3.2 Design of the distributed MHE estimators . . . . . . . . . . . . . . . 159

6.3.2.1 MHE estimators for subsystem 1 and subsystem 2 . . . . . . 160

6.3.2.2 MHE estimator for subsystem 3 . . . . . . . . . . . . . . . . 161

6.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.4.1 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.4.2 Results of dry weather condition . . . . . . . . . . . . . . . . . . . . . 165

6.4.3 Results in rainy and stormy weather conditions . . . . . . . . . . . . 169

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

x



7 Subsystem decomposition of process networks for simultaneous distributed

state estimation and control 175

7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.1.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.1.3 Subsystem model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.1.4 Directed graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.1.5 Observability of nonlinear systems . . . . . . . . . . . . . . . . . . . . 178

7.1.6 Community structure detection . . . . . . . . . . . . . . . . . . . . . 179

7.2 Proposed subsystem decomposition method . . . . . . . . . . . . . . . . . . 180

7.2.1 Consideration on observability and stabilizability . . . . . . . . . . . 182

7.2.2 Adjacency matrix construction . . . . . . . . . . . . . . . . . . . . . 182

7.2.3 Initialization of the community structure . . . . . . . . . . . . . . . . 184

7.2.4 Community detection for subsystem configuration . . . . . . . . . . . 185

7.2.5 Structure validity test . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.2.6 Subsystem observability and stabilizability test . . . . . . . . . . . . 188

7.3 Application to a reactor-separator example . . . . . . . . . . . . . . . . . . . 189

7.4 Application to a wastewater treatment plant . . . . . . . . . . . . . . . . . . 194

7.4.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.4.2 Manipulated inputs and measured outputs . . . . . . . . . . . . . . . 195

7.4.3 Subsystem decomposition . . . . . . . . . . . . . . . . . . . . . . . . 196

8 Conclusions and Future work 201

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

xi



List of Tables

2.1 Process parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Process variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Parameters of process variables . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Mean and maximum error norms of the three different schemes. . . . . . . . 70

5.1 Observable states with each given output measurement for the reactor-separator

process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2 Relative degree between each state and each output measurement . . . . . . 129

5.3 Relative degree between Solid concentration of each tank and each output

measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.4 Sensitivity index between solid concentration of each tank and each output

measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.1 Process variables of the biological reactor of the WWTP . . . . . . . . . . . 144

6.2 Measured output variables in the i-th chamber (i = 1, . . . , 5) of the biological

reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.3 Measured output variables in the top layer (q = 1) and bottom layer (q = 10)

of the settler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.4 Relative degree analysis for the states of chamber i, i = 1, . . . , 5 . . . . . . . 151

6.5 Relative degree analysis for the states of the settler . . . . . . . . . . . . . . 152

6.6 The states in each configured subsystem of the process . . . . . . . . . . . . 154

xii



6.7 Actual values and the corresponding estimates of EQ and OCI in different

weather conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.8 Mean values of the Euclidean norm of the normalized estimation error and

the average computation time required for the one-sampling-time evaluation

for iterative distributed MHE and centralized MHE . . . . . . . . . . . . . . 168

7.1 Subsystem decompositions for the reactor-separator process using the method

in [132, 103] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.2 Subsystem decompositions for the reactor-separator process based on [102] . 192

7.3 Subsystem decomposition for the reactor-separator process based on the pro-

posed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.4 State variables of the i-th chamber (i = 1, . . . , 5) of the biological reactor . . 196

7.5 The output measurements in the i-th chamber (i = 1, . . . , 5) of the biological

reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.6 Output measurements in the top layer (l = 1) and bottom layer (l = 10) of

the settler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.7 Six-subsystem structures for the WWTP . . . . . . . . . . . . . . . . . . . . 200

xiii



List of Figures

2.1 A schematic of the proposed distributed state estimation scheme (dashed lines

indicate information flows and solid lines indicate interactions between sub-

systems). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Trajectories of the actual process states (solid lines), state estimates calcu-

lated by the proposed DMHE (dashed lines) and state estimates calculated

by Scheme II (dash-dotted lines) with ∆f = 18s and ∆s = 36s. . . . . . . . . 39

2.3 Trajectories of the normalized estimation errors of Scheme I (dashed line) and

Scheme II (solid line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Average normalized estimation error norms of Scheme I (dashed line) and

scheme III (solid line) with different estimation horizon sizes. . . . . . . . . 40

3.1 A schematic of the existing decentralized estimation system. . . . . . . . . . 46

3.2 A schematic of the cascade chemical process and designed decentralized esti-

mators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 A schematic of the proposed distributed state estimation network. . . . . . . 53

3.4 Trajectories of the normalized estimation error norms of different schemes for

the second CSTR of the cascade chemical process. . . . . . . . . . . . . . . . 67

3.5 A schematic of the forth-flotation-unit process. . . . . . . . . . . . . . . . . . 68

xiv



3.6 Trajectories of the actual states (solid black lines), the state estimates of

the decentralized scheme (dotted green lines), the state estimates of the dis-

tributed scheme with ∆ = 30s (dashed red lines), and the state estimates of

the distributed scheme with ∆ = 6s (dash-dotted blue lines). . . . . . . . . . 69

3.7 Trajectories of the normalized estimation errors of the decentralized scheme

(dashed green lines), the distributed scheme with ∆ = 30s (solid red lines),

and the state estimates of the distributed scheme with ∆ = 6s (dash-dotted

blue lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8 Mean estimation errors of the distributed scheme with different communica-

tion intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.9 The relationship between the magnitude of measurement noise and the mean

value of the estimation error norm subject to
√

∑5
i=1 θ

2
wi

= 7.4559. . . . . . . 72

3.10 The relationship between the magnitude of system disturbances and the max-

imum value of the estimation error norm subject to
√

∑5
i=1 θ

2
vi
= 2.8894. . . 73

3.11 A schematic of the hybrid-tank plant. . . . . . . . . . . . . . . . . . . . . . . 74

3.12 Trajectories of the state estimates based on distributed scheme (dashed red

lines), the state estimates based on decentralized scheme (dotted yellow lines)

and the actual sensor measurements of the water levels (solid blue lines) . . . 75

3.13 Trajectories of the norm of estimation errors given by the distributed scheme

(solid blue lines) and the decentralized scheme (dashed red lines) . . . . . . . 75

4.1 A diagram of a cascade process. . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 A schematic of the distributed state estimation scheme for the cascade process. 86

4.3 The prediction horizon selection for the two Residuals. . . . . . . . . . . . . 99

4.4 A schematic of the forth-flotation-unit process. . . . . . . . . . . . . . . . . . 111

4.5 The state estimates given be the distributed state estimation system (red

lines) and the actual system states (blue lines) in a fault-free condition. . . . 112

4.6 The trajectory of the normalized estimation error norm in a fault-free condition.113

xv



4.7 The residual signals of Residual 1 for the subsystems in a fault-free condition

(blue dashed lines); the residuals of units with an actuator fault (green dash-

dotted lines); selected thresholds (red dotted lines). . . . . . . . . . . . . . . 114

4.8 The residual signals of Residual 1 for the subsystems in a fault-free condition

(blue dashed lines); the residuals of units with a sensor fault (green dash-

dotted lines); selected thresholds (red dotted lines). . . . . . . . . . . . . . . 115

4.9 The residual signals of Residual 2 for the subsystems in a fault-free condition

(blue dashed lines); the residuals of units with a sensor fault (green dash-

dotted lines); selected thresholds (red dotted lines). . . . . . . . . . . . . . . 116

4.10 The residual signals for the third and fourth subsystems from Residual 1 with

a sensor fault (black-solid lines); the residual signals for the third and fourth

subsystems from Residual 2 with a sensor fault (blue-dashed lines); selected

thresholds (red dotted lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.1 The flow diagram of the proposed decomposition procedure . . . . . . . . . . 121

5.2 Schematic of the reactor-separator chemical process . . . . . . . . . . . . . . 127

5.3 Schematic of the froth flotation units . . . . . . . . . . . . . . . . . . . . . . 136

5.4 Direct graph for the froth flotation units . . . . . . . . . . . . . . . . . . . . 139

6.1 A schematic of the wastewater treatment plant . . . . . . . . . . . . . . . . . 142

6.2 A flowchart of the procedure for process decomposition and subsystem con-

figuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.3 A diagram of the distributed MHE scheme . . . . . . . . . . . . . . . . . . . 155

6.4 The trajectories of the actual states (blue dash dot lines) and the state esti-

mates given by iterative distributed MHE (red dashed lines) in dry weather . 164

6.5 The trajectories of the actual states (blue dash dot lines) and the state esti-

mates given by iterative distributed MHE (red dashed lines) in dry weather . 166

xvi



6.6 The trajectories of the actual states (blue solid lines) and the state estimates

by iterative distributed MHE (red dashed lines) and the state estimates given

by distributed EKF (yellow dotted lines) at the initial stage in dry weather . 167

6.7 The trajectories of the actual states (blue solid lines) and the state estimates

given by iterative distributed MHE (red dashed lines) in rainy weather . . . 170

6.8 The trajectories of the actual states (blue solid lines) and the state estimates

given by iterative distributed MHE (red dashed lines) in stormy weather . . 170

6.9 The trajectories of EQf calculated based on actual states (solid red lines) and

state estimates (blue dashed lines) in rainy and stormy weather . . . . . . . 171

7.1 A flowchart of the proposed subsystem decomposition method . . . . . . . . 181

7.2 A schematic of the reactor-separator process . . . . . . . . . . . . . . . . . . 189

7.3 A schematic of the wastewater treatment plant . . . . . . . . . . . . . . . . . 194

xvii



Chapter 1

Introduction

1.1 Motivation and research overview

Complex and tightly integrated process networks are common occurrences in manufacturing

industries (e.g., chemicals, petrochemicals and mineral processes), and have attracted grow-

ing interest within the modern process community due to their economic efficiency [1, 2, 3].

A typical process network consists of several operating units (subsystems), which are con-

nected with each other via material, energy and information flows. Due to the significant

interaction between different subsystems, great challenges have been posed to the design

of automatic control systems. Currently, most of these process networks are controlled in

a decentralized manner such that a subsystem control system does not communicate with

other subsystem control systems which further renders that interaction between subsystems

is treated in conservative ways. During the past decade, considerable efforts have been given

to the development of distributed control systems (in particular, distributed model predic-

tive control [4, 5, 1, 6, 7, 8, 9, 10]). Within a distributed control framework, local controllers

communicate with each other to exchange information to collaborate their actions. The

distributed framework has been demonstrated to be a promising framework for handling the

large sizes and the strong interaction of modern integrated chemical processes. Compared
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to distributed process control, its dual problem - distributed state estimation, has received

relatively less attention in the process control community.

Recently, there are some results on distributed moving horizon state estimation (DMHE).

Moving horizon estimation (MHE) is an online optimization-based technique and can handle

nonlinearities, constraints and optimality considerations [12, 13]. In [14], a DMHE algorithm

was developed for nonlinear systems based on subsystem models. An observer-enhanced

DMHE algorithm was developed in [15], where an auxiliary nonlinear observer is taken

advantage of in the design of each local estimator. The auxiliary observer is used to calculate

a reference state estimate based on which a confidence region is constructed every sampling

time. Each local estimator optimizes its estimate within the confidence region. The observer-

enhanced design is less sensitive to external noise compared with the auxiliary nonlinear

observer. The convergence rate of the DMHEmay be tuned by tuning the auxiliary observers.

It was shown to be less dependent on the arrival cost, the estimation window size and

have the potential to be used in output feedback control with provable closed-loop stability

[15, 16]. On the other hand, time-scale multiplicity is a common feature of many systems. For

chemical processes, it usually arises due to the strong coupling of physicochemical phenomena

[17, 18]. A direct application of standard control or estimation methods without taking

into account time-scale multiplicity to systems with different time scales may lead to ill-

conditioning or even the loss of closed-loop stability [19, 20]. The singular perturbation

theory is the standard tool for the analysis of systems with time-scale multiplicity [19, 20].

The majority of related results are on control system design for two-time-scale systems (e.g.,

[19, 20, 21]). Little attention has been given to state estimation of systems with time-scale

multiplicity except in [22]. Therefore, it is much favorable to design a DMHE scheme that

can handle the time-scale multiplicity in two-time-scale nonlinear systems.

Besides DMHE, there are several different ways to solve the distributed state estimation

problem. The existing algorithms on distributed state estimation are primarily developed

in four frameworks: the deterministic observer framework [31, 32], the Kalman filter (KF)
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framework [33, 34, 35, 36, 11], the extended Kalman filter (EKF) framework [37] and the

moving horizon estimation (MHE) framework [38, 39, 40]. It is worth mentioning that

most of the existing algorithms were developed for linear systems with a few exceptions

[41, 15, 42, 47, 113], where distributed moving horizon state estimation problems for non-

linear systems have been addressed. Moreover, in [81, 44], consensus-based estimators were

designed for nonlinear systems to provide references for fault detection. Distributed state

estimation was developed for fault diagnosis in interconnected nonlinear systems subject to

uncertainties [45, 46]. In particular, the spatial-distribution-based subsystem decomposition,

the communication scheme and the adopted distributed estimator framework in [81] provide

inspirations to the present work. There is a prominent feature of all the above algorithms;

that is, they require all the local estimators to be designed simultaneously and to be of the

same type (e.g., all the local estimators should be MHEs [38]) and each of the developed

algorithms is only compatible with one specific type of local estimators (e.g., distributed

KF algorithms cannot be utilized to coordinate MHE-based local estimators). It is possible

and sometimes favorable that different types of estimators are used for different subsystems.

For example, an EKF-based estimator is used for a subsystem when no constraints should

be considered and an MHE-based estimator is used for a subsystem to address constraints.

Therefore, it is desirable to develop a more general approach, which can incorporate different

types of local estimators together and provide improved estimation performance. Another

feature of the existing distributed state estimation approaches is that in the design of these al-

gorithms, no consideration is given to the potentially existing (decentralized) implementation

of control/estimation algorithms in a process. If a decentralized state estimation algorithm

has already been implemented in a process, the aforementioned distributed state estimation

methods require a complete re-design of the existing implementation. This observation also

motivates us to develop a general method that is capable of taking advantage of existing (de-

centralized) estimators together to provide improved overall estimation performance instead

of performing a complete re-design.
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Potential faults commonly encountered in complex and integrated process networks are

another factor that can significantly affect the operating performance of these processes.

In particular, faults (e.g., actuator faults and sensor faults) in some key components may

result in control performance degradation, a higher risk of system failures, reduction in

economic profits, or even catastrophic impacts on operation safety as well as the environment

[62, 63, 64, 65, 66]. Since these undesired consequences may propagate from one single

subsystem to the entire plant very quickly in modern process networks, FDI is especially

important for these plants. During the past two decades, we have witnessed rapid progress

in FDI. In the context of linear systems, model-based FDI approaches have been proposed.

In [67, 68, 69], for instance, system redundancy is taken advantage of to create residuals

for detection and identification of failures in different components. In another line of work,

effort has been devoted to FDI of systems exhibiting significant nonlinearities. To name

a few, in [70], detection and isolation of potential actuator faults involved in nonlinear

systems was addressed based on a geometric approach. Assuming that all the states are

measurable, a systematic approach was developed for FDI of actuator faults of nonlinear

processes by examining the system structures [71]. More representative results are referred

to [62, 74, 75, 76, 77]. Most approaches were developed within the centralized framework, and

less attention has been given to the distributed FDI, which is more favorable and sometimes

a necessity for complex and highly integrated plants due to its scalability and its capability

in handling subsystem interaction [78].

Distributed fault detection problems were investigated for linear systems in Ding et al.

[79], Shames et al. [80]. Distributed fault detection, diagnosis, isolation and fault toler-

ant control approaches were proposed for different nonlinear systems in [64, 81, 82, 83].

However, most of these results are based on the availability of measurements of the entire

system states, which may not be satisfied in many applications. Therefore, state estimation

based distributed FDI approaches are highly desirable from a practice perspective. For FDI

purposes, it is desirable not only to ensure the convergence of the state estimation system,
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but also to achieve a sufficiently fast convergence rate of the estimation error. In [78], the

authors made an initial effort to design a distributed fault detection architecture based on

a bank of observers with exponential convergence rates for input-output interconnected sys-

tems. We note that fault isolation was not considered in [78], but also needs to be addressed

appropriately.

We have also noticed that subsystem decomposition for decentralized/distributed state

estimation designs that is equivalently important for achieving satisfying state estimation

performance has not received sufficient research attention. Actually, improper subsystem

decomposition and local estimator configuration may lead to the increase of computational

burdens, inaccurate estimation results or even deterioration of the observability of the entire

system. In terms of control, subsystem decomposition and control structure configuration

have been considered for decentralized/distributed control [89]. In [90], a decentralized

control system structure selection and optimization approach was proposed based on a con-

strained genetic algorithm. In [91], an automatic structure selection approach was proposed

for chemical processes within a decentralized control framework. A control structure selec-

tion approach for distributed model predictive control subject to model errors was reported

in [92]. In [93, 95, 96], integer-optimization-based hierarchical clustering was taken advan-

tage of to configure block decentralized control structures. The measure of relative sensitivity

array was proposed in [94] for the selection of fully decentralized control structures. More re-

sults on control structure selection can be found in [98, 99, 100, 101, 102, 103, 104, 105, 137].

The aforementioned results primarily focus on control structure selection and configura-

tion. Currently, no systematic methodology has been reported with respect to subsystem

decomposition and configuration for distributed state estimation, on which we will also place

emphasis.

It is much desirable if the subsystem decomposition and distributed state estimation can

be jointly considered for large-scale processes, for example, the wastewater treatment plant.

Wastewater treatment plants (WWTPs) are commonly used for the disposal of wastewater
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to substantially reduce the environmental impacts of wastewater and to convert wastewater

to reclaimed water [120, 121]. A WWTP which typically consists of several interconnected

operating units, is a nonlinear process where complex physical and biological phenomena

take place. The influent flow rate and composition to a WWTP may fluctuate significantly,

which makes the control and monitoring of a WWTP challenging. In literature, several state

estimation methods have been proposed for WWTPs. In [122], a state estimation method

for WWTP was developed based on the singular perturbation theory for a WWTP with only

6 states. In [123], a centralized estimator was developed for a WWTP based on extended

Kalman filter (EKF). In [125], a distributed EKF scheme of two subsystem estimators was

developed. In [124, 126], a state estimation method was proposed based on model reduction

for improved computational efficiency. While EKF was shown to give acceptable estimation

performance in the above studies, it may give ad hoc results and is not robust to disturbance

or poor initial guess due to the way nonlinearity is treated in EKF [127]. It is worthwhile

to consider an estimation method like moving horizon estimation (MHE) that can handle

the nonlinearity of WWTPs more appropriately and take constraints into consideration

for further improved estimation performance. Initial attempts on applying MHE in state

estimation of WWTPs were made in [128, 123], where centralized MHE estimators were

developed for WWTPs described by the Activated Sludge Model No.1.

However, MHE is an optimization-based method and it has much higher computational

complexity for nonlinear systems compared with EKF. Its high computational complexity is

the main obstacle that prevents people from using MHE in nonlinear systems. This point

is especially important for further synthesis of state estimation based MPC from an online

implementation perspective. One effective way to reduce the computational complexity

is to design MHE-based estimators within a distributed framework, which divides a large

optimization problem into smaller sub-problems [15, 42]. Distributed state estimation can

also be much favorable for WWTPs in terms of organizational complexity and fault tolerance

[1, 47]. As mentioned earlier, subsystem decomposition is another key step for distributed
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state estimation [103, 132, 61, 73]. Based on the above observations, we aim to propose a

systematic subsystem decomposition and distributed MHE approach for the state estimation

of WWTPs [130]. The developed distributed MHE scheme can provide online state estimates,

which may be used in distributed MPC to form a distributed output-feedback control scheme

for the WWTPs.

From an application point of view, the ultimate goal is to design distributed output-

feedback control schemes for large-scale processes, which require the incorporation of dis-

tributed state estimation and distributed control in one integrated design. Regarding the

subsystem decomposition for distributed output-feedback control, One possible solution is

to perform subsystem decomposition for distributed estimation and distributed control sep-

arately and independently using existing methods. However, from the perspective of im-

plementation, maintenance and communication, it is much more favorable if the local state

estimators and local controllers are designed based on the same subsystem decomposition.

However, a systematic approach to achieve this objective is not yet available.

The community detection concept originating from network theory provides a very promis-

ing way to address the considered problem [102, 103]. By means of the measure of modularity

[142], community-based approaches have been proposed to find distributed control structures

where the subsystems involving state, input and controlled output variables are made well-

decoupled [132, 102]. In [103], the community-based method was applied to a benchmark

chemical process to recommend different distributed control structures, and DMPC was de-

signed based on each structure for extensive performance comparison. This motivates us to

work on subsystem decomposition of nonlinear process networks for simultaneous distributed

state estimation and distributed control by means of the concept of community structure

detection.
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1.2 Contributions and thesis outline

The rest of the thesis is organized as follows:

In Chapter 2, the scope is on the handling of time-scale multiplicity in state estimation.

Specifically, we consider state estimation of a class of two-time-scale nonlinear systems. A

system is first decomposed into a reduced-order fast system and several reduced-order slow

subsystems. A fast MHE is designed for the fast system and a slow MHE is designed for each

slow subsystem. The fast and slow MHEs form a DMHE scheme. Each MHE is designed via

the observer-enhanced MHE technique [24]. It is discovered that the slow MHEs are entirely

decoupled from the fast MHE which is a significant difference from control of two-time-scale

systems. The decoupling ensures that only one-directional information transmission from the

slow MHEs to the fast MHE is needed and the fast MHE does not send out any information.

Sufficient conditions are derived under which the proposed DMHE is guaranteed to give

ultimately bounded estimation error under bounded system disturbances and measurement

noise. A reactor-separator process example is introduced to demonstrates the applicability

and effectiveness of the method proposed in Chapter 2.

In Chapter 3, we consider the problem of distributed state estimation of nonlinear sys-

tems comprised of interconnected subsystems. We consider that a decentralized state esti-

mation system comprised of local estimators potentially of different types has already been

implemented for a nonlinear process network. In order to achieve improved estimation perfor-

mance, the existing decentralized estimators may be connected together via a communication

network to form a distributed state estimation network. We propose a systematic approach

to take advantage of the existing decentralized estimators potentially of different types to

form a distributed state estimation network without performing a complete re-design of the

estimation system. Specifically, a compensator is designed for each subsystem, and is con-

nected to the corresponding decentralized estimator to obtain an augmented estimator. The

augmented estimators for the subsystems communicate with each other to exchange subsys-

tem state estimates and measurements via a communication network every sampling time.
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We derive sufficient conditions on the convergence and boundedness of the estimation error

of the proposed distributed estimation network. Within the proposed distributed framework,

estimation algorithms of local estimators for different subsystems can be independently se-

lected. The proposed approach is demonstrated via the application to two chemical process

examples and one hybrid-tank plant.

In Chapter 4, distributed output-feedback fault detection and isolation (FDI) of nonlin-

ear cascade process networks is investigated. Based on the assumption that an exponentially

convergent estimator exists for each subsystem, a distributed state estimation system is de-

veloped. In the distributed state estimation system, a compensator is designed for each

subsystem to compensate for subsystem interaction and the estimators for subsystems com-

municate to exchange information. It is shown that when there is no fault, the estimation

error of the distributed estimation system converges to zero in the absence of system dis-

turbances and measurement noise. For each subsystem, a state predictor is also designed

to provide subsystem state predictions. A residual generator is designed for each subsystem

based on subsystem state estimates given by the distributed state estimation system and

subsystem state predictions given by the predictor. A subsystem residual generator gener-

ates two residual sequences, which act as references for FDI. A distributed FDI mechanism

is proposed based on residuals. The proposed approach is able to handle both actuator

faults and sensor faults by evaluating the residual signals. A chemical process example is

introduced to demonstrate the effectiveness of the distributed FDI mechanism.

In Chapter 5, we investigate the subsystem decomposition problem for distributed state

estimation of nonlinear systems. A systematic procedure for subsystem decomposition for

distributed state estimation is proposed. Key steps in the procedure include observability test

of the entire system, observable states identification for each output measurement, relative

degree analysis and sensitivity analysis between measured outputs and states. Considerations

with respect to time-scale multiplicity and direct graph are discussed. A few examples are

used to illustrate the applicability of the methods used in different steps. The effectiveness
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of the entire distributed state estimation configuration procedure is also demonstrated via

an application to a chemical process example used in coal handling and preparation plants.

In Chapter 6, we propose a subsystem decomposition approach and a distributed moving

horizon estimation (MHE) method for wastewater treatment plants. The plant (described

by Benchmark Simulation Model No.1) is decomposed into smaller subsystems based on

structural closeness. Three subsystems are formed considering subsystem interaction and

nonlinearity of the subsystems. An iterative distributed MHE scheme is proposed for the

wastewater treatment plant. Innovation triggered evaluation of the local MHEs is used

to reduce the computational complexity of the estimation scheme. Extensive simulations

are performed to illustrate the effectiveness and applicability of the proposed subsystem

decomposition and distributed estimation methods.

In Chapter 7, we address the problem of subsystem decomposition of general nonlin-

ear process networks for simultaneous distributed state estimation and distributed control

based on community structure detection. A systematic procedure based on modularity is

proposed. A fast folding algorithm which approximately maximizes the modularity is used

in the proposed procedure to find candidate subsystem configurations. Two criteria are pro-

posed to determine the final subsystem configurations that are appropriate for simultaneous

distributed estimation and control. Two chemical process examples of different complexities

are used to illustrate the effectiveness and applicability of the proposed approach.

Chapter 8 summaries the contributions of this work and discusses future research direc-

tions.
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Chapter 2

Distributed moving horizon state

estimation of two-time-scale nonlinear

systems

In this chapter, we focus on distributed moving horizon estimation (DMHE) for a class of

two-time-scale nonlinear systems described in the framework of singularly perturbed systems.

In Section 2.2, by taking advantage of the time-scale separation property, a two-time-scale

system is first decomposed into a reduced-order fast system and a reduced-order slow system.

The slow system is further decomposed into several interconnected slow subsystems. In Sec-

tion 2.3, a local estimator is designed for each slow subsystem and for the reduced-order fast

system. The slow subsystem estimators communicate with each other to exchange informa-

tion and they are only required to send information to the fast system one-directionally. The

fast system estimator does not send out any information. The local estimators are designed

as observer-enhanced moving horizon estimators. Sufficient conditions on the convergence of

the estimation error of the DMHE are derived and are given in Section 2.4. The application

of the proposed DMHE to a chemical process example demonstrates its applicability and

effectiveness via simulations in Section 2.5. This chapter is a revised version of [42].
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2.1 Introduction

Complex and integrated systems are common occurrences in manufacturing industries (e.g.,

chemicals, petrochemicals and mineral processes). Model predictive control (MPC)) sys-

tems are widely used in the manufacturing industries to ensure the quality of products while

maximizing economic profits and guaranteeing operation safety as well as environmental

sustainability. Due to the medium to large scales of many systems, the centralized control

framework is not practical in terms of computational burden, organizational complexity, and

fault tolerance [1]. The above considerations motivate significant research interests in dis-

tributed MPC [1]. While there are extensive results on distributed MPC, less attention has

been given to distributed or decentralized state estimation which is equally important and

is closely related to distributed control. It should be pointed out that there are some algo-

rithms on decentralized or distributed Kalman filtering (e.g, [11]). However, these algorithms

typically do not account for system nonlinearity.

Recently, there are some results on distributed moving horizon state estimation (DMHE).

Moving horizon estimation (MHE) is an online optimization-based technique and can handle

nonlinearities, constraints and optimality considerations [12, 13]. In [14], a DMHE algorithm

was developed for nonlinear systems based on subsystem models. An observer-enhanced

DMHE algorithm was developed in [15], where an auxiliary nonlinear observer is taken

advantage of in the design of each local estimator. The auxiliary observer is used to calculate

a reference state estimate based on which a confidence region is constructed every sampling

time. Each local estimator optimizes its estimate within the confidence region. The observer-

enhanced design is less sensitive to external noise compared with the auxiliary nonlinear

observer. The convergence rate of the DMHEmay be tuned by tuning the auxiliary observers.

It was shown to be less dependent on the arrival cost, the estimation window size and have the

potential to be used in output feedback control with provable closed-loop stability [15, 16].

On the other hand, time-scale multiplicity is a common feature of many systems. For

chemical processes, it usually arises due to the strong coupling of physicochemical phenomena
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[17, 18]. A direct application of standard control or estimation methods without taking

into account time-scale multiplicity to systems with different time scales may lead to ill-

conditioning or even the loss of closed-loop stability [19, 20]. The singular perturbation

theory is the standard tool for the analysis of systems with time-scale multiplicity [19, 20].

Within the singular perturbation framework, the original system is typically decomposed into

reduced-order subsystems with “fast” and “slow” dynamics. The majority of related results

are on control system design for two-time-scale systems (e.g., [19, 20, 21]). Little attention

has been given to state estimation of systems with time-scale multiplicity. In [22], state

estimation of a wastewater treatment plant was addressed via linearization in a centralized

framework by neglecting the fast dynamics.

In this work, the scope is on the handling of time-scale multiplicity in state estimation.

Specifically, we consider state estimation of a class of two-time-scale nonlinear systems. A

system is first decomposed into a reduced-order fast system and several reduced-order slow

subsystems. A fast MHE is designed for the fast system and a slow MHE is designed for each

slow subsystem. The fast and slow MHEs form a DMHE scheme. Each MHE is designed via

the observer-enhanced MHE technique [24]. It is discovered that the slow MHEs are entirely

decoupled from the fast MHE which is a significant difference from control of two-time-scale

systems. The decoupling ensures that only one-directional information transmission from the

slow MHEs to the fast MHE is needed and the fast MHE does not send out any information.

Sufficient conditions are derived under which the proposed DMHE is guaranteed to give

ultimately bounded estimation error under bounded system disturbances and measurement

noise. The effectiveness of the proposed method is demonstrated via the application to a

chemical process.
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2.2 Preliminaries

2.2.1 Notation

The operator |·| denotes the Euclidean norm of a vector and |·|2Q represents the square of the

weighted Euclidean norm of a vector, defined as |x|2Q= xTQx where Q is a positive definite

matrix. A function f(x) is said to be Lipschitz with respect to its argument x if there

exists a positive constant Lx
f such that |f(x′) − f(x′′)|≤ Lx

f |x′ − x′′| holds for all x′ and x′′

in a given region of x and Lx
f is the associated Lipschitz constant. A continuous function

α : [0, a) → [0,∞) is said to belong to class K if it is strictly increasing and satisfies α(0) = 0.

A function β(r, s) is said to be a class KL function if for each fixed s, β(r, s) belongs to class

K with respect to r, and for each fixed r, it is deceasing with respect to s, and β(r, s) → 0 as

s → ∞. A function f on an interval is said to be concave if for any x and y in the interval

and for any α ∈ [0, 1], f((1−α)x+αy) ≥ (1−α)f(x) +αf(y). The symbol diag(v) denotes

a diagonal matrix, in which the diagonal elements are the elements of vector v. The symbol

A+ denotes the pseudoinverse of a matrix (or vector) A. I denotes a set of integers defined

as I = {1, . . . ,m}.

2.2.2 System description

In this study, we consider a class of two-time-scale nonlinear systems that can be described

in the framework of singularly perturbed systems as follows:

ẋs(t) =f(xs(t), ws(t), ε) + f̃(xs(t), xf (t), ε) (2.1a)

εẋf (t) =g(xf (t), wf (t), ε) + g̃(xs(t), xf (t), ε) (2.1b)

ys(t) =hs(xs(t)) + vs(t) (2.1c)

yf (t) =hf (xf (t)) + vf (t) (2.1d)
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where xs ∈ Rnxs and xf ∈ R
nxf are state vectors, ws ∈ Rnws and wf ∈ R

nwf denote system

disturbances, ys ∈ Rnys and yf ∈ R
nyf are system outputs, vs ∈ Rnvs and vf ∈ R

nvf denote

measurement noise, and ε is a small positive parameter reflecting the time-scale separation

in the dynamics of the nonlinear system. The functions f and g depict, respectively, the

dependence of the dynamics of xs and xf on themselves and associated system disturbances.

The function f̃ characterizes the interaction between the dynamics of xs and the state vector

xf . Similarly, g̃ depicts the interaction between the dynamics of xf and xs. It is assumed

that functions f , g, f̃ and g̃ are all locally Lipschitz with respect to their arguments. Note

that locally Lipschitz is a mild assumption on the continuity of the functions and it imposes

limits on how fast the functions can change. The small parameter ε appears as a multiplier

of the time derivative of state xf , and the state xf evolves much faster than the state xs

[135]. We will refer to xs as the slow states and xf as the fast states in the remainder. We

assume that the measurements ys and yf are continuously available.

2.2.3 Two-time-scale decomposition

It is possible to decompose two-time-scale systems described in (1) into two separate reduced-

order systems evolving in a fast and a slow time scales. This property will be taken advantage

of in the design of the proposed distributed state estimation scheme.

First, we set ε = 0 in (2.1) and obtain that:

dxs(t)

dt
=f(xs(t), ws(t), 0) + f̃(xs(t), xf (t), 0) (2.2a)

0 =g(xf (t), wf (t), 0) + g̃(xs(t), xf (t), 0) (2.2b)

We assume that there exists a unique isolated solution to the algebraic equation (2.2b):

xf (t) = ĝ(xs(t), wf (t)) (2.3)
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for each pair of (xs, wf ), and the partial derivatives ∂ĝ/∂x and ∂ĝ/∂w are sufficiently smooth.

This assumption is a standard one in two-time-scale decomposition and is used to ensure

that xf can be uniquely expressed in terms of xs and wf [19]. Note that a control system is

normally operated within an operating range and the assumption does not impose practical

restrictions. Substituting (2.3) into (2.2a), the reduced-order slow system is obtained as

follows:

˙̄xs(t) = f(x̄s(t), ws(t), 0) + f̃(x̄s(t), ĝ(x̄s(t), wf (t)), 0) (2.4)

Note that in (2.4), x̄s is used to denote the state of the reduced-order slow system to indicate

that the dynamics of the reduced-order slow system is (slightly) different from the dynamics

of xs in the original system (2.1).

To derive the reduced-order fast system, we define a fast time scale τ = t
ε
and intro-

duce the deviation variable ef := xf − ĝ(xs, wf ). The fast system (2.1b) can be rewritten

in the following form:
def
dτ

= g
(

ef + ĝ(xs, wf ), wf , ε
)

+ g̃
(

xs, ef + ĝ(xs, wf ), ε
)

−ε∂ĝ(xs,wf )

∂wf
ẇf −

ε ∂ĝ

∂xs

(

f(xs, ws, ε) + f̃(xs, ef + ĝ(xs, wf ), ε)
)

. Setting ε to be zero and definingG(ef , xs, wf ) :=

g(ef + ĝ(xs, wf ), wf , 0) + g̃(xs, ef + ĝ(xs, wf ), 0), the reduced-order fast system is obtained

as follows:

def (τ)

dτ
= G(ef , xs, wf ) (2.5)

2.2.4 Decomposition of slow dynamics

We consider that the slow dynamics can be further decomposed into several slow subsystems.

However, we consider the fast dynamics as a whole and will design a single estimator for the

entire fast system. The purpose of this approach is twofold: (a) to simplify the presentation

of the proposed state estimation scheme since the subsystem decomposition can be applied

to the fast system in a straightforward manner; and (b) to be consistent with the fact

that typically only a relatively smaller portion of the entire states exhibits fast dynamics in

chemical processes.
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We consider that the slow dynamics can be decomposed into m slow subsystems with

the i-th slow subsystem, i = 1, . . . ,m, described as follows:

ẋsi(t) =fi(xsi(t), wsi(t), ε) + f̃i(xs(t), xf (t), ε) (2.6a)

ysi(t) =hsi(xsi(t)) + vsi(t) (2.6b)

where xsi ∈ Rnxsi denotes the vector of states of slow subsystem i, wsi ∈ Rnwsi denotes

the disturbance associated with slow subsystem i. The function fi is used to describe the

dependence of the state vector of each subsystem on itself and the associated disturbance.

The vector function f̃i characterizes the interaction between slow subsystem i and other

slow subsystems as well as the fast system. ysi ∈ Rnysi is the vector of measured outputs

of slow subsystem i and vsi ∈ Rnvsi denotes the associated measurement noise. xsi, i ∈ I,

and xf are assumed to be constrained as xsi ∈ Xsi, xf ∈ Xf where Xsi, i ∈ I, and Xf are

convex compact sets. The system disturbances are constrained as wsi ∈ Wsi, i ∈ I, and

wf ∈ Wf , while the measurement noise is bounded as vsi ∈ Vsi and vf ∈ Vf . The sets

Wsi, Wf , Vsi, Vf with i ∈ I are defined such that |wsi|≤ θwsi
, |wf |≤ θwf

, |vsi|≤ θvsi and

|vf |≤ θvf , where θwsi
, θwf

, θvsi , and θvf with i ∈ I are known positive real scalars. Note that

the assumption of boundedness of subsystem states is based on the fact that many systems

are regulated by control systems and are operated within specific bounded regions. Note

also that assumption of bounded system disturbances and measurement noise is a common

assumption and is needed to obtain deterministic results. Based on system (2.4) for the

reduced-order slow system, the corresponding reduced-order slow subsystem i is:

˙̄xsi(t) = fi(x̄si(t), wsi(t), 0) + f̃i(x̄s(t), ĝ(x̄s(t), wf (t)), 0) (2.7)

where x̄si denotes the state vector of slow subsystem i.
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2.2.5 Nonlinear observers

In the proposed DMHE scheme, the local MHEs will be designed as observer-enhanced MHE

developed in [24]. Note that the design of the auxiliary nonlinear observers is not within

the scope of this work and there are extensive studies on the design of nonlinear observers

(e.g., [25, 55, 27, 28]) with many successful applications to different areas including chemical

processes (e.g., [55, 29]).

Consider the nominal reduced-order slow subsystem i without considering the interaction

as follows:

˙̄xsi(t) =fi(x̄si(t), 0, 0)

ȳsi(t) =hsi(x̄si(t))

(2.8)

It is assumed that there exists a nonlinear observer for the subsystem (2.8) for i ∈ I, as

follows:

żsi(t) = Fsi(zsi(t), hsi(x̄si(t)), i ∈ I (2.9)

such that zsi asymptotically converges to x̄si for x̄si ∈ Xsi, if f̃i (x̄s(t), ĝ(x̄s(t), wf (t)), 0) ≡ 0

and wsi(t) ≡ 0.

Next, consider the nominal reduced-order fast system:

def (τ)

dτ
=G(ef , xs, 0)

yf (τ) =hf (ef (τ) + ĝ(xs(τ))

(2.10)

It is also assumed that there exists a nonlinear observer for the the nominal system (2.10)

in the following form:

żf (τ) = Ff (zf (τ), xs(τ), hf (ef (τ) + ĝ(xs(τ), 0))) (2.11)

such that zf asymptotically approaches ef if wf ≡ 0 for all τ . These assumptions imply that

if we have f̃i (x̄s(t), ĝ(x̄s(t), wf (t)), 0) ≡ 0, wsi(t) ≡ 0 for all t and wf (t) ≡ 0 for all τ , then
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there exists a set of functions βsi, i ∈ I, and βf of class KL such that:

|zsi(t)− x̄si(t)|≤βsi(|zsi(0)− x̄si(0)|, t), i ∈ I (2.12a)

|zf (τ)− ef (τ)|≤βf (|zf (0)− ef (0)|, τ) (2.12b)

where zsi(0), zf (0) and x̄si(0), ef (0) denote the initial conditions. It is assumed that Fsi,

i ∈ I, and Ff are locally Lipschitz functions. It is also assumed that the interactions

between the slow subsystems and the interactions between the slow and fast systems do not

damage the collective observability of the subsystems/systems. The above assumptions on

the existence of local auxiliary observers imply that the state of each subsystem/system is

locally observable if the interaction is known and the entire system is locally observable.

2.3 DMHE design

A schematic of the proposed DMHE scheme is presented in Fig. 2.1. A local MHE is designed

for each slow subsystem and the fast system. The MHEs associated with the slow subsystems

communicate with each other and send information to the MHE of the fast system. However,

there is no information transmitted from the MHE of the fast system to any of the MHEs of

the slow subsystems. In the remainder, the MHE associated with the i-th slow subsystem

will be referred to as s-MHE i, i ∈ I, while the MHE associated with the fast system will

be referred to as f-MHE. Since the states of a two-time-scale system evolve at different time

scales, it is desirable to use different sampling periods in the local MHE designs for the slow

and fast systems. In this work, we use ∆s and ∆f to denote the sampling periods for s-MHEs

and f-MHE, respectively. Without loss of generality, we assume that ∆s is integer multiple of

∆f , i.e., ∆s = n∆f where n is a positive integer. In the description of the proposed design,

we use tk := t0 + k∆s with k ≥ 0 and τq := τ0 + q∆f with q ≥ 0 to denote the sampling

instants of s-MHEs and f-MHE, respectively.
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subsystems, each s-MHE calculates the state estimate of the corresponding slow

subsystem and sends the estimate to the f-MHE; that is, s-MHE i calculates

x̂si(tk), i ∈ I, and sends it to the f-MHE.

2.4. Go to Step 2.1 at the next slow system sampling time tk+1.

Algorithm 2. Implementation of the f-MHE.

1. At τ0 = 0, the f-MHE is initialized with the output measurements of the slow subsystems

ysl(0), l ∈ I, the output measurement of the fast system yf (0), the initial guesses of the

s-MHEs x̂sl(0), l ∈ I, and the initial guess of the f-MHE x̂f (0).

2. At τq > 0, carry out the following steps:

2.1. The f-MHE receives the measured output of the fast system; that is, the f-MHE

receives yf (τq).

2.2. Based on the latest received information of the slow subsystems and the fast sys-

tem, the f-MHE calculates the estimate of the state of the fast system x̂f (τq).

2.3. Go to Step 2.1 at the next fast system sampling time τq+1.

From the two algorithms, it can be seen that the s-MHEs communicate with themselves

and send out information to the f-MHE while the f-MHE does not send out any information

to the s-MHEs.

Remark 1. Note that in the proposed design, the s-MHEs are decoupled from the f-MHE

in the sense that the performance of the s-MHEs does not depend on the f-MHE. It allows

us to treat slow and fast estimators essentially separately. This property is also different

from most of the results in the control of two-time-scale systems in which the controllers of

the fast dynamics and of the slow dynamics are normally mutually coupled via system states

because control actions are fedback to the system. Note also that the s-MHEs communicate

with themselves and send out information to the f-MHE. The communicated information is
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used in interaction compensation. The distributed estimators are coupled via information

flow which renders the overall design a distributed state estimation scheme.

2.3.2 Reference state estimate calculation for s-MHEs

In this subsection, we show how to augment nonlinear observers (2.9) to account for the

interactions between slow subsystems. The augmented nonlinear observers will be used to

generate reference state estimates for s-MHEs every slow sampling period. The augmented

observer i at time tk is designed as follows:

żsi(t) = Fsi(zsi(t), ysi(tk−1)) + f̃i(x̂s(tk−1), ĝ(x̂s(tk−1), 0), 0)

+
∑

l∈I

Ksi,l(x̂sl)(ysl(tk−1)− hsl(x̂sl(tk−1)))
(2.13)

At tk, the augmented observer is initialized as zsi(tk−1) = x̂si(tk−1), where x̂si(tk−1), i ∈ I, is

the optimal state estimate of xsi(tk−1) obtained by s-MHE i at tk−1 and Ksi,l, l ∈ I, are gain

matrices designed as follows:

Ksi,l =
∂f̃i
∂x̄sl

(

∂hsl
∂x̄sl

)+
∣

∣

∣

∣

∣

x̂sl(tk−1)

, ∀l ∈ I (2.14)

We note that the augmented observer is evaluated prior to the evaluation of s-MHE i,

i ∈ I, in order to generate a reference state estimate at each sampling time. x̂s(tk−1) is an

approximation of xs(t) for t ∈ [tk−1, tk) in (2.13).
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2.3.3 Design of s-MHEs

Based on the reference state estimate zsi(tk) given by observer (2.13), the proposed s-MHE i

at tk is designed as:

min
x̃si(tk−Ns ),...,x̃si(tk)

{

k−1
∑

j=k−Ns

|wsi(tj)|2Q−1
si

+
k
∑

j=k−Ns

|vsi(tj)|2R−1
si

}

(2.15a)

s.t. ˙̃xsi(t) = fi(x̃si(t), wsi(tj), 0)

+ f̃i(x̂s(tj), ĝ(x̂s(tj), 0), 0),

t ∈ [tj, tj+1], j = k −Ns, . . . , k − 1 (2.15b)

vsi(tj) = ysi(tj)− hsi(x̃si(tj)), j = k −Ns, . . . , k (2.15c)

wsi(tj) ∈ Wsi, vsi(tj) ∈ Vsi, x̃si(tj) ∈ Xsi,

j = k −Ns, . . . , k − 1 (2.15d)

|x̃si(tk)− zsi(tk)|≤ κsi|ysi(tk)− hsi(zsi(tk))| (2.15e)

where x̃si denotes the prediction of xsi within the optimization problem; Qsi and Rsi represent

the covariance matrices of wsi and vsi, respectively; Ns is the estimation horizon; x̂s denotes

the optimal estimate of xs obtained by the s-MHEs and κsi, i ∈ I, is a positive constant.

The design of κsi will be made clear in following discussion.

Once the optimization problem (2.15) is solved, the optimal solution is denoted as

{x̃∗si(tk−N), . . . , x̃
∗
si(tk)}, of which the last element x̃∗si(tk) is adopted as the optimal es-

timate of xsi(tk) and is denoted as x̂si(tk); that is, x̂si(tk) = x̃∗si(tk). In (2.15), (2.15a) is

the cost function for s-MHE i to be minimized. (2.15b) and (2.15c) describe the reduced-

order slow subsystem i. x̂s(tj) approximates xs(t) for t ∈ [tj, tj+1) to compensate for the

interactions in the system. Constraint (2.15d) explicitly bounds system disturbance wsi and

measurement noise vsi. Constraint (2.15e) is utilized to calculate a confidence region, within

which the estimate of subsystem state is optimized.

The feasibility of the optimization problem (2.15) is guaranteed since the two constraints
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(2.15d) and (2.15e) are not imposed simultaneously and do not conflict with each other.

Note also that constraint (2.15e) takes into account the boundedness properties of the system

and measurement noise via the confidence region constructed via the right-hand-side of the

inequality. Note also that the use of reduced-order slow subsystems in the design can avoid

ill-conditioning of the estimation problem as recognized in control relevant literature (e.g.,

[19, 20, 21]).

2.3.4 Reference state estimate calculation for f-MHE

For the reduced-order fast system, observer (2.11) is used to calculate a reference state

estimate every fast sampling time. Specifically, at τq, the observer takes the following form:

żf (τ) =Ff (zf (τ), x̂s(τq−1), yf (τq−1)) (2.16a)

zf (τq−1) =êf (τq−1) (2.16b)

where x̂s(τq−1) is an approximation of x(τ) for τ ∈ [τq−1, τq). Note that x̂s(τq−1) indicates the

latest available information on x̂s at each fast sampling instant τq. It does not necessarily

mean the actual x̂s at τq−1 because s-MHEs do not update at every fast sampling time.

2.3.5 Design of f-MHE

In the f-MHE design, we do not estimate the original fast state xf directly. Instead, we obtain

an optimal estimate of the reduced-order fast system state ef , based on which an estimate of

xf is calculated. Based on the reference state estimate zf (τq) generated by observer (2.16),
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the proposed f-MHE at τq is designed as follows:

min
ẽf (τq−Nf

),...,ẽf (τq)

{

q−1
∑

j=q−Nf

|wf (τj)|2Q−1
f

+
q
∑

j=q−Nf

|vf (τj)|2R−1
f

}

(2.17a)

s.t. ˙̃ef (τ) = G(ẽf (τ), x̂s(τj), wf (τj)),

τ ∈ [τj, τj+1], j = q −Nf , . . . , q − 1 (2.17b)

vf (τj) = yf (τj)− hf (ẽf (τj) + ĝ(x̂s(τj), wf (τj))),

j = q −Nf , . . . , q (2.17c)

wf (τj) ∈ Wf , vf (τj) ∈ Vf , j = q −Nf , . . . , q − 1 (2.17d)

|ẽf (τq)− zf (τq)|≤ κf |yf (τq)− hf (zf (τq)

+ ĝ(x̂s(τq), wf (τq−1)))| (2.17e)

where ẽf denotes the estimate of ef within the optimization problem; Qf and Rf denote the

covariance matrices of wsi and vsi, respectively; Nf is the estimation horizon of f-MHE and

κf is a positive constant.

The optimal solution to (2.17) is denoted as {ẽ∗f (τq−Nf
),

. . . , ẽ∗f (τq)}, and the last element is the optimal state estimate for time instant τq. That

is, êf (τq) = ẽ∗f (τq). In the optimization problem (2.17), (2.17a) is the cost function for

f-MHE to be minimized. Constraints (2.17b) and (2.17c) are the reduced-order fast sys-

tem (2.5). x̂s(τj) denotes the latest information of x̂s available at τj. (2.17d) describes

the constraints on wf and vf . (2.17e) is used to calculate a confidence region, and the

estimate of the fast system state is only allowed to be optimized within the region. Note

that in (2.17), we assume wf takes piece-wise constant values between two fast sampling

instants. This is the reason that wf (τq−1) is used in (2.17e). Note also that the optimal

solution to (2.17), {ẽ∗f (τq−Nf
), . . . , ẽ∗f (τq)}, is associated with an optimal disturbance tra-

jectory {w∗
f (τq−Nf

), . . . , w∗
f (τq−1)}. Based on the optimal estimate êf (τq) and w

∗
f (τq−1), the

optimal estimate of the original fast system state xf is calculated as x̂f (τq) = êf (τq) +
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ĝ(x̂s(τq), w
∗
f (τq−1)).

2.4 Stability analysis

In this section, we perform stability analysis of the proposed distributed state estimation

scheme. We first focus on the stability of the s-MHEs and then on the f-MHE.

2.4.1 Stability analysis of s-MHEs

We define a function γi(s) for each i ∈ I as γi(s) := (Lĝ

f̃i
L
wf

ĝ θwf
+ Lysi

Fsi
θvsi + Lwsi

fi
θwsi

+
∑

l∈I Ksi,lθvsl)s + Lysi
Fsi
Lhsi

M̄sis
2/2 +

∑

l∈I (L
xsl

fi
Lĝ

f̃i
Lxs

ĝ )M̄sls
2/2, where Lĝ

f̃i
is the Lipschitz

constant of f̃i with respect to its second argument, L
wf

ĝ is the Lipschitz constant of ĝ with

respect to its second argument, Lysi
Fsi

is the Lipschitz constant of Fsi defined in (2.9) with

respect to its second argument, Lwsi

fi
is the Lipschitz constant of fi with respect to its second

argument, Lhsi
is the Lipschitz constant of hsi with respect to its argument, Lxsl

fi
is the

Lipschitz constant of fi with respect to its first argument, Lxs

ĝ is the Lipschitz constant of ĝ

with respect to its first argument, Ksi,l ∀i, l ∈ I, is a positive constant such that |Ksi,l| ≤ Ksi,l,

M̄s,i is a finite constant denoting the upper bound of | ˙̄xsi| (i.e. | ˙̄xsi| ≤ M̄si), ∀i ∈ I. Note

that subsystem states are within convex compact sets, and the Lipschitz properties are

assumed to be held in these sets and the operating regions of the observers locally.

Proposition 1. [c.f. [15]] Consider the augmented observer (2.13) for the reduced-order

slow subsystem i, i ∈ I, during the time interval t ∈ [tk, tk+1] with initial condition zsi(tk) =

x̄si(tk) and output measurement ysi(tk). If each gain matrix Ksi,l is determined following

(2.14) and is bounded such that |Ksi,l| ≤ Ksi,l, i ∈ I, then the estimation error ezsi between

the observer state zsi and the state of the reduced-order slow subsystem i in (2.7) in one slow

sampling period ∆s is bounded as follows:

|ezsi(tk+1)| ≤ βsi(|ezsi(tk)|,∆s) + γi(∆s) +
∑

l∈I

Li,l|ezsl(tk)|2∆s (2.18)
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where ezsi = zsi − x̄si, Li,l = (Hf̃i
l + Ksi,lHhs

l ) with Hf̃i
l , and Hhs

l , for all i, l ∈ I, being

finite positive constants that are associated with the second-order terms generated by Taylor

expansions of f̃i and hs, respectively.

Proposition 2. Consider the reduced-order slow subsystem i described by (2.7). The devia-

tion of the state x̄si of the reduced-order slow subsystem i from the corresponding state xsi of

the actual system described by (2.1) in one slow sampling period ∆s is bounded as follows:

|exsi(∆s)| ≤ φi(ε,∆s) (2.19)

where exsi = x̄si − xsi, φi(ε, s) = ((Lε
fi
+ Lε

f̃i
)ε + 2Nf̃i

)s +
∫ ∆s

0
|fi(xsi(t) + exsi(t), wsi(t), 0) −

fi(xsi(t), wsi(t), 0)|dt, Lε
fi

and Lε

f̃i
are Lipschitz constants of fi and f̃i, and Nf̃i

(i ∈ I) is a

positive constant such that |f̃i(·, ·, 0)| ≤ Nf̃i
.

Proof: The time derivative of the error exsi(t) is:

ėxsi(t) =fi(x̄si(t), wsi(t), 0) + f̃i(x̄s(t), ĝ(x̄s(t), wf (t)), 0)

− fi(xsi(t), wsi(t), ε)− f̃i(xs(t), xf (t), ε)

Adding and subtracting fi(xsi(t), wsi(t), 0), and taking into account the Lipschitz properties

of functions fi and f̃i, and the fact that |f̃i(·, ·, 0)| ≤ Nf̃i
, the following inequality can be

obtained:

|ėxsi(t)| ≤ |fi(x̄si(t), wsi(t), 0)− fi(xsi(t), wsi(t), 0)|

+ (Lε
fi
+ Lε

f̃i
)ε+ 2Nf̃i

(2.20)

where Lε
fi

and Lε

f̃i
are the Lipschitz constants of fi, f̃i with respect to ε. Given that x̄si =

xsi + exsi and the definition of function φi(ε, s), Proposition 2 can be proved by integrating

(2.20) from t = 0 to t = ∆s. �

Now we are in a position to present sufficient conditions on the convergence and ultimate

boundedness of the estimation error of the slow system with s-MHEs.
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Theorem 1. Consider system (2.1) with outputs ysi, i ∈ I, of the corresponding slow sub-

systems at each time instant tk, k ≥ 0. If the developed s-MHEs are implemented following

Algorithm 1 with s-MHE i, i ∈ I, designed as in (2.15) based on nonlinear observers satisfy-

ing constraint (2.12a) and all the assumptions in Proposition 1 and Proposition 2 hold, and

if φi(ε,∆s) ≤ di(ε) all the time for all i ∈ I and there exist a class of concave functions Qsi,

i ∈ I, satisfying:

Qsi(s) ≥ βsi(s,∆s) (2.21)

for all 0 ≤ s ≤ ρsi, and if there exist positive scalars %si satisfying 0 ≤ %si ≤ ρsi, and positive

scalars asi ≥ 1, bsi > 0, ξsi > 0 such that

%si − asi(Qsi(%si) + γi(∆s) +
∑

l∈I

Li,lρ
2
sl∆s)− bsiθvsi − di(ε) ≥ ξsi (2.22)

for all i ∈ I, and if κsi for all i ∈ I are picked such that 0 ≤ κsi ≤ min{(asi − 1)/Lhsi
, bsi},

then the estimation error |esi|= |x̂si − xsi|, i ∈ I, is ultimately bounded within a small

region such that: limt→∞ sup|esi(t)|≤ ρmin
si for |ex̄si(0)|+|exsi(0)|≤ ρsi, i ∈ I, where ρmin

si :=

max{|ex̄si(t+∆s)|+|exsi(t+∆s)|: |ex̄si(t)|+|exsi(t)|≤ %si}. This also implies that the estimation

error of the entire slow system is ultimately bounded.

Proof: We first study the error between the estimated states x̂si given by s-MHE i and the

states of reduced-order slow subsystem i. This error is denoted as ex̄si = x̂si−x̄si. Considering

the constraint in (2.15e) and the Lipschitz property of function hsi and the upper bound θvsi

for measurement noise vsi, we derive that

|x̂si(tk+1)− zsi(tk+1)| ≤ Lhsi
κsi|x̄si(tk+1)− zsi(tk+1)|+ κsiθvsi (2.23)

Considering the fact that |x̂si − x̄si| ≤ |x̂si − zsi| + |zsi − x̄si|, the fact that ex̄si(tk) = ezsi(tk),

and the property of class KL function βsi, we can obtain from (2.23) that
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|ex̄si(tk+1)| ≤ (1 + Lhsi
κsi)
(

βsi (|ex̄si(tk)|+ |exsi(tk)|,∆s)

+ γi(∆s) +
∑

l∈I

Li,l(|ex̄sl(tk)|+ |exsl(tk)|)
2
∆s

)

+ κsiθvsi
(2.24)

Next, we focus on the actual estimation error |esi|= |xsi− x̂si| between the actual state of

the original slow subsystem i (i.e., xsi) and the state estimate for the slow subsystem i (i.e.,

x̂si). If (2.21) holds, based on (2.24), Proposition 2 and the assumption that φi(ε,∆s) ≤ di(ε),

it is derived that

|ex̄si(tk+1)|+ |exsi(tk+1)|

≤ (1 + Lhsi
κsi)
(

Qsi (|ex̄si(tk)|+ |exsi(tk)|) + γi(∆s)

+
∑

l∈I

Li,l(|ex̄sl(tk)|+ |exsl(tk)|)
2
∆s

)

+ κsiθvsi + di(ε)

(2.25)

for |ex̄si(tk)|+|exsi(tk)|≤ ρsi, i ∈ I.

If there exist positive constants %si, ρsi and ξsi that satisfy (2.22), it can be obtained

that:

|ex̄si(tk+1)|+ |exsi(tk+1)| ≤ |ex̄si(tk)|+ |exsi(tk)| − ξsi (2.26)

for all %si ≤ |ex̄si| + |exsi|≤ ρsi. Inequality (2.26) implies that |ex̄si| + |exsi| is decreasing if

%si ≤ |ex̄si|+ |exsi| and will eventually become smaller than %si within finite sampling periods.

Once |ex̄si|+ |exsi|< %si, |ex̄si|+ |exsi| will not necessarily decrease at every sampling instant, but

will be bounded within a small region such that |ex̄si| + |exsi|≤ ρmin
si because of the definition

of ρmin
si .

Further, based on the triangular property |esi|≤ |ex̄si|+|exsi|, it is obtained that the estima-

tion error |esi| is ultimately bounded as: limt→∞ sup|esi(t)|≤ ρmin
si after sufficient sampling

periods. The ultimate boundedness of |esi|, i ∈ I, implies the ultimate boundedness of |es|.

This proves Theorem 1. �

In condition (2.22) of Theorem 1, the function Qsi(·) (i ∈ I) is a concave approximation

of βsi(·,∆s) (i ∈ I) which reflects the convergence rate of the associated auxiliary observer.
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The term γi(∆s) (i ∈ I) characterizes the effects of the slow sampling time ∆s, system

disturbances and partially measurement noise. The term
∑

l∈I Li,lρ
2
si∆s (i ∈ I) describes the

effects caused by subsystem interactions after interaction compensation. The term bsiθvsi

(i ∈ I) characterizes the effect of measurement noise. And di(ε) (i ∈ I) provides an upper

bound on the model error between the actual slow subsystem i and the reduced-order slow

subsystem i. Note that conditions (2.21) and (2.22) can be satisfied simultaneously as long

as the convergence rates of the auxiliary observers are sufficiently large, the sampling time

∆s and the measurement noise upper bound θvsi (i ∈ I) and the time separation indication

ε are sufficiently small. Note also that as long as asi ≥ 1 and bsi > 0, the parameter κsi

associated with s-MHE i (i ∈ I) satisfying the condition stated in Theorem 1 can always

be found. When bigger asi and bsi exist, bigger κsi can be picked which implies that the

s-MHE i can optimize the estimate within a bigger region. An extreme case is κsi = 0, which

leads to x̃∗si = zsi.

The assumption in Theorem 1 that φi(ε,∆s) ≤ di(ε) (i ∈ I) imposes a restriction on the

system. It requires that the difference between the reduced-order model and the original

system should not grow unbounded. This assumption can normally be satisfied when the

original and the reduced-order systems are stable and the value of ε is sufficiently small.

In Theorem 1, the model-plant-mismatch between a reduced-order slow subsystem and the

actual subsystem is explicitly considered. This can be seen from (2.22) in which di(ε) is

involved. The model-plant-mismatch affects the size of the region in which the estimation

error esi is ultimately bounded. This can be seen from the definition of ρmin
si .

Remark 2. In Theorem 1, the assumption on the existence of a concave function satisfying

(2.21) is made to simplify the proof of Theorem 1. The results can still be proved without

this assumption but the proof would be more involved. Specifically, the class KL function

βsi(|e|,∆) is a strictly increasing function with respect to |e|. βsi(|e|,∆) with fixed ∆ could

be a convex increasing function or a concave increasing function of |e|. It requires different

approaches to handle the two difference cases. To simplify the proof and unify the conditions,
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the assumption on the existence of a concave function is introduced.

Remark 3. In our work, an approach based on the worst case scenario is used in the deriva-

tion of the conditions in Theorem 1. In the analysis, a subsystem treats the estimation error

of other interacting subsystems as external disturbances. Note that the error is compensated

for using the information communicated in the calculation of reference state estimates in the

augmented nonlinear observers. The augmented observers can completely remove the first-

and second-order interaction effects (when expanded using Taylor series) between subsystems.

This ensures that the worst case scenario approach is not very conservative. Also note that

while the conditions in Theorem 1 (as well as Theorem 2) are stated in terms of subsystems,

they are required to be satisfied simultaneously for all the subsystems. One implication of

these conditions is that the connected distributed estimators subject to uncompensated high-

order interaction effects, process and measurement noise and the model approximation error

due to the reduced-order models should be convergent.

2.4.2 Stability analysis of f-MHE

Next, we conduct stability analysis of the proposed f-MHE.We define µ(s) := n
∑

l∈I L
xs

Ff
Msls

2

+L
yf
Ff
Lhf

Mfs
2/2+

(

L
yf
Ff
Lhf

L
wf

ĝ θwf
+L

yf
Ff
θvf +L

wf

G θf

)

s+
∑

l∈I L
yf
Ff
Lhf

Lxs

ĝ Msls
2/2 where Lxs

Ff

is the Lipschitz constant of Ff with respect to its second argument, L
yf
Ff

is the Lipschitz con-

stant of Ff with respect to its third argument, Lhf
is the Lipschitz constant of hf with respect

to its argument, L
wf

G is the Lipschitz constant of G with respect to its third argument, Msl

is a finite constant that denotes the upper bound of ẋsl such that |ẋsl|≤ Msl for all xsl ∈ Xsl

with l ∈ I, Mf is a finite constant such that |ėf |≤ Mf .

Proposition 3. Consider the nonlinear observer (2.16) designed for the reduced-order fast

system (2.5), within one sampling period from τq to τq+1, the state deviation generated by
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the nonlinear observer for the fast system is bounded as follows:

|εzf (τq+1)| < βf (|εzf (τq)|,∆f ) +
∑

l∈I

Lxs

Ff
|esl(τq−n+1)|∆f + µ(∆f ) (2.27)

where εzf (τ) = zf (τ)− ef (τ).

Proof: In this proof, we focus on the time interval τ ∈ [τq, τq+1], f-MHE may not receive

any update on x̂s from the s-MHEs because of the difference in the sampling times. The

latest received x̂s will be used to approximate x̂s(τq). To analyze the effect induced by the

approximation, we take into account the worst case scenario; that is, s-MHEs do not update

for a period of (n − 1)∆f from τq−n+2 until τq+1. Let us consider the nonlinear observer

designed for the local f-MHE of Eq. (2.17) corresponding to the reduced-order fast system,

and define εzf = zf − ef as the estimation error generated by the nonlinear observer for the

fast system. We consider the time interval from τ = τq to τ = τq+1 with initial condition

zf (τq) = êf (τq), the derivative of the estimation error εzf is calculated as follows:

ε̇zf (τ) =Ff (zf (τ), x̂s(τq−n+1), yf (τq))−G(ef (τ), xs(τ), wf (τ)) (2.28)

We can obtain an inequality from (2.28) by taking advantage of the Lipschitz properties of

Ff and G, |vf (τ)|≤ θvf , |wf (τ)|≤ θwf
. If we integrate the obtained inequality from τ = τq

to τ = τq+1, we can have that

∣

∣εzf (τq+1)
∣

∣ < βf (|εzf (τq)|,∆f ) +
∑

l∈I

Lxs

Ff
|esl(τq−n+1)|∆f

+ n
∑

l∈I

Lxs

Ff
Msl∆

2
f + L

yf
Ff
Lhf

Mf∆
2
f/2

+ L
yf
Ff
Lhf

L
wf

ĝ θwf
∆f + L

yf
Ff
θvf∆f + L

wf

G θwf
∆f

+
∑

l∈I

L
yf
Ff
Lhf

Lxs

ĝ Msl∆
2
f/2

(2.29)
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Given the definition of function µ(s) with s = ∆f , (2.29) can be re-written as (2.27) in

Proposition 3. This completes the proof. �

Theorem 2. Consider the reduced-order fast system in (2.5), if the proposed f-MHE is

implemented following the MHE design in (2.17) based on a local deterministic nonlinear

observer satisfying (2.12b) and conditions in Proposition 3, and if the s-MHEs are designed

satisfying conditions in Theorem 1, and if there exist positive constants %f and ρf that satisfy

0 ≤ %f ≤ ρf , and there exists a concave function Qf such that

Qf (|εf |) ≥ βf (|εf |,∆f ) (2.30)

for all |εzf |≤ ρf , and if there exist constants af ≥ 1, bf ≥ 0 and ξf ≥ 0 such that

%f − af

(

Qf (%f ) +
∑

l∈I

Lxs

Ff
ρsl∆f + µ(∆f )

)

− bf (
∑

l∈I

Lhf
Lxs

ĝ ρsl + θvf ) ≥ ξf (2.31)

and if κf is selected subject to the following condition: 0 ≤ κf ≤ min{(af −1)/Lhf
, bf}, then

the error |θf | between the estimated state xf based on f-MHE and the actual fast system state

xf is ultimately bounded as

lim
τ→∞

sup|θf (τ)|≤ ρmin
f +

∑

l∈I

Lxs

ĝ ρ
min
sl (2.32)

with ρmin
f = max{|εf (τ +∆f )|: |εf (τ)|≤ %f} for |εf (0)|≤ ρf .

Proof: It is straightforward from (2.17e) that:

|êf (τq+1)− zf (τq+1)|≤ κf |yf (τq+1)− hf (zf (τq+1) + ĝ(x̂s(τq+1), wf (τq+1)))|
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From the Lipschitz property of hf and ĝ and triangle inequality |êf−ef | ≤ |êf−zf |+|ef−zf |,

we have

|êf (τq+1)− ef (τq+1)| ≤ (1 + Lhf
κf )|ef (τq+1)− zf (τq+1)|

+
∑

l∈I

κfLhf
Lxs

ĝ |esl(τq+1)|+ κfθvf

(2.33)

From Proposition 3 and (2.33), and the fact that ezf (τq) = ef (τq), if (2.30) holds then we

can derive that

|εf (τq+1)| <(1 + Lhf
κf )
(

Qf (|εf (τq)|) +
∑

l∈I

Lxs

Ff
|esl(τq−n+1)|∆f + µ(∆f )

)

+
∑

l∈I

κfLhf
Lxs

ĝ |esl(τq+1)|+ κfθvf

(2.34)

We know |esi(0)|≤ ρsi, i ∈ I and |esi| is ultimately bounded as described in Theorem 1.

Therefore, we have |esi|≤ ρsi. If there exists a constant %f satisfying (2.31) and κf is selected

as stated in Theorem 2, then for any estimation error εf satisfying %f ≤ |εf |≤ ρf we can

obtain:

εf − (1 + Lhf
κf )
(

Qf (|εf |) +
∑

l∈I

Lxs

Ff
|esl(τq−n+1)|∆f

+ µ(∆f )
)

−
∑

l∈I

κfLhf
Lxs

ĝ |esl(τq+1)| − κfθvf ≥ ξf

(2.35)

Based on (2.34) and (2.35), we obtain that |εf (τq+1)| < |εf (τq)| − ξf if %f ≤ |εf |≤ ρf .

This implies that the error given by f-MHE for the fast system is decreasing if |εf |≥ %f .

Moreover, the estimation error |εf | will become smaller than %f within finite steps, and

once |εf |< %f is satisfied, then it is no longer guaranteed that the estimation error |εf |

will further decrease. However, it will remain to satisfy |εf |≤ ρmin
f with the definition

ρmin
f = max{|εf (τ +∆f )|: |εf (τ)|≤ %f}, i.e., lim

t→∞
sup|εf |≤ ρmin

f .

Finally, we consider the estimation error θf between state x̂f obtained by the DMHE and

actual state xf , which can be expressed as |θf | = |x̂f − xf | = |êf + ĝ(x̂s, wf )− ef − ĝ(xs, wf )| ≤

|εf |+
∑

l∈I L
xs

ĝ |esl|. Since |εf | and |esl|, l ∈ I, are proved to decrease and will ultimately re-

main to satisfy |εf |≤ ρmin
f and |esl|≤ ρmin

sl , respectively, the estimation error |θf | is ultimately
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bounded as lim
t→∞

sup|θf |≤ ρmin
f +

∑

l∈I L
xs

ĝ ρ
min
sl . �

In condition (2.31) of Theorem 2, the function Qf (·) is a concave approximation of

βf (·,∆f ). The term µ(∆f ) characterizes the effects of the fast sampling time ∆f . The term
∑

l∈I L
xs

Ff
ρsl∆f characterizes the coupling between the slow dynamics and the fast dynamics.

The term bf (
∑

l∈I Lhf
Lxs

ĝ ρsl + θvf ) characterizes the effect of measurement noise and the

impact of the s-MHEs on the f-MHE. Note that conditions (2.30) and (2.31) can be satisfied

simultaneously as long as the convergence rate of the auxiliary observer for the fast dynamics

is sufficiently large, the sampling time ∆f and the measurement noise upper bound θvf are

sufficiently small. Note that while the performance of the s-MHEs does not depend on the

f-MHE, the performance of the f-MHE depends on the s-MHEs as can be seen from (2.32).

Remark 4. In Proposition 3, the local Lipschitz assumptions on the functions ensure that

(2.29) can be retrieved via integration. Proposition 3 proves that within a fast sampling time

∆f , the estimation error εzf induced by the nonlinear observer for the fast system is bounded

as described in (2.27), which may also be interpreted using input-to-state stability with the

sampling time ∆f and the error in the slow states esl(τq−n+1) as inputs and the estimation

error given by the observer εzf as the state.

Remark 5. The separation of the two time scales in the system dynamics is indicated by the

small positive parameter ε, which may be understood as the ratio of the time constants of the

fast dynamics and slow dynamics. The proposed design relies on an obvious separation of the

two time scales (i.e., ε should be sufficiently small). Note that the conditions in Theorems 1

and 2 implicitly impose a restriction on the maximum value of ε.

2.5 Application to a chemical process

A chemical process consisting of two continuous stirred tank reactors (CSTRs) and a flash

separator connected in series is considered. Pure material A is fed into the two CSTRs, in

which two reactions occur, i.e. A → B and B → C. The outlet of the second CSTR is fed
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into the flash separator at a flow rate F2. The overhead of the separator is condensed and

passed to a downstream unit at flow rate Fr and the bottom product stream is removed at

flow rate Foutlet. Each tank is equipped with a jacket to heat or cool the tank. The dynamic

model obtained via mass and energy balances is as follows:

dxAf
dt

=
F10

V1
(xA10 − xAf )− k1e

−E1
RTf xAf (2.36a)

dxBf
dt

=
F10

V1
(xB10 − xBf ) + k1e

−E1
RTf xAf − k2e

−E2
RTf xBf (2.36b)

dTf
dt

=
F10

V1
(T10 − Tf ) +

−∆H1

cp
k1e

−E1
RTf xAf +

−∆H2

cp
k2e

−E2
RTf xBf +

Q1

ρcpV1
(2.36c)

dxAs1
dt

=
F1

V2
(xAf − xAs1) +

F20

V2
(xA20 − xAs1)− k1e

−E1
RTs1 xAs1 (2.36d)

dxBs1
dt

=
F1

V2
(xBf − xBs1) +

F20

V2
(xB20 − xBs1) + k1e

−E1
RTs1 xAs1 − k2e

−E2
RTs1 xBs1 (2.36e)

dTs1
dt

=
F1

V2
(Tf − Ts1) +

F20

V2
(T20 − Ts1) +

−∆H1

cp
k1e

−E1
RTs1 xAs1

+
−∆H2

cp
k2e

−E2
RTs1 xBs1 +

Q2

ρcpV2
(2.36f)

dxAs2
dt

=
F2

V3
(xAs1 − xAs2)−

(Fr + Fp)

V3
(xAr − xAs2) (2.36g)

dxBs2
dt

=
F2

V3
(xBs1 − xBs2)−

(Fr + Fp)

V3
(xBr − xBs2) (2.36h)

dTs2
dt

=
F2

V3
(Ts1 − Ts2) +

Q3

ρcpV3
+

(Fr + Fp)

ρcpV3
(xAr∆HvapA + xBr∆HvapB + xCr∆HvapC)

(2.36i)

where xAf , x
A
s1, x

A
s2 denote the mass fractions of A in tank 1, 2, 3; xBf , x

B
s1, x

B
s2 are the

mass fractions of B in tank 1, 2, 3; xCf , x
C
s1, x

C
s2 are the mass fractions of C in tank 1, 2, 3;

xAr, xBr, xCr, respectively, represent the mass fractions of A, B, C in the overhead stream;

Tf , Ts1, Ts2 are the temperatures in tank 1, 2, 3; T10, T20 denote the feed stream temper-

atures; F1, F2 are the effluent flow rates from reactors; F10, F20 denote steady feed stream

flow rates; Fr, Fp are, respectively, the overhead and bottom stream flow rates in the sep-
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arator; V1, V2, V3 denote the volumes of tank 1, 2, 3; E1, E2 denote the activation energy

for reactions; k1, k2 are the pre-exponential values for reactions; ∆H1, ∆H2 denote the

heats of reaction for reactions; ∆Hvapi denotes the evaporating enthalpies for material i,

i = A, B, C; Q1, Q2, Q3 denote the heat inputs/removals; and cp, R, ρ, respectively,

denote the heat capacity, gas constant and solution density. The parameters of the process

variables are given in Table 2.1. We assume that the amount of reaction occurring in the

separator is negligible. We note that the mass fractions of the overhead stream xAr, xBr, xCr

are only dependent on the material composition in the flash separator.

The entire system is divided into three subsystems: the first CSTR, of which the system

states evolve at a relatively fast time-scale, is the fast system; the second CSTR and the sep-

arator constitute the slow system, which is further divided into two slow subsystems. Specif-

ically, xf = [xAf , x
B
f , Tf ]

T is the state vector for the fast system, while xs1 = [xAs1, x
B
s1, Ts1]

T

and xs2 = [xAs2, x
B
s2, Ts2]

T denote the state vectors of the two slow subsystems, respectively.

It is assumed that the temperatures Tf , Ts1 and Ts2 are measurable, and are considered

as the system outputs (i.e. yf = Tf , ys1 = Ts1 and ys2 = Ts2). The objective is to esti-

mate the entire system state based on the three outputs using the proposed two-time-scale

DMHE. In the simulations, constant heat inputs to the three tanks are considered; that is,

Q = [Q1, Q2, Q3]
T = [3.0× 106 KJ/h, 1.0× 106 KJ/h, 3.0× 106 KJ/h]T .

The local auxiliary observers assumed in (2.9) and (2.11) are designed following [30].

Random noise in the process and measurements is generated following normal distribution.

In local MHE designs, the estimation horizons for f-MHE and s-MHEs are Nf = Ns = 5.

The weighting matrices in the cost function for f-MHE and s-MHEs are Qf = Qs1 = Qs2 =

diag([1, 1.44, 3600]), Rf = Rs1 = Rs2 = 8.314. The parameters κf in constraint (2.17e) and

κs1, κs2 in constraint (2.15e) are tuned following [24] to be κf = [0.0041 0.0141 0.3580]T ,

κs1 = [0.0039 0.0140 0.3000]T and κs2 = [0.0025 0.0180 0.4440]T , respectively.

We consider three different schemes: (I) the proposed DMHE; (II) distributed nonlinear

observers in which the augmented nonlinear observers are used and connected in a dis-

37



Table 2.1: Process parameters

F10 = 12.0 m3

h
∆H1 = −6.0 · 104 KJ

kmol

F20 = 3.0 m3

h
∆H2 = −7.0 · 104 KJ

kmol

Fr = 13.4 m3

h
∆HvapA = −3.53 · 104 KJ

kmol

Fp = 0.5 m3

h
∆HvapB = −1.57 · 104 KJ

kmol

V1 = 1.0 m3 ∆HvapC = −4.07 · 104 KJ
kmol

V2 = 5.0 m3 k1 = 2.77× 103 s−1

V3 = 4.0 m3 k2 = 2.6× 103 s−1

αA = 3.5 cp = 4.2 KJ/kg ·K
αB = 1.0 R = 8.314 KJ/kmol ·K
αC = 0.5 ρ = 1000.0 kg/m3

T10 = 300 K xA10 = 1.0

T20 = 300 K xB10 = 0

E1 = 5.0 · 104 KJ
kmol

xA20 = 1.0

E2 = 6.0 · 104 KJ
kmol

xB20 = 0

tributed fashion the same as Scheme I; and (III) a DMHE scheme in which local estimators

are designed based on regular MHE. In the two DMHE schemes, the arrival cost in each sub-

system MHE is included and is approximated using an extended Kalman filtering approach

neglecting the interactions between subsystems. First, a set of simulations is carried out to

verify the effectiveness of the proposed DMHE (Scheme I) and to illustrate the advantage

of Scheme I over the auxiliary nonlinear observers (Scheme II). The f-MHE is evaluated

at a fast sampling time ∆f = 18s while all the s-MHEs are evaluated at ∆s = 36s. The

results are presented in Fig. 2.2. We see that the proposed DMHE is able to track the actual

state trajectories of the chemical process. The corresponding mean and maximum values of

the Euclidean norm of the normalized estimation error of the proposed DMHE are 0.6642

and 2.1753, respectively. We note that the ability to use different sampling periods in the

f-MHE and s-MHEs contributes to the applicability (especially the computational efficiency)

of the proposed DMHE. We also see that the auxiliary nonlinear observers have rather poor
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Figure 2.2: Trajectories of the actual process states (solid lines), state estimates calculated by
the proposed DMHE (dashed lines) and state estimates calculated by Scheme II (dash-dotted
lines) with ∆f = 18s and ∆s = 36s.

performance in estimating the concentrations of B. In Scheme II, the mean and maximum

values of the normalized estimation error norms are 0.9146 and 2.0720, respectively. The

trajectories of the normalized estimation error norms for Scheme I and Scheme II are given in

Fig. 2.3. It is seen that the mean error norm of Scheme II is much larger than that of Scheme

I. The maximum error norms for the two schemes are similar. Note that the maximum error

of Scheme I is primarily due to the initial stage. The results imply that Scheme I is able to

give overall more accurate estimates compared to Scheme II. This is because the proposed

DMHE takes into account the noise information in an optimization framework of MHE.

We also conduct simulations to demonstrate the less dependence of the proposed method

(Scheme I) on the size of the estimation horizon compared to the counterpart based on regular

MHE (Scheme III). The mean values of the normalized error norms of the two schemes with

different estimation horizon sizes are presented in Fig. 2.4. We see that the proposed scheme

gives good performance even with a very small horizon and its performance is much less
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Figure 2.3: Trajectories of the normalized estimation errors of Scheme I (dashed line) and
Scheme II (solid line).
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Figure 2.4: Average normalized estimation error norms of Scheme I (dashed line) and scheme
III (solid line) with different estimation horizon sizes.

sensitive to the horizon size. Also, the proposed scheme gives smaller average estimation

error than Scheme III. The results also imply that the proposed scheme could be much more

computationally efficient since a much smaller horizon can be used.

Next, we study the effects when the same sampling time is used in both the f-MHE and

the s-MHEs (i.e., ∆f = ∆s = 18s). The proposed DMHE can still track the actual sys-

tem states. The mean and maximum values of the normalized error norms are 0.5416 and

2.0737, respectively. Compared with the previous simulations, the estimation performance

in terms of the maximum and mean error values has been improved by about 18% and 4%,
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respectively. However, the performance improvement is at the cost of much higher commu-

nicational and computational burdens. When the s-MHEs use ∆s = 18s, they are evaluated

twice frequently compared with the case with ∆s = 36s. This implies that the number of

communication times between the s-MHEs increases by 100%. The average simulation time

over 10 runs for a period of three hours under the proposed DMHE with ∆s = 36s is about

382s while the corresponding value when ∆s = 18s is about 692s which is increased by 81%.

We also study the effects of the developed one-directional communication strategy. We

carry out simulations in the context of bi-directional communication, i.e., the f-MHE and

the s-MHEs send their state estimates to each other. Compared to the one-directional

communication, the s-MHEs will have more accurate information of the fast system states

(i.e., the estimate calculated by the f-MHE) and will use it (instead of steady-state values of

the fast dynamics) in state estimation of the slow system states. In this set of simulations,

the corresponding mean and maximum values of the error norm are 0.6683 and 2.1089.

These values are very close to the ones of Scheme I with only one-directional communication

from the s-MHEs to the f-MHE. This implies that extra information from f-MHE to the

s-MHEs does not help to improve the estimation performance significantly, which further

demonstrates the effectiveness of the proposed DMHE.

2.6 Summary

In this chapter, we developed a distributed state estimation method based on MHE for a class

of two-time-scale nonlinear systems. The nonlinear system was decomposed into a fast system

and several slow subsystems. In the proposed DMHE, a one-directional communication

strategy was adopted. Stability analysis was carried out for the proposed distributed scheme.

The effectiveness of the proposed approach was illustrated via the application to a chemical

process.
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Chapter 3

Forming distributed state estimation

network from decentralized estimators

In this chapter, we assume that a decentralized state estimation system already exists for the

nonlinear system, where the local estimators can be of different types. In order to achieve

improved estimation performance, the existing decentralized estimators may be connected

together via a communication network to form a distributed state estimation network. We

propose a systematic approach to take advantage of the existing decentralized estimators po-

tentially of different types to form a distributed state estimation network without performing

a complete re-design of the estimation system. Specifically, a compensator is designed for

each subsystem, and is connected to the corresponding decentralized estimator to obtain

an augmented estimator. The augmented estimators for the subsystems communicate with

each other to exchange subsystem state estimates and measurements via a communication

network every sampling time. In Section 3.2.4, we derive sufficient conditions on the con-

vergence and boundedness of the estimation error of the proposed distributed estimation

network. In Section 3.3, the proposed approach is demonstrated via the application to two

chemical process examples and one hybrid-tank plant. This chapter is a revised version of

[47, 129].
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3.1 Preliminaries

3.1.1 Notation

The operator |·| denotes the Euclidean norm of a vector. ‖·‖F denotes the Frobenius norm

of a matrix. A function f(s) is said to be Lipschitz with respect to its argument s if there

exists a positive constant Ls
f such that |f(s1)− f(s2)| ≤ Ls

f |s1 − s2| for s1 and s2. Further,

a function f(s) is locally Lipschitz if it is Lipschitz on every compact subset of S which itself

is a compact set. A continuous function α : [0, a) → [0,∞) belongs to class K if it is strictly

increasing and satisfies initial condition α(0) = 0. A function β(r, s) is said to belong to

class KL if for any fixed s, β(r, s) belongs to class K with respect to its first argument r, and

for any fixed r, it is deceasing with respect to the second argument s, and β(r, s) → 0 as

s→ ∞. A+ denotes a matrix (or a vector) being the Moore-Penrose pseudoinverse of matrix

(or vector) A. I represents a set containing finite integers defined as I = {1, . . . ,m}. We use

{s(tn)}kn=0 to denote a sequence of s from n = 0 to n = k (i.e., s(t0), s(t1), . . . , s(tk)). The

operator diag (v) denotes a diagonal matrix in which the diagonal elements are the elements

in the vector v.

3.1.2 System description

In this study, we take into account a class of nonlinear systems comprised ofm interconnected

subsystems described in the following form:

ẋ(t) = F (x(t), w(t))

y(t) = h(x(t)) + v(t)
(3.1)

where x(t) ∈ Rnx represents the state vector, w(t) ∈ Rnw represents the disturbances affecting

the dynamics of the system states, y ∈ Rny denotes the measured output vector of the entire

system, and v(t) ∈ Rnv denotes the measurement noise of the entire system. The function

F characterizes the dynamics of x. h denotes a nonlinear vector function, of which the
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form is dependent on the relationship between the system states and the available output

measurements.

It is assumed that the i-th subsystem of system (2.1), i ∈ I, can be described as follows:

ẋi(t) = fi (xi(t), wi(t)) + f̃i (xi(t), Xi(t))

yi(t) = hi (xi(t)) + vi(t)
(3.2)

where xi ∈ Rnxi denotes the vector of state variables, wi ∈ Rnwi represents the disturbances

directly affecting the dynamics of the i-th subsystem, yi ∈ Rnyi denotes the measured output

of subsystem i, while vi ∈ Rnvi denotes the measurement noise associated with the i-th

subsystem. Vector function fi characterizes the dependence of the dynamics of xi on itself

while the vector function f̃i characterizes the interaction between subsystem i and other

subsystems. It is assumed that the functions f̃i, i ∈ I, are locally Lipschitz with respect to

their arguments on the compact sets of interest. f̃i and hi are assumed to belong to class C2

(i.e., having 2 continuous derivatives) over a domain of interest. hi, i ∈ I, denotes a nonlinear

vector function. Xi(t) ∈ RnXi denotes a vector of the states of the subsystems other than

subsystem i that are involved in characterizing the interaction. In the remainder, we will

utilize Ii, i ∈ I, to denote the set of subsystem indices, of which the corresponding subsystem

states are involved in Xi. For example, if X1 involves states of subsystem 3 and subsystem 5,

then I1 = {3, 5}. We call each subsystem l, l ∈ Ii an upstream interacting subsystem of

subsystem i. Accordingly, we call subsystem i a downstream interacting subsystem of each

subsystem l. We further introduce symbol Ji to denote a set that is defined as Ji := Ii ∪{i}.

We assume that all the integers contained in the set Ii, i ∈ I, are known. The system states

and the disturbances are assumed to be bounded as follow.

Assumption 1. Subsystem states xi, i ∈ I, satisfy the following constraint:

xi ∈ Xi (3.3)
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where Xi, i ∈ I, is a compact set. Moreover, the system disturbances and measurement noise

are bounded, such that wi ∈ Wi and vi ∈ Vi are satisfied ∀i ∈ I. The sets Wi and Vi, i ∈ I,

are defined as

Wi :={wi ∈ R
nwi s.t. |wi|≤ θwi

, θwi
> 0},

Vi :={vi ∈ R
nvi s.t. |vi|≤ θvi , θvi > 0}

(3.4)

where θwi
and θvi are known scalars.

Assumption 2. ∂hi

∂xi
|xi=zi(tk)

is a full column (or full row) rank matrix for tk≥0 where zi(tk)

denotes the state estimate of xi, i ∈ I, at time instant tk given by the distributed state

estimation scheme to be specified.

Remark 6. The assumption (Assumption 1) on the boundedness of each subsystem state

within a compact set is motivated by the fact that most processes are maintained in bounded

operating regions by control systems. This assumption does imply that the system considered

is stable (through the regulation of a control system). The size of the compact set depends

on the properties of the system (and the corresponding control system). Note that the bound-

edness of each subsystem state also implies that each vector Xi, i ∈ I, is bounded within a

compact set.

Remark 7. It is highly possible to achieve decomposed subsystems in the form of (3.2)

providing that sufficient measurements are available, which is also a prerequisite for state

estimation. More specifically, in the ordinary differential equations (ODEs) describing the

dynamics of xi, we can form fi using the terms containing only local state xi, and then

arrange the remaining terms characterizing interacting dynamics in f̃i, i ∈ I.

In the subsystem model (3.2), we consider that the disturbances (uncertainties) only exist

in the local dynamics of each subsystem. Note that the design and the analysis will be very

similar if we consider that the interacting term fi in (3.2) is also affected by uncertainties.
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which takes advantage of sampled output measurements and is described in a discrete-time

framework as follows:

zoi (tk) = Gi( {yi(tn)}kn=0 , z
o
i (t0), Xis) (3.5)

where zoi denotes the state estimate given by the i-th decentralized estimator, {yi(tn)}kn=0 is

the output measurement sequence of subsystem i from the initial time t0 to tk, Xis denotes

a vector containing constant values (e.g., the steady-state value of Xi or zero) that may be

used to compensate for the interaction between subsystems, Gi is a vector field describing the

discrete-time decentralized estimator in a general form. Estimator (3.5) is evaluated every

sampling time starting from initial time t0 to provide state estimates for the corresponding

subsystem. The decentralized estimators are assumed to satisfy the following assumption in

this work.

Assumption 3. For subsystem i, i ∈ I, in the form of (3.2), there already exists a decen-

tralized estimator described as in (3.5), such that if the subsystem state trajectory of xi are

bounded as shown in (3.3), and if all the states of the subsystems that directly affect the

dynamics of subsystem i are at the constant values used in the design of the decentralized

estimators (i.e., Xi(t) ≡ Xis for i ∈ I and t ∈ [t0, tk]), then there exists a class KL function

βi, class K functions γi and φi, such that the estimation error of decentralized estimator i in

(3.5) is bounded as follows:

|zoi (tk)− xi(tk)|≤βi(|zoi (t0)− xi(t0)|, tk − t0)

+ γi

(

max
τ

|wi(τ)|
)

+ φi

(

max
τ

|vi(τ)|
)

(3.6)

The above assumption characterizes an upper bound on the estimation error for the

i-th subsystem given by the decentralized local estimator in the presence of external distur-

bances and measurement noise without considering the dynamics of subsystem interaction.

Assumption 3 is to describe the property of a commonly-used decentralized estimator design

method. Specifically, Eq.(3.6) characterizes the convergence and boundedness of the decen-
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tralized estimators. It does not remove the interaction between subsystems, nor simplifies

the problem. It simply requires that the decentralized estimators are fairly well designed. In

these designs, a decentralized estimator is designed for a local operating subsystem assuming

that the interaction between the local operating subsystem and its interacting subsystems

remains constant (e.g., at steady state or 0). For decentralized estimators, the interaction

between subsystems is not considered or considered in conservative ways. Assumption 3 can

be satisfied by some existing nonlinear state estimation methods, including moving horizon

estimators [48, 49, 24] and extended Kalman filters [141]. Note that the above designs are

based on certain mild assumptions. In particular, one major assumption of the MHE-based

designs in [48, 49] is that the nonlinear system should be incrementally input/output-to-

state stable (i-IOSS). While it is argued in [49] that it is in general difficult to verify whether

a system is i-IOSS or not, this criterion is not a restrictive as it can be interpreted as a

detectability criterion of nonlinear systems [50]. Note also that if certain local estimators

were based on an EKF algorithm, an implicit requirement is that the the initial estimation

error should be within a certain neighborhood of the origin.

3.1.4 Illustrative example

In this section, we provide a benchmark example to illustrate the ideas presented in the

previous subsection. We consider a chemical process that is comprised of two well-mixed

non-isothermal continuous stirred tank reactors (CSTRs) with different volumes that are

connected in a cascade fashion. CSTR 2 is connected to CSTR 1 through the feed stream

from the first CSTR (i.e., the outlet stream of CSTR 1 at flow rate F1). Three paralleled

irreversible elementary exothermic reactions take place in the two reactors, i.e., A → B,

A→ C and A→ D. A denotes the reactant, B denotes the desired product while C and D

represent two undesirable side products. A fresh feed flow with pure material A is fed into the

first reactor at flow rate F0, temperature T0 and molar concentration CA0. The effluent from

the first reactor accounts for a feed stream to the second reactor, i.e., an inlet fed to CSTR 2
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with Ni(Tj) = kie
−Ei
RTj and Mi(Tj) = −∆Hi

ρcp
Ni(Tj), j = 1, 2. This model is established based

on the chemical process introduced in [51]. The definitions of the variables in system model

(3.7) are presented in Table 3.1. It is assumed that the temperatures T1 and T2 of the two

CSTRs are measurable, while the molar concentrations CA1 and CA2 of material A in the

two vessels are unmeasurable and need to be estimated. It is also assumed that there is an

unmeasured but bounded disturbance in the flow rate F3.

This system is decomposed into two subsystems. For subsystem i, xi = [xi,1 xi,2]
T =

[Ti CAi]
T, is the state vector, yi = Ti + vi is the output measurement, wi = [wi,1 wi,2]

T is the

vector of additive disturbances, i = 1, 2. For the first subsystem, the vector field f1 is with

the following form:

f1 =







f1,1(x1, w1)

f1,2(x1, w1)







=







F0

V1
(T0 − x1,1) +

∑3
i=1 Mi(x1,1)x1,2 +

Q1

ρcpV1

F0

V1
(CA0 − x1,2)−

∑3
i=1 Ni(x1,1)x1,2






+







w1,1

w1,2







and h1(x1) = [1 0] x1. Since the dynamics of the first subsystem is not affected by subsystem

2, X1 is a zero vector and f̃1 is a zero vector field. In terms of the second subsystem, we
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Table 3.1: Process variables

CA1, CA2 molar concentrations of A in reactors 1, 2

CA0, CA3 molar concentrations of pure A in F0, F3

T1, T2 temperatures in reactors 1, 2

T0, T03 feed stream temperatures to reactors 1, 2

F1, F2 effluent flow rates from reactors 1 and 2

F0, F3 steady-state feed stream flow rates to reactors 1
and 2

V1, V2 volumes of reactor 1, 2

E1, E2, E3 activation energies of the three reactions

k1, k2, k3 pre-exponential values for the three reactions

∆H1, ∆H2, ∆H3 enthalpies of the three reactions

Q1, Q2 heat inputs/removals into/from reactor 1, 2

cp, ρ heat capacity and solution density of fluid

R gas constant

have:

f2 =







f2,1(x2, w2)

f2,2(x2, w2)







=







−F1

V2
T2 +

F3

V2
(T03 − x2,1) +

∑3
i=1 Mi(x2,1)x2,2 +

Q2

ρcpV2

−F1

V2
x2,2 +

F3

V2
(CA03 − x2,2)−

∑3
i=1 Ni(T2)x2,2







+







w2,1

w2,2







f̃2 =







f̃2,1(x2, X2)

f̃2,2(x2, X2)






=







F1

V2
x1,1

F1

V2
x1,2







and h2(x2) = [1 0] x2.

Let us assume that decentralized state estimators have been developed for this process

such that a local extended Kalman filter (EKF) is designed for CSTR 1 for reduced com-

putational complexity and a moving horizon estimator (MHE) is designed for CSTR 2 in
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order to take into account the boundedness information of the disturbance in F3. As a

typical practice, the steady-state value of the interaction between the two CSTRs is used

in the decentralized estimators to compensate for the interaction. When operating close

to the steady-state of the process, this composite EKF-MHE estimation system works well

and provides a balance between estimation accuracy (by taking into account boundedness

information of F3) and computational cost (by using an EKF for CSTR 1). A schematic of

the process together with the estimators for the reactors are presented in Figure 3.2.

Now, let us suppose that due to some reasons (e.g., increased market competition), we

would like to enhance the estimation performance by enabling information exchange between

the two subsystems (i.e., to adopt a distributed estimation system) such that the interaction

between the two CSTRs can be compensated for in a less conservative fashion. However,

it is not possible to take advantage of the existing estimators of two different types based

on existing approaches. Therefore, we aim at developing a systematic approach to connect

existing decentralized estimators which may be of different types to form a distributed scheme

to achieve improved performance.

3.2 Forming distributed state estimation network

In this section, we present the proposed approach to connect existing decentralized local

estimators in the form of (3.5) together to form a distributed state estimation network to

achieve improved estimation performance.

3.2.1 Proposed distributed state estimation network

A schematic of the proposed distributed state estimation network is presented in Figure 3.3.

In this design, each subsystem is equipped with an augmented estimator (AE) that consists of

an existing decentralized estimator and a compensator, the design of which will be specified

in the next subsection. Each augmented estimator is evaluated every sampling time.
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the following form:

zci (tk+1) =f̃i(zi(tk), Zi(tk))∆− f̃i(zi(tk), Xis)∆

+
∑

l∈Ii

Ki,l(zl)(yl(tk)− hl(zl(tk))∆
(3.8)

where zci is a compensation signal generated by the designed compensator, zi(tk) represents

the state estimate of subsystem i obtained at time instant tk, Zi(tk) denotes a vector which

is an estimate of the state vector Xi at time instant tk, while Ki,l with i ∈ I, l ∈ Ii, are

correction gains. Compensator i is designed based on the interaction model f̃i as well as the

output measurements and subsystem estimates of subsystem i and its upstream interacting

subsystems. It tracks the dynamics which is the difference between the complete subsystem

dynamics and the local dynamics of the same subsystem.

Specifically, in compensator (3.8), the first two terms on the right-hand-side of (3.8) are

used to approximate the deviation of the subsystem interaction of subsystem i, i ∈ I, from

the associated constant vector Xis. Since we can only use subsystem state estimates in

the compensators instead of the actual values, the deviation between the actual subsystem

interaction and the constant vector Xis used in the i-th decentralized estimator cannot be

completely eliminated. In other words, an error caused by the use of subsystem estimates

of the interacted subsystems (instead of the corresponding actual subsystem states) still

exists. To handle this, we use the third term on the right-hand-side of Eq.(3.8) to further

compensate for the error caused by the use of the estimated state (instead of the actual state)

in the interaction model. The gain Ki,l depends on zl and is re-evaluated every sampling

time as follows:

Ki,l(tk) =
∂f̃i
∂xl

(

∂hl
∂xl

)+
∣

∣

∣

∣

∣

xl=zl(tk)

(3.9)

for i ∈ I and l ∈ Ji.

Note that the pseudo-inverse may sometimes lead to ill-conditioned matrices, which de-
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pends on the available measurements and the output measurement function hi, i ∈ I. If

ill-conditioning is not avoidable, one approach to overcome it in the proposed distributed

estimation design is to use a sufficiently small sampling period ∆. The convergence of the

estimates is still ensured providing that the condition in Theorem 3 which will be introduced

later is satisfied.

3.2.3 Design of augmented estimators

We take advantage of the existing decentralized local estimators and the developed compen-

sators to construct augmented estimators for the subsystems. Specifically, for subsystem i,

i ∈ I, the existing decentralized estimator in (3.5) is connected to the designed compensator

i in (3.8). An augmented nonlinear estimator for subsystem i, i ∈ I, is formulated and

described as follows:

zi(tk+1) = Gi( {yi(tn)}k+1
n=0 , zi(t0), Xis) + f̃i (zi(tk), Zi(tk))∆

− f̃i (zi(tk), Xis)∆ +
∑

l∈Ii

Ki,l(zl(tk))(yl(tk)− hl(zl(tk))∆
(3.10)

where zi denotes the state estimate given by the i-th augmented estimator, and zi(t0) denotes

its initial condition. The augmented estimator for subsystem i, i ∈ I, comprises two parts:

the first term on the right-hand-side of (3.10) comes from the existing decentralized local

estimator, while the remaining part of the right-hand-side of (3.10) is the contribution from

the compensator. Note that each augmented estimator should be treated as one system.

The augmented estimators need to be initialized and the initialization is independent of the

decentralized estimators.

Remark 8. The proposed distributed state estimation method does not require the existence

of a steady state. It has the potential to be used for applications in different fields (e.g.,

chemical, mechanical and electrical engineering). The use of Xis in the proposed method is

to describe the commonly used decentralized estimator design approaches. We may consider

55



Xis as 0 (if interaction between subsystem is totally ignored in the design of decentralized

estimators) or a constant (e.g., the average value of the interaction) or the steady state (if

it exists and is used in the design of decentralized estimators).

3.2.4 Stability analysis

In this section, we investigate the stability properties of the proposed distributed state

estimation network consisting of augmented estimators for local subsystems. Specifically,

the evolution of the estimation error generated by augmented estimator i, i ∈ I, in one

sampling period with Ki,l determined as in (3.9) is first studied in Proposition 1, then

sufficient conditions on the convergence and ultimate boundedness of the estimation error of

the entire system state are derived.

We note that |ẋi|, i ∈ I, is bounded based on the assumptions that the system functions

are Lipschitz and the subsystem states are bounded made in Section 3.1.2. We denote the

upper bound of |ẋi| by Mi, i ∈ I, which is a positive constant (i.e., |ẋi|≤ Mi). Also, we

assume that Ki,l, is bounded such that |Ki,l|≤ Ki,l, with Ki,l being a positive constant for

all i ∈ I, l ∈ Ji. This assumption requires that the Jacobians of f̃i and hl, i ∈ I, l ∈ Ji, with

respect to their arguments exist. Before presenting the main results, we define a function

for each i, i ∈ I, as follows:

λi(s) = Lxi

f̃i
Mis

2 + LXi

f̃i

∑

l∈Ii

Mls
2/2 +

∑

l∈Ji

Ki,lθvls+Ki,iθvis (3.11)

In (3.11), Lxi

f̃i
denotes the Lipschitz constant of function f̃i with respect to its first argument,

LXi

f̃i
represents the Lipschitz constant of function f̃i with respect to its second argument.

Further, let symbol L denote the largest set that contains only the indices of subsystems,

of which the output equations satisfy that ∂hl

∂xl
|xl=zl(tk)

are full-column rank for tk≥0. This

implies that for any subsystem l, l ∈ I, if ∂hl

∂xl
|xl=zl(tk)

is full-column rank for tk≥0, then l is

an element of the set L (i.e., l ∈ L). Also, for each l ∈ L, ∂hl

∂xl
|xl=zl(tk)

is full-column rank for
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tk≥0.

Proposition 4. Consider the augmented estimator (3.10) which is designed based on a

decentralized local estimator in the form of (3.5) satisfying Assumption 1 for subsystem i,

i ∈ I. If each Ki,l for i ∈ I and l ∈ Ii is determined following (3.9) and is bounded such that

|Ki,l|≤ Ki,l, and if |ẋi| is bounded as |ẋi|≤ Mi, ∀i ∈ I, then the estimation error between the

state estimate zi and the actual subsystem state xi of the i-th subsystem within one sampling

time ∆ is bounded for all xi ∈ Xi, i ∈ I, as follows:

|ei(tk+1)| ≤ αi(|ei(tk)|) + γi

(

max
τ

|wi(τ)|
)

+ φi

(

max
τ

|vi(τ)|
)

+
∑

p∈Ji\L

ψmin
i,p (zp) |ep(tk)|∆+ ψmin

i,i (zi) |ei(tk)|∆

+
∑

l∈Ji

(

H f̃i
Xi

+Ki,lH
hl
xl

)

|el(tk)|2 ∆+H f̃i
xi
|ei(tk)|2 ∆+ λi(∆)

(3.12)

where ei = zi−xi, i ∈ I, αi(·) = βi(·,∆), γi and φi are class K functions as defined in (3.6),

ψmin
i,p (zp) := min

∥

∥

∥

∥

∂f̃i
∂xp

∣

∣

∣

xp=zp(tk)
−Ki,p(zp)

∂hp

∂xp

∣

∣

∣

xp=zp(tk)

∥

∥

∥

∥

F

for i ∈ I and p ∈ Ji \ L, H f̃i
Xi
, H f̃i

xi

and Hhl
xl

are positive constants related to the Taylor expansions of f̃i and hl, respectively.

Proof: We consider the augmented estimator i, i ∈ I, of (3.10) and focus on the time

interval t ∈ [tk, tk+1]. The estimation error ei for subsystem i at time tk+1 is calculated as

follows:

ei(tk+1) = zi(tk+1)− xi(tk+1)

= Gi( {yi(tn)}k+1
n=0 , zi(t0), Xis) + f̃i (zi(tk), Zi(tk))∆

− f̃i (zi(tk), Xis)∆ +
∑

l∈Ii

Ki,l(zl)(yl(tk)− hl(zl(tk))∆

− xi(tk)−
∫ tk+1

tk

fi(xi(τ), wi(τ))dτ

−
∫ tk+1

tk

f̃i(xi(τ), Xi(τ))dτ

(3.13)

Subtracting/adding
∫ tk+1

tk
f̃i(xi(τ), Xis)dτ ,

∫ tk+1

tk
f̃i(xi(tk), Xi(tk))dτ and

∫ tk+1

tk
f̃i (xi(tk), Xis) dτ
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from/to (3.13), it is derived that

ei(tk+1) =
(

Gi( {yi(tn)}k+1
n=0 , zi(t0), Xis)− xi(tk)−

∫ tk+1

tk

(fi (xi(τ), wi(τ)) + f̃i (xi(τ), Xis) )dτ
)

+

(

f̃i (zi(tk), Zi(tk))∆−
∫ tk+1

tk

f̃i(xi(tk), Xi(tk))dτ +

∫ tk+1

tk

f̃i(xi(tk), Xi(tk))dτ

−
∫ tk+1

tk

f̃i(xi(τ), Xi(τ))dτ +
∑

l∈Ji∩L

Ki,l(zl)(yl(tk)− hl(zl(tk)))∆

+
∑

p∈Ji\L

Ki,p(zp)(yp(tk)− hp(zp(tk)))∆

)

+

(∫ tk+1

tk

f̃i (xi(τ), Xis) dτ −
∫ tk+1

tk

f̃i (xi(tk), Xis) dτ +

∫ tk+1

tk

f̃i (xi(tk), Xis) dτ

− f̃i (zi(tk), Xis)∆−Ki,i(zi)(yi(tk)− hi(zi(tk)))∆

)

Taking into account that yi(t) = hi(xi(t)) + vi(t) and |vi(tk)| ≤ θvi , ∀i ∈ I, it is derived from

the above equality based on the Lipschitz properties of f̃i that:

|ei(tk+1)| ≤
∣

∣

∣
Gi( {yi(tn)}k+1

n=0 , zi(t0), Xis)− xi(tk)

−
∫ tk+1

tk

(fi (xi(τ), wi(τ)) + f̃i (xi(τ), Xis) )dτ
∣

∣

∣

+

∣

∣

∣

∣

f̃i (zi(tk), Zi(tk))∆−
∫ tk+1

tk

f̃i(xi(tk), Xi(tk))dτ

+
∑

l∈Ji∩L

Ki,l(zl)(hl(xl(tk))− hl(zl(tk)))∆

+
∑

p∈Ji\L

Ki,p(zp)(hp(xp(tk))− hp(zp(tk)))∆

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ tk+1

tk

f̃i (xi(tk), Xis) dτ − f̃i (zi(tk), Xis)∆

−Ki,i(zi)(hi(xi(tk))− hi(zi(tk)))∆

∣

∣

∣

∣

+
∑

l∈Ii

LXi

f̃i

∫ tk+1

tk

|xl(τ)− xl(tk)| dτ +
∑

l∈Ji

Ki,l(zl)θvl∆

+ 2Lxi

f̃i

∫ tk+1

tk

|xi(τ)− xi(tk)| dτ +Ki,i(zl)θvi∆ (3.14)
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where Lxi

f̃i
and LXi

f̃i
are the Lipschitz constants with respect to the first and second arguments

of f̃i, respectively. Performing Taylor-series expansions, we obtain the following inequalities:

f̃i(xi(tk), Xi(tk)) = f̃i(zi(tk), Zi(tk)) +
∂f̃i
∂xi

∣

∣

∣

∣

∣

xi=zi(tk)

(xi(tk)− zi(tk))

+
∑

l∈Ii

∂f̃i
∂xl

∣

∣

∣

∣

∣

xl=zl(tk)

(xl(tk)− zl(tk)) +H.O.T f̃i
Xi

(3.15a)

f̃i(xi(tk), Xis) = f̃i(zi(tk), Xis) +
∂f̃i
∂xi

∣

∣

∣

∣

∣

xi=zi(tk)

(xi(tk)− zi(tk)) +H.O.T f̃i
xi (3.15b)

hl(xl(tk) = hl(zl(tk)) +
∂hl
∂xl

∣

∣

∣

∣

xl=zl(tk)

(xl(tk)− zl(tk)) +H.O.T hl
xl

(3.15c)

where H.O.T f̃i
Xi
, H.O.T f̃i

xi
and H.O.T hl

xl
denote the Taylor remainders [52] of the Taylor-series

expansions of functions f̃i and hl. The remainders satisfy the following constraints:

H.O.T f̃i
Xi

≤
∑

l∈Ji

H f̃i
Xi

|xl(tk)− zl(tk)|2 ,

H.O.T f̃i
xi

≤ H f̃i
xi
|xi(tk)− zi(tk)|2 ,

H.O.T hl
xl

≤ Hhl
xl

|xl(tk)− zl(tk)|2

(3.16)

for all xi ∈ Xi with H f̃i
Xi
, H f̃i

xi
, i ∈ I, and Hhl

xl
, l ∈ Ji, being finite positive constants when

|xi(tk)− zi(tk)| is bounded.

Let us define Si(tk) := f̃i (zi(tk), Zi(tk))− f̃i (xi(tk), Xi(tk))+
∑

l∈Ji∩L
Ki,l(zl)(hl(xl(tk))−

hl(zl(tk))) +
∑

p∈Ji\L
Ki,p(zp) (hp(xp(tk))− hp(zp(tk))) and define Pi(tk) := f̃i(xi(tk), Xis) −

f̃i(zi(tk), Xis)−Ki,i(zi)(hi(xi(tk))− hi(zi(tk))). Taking (3.15) into consideration, it is calcu-
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lated that:

Si(tk) =− ∂f̃i
∂xi

∣

∣

∣

∣

∣

xi=zi(tk)

(xi(tk)− zi(tk))−
∑

l∈Ii

∂f̃i
∂xl

∣

∣

∣

∣

∣

xl=zl(tk)

(xl(tk)− zl(tk))

+
∑

l∈Ji∩L

Ki,l(zl)
∂hl
∂xl

∣

∣

∣

∣

xl=zl(tk)

(xl(tk)− zl(tk))

+
∑

p∈Ji\L

Ki,p(zp)
∂hp
∂xp

∣

∣

∣

∣

xp=zp(tk)

(xp(tk)− zp(tk)) +
∑

l∈Ji

Ki,l(zl)H.O.T
hl
xl

−H.O.T f̃i
Xi

(3.17a)

Pi(tk) =
∂hl
∂xl

∣

∣

∣

∣

xi=zi(tk)

(xi(tk)− zi(tk))−Ki,i(zi)(hi(xi(tk))− hi(zi(tk))) +H.O.T f̃i
xi

(3.17b)

If Ki,l in (3.17a) and Ki,i in (3.17b) are calculated following (3.9), then based on (3.16) and

(3.17), in the worst case scenario, we can obtain that

|Si(tk)| ≤
∑

p∈Ji\L

ψmin
i,p |xp(tk)− zp(tk)|+

∑

l∈Ji

(

H f̃i
Xi

+Ki,lH
hl
xl

)

|xl(tk)− zl(tk)|2

|Pi(tk)| ≤ ψmin
i,i |xi(tk)− zi(tk)|+H f̃i

xi
|xi(tk)− zi(tk)|2

(3.18)

From (3.14) and (3.18), we derive the following inequality:

|ei(tk+1)| ≤
∣

∣

∣

∣

Gi( {yi(tn)}k+1
n=0 , zi(t0), Xis)− xi(tk)

−
∫ tk+1

tk

(fi (xi(τ), wi(τ)) + f̃i (xi(τ), Xis) )dτ

∣

∣

∣

∣

+
∑

p∈Ji\L

ψmin
i,p |ep(tk)|∆+ ψmin

i,i (tk) |ei(tk)|∆

+
∑

l∈Ji

(

H f̃i
Xi

+Ki,lH
hl
xl

)

|el(tk)|2 ∆+H f̃i
xi
|ei(tk)|2 ∆

+ 2Lxi

f̃i

∫ tk+1

tk

|xi(τ)− xi(tk)| dτ +Ki,i(zl)θvi∆

+
∑

l∈Ii

LXi

f̃i

∫ tk+1

tk

|xl(τ)− xl(tk)| dτ +
∑

l∈Ji

Ki,l(zl)θvl∆

(3.19)
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where el(tk) = zl(tk) − xl(tk), l ∈ Ji. Consider the term
∫ tk+1

tk
|xi(τ)− xi(tk)| dτ , we have

that
∫ tk+1

tk
|xi(τ)− xi(tk)| dτ ≤

∫ tk+1

tk
Mi(τ − tk)dτ =

∫ ∆

0
Miτ̃ dτ̃ = 1

2
Mi∆

2 considering the

boundedness of |ẋi|, i ∈ I. Based on the property of the existing decentralized estimator for

subsystem i that is stated in Assumption 3, and taking into account the boundedness of Ki,l

for all i ∈ I and l ∈ Ii, the following inequality can be obtained:

|ei(tk+1)| ≤ βi (|ei(tk)|,∆) + γi

(

max
τ

|wi(τ)|
)

+ φi

(

max
τ

|vi(τ)|
)

+
∑

p∈Ji\L

ψmin
i,p |ep(tk)|∆+ ψmin

i,i (tk) |ei(tk)|∆

+
∑

l∈Ji

(

H f̃i
Xi

+Ki,lH
hl
xl

)

|el(tk)|2 ∆+H f̃i
xi
|ei(tk)|2 ∆

+ Lxi

f̃i
Mi∆

2 + LXi

f̃i

∑

l∈Ii

Ml∆
2/2 +

∑

l∈Ji

Ki,lθvl∆+Ki,iθvi∆

(3.20)

Given a fixed sampling period ∆ and the definition of function λi, this completes the proof

of Proposition 4. �

Proposition 4 provides the upper bound of the (open-loop evolution of the) estimation

error for each subsystem within one sampling time ∆. Note that measurement sampling

and information exchange occur at each sampling instant, and ∆ is the time interval within

which there is no measurement feedback or information exchange between subsystems. From

Eq.(3.19) to Eq.(3.20), we find the upper bound on the estimation error evolution over one

sampling time without feedback. In what follows, we provide sufficient conditions on the

convergence and ultimate boundedness of the estimation error of the proposed distributed

state estimation network.

Theorem 3. Consider nonlinear system (3.1) consisting of m subsystems with subsystem

measurements yi, i ∈ I. If Assumption 1 to Assumption 3 are all satisfied, and if augmented

estimators are designed following (3.10) with correction gains Ki,l (i ∈ I and l ∈ Ii) deter-

mined following (3.9) and bounded as |Ki,l|≤ Ki,l, and if |ẋi| is bounded as |ẋi|≤ Mi, ∀i ∈ I,

and if the initial error satisfies |ei(t0)|≤ ρi, i ∈ I, and if there exist positive scalars %i, ρi
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such that 0 < %i < ρi, and positive constants εi > 0, ∀i ∈ I, such that:

%i −
(

Qi(|%i|) + γi(max
τ

|wi(τ)| ) + φi(max
τ

|vi(τ)| )
)

−
(

∑

p∈Ji\L

ψmax
i,p ρp∆+ ψmax

i,i ρi∆

)

−
(

∑

l∈Ji

Rilρ
2
l∆+H f̃i

xi
ρ2i∆+ λi(∆)

)

≥ εi
(3.21)

where Qi is a concave function satisfying Qi(|ei|) ≥ αi(|ei|) for all |ei| ≤ ρi, and Ril :=

H f̃i
Xi

+ Ki,lH
hl
xl
, i ∈ I, l ∈ Ji, ψ

max
i,p := max

{

ψmin
i,p (zp) : zp ∈ Zp

}

, i ∈ I, p ∈ Ji \ L with

Zi denoting the smallest compact set that bounds zi such that zi ∈ Zi for all xi ∈ Xi and

|zi − xi| ≤ ρi, i ∈ I, then the estimation error |ei|= |zi − xi| given by augmented estimator

in (3.10) is a decreasing sequence for all %i ≤ |ei|≤ ρi, i ∈ I and is ultimately bounded as

follows:

lim
k→∞

sup|ei(tk)|≤ ρmin
i (3.22)

for i ∈ I with ρmin
i ≤ ρi being defined as ρmin

i := max{|ei(tk+∆)|: |ei(tk)|≤ %i} for all |ei(t0)|≤

ρi and xi ∈ Xi. The ultimate boundedness on the estimation error for each subsystem i, i ∈ I,

also implies that the entire system state estimation error is ultimately bounded.

Proof: We first prove that the estimation error |ei|= |zi − xi| of augmented estimator

i in the form of (3.10) for subsystem i, i ∈ I, is decreasing and ultimately bounded after

finite sampling periods. Then, we show that the estimation error of the entire system is a

decreasing sequence and is eventually bounded.

Specifically, taking into account the property of the concave function Qi, i ∈ I, if there

exist scalars %i and ρi, i ∈ I, satisfying (3.21), then the following inequality

|ei| −
(

Qi(|ei|) + γi(max
τ

|wi(τ)| ) + φi(max
τ

|vi(τ)| )
)

−
(

∑

p∈Ji\L

ψmax
i,p |ep|∆+ ψmax

i,i |ei|∆
)

−
(

∑

l∈Ji

Ril |el|2 ∆+H f̃i
xi
|ei|2 ∆+ λi(∆)

)

≥ εi

(3.23)
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holds for all %i ≤ |ei|≤ ρi, i ∈ I, and |el|≤ ρl, l ∈ Ji. Taking into consideration (3.12), (3.23),

the property that Qi(|ei|) ≥ αi(|ei|) for all |ei| ≤ ρi and the initial condition that |ei(0)|≤ ρi,

we can derive the following inequality:

|ei(tk+1)|≤ |ei(tk)|−εi (3.24)

for all %i ≤ |ei|≤ ρi, i ∈ I. Based on (3.24), if |ei|≥ %i for the time interval between t0 and

tk, then |e(tq)|, t0 < tq ≤ tk is a decreasing sequence described as follows:

|ei(tq)|≤ |ei(t0)|−qεi (3.25)

for all %i ≤ |ei(tq)|≤ ρi. This implies that |ei| decreases at every sampling time and will

eventually become smaller than %i within finite steps. Once condition |ei|< %i is satisfied,

|ei| will not decrease at every next sampling instant. However, it will remain to satisfy

|ei(t)|≤ ρmin
i because of the nature of ρmin

i ; that is, lim
k→∞

sup|ei(tk)|≤ ρmin
i .

The boundedness of |ei|, i ∈ I, implies the ultimate boundedness of the entire system state

estimation error, which can be demonstrated by the inequality lim
k→∞

sup|e(tk)|≤
∑m

i=1 ρ
min
i .

This completes the proof of Theorem 3. �

Remark 9. In condition (3.21) of Theorem 3, the function Qi(·) is used as a concave ap-

proximation of αi(·), i ∈ I. The term H f̃i
xi
|ρi|2 ∆ characterizes the influence of the i-th

subsystem itself involved in the interaction term f̃i after interaction compensation. The term
∑

l∈Ji
Ril |ρl|2 ∆ depicts the effect of the subsystem interaction between subsystem i and its

upstream interacting subsystems after interaction compensation. The function λi(∆) char-

acterizes the effects on the upper bound of the subsystem estimation error that are caused

by the communication frequency and the magnitudes of the subsystem disturbances and mea-

surement noise. Note that condition (3.21) can be satisfied if the convergence speed of the

existing decentralized estimator for each subsystem i is sufficiently fast, the communication

frequency is sufficiently high (i.e., ∆ is sufficiently small) and the upper bounds on subsystem
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disturbances and measurement noise are sufficiently small.

Remark 10. It is noted that while the conditions in Theorem 1 are derived in a constructive

way, they are conservative since the worst case scenario is considered. The conditions reveal

the interplay between the parameters and give us directions on how to obtain a successful

design. This is actually the case with many results for nonlinear systems in the literature

that consider the worst case scenarios (e.g., using Lipschitz properties and upper bounds of

uncertainties) as discussed and illustrated in [53, 54]. One prerequisite for the satisfaction of

Theorem 3 is that the initial error is not arbitrarily large (|ei(t0)|≤ ρi) due to the condition

Qi(|ei|) ≥ αi(|ei|), i ∈ I. Moreover, an implication of condition (3.21) is that the ultimate

upper bound of the estimation error depends on a few factors including the magnitudes of

the disturbances and measurement noise as well as the communication interval between es-

timators. In particular, smaller upper bounds on the system disturbances and measurement

noise and the use of a smaller communication interval (i.e., ∆) can lead to a smaller value

of %i, such that the condition in (3.21) can be satisfied for εi > 0, i ∈ I. Correspondingly,

the ultimate upper bound of the estimation error given by the distributed scheme decreases.

In practice, the design parameters should be tuned or estimated following these conditions

based on simulations. This will be illustrated in Section 3.3.2.

Remark 11. Note that the class K function αi(|ei|) could be either a convex increasing

function or a concave increasing function with respect to its argument. The two different case

scenarios should be handled via different approaches which will increase the complexity for

analysis. In order to simplify the proof and unify the conditions, we introduce the assumption

on the existence of a concave function that satisfies the condition Qi(|ei|) ≥ αi(|ei|) for all

|ei| ≤ ρi, i ∈ I.

Remark 12. We note that the proposed approach can be extended to the case that local

estimators are continuous-time estimators (e.g., [55, 30, 56, 57]). In this case, we need to

assume that the output measurements of each subsystem are immediately and continuously
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available to the corresponding estimator, while the subsystem estimators communicate to

exchange information at discrete-time instants. We point out that this extension of the

proposed approach provides an alternative way to design nonlinear observers for systems with

moderately large scales (which is in general a challenging task based on existing centralized

approaches) by connecting small-size local observers together. This approach will be illustrated

via the application to a chemical process in Section 3.3.2.

Remark 13. In this work, we consider an autonomous system model in Eq.(3.1) for an-

alytical convenience. If the input is known and the corresponding decentralized estimators

satisfy Assumption 1, the proposed approach can be extended to handle manipulated inputs

in a straightforward manner.

Remark 14. Communication delays and packet dropouts are important factors that may

affect the performance of a distributed state estimation network. Taking into account these

factors will make the proposed approach more applicable, and they will be investigated in the

future work.

3.3 Applications of the proposed approach

In this section, we apply the proposed approach to three process examples to illustrate its

effectiveness.

3.3.1 Application to the illustrative example

First, we revisit the illustrative example introduced in Section 3.1.4 to show that we can

achieve much improved estimation performance when the proposed distributed state esti-

mation approach is applied. The values of the variables and parameters of this process are

presented in Table 3.2. Accordingly, we calculate the values of the Lipschitz constants with

respect to the nonlinear functions of the model (3.7) as LX1

f̃1
= 0 (as the dynamics of the first

subsystem is not affected by the second subsystem) and LX2

f̃2
= 10.2621. We consider two
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Table 3.2: Parameters of process variables

F0 = 38.996 m3/h ∆H1 = −5.0× 104 kJ/kmol

F1 = 38.996 m3/h ∆H2 = −5.2× 104 kJ/kmol

F2 = 65.021 m3/h ∆H3 = −5.05× 104 kJ/kmol

F3 = 26.025 m3/h k1 = 3.0× 106 h−1

V1 = 5.1 m3 k2 = 3.0× 105 h−1

V2 = 3.8 m3 k3 = 3.0× 105 h−1

T0 = 300.0 K E1 = 5.0× 104 kJ/kmol

T03 = 300.0 K E2 = 7.5× 104 kJ/kmol

R = 8.314 kJ/kmol ·K E3 = 7.53× 104 kJ/kmol

CA0 = 3.9 kmol/m3 ρ = 1000.0 kg/m3

CA03 = 2.05 kmol/m3 cp = 0.231 kJ/(kg ·K)

Q1 = 1.02× 104 kJ/h Q2 = 9.8× 103 kJ/h

R = 8.314 kJ/kmol ·K

different state estimation schemes: the decentralized composite EKF-MHE scheme discussed

in Section 3.1.4, and a formed distributed state estimation scheme based on the existing de-

centralized scheme. In the simulations for the two schemes, both the EKF and the MHE

estimators are evaluated every 7.2s; that is, ∆ = 7.2s. We assume that the measured outputs

of the two CSTRs are subject to random noise, which is generated following normal distri-

bution with zero mean and standard deviation 0.4 for both the two subsystems. Random

process disturbances in the dynamics of the process are also added. In addition, a bounded

disturbance in the feed stream flow F3 to reactor 2 is considered. In the simulations, this

disturbance is generated following normal distribution with zero mean value and standard

deviation 0.5m3/h, and is constrained by −0.9 m3/h and 0.95 m3/h. For the EKF designed

for the first CSTR, two weighting matrices associated with the process disturbances and

the measurement noise are selected as: Q1 = diag( [25, 0.04]T ) and R1 = 0.16, respectively.

The initial error covariance matrix is picked as P (0) = diag( [100, 100]T ). In terms of the

MHE for the second CSTR, the size of the estimation horizon is N = 8, the two weighting
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Figure 3.4: Trajectories of the normalized estimation error norms of different schemes for
the second CSTR of the cascade chemical process.

matrices associated with the disturbances and measurement noise for the MHE are selected

as: Q2 = diag( [16, 0.04]T ) and R2 = 0.16, respectively. Note that no arrival cost is used in

the MHE.

We assume that the initial state of the process is: x0 = [280.7160K 2.2977kmol/m3 270.8933K

2.2837kmol/m3]
T
, and the initial guess for both the decentralized composite EKF-MHE

scheme and the formed distributed scheme is: z0 = [300.7100K 2.6900kmol/m3 322.3500K

3.2930kmol/m3]
T
.

We also make performance comparisons of different schemes, including the proposed dis-

tributed scheme, the existing decentralized scheme, and a distributed MHE scheme with

auxiliary observers proposed in [15]. To evaluate the estimation performance of different

schemes, we use the Euclidean norm of the normalized estimation error defined as |e|. Specif-

ically, the normalized estimation error norm is calculated at each time tk as follows:

|e(tk)| =

√

√

√

√

√

∑

i∈nx





zi(tk)− xi(tk)

max
tn∈[t0,∞)

(zi(tn)− xi(tn))





2

(3.26)

We note that when applying the above criterion to different state estimation schemes, the
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Figure 3.6: Trajectories of the actual states (solid black lines), the state estimates of the
decentralized scheme (dotted green lines), the state estimates of the distributed scheme with
∆ = 30s (dashed red lines), and the state estimates of the distributed scheme with ∆ = 6s
(dash-dotted blue lines).

3.3.2 Application to a froth flotation process example

As mentioned in Remark 12, the proposed method can be used in the design of nonlinear

observers for moderately large-scale nonlinear processes. To illustrate this point, we apply

the proposed approach to a process of froth flotation units that is used to clean and recover

fine coal produced by Coal Handling and Preparation Plants (CHPPs). The froth-flotation-

unit process is comprised of five interconnected tanks. A schematic diagram of this process

is presented in Figure 3.5. A model description is presented in Appendix I at the end of this

chapter.

It is assumed that the states clti and cati , i ∈ I, are the measured outputs. The entire

process is divided into five subsystems according to the five vessels. We consider that for

each vessel, there exists a decentralized estimator developed based on the high-gain observer

design in [30], such that each decentralized estimator can provide state estimates for the
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Table 3.3: Mean and maximum error norms of the three different schemes.

Decentralized

scheme

Distributed scheme

with ∆ = 30s

Distributed scheme

with ∆ = 6s

Mean norm 1.6117 0.7285 0.5658

Max norm 3.0163 2.2078 2.2078

corresponding subsystem based on continuous measurements of clti and cati . To achieve im-

proved estimation performance, we apply the proposed approach to the existing decentralized

scheme to form a distributed state estimation network, where five augmented estimators that

exchange information with each other every sampling period ∆ are designed.

A set of simulations is carried out. Specifically, we consider three different schemes:

the existing decentralized state estimation scheme; the formed distributed state estimation

scheme with a low communication frequency (∆ = 30s); the formed distributed state esti-

mation scheme with a high communication frequency (∆ = 6s). In the simulations, random

measurement noise and system disturbances that follow normal distribution are added. The

initial state of the entire process is assumed to be: x0 = [155kg/m3, 853kg/m3, 28.5kg/m3,

130kg/m3, 825.5kg/m3, 26.2kg/m3, 139.5kg/m3, 797kg/m3, 24.6kg/m3, 153kg/m3,

819kg/m3, 23.2kg/m3, 149kg/m3, 845kg/m3, 24.6kg/m3]
T
, while the initial guess for the

distributed state estimation system is set to be: z0 = [170 kg/m3, 870kg/m3, 27.9kg/m3,

140kg/m3, 840kg/m3, 25.5kg/m3, 136kg/m3, 815kg/m3, 25.5kg/m3, 160kg/m3,

800kg/m3, 22.5kg/m3, 140kg/m3, 870kg/m3, 22.5kg/m3]
T
.

The actual system states, together with the state estimates of the three different schemes

are shown in Figure 3.6. The results imply that within the existing decentralized framework,

the state estimates of all the states can converge to the actual system states when the

entire process is at the steady state. However, during the transient part, the estimation

errors are relatively large, which leads to unsatisfying overall estimation performance. By

contrast, the distributed state estimation schemes with different communication frequencies

are both able to provide much improved state estimation performance during the transient
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Figure 3.7: Trajectories of the normalized estimation errors of the decentralized scheme
(dashed green lines), the distributed scheme with ∆ = 30s (solid red lines), and the state
estimates of the distributed scheme with ∆ = 6s (dash-dotted blue lines).
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Figure 3.8: Mean estimation errors of the distributed scheme with different communication
intervals.

part compared with the decentralized scheme. This is because that the dynamics of the

subsystem interaction is explicitly taken into account via the compensators designed for

the subsystems. To further compare the estimation performance of the three schemes, the

trajectories of the Euclidean norms of the normalized estimation errors for the three schemes

are given in Figure 3.7, while the corresponding mean and maximum values of the Euclidean

error norms are presented in Table 3.3.

The results further verify that the formed distributed state estimation network obtained
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via the proposed approach can give much improved estimation performance. Both the mean

value and the maximum value of the estimation error norm of each distributed scheme

are significantly smaller than the corresponding values of the decentralized counterpart.

Moreover, by increasing the communication frequency, the overall estimation performance

can be further improved. By reducing the sampling period ∆ from 30s to 6s, the mean value

of the normalized estimation error norm has decreased by 22.33%. Note that the maximum

values of the estimation error norms of the two distributed schemes are the same. This is

because that the maximum errors of the two schemes both occur at the initial stage and the

initial estimation errors of the two schemes are identical.

To further demonstrate the relationship between the communication frequency and the

estimation accuracy, we also carry out simulations for the proposed distributed approach with

different communication intervals between subsystems. The mean estimation error norms

at different communication intervals are shown in Figure 3.8. The result implies that in the

presence of disturbances and measurement noise, increasing the communication frequency

can improve the estimation accuracy.

Finally, simulations are performed to reveal the relationship between the magnitudes of

process disturbances/measurement noise and the ultimate upper bound of the estimation er-
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ror norm. The initial estimation error is set to be zero in this set of simulations. The results

are given in Figure 3.9 and Figure 3.10. With the increase of the magnitude of the measure-

ment noise/system disturbances, the upper bound of the estimation error norm increases

correspondingly. The results are consistent with the analysis presented in Remark 10.

3.3.3 Application to a hybrid-tank plant

The proposed approach is also implemented to a hybrid-tank plant [58]. This plant comprises

three interconnected water tanks of the same size. A schematic of the plant is shown in

Figure 3.11. Each of the three tanks is equipped with a pipe at the bottom for discharge.

Water enters the left tank and the right tank through two pipes by manipulating two pumps

below the tanks. The left (right) tank is connected to the middle tank in three ways: one

pipe at the bottom of the tanks and two additional pipes at higher levels. In this experiment,

only the valves of the pipes at the bottom layer (i.e., V5 to V9 in Figure 3.11) are open, while

all the valves of the higher-level pipes (i.e., i.e., V1 to V4 in Figure 3.11) are kept closed.

The water levels in all three tanks can be measured online using differential pressure (DP)

sensors. The DP sensors provide water level measurements every 1 sec. Taking into account

the physical behaviors of the plant, a model that describes the system dynamics is established
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Figure 3.12: Trajectories of the state estimates based on distributed scheme (dashed red
lines), the state estimates based on decentralized scheme (dotted yellow lines) and the actual
sensor measurements of the water levels (solid blue lines)
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Figure 3.13: Trajectories of the norm of estimation errors given by the distributed scheme
(solid blue lines) and the decentralized scheme (dashed red lines)

into two subsystems: the first subsystem consists of the left tank and the middle tank, while

the right tank constitutes the second subsystem. Each subsystem has one measurement. For

the first subsystem, a decentralized estimator is deigned following [55] to account for the

local dynamics. Then, the proposed approach is utilized to design an augmented estimator

for the first subsystem. The second subsystem sends its actual measurement to the aug-

mented estimator for the first subsystem every 1 sec. Using the measurements from the left

and the right tank, the distributed scheme is evaluated to estimate the water levels of the
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left and middle tanks. The actual water levels and the estimates are shown in Figure 3.12.

The results confirm that the proposed approach is applicable to this real system. The ex-

isting decentralized scheme is also implemented for performance comparison. Note that the

flow rates of the water entering the process are time-varying and the process is subject to

non-steady-state operation. In the decentralized scheme, constant values at one equilibrium

point (h1s = 46.160 cm, h2s = 14.891 cm, h1s = 40.335 cm) are used to compensate for the

time-varying subsystem interaction. The state estimates given by the decentralized scheme

are also given in Fig. 3.12. The trajectories of the norm of the estimation errors given by the

distributed scheme and the decentralized scheme are given in Fig. 3.13. From the figures, it

can be seen that the formed distributed scheme gives significantly improved state estimates

(especially for h2 which is not measured) compared to the decentralized scheme.

3.4 Summary

In the present work, we proposed a systematic method to design distributed state esti-

mation networks by taking advantage of existing decentralized state estimation systems.

Decentralized local estimators were assumed to exist for the subsystems. A compensator

that compensates for the dynamics of subsystem interaction was designed and connected to

the corresponding existing decentralized estimator to form an augmented estimator for the

corresponding subsystem. A distributed state estimation network was developed by con-

necting the augmented estimators via discrete-time information exchange with each other.

Sufficient conditions were given for the convergence and boundedness of the estimation error.

Three application examples were used to demonstrate the proposed approach.

Appendix I

Description of the froth flotation process: The slurry consisting of coal, ash and water is

fed into the first vessel. Reagents including frother and collector are added through either
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the inlet or the upstream of the first vessel with the optimal reagent concentration which

depends on the solid concentration as well as the type of the coal. The froth is removed from

the five vessels using the paddles and is further sent to a disk filter system for drying. The

underflow of each vessel enters the downstream neighboring vessel, and the tailings of the

last vessel are discharged and sent to a static thickener [84]. The dynamics of the process is

described by 15 system states with respect to the solids, liquids and ash in the vessels. Based

on standard modeling assumptions and mass balances, a model characterizing the dynamics

of the i-th unit, ∀i ∈ I = {1, 2, 3, 4, 5} is established as follows [84]:

dcsti
dt

=
V̇ufi−1

Vi
(csti−1

)− V̇ufi
Vi

(csti)− ri (3.28a)

dclti
dt

=
V̇ufi−1

Vi
(clti−1

)− V̇ufi
Vi

(clti)−
βi
Vi

(3.28b)

dcati
dt

=
V̇ufi−1

Vi
(cati−1

)− V̇ufi
Vi

(cati)−
Ȧi

Vi
(3.28c)

where csti represents the concentration of the solids in the i-th vessel, clti represents the

concentration of the liquid in the i-th vessel, cati is the concentration of the ash in the i-th

vessel, Vi denotes the slurry volume in the i-th vessel, while V̇uf i
denotes the flow rate of the

underflow from the i-th vessel. ri which is specified later represents the solid removal rate

from the i-th vessel, βi denotes the mass flow rate of the liquid from the i-th vessel to overflow

and Ȧi denotes the mass flow rate of ash from tank i to overflow. cst0 , clt0 and cat0 represent

the concentration of the solids, the concentration of the liquid and the concentration of the

ash in the feed flow, respectively. V̇uf0
depicts the volumetric flow rate of the feed flow.

The solid removal rate ri is calculated following ri = frk(csti − c∞) where k denotes

a constant rate, c∞ denotes the equilibrium of the solid concentration (kg/m3), while fr

represents the correction factor of industrial scale reactions.
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Further, for the i-th vessel, i ∈ I, we have:

V̇ufi = V̇ufi−1
+ V̇ofi

V̇ofi =
β

ρl
+
riVi
ρc

Ȧi = xAi

(

i
∑

j=1

Msofj

)

−
i−1
∑

j=1

Ȧj

Ri =

(

MsofiV̇ofi
MsofiV̇ofi + cstiV̇ufi

)

(100−Ri−1) +Ri−1

xAi
= g(Ri)

Ṁsof i
= Vi · ri

where ρc is the density of coal (kg/m3), ρl denotes the density of liquid (kg/m3), Ri is

the cumulative solid recovery at stage i, xAi
is the cumulative mass fraction of ash in the

overflow solids at stage i, Ṁsof i
is the mass flow rate of solids in the overflow (kg/min), V̇of i

is the volumetric flow rate of the overflow and csof i
denotes the concentration of solids in

the overflow (kg/m3), Vfeed denotes the feed flow rate of the liquid and sol is a coefficient

of the feed mass basis. g(Ri) is an empirical function of Ri for a given frother and collector

loading from [84]. A complete description of the model can be found in [84, 61].

This model is decomposed into five subsystems. xi = [xi,1 xi,2 xi,3]
T = [csti clti cati ]

T is

the state vector of subsystem i, yi = [yi,1 yi,2]
T = [clti cati ]

T+[vi1 vi2 ]
T is the vector of output

measurements of subsystem i, wi = [wi,1 wi,2 wi,3]
T is the vector of additive disturbances to

subsystem i, i = 1, 2, 3, 4, 5. The vectors of interacting dynamics for the subsystems are:

X2 = x1, X3 =
[

xT1 xT2
]T
, X4 =

[

xT1 xT2 xT3
]T

and X5 =
[

xT1 xT2 xT3 xT4
]T
.

The expressions of the functions fi, f̃i and hi are reported for i = 1, 2. In the first
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subsystem, the vector field f1 is with the following form:

f1(x1, w1) =















f1,1(x1, w1)

f1,2(x1, w1)

f1,3(x1, w1)















where

f1,1 =−
(

Vfeed
V1

− β

ρlV1
− Vfeed · ρl · sol
ρc(sol − 1)Vi

+
frk(c∞ − x1,1)

ρc

)

x1,1

+ fr · k · (c∞ − x1,1) +
Vfeed · ρl · sol
V1(1− sol)

+ w1,1

f1,2 =−
(

Vfeed
V1

− β

ρlV1
− Vfeed · ρl · sol
ρc(sol − 1)V1

+
frk(c∞ − x1,1)

ρc

)

x1,2

+
Vfeed · ρl

V1
− β

V1
+ w1,2

f1,3 =−
(

V lfeed
Vtank

− β

ρlV1
− Vfeed · ρl · sol
ρc(sol − 1)V1

+
frk(c∞ − x1,1)

ρc

)

x1,3

+XA1 · frk(c∞ − x11)−
0.245 · Vfeed · ρl · sol

V1 · (sol − 1)
+ w1,3

Because the dynamics of the first subsystem is not affected by the other subsystems, f̃1 is a

zero vector field. The output measurement equations are:

h1(x1) =







h1,1(x1)

h1,2(x1)






=







clt1

cat1







In the second subsystem, the vector field f2 is with the following form:

f2(x2, w2) =















f2,1(x2, w2)

f2,2(x2, w2)

f2,3(x2, w2)














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where

f2,1 =

(

V lfeed
V2

− 2β

ρlV2
− Vfeed · ρl · sol
ρc(sol − 1)V2

+
frk(c∞ − x21)

ρc

)

x2,1

+ frk(c∞ − x21) + w2,1

f2,2 =−
(

V lfeed
V2

− 2β

ρlV2
− Vfeed · ρl · sol
ρc(sol − 1)V2

+
frk(c∞ − x2,1)

ρc

)

x2,2

− β

V2
+ w2,2

f2,3 =−
(

Vfeed
V2

− 2β

ρlV2
− Vfeed · ρl · sol
ρc(sol − 1)V2

+
frk(c∞ − x2,1)

ρc

)

x2,3

+XA2 · V2 · frk(c∞ − x21) + w2,3

The interacting dynamics f̃2 is given as:

f̃2(x2, X2) =















f̃2,1(x2, X2)

f̃2,2(x2, X2)

f̃2,3(x2, X2)















where

f̃2,1 =

(

Vfeed
V2

− β

ρlV2
− Vfeed · ρl · sol
ρc · (sol − 1)V2

+
frk(c∞ − x1,1)

ρc

)

x1,1

−
(

frk(c∞ − x1,1)

ρc

)

x2,1

f̃2,2 =

(

Vfeed
V2

− β

ρlV2
− Vfeed · ρl · sol
ρc · (sol − 1)V2

+
frk(c∞ − x1,1)

ρc

)

x1,2

−
(

frk(c∞ − x1,1)

ρc

)

x2,2

f̃2,3 =

(

Vfeed
V2

− β

ρlV2
− Vfeed · ρl · sol
ρc(sol − 1)V2

+
frk(c∞ − x1,1)

ρc

)

x1,3

+XA2 · frk(c∞ − x1,1)−XA1 · frk(c∞ − x1,1)

−
(

frk(c∞ − x1,1)

ρc

)

x2,3
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The output measurement equations are:

h2(x2) =







h2,1(x2)

h2,2(x2)






=







clt2

cat2







The explicit expressions of fi, f̃i and hi for each subsystem i, i = 3, 4, 5, are obtained

using symbolic calculation in the same way, and are omitted for brevity. The Lipschitz

constants with respect to the nonlinear functions in the model are obtained as LX1

f̃1
= 0 (as the

dynamics of the first subsystem is not affected by the remaining subsystems), LX2

f̃2
= 1.0725,

LX3

f̃3
= 1.6895, LX4

f̃4
= 1.6679, LX5

f̃5
= 1.6476.
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Chapter 4

Distributed output-feedback fault

detection and isolation of cascade

process networks

In this chapter, we consider distributed output-feedback fault detection and isolation (FDI)

of nonlinear cascade process networks that can be divided into subsystems. Based on the

assumption that an exponentially convergent estimator exists for each subsystem, a dis-

tributed state estimation system is developed based on the method that is introduced in

Chapter 3. It is shown in Section 4.2.5 that when there is no fault, the estimation error of

the distributed estimation system converges to zero in the absence of system disturbances

and measurement noise. For each subsystem, a state predictor is also designed to provide

subsystem state predictions. A residual generator is designed for each subsystem based on

subsystem state estimates given by the distributed state estimation system and subsystem

state predictions given by the predictor. A subsystem residual generator generates two resid-

ual sequences, which act as references for FDI. A distributed FDI mechanism is proposed

based on residuals as illustrated in Section 4.3. The proposed approach is able to handle

both actuator faults and sensor faults by evaluating the residual signals. In Section 4.4, a
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froth flotation process example is used to illustrate the effectiveness of the distributed FDI

mechanism. This chapter is a revised version of [85, 97].

4.1 Preliminaries

4.1.1 Notation

The operator |·| denotes the Euclidean norm of a vector. A function f(s) is said to satisfy the

locally Lipschitz property with respect to its argument s, if there exists a positive constant Ls
f

so that |f(s1)− f(s2)| ≤ Ls
f |s1 − s2| holds for all s1 and s2 that are in a local region of s and

Ls
f represents the corresponding Lipschitz constant. A continuous function α : [0, a) → [0,∞)

belongs to class K if it is strictly increasing and satisfies α(0) = 0. A continuous function

α : [0, a) → [0,∞) belongs to class K∞ if it belongs to class K and it is subject to a = ∞

and lim
r→∞

α(r) = ∞. A continuous function β(r, s) belongs to class K L if for each fixed s,

β(r, s) belongs to class K with respect to r, and for each fixed r, it is deceasing with respect

to s, and β(r, s) → 0 as s→ ∞. A+ denotes a matrix (or a vector) being the Moore-Penrose

pseudoinverse of matrix (or vector) A. The symbol I is a set containing finite integers defined

as I := {1, . . . , n}. J denotes a subset of I and is defined as J := {2, . . . , n}.

4.1.2 System description and problem formulation

We consider a class of nonlinear systems comprised of n subsystems interconnected in a

cascade fashion. The diagram of a general cascade process is presented in Figure 4.1. The

entire system under a fault-free condition is described in the following form:

ẋ(t) = F (x(t), u(t))

y(t) = h(x(t))
(4.1)
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Figure 4.1: A diagram of a cascade process.

where x(t) ∈ Rnx represents the state vector, u(t) ∈ Rnu represents the input vector to the

entire system, and y ∈ Rny denotes the measured output vector of the entire system. The

function F characterizes the dynamics of x.

For the class of cascade nonlinear systems, the dynamics of subsystem i, i = 1, . . . , n−1,

are not affected by its downstream subsystems (i.e., each subsystem j for all j = i+1, . . . , n).

The models of the n subsystems are represented in the following form:















































ẋ1(t) = f1 (x1(t), u1(t) + ũ1(t))

ẋ2(t) = f2 ((x2(t), u2(t) + ũ2(t)) + f̃2(x1(t))

...

ẋn(t) = fn (xn(t), un(t) + ũn(t)) + f̃n (x1(t), x2(t), . . . , xn−1(t))

yi(t) = hi(xi(t)) + ṽi(t), i ∈ I

(4.2)

where xi(t) ∈ Rnxi denotes the state vector of the i-th subsystem, ui ∈ Rnui denotes the input

vector to the i-th subsystem, yi(t) ∈ Rnyi is the measured output vector of the i-th subsystem,

i ∈ I, fi denotes a vector function characterizing the dependence of the dynamics of xi on

itself and the disturbances wi, the vector function f̃j, j ∈ J, characterizes the dependence

of the dynamics of the j-th subsystem on itself as well as its upstream subsystems, and hi

is a vector function that describes the relation between yi and xi. We use ũi to denote an

actuator fault in the i-th subsystem, i ∈ I. ṽi denotes a sensor fault in the subsystem i,
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i ∈ I. Without loss of generality, we assume that xi satisfies the following constraint:

xi ∈ Xi (4.3)

where Xi, ∀i ∈ I, denotes a convex compact set.

We note that for each subsystem j, j ∈ J, in model (4.2), all the upstream subsystem

states are considered in the interaction term f̃j(·) to make the model more general. However,

it is possible that not all the upstream subsystems states are directly involved in f̃j(·). Based

on this consideration, we introduce Xj, j ∈ J, to denote a vector containing all the upstream

subsystem states that are involved in characterizing the interaction of the j-th subsystem. In

the remainder, we will use Lj to represent the set of the indices of the upstream subsystems

whose subsystem states are explicitly involved in Xj. For instance, if x1 and x2 are explicitly

involved in f̃4, then we have L4 = {1, 2}, and X4(t) = [x1(t) x2(t)]
T , j ∈ J. This set of

symbols will be used to describe a more efficient communication strategy in the distributed

state estimation design in the next section. In this work, we consider that for the cascade

process (4.2), there is only one fault present in the entire process within one prediction

horizon, the definition of which will be given later.

4.2 Distributed state estimation design

In this section, we develop a distributed state estimation system for the cascade process

network (4.2) following [129]. In the present work, we assume that the subsystem estimators

can exchange information continuously which is different from [129], in which discrete-time

communication was considered. Note that continuous communication has also been used in

other distributed fault detection works (e.g., Keliris et al. [78] and Ding et al. [82]). Based

on continuous communication, we will show that the estimation error converges to zero.
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4.2.2 Assumed local observers/estimators

We assume that there exists a decentralized nonlinear observer/estimator for subsystem i,

i ∈ I, that is described in a continuous-time framework as in the following form:

żoi (t) = Fi(z
o
i (t), hi(xi(t)), ui(t), Xis) (4.4)

where zoi denotes the state of the decentralized nonlinear observer/estimator for the i-th

subsystem in (4.4), Xis, i ∈ J, is the steady-state vector which is corresponding to Xi(t),

while X1s does not actually exist. We assume that the decentralized obervers/estimators in

(4.4) for the subsystems satisfy the following assumption.

Assumption 4. For each subsystem i, i ∈ I, there exists a decentralized estimator in the

form of (4.4), such that if the dynamics of xi satisfy the constraint (4.3), and if the input ui

to i-th subsystem is known, and if the entire system (4.2) is operated in a fault-free condition,

and all the states of the directly interacted upstream subsystems of subsystem i are at their

steady states (i.e., Xi(t) ≡ Xis, i ∈ J, for all t), then there exists a class K function ξi

and a positive scalar λi, such that the estimation error of the decentralized estimator (4.4)

satisfies the following inequality:

|zoi (t)− xi(t)|≤ ξi (|zoi (0)− xi(0)|) e−λit (4.5)

In (4.5), the class K function ξi describes how significantly the initial condition can

affect the estimation error, and λi > 0 characterizes the convergence speed of the existing

observer/estimator of the i-th subsystem, i ∈ I. Note that for each subsystem j, j ∈

J, the above assumption is satisfied only when all the states of the upstream subsystems

of subsystem j that directly affect the dynamics of xj are at steady-state values; that is,

Xj(t) ≡ Xjs, j ∈ J, for all t.

Remark 15. Assumption 4 implies that there exists an exponential convergent observer for
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each subsystem if all the other subsystems are kept at their steady states. This assumption

can be satisfied by many existing nonlinear observer designs including the ones proposed by

Gauthier et al. [55], Ciccarella et al.[30], Boizot [56], Ahmed-Ali et al. [86] as well as Atassi

and Khalil [87].

4.2.3 Compensator and augmented estimator design

The dynamics of the subsystem interaction are not appropriately handled by the existing

decentralized estimators. To account for the dynamics of the interaction, we design a com-

pensator for each subsystem except for the first subsystem following [129]. By connecting

each decentralized estimator to its corresponding compensator, we construct an augmented

estimator for each subsystem j, j ∈ J. The j-th compensator for subsystem j, j ∈ J, is

designed as below.

żcj(t) = f̃j(Zj(t))− f̃j(Xjs) +
∑

l∈Lj

Kj,l(zl)(yl(t)− hl(zl(t))) (4.6)

where zcj(t) is a compensation signal given by the j-th compensator. In the compensator

(4.6) for subsystem j, j ∈ J, the first term and the second term on the right-hand-side of

(4.6) compensate for the deviation between the actual subsystem interaction of subsystem j

and the corresponding steady-state values. The third term on the right-hand-side of (4.6) is

a corrective term to further mitigate the deviation due to the use of state estimates (instead

of the corresponding actual states) in the subsystem interaction. Kj,l are the correction gains

that are calculated as follows:

Kj,l =
∂f̃j
∂xl

(

∂hl
∂xl

)+
∣

∣

∣

∣

∣

xl=zl(t)

(4.7)

for all j ∈ J, l ∈ Lj. We consider that the correction gains are calculated and updated

continuously.
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By combining the j-th compensator with the j-th decentralized estimator, an augmented

estimator for the subsystem j is formed as in the following form:

żj(t) =Fj (zj(t), yj(t), uj(t), Xjs) + f̃j(Zj(t))− f̃j(Xjs) +
∑

l∈Lj

Kj,l(zl)(yl(t)− hl(zl(t)))

(4.8)

where zj represents the subsystem state estimate generated by the augmented estimator for

the subsystem j, j ∈ J.

Remark 16. We note that for subsystem j, j ∈ J, the developed augmented estimator only

requires the state estimates and output measurements from the upstream subsystems that

directly affect the dynamics of subsystem j (i.e., the estimates and the measurements of sub-

system l for all l ∈ Lj). The j-th augmented estimator only needs to request and receive

information from each subsystem l, l ∈ Lj, and the corresponding estimator via the commu-

nication network. This communication strategy saves limited communication resources and

is favorable from an application point of view.

4.2.4 Integral input-to-state stability of the augmented estimators

In this section, we carry out stability analysis individually on the subsystem estimation error

dynamics of each developed augmented estimator j, j ∈ J, in (4.8). First, we introduce the

concept of integral input-to-state stability (iISS). Then, we state in Theorem 4 that the

augmented estimator j developed for subsystem j, j ∈ J, is stable in the sense of iISS when

there is no fault in the system.

Definition 1. (c.f. Sontag[88]) If there exist functions α and γ belonging to class K∞, and

a function β belonging to class K L , such that for any initial condition x(0) ∈ Rnx and any

input u(·) ∈ Rnu, the following estimate

α (|x(t)|) ≤ β (|x(0)| , t) +
∫ t

0

γ (|u(s)|) ds (4.9)
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holds for all t, t ≥ 0, then the system which satisfies the property in (4.9) is said to be an

integral input-to-state stable (iISS) system.

Theorem 4. Consider the augmented nonlinear estimator j, j ∈ J, in the form of (4.8) with

initial condition x̂i(0). If there is no fault in the system, and if the output measurements are

continuously available, and if each of the correction gains Kj,l for j ∈ J and l ∈ Lj is selected

following (4.7) and is bounded such that |Kj,l|≤ Kj,l with Kj,l being a positive constant, then

the dynamics of the subsystem estimation error ei := zi − xi are iISS for all xi ∈ Xi, for all

i ∈ I and t ≥ 0.

Proof: Let us consider the j-th augmented observer j, j ∈ J, in the form of (4.8). In a

fault-free context, the derivative of ej is calculated as follows:

ėj(t) =Fj (zj(t), yj(t), uj(t), Xjs)− fj (xj(t), uj(t))− f̃j(Xjs) + f̃j(Zj(t))− f̃j (Xj(t))

+
∑

l∈Lj

Kj,l(zl) (hl(xl(t))− hl(zl(t))) .

(4.10)

Performing Taylor series expansions on the term f̃j (Xj(t)) and the term hl (xl(t)), respec-

tively, the following equalities can be obtained:

f̃j(Xj(t)) =f̃j(Zj(t)) +
∑

l∈Lj

∂f̃j
∂xl

∣

∣

∣

∣

∣

xl=zl(t)

(xl(t)− zl(t)) +
∑

l∈Lj

of̃j(z
2
l )

hl(xl(t)) =hl(zl(t)) +
∂hl
∂xl

∣

∣

∣

∣

xl=zl(t)

(xl(t)− zl(t)) + ohl
(z2l )

(4.11)

where of̃j(z
2
l ) and ohl

(z2l ) represent the high-order terms of Taylor expansions of f̃j and hl,

respectively, and are subject to the following constraints:

of̃j(z
2
l ) ≤ H

f̃j
j |xl(t)− zl(t)|2, ohl

(z2l ) ≤ Hhl

l |xl(t)− zl(t)|2 (4.12)
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for all xl ∈ Xl, l ∈ Lj. In (4.12), H
f̃j
j and Hhl

l are finite positive constants that are associated

with the Taylor expansions of function f̃j, j ∈ J, and function hl, l ∈ Lj, respectively.

Taking into account (4.10) and (4.11), it can be derived that:

ėj(t) =Fj (zj(t), hj(xj(t)), uj(t), Xjs)− fj (xj(t), uj(t))− f̃j(Xjs)

+
∑

l∈Lj

(

− ∂f̃j
∂xl

∣

∣

∣

∣

∣

xl=zl(t)

(xl(t)− zl(t)) +Kj,l

∂hl
∂xl

∣

∣

∣

∣

xl=zl(t)

(xl(t)− zl(t))
)

+
∑

l∈Lj

Kj,lohl
(z2l )−

∑

l∈Lj

of̃j(z
2
l )

(4.13)

If the correction gains Kj,l are evaluated following (4.7), and take into account (4.12) and

(4.13), we can further calculate that:

|ėj(t)| ≤ |Fj(zj(t), hj(xj(t)), uj(t), Xjs)− fj (xj(t), uj(t))− f̃j(Xjs)|

+
∑

l∈Lj

(

H
f̃j
j +Kj,lH

hl

l

)

|el(t)|2
(4.14)

Taking into account Assumption 4 on the convergence property of the existing observer/estimator

for subsystem j, j ∈ J, if we integrate both sides of inequality (4.14) from initial time 0 to

time t, the following inequality is derived:

|ej(t)| ≤ξj (|ej(0)|) e−λjt +

∫ t

0

(

∑

l∈Lj

(

H
f̃j
j +Kj,lH

hl

l

)

|el(s)|2
)

ds

≤ξj (|ej(0)|) e−λjt +

∫ t

0

(

max
{

H
f̃j
j +Kj,lH

hl

l : l ∈ Lj

}

∑

l∈Lj

|el(s)|2
)

ds

(4.15)

Let us use εj to denote the column vector containing all el, l ∈ Lj. Then, we have

|εj(s)|2=
∑

l∈Lj

|el(s)|2 (4.16)
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Based on (4.15) and (4.16), it is derived that

|ej(t)| ≤ ξj (|ej(0)|) e−λjt +

∫ t

0

(

max
{

H
f̃j
j +Kj,lH

hl

l : l ∈ Lj

}

|εj(s)|2
)

ds (4.17)

Now, let us revisit the iISS condition (4.9) in Definition 1. For each j ∈ J, if the class K∞

function α in (4.9) is defined as α(s) := s, the class K L function β(s, t) in (4.9) is defined

as β(s, t) := γj (s) e
−λjt, while the class K∞ function in (4.9) γ is defined as γ(s) := cs2 with

c being a positive scalar defined as c := max
{

H
f̃j
j +Kj,lH

hl

l : l ∈ Lj

}

. Then, it is seen that

(4.17) is in the form of (4.9) for all j, j ∈ J. This completes the proof of Theorem 4. �

In what follows, we will carry out analysis of the convergence of the estimation error of

the distributed state estimation system.

Remark 17. It is worth mentioning that in Theorem 4, the estimation errors of all the

upstream subsystems that are directly involved in the dynamics of the j-th subsystem are

essentially regarded as external inputs to the estimation error dynamics of the j-th augmented

estimator, j ∈ J. The column vector εj, j ∈ J, is used to represent the external input vector

to the estimation error system of the j-th augmented estimator. For instance, if one has

L5 = {1, 3, 4}, then ε5 is in the form of ε5 =
[

eT1 , e
T
3 , e

T
4

]T
.

4.2.5 Boundedness and Convergence of the estimation error

In this section, we focus on the convergence properties of the distributed state estimation

scheme developed for the cascade process (4.2) in the fault-free condition. Before proceeding

further, the following definition is given to characterize a specific type of class K L functions.

Definition 2. A function β̄(r, s) is said to belong to class I − K L if β̄ ∈ K L and if
∫∞

s=0
β̄(r, s)ds takes a finite value for all r, 0 ≤ r <∞.

Further, two lemmas that will be used for the convergence analysis are introduced.
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Lemma 1. Consider a function ψ which is defined as ψ(r, s) := θ(r)e−σs where θ(r) belongs

to class K and takes a finite value. If σ is a finite positive scalar (i.e., 0 < σ < ∞), then

the function ψ(r, s) is said to belong to class I − K L for all r ≥ 0.

Proof: For any function ψ described as in Lemma 1, given a fixed s, the function ψ

belongs to class K as θ(r) is a class K function. Also, for each fixed r, ψ(r, s) is a decreasing

trajectory with respect to its second argument s and satisfies ψ(r,∞) = 0. Therefore, ψ(r, s)

belongs to class K L .

Next, let us consider the integral of function ψ(r, s) with respect to its second argument.

That is,
∫ ∞

s=0

ψ(r, s)ds =

∫ ∞

s=0

θ(r)e−αsds =
θ(r)

α
<∞ (4.18)

Based on Definition 2, it is proved that ψ(r, s) belongs to class I − K L . This completes

the proof. �

Lemma 2. (c.f. Sontag[88]) If the dynamics of a system are iISS in the sense of Definition 1,

and if for any external input u ∈ Ru such that
∫∞

0
γ (|u(s)|) ds <∞ is satisfied for the class

K∞ function γ as defined in the condition (4.9), then the corresponding state trajectory x(t)

eventually approaches zero as time goes to infinity. That is, x(t) → 0 as t→ ∞.

In Theorem 5 below, we provide sufficient conditions that ensure the boundedness and

convergence to zero of the estimation error of the distributed state estimation scheme for

system (4.2) in the absence of faults.

Theorem 5. Consider the cascade nonlinear system (2.1) with continuously available output

measurements yi and known inputs ui for all i ∈ I. For subsystem i, i ∈ I, if constraint (4.3)

is satisfied, and if there is no fault in the system, and if a decentralized estimator described

as in (4.4) exists such that Assumption 4 holds, and if an augmented estimator is designed

for each subsystem j, j ∈ J, following (4.8) with correction gains Kj,l determined following

(4.7) and restricted by |Kj,l|≤ Kj,l for all j ∈ J, l ∈ Lj, then given an arbitrary scalar δi > 0,

there exists a finite positive scalar τi, such that |ei(t)| = |zi(t)− xi(t)| ≤ δi holds ∀t ≥ τi,
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i ∈ I. Moreover, the estimation error of the distributed state estimation system for the entire

system (4.2) converges to zero as t→ ∞.

Proof: In this proof, we investigate the estimation error of each subsystem individually

in a recursive fashion when there is no fault. Let us use ei to denote the estimation error for

subsystem i, i ∈ I; that is, ei(t) := zi(t)− xi(t).

First, we consider the estimation error e1 of subsystem 1. In the absence of faults, it is

derived that:

ė1(t) = F1 (z1(t), y1(t), u1(t))− f1 (x1(t), u1(t)) (4.19)

Subsystem 1 is not affected by other subsystems and no compensator is designed for the first

subsystem. Based on Assumption 4 on the convergence of the existing observer in the form

of (4.4), the following inequality can be directly obtained:

|e1(t)|≤ ξ1 (|e1(0)|) e−λ1t (4.20)

Inequality (4.20) implies that without the occurrence of any faults to system (4.2), the

estimation error for subsystem 1 exponentially converges to zero as t→ ∞.

Next, let us consider the estimation error of subsystem 2. If we have f̃2 6= 0, e1 can be

considered as an external input to the error dynamics of subsystem 2. Based on (4.17), we

can obtain the following inequality:

|e2(t)| ≤ ξ2 (|e2(0)|) e−λ2t +

∫ t

0

((

H f̃2
2 +K2,1H

h1
1

)

|ε2(s)|2
)

ds (4.21)

where ε2 = e1. Consider the second term on the right-hand-side (RHS) of (4.21) and (4.20),
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it is derived that

∫ t

0

((

H f̃2
2 +K2,1H

h1
1

)

|ε2(s)|2
)

ds =
(

H f̃2
2 +K2,1H

h1
1

)

∫ t

0

(

|e1(s)|2
)

ds

≤
(

H f̃2
2 +K2,1H

h1
1

)

(ξ1 (|e1(0)|))2
∫ t

0

e−2λ1sds

=
1

2λ1

(

H f̃2
2 +K2,1H

h1
1

)

(ξ1 (|e1(0)|))2
(

−e−2λ1t + 1
)

(4.22)

In (4.22), the function ξi belongs to class K . Therefore, ξi (|e(0)|) is finite given each |e(0)|

with a finite value. Moreover, λ1 is a positive constant so that the term e−2λ1t converges to

zero as t→ ∞. Therefore, from (4.22) we can obtain that

∫ ∞

0

((

H f̃2
2 +K2,1H

h1
1

)

|ε2(s)|2
)

ds ≤ 1

2λ1

(

H f̃2
2 +K2,1H

h1
1

)

(ξ1 (|e1(0)|))2 <∞ (4.23)

Based on (4.23) and the fact that (4.21) is an iISS system, |e2(t)| approaches to zero as

t→ ∞ according to Lemma 2.

In what follows, let us focus on the estimation error of subsystem 3. From a state

estimation perspective, the most complex case scenario for subsystem 3 is that its dynamics is

directly affected by the dynamics of both subsystem 1 and subsystem 2. Based on Theorem 4,

estimation error dynamics e3(t) are iISS. Considering the property in (4.17) that characterizes

the error dynamics of each subsystem, the estimation error norm of subsystem 3 is bounded

as follows:

|e3(t)| ≤ ξ3 (|e3(0)|) e−λ3t +

∫ t

0

(

max
{

H f̃3
3 +K3,1H

h1
1 , H

f̃3
3 +K3,2H

h2
2

}

|ε3(s)|2
)

ds (4.24)

where ε3 :=
[

eT1 , e
T
2

]T
. For brevity, we introduce a finite scalar c3 > 0 which is defined as

c3 := max
{

H f̃3
3 +K3,1H

h1
1 , H

f̃3
3 +K3,2H

h2
2

}

. Then, (4.24) can be rewritten as:

|e3(t)| ≤ ξ3 (|e3(0)|) e−λ3t +

∫ t

0

c3
(

|e1(s)|2 + |e2(s)|2
)

ds (4.25)
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According to Lemma 2, if the second term on the RHS of (4.25) takes a finite value, then

|e3(t)|→ 0 as t → ∞. Taking into account (4.22), (4.23) and c3 with a finite value, we have

that
∫∞

0
c3
(

|e1(s)|2
)

ds < ∞. Next, we prove that c3
∫∞

0

(

|e2(s)|2
)

ds < ∞ also holds. By

substituting (4.22) into the second term on the RHS of (4.21), one has that

|e2(t)|2 ≤ g2(t) :=

(

ξ2 (|e2(0)|) e−λ2t +
1

2λ1

(

H f̃2
2 +K2,1H

h1
1

)

(ξ1 (|e1(0)|))2
(

−e−2λ1t + 1
)

)2

(4.26)

It can be verified that function g2(t) is a linear combination of exponential functions e−2λ2t,

e−(λ2+2λ1)t and e−4λ1t, all of which belong to class I−K L when λ1 > 0 and λ2 > 0 according

to Lemma 1. Therefore,
∫ t

0
c3
(

|e2(s)|2
)

ds <∞ is satisfied if |e2(0)| is also bounded. Based on

the developed distributed state estimation system, the estimation error |e3(t)| for subsystem

3 goes to zero as t→ ∞.

By carrying out the above analysis recursively for the remaining subsystems in sequence,

we can prove that
∫∞

0

(

max
{

H
f̃j
j +Kj,lH

hl

l : l ∈ Lj

}

|εj(s)|2
)

ds < ∞ holds for all j ∈ J.

Further, let us define γ(s) := cs2 with c := max
{

H
f̃j
j +Kj,lH

hl

l : l ∈ Lj

}

and treat the

estimation errors of its upstream subsystems as external inputs to subsystem j, j ∈ J (i.e.,

for subsystem j, u := εj). The above facts imply that the dynamics of the estimation error

ej, j ∈ J, are iISS in the form of (4.9), and that
∫∞

0
γ (|u(s)|) ds < ∞ is satisfied for each

subsystem j, j ∈ J.

For any positive scalar δj, there exists Tj > 0 so that
∫∞

Tj
γ (|εj(s)|) ds ≤ aδj with 0 < a <

1 due to the fact that
∫∞

Tj
γ (|εj(s)|) ds → 0 as Tj → ∞, j ∈ J. Define a class KL function

βj(s, t) = ξj (s) e
−λjt for j ∈ J. Taking Tj as a new initial time instant, the dynamics of the

estimation error ej can be characterized as below:

|ej(t+ Tj)| ≤ βj (|ej(Tj)| , t) +
∫ t+Tj

Tj

γ (|εj(s)|) ds ≤ βj (|ej(Tj)| , t) + aδj (4.27)

Based on the property of the class K L function βj , there exists τj > Tj such that

βj (|ej(Tj)| , τj) ≤ (1 − a)δj, which leads to |ej(t)| < δj for all t ≥ τj, j ∈ J, when there
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is no fault.

Moreover, based on the obtained results and the property of Lemma 2, we can prove

that the estimation error trajectory |ej(t)| of subsystem j converges to zero in the absence of

faults (i.e., |ej(t)|→ 0 as t → ∞), ∀j ∈ J. By taking into account the convergence property

of subsystem 1, we can prove the convergence of the estimation error of the entire system to

zero when there is no fault in system (4.2). This completes the proof of Theorem 5. �

The distributed FDI mechanism to be developed only becomes effective for FDI after

the distributed state estimation system gives acceptable state estimates; that is, after time

instant τmax with τmax := max {τi : i ∈ I} when the estimation error of each subsystem i,

i ∈ I, is bounded as |ei| ≤ δi.

4.3 Distributed fault detection and isolation design

In this section, we establish a distributed output-feedback FDI mechanism based on the

distributed state estimation system described in the Section 4.2. The FDI mechanism is

able to account for both actuator and sensor faults.

4.3.1 Distributed state predictors and residual generators

For each subsystem, a state predictor and a residual generator are designed. Each predictor

is used to provide state predictions for the corresponding subsystem as the references. Each

residual generator is designed to generate residual signals for FDI based on the associated

subsystem state estimate and the reference subsystem state.

Specifically, the state predictors for the n subsystems are designed as in the following

form:
˙̂x1(t) = f1 (x̂1(t), u1(t))

x̂j(t) = fj (x̂j(t), uj(t)) + f̃j (x̂1(t), . . . , x̂j−1(t)) , j ∈ J

(4.28)

where x̂i(t) ∈ Rnxi denotes the state of predictor i, i ∈ I. Predictor i, i ∈ I, receives the
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predictions (i.e. x̂j, j = 1, . . . , i− 1) of the upstream subsystems of subsystem i, and sends

out its prediction to all the downstream subsystems continuously. The predictors are re-

initialized every prediction horizon T . For each subsystem, two copies of the predictor are

implemented with different re-initialization time instants. Based on the predictions given

by the two copies of predictors, two residual sequences (Residual 1 and Residual 2) which

characterize the discrepancy between the state predictions of the predictors and the state

estimates of the state estimators are generated. The selection of the prediction horizons of

the two sets of residuals is shown in Figure 4.3.

After τmax, the estimation error of the entire system is bounded within an acceptable

region when there is no fault. The first set of the state predictors starts to be evaluated

and generates the first set of predictions (i.e., x̂1i , i ∈ I) from t0 with t0 ≥ τmax. Specifically,

starting from t0, the state predictors in the first set are initialized (re-initialized) at the

beginning of each prediction horizon by the corresponding state estimate as x̂1i (tk) = zi(tk)

at sampling instant tk where tk = t0+kN , k ≥ 0. Then, by solving the differential equations

in (4.28) within each prediction horizon subject to the initialization conditions, we can obtain

x̂1i (t) for t ∈ [tk, tk+1) for k ≥ 0. The predictions within each prediction horizon constitute

the first set of piecewise-continuous reference state predictions x̂1i for subsystem i, ∀i ∈ I.

This set of predictions is used for the calculation of Residual 1.

The second set of the predictors is evaluated to provide another set of predictions (i.e., x̂2i ,

i ∈ I) in the same fashion as the first set but with different initialization (re-initialization)

time instants. The predictors in this set start to be evaluated at t0 +
T
2
. In particular,

these state predictors are initialized (re-initialized) as x̂2i (tk +
T
2
) = zi(tk +

T
2
), i ∈ I. Again,

by solving the differential equations in (4.28) within each prediction horizon subject to the

above initialization conditions, we obtain x̂2i (t) for t ∈ [tk +
T
2
, tk+1 +

T
2
) for k ≥ 0, such that

the second set of piecewise-continuous reference state predictions x̂2i for subsystem i, ∀i ∈ I,

is obtained. The second set of predictions is used for the calculation of Residual 2.

Then, the residual generators calculate two residual sequences (i.e., Residual 1 and Resid-
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4.3.2 Fault detection and isolation

In this section, we perform analysis of the residual signals of each subsystem in both fault-

free and faulty cases. Then, we present the conditions, under which the occurrence of a fault

can be detected.

We introduce Lemma 3 and Lemma 4, which characterize the difference between the

reference state of subsystem i, i ∈ I, and the corresponding actual subsystem state in

the absence of an actuator fault and in the presence of an actuator fault in subsystem i,

respectively. The two lemmas will be used to determine the thresholds for the two sets of

residual signals rpi , i ∈ I, p ∈ {1, 2}.

Lemma 3. Consider predictor (4.28) of subsystem i, i ∈ I, which is re-initialized at each

tk≥0. If the nonlinear system (4.2) is operated in the absence of an actuator fault, and if the

estimation error of subsystem i, i ∈ I, is bounded as |ei(tk)| ≤ δi, ∀i ∈ I, then the deviation

of the reference state x̂i of subsystem i from actual subsystem state xi within a prediction

horizon T from time instant tk≥0 is bounded as:

|exi (tk +∆)| ≤ e
L
xi
fi
∆
δi + φi(∆) (4.30)

for i ∈ I, where exi := x̂i − xi, φ1 := 0, φj(s) :=
2N

f̃j

L
xj
fj

(e
L
xj
fj

s − 1) for j ∈ J, Lxi

fi
denotes the

Lipschitz constant of function fi with respect to its first argument, Nf̃i
is a positive constant

such that |f̃i(·)| ≤ Nf̃i
, and ∆ := t− tk.

Proof: For subsystem j, the time derivative of the deviation exj (t) is calculated as:

ėxj (t) =fj (x̂j(t), uj(t)) + f̃j (x̂1(t), . . . , x̂j−1(t))− fj (xj(t), uj(t)) + f̃j (x1(t), . . . , xj−1(t))

(4.31)

for j ∈ J. Based on the Lipschitz properties of functions fj, and the fact that |f̃j(·)| ≤ Nf̃j
,
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the following inequality can be obtained:

|ėxsj(t)| ≤ L
xj

fj
|exj (t)|+ 2Nf̃j

(4.32)

With initial condition |exj (tk)| = |x̃j(tk)− xj(tk)|, based on (4.32), we can derive that:

|exj (t)| ≤
2Nf̃j

L
xj

fj

(e
L
xj
fj

(t−tk) − 1) + |exj (tk)|e
L
xj
fj

(t−tk) (4.33)

Since at any time instant tk, we have that exi (tk) = ei(tk) due to the initial condition of the

i-th predictor, (4.33) can be rewritten as:

|exj (t)| ≤
2Nf̃j

L
xj

fj

(e
L
xj
fj

(t−tk) − 1) + e
L
xj
fj

(t−tk)δj (4.34)

For subsystem 1, we have that Nf̃1
= 0 and (4.34) reduces to

|ex1(t)| ≤ eL
x1
f1

(t−tk)δ1 (4.35)

Taking into account the definition of ∆, Lemma 3 is proved. �

Based on Lemma 3, we obtain the following lemma to describe the deviation exi when an

actuator fault takes place at tf ∈ [tk, tk+1] in subsystem i, i ∈ I.

Lemma 4. Consider predictor (4.28) of subsystem i, i ∈ I, which is re-initialized at each

tk≥0. If the estimation error of subsystem i, i ∈ I, is bounded as |ei(tk)| ≤ δi, ∀i ∈ I, and if

an actuator fault takes place at tf ∈ [tk, tk+1) in subsystem i (i.e., ũi 6= 0), then the deviation

of the reference state x̃i of subsystem i from the actual subsystem state xi at the end of the

present prediction horizon is bounded as follows:

|exi (tk+1)| ≤ ψi(∆f ) + e
L
xi
fi
T
δi (4.36)
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for i ∈ I, where ψi(s) =:
L
ui
fi

ũmax
i +2N

f̃i

L
xi
fi

(e
L
xi
fi
(T−s) − 1) + e

L
xi
fi
(T−s)

φi(s) with φi , i ∈ I, defined

in Lemma 3, ∆f := tf − tk, L
xi

fi
and Lui

fi
denote the Lipschitz constants of function fi with

respect to its first argument and its second argument, respectively, Nf̃i
is a positive constant

such that |f̃i(·)| ≤ Nf̃i
with Nf̃1

= 0 and ũmax
i := max

τ∈[tf ,tk+1]
|ũi(τ)|, i ∈ I.

Proof: The time derivative of the deviation exj (t) (for t ∈ [tf , tk+1]) can be calculated as:

ėxj (t) =fj (x̂j(t), uj(t)) + f̃j (x̂1(t), . . . , x̂j−1(t))

− fj (xj(t), uj(t) + ũj(t)) + f̃j (x1(t), . . . , xj−1(t))

(4.37)

for j ∈ J. Based on the Lipschitz properties of the function fj, and the fact that |f̃j(·)| ≤ Nf̃j
,

it is calculated that:

|ėxj (t)| ≤ L
xj

fj
|exj (t)|+ L

uj

fj
ũmax
j + 2Nf̃j

(4.38)

for t ∈ [tf , tk+1]. Based on (4.38), we can further derive that:

|exj (t)| ≤
L
uj

fj
ũmax
j + 2Nf̃j

L
xj

fj

(e
L
xj
fj

(t−tf ) − 1) + |exj (tf )|e
L
xj
fj

(t−tf ) (4.39)

Taking into account the initial condition |exj (tf )| ≤ e
L
xj
fj

(tf−tk)δj +φj(tf − tk) based on (4.30),

|exj (tk+1)| is bounded as:

|exj (tk+1)| ≤
L
uj

fj
ũmax
j + 2Nf̃j

L
xj

fj

(e
L
xj
fj

(tk+1−tf ) − 1) + e
L
xj
fj

(tk+1−tf )φj(tf − tk) + e
L
xj
fj

T
δj (4.40)

for j ∈ J. In terms of subsystem 1, we have that Nf̃1
= 0, thus (4.40) can be rewritten as:

|ex1(tk+1)| ≤
Lu1
f1
ũmax
1

Lx1
f1

(eL
x1
f1

(tk+1−tf ) − 1) + eL
x1
f1

T δ1 (4.41)

Considering the definition of ∆f , Lemma 4 is proved. �

Theorem 6 below characterizes the upper bounds on the residual signals for each subsys-
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tem when there is no fault, and presents sufficient conditions, which can be used to detect

the occurrence of an actuator/sensor fault.

Theorem 6. (Fault detection) Consider the cascade nonlinear system (4.2), for which a

distributed state estimation system with each augmented estimator designed following (4.8)

is utilized. Moreover, we consider that at time instant t0, the estimation error for each

subsystem i has been bounded as |ei(t0)| ≤ δi, ∀i ∈ I. If in Residual 1, any signal r1i (t),

i ∈ I, at t ∈ [tk, tk+1) breaches a detection threshold θ1i (∆1) := e
L
xi
fi
∆1δi + φi(∆1) + δi with

∆1 := t− tk, or if in Residual 2, any signal r2i (t), i ∈ I, at t ∈ [tk +
T
2
, tk+1 +

T
2
) breaches an

detection threshold θ2i (∆2) := e
L
xi
fi
∆2δi + φi(∆2) + δi with ∆2 := t− tk − T

2
, then it indicates

that a fault (either an actuator fault or a sensor fault) has taken place in the system.

Proof: If no fault (including actuator fault and sensor fault) occurs in any of the sub-

systems, then based on Lemma 3, the residual signal for subsystem i, i ∈ I, of Residual 1

should be constrained as follows:

r1i (t) =
∣

∣x̂1i (t)− zi(t)
∣

∣ ≤
∣

∣x̂1i (t)− xi(t)
∣

∣+ |xi(t)− zi(t)| ≤ e
L
xi
fi
(t−tk)δi + φi(t− tk) + δi

(4.42)

Therefore, within one prediction horizon of Residual 1 from tk to tk+1, if the signal r1i (t)

breaches the detection threshold θ1i (∆1) for any i ∈ I, then a fault (an actuator fault or a

sensor fault) has taken place.

Similarly, we can prove that within one prediction horizon of Residual 2, if r2i (t) breaches

the corresponding detection threshold θ2i (∆2), then a fault has taken place. �

Remark 19. In the nonlinear context, the thresholds for the residual signals may be difficult

to determine a priori. In implementations, the thresholds can be selected as (conservative)

upper bounds of the residual signals after the estimation error given by the distributed state

estimation system has converged into a small neighborhood to account for disturbances and

measurement noise.
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Remark 20. The condition presented in (4.30) provides a conservative upper bound on the

deviation |exi |, i ∈ I, between the reference state x̂i and the actual subsystem state xi within

a prediction horizon, which depends on the estimation error at the current time instant

and the size of the prediction horizon. This upper bound can be made sufficiently small by

appropriately choosing the size T and ensuring the estimation error to be sufficiently small,

which can lead to less conservative thresholds.

Remark 21. In the present work, model-plant mismatch is not considered. In the presence

of model-plant mismatch, the estimation error may be bounded within a region instead of

exponentially converging to zero. Accordingly, the thresholds on the residual signals selected

for FDI should be increased to avoid false alarms.

4.3.3 Detectable faults

In an output-feedback context, not all types of faults can be detected by FDI mechanisms

(see, e.g., Keliris et al. [78] and Du and Mhaskar [62]). In this subsection, we present

sufficient conditions that characterize detectable actuator faults and sensor faults within the

current prediction horizon of a residual sequence based on the proposed FDI scheme.

To facilitate the analysis, the increment in the estimation error for each subsystem after

the occurrence of a fault (either an actuator fault or a sensor fault) is calculated. First,

suppose that an actuator fault occurs in the i-th subsystem, i ∈ I, at tf (i.e., ũi(τ) 6= 0,

τ ≥ tf ). Based on (4.13), if the correction gains Kj,l, j ∈ J, l ∈ Lj, are determined following

(4.7), then the derivative of the estimation error of subsystem i, i ∈ I, given by the distributed
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state estimation scheme is calculated as:

ė1(t) =Fj (z1(t), h1(x1(t)), u1(t))− fj (x1(t), u1(t) + ũ1(t)) (4.43a)

ėj(t) =Fj (zj(t), hj(xj(t)), uj(t), Xjs)− fj (xj(t), uj(t) + ũj(t))

− f̃j(Xjs) +
∑

l∈Lj

Kj,lohl
(z2l )−

∑

l∈Lj

of̃j(z
2
l ), j ∈ J

(4.43b)

Therefore, the increment in the estimation error for subsystem i, i ∈ I, from tf (when the

actuator fault takes place) to a time instant s (which is within the current prediction horizon)

is given as follows:

Mũ1(s) :=

∫ s

tf

(

F1(z1(τ), h1(x1(τ)), u1(τ))− f1(x1(τ), u1(τ) + ũ1(τ))
)

dτ (4.44a)

Mũj
(s) :=

∫ s

tf

(

Fj(zj(τ), hj(xj(τ)), uj(τ), Xjs)− fj(xj(τ), uj(τ) + ũj(τ))− f̃j(Xjs)

+
∑

l∈Lj

Kj,lohl
(z2l )−

∑

l∈Lj

of̃j(z
2
l )
)

dτ, j ∈ J

(4.44b)

Next, we consider the case where a sensor fault takes place in subsystem i, i ∈ I, at time

instant tf . Similarly, the increment in the estimation error for each subsystem (denoted by

Mṽi for subsystem i, i ∈ I) from tf to a time instant s within the current prediction horizon

of a residual sequence is given as below.

Mṽ1(s) :=

∫ s

tf

(

F1(z1(τ), h1(x1(τ)) + ṽ1(τ), u1(τ))− f1 (x1(τ), u1(τ))
)

dτ (4.45a)

Mṽj(s) :=

∫ s

tf

(

Fj(zj(τ), hj(xj(τ)) + ṽj(τ), uj(τ), Xjs)− fj (xj(τ), uj(τ))− f̃j(Xjs)

+
∑

l∈Lj

Kj,lohl
(z2l )−

∑

l∈Lj

of̃j(z
2
l )
)

dτ, j ∈ J

(4.45b)

Then, the following two theorems summarize the findings.
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Theorem 7. (Detectable actuator faults) Consider the nonlinear cascade system (4.2),

for which a distributed state estimation system is designed following Section 4.2, such that

the estimation error for each subsystem i has been bounded as |ei(t0)| ≤ δi, ∀i ∈ I. Then,

an actuator fault in subsystem i (denoted as ũi, i ∈ I) is detectable within the current

prediction horizon of a residual sequence by the proposed FDI approach if ũi takes place at

tf ∈ [tk, tk +
T
2
), and satisfies the following condition:

|ε̄i +Mũi
(tk+1)| > θ1i (T ) + e

L
xi
fi
T
δi + ψi(tf − tk) (4.46)

for all |ε̄i|≤ δi, i ∈ I; or if the actuator fault takes place at tf ∈ [tk +
T
2
, tk+1), and satisfies

the condition:

|ε̄i +Mũi
(q)| >θ2i (T ) + e

L
xi
fi
T
δi + ψi(tf − tk −

T

2
) (4.47)

for all |ε̄i|≤ δi, i ∈ I, with q = tk+1 +
T
2
.

Proof: First, let us characterize the class of actuator faults that are detectable by the

proposed FDI scheme. Suppose that an actuator fault occurs in the i-th subsystem, i ∈ I, at

tf ∈ [tk, tk +
T
2
) (i.e., ũi(t) 6= 0, t ≥ tf ). Taking into account the increment in the estimation

error for subsystem i from tf to tk+1 (i.e., the end of the current prediction horizon of

Residual 1), the state estimation error for subsystem i at time instant tk+1 can be expressed

as:

ei(tk+1) = ei(tf ) +Mũi
(tk+1) (4.48)

for i ∈ I, where the function Mũi
denotes the increment in the subsystem estimation error

as specified in (4.45).

On the other hand, based on the triangle inequality, the residual signal for subsystem i

of Residual 1, i ∈ I, satisfies:

r1i (tk+1) =
∣

∣x̂1i (tk+1)− zi(tk+1)
∣

∣ ≥ | |ei(tk+1)| − |exi (tk+1)| | (4.49)
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If an actuator fault takes place in the i-th subsystem, i ∈ I, at t ∈ [tk, tk +
T
2
) and if the

condition in (4.46) is satisfied for all |ε̄i|≤ δi, i ∈ I, by considering the property (4.36)

given in Lemma 4, we have that r1i (tk+1) ≥ θ1i (T ) so that the fault can be detected within

the current prediction horizon of Residual 1. Similarly, if an actuator fault takes place at

t ∈ [tk +
T
2
, tk+1) and if inequality (4.47) holds, then we have r2i (tk+1 +

T
2
) ≥ θ2i (T ) and the

fault can be detected within the current prediction horizon of Residual 2. This completes

the proof of Theorem 7. �

Theorem 8. (Detectable sensor faults) Consider the nonlinear cascade system (4.2),

for which a distributed state estimation system is designed following Section 4.2, such that the

estimation error for each subsystem i has been bounded as |ei(t0)| ≤ δi, ∀i ∈ I. Then, a sensor

fault in subsystem i (denoted as ṽi, i ∈ I) is detectable if it takes place at tf ∈ [tk, tk +
T
2
),

and the following condition:

|ε̄i +Mṽi(tk+1)| > θ1i (T ) + e
L
xi
fi
T
δi + φi(T ) (4.50)

holds for all |ε̄i|≤ δi, i ∈ I; or if ṽi occurs at tf ∈ [tk +
T
2
, tk+1) and the following condition:

|ε̄i +Mṽi(q)| > θ2i (T ) + e
L
xi
fi
T
δi + φi(T ) (4.51)

is satisfied for all |ε̄i|≤ δi, i ∈ I, where q = tk+1 +
T
2
.

A sketch of the proof: Let us consider the case when a sensor fault takes place in the

system (4.2). Following a similar procedure in the proof of Theorem 7, we can prove that

if a sensor fault takes place in the i-th subsystem, i ∈ I, at time instant tf ∈ [tk, tk +
T
2
)

and if the condition (4.50) is satisfied for all |ε̄i|≤ δi, i ∈ I; or if a sensor fault takes place

at tf ∈ [tk +
T
2
, tk+1) and if (4.51) holds for all |ε̄i|≤ δi, i ∈ I, then a residual signal r1i (or

r2i ) will breach the corresponding threshold θ1i (or θ2i ) within the prediction horizon of the

Residual 1 (or Residual 2). �
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4.3.4 Fault isolation

In this section, we propose an approach to further isolate the subsystem in which the fault

occurs.

Theorem 9. (Fault isolation) Consider the cascade system (4.2), for which a distributed

state estimation system described in Section 4.2 is utilized. Consider that at time instant

t0, the estimation error for each subsystem i has been bounded as |ei(t)| ≤ δi, ∀i ∈ I.

Further, consider that in a faulty condition, only one fault occurs, and satisfies at least

one of the conditions from (4.46) to (4.51) on detectable faults. If either r11 or r21 breaches

the corresponding threshold, then the fault has taken place in subsystem 1; or if rpj , j ∈ J,

breaches the corresponding threshold for at least one p ∈ {1, 2}, while rpl ≤ θpl holds for all

p ∈ {1, 2}, l ∈ {1, . . . , j − 1}, then the fault takes place at subsystem j.

Proof: First, let us consider the case the fault satisfies either the condition (4.46) or the

condition (4.50), such that Residual 1 can be used for FDI. Subsystem 1 can be regarded

as an integral system itself as its dynamics is not affected by its downstream subsystems.

Also, the subsystem estimator (the subsystem predictor) for subsystem 1 is not affected by

the estimators (the predictors) of its downstream subsystems at all. The above fact implies

that if r11(t) > θ1i (∆1) takes place, then there is a fault occurred in this subsystem.

The remainder of Theorem 9 is proved by contradiction. We consider the case that r1j ,

j ∈ J, breaches its corresponding threshold between tk and tk+1, while r
1
l (t) ≤ θ1l (∆1) holds

for all l ∈ {1, . . . , j − 1} and t ∈ [tk, tk+1]. Then, let us consider subsystem 1 to subsystem

j, j ∈ J, as an entire system, which is not affected by the remained downstream subsystems

(i.e., subsystem j + 1 to subsystem n). According to Theorem 6, r1j , j ∈ J, breaching

the threshold between tk and tk+1 implies that one fault takes place in one of the first j

subsystems. If the fault takes place in subsystem l, l ∈ {1, . . . , j − 1}, but not in subsystem

j, and if it satisfies either the condition (4.46) or the condition (4.50), based on Theorem 7

and Theorem 8, it is guaranteed that rl(tk+1) ≥ θl(tk+1). The above argument contradicts
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the condition that rl(t) ≤ θl(t) ∀l ∈ {1, . . . , j − 1} and t ∈ [tk, tk+1]. As a result, the fault

does not take place in any subsystem l, l ∈ {1, . . . , j − 1}, which demonstrates that the fault

must occur in subsystem j.

Then, let us consider that the fault satisfies either the condition (4.47) or the condition

(4.51). Similarly, we can prove that if r21(t) > θ2i (∆2) is satisfied, then the fault takes place

in the first subsystem. Also, if r2j , j ∈ J, breaches the corresponding threshold between tk

and tk+1, while r
2
l (t) ≤ θ2l (∆2) holds for all l ∈ {1, . . . , j − 1} and t ∈

[

tk +
T
2
, tk+1 +

T
2

]

,

then the fault takes place in subsystem j, j ∈ J. This completes the proof of Theorem 9.

�

Remark 22. The proposed approach can be used to isolate the subsystem in which a fault has

taken place. Currently, one cannot identify the type of the occurred fault by examining the

residual signals of the subsystems following the proposed approach. One approach to augment

the proposed approach so that the type of the fault can be identified based on the residuals

(i.e., to determine whether it is an actuator fault or a sensor fault) is to have redundant

sensors to measure each output of the entire system.

Remark 23. If a fault takes place but does not satisfy any of the fault detectability conditions

from (4.46) to (4.51), then it may not be detected or isolated by the proposed FDI mechanism

in the horizon during which a fault takes place. Note that it is still possible that the fault can

be detected after one or several prediction horizons after its occurrence.

4.4 Application to a froth flotation process example

In this section, the proposed FDI mechanism is applied to to a chemical process example to

illustrate its effectiveness.

109



4.4.1 Process description

First, we introduce a process of froth flotation units that is utilized for the clean and recov-

ery of fine coal produced by Coal Handling and Preparation Plants (CHPPs). The froth-

flotation-unit process is comprised of five interconnected vessels. A schematic diagram of the

process is presented in Figure 4.4. The slurry containing coal, ash and water is fed into the

first vessel. Reagents consisting of ‘frother’ and ‘collector’ are added through the upstream

of the each vessel to facilitate the formation of froth and the attachment of air bubbles to

coal particles. The concentrations of the two reagents to each vessel are controlled to achieve

improved productivity and profitability based on the solid concentration and the type of the

coal. The froth is removed from the five vessels using the paddles and is further sent to a

disk filter system for drying. The tailings of each of the first four vessels are fed into its

neighboring downstream vessel, while the tailings of the fifth vessel are discharged and sent

to a static thickener [84]. The dynamics of the process can be characterized by the concen-

tration dynamics of the solids, liquids and ash in the vessels. Based on standard modeling

assumptions and mass balances, the equations that describe the dynamics of the i-th vessel,

i ∈ {1, 2, 3, 4, 5}, are given as follows [84]:

dcsti
dt

=
V̇ufi−1

Vi
(csti−1

)− V̇ufi
Vi

(csti)− sri (4.52a)

dclti
dt

=
V̇ufi−1

Vi
(clti−1

)− V̇ufi
Vi

(clti)−
βi
Vi

(4.52b)

dcati
dt

=
V̇ufi−1

Vi
(cati−1

)− V̇ufi
Vi

(cati)−
Ȧi

Vi
(4.52c)

where csti represents the concentration of the solids in the i-th vessel (kg/m3), clti represents

the concentration of the liquid in the i-th vessel (kg/m3), cati is the concentration of the

ash in the i-th vessel (kg/m3), Vi denotes the slurry volume in the i-th vessel (m3), V̇uf i

denotes the flow rate of the underflow from the i-th vessel (m3/min), ri is the rate of the

solid removal from the i-th vessel, βi denotes the mass flow rate of the liquid from the i-th
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Figure 4.5: The state estimates given be the distributed state estimation system (red lines)
and the actual system states (blue lines) in a fault-free condition.

the fifth vessels, an augmented estimator is designed by connecting each compensator to the

associated existing decentralized estimator. The estimators of the five vessels communicate to

exchange subsystem state estimates and measurements continuously, such that a distributed

state estimation network is formed for the cascade process.

In the simulations, random measurement noise and system disturbances following normal

distribution are added. We assume the initial state of the process is: x0 = [143 kg/m3, 830 kg/m3,

25.9 kg/m3, 125 kg/m3, 801.5 kg/m3, 27.4 kg/m3, 162.3 kg/m3, 803 kg/m3, 26.4 kg/m3,

147.5 kg/m3, 823 kg/m3, 23.9 kg/m3, 151 kg/m3, 835.5 kg/m3, 26.3 kg/m3]
T
, while the

initial state estimate for the distributed state estimation system is set to be: z0 = [165 kg/m3,

880 kg/m3, 27.6 kg/m3, 145 kg/m3, 830 kg/m3, 25.7 kg/m3, 145 kg/m3, 825.5 kg/m3,

25.5 kg/m3, 165 kg/m3, 805.7 kg/m3, 22.2 kg/m3, 135 kg/m3, 875 kg/m3, 23.2 kg/m3]
T
.

We first select an appropriate time instant t0 by examining the state estimation errors when

the process is operated in a fault-free condition. The actual system states and the corre-

sponding state estimates given by the developed distributed state estimation systems are
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Figure 4.7: The residual signals of Residual 1 for the subsystems in a fault-free condition
(blue dashed lines); the residuals of units with an actuator fault (green dash-dotted lines);
selected thresholds (red dotted lines).

estimation system has converged into a small region. Then, the residual signals in the fault-

free context after t0 are generated and normalized following (4.54), and the upper bounds

of the normalized residual signals for the subsystems are found. The thresholds are selected

a little conservatively based on these upper bound values to account for disturbances and

measurement noise. For distributed FDI, we choose the thresholds for the residual signals

for the five subsystems as 0.3, 0.35, 0.15, 0.15, and 0.15.

First, we consider that there is an abrupt additive fault occurring at tf = 10.4 min in the
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Figure 4.8: The residual signals of Residual 1 for the subsystems in a fault-free condition
(blue dashed lines); the residuals of units with a sensor fault (green dash-dotted lines);
selected thresholds (red dotted lines).

actuator for the reagent ‘collector’ fed into the 5-th vessel. The actuator fault is modeled

as a constant bias ũ25(t) = 0.31 × s(t − tf ) where s(t− tf ) =

{

0, t < tf

1, t ≥ tf

. The trajectories of

the residual signals of Residual 1 for the five vessels are given in Figure 4.7. We see that

all the residual signals for the first four vessels remain below the corresponding thresholds,

while the residual signal for the last vessel breaches the corresponding threshold at around

11 min. Based on Theorem 6 and Theorem 9, the above observations result in the detection

and isolation of a fault in the 5-th vessel.

Further, we consider that there is an additive sensor fault taking place in the sensor of
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Figure 4.9: The residual signals of Residual 2 for the subsystems in a fault-free condition
(blue dashed lines); the residuals of units with a sensor fault (green dash-dotted lines);
selected thresholds (red dotted lines).

clt3 . A non-abrupt fault in the sensor for the measurement of clt3 from time tf = 9.8min

described by ṽl3(t) = 40 ×
(

1− e−(t−tf )
)

× s(t − tf )kg/m
3 is added. The residual signals

from both Residual 1 and Residual 2 are checked. The trajectories of the residual signals

for the five subsystems given by Residual 1 and Residual 2 are shown in Figure 4.8 and

Figure 4.9, respectively. The residual signals from both Residual 1 and Residual 2 for the

first two vessels remain below the corresponding thresholds, while the residual signals for the

rest three vessels all breach their corresponding thresholds after the occurrence of the fault.

By examining the residual signals and taking advantage of Theorem 6 as well as Theorem 9,
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Figure 4.10: The residual signals for the third and fourth subsystems from Residual 1 with a
sensor fault (black-solid lines); the residual signals for the third and fourth subsystems from
Residual 2 with a sensor fault (blue-dashed lines); selected thresholds (red dotted lines).

a fault is detected by both Residual 1 and Residual 2. Moreover, the results show that by

using two copies of subsystem predictors, the fault can be detected and isolated earlier. In

particular, if we use only one set of subsystem predictors and only Residual 1 is available, the

fault is detected at the time instant around 10.5 min, which is in the next prediction horizon

of the horizon in which the fault occurred as seen from Figure 4.8. Based on Residual 2 in

Figure 4.9, the occurred fault is detected earlier at the time instant around 10.1 min, and is

identified as a fault in the third vessel.

Another set of simulations is carried out to show that the design with two copies of

predictors can handle certain faults that cannot be detected when only one residual sequence

is available. Suppose that a sensor fault occurs in the sensor of clt3 at tf = 9.8min, which

is modeled as ṽl4(t) = 6.6e−(t−tf ) × s(t − tf )kg/m
3. The residual signals generated by both

Residual 1 and Residual 2 are given in Figure 4.10. For brevity, only the residual signals for

subsystem 3 and subsystem 4 are given. From Figure 4.10, it can be seen that this sensor

117



fault is not detected by Residual 1. This is mainly because the occurrence of this sensor

fault is very close to the end of a prediction horizon (time instant 10min). On the other

hand, the residual signal from Residual 2 for the third vessel breaches the threshold and is

captured by Residual 2. This indicates that a fault has occurred in the third vessel based

on Theorem 6 and Theorem 9.

Remark 24. The purpose of using the normalized residual signals in (5.20) instead of the

original residual signals is to mitigate the effects caused by the large difference in the magni-

tudes of the estimation errors of different states. Note that the use of the normalized residual

signals in FDI does not violate the analysis on the proposed FDI mechanism.

4.5 Summary

A systematic approach on distributed output-feedback FDI was proposed for nonlinear cas-

cade processes. By assuming the existence of decentralized observers for the subsystems, a

distributed state estimation was designed. In the absence of faults, the convergence to zero of

the estimation error of the distributed estimation system was proved. A state predictor was

designed for each subsystem to calculate subsystem state predictions. A residual generator

was developed for each subsystem to generate residual signals for FDI. A distributed FDI

mechanism applicable to both actuator faults and sensor faults was developed by evaluating

the subsystem residual signals. Potential faults that can be detected and isolated by the

developed mechanism were characterized. The proposed approach was shown to be effective

via the application to a froth flotation process example.

118



Chapter 5

Subsystem decomposition and

configuration for distributed state

estimation

Distributed state estimation plays a very important role in process control. Improper subsys-

tem decomposition for distributed state estimation may increase the computational burdens,

degrade the estimation performance or even deteriorate the observability of the entire sys-

tem. In this chapter, we investigate the subsystem decomposition problem for distributed

state estimation of nonlinear systems. In Section 5.2, a systematic procedure for subsystem

decomposition for distributed state estimation is proposed. Key steps in the procedure in-

clude observability test of the entire system, observable states identification for each output

measurement, relative degree analysis and sensitivity analysis between measured outputs and

states. Considerations with respect to time-scale multiplicity and direct graph are discussed.

A few examples are used to illustrate the applicability of the methods used in different steps.

Finally, in Section 5.3, the effectiveness of the entire distributed state estimation configura-

tion procedure is also demonstrated via an application to a chemical process example used

in coal handling and preparation plants. This chapter is a revised version of [72, 61].
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5.1 System description

In this chapter, we consider a class of nonlinear systems described as the following state-space

form:

ẋ(t) =f(x(t)) (5.1a)

y(t) =h(x(t)) (5.1b)

where x(t) ∈ Rnx denotes the n-dimensional state vector of nonlinear system, y(t) denotes

the m-dimensional vector of measured outputs. It is assumed that system state vector x

evolves within an operating region X, i.e., x ∈ X. We introduce xi(t), i = 1, . . . , n and yj(t),

j = 1, . . . ,m to denote the ith element of state vector x and jth element of output vector y,

respectively.

The objective of this work is to develop a systematic procedure that can be used to

decompose system (1) into a few subsystems for the purpose of distributed state estimation.

We assume that we know the number of subsystems, p, that the system will be divided

into and the number of subsystems is no greater than the number of measured outputs (i.e.,

p ≤ m).

5.2 Proposed decomposition procedure

In this section, the proposed subsystem decomposition and configuration procedure for dis-

tributed state estimation is described. A flow diagram of the proposed procedure is shown

in Figure 5.1.

5.2.1 Observability consideration

To design a state estimation system, a prerequisite is that the entire system is observable in

the operating region. The first step in the proposed procedure is to check if system (5.1) is
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observable in X. To check the observability of system (5.1), we can check if the observability

matrix of the nonlinear system (5.1) is full rank. The observability matrix is defined as

follows [30]:

Q(x) =
d

dx



















h(x)

Lfh(x)

...

Ln−1
f h(x)



















(5.2)

where the symbol Lfh denotes the Lie derivative of function h with respect to function

f , defined as Lfh(x) = ∂h
∂x
f(x), and Lr

fh denotes the rth order Lie derivative, denoted

as Lr
fh(x) = LfL

r−1
f h(x). If the matrix Q(x) is full rank for all x ∈ X, then system

(5.1) is locally observable in X. Otherwise, the system is not observable. Further steps in

the proposed procedure cannot be performed. It is necessary to reconstruct the vector of

measured outputs to ensure that system (5.1) is observable.

Remark 25. Note that it may be computationally expensive to calculate the observability

matrix and to check its rank in the entire region X. One approach is to linearize the nonlinear

system along typical operating trajectories of the system and check the observability of the

linearized systems obtained at different points along the trajectories.

5.2.2 Identifiable states of each output

If the entire system is observable based on the set of measured outputs, the next step is

to determine the identifiable states corresponding to each measured output. That is to

determine the states can be estimated based on each measured output which can be done

via Kalman canonical decomposition for system (5.1). However, we note that it may be

computationally demanding to implement Kalman observable canonical decomposition based

on the nonlinear systems. A practical approach is to perform Kalman decomposition of the

linearized model at points along typical operating trajectories in region X.
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Suppose that the linearized model obtained at a point xs is as follows:

˙̃x =Ax̃

ỹj =Cjx̃, j = 1, . . . ,m

(5.3)

where A = ∂f(x)
∂x

∣

∣

∣

x=xs

and Cj =
∂hj(x)

∂x

∣

∣

∣

x=xs

. The local observability matrix Oj with respect

to output variable yj is constructed as follows:

Oj =



















Cj

CjA

...

CjA
n−1



















(5.4)

If rank(Oj) = n, then all the variables of the state vector x are observable around the

point xs based on measurements of yj. If rank(Oj) = n1 < n, then, we need to determine

which states can be estimated based on yj. Specifically, we first randomly select n1 linearly

independent rows from Oj to form the first n1 rows of a square matrix Pj, then we construct

the rest n − n1 rows such that Pj is nonsingular. Once Pj is constructed, we perform a

projection transformation as zj = Pjx̃ and obtain the observability canonical form of the

linearized model:

żj(t) =PjAP
−1
j zj(t) (5.5a)

yj =CjP
−1
j zj(t) (5.5b)

We denote Āj = PjAP
−1
j and C̄j = CjP

−1
j , then the matrices are with the following forms:

Āj =







Āo
j 0

Ā21
j Āō

j






, C̄j = [ C̄o

j 0 ] (5.6)
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which indicates that the decomposed subsystem (Āo
j , C̄

o
j ) is observable whereas the subsystem

(Āō
j , 0) is unobservable. This result implies that the first n1 state variables of zj are observable

given yj while the rest n− n1 state variables of zj associated with (Āō
j , 0) are unobservable.

For any i = 1, · · · , n, if x̃i is a linear combination of the first n1 elements of zj, then x̃i

is observable. In other words, if the last n − n1 elements of ith row of matrix P−1
j , ∀i ∈ n,

are zero, then x̃i is observable. This implies xi is locally observable at point xs. Note that

the above procedure should be performed for different points along the typical trajectories

to ensure the reliability of the above conclusion.

Remark 26. We note that linearization of the nonlinear system is required to be carried

out along typical trajectories for this method. A linearized system model represents the dy-

namics of the original nonlinear system in a neighborhood of the reference point at which it

is linearized. The size of the neighborhood depends on the nature of the original system. If

an unexpected behavior is encountered such that the system operates at a region that is not

characterized by the selected typical trajectories, it is possible that the observability analysis

results may not hold any more. One practical recommendation is to consider different typi-

cal trajectories that cover the primary dynamics of the system to avoid the occurrence of the

above situation. The recommendation is also applicable for the sensitivity analysis introduced

later in Section 5.2.5.

Remark 27. The above method provides a natural way to identify the observable states for

each output measurement. This method can be easily extended to determine the identifiable

states for a given output vector containing more than one output variable. This will be used

in Section 3.6, where we update the identifiable states for each local estimator we construct.

5.2.3 Subsystem decomposition candidates

Once the identifiable states of an output are determined, the candidates of subsystem decom-

position are formed by grouping the m outputs (and their identifiable states) into p groups
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(i.e., subsystems). Obviously, there should be no empty groups. It can be calculated that

there are 1
p!

∑p

j=1(−1)p−jCj
pj

m combinations of output grouping.

Example 1. Consider the following model of a four-water-tank system [114]:

Ḣ1 =
So3

√
2gH3 − So1

√
2gH1

S1

+
rLkL
S1

vL

Ḣ2 =
So4

√
2gH4 − So2

√
2gH2

S2

+
rRkR
S2

vR

Ḣ3 =
−So3

√
2gH3

S3

+
(1− rR)kR

S3

vR

Ḣ4 =
−So4

√
2gH4

S4

+
(1− rL)kL

S4

vL

y =

[

H1 H2

]T

(5.7)

where Hl, l = 1, 2, 3, 4, denotes the water level in each tank, Sol and Sl, l = 1, 2, 3, 4, are

sectional area constants, vL and vR are constant system inlets.

Suppose that we would like to decompose the system into two subsystems (i.e., p = 2).

First, we verify that based on y, the entire system is observable. Then, we determine the

identifiable states of each output. Following the approach discussed in Section 5.2.2, it is

found that based on y1 (i.e., H1), states H1 and H3 can be estimated while based on y2 (i.e.,

H2), states H2 and H4 can be estimated. The only feasible decomposition is as follows:

Subsystem 1

Ḣ1 =
So3

√
2gH3 − So1

√
2gH1

S1

+
rLkL
S1

vL

Ḣ3 =
−So3

√
2gH3

S3

+
(1− rR)kR

S3

vR

y1 =H1

(5.8)
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Subsystem 2

Ḣ2 =
So4

√
2gH4 − So2

√
2gH2

S2

+
rRkR
S2

vR

Ḣ4 =
−So4

√
2gH4

S4

+
(1− rL)kL

S4

vL

y2 =H2

(5.9)

5.2.4 Relative degree analysis

Each state should be associated with at least one subsystem (i.e., each state should be

estimated by at least one subsystem estimator). If the subsystems in a solution candidate

generated in Section 5.2.3 do not have overlaps in terms of observable states, then the subsys-

tem decomposition forms a solution candidate that can be further checked by entire system

observability and other guidelines that will be discussed in Section 3.6. If the subsystems

have overlaps on states and overlapping decomposition is acceptable, the candidate can also

be checked against the guidelines discussed in Section 3.6. However, if the subsystems have

overlaps on states and this is not desirable, further analysis should be performed.

To address state overlapping in subsystems, we propose an effective index based on

relative degree to determine the closeness between a system state variable xi, i = 1, . . . , n,

and an output variable yj, j = 1, . . . ,m.

We first define a matrix F as:

F =
∂f(x)

∂x
=

[

F1 F2 . . . Fn

]

(5.10)

where F1, F2, · · · , Fn are n-dimensional column vectors of the matrix F .

Similar to relative degree in output feedback control design [135], we define the relative
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and the system model is as follows [15]:

dxA1

dt
=
F10

V1
(xA10 − xA1) +

Fr

V1
(xAr − xA1)− k1e

−E1
RT1 xA1

dxB1

dt
=
F10

V1
(xB10 − xB1) +

Fr

V1
(xBr − xB1) + k1e

−E1
RT1 xA1 − k2e

−E2
RT1 xB1

dT1
dt

=
F10

V1
(T10 − T1) +

Fr

V1
(T3 − T1) +

−∆H1

cp
k1e

−E1
RT1 xA1 +

−∆H2

cp
k2e

−E2
RT1 xB1 +

Q1

ρcpV1

dxA2

dt
=
F1

V2
(xA1 − xA2) +

F20

V2
(xA20 − xA2)− k1e

−E1
RT2 xA2

dxB2

dt
=
F1

V2
(xB1 − xB2) +

F20

V2
(xB20 − xB2) + k1e

−E1
RT2 xA2 − k2e

−E2
RT2 xB2

dT2
dt

=
F1

V2
(T1 − T2) +

F20

V2
(T20 − T2) +

Q2

ρcpV2
+

−∆H1

cp
k1e

−E1
RT2 xA2 +

−∆H2

cp
k2e

−E2
RT2 xB2

dxA3

dt
=
F2

V3
(xA2 − xA3)−

(Fr + Fp)

V3
(xAr − xA3)

dxB3

dt
=
F2

V3
(xB2 − xB3)−

(Fr + Fp)

V3
(xBr − xB3)

dT3
dt

=
F2

V3
(T2 − T3) +

Q3

ρcpV3
+

(Fr + Fp)

ρcpV3
(xAr∆Hvap1 + xBr∆Hvap2 + xCr∆Hvap3)

(5.12)

It is assumed that the amount of reaction occurring in the separator is negligible. The al-

gebraic equations modeling the composition of the overhead stream relative to the composition

of the liquid holdup in the flash tank are presented as follows:

xAr =
αAx

A
s2

αAxAs2 + αBxBs2 + αCxCs2
(5.13a)

xBr =
αBxB3

αAxAs2 + αBxBs2 + αCxCs2
(5.13b)

xCr =
αCx

C
s2

αAxAs2 + αBxBs2 + αCxCs2
(5.13c)

In this process, the state vector is denoted as x = [xA1 xB1 T1 xA2 xB2 T2 xA3 xB3 T3]
T

where xAi
, xBi

i = 1, 2, 3, represent the concentration of materials A and B, respectively,

Ti denotes the temperature in tank i, i = 1, 2, 3. The definition of the variables can be found

in [15]. We assume that y = [T1 T2 T3]
T is the measured output vector and the objective is
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Table 5.1: Observable states with each given output measurement for the reactor-separator
process

Output Observable states

y1 xA1 xB1 T1 xA3 xB3 T3

y2 xA1 xB1 T1 xA2 xB2 T2

y3 xA2 xB2 T2 xA3 xB3 T3

Table 5.2: Relative degree between each state and each output measurement

xA1 xB1 T1 xA2 xB2 T2 xA3 xB3 T3
y1 1 1 0 n/a n/a n/a 2 2 1

y2 2 2 1 1 1 0 n/a n/a n/a

y3 n/a n/a n/a 2 2 1 1 1 0

to design three (i.e., p = 3) subsystems for distributed state estimation.

Firstly, we verify that the entire system is locally observable within a neighborhood around

the equilibrium point x = xs. Secondly, we aim at identifying the observable states for each

specific output measurement yi, i = 1, 2, 3. The results are presented in Table 5.1. From

the results we can know that with known reactant temperature T1 in the first CSTR, we are

able to estimate all the state variables in the first tank and the separator. Likewise, if we

know temperature T2 in the second CSTR, then we can estimate all system states in the two

CSTRs. Moreover, state variables in the second CSTR and the separator can be estimated

given temperature T3.

One decomposition candidate can be formed with state overlaps according to the three

outputs and their identifiable states. Specifically, subsystems are configured as Subsystem 1:

{y1, xA1 , xB1 , T1, xA3 , xB3 , T3}; Subsystem 2: {y2, xA2 , xB2 , T2, xA1 , xB1 , T1}; Subsys-

tem 3: {y3, xA3 , xB3 , T3, xA2 , xB2 , T2}.

If overlapping is not desirable, it can be addressed by the proposed relative degree analysis.

Following (5.11), we calculate the relative degree Dij between the output measurement yj,

j = 1, 2, 3 and overlapped states. The results are given in Table 5.2.

For each state, we choose the output with a smaller relative degree to estimate the state.
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Based on the results in Table 5.2, we use subsystem i (containing output yi), i = 1, 2, 3

to estimate states xAi
, xBi

and Ti, i = 1, 2, 3, that is, Subsystem 1: {y1, xA1 , xB1 , T1};

Subsystem 2: {y2, xA2 , xB2 , T2}; Subsystem 3: {y3, xA3 , xB3 , T3}.

Remark 28. In many existing distributed state estimation results (e.g., [15]), a system is de-

composed into subsystems based on operating units which is a natural and intuitive approach.

The results of Example 2 shows that the relative degree based subsystem decomposition can

be consistent with (and provide theoretical support for) the decomposition method according

to operating units.

5.2.5 Sensitivity analysis

It is possible that a state that can be estimated by different subsystems that have the same

relative degree with respect to the outputs in the two subsystems. In this case, it is not

sufficient to avoid state overlapping by only performing relative degree analysis. To address

this issue and inspired by [137], sensitivity analysis should be carried out.

Performing Taylor expansion on the jth output variable yj(t), it is derived that

yj(t) =
∞
∑

k=0

(t− ts)
k

k!

dky(ts)

dtk
(5.14)

From (5.1), the kth derivative of y with respect to t is denoted as

dkyj(ts)

dtk
= Lk

fhj(x(ts)) (5.15)

Substituting (5.15) into (5.14), we have

yj(t) =
∞
∑

k=0

(t− ts)
k

k!
Lk
fhj(x(ts)) (5.16)
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Ignoring higher orders of (5.16) with k > Dij, it is re-written as:

yj(t) ≈
Dij
∑

k=0

(t− ts)
k

k!
Lk
fhj(x(ts)) (5.17)

Then we define Rij as follows:

Rij =
∣

∣

∣

∂yj
∂xi

∣

∣

∣
(5.18)

We noted that this method is designed for the case that the relative degree satisfies Dij > 0.

From (5.18), we have

Rij =
∣

∣

∣

∂yj
∂xi

∣

∣

∣
=
∣

∣

∣

∂hj(x(ts))

∂xi
+

Dij
∑

k=1

(t− ts)
k

k!
LFi

Lk−1
f hj(x(ts))

∣

∣

∣

=
∣

∣

∣

(t− ts)
Dij

Dij!
LFi

L
Dij−1
f hj(x(ts))

∣

∣

∣

(5.19)

Since (t−ts)
d∗i

d∗i !
is a constant coefficient for a fixed relative degree, the sensitivity index between

state variable xi and output variable yj is defined as follows:

R̄ij =
∣

∣

∣
LFi

L
d∗i−1

f hj(x(ts))
∣

∣

∣
(5.20)

where d∗i = Dij = Dil. With (5.20), we calculate the sensitivity indices R̄ij and R̄il for

state/output pairs (xi, yj) and (xi, yl), respectively. If R̄ij > R̄il, then it indicates that xi

is more sensitive to yj compared to yl. As a result, we should use yj to estimate the state

xi, and vice versa. It is recommended to calculate the sensitivity indices at different points

along typical trajectories to get a more complete picture of the sensitivity.

Remark 29. It is recommended to conduct relative degree analysis first since it requires less

knowledge on the system model compared to sensitivity analysis, which makes the calculation

much easier and more efficient. Sensitivity analysis needs to be carried out only when relative

degrees for different state/output pairs are equal. We note that sensitivity analysis actually
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serves as a supplementary tool of relative degree analysis and they do not conflict with each

other on analysis results.

5.2.6 Update of identifiable states

Potential solutions to subsystem decomposition are generated via above analysis. Before

forming the final solutions, we verify the observability of the entire system again by iden-

tifying observable states of each subsystem for each candidate. In this step, the observable

states of the outputs within a subsystem should be determined based on the entire set of

the outputs. This can be done following similar approach as described in Section 5.2.2. In

Section 5.2.2, the observable states are identified based on each individual output. A combi-

nation of a few outputs may be able to estimate states that can not be estimated by either of

the individual outputs. The subsystem should be updated with all the states it can estimate.

The necessity of this step is illustrated via the following example.

Example 3. Consider a distillation tower consisting of a number of trays. For analytical

convenience, we consider the distillation tower has three trays, and the system model is given

as follows [117]:

ẋi,j =
1

Mj

[

V̄ (yi,j+1 − yi,j) +R(xi,j−1 − xi,j)
]

ḢL,j =
V̄

Mj

(HV,j+1 −HV,j) +
R

Mj

(HL,j−1 −HL,j)

(5.21)

where xi,j represents the species composition of product i, i = A, B, C, in tray j, j =

1, 2, 3, of the distillation tower; HL,j is the enthalpy of liquid mixture in corresponding

tray j, j = 1, 2, 3; Mj, j = 1, 2, 3, is the liquid hold-up in tray j; V̄ and R denote the

effluent flow rates to the distillation tower; yi = αixi/
(

∑A,B,C

k αkxk

)

with αi, i = A, B, C,

being a weight coefficient for vapor phase molar composition. We note that xi,0 and HL,0

denote the species compositions and enthalpy from the condenser, and are assumed to be

known in this example. The enthalpy HL,j, j = 1, 2, 3, in each tray is assumed to be

available as output measurements. Following the method proposed in Section 5.2.2, it is
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calculated that based on each individual output measurement HL,j, j = 1, 2, 3, all states

with respect to species composition are unobservable. However, based on combined output

vector y = [HL,1 HL,2 HL,3]
T , system states xi,j, i = A, B, C, j = 1, 2, (i.e. species

compositions in the 1st and 2nd trays) become observable. This example demonstrates that

a combination of different outputs may be used to estimate additional states that cannot be

estimated using each individual output.

Remark 30. In terms of Example 3, one may intuitively decompose the distillation tower

system into three subsystems based on the topology (i.e., the three physical trays) without car-

rying out the proposed procedure. However, as illustrated in Example 3, such decomposition

structure will render the system unobservable. This phenomenon implies that intuitive de-

composition approaches are not always reliable, it also illustrates the usefulness and necessity

of the proposed subsystem decomposition procedure.

5.2.7 Reduction of feasible solutions

After the above step in Section 5.2.6, we need to check again each candidate to see if the

union of the states in its subsystems is the entire system state vector. Specifically, we obtain

the set of observable system states Xj, j = 1, · · · , p for each local estimator, and denote

X = X1 ∪ X2 . . . ∪ Xp. If xi ∈ X holds for all i, i = 1, . . . , n, then the designed candidate is

feasible. If the union X does not contain all the states in the entire system state vector, the

candidate should be removed.

All the remaining candidates are feasible solutions for subsystem decomposition. Further

guidelines can be taken into account to reduce the number of feasible solutions. For instance,

a candidate with subsystems of similar number of states is more favorable compared with a

candidate has unbalanced states in subsystems from a computational and communicational

point of view. Also, subsystem decomposition aligns with the system’s physical topology is

more favorable than other decompositions.

By performing the above steps, final solutions to subsystem decomposition for distributed
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state estimation are obtained. If there is no feasible solution, we should reduce the number

of decomposed subsystems (i.e., p) and then carry out the above steps again until a feasible

solution is found.

5.2.8 Further considerations

5.2.8.1 Time-scale multiplicity

Time-scale multiplicity is a common feature of many chemical processes including catalytic

crackers, distillation columns, biochemical reactors, etc. For chemical processes, time-scale

multiplicity arises typically due to the strong coupling of physicochemical phenomena. When

time-scale multiplicity presents, direct application of state estimation methods on the origi-

nal system may lead to ill-conditioning or even deteriorate the stability of the entire system.

Therefore, time-scale multiplicity should be also taken into account in subsystem decompo-

sition. One example of distributed state estimation based on time-scale separation is [42], in

which a distributed MHE scheme is designed for a class of systems that can be described in

the standard singularly perturbed framework. However, we note that there are many open

problems in subsystem decomposition with respect to time-scale separation including how to

handle systems that can not be described in the standard singularly perturbed framework.

5.2.8.2 Direct graph

Although relative degree analysis is effective in terms of determining the closeness between a

given system state and an output measurement, the relative degrees for specific state/output

pairs in large-scale processes may be relatively large, and the computation becomes increas-

ingly complex because the calculation for high order Lie derivatives is challenging. More-

over, exact system parameters may not be available and relative degree cannot be calculated.

Graph theory based methods like the direct graph method used in [118] can be adopted to

overcome the above difficulties in the calculation of the relative degrees.
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Denoting f(x) = [f1(x) f2(x) . . . fn(x)]
T , The construction of a direct graph for a typical

nonlinear system model (5.1) is conducted using the following rules:

1. If ∂fk(x)/∂xi 6= 0, k, i = 1, 2, . . . , n, then there is an edge from xi to xk.

2. If ∂hj(x)/∂xi 6= 0, j = 1, 2, . . . , m, i = 1, 2, . . . , n, then there is an edge from xi to

yj.

The edges that connect the state and output variables are unidirectional. We define the total

number of edges involved in a path as the length of the path based on graph theory [119].

Between xi, i = 1, 2, . . . , n and yj, j = 1, 2, . . . , m, there may be more than one path,

and the length of the shortest path that connects xi and yj is denoted as Lij. It is found

that there is a fixed relationship between Lij and the relative distance Dij for most systems,

i.e., Lij − 1 = Dij. This proposition is inspired by similar results with respect to controller

configuration presented in [137, 118] and holds for most theoretical and practical systems.

Remark 31. In this work, we assume that we know the number of subsystems that we would

like to have. An important future research topic is to design a measure that can be used to

optimally determine the number of subsystems, which is a challenging and practical issue.

Basically, the number of subsystems should be no larger than the number of measured outputs.

The measure should take into account the costs associated with communication, computation,

estimation performance as well as process topology. In addition, if state estimates obtained

by distributed state estimation systems are used for distributed output feedback control, the

number of subsystems should be determined by taking both estimation and control into ac-

count.

5.3 Application to a chemical process example

In this section, the developed distributed state estimation configuration methodology for

nonlinear systems is applied to froth flotation units in Coal Handling and Preparation Plants

(CHPPs).
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overflow from tank i (kg/min) and Ȧi is the mass flow rate of Ash to overflow from tank i

(kg/min). cst0 , clt0 ,cat0 and V̇uf0
denote the Solid concentration, Liquid concentration, Ash

concentration and volumetric flow rate of the feed flow. On the right hand side of the above

model, the first term of each equation represents the amount entering from the previous

stage, the second term represents the amount leaving in the underflow and the third term

represents the amount leaving in the overflow.

The rate of Solid removal ri is given by [84]:

ri = frk(csti − c∞) (5.23)

where k is the rate constant l/min, c∞ is the equilibrium Solid concentration (kg/m3) and

fr is the correction factor for industrial scale reactions.

The following equations are also defined for stage i, i ∈ I:

V̇ufi−1
= V̇ufi + V̇ofi (5.24)

V̇ofi =
β

ρl
+
riVi
ρc

(5.25)

Ȧi = xAi

(

i
∑

j=1

Ṁsofj

)

−
i−1
∑

j=1

Ȧj (5.26)

Ri =

(

csofiV̇ofi
csofiV̇ofi + cstiV̇ufi

)

(100−Ri−1) +Ri−1 (5.27)

xAi
= f(Ri) (5.28)

where ρc is the density of coal (kg/m3), ρl denotes the density of Liquid (kg/m3), Ri is

the cumulative Solid recovery at stage i, xAi
is the cumulative mass fraction of Ash in the

overflow Solid at stage i, Ṁsof i
is the mass flow rate of Solid in the overflow (kg/min), V̇of i

is the volumetric flow rate of the overflow and csof i
denotes the concentration of Solid in

the overflow (kg/m3). g(Ri) is an empirical function of Ri for a given frother and collector
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loading from [84].

We assume that the Liquid concentration clt5 and Ash concentration cat5 are the two

measured outputs (which are the smallest set of measurements that ensures the observability

of the entire system). The output vector of the process can be represented as

y = Cx (5.29)

where

C =







0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1






(5.30)

We assume that the objective is to decompose the nonlinear process into two subsystems (i.e.

p = 2) for distributed state estimation. Since there are two measured outputs, one output

will be associated with one subsystem. Following the proposed procedure, we first determine

the observability of the entire process. Since the observability matrix (7.3) is challenging

to be calculated due to the high order of this system, we determine the observability by

linearizing the model around the operating trajectories starting from a few different initial

conditions in the operating range of this process that is determined following [84]. We verify

that the entire system is locally observable.

Second, we identify the observable states of each measured output, i.e., y1 = clt5 and

y2 = cat5 . It can be found that given y1 = clt5 , states csti , clti , i ∈ I, can be estimated; given

output y2 = cat5 , states csti , cati , i ∈ I, can be estimated. Therefore, clti , i ∈ I, should be

estimated by the subsystem corresponding to y1 and cati , i ∈ I, should be estimated by the

subsystem corresponding to y2. Note that csti , i ∈ I, can be estimated based either on y1 or

y2. One feasible solution is to have two subsystems with state overlaps. Specifically, the set

of states contained in subsystem 1 is {csti , clti , i ∈ I} and the output is y1; the set of states

contained in subsystem 2 is {csti , cati , i ∈ I} and the output is y2.

If we would like to avoid state overlapping in the two subsystems, then we should select

an appropriate local subsystem to estimate csti , i ∈ I. To achieve this goal, we compare
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Table 5.4: Sensitivity index between solid concentration of each tank and each output mea-
surement

R̄5j R̄4j R̄3j R̄2j R̄1j

j = 1 0.5577 1.0390 1.5019 1.9817 2.5435

j = 2 0.2856 0.1717 0.4057 0.2490 0.4447

csti , i ∈ I, based on y1.

The subsystems without state overlap are configured as follows: the set of states contained

in subsystem 1 is {csti , clti , i ∈ I} and the output is y1; the set of states contained in subsystem

2 is {cati , i ∈ I} and the output is y2.

5.4 Summary

In this chapter, a subsystem decomposition procedure for distributed state estimation of

nonlinear processes was proposed. In this procedure, techniques including observability test

of the entire system, identification of observable states given each measured output, relative

degree analysis and sensitivity analysis between output measurements and system states

were adopted. Discussions on some considerations for special cases were carried out. Several

examples were used to demonstrate the applicability of the proposed techniques/procedure.
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Chapter 6

Subsystem decomposition and

distributed moving horizon estimation

of wastewater treatment plants

In this chapter, we propose a subsystem decomposition approach and a distributed moving

horizon estimation (MHE) method for wastewater treatment plants. While the proposed

approach is general, Benchmark Simulation Model No.1 for wastewater treatment plant is

considered. The plant is decomposed into smaller subsystems based on the approach pro-

posed in Chapter 5. Three subsystems are formed considering subsystem interaction and

nonlinearity of the subsystems as shown in Section 6.2. In Section 6.3, an iterative distributed

MHE scheme is proposed for the wastewater treatment plant. Innovation triggered evalu-

ation of the local MHEs is used to reduce the computational complexity of the estimation

scheme. In Section 6.4, extensive simulations are performed to illustrate the effectiveness and

applicability of the proposed subsystem decomposition and distributed estimation methods.

This chapter is a revised version of [131].
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Figure 6.1: A schematic of the wastewater treatment plant

6.1 Preliminaries

6.1.1 Notation

The operator Lfh represents the Lie derivative of function h with respect to function f ,

which is calculated following Lfh(x) =
∂h
∂x
f(x). Lr

fh represents the r-th order Lie derivative

of function f , denoted by Lr
fh(x) = LfL

r−1
f h(x). {x(ts)}ks=j denotes a discrete-time sequence

of x from time instant tj to tk, i.e., x(tj), x(tj+1), . . . , x(tk). x(ts|tk) denotes the prediction

of x(ts) made at tk. K+ represents a set which comprises all non-negative integers. The

operator diag (v) represents a diagonal matrix where the elements of the vector v are on

its main diagonal. Considering two matrices (or vectors) A and B of the same dimension,

the operator A ◦ B represents the Hadamard product calculated element by element as

(A ◦B)i,j = Ai,j × Bi,j. When A and B are identical, the product A ◦ A is called the

Hadamard power of A and is denoted by A◦2.

6.1.2 Model description of wastewater treatment plants

The WWTP based on Benchmark Simulation Model No.1 (BSM1) consists of a multi-

chamber biological activated sludge reactor and a secondary settler. A schematic of the

WWTP process is shown in Figure 7.3 [130]. The biological reactor comprises five inter-

connected chambers: the first two anoxic chambers accounting for the non-aerated section

142



and the remaining three aerobic chambers constituting the aerated section. In the non-

aerated section, pre-denitrification reactions where nitrate is converted into nitrogen take

place; while in the aerated section, nitrification reactions where ammonium is oxidized into

nitrate take place. In this way, biological nitrogen is removed based on pre-denitrification

and nitrification in the reactor [130].

In this process, wastewater enters the first chamber of the biological reactor at concen-

tration Z0 and flow rate Q0. A portion of the effluent of the last aerobic chamber of the

reactor is fed into the settler at flow rate Qf and concentration Zf , while the rest portion

(which is the inner recycle) flows back to the first chamber at flow rate Qa. The secondary

settler comprises 10 nonreactive layers, the 5-th of which is the feed layer. The outlets of

the settler are discharged in three ways: (a) the overflow of the settler which contains puri-

fied water with concentration Ze is removed continuously via the top layer of the settler at

flow rate Qe; (b) a portion of the underflow of the settler is recycled to the first chamber

at flow rate Qr and concentration Zr; (c) the rest portion of the underflow is discharged

through the 10-th layer at flow rate Qw. In the process model, eight biological reactions

are taken into account, and 13 major compounds are considered in these reaction processes.

The concentrations of the 13 compounds in the five chambers constitute the state variables

which are used for modelling the biological reactor. The definitions of the 13 state variables

for each chamber are given in Table 6.1. The dynamic model of the secondary settler is

established based on mass balances of the sludge considering solid flux due to gravity [133].

Specifically, the model of each layer of the settler contains 8 states; that is, SO, SALK , SNH ,

SNO, SS, SI , SND and X. X denotes the concentration of suspended solids in a layer and

is calculated as the summation of XS, XI , XBA
, XBH

, XP and XND in the corresponding

layer. The established process model is given in the Appendix II in this chapter. A more

detailed description of the WWTP can be found in [130, 131].

The effluent quality (EQ) and the overall cost index (OCI) are two commonly used criteria

in performance assessment of WWTPs. Detailed explanations of EQ and OCI can be found
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Table 6.1: Process variables of the biological reactor of the WWTP

Definition Notation Unit

inert particulate organic matter XI g COD ·m−3

inert soluble organic matter SI g COD ·m−3

slowly biodegradable and soluble substrate Xs g COD ·m−3

readily biodegradable and soluble substrate Ss g COD ·m−3

particulate generated from decay of organisms XP g COD ·m−3

particulate biodegradable organic nitrogen XND g N ·m−3

biomass of active autotrophs XBA
g COD ·m−3

biomass of active heterotrophs XBH
g COD ·m−3

nitrite nitrogen and nitrate SNO g N ·m−3

free and saline ammonia SNH g N ·m−3

dissolved oxygen SO g (-COD) ·m−3

alkalinity SALK mol ·m−3

biodegradable and soluble organic nitrogen SND g N ·m−3

in [130, 149]. In implementation, it is very challenging to obtain the values of the two indices

online due to the difficulty in obtaining real-time measurements of certain state that directly

affect EQ and OCI. Alternatively, the two indices can be estimated using state estimates of

the actual process states.

6.1.3 Measurement selection for state estimation

For WWTP described by the BSM No.1 model, we consider that there are 56 output vari-

ables that are measured online and can be used for state estimation. Specifically, in each

chamber of the biological reactor, the concentrations of dissolved oxygen, free and saline am-

monia (i.e., NH3 and NH+
4 ), nitrate and nitrate nitrogen, alkalinity, chemical oxygen demand

(COD), filtered chemical oxygen demand (CODf ), biological oxygen demand (BOD) and the

concentration of suspended solids can be measured online [123, 130]. In the settler, the states

of the top layer and the bottom layer are measured. The measured output variables in each
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Table 6.2: Measured output variables in the i-th chamber (i = 1, . . . , 5) of the biological
reactor

Measured output variable Expression in the form of process states Symbol

concentration of dissolved oxygen SO yci,1

concentration of nitrate

and nitrite nitrogen
SNO yci,2

concentration of NH3 and NH+
4 SNH yci,3

concentration of alkalinity SALK yci,4

COD SS + SI +XS +XI +XBA
+XBH

yci,5

concentration of suspended solids XS +XI +XBA
+XBH

+XP +XND yci,6

CODf SS + SI yci,7

BOD SS +XS yci,8

chamber of the biological reactor are described in Table 7.5, where yci,l is used to denote the

l-th measurement of chamber i, i = 1, . . . , 5, l = 1, . . . , 8. The measured output variables in

the top/bottom layer of the reactor are shown in Table 7.6. In this table, sp,q, p = 1, . . . , 8,

denote the eight state variables SO, SALK , SNH , SNO, SS, SI , SND and X in the q-th layer

(q = 1, . . . , 10) of the settler, respectively. Accordingly, ysp,q denotes the measurement of

state sp,q (p = 1, . . . , 8) in the top layer (when q = 1) or the bottom layer (when q = 10).

6.1.4 Compact form of the WWTP model

Taking into account process and measurement noise, the WWTP model can be described by

a compact nonlinear state-space model as follows:

ẋ(t) = f (x(t), u(t)) + w(t) (6.1a)

y(t) = h (x(t)) + v(t) (6.1b)
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Table 6.3: Measured output variables in the top layer (q = 1) and bottom layer (q = 10) of
the settler

Measured output variables Expression in the form of process states Symbol

concentration of dissolved oxygen SO ys1,q

concentration of alkalinity SALK ys2,q

concentration of NH3 and NH+
4 SNH ys3,q

concentration of nitrate

and nitrite nitrogen
SNO ys4,q

concentration of readily biodegradable

and soluble substrate
SS ys5,q

concentration of inert soluble

organic matter
SI ys6,q

concentration of biodegradable

and soluble organic nitrogen
SND ys7,q

concentration of suspended solids XS +XI +XBA
+XBH

+XP +XND ys8,q

where x ∈ R145 is the state vector containing all the state variables of the process, y ∈ R56

represents the vector consisting of all the measured output variables, u ∈ R3 denotes the

input vector consisting of both the manipulated inputs and the uncontrolled input to the

WWTP plant, w ∈ R145 denotes the vector of additive disturbances to the process, and

v ∈ R56 is the vector of measurement noise. Note that all the 56 measured output variables

are linearly dependent on the system states, thus the output can be expressed as h(x) = Cx

where C is a 56 by 145 matrix.

6.1.5 Relative degree analysis

In this section, the definition of relative degree in the state estimation context is reviewed.

The relative degree is a measure that will be used for the decomposition of the entire process

into subsystems for state estimation. Relative degree analysis was first used for manipulated
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input-controlled output pairs [135]. The relative degree (for an input-output pair) represents

the number of integrations needed for an input to affect an output [136]. A smaller relative

degree implies a more direct effect of the input on the considered output. Therefore, relative

degree is a measure of topological (physical) closeness [135, 134, 137, 94]. The relative

degree defined for state estimation is an analog of the relative degree for an input-output pair.

Specifically, let us denote the i-th element in vector x by ξi, i = 1, . . . , nx and denote the j-th

element in vector y by ηj, j = 1, . . . , ny. Relative degree analysis evaluates physical closeness

between a state variable ξi, i = 1, . . . , nξ, and an output measurement ηj, j = 1, . . . , ny.

Define a square matrix F which is calculated as follows:

F =
∂f(x)

∂x
=

[

F1 F2 . . . Fnx

]

(6.2)

where F1, F2, · · · , Fnx
are column vectors of the matrix F with dimension nx.

As an analog of the relative degree in control [134, 135, 137], the relative degree Dij for

a state-output pair (ξi, ηj), i = 1, . . . , nx, j = 1, . . . , ny, is defined as below [61]:



























Dij = 0, if
∂hj(x)

∂ξi
6= 0

Dij = 1, if
∂hj(x)

∂ξi
≡ 0 and LFi

hj(x) 6= 0

Dij = dij, if
∂hj(x)

∂ξi
≡ 0 and LFi

Lk−1
f hj(x) ≡ 0 and LFi

L
dij−1
f hj(x) 6= 0

(6.3)

where hj(x) represents the output function associated with the j-th measurement. dij is a

positive integer, k = 1, 2, . . . , dij −1. The relative degree becomes Dij = ∞ if a finite integer

dij does not exist for (6.3).

A smaller relative degree implies a stronger structural closeness of the considered state-

measured output pair. Based on this measure, we can determine the closeness between each

state variable xi and each output variable yj that are under consideration and then group

the state and output variables which have comparatively small relative degrees.
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6.2 Process decomposition and subsystem configura-

tion

In this section, we develop an approach based on the method in [61] to decompose the

entire WWTP process into subsystems. For each configured subsystem, a local MHE-based

estimator will be designed within a distributed framework to estimate the states of the

corresponding subsystem. In particular, we aim to decompose the original process model

(6.1) into m subsystems in the following form:

ẋi(t) =fi (xi(t), ui(t)) + f̃i (Xi(t), ui(t)) + wi(t) (6.4a)

yi(t) =Cixi(t) + vi(t) (6.4b)

where xi ∈ Rnxi is the vector of the i-th subsystem state, ui ∈ Rnui represents the input vector

to the i-th subsystem, wi ∈ Rnwi is the vector of disturbances of the i-th subsystem, yi ∈ Rnyi

is the vector of the output measurements of subsystem i, vi ∈ Rnvi is the measurement noise

vector of the i-th subsystem, and Xi ∈ RnXi represents a vector containing the subsystem

states which have direct effects on the dynamics of xi, i ∈ {1, . . . ,m}. Accordingly, we

introduce Ii, i ∈ {1, . . . ,m}, to denote the set containing the indices of the subsystems, of

which the states are explicitly involved in Xi. For instance, if the dynamics of subsystem i is

affected by the dynamics of subsystem 1 and subsystem 3, then we have Xi =
[

xT1 xT3
]T

and

Ii = {1, 3}. Furthermore, if the set Ii does not contain i, then the interaction of subsystem

i is considered as “additive interaction”. Otherwise if Ii also contains i, we call this type

of interaction “multiplicative interaction”. These two types of interaction also apply to the

characterization of interaction between groups which will be discussed later.
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6.2.1 Observability of the WWTP

First, we need to verify the observability of the entire process. For nonlinear processes, one

way to test the observability is to check whether the full-rank condition is satisfied for the

model (6.1) by the nonlinear observability matrix Q(x) defined as follows [30]:

Q(x) =
d

dx



















h(x)

Lfh(x)

...

Ln−1
f h(x)



















(6.5)

However, due to the high dimension of the process, higher order Lie derivatives are very

challenging to calculate and the observability matrix can be ill-conditioned. Instead, we take

advantage of the measure of linear observability gramian to check the local observability of

the process. Specifically, the entire process (6.1) is linearized along a typical state trajectory

and the observability gramian is calculated at each sampled point along this trajectory. By

examining the rank of the gramian at each point, it can be confirmed that the entire process

(6.1) is locally observable along the considered trajectory given the 56 measured outputs.

6.2.2 Process decomposition and subsystem configuration

In this section, we consider the process decomposition and subsystem configuration task

from a distributed estimation point of view. A flowchart of the procedure used to fulfill this

task is given in Figure 6.2.

First, we decompose the entire process into small groups (not the finally configured

subsystems for distributed estimation) by considering the topology of the process. This

subtask is accomplished via two key steps: (1) to divide the measurements of the entire

process into groups by considering the physical topology; (2) to perform relative degree

analysis to assign each state to a measurement group by pairing the state with appropriate
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Table 6.4: Relative degree analysis for the states of chamber i, i = 1, . . . , 5

States
Smallest relative degree

to all measurements

Candidate measurement(s)

to be paired with

SI,i 0 yci,5 , yci,7

SS,i 0 yci,5 , yci,7 , yci,8

XI,i 0 yci,5 , yci,6

XS,i 0 yci,5 , yci,6 , yci,8

XBH,i
0 yci,5 , yci,6

XBA,i
0 yci,5 , yci,6

XP,i 0 yci,6

SO,i 0 yci,1

SNO,i 0 yci,2

SNH,i 0 yci,3

SND,i 1 yci,3 , yci,4

XND,i 0 yci,6

SALK,i 0 yci,4

We explore the relative degrees between states and measured outputs following Eq.(6.3).

Every state is paired with a measured output that has the smallest relative degree from the

state and is assigned to the corresponding group of the measured output. The corresponding

results are given in Table 6.4 and Table 6.5. From the results in Table 6.4 and Table 6.5,

the state-output pairing for certain system states can have more than one options. We may

further carry out sensitivity analysis [61] to identify the most appropriate measurement for

each state to pair with. However, this is not necessary for the WWTP. Specifically, it is

seen that for each state, the candidate measurements for pairing (if there is more than one)

are from the same measurement group. This implies that we are already able to assign each

state to a measurement group based on the results in Table 6.4 and Table 6.5.

Consequently, we obtain 13 groups of state and measurement variables. Each of the

first five groups contains 13 system states and 8 measurements that are from one chamber
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Table 6.5: Relative degree analysis for the states of the settler

States
Smallest relative degree

to all measurements

Candidate measurement

to be paired with

sp,1 0 ysp,1

sp,2 1 ysp,1

sp,3 2 ysp,1

sp,4 3 ysp,1

sp,5 4 ysp,1

sp,6 4 ysp,10

sp,7 3 ysp,10

sp,8 2 ysp,10

sp,9 1 ysp,10

sp,10 0 ysp,10

of the reactor. Each remaining group contains 10 states and 2 measured outputs which

are with respect to one material concentration in the different layers of the settler. We

use the measure of linear observability gramian to check the observability of each group

along a typical trajectory. The states involved in each group are observable based on the

measurements from the same group by treating interacting dynamics as known inputs. The

13 groups serve as the basis for the subsystem configuration for distributed state estimation.

Subsequently, we combine groups to configure subsystems. The number of subsystems

(equivalently the number of local estimators in distributed state estimation) is user-specified,

and may vary based on different requirements on computation complexity, communication

capability, maintenance cost, etc. In this design, the number of subsystems for distributed

state estimation is selected to be three. For subsystem configuration based on the formed

groups, the following aspects are considered: (I) for subsystem i in the form of (6.4a), it is

favorable to makeXi be free of xi; that is, on the right-hand-side of Eq.(6.4a), i ∈ {1, . . . ,m},

xi only exists in fi; (II) the groups of which the states have more significant coupling are

expected to be combined; (III) it is better to combine the groups from the same physical
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unit since this may significantly reduce information exchange; (IV) the numbers of states in

the configured subsystems with nonlinear local dynamics are expected to be similar, such

that the computation complexity of the corresponding estimators will not be much different;

(V) it is favorable to isolate the linear dynamics (if there exist) from the nonlinear dynamics

in one subsystem such that linear approaches can be applied to this subsystem; (VI) it is

expected that the configured subsystems do not have overlapping states which can lead to

additional computational cost of local estimators.

We first explore how the state from different groups interact with each other. Based on

(I) and (II), groups where the state dynamics have multiplicative interaction terms or have

obviously strong interaction (qualitatively) will be arranged in the same subsystem. We

examine the ordinary differential equations (ODEs) describing the state dynamics in each

group. It is found that there exist multiplicative interaction terms in the ODEs describing

the dynamics of suspended solids (i.e., X) in the ten layers of the settler. Specifically, these

multiplicative interaction terms contain X in the ten layers (which are in one group) and

the states of the fifth chamber (which are from another group) due to the interconnection

between the reactor and the settler via material flows. Therefore, these two groups are first

grouped together. Also, because of the inner recirculation from the fifth to the first chamber

of the reactor, the state dynamics of the first chamber (accounted for by one group) are

significantly affected by the dynamics of the fifth chamber. Therefore, the group containing

the states of the first chamber is further combined with the above two groups. The first

subsystem containing 36 states and 18 output measurements is configured.

Next, let us consider criterion (III) for subsystem configuration. The second to the fourth

chambers of the reactor are within the same physical structure (i.e., the biological reactor)

and are coupled in a cascade manner. Consequently, we decide to combine the three groups

accounting for these three chambers to form subsystem 2. This configured subsystem also

has nonlinear local dynamics of 39 state variables, which is similar to subsystem 1, such that

the other criteria for subsystem configuration are not violated.
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Table 6.6: The states in each configured subsystem of the process

Subsystem 1
Chamber 1, Chamber 5,

Material concentration of X in the ten layers

Subsystem 2 Chamber 2, Chamber 3, Chamber 4

Subsystem 3
Concentrations of soluble materials

SI , SS, SO, SNO, SNH , SND and SALK in the ten layers

Now, there are seven groups remaining for subsystem configuration. Each of them incor-

porates 10 states with respect to one type of soluble material in the settler. We check the

ODEs describing the dynamics of the seven units. For each of the seven groups, its dynamics

are only affected by the dynamics of the fifth chamber (already arranged in subsystem 1)

through one state which is the corresponding concentration in the feed layer. It is found that

this interaction is additive interaction. Moreover, by treating the interacting dynamics from

the fifth chamber as external inputs, the local dynamics of each group are linear. This fact

makes it possible to configure a subsystem with only linear local dynamics. Therefore, the

seven groups with respect to the seven soluble concentrations in the ten layers of the settler

are made in one configuration as subsystem 3, which has linear local dynamics. The state

variables of the WWTP involved in each subsystem are described in Table 6.6.

Remark 32. It is also possible to design a distributed state estimation scheme which con-

sists of 13 local estimators by directly treating each of the 13 groups as one subsystem.

However, despite substantially increased computational efficiency, the implementation and

maintenance of a distributed scheme containing 13 local estimators could be costly. There-

fore, a smaller number of subsystems is determined (which is 3 in the proposed design) such

that a balance is achieved among computation, communication, maintenance, etc.

Remark 33. Configuring a subsystem containing only linear dynamics can simplify the

design procedure and reduce the computational complexity of the corresponding subsystem

estimator. Within a distributed MHE framework, a linear MHE approach can be used to
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three local estimators are designed for the three subsystems: a nonlinear MHE-based esti-

mator is designed for each of subsystem 1 and subsystem 2, while an estimator is developed

based on linear MHE for subsystem 3. Each MHE estimator retrieves the output measure-

ments of the associated subsystem at every sampling instant tk := t0 + k∆ with k being a

non-negative integer, t0 denoting the initial time instant and ∆ being the size of the inter-

val between two consecutive sampling instants. In the meantime, the MHE estimators are

required to exchange information in terms of subsystem state estimates through networked

communication at each tk≥0. Considering the interaction among the configured subsystems,

we have I2 = I3 = {1} and I1 = {2, 3}. Therefore, the MHE estimator for subsystem 1 is

required to communicate with the MHE estimators for the other two subsystems bidirec-

tionally, while the estimators designed for subsystem 1 and subsystem 3 do not exchange

information with each other. At every sampling instant, each local estimator is evaluated

to provide subsystem state estimates based on the information collected from its associated

subsystem as well as the subsystem estimators for its interacting subsystems. To achieve

faster convergence of the estimation error dynamics, we require that each local estimator

is evaluated iteratively several times at each sampling instant until the innovation for each

subsystem enters a certain sufficiently small region.

6.3.1 Iterative distributed state estimation algorithm

In this section, we present an algorithm to demonstrate the key implementation steps for

the proposed distributed state estimation scheme. We first introduce the following definition

that will be used in determining the triggering conditions for iterative evaluation of the

distributed MHE scheme.

Definition 3. The normalized Euclidean norm of the deviation between two arbitrary vectors

a ∈ Rna and â ∈ Rna at each time tk (which is denoted by |ε (a(tk), â(tk))|) is defined as
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follows:

∣

∣

∣
ε(a(tk), â(tk))

∣

∣

∣
=

√

√

√

√

√

∑

i∈na





ai(tk)− âi(tk)

max
tn∈[t0,t∞)

|ai(tn)− âi(tn)|





2

(6.6)

where ai (âi) denotes the i-th element of the vector a (â), i = 1, . . . , na.

Algorithm 3. Innovation-triggered iterative distributed MHE for WWTPs

1. At time instant t0, each MHE estimator i, i ∈ I, is initialized with an initial guess

x̃i(t0), and also requests the initial guess x̃l(t0) from each MHE estimator l, l ∈ Ii.

2. At each sampling time tk≥0, set p = 1, and do the following steps:

2.1. MHE estimator i receives the output measurement yi(tk) from the corresponding

subsystem i, i ∈ I.

2.2. Based on yi(tk) and the latest state estimate sequences for each interacting sub-

system l, l ∈ Ii, each MHE estimator i is evaluated and gives a state estimate

sequence for subsystem i, i ∈ I.

2.3. If
∣

∣

∣
ε(yi(tk), Cix̃

p
i (tk|tk) )

∣

∣

∣
≤ Ti holds ∀i, i ∈ I, then

go to step 2.4.

Else, do:

if p > 1 and
∣

∣ε
(

x̃pi (tk|tk) , x̃p−1
i (tk|tk)

)∣

∣ ≤ δi, ∀i ∈ I, then

go to step 2.4.

else, do:

• MHE estimator i, i ∈ I, requests and receives the latest state estimate

sequence

generated at tk from each MHE estimator l, and updates the latest state

estimate

sequence for subsystem l, l ∈ Ii.

• Set p = p+ 1, and go to Step 2.2.
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2.4. Set x̂i(tk) = x̃pi (tk|tk) as the estimate of each subsystem i, i ∈ I, for time instant

tk.

2.5. MHE estimator i, i ∈ I, requests and receives the state estimate sequence of each

subsystem l updated in the p-th iteration at time instant tk by the l-th estimator,

l ∈ Ii. Set k = k + 1 and go to step 2.1.

In Algorithm 3, Ti represents the threshold on the normalized Euclidean norm of the

innovation for each MHE estimator i, i ∈ I. δi denotes the threshold on the normalized

Euclidean norm of the deviation between two subsystem estimates obtained at two consec-

utive iteration steps given by the i-th MHE estimator, i ∈ I. At each sampling time, if the

condition on the subsystem innovations (in Step 2.3) is not satisfied, the MHE estimators

for the subsystems will be evaluated several times iteratively. The number of iterations is

not fixed at each sampling time. It is dependent on the innovations given by the subsystem

MHE estimators as well as the deviation between the state estimates obtained at the most

recent two iteration steps for each subsystem.

The proposed algorithm helps achieve a balance between fast convergence of the esti-

mation error dynamics and efficient computation. Specifically, after the estimation error

converges and the innovation for the subsystems becomes sufficiently small, the distributed

MHE system can switch to a non-iterative mode where the estimators for the subsystems

communicate with each other and are evaluated only once at one sampling time.

Remark 35. The calculation of |ε(x̃pi (tk|tk) , x̃p−1
i (tk|tk) )| in Step 2.3 of Algorithm 3 re-

quires the values of max
tn∈[t0,t∞)

∣

∣x̃pi,l(tn|tn)− x̃p−1
i,l (tn|tn)

∣

∣ where x̃i,l represents the l-th element of

vector x̃i, for l = 1, . . . , nxi
. In implementation, these values can be calculated based on the

evaluation of the proposed distributed MHE with a fixed number of iteration steps p = 2 for

a sufficiently long operation time. We choose to calculate |ε(yi(tk), Cix̃
p
i (tk|tk) )|, i ∈ I, in a

similar way with p = 1.

Remark 36. Note that the values of Ti and δi, i ∈ I, are user-specified values and should
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be carefully selected through extensive simulations and analysis before real implementation.

While smaller values on Ti and δi may accelerate the convergence speed of the estimation

error dynamics for the entire process, they may lead to much increased computational load

at the initial stage when the state estimates have not well tracked the actual dynamics.

Remark 37. Note that the implementation algorithm can be reduced to a non-iterative dis-

tributed MHE strategy by disabling Step 2.3. In implementation, we may also set an upper

bound on the iteration step p to avoid endless loops, although this is not encountered in the

simulations for the WWTP.

6.3.2 Design of the distributed MHE estimators

In this section, we present the design of the MHE estimators for the three configured subsys-

tems of the WWTP. The estimators for subsystem 1 and subsystem 2 are based on nonlinear

MHE, while the estimator for subsystem 3 is designed using a linear MHE approach. Note

that the distributed MHE scheme proposed in this work is adapted from the distributed

MHE designs for nonlinear processes reported in [15, 42].
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6.3.2.1 MHE estimators for subsystem 1 and subsystem 2

At the p-th iteration step of time instant tk, a nonlinear MHE estimator is designed for each

subsystem i, i = 1, 2, as follows:

min
{x̃p

i (td|tk)}k

d=k−Ni

k−1
∑

d=k−Ni

|w̃p
i (td)|2Q−1

i
+

k
∑

d=k−Ni

|ṽpi (td)|2R−1
i

(6.7a)

s.t. ˙̃xpi (τ |tk) = fi (x̃
p
i (τ |tk), ui(td)) + f̃i

(

X̃p−1
i (td), ui(td)

)

+ w̃p
i (td),

τ ∈ [td, td+1], d = k −Ni, . . . , k − 1 (6.7b)

ṽpi (td) = yi(td)− Cix̃
p
i (td), d = k −Ni, . . . , k (6.7c)

x̃pi (td) ∈ Xi, ṽ
p
i (td) ∈ Vi, d = k −Ni, . . . , k (6.7d)

w̃p
i (td) ∈ Wi, d = k −Ni, . . . , k − 1 (6.7e)

where x̃pi , w̃
p
i and ṽpi represent the estimates of xi, wi, and vi within the current horizon

obtained in the p-th iteration of time tk, respectively, Qi and Ri are positive definite matrices

representing the covariances of subsystem disturbances and noise, Ni denotes the length of

the estimation horizon of MHE estimator i, i ∈ I, Xi, Wi and Vi are compact sets that

bound the subsystem state, disturbance and measurement noise of subsystem i such that

xi ∈ Xi, wi ∈ Wi, and vi ∈ Vi. In Eq.(6.7b), vector X̃p−1
i (td) is an estimate of Xi(td) and

contains the latest estimates of subsystem l, l ∈ Ii, available to MHE estimator i, i ∈ I, for

d = k −Ni, . . . , k − 1 according to Algorithm 3.

In the optimization problem (6.7), Eq.(6.7a) represents the cost function for the MHE

estimator i (i = 1, 2) to be minimized treating {x̃pi (td|tk)}kd=k−Ni
as the decision variables,

Eq.(6.7b) and Eq.(6.7c) are the subsystem model constraints, while Eq.(6.7d) and (6.7e)

take into account the constraints on system states and disturbances. The last point x̃pi (tk|tk)

in the optimal state estimate sequence given by the last iteration at tk is adopted as the

estimate of xi(tk) (denoted by x̂i(tk)).
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6.3.2.2 MHE estimator for subsystem 3

Subsystem 3 has linear local dynamics. The local dynamics described by the vector field f3

in Eq.(6.4) can be expressed by a linear form as f3 (x̃3, u3) = A3x3 where A3 is a real-valued

square matrix of dimension 70. Considering the linear local dynamics, we design an estimator

to estimate the states of subsystem 3 based on a linear MHE approach [138]. At the p-th

iteration step of time instant tk, the MHE estimator for each subsystem 3 is designed as

follows:

min
{x̃p

3(td|tk)}k

d=k−N3























k−1
∑

d=k−N3

|w̃p
3(td)|2Q−1

3
+

k
∑

d=k−N3

|ṽp3(td)|2R−1
3

+|(x̂3(tk−N3)− x̃p3(tk−N3 |tk))|2Π−1
3 (tk|tk)























(6.8a)

s.t. ˙̃xp3(t|tk) = A3x̃
p
3(t|tk) + f̃3

(

X̃p−1
3 (td), u3(td)

)

+ w̃p
3(td),

t ∈ [td, td+1], d = k −N3, . . . , k − 1 (6.8b)

ṽp3(td) = y3(td)− C3x̃
p
i (td), d = k −N3, . . . , k (6.8c)

x̃p3(td) ∈ X3, ṽ
p
3(td) ∈ V3, d = k −N3, . . . , k (6.8d)

w̃p
3(td) ∈ W3, d = k −N3, . . . , k − 1 (6.8e)

where x̃p3, w̃
p
3 and ṽp3, respectively, are the estimate sequences of x3, w3, and v3 within

the current horizon obtained at the p-th iteration of each sampling time, Q3 and R3 are

the covariance matrices of the subsystem disturbances and noise, N3 is the length of the

estimation horizon for the linear MHE, X3, W3 and V3 are compact sets that bound the

subsystem state, disturbance and measurement noise of subsystem i such that xi ∈ Xi, wi ∈

Wi, and vi ∈ Vi., Π3(tk|tk) is an invertible matrix accounting for the arrival cost of the

linear MHE. The design of Π3 will be clarified later. In Eq.(6.8b), X̃p
3 is an estimate of X3

containing the latest state estimate of subsystem 1 which is available to MHE estimator 3.

In the optimization problem (6.8), Eq.(6.8a) is the cost function for the MHE estimator 3
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to be minimized with {x̃p3(td|tk)}kd=k−N3
being the decision variables, Eq.(6.8b) and Eq.(6.8c)

account for the model of subsystem 3. Eq.(6.8d) and Eq.(6.8e) are the constraints on the

subsystem states, disturbances and noise. At each sampling time tk≥0, the optimization

problem (6.7) is also solved p time(s) iteratively following Algorithm 3. The last point in

the optimal estimate sequence {x̃p3(td|tk)}kd=k−N3
given in the last iteration is adopted as the

estimate of the dynamics of subsystem 3 at tk.

The matrix Π3 involved in the cost function (6.8a) is designed as the a posteriori error

covariance matrix of continuous-discrete time Kalman filtering. Specifically, Π3(tk|tk) is

updated for each sampling time following:

Π3(tk|tk−1) = φ (tk, tk−1) Π3(tk−1|tk−1)φ
T (tk, tk−1) +

∫ tk

tk−1

φ (tk, τ)Q3φ
T (tk, τ) dτ (6.9a)

Π3 (tk|tk) = Π3 (tk|tk−1)− Π3 (tk|tk−1)C
T
3 (C3Π3 (tk|tk−1)C

T
3 +R3)

−1C3Π3 (tk|tk−1)

(6.9b)

s.t. Π3(t0|t0) = Π̄3

where Π̄3 is an initial guess of the error covariance matrix, and φ (t, tk−1) denotes the state

transition matrix of subsystem 3 and is calculated as φ(t|tk−1) = eA3(t−tk−1).

It is worth mentioning that at tk, 0 ≤ k < Ni, each linear/nonlinear MHE estimator

for subsystem i, i ∈ I, is essentially a full-information estimator which gives an optimal

state estimate sequence from the initial time t0 to current time tk instead of an estimate

sequence of size Ni. In this case, the optimization problem (6.7) is solved iteratively using

the information about subsystem state estimates and measurements from the t0 to tk. At

each sampling time tk≥Ni
, for MHE estimator i, i ∈ I, the optimization problem (6.7) is solved

p time(s) iteratively within a moving window of a fixed horizon Ni following Algorithm 3.

Remark 38. We note that the calculation of (6.9) does not require any information from

the process. Therefore, Π̄3(tk|tk), k ≥ 0 can be obtained in an off-line manner such that the

computational load of the linear MHE for subsystem 3 can be reduced.
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6.4 Simulation results

In this section, we apply the proposed distributed MHE scheme to the WWTP considering

different weather conditions.

6.4.1 Simulation settings

The values of the process parameters are determined following [130]. The data containing

the information about the wastewater feed to the process for dry, rainy and stormy weather

conditions were obtained from the International Water Association website [139]. In partic-

ular, the flow rate of the wastewater feed Q0 and the corresponding concentration Z0 vary

and are dependent on the current weather condition.

The measurements are sampled synchronously at each sampling instant {tk≥0} where

tk = t0 + k∆s with t0 = 0 being the initial time instant, ∆s = 15min being the sampling

period and k ∈ K+. We consider that at each sampling instant tk, each measurement is

instantly available to the corresponding subsystem estimator. Let xis denote the vector of

steady-state values corresponding to xi, i = 1, 2, 3, which were calculated based on a 100-day

open-loop operation [149]. The initial conditions of the three subsystems of the WWTP are

selected to be 1.18x1s, 1.15x2s and 1.29x3s, respectively.

Additive process disturbances to the WWTP and random noise contaminating the output

measurements are taken into account. Specifically, the disturbance vector wi which affects

the dynamics of subsystem i is generated following normal distribution with zero mean and

standard deviations 0.06xis, and is constrained by −0.12xis and 0.12xis. Moreover, random

noise to the vector of output measurements yi is assumed to be Gaussian white noise with

zero mean and standard deviations 0.05yis where the elements in yi,s take the steady-state

values of yi, i = 1, 2, 3. We also take into account hard constraints on the process dynamics;

that is, the estimates of the system states which denote different concentrations should not

be negative.
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Figure 6.4: The trajectories of the actual states (blue dash dot lines) and the state estimates
given by iterative distributed MHE (red dashed lines) in dry weather

The thresholds on the innovations of the three subsystems in Step 2.3 of Algorithm 3

are selected as T1 = 1.83, T2 = 1.96 and T3 = 1.70. The values of δi, i = 1, 2, 3, are

selected to be δ1 = 0.35, δ2 = 0.40, δ3 = 0.65. In terms of the MHE estimators for the three

subsystems, the weighting matrices are selected to be Qi = diag(σ◦2
w,i) where σw,i := 0.06xis

and Ri = diag(σ◦2
v,i) where σv,i := 0.05yis. Unless stated otherwise, the initial guess of each

MHE estimator i is set to be 1.08xis, i ∈ I. The length of the estimation horizon of each

MHE estimator is determined to be: N1 = N2 = 10 and N3 = 20. Note that in the evaluation

of the MHE estimators, each system state xi,j (which denotes the j-th element of state vector
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Table 6.7: Actual values and the corresponding estimates of EQ and OCI in different weather
conditions

Actual value
in dry weather

Estimate in
dry weather

Actual value
in rain

Estimate
in rain

Actual value
in storm

Estimate
in storm

EQ 6.3062× 103 6.3092× 103 8.4994× 103 8.6314× 103 7.5390× 103 7.6243× 103

OCI 1.6223× 104 1.6222× 104 1.5936× 104 1.5968× 104 1.7061× 104 1.7062× 104

xi) is scaled following

x̄i,j(tk) =
xi,j(tk)− xmin

i,j

xmax
i,j − xmin

i,j

where xmax
i,j := max {xi,j(tk) : k ∈ K+} and xmin

i,j := min {xi,j(tk) : k ∈ K+}.

Remark 39. The size of the estimation horizon for the MHE estimator of subsystem 3 (i.e.,

N3) is made larger than N1 and N2 because: (1) there are more state variables in subsystem

3 than the other two subsystems; (2) the MHE estimator for subsystem 3 is a linear one such

that the computational complexity of the evaluation of this estimator will still be tractable

with a larger-sized estimation horizon.

6.4.2 Results of dry weather condition

We first apply the proposed distributed MHE approach to WWTP under the dry weather

condition. The state estimate and the actual state trajectories for certain process states in the

second week of the operation are presented in Figure 6.4 and Figure 6.5. The results indicate

that the proposed scheme can provide satisfying state estimates in the presence of external

disturbances and constraints. Then, EQ and OCI are calculated based on the actual system

states and the state estimates given by the iterative distributed state estimation scheme. The

values are presented in Table 6.7. The results show that the EQ and OCI can be accurately

estimated based on the proposed method.

Next, comparisons are made between the proposed iterative distributed MHE and a de-

centralized MHE scheme in terms of estimation accuracy and computational complexity. In
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Figure 6.5: The trajectories of the actual states (blue dash dot lines) and the state estimates
given by iterative distributed MHE (red dashed lines) in dry weather

the decentralized scheme, the local estimators do not communicate with each other to ex-

change subsystem state estimates. Steady-state values of the process states are calculated

based on a 100-day open-loop operation subject to constant inputs following [149]. These

steady-state values are used in the local MHEs of the decentralized scheme to conservatively

compensate for the time-varying subsystem interaction [129]. The mean value of the Eu-

clidean norm of the normalized estimation error and the average computation time required

for the one-sampling-time evaluation of the two schemes are given in Table 6.8 for compari-

son. The average computation time required by the decentralized scheme is slightly shorter,

which is mainly because each local estimator within the decentralized framework is evaluated
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Figure 6.6: The trajectories of the actual states (blue solid lines) and the state estimates by
iterative distributed MHE (red dashed lines) and the state estimates given by distributed
EKF (yellow dotted lines) at the initial stage in dry weather

only once at one sampling time. However, the estimation error norm given by the decentral-

ized scheme is significantly larger than that of the proposed method, which indicates that

the proposed distributed MHE can give much improved estimation performance compared

to the decentralized scheme. Note that in Table 6.8, the average computation time for the

distributed MHE/decentralized MHE is the average time required by the MHE estimator

for subsystem 1. This is because the evaluation of this local estimator requires the longest

computation time among the three estimators.

We also make performance comparisons between the proposed iterative distributed MHE

scheme and centralized MHE. The estimation horizon of the centralized MHE is picked as

N = 36. Note that the length of the estimation horizon may be further tuned for possibly

better performance, which is not within the scope of this work. The mean value of the

Euclidean norm of the normalized estimation error and the average computation time for
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Table 6.8: Mean values of the Euclidean norm of the normalized estimation error and the
average computation time required for the one-sampling-time evaluation for iterative dis-
tributed MHE and centralized MHE

Iterative
distributed MHE

Decentralized MHE Centralized MHE

Mean of the error norm 3.3081 61.5810 3.1196

Average computation time 3.59 sec 3.46 sec 41.75 sec

the centralized MHE scheme is also given in Table 6.8. While the centralized MHE scheme

can provide slightly better estimation accuracy compared with the proposed approach, the

use of the proposed iterative distributed MHE leads to significantly reduced computation

time (saving 91.40% of the computation time compared with the considered centralized MHE

scheme).

In addition, we show that the proposed approach can provide better estimates for the

WWTP based on BSM1 compared to the distributed EKF method in [125]. In this set of

simulations, the initial guess of each estimator for subsystem i (both MHE estimator i and

EKF estimator i) is set to be 0.3xis, i ∈ I. The state estimates for certain states given by

the two approaches are given in Figure 6.6. The results show that the proposed distributed

MHE scheme can provide much better estimates for certain states at the initial stage when

the initial guess is not good.

Remark 40. In the simulations, we see that the distributed MHE gives improved estimation

performance compared with the distributed EKF. This may due to the inherent advantages

of MHE over EKF. First, MHE can incorporate the information of physical constraints on

system states in the estimation optimization problem. However, the constraints are not

explicitly considered in the formulation of EKF. Also, EKF is not robust to disturbance

or poor initial guess due to the way nonlinearity is treated in EKF [127]. Moreover, the

convergence of EKF requires the initial estimation error to be sufficiently accurate as shown

in [140, 141].
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6.4.3 Results in rainy and stormy weather conditions

In different weather conditions, the flow rate and the concentration of the wastewater entering

the process (the influent) are much different. It is necessary to verify the effectiveness of the

proposed method in different weather conditions. In this section, we consider two common

weather conditions, i.e., rainy and stormy weather. The length of the data corresponding

to each weather condition is two weeks. The data of rainy weather consist of one week

of dynamic dry weather data and a long rain event during the second week. The data of

stormy weather also consists of two portions: the first portion is one week of dynamic dry

weather data, while the rest portion describes two storm events superimposed on the dry

weather data during the second week. More detailed information about the different weather

conditions is given in [130]. The data can be found in [139].

The proposed approach is also applied to the WWTP when it is operated in rainy and

stormy weather conditions. The actual system states and the corresponding state estimates

given by the proposed approach are obtained under the two considered weather conditions.

The trajectories of the actual state and the estimate for certain process states are shown in

Figure 6.7 (for rainy weather) and Figure 6.8 (for stormy weather). Further, we show the

actual trajectories of EQf generated based on both the actual states and the state estimates

in Figure 6.9. We also present the values of EQ and OCI which are calculated based on

actual process states and state estimates in the two weather conditions as in Table 6.7. The

results confirm that the proposed method can provide good state estimates under different

weather conditions.
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Figure 6.7: The trajectories of the actual states (blue solid lines) and the state estimates
given by iterative distributed MHE (red dashed lines) in rainy weather
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Figure 6.8: The trajectories of the actual states (blue solid lines) and the state estimates
given by iterative distributed MHE (red dashed lines) in stormy weather
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Remark 41. The distributed MHE and the distributed EKF considered in performance com-

parison are developed based on the same subsystem decomposition. The aim of this compar-

ison is to show that the proposed distributed MHE can perform better than the distributed

EKF. We note that the decomposed subsystem structure obtained and used in this work is not

unique for distributed state estimation, and there could be other subsystem decompositions

that can be used to achieve better estimation performance for the WWTP. How to optimally

decompose the WWTP into subsystems for distributed state estimation is a very important

problem and will be considered in our future work.

6.5 Summary

In this chapter, the state estimation problem for the WWTP based on BSM1 was addressed.

An approach on subsystem decomposition and configuration was proposed based on struc-

tural closeness. The WWTP was decomposed into 13 groups of state and output mea-
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surement variables using the proposed approach. The 13 groups were grouped to form 3

subsystems by considering the interaction between different groups as well as the nonlin-

earity of the state dynamics of each group. A distributed MHE scheme based on iterative

evaluation was proposed for the WWTP. Innovation-based triggering conditions were devel-

oped for the evaluation of the distributed scheme to reduce its computational complexity.

Both nonlinear and linear MHE approaches were used to design subsystem MHE estima-

tors. Simulations were carried out under different weather conditions. The proposed scheme

can provide good state estimates in different weather. We also made performance com-

parisons with non-iterative distributed MHE, centralized MHE and distributed EKF. The

results show that the iterative distributed MHE can provide more balanced performance

compared to its counterparts. Specifically, the proposed approach provides better estimates

than non-iterative distributed MHE and distributed EKF do, while it requires much lower

computational cost compared with centralized MHE.

Appendix II: the model of the WWTP

In this appendix, the differential equations describing the dynamics of the WWTP based on

BSM1 are presented [130]. The dynamics of the biological reactor are described as follows:

• For the chamber k (k = 1) of the reactor:

dZ1

dt
=

1

V1
(QaZa +QrZr +Q0Z0 + r1V1 −Q1Z1)

Q1 = Qa +Qr +Q0

• For the chamber k (k = 2, . . . , 5) of the reactor:

dZk

dt
=

1

Vk
(Qk−1Zk−1 + rkVk −QkZk)

Qk = Qk−1
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• Special case for the concentration of dissolved oxygen in chamber k (denoted by SO,k),

k = 1, . . . , 5:

dSO,k

dt
=

1

Vk

(

Qk−1SO,k−1 + rkVk +KLakVk (S
∗
O − SO,k)−QkSO,k

)

where Zk represents a state defined in Table 6.1 (except SO), Vk is the volume, rk denotes

the observed reaction rate, KLak is the oxygen transfer coefficient, S∗
O denotes the saturation

concentration of dissolved oxygen. Note that subscript k denotes a chamber in the reactor

(k = 1, . . . , 5), and the first two chambers are non-aerated, thus KLa1 = KLa2 = 0 d−1.

The mass balance model of the sludge in the settler is established as follows:

dX1

dt
=

1

z1

(

vup(X2 −X1) + Jclar,1

)

dXp

dt
=

1

zp

(

vup(Xp+1 −Xp) + Jclar,p−1 − Jclar,p

)

p = 2, . . . , 4

dX5

dt
=

1

z5

(

QfXf

A
+ Jclar,4 − (vup − vdn)X5 − Js,6

)

dX6

dt
=

1

z6
vdn(X5 −X6)

dX7

dt
=

1

z7

(

vdn(X6 −X7) + Js,6 − Js,8

)

dX8

dt
=

1

z8
vdn(X7 −X8)

dX9

dt
=

1

z9

(

vdn(X8 −X9) + Js,8 − Js,9

)

dX10

dt
=

1

z10

(

vdn(X9 −X10) + Js,9

)

where subscript p represents a layer in the settler and ranges from p = 1, . . . , 10, Xp is the

concentration of the sludge in the p-th layer of the settler, zp is the height of each layer,

Jclar,p denotes the the flux in the clarification layer p (p = 1, . . . , 4), Js,p denotes the solid

flux due to gravity in layer p (p = 5, . . . , 10), vdn = Qr+Qw

A
and vup = Qe

A
with A being the

cross sectional area of the settler.
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The dynamics of the concentrations of the soluble materials in the settler are described

as follows:

• For layers (p = 1, . . . , 4):

dZs,p

dt
=

1

zp
vup

(

Zs,p+1 − Zs,p

)

• For the feed layer (p = 5):

dZs,5

dt
=

1

z5

(

QfZf

A
− (vdn + vup)Zs,5

)

• For layers (p = 6, . . . , 10):

dZs,p

dt
=

1

zp
vdn

(

Zs,p−1 − Zs,p

)

where Zs,p is the concentration of each soluble material in the p-th layer of settler.

The parameters of this process model can be found in [130].
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Chapter 7

Subsystem decomposition of process

networks for simultaneous distributed

state estimation and control

An appropriate subsystem configuration is a prerequisite for a successful distributed con-

trol/state estimation design. Existing subsystem decomposition methods are not designed

to handle simultaneous distributed estimation and control.we focus on subsystem decom-

position of nonlinear process networks for simultaneous distributed state estimation and

distributed control. To achieve this goal, in this chapter, we propose a systematic approach

based on the concept of community structure detection. We resort to the measure of modu-

larity to quantitatively assess the quality of different community structures. Specifically, the

state, manipulated input and measured output variables of a process are taken into account

and are viewed as vertices in a network. The ways to construct a directed graph containing

all the vertices and the corresponding adjacency matrix are presented. An implementa-

tion procedure based on approximate optimization of modularity is developed, such that

subsystem models for simultaneous distributed state estimation and distributed control can

be established by allocating vertices into communities based on modularity. The proposed
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method is applied to two process examples with different complexities. Candidate subsystem

structures that can be used for simultaneous distributed estimation and control are recom-

mended by the proposed method for each process example. This chapter is a revised version

of [73].

7.1 Preliminaries

7.1.1 Notation

Lfh represents the Lie derivative of function h with respect to function f , defined as Lfh(x) =

∂h
∂x
f(x). Lr

fh represents the r-th order Lie derivative of function f , defined as Lr
fh(x) =

LfL
r−1
f h(x). δij is the Kronecker delta function of two variables i and j such that δij = 1 if

i = j or δij = 0 if i 6= j.

7.1.2 System model

In this work, we consider a class of process network systems that can be described by the

following general form:

ẋ(t) = f (x(t), u(t), p(t)) (7.1a)

y(t) = h (x(t)) (7.1b)

where x ∈ Rnx denotes the state vector of the nonlinear system, y ∈ Rny is the vector

containing all the measured outputs, u ∈ Rnu is the vector of the manipulated inputs,

p ∈ Rnp is the vector of time-varying parameters (i.e., time-varying disturbances to the

system that are exactly known.).
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7.1.3 Subsystem model

In this work, the objective is to decompose the entire process network system described

in (7.1) into subsystems that are appropriate for simultaneous distributed estimation and

control. Specifically, we aim to decompose system (7.1) into q subsystems in the following

form:

ẋ(i)(t) =f (i)
(

x(i)(t), X(i)(t), u(i)(t), ū(i)(t), pi(t)
)

(7.2a)

y(i)(t) =h(i)(x(i)(t)) (7.2b)

where x(i) ∈ R
n
x(i) is the state vector of the i-th subsystem, u(i) ∈ R

n
u(i) and ū(i) ∈ R

n
ū(i)

together (i.e.,
[

u(i)
T
ū(i)

T
]T

) account for manipulated inputs to the i-th subsystem, y(i) ∈

R
n
y(i) is the vector of measured outputs of subsystem i, p(i) ∈ R

n
p(i) is a vector containing

time-varying parameters that explicitly affect the dynamics of x(i), X(i) ∈ R
n
X(i) represents

a vector containing the states of neighboring subsystems that directly affect the dynamics of

x(i), i ∈ {1, . . . , q}. For example, if the dynamics of subsystem 4 is affected directly by the

states of subsystem 1, subsystem 3 and subsystem 4, then one has X(4) =
[

x(1)
T
x(3)

T
]T

.

Note that the manipulated input vector of the i-th subsystem comprises two parts: u(i) de-

notes manipulated inputs determined by the local controller of subsystem i, and ū(i) denotes

manipulated inputs that affect subsystem i but determined by controllers of other subsys-

tems. This means that, for the local controller of subsystem i, i = 1, . . . , q, u(i) contains its

decision variables and ū(i) contains known input information generated by and sent from the

controller(s) of the interacting subsystem(s).

7.1.4 Directed graph

In the proposed approach, directed graph is used to determine the connectivity between state,

manipulated and output variables. For system (7.1), a directed graph can be constructed by

treating the state, manipulated, output variables as vertices that are connected via directed
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edges. Let xi denote the i-th element of vector x, i = 1, . . . , nx, yj denote the j-th

measured output of vector y, j = 1, . . . , ny, and uk denote the k-th input variable of

vector u, k = 1, . . . , nu. Further, let us denote by fi the i-th element of the vector field f ,

i = 1, . . . , nx, and denote by hj the j-th element of the vector field h, j = 1, . . . , ny. The

edges can be placed based on the following rules [118, 132]:

• State-to-state edge: there exists a unidirectional edge from xi to xk, if ∂fk(x, u)/∂xi 6=

0, k, i = 1, . . . , nx.

• Input-to-state edge: there exists a unidirectional edge from ui to xk, if ∂fk(x, u)/∂ui 6=

0, k = 1, . . . , nx, u = 1, . . . , nu.

• State-to-output edge: there exists a bidirectional edge between xi and yj, if ∂hj(x)/∂xi 6=

0, j = 1, . . . , ny, i = 1, . . . , nx.

Remark 42. We note that the rules used in this work for constructing edges between vari-

ables are slightly different from those adopted in existing literature [118, 137, 61, 72, 132].

Specifically, while the state-to-state edges and input-to-state edges are still unidirectional, the

edges that connect the state and measured output variables are bidirectional. This is due to

the consideration that the output measurement equations (i.e., hi, 1, . . . , ny) are algebraic

equations instead of differential equations.

7.1.5 Observability of nonlinear systems

When state estimation is considered, observability of the states based on given output mea-

surements is important. One approach to check the observability of a nonlinear system is to

check whether the full-rank condition is satisfied by the corresponding nonlinear observability
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matrix Q(x), which is defined as follows [30]:

Q(x) =
d

dx



















h(x)

Lfh(x)

...

Ln−1
f h(x)



















. (7.3)

However, when the order of a system is large, it may be challenging to obtain higher order

Lie derivatives or the observability matrix may be ill-conditioned. In these cases, a practical

approach is to linearize the nonlinear system at different points along typical operating

trajectories and check the observability of the linearized systems. If the linearized models

are observable, it can be concluded that the nonlinear system is locally observable along the

considered trajectories.

The above methods will be used to test the observability of a considered process as well

as the observability of each decomposed subsystem.

7.1.6 Community structure detection

In this section, we briefly review the method of community structure detection for directed

networks, which will be used for subsystem decomposition. The community structure de-

tection method has been considered as an effective tool to divide a large-scale network into

communities/groups such that the connection within each group is denser while the inter-

group connection is made sparser [144, 145]. In these approaches, the quality of a certain

community structure is quantitatively assessed by the measure of modularity [142]. In this

work, we use the approach proposed in [145] for directed networks.

Specifically, consider a network of n interconnected vertices. The modularity of a com-
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munity structure can be calculated as follows:

Q =
1

m

∑

i,j=1,...,n

(

Aij −
kini k

out
j

m

)

δci,cj (7.4)

where kini and kouti are the in-degrees and the out-degrees of vertex i (i.e., the numbers of

edges entering and leaving vertex i, i = 1, . . . , n), respectively, m is the total number of

edges in the directed graph, ci is an integer labelling the community to which vertex i, i =

1, . . . , n, belongs, Aij is the i-th element of the j-th of the adjacency matrix for the considered

network. Aij = 1 if there is a directed edge from vertex j to vertex i (j, i ∈ {1, · · · , n}) and

Aij = 0 otherwise. Note that in this work, self edges (i.e., directed edges, each of which exits

from/enters the same vertex) are not taken into account in the construction of an adjacency

matrix; that is, the diagonal elements of an adjacency matrix are always zero regardless of the

existence of self edges. In (7.4), the term
kini koutj

m
measures the probability of having an edge

from vertex j to vertex i edges between the two vertices in the case of a randomized network

where the edges are randomly placed. The value of modularity can be either positive or

negative, with positive modularity values indicating that there are more within-community

edges than expected. Since larger positive values indicate better community structures, the

problem of finding the best community structure is equivalent to maximizing the modularity

value over all possible community structure candidates. The optimal community structure

can be found by finding the feasible label sequence {c1, . . . , cn} such that Q in Eq.(7.4) is

maximized given a known adjacency matrix. In practice, a modularity value greater than

0.3 often indicates a good community structure [146].

7.2 Proposed subsystem decomposition method

In this section, we present the proposed subsystem decomposition method for process net-

works for simultaneous distributed estimation and control. From the perspective of com-

munity structure detection, the original nonlinear system can be viewed as a large network,
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7.2.1 Consideration on observability and stabilizability

To design a state estimation based control system, it is necessary to ensure that the entire

system satisfies detectability (or observability) and stabilizability (or controllability) simul-

taneously in the operating region. In the first step of the proposed method, we check if

system (7.1) is both observable and stabilizable. To verify the observability of system (7.1),

the method described in Section 7.1.5 is used. Note that we can check the stabilizability

of the system in a similar way at each point along the typical operating trajectories. If

system (7.1) is either unobservable or unstabilizable, further steps in the proposed method

cannot be carried out. In this case, the measured outputs or the manipulated inputs should

be re-constructed accordingly and then the observability and stabilizability of the system

should be examined again.

Remark 43. It is more often to consider detectability and stabilizability of a nonlinear

process. In this work, we require the entire system in (7.1) to be observable along typical

trajectories, which is stricter than requiring the system to be detectable. This is because

time-varying parameters are considered in system (7.1). When the system is not under a

steady-state operation, detectability may not suffice for obtaining accurate state estimates.

Therefore, we require that the system is locally observable at each point along typical operating

trajectories.

7.2.2 Adjacency matrix construction

After ensuring the entire system satisfies observability and stabilizability, an adjacency ma-

trix should be constructed for system (7.1) for subsystem decomposition. To account for

both state estimation and control, all the state, manipulated input and measured output

variables are considered as vertices. In total, there are nd (where nd = nx + ny + nu)

vertices in the directed graph constructed based on (7.1). Let cd denote an augmented

vector such that cd = [x1, . . . , xnx
, u1, . . . , unu

, y1, . . . , yny
]. The i-th element of cd cor-
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responds the i-th vertex in the directed graph of system (7.1). Accordingly, we use sd

(sd = [cx1 , . . . , cxnx
, cu1 , . . . , cunu

, cy1 , . . . , cyny
]) to denote a nd-dimensional vector in which

the i-th element is the community label of the i-th vertex in cd, i = 1, . . . , nd.

An nd × nd adjacency matrix Ad involving all the vertices in cd can be generated based

on the directed edges between the vertices in cd. However, the construction of Ad via

examining the existence of directed edges between each two vertices in a directed graph can

be demanding when nd is not small. Alternatively, we can obtain Ad based on Jacobian

matrices of the vector fields f and h in (7.1). Specifically, let us define:

Ā =
∂f(x, u)

∂x

∣

∣

∣

∣

(xs,us)

, B̄ =
∂f(x, u)

∂u

∣

∣

∣

∣

(xs,us)

, C̄ =
∂h(x)

∂x

∣

∣

∣

∣

xs

(7.5)

where (xs, us) denotes an equilibrium point of system (7.1).

Then, a matrix is constructed as follows:

Ād =













Ā B̄ C̄T

0nu×nx
0nu×nu

0nu×ny

C̄ 0ny×nu
0ny×ny













nd×nd

Ad can be obtained based on Ād by: (1) substituting all non-zero elements in Ād by 1; (2)

setting all the diagonal elements in Ād to be zero.

Remark 44. In this work, the adjacency matrix constructed for subsystem decomposition can

be considered as a non-trivial extension of the ones defined in existing literature [132, 102].

Measured output variables are also incorporated as vertices for community structure detection

in order to handle distributed state estimation. Both C̄T and C̄ are used in constructing the

adjacency matrix, which accounts for the bidirectional edges between state and measured

output variables as defined in Section 7.1.4. Also, the way used in this work to construct the

adjacency matrix is more efficient due to the use of Jacobian matrices instead of examining

the existence of directed edges between each two vertices.
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Remark 45. In applications, there can be elements with very small absolute values in the

Jacobian matrices Ā, B̄ and C̄ due to numerical precision. This issue may be handled by

specifying a small positive threshold such that an element in Ad is not treated as zero only if

the absolute value of the element in Ad is greater than the threshold.

7.2.3 Initialization of the community structure

Based on the constructed adjacent matrix, we can move forward with community detection

for subsystem decomposition. To perform community structure detection via finding a higher

modularity value defined in (7.4), an initial community structure is always required. Consider

an initial structure sd(0) = [cx1(0), . . . , cxnx
(0), cu1(0), . . . , cunu

(0), cy1(0), . . . , cyny
(0)] where

each element represents the community label of the corresponding variable. The values of

the elements in sd(0) are dependent on different approximation methods that can be adopted

to solve the problem. In this work, the fast unfolding algorithm [143] is used for community

structure detection, and the community structure is initialized by assigning the i-th vertex

in sd to the i-th community, i = 1, . . . , nd; that is, sd(0) = [1, 2, . . . , nd].

While this type of initialization can help achieve a higher modularity value via imple-

menting the fast unfolding algorithm, constraints on the subsystem structure due to the

form of the measured output model in (7.2b) are not taken into account. Specifically, from

the model in (7.2b), it is seen that each measured output of a subsystem is only depen-

dent on the state(s) of the same subsystem. This implies that for each measured output

yi, i = 1, . . . , ny, all the state variables involved in the argument of scalar function hi(·)

(i.e., the state variables that directly affect yi) should be finally assigned to the same com-

munity that yi belongs to. To handle this issue, we update the initial structure sd(0) by

incorporating the above constraint. This is done through two steps:

• For each state variable xi, i = 1, . . . , nx, find all the measured outputs that have state-

to-output edges with respect to xi, and assign these measured outputs to the same

community.
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• For each measured output yj, j = 1, . . . , ny, find all the state variables that have

state-to-output edges with respect to yj, and assign these state variables to the same

community to which yi belongs.

The updated community structure is denoted as s′d(0). s′d(0) will be used as the initial

community structure in subsystem decomposition instead of sd(0) .

7.2.4 Community detection for subsystem configuration

In the proposed procedure, the desired number of subsystems should be pre-specified. Once

the number of subsystems is specified, the proposed procedure finds subsystem configurations

(in which each subsystem is a community) that maximize the modularity that is defined in

Section 7.1.6. To address the computational issue of modularity maximization, the fast

folding algorithm proposed in [143] is adopted in our work. Based on the initialization in

Section 7.2.3 and the pre-specified number of subsystems, we carry out the following steps

to detect the communities for subsystem decomposition:

1. (Initial aggregation of vertices) For the initial community structure, calculate the

modularity value following Eq.(7.4), and aggregate the vertices from each community

(if there are more than one vertex) into an aggregated vertex. Set k = 0.

2. (Community detection based on modularity maximization) Compare nc(k)

and q. If nc(k) > q, go to Step 2.1. Else, go to Step 4.

2.1 Repeat the following steps for each vertex (including aggregated vertex) i, i =

1, . . . , nc(k):

2.1.1 For each neighboring vertex (including aggregated vertex) of vertex i, i.e.,

vertex j, calculate the change in the modularity value (i.e., ∆Q) by moving

vertex i from its current community to the community of vertex j.
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2.1.2 Find the maximum ∆Q > 0 that can be achieved in the previous step and

place each vertex i in the corresponding community. And aggregate the ver-

tices in that community into a new aggregated vertex.

2.2 Set nc(k+1) to be the number of communities after vertex aggregation. If nc(k+

1) < nc(k), go to Step 2.3. Else, go to Step 3.

2.3 If nc(k + 1) ≥ q, set k = k + 1 and go to Step 2. Else if nc(k + 1) < p, find the

community structure of p communities (equivalently, p vertices) with the largest

modularity value among all the structures of p communities. Go to Step 4.

3. (Community detection subject to smallest decrease in modularity) Compare

nc(k) and q. If nc(k) > q, go to Step 3.1. Else, go to Step 4.

3.1 Repeat the following steps for each vertex i (including aggregated vertex), i =

1, . . . , nc(k):

3.1.1 For each neighboring vertex (including aggregated vertex) of vertex i, i.e.,

vertex j, calculate the change in the modularity value (i.e., ∆Q) by moving

vertex i from its current community to the community of vertex j.

3.1.2 Find the minimum |∆Q| (denoted as |∆Q(i)|min) that can be achieved among

all the neighboring vertices.

3.2 Find the minimum decrease in the modularity value (denoted as |∆Q|min) with re-

spect to all the currently existing vertices, i.e., |∆Q|min := min {|∆Q(i)|min : i = 1,

. . . , nc(k)}, and find the corresponding vertex placement.

3.3 Place the corresponding vertex in the appropriate community which leads to

|∆Q|min. And aggregate the vertices in this community into a new vertex.

3.4 Set nc(k + 1) to be the number of vertices after aggregation. Set k = k + 1 and

go to Step 3.

4. (Forming subsystem models based on the communities) Form each subsystem
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model in the form of (7.2) by selecting elements of the vector field f that correspond

to the state variables in each community.

5. For each subsystem i, form vector u(i) using the manipulated input variables in the

corresponding community and then form vector ū(i).

The following numerical example is used to better explain Step 4 and Step 5 in the above

procedure.

Example 4. Let us consider the following linear state-space model:

ẋ1 = − 4x1 + 2.5x2 + u1 + 0.3u2 (7.6a)

ẋ2 = 0.1x1 − 5x2 (7.6b)

ẋ3 = 13x1 − 22x3 + 2x4 + 0.1u1 + u2 (7.6c)

ẋ4 = 13x2 − 0.1x3 − 23x4 (7.6d)

ẏ1 = x1 (7.6e)

ẏ2 = x3 (7.6f)

where x1, x2, x3 and x4 are the system states, u1 and u2 are two manipulated inputs, and

y1 and y2 are the two measured outputs.

Let us consider decomposing the above system into two subsystems. Following Steps

1-3 of the procedure, two communities can be found as follows: the first community contains

vertices x1, x2, u1 and y1 while the second community contains vertices x3, x4, u2 and y2.

The state variables in the first community are x1 and x2, so that the first two differential

equations in Eq.(7.6) (i.e., Eq.(7.6a) and Eq.(7.6a) constitute the model of subsystem 1

according to Step 4 of the above procedure. Further, since both u1 and u2 exist in the model

of subsystem 1 and only u1 is in the first community, we have u(1) = u1 and ū(1) = u2

according to Step 5. Similarly, Eq.(7.6c) and Eq.(7.6d) account for the model of subsystem

2, and we have u(2) = u2 and ū(2) = u1.
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Remark 46. Step 3 is carried out when nc(k + 1) = nc(k). This means that the maximum

modularity value has been achieved, and further improvement in the modularity value cannot

be made (no ∆Q > 0 can be achieved via moving a vertex to any other community). In this

case, if the number of communities is greater than p, we need to further combine communities

although the modularity value will not increase any more. Step 3 aims to reduce the number

of communities by one in each iteration with minimal decrease in the modularity value, until

the requirement on the number of subsystems (communities) is satisfied.

7.2.5 Structure validity test

Following the algorithm in the previous section, we can get candidates of subsystem con-

figuration. We need to perform a structure validity test to confirm that the subsystem

configuration candidates are proper. Specifically, this test is to verify that all the input

variables placed in community i are included in the input vector u(i) of the corresponding

subsystem.

For subsystem i, one implication is that vector u(i) needs to contain all the manipulated

input variables in the corresponding community. This requires that the available input

variables in the model of subsystem i formed based on the procedure proposed in Section 7.2.4

should include all the input variables assigned to the corresponding community. Therefore,

we use this test to verify that the configured subsystem model does not violate the structure

of the corresponding community.

7.2.6 Subsystem observability and stabilizability test

The obtained subsystem configurations with maximal modularity values are also required to

satisfy observability (or detectability) and controllability (or stabilizability) criteria. After

the obtained subsystem configurations pass the “structure validity test”, subsystem observ-

ability and stabilizability are examined. For nonlinear systems, it can be difficult to check

observability and stabilizability directly when the scale of the nonlinear system is not small.
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A dynamic model of 12 differential equations is established to describe the dynamics of the

process. The model, the definitions of the variables involved in the model and a more detailed

description of the process can be found in [5, 103]. The values of the model parameters used

in the current work are the same as those in [102, 103]. This process has 12 state variables,

including xAi (the mass fraction of material A in the i-th vessel), xBi (the molar fraction of

material A in the i-th vessel), Ti (the temperature in the i-th vessel), Vi (the liquid holdup

volume in the i-th vessel), i = 1, 2, 3. The manipulated inputs include the flow rates of the

feed streams to the first and the second reactor (Ff1 and Ff2, respectively), the flow rates

of the effluent streams of the three vessels (Fi, i = 1, 2, 3), the recycle flow rate (i.e., FR)

and the heating inputs to the three vessels (Qi, i = 1, 2, 3). It is assumed that the mass

fractions are not measured and only temperatures and holdup volumes (Ti, Vi, i = 1, 2, 3)

are measured online. Let us consider that we want to decompose the entire system to 3

subsystems (i.e., q = 3).

Subsystem decomposition of this process was also studied in [102, 132, 103]. However, in

[102, 132, 103], subsystem decomposition of this process was investigated without explicitly

considering distributed state estimation.
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Table 7.1: Subsystem decompositions for the reactor-separator process using the method in
[132, 103]

Decomposition A.1 (Decomposition 1 in [103])

Subsystem States
Manipulated

inputs

Available output

measurements

1 V1, T1, xA1, xB1 Ff1, FR, Q1 T1, V1

2 V2, T2, xA2, xB2 Ff2, F1, Q2 T2, V2

3 V3, T3, xA3, xB3 F2, F3, Q3 T3, V3

Decomposition A.2 (Decomposition 2 in [103])

Subsystem States
Manipulated

inputs

Available output

measurements

1 V1, T1, xA1, xB1 Ff1, Q1 T1, V1

2 V2, T2, xA2, xB2 Ff2, F1, Q2 T2, V2

3 V3, xA3, xB3 F2, F3, FR V3

4 T3 Q3 T3

Decomposition A.3 (Decomposition 4 in [103])

Subsystem States
Manipulated

inputs

Available output

measurements

1 xA1, xA2, xA3, xB1, xB2, xB3 Ff1, Ff2, FR n/a

2 V1, V2, V3 F1, F2, F3 V1, V2, V3

3 T1, T2, T3 Q1, Q2, Q3 T1, T2, T3

∗ State variables in bold cannot be estimated using the available measurements of the
corresponding subsystem

∗∗ “n/a” means that no variable is assigned to the corresponding subsystem

Table 7.1 and Table 7.2 show the subsystem decomposition results reported in [103,

132] and [102], respectively. Among all the decompositions, Decomposition A.1 which was

reported in [103, 132] is the only one that can be used for simultaneous distributed state

estimation and control given the available measurements. In Decomposition A.2, the states

xA3 and xB3 assigned to subsystem 3 cannot be estimated based on the single measurement

of V3. In Decomposition A.3, no subsystem measurement is available, such that the states
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Table 7.2: Subsystem decompositions for the reactor-separator process based on [102]

Decomposition A.4 (First structure recommended by [102])

Subsystem States
Manipulated

inputs

Available output

measurements

1 xB1, T1 Ff1, Q1 T1

2 xB2, T2, T3 Ff2, Q2, Q3 T2, T3

3 V1, V2 F1 V1, V2

4 xB3, V3 F2, FR, F3 V3

Decomposition A.5 (Second structure recommended by [102])

Subsystem States
Manipulated

inputs

Available output

measurements

1 xB1, xB2 Ff1, Ff2 n/a

2 T1, T2, T3 Q1, Q2, Q3 T1, T2, T3

3 V1, V2 F1 V1, V2

4 xB3, V3 F2, F3, FR V3

∗ State variables in bold cannot be estimated using the available mea-
surements of the corresponding subsystem

∗∗ “n/a” means that no variable is assigned to the corresponding sub-
system

assigned to subsystem 1 cannot be estimated. Similarly, certain state(s) in Subsystem 4 of

Decomposition A.4 and Subsystem 1 of Decomposition A.5 (highlighted in bold) cannot be

estimated due to insufficient subsystem measurement(s). Neither decomposition obtained

using [102] can be used for simultaneous distributed state estimation and control given the

available measurements. While the method in [132, 103] indeed gives one decomposition

(Decomposition A.1 in Table) that can be used for simultaneous distributed state estimation

and control, it may fail to give any feasible decompositions for larger-scale processes when

distributed state estimation is also considered as demonstrated in the example discussed in

the next section.

Next, the proposed method is applied to the process. Two subsystem configurations are
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Table 7.3: Subsystem decomposition for the reactor-separator process based on the proposed
method

Decomposition A.6 (Q = 0.4458)

Subsystem States
Manipulated

inputs

Available output

measurements

1 V1, T1, xA1, xB1 Ff1, Q1 T1, V1

2 V2, T2, xA2, xB2 Ff2, F1, Q2 T2, V2

3 V3, T3, xA3, xB3 F2, F3, FR, Q3 T3, V3

Decomposition A.7 (Q = 0.4417)

Subsystem States
Manipulated

inputs

Available output

measurements

1 V1, T1, xA1, xB1 Ff1, FR, Q1 T1, V1

2 V2, T2, xA2, xB2 Ff2, F1, Q2 T2, V2

3 V3, T3, xA3, xB3 F2, F3, Q3 T3, V3

found and are presented in Table 7.3. The only difference between the two decompositions is

that the recycle flow FR is assigned to different subsystems for control. Both decompositions

capture the physical topology of the process well. This may be because the interaction of

the state dynamics within each vessel is relatively strong, while the interaction between the

vessels (via effluent and recycle streams) is comparatively weaker. Note that the second

decomposition (Decomposition A.7) obtained based on the proposed method is consistent

with Decomposition A.1 reported in [103, 132] in terms of state and manipulated input

variables.
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a portion of the underflow of the settler is sent back to the first chamber at flow rate Qr

and concentration Zr; (c) the rest of the underflow is discharged through the bottom layer

at flow rate Qw. In the process model, we take into account eight major biological reactions,

and 13 major compounds are considered in these reactions. The concentrations of the 13

compounds in the five chambers are the state variables of the model of the biological reactor.

The 13 state variables for each chamber are listed in Table 7.4. The model of the settler is

established based on mass balances of the sludge considering solid flux due to gravity [133].

Specifically, 8 states are taken into account in the model of each layer of the settler, including

SO, SALK , SNH , SNO, SS, SI , SND and X. X represents the concentration of suspended

solids of a layer, which is the summation of XS, XI , XBA
, XBH

, XP and XND in the corre-

sponding layer. In the remainder, we use xsi,l , i = 1, . . . , 8, to denote the concentrations SO,

SALK , SNH , SNO, SS, SI , SND and X in l-th layer (l = 1, . . . , 10) of the settler, respectively.

In total, 145 states are used to capture the dynamics of the WWTP based on BSM1. A

more detailed description, the process model and the model parameters of the WWTP are

given in [130].

7.4.2 Manipulated inputs and measured outputs

In this work, four manipulated inputs are taken into account: the flow rate of the recirculation

stream (denoted by Qa) and the oxygen transfer rate in each of the aerobic chambers of the

biological reactor (denoted by KLa3, KLa4 and KLa5, respectively).

For WWTP described by the BSM1, we consider that there are 56 measured output

variables available for state estimation. In each chamber of the biological reactor, the con-

centrations of dissolved oxygen, free and saline ammonia (i.e., NH3 and NH4+), nitrate and

nitrate nitrogen, alkalinity, chemical oxygen demand (COD), filtered chemical oxygen de-

mand (CODf ), biological oxygen demand (BOD) and the concentration of suspended solids

can be measured online [123, 130]. In the settler, the states of the top layer and the bot-

tom layer are measured online. The output measurements in each chamber of the biological

195



Table 7.4: State variables of the i-th chamber (i = 1, . . . , 5) of the biological reactor

State Definition Unit Notation

XI inert particulate organic matter g COD ·m−3 xci,1

SI inert soluble organic matter g COD ·m−3 xci,2

Xs slowly biodegradable and soluble substrate g COD ·m−3 xci,3

Ss readily biodegradable and soluble substrate g COD ·m−3 xci,4

XP particulate generated from decay of organisms g COD ·m−3 xci,5

XND particulate biodegradable organic nitrogen g N ·m−3 xci,6

XBA
biomass of active autotrophs g COD ·m−3 xci,7

XBH
biomass of active heterotrophs g COD ·m−3 xci,8

SNO nitrite nitrogen and nitrate g N ·m−3 xci,9

SNH free and saline ammonia g N ·m−3 xci,10

SO dissolved oxygen g (-COD) ·m−3 xci,11

SALK alkalinity mol ·m−3 xci,12

SND biodegradable and soluble organic nitrogen g N ·m−3 xci,13

reactor are described in Table 7.5. In this table, yci,l represents the l-th measurement of

chamber i, i = 1, . . . , 5, l = 1, . . . , 8. The output measurements in the top/bottom layer of

the reactor are shown in Table 7.6. In this table, ysi,l denotes the measurement of state xsi,l

(i = 1, . . . , 8) in the top layer (when l = 1) or the bottom layer (when l = 10).

7.4.3 Subsystem decomposition

Now, we apply the proposed method to decompose the WWTP into subsystems for simul-

taneous distributed state estimation and distributed control. There are 205 vertices (145

states, 4 manipulated inputs and 56 measured outputs). Suppose that we would like to de-

compose the plant into six subsystems (i.e., q = 6). The top three decomposition candidates

are given in Table 7.7.

In Decomposition B.1, the modularity value is large (Q = 0.6068), which indicates a very

good subsystem structure. Subsystem 1 contains all the states and measurements of the
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Table 7.5: The output measurements in the i-th chamber (i = 1, . . . , 5) of the biological
reactor

Output measurement variable Expression in the form of system state(s) Symbol

concentration of dissolved oxygen SO yci,1

concentration of nitrate

and nitrite nitrogen
SNO yci,2

concentration of NH3 and NH4+ SNH yci,3

concentration of alkalinity SALK yci,4

COD SS + SI +XS +XI +XBA
+XBH

yci,5

concentration of suspended solids XS +XI +XBA
+XBH

+XP +XND yci,6

CODf SS + SI yci,7

BOD SS +XS yci,8

Table 7.6: Output measurements in the top layer (l = 1) and bottom layer (l = 10) of the
settler

Output measurement variable Expression in the form of system state(s) Symbol

concentration of dissolved oxygen SO ys1,l

concentration of alkalinity SALK ys2,l

concentration of NH3 and NH4+ SNH ys3,l

concentration of nitrate

and nitrite nitrogen
SNO ys4,l

concentration of readily biodegradable

and soluble substrate
SS ys5,l

concentration of inert soluble

organic matter
SI ys6,l

concentration of biodegradable

and soluble organic nitrogen
SND ys7,l

concentration of suspended solids XS +XI +XBA
+XBH

+XP +XND ys8,l

first and the fifth chambers of the reactor, the states associated with the concentration of

X in the ten layers of the settler, the measured concentrations of X in the top and bottom
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layers, , and the manipulated input KLa5. Subsystem 2 contains the state and measurement

variables of chamber 2 and the manipulated input variable Qa. Subsystem 3 to subsystem 4

each contains the state, measurement and manipulated variables of chamber 3 to chamber

4, respectively. As stated in [130, 149, 150], Qa is often used to control the nitrate level

in the second chamber and KLa is to control the dissolved oxygen in the corresponding

chamber. Therefore, the allocation of the manipulated inputs aligns with common control

strategies for the WWTP. Subsystem 5 contains the states associated with SI , SS, SNH and

SND in the ten layers of the settler and the associated measurements, while Subsystem 6

contains the states and the measurements associated with SO, SNO and SALK in the settler.

No manipulated inputs are included in either Subsystem 5 or Subsystem 6. Note that this

does not deteriorate local stabilizability of the two subsystems. This is because Subsystem

5 (Subsystem 6) has linear local dynamics when treating its interacting dynamics as known

inputs, and the local dynamics of Subsystem 5 (Subsystem 6) is open-loop asymptotically

stable.

The modularity values for the other two decompositions are slightly smaller. As shown

in Table 7.7, these two decompositions (Decomposition B.2 and B.3) are the same as De-

composition B.1 except in the last two subsystems, and serve as backup options.

Next, the method in [132, 103] is also applied to the WWTP. In the construction of the

adjacency matrix, the states and the manipulated inputs are considered as vertices while

the measurement outputs are excluded. A structure of 14 communities leads to the maxi-

mal achievable modularity value (0.5784) based on this method. However, there are several

subsystems that are not assigned with any available output measurements, which leads to

unobservability of the subsystems. Totally, nine subsystem structures with different number

of subsystems are obtained at different levels of sub-divisions after fine-tuning. Given the

available measured outputs described in Section 7.4.2, none of these candidate decomposi-

tions can pass the subsystem observability test. The above results show the necessity of using

the method proposed in this work for subsystem decomposition for simultaneous distributed
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state estimation and control.
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Table 7.7: Six-subsystem structures for the WWTP

Decomposition B.1 (Q = 0.6068)

Subsystem States
Manipulated

inputs

Output

measurements

1
xc1,i , xc5,i (i = 1, . . . , 13),

xs8,j (j = 1, . . . , 10)
KLa5

yc1,i , yc5,i (i = 1, . . . , 8),

ys8,1 , ys8,10

2 xc2,i (i = 1, . . . , 13) Qa yc2,i (i = 1, . . . , 8)

3 xc3,i (i = 1, . . . , 13) KLa3 yc3,i (i = 1, . . . , 8)

4 xc4,i (i = 1, . . . , 13) KLa4 yc4,i (i = 1, . . . , 8)

5
xs3,i , xs5,i , xs6,i , xs7,i

(i = 1, . . . , 10)
n/a

ys3,1 , ys3,10 , ys5,1 , ys5,10
ys6,1 , ys6,10 , ys7,1 , ys7,10

6 xs1,i , xs2,i , xs4,i (i = 1, . . . , 10) n/a
ys1,1 , ys1,10 , ys2,1 , ys2,10

ys4,1 , ys4,10

Decomposition B.2 (Q = 0.60544)

Subsystem States
Manipulated

inputs

Output

measurements

1
xc1,i , xc5,i (i = 1, . . . , 13),

xs8,j (j = 1, . . . , 10)
KLa5

yc1,i , yc5,i (i = 1, . . . , 8),

ys8,1 , ys8,10

2 xc2,i (i = 1, . . . , 13) Qa yc2,i (i = 1, . . . , 8)

3 xc3,i (i = 1, . . . , 13) KLa3 yc3,i (i = 1, . . . , 8)

4 xc4,i (i = 1, . . . , 13) KLa4 yc4,i (i = 1, . . . , 8)

5 xs3,i , xs6,i (i = 1, . . . , 10) n/a ys3,1 , ys3,10 , ys6,1 , ys6,10

6
xs1,i , xs2,i , xs4,i , xs5,i , xs7,i

(i = 1, . . . , 10)
n/a

ys1,1 , ys1,10 , ys2,1 , ys2,10 , ys4,1 , ys4,10
ys5,1 , ys5,10 , ys7,1 , ys7,10

Decomposition B.3 (Q = 0.60544)

Subsystem States
Manipulated

inputs

Output

measurements

1
xc1,i , xc5,i (i = 1, . . . , 13),

xs8,j (j = 1, . . . , 10)
KLa5

yc1,i , yc5,i (i = 1, . . . , 8),

ys8,1 , ys8,10

2 xc2,i (i = 1, . . . , 13) Qa yc2,i (i = 1, . . . , 8)

3 xc3,i (i = 1, . . . , 13) KLa3 yc3,i (i = 1, . . . , 8)

4 xc4,i (i = 1, . . . , 13) KLa4 yc4,i (i = 1, . . . , 8)

5 xs5,i , xs7,i (i = 1, . . . , 10) n/a ys3,1 , ys3,10 , ys6,1 , ys6,10

6
xs1,i , xs2,i , xs3,i , xs4,i , xs6,i

(i = 1, . . . , 10)
n/a

ys1,1 , ys1,10 , ys2,1 , ys2,10 , ys3,1 , ys3,10
ys4,1 , ys4,10 , ys6,1 , ys6,10
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Chapter 8

Conclusions and Future work

8.1 Conclusions

In this thesis, we have proposed systematic approaches on subsystem decomposition and

distributed state estimation for nonlinear process networks.

In Chapter 2, two-time-scale nonlinear systems was considered and a distributed state

estimation method was proposed. Specifically, the nonlinear system was decomposed into a

fast system and several slow subsystems. Local MHE estimators were designed for the slow

subsystems and the fast system. The estimator for the fast system is not required to send

out any information. The convergence and ultimate boundedness of the estimation error

norm has been proved. The effectiveness of the proposed approach was illustrated using a

separator-reactor process example.

In Chapter 3, general nonlinear systems that can be decomposed into smaller subsys-

tems were considered. A systematic method to design distributed state estimation networks

was proposed. Specifically, decentralized local estimators were assumed to exist for the sub-

systems. A compensator that compensates for the dynamics of subsystem interaction was

designed and an augmented estimator for the corresponding subsystem was formed based on

the compensator. The augmented estimators were connected together via discrete-time in-
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formation exchange to form a distributed estimation scheme. Sufficient conditions were given

for the convergence and boundedness of the estimation error. Several application examples

were used to demonstrate the proposed approach.

In Chapter 4, distributed output-feedback FDI for nonlinear cascade processes was ad-

dressed. First, a distributed state estimation was designed based on the distributed state

estimation method proposed in Chapter 3. The convergence to zero of the estimation error of

the distributed estimation system in the fault-free context was proved. Then, a residual gen-

erator was developed for each subsystem to generate residual signals for FDI. A distributed

FDI mechanism applicable to both actuator faults and sensor faults was developed by eval-

uating the subsystem residual signals. Potential faults that can be detected and isolated

by the developed mechanism were also characterized. A froth flotation process was used to

verify the effectiveness of the developed FDI mechanism.

In Chapter 5, a subsystem decomposition procedure based on structural closeness for

distributed state estimation of nonlinear processes was proposed. Observability test of the

entire system, identification of observable states given each measured output, relative de-

gree analysis and sensitivity analysis between output measurements and system states were

included in the proposed procedure. Process examples were used to demonstrate the appli-

cability of the proposed techniques/procedure. The decomposition results for the examples

are reasonable and consistent with process topology.

In Chapter 6, the distributed state estimation problem for the wastewater treatment plant

was considered. Subsystem decomposition and distributed estimation design were systemat-

ically addressed in this chapter. Several key steps in the decomposition approach proposed

in Chapter 5 were taken advantage of. The plant was decomposed into smaller subsystems.

Then, a distributed MHE scheme was proposed for the WWTP. Innovation-based iterative

evaluation was also considered to reduce its computational complexity. Simulations were

carried out under different weather conditions. The proposed scheme can provide good state

estimates in different weather. Extensive comparisons with other state estimation methods
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were made to illustrate the advantages of the proposed method.

In Chapter 7, a systematic procedure was proposed for subsystem decomposition of gen-

eral nonlinear process networks for simultaneous distributed state estimation and distributed

control. The proposed procedure resorts to community structure detection based on modu-

larity maximization. A fast folding algorithm that approximately maximizes the modularity

was used in the proposed procedure to find candidate subsystem configurations. Two cri-

teria were proposed to find valid solutions from the candidate subsystem configurations for

simultaneous distributed estimation and control. We introduced two chemical process exam-

ples of different complexities to illustrate the effectiveness and applicability of the proposed

approach. The proposed method was also compared with the existing methods that focus

primarily on distributed control through the application to the two examples. The results

showed the advantage of the proposed procedure in terms of addressing simultaneous dis-

tributed state estimation and control.

8.2 Future work

• Event-triggered distributed moving horizon estimation. As discussed in this thesis, dis-

tributed moving horizon estimation (DMHE) has attracted great research attention

and has been considered to be a very effective solution to the state estimation problem

of large-scale processes. However, computation and communication resource required

for the implementation of a DMHE scheme is non-negligible and could be unaffordable.

Based on this consideration, it would be favorable to incorporate event-triggered con-

ditions in DMHE designs to reduce the evaluation and the communication frequency.

Event-triggered conditions should be properly determined. In addition, rigorous theo-

retical analysis of the stability of the estimation error dynamics needs to be carried out

for event-trigged DMHE methods, which have not been available in existing literature.

• Distributed output-feedback fault detection and isolation for general nonlinear systems.

203



This thesis has investigated the problem of distributed fault detection and isolation

using output-feedback. However, this work focused on cascade systems but not general

nonlinear systems. Sometimes one has to use a general nonlinear model to describe

the dynamics of a chemical process (e.g., when recycle streams exist). However, in a

distributed framework, the isolation of a possible fault is more challenging when only

output-feedback information is available. The design of an effective distributed FDI

mechanism for general nonlinear systems and the selection of appropriate detection

and isolation criteria are part of our future work.

• Distributed moving horizon estimation subject to unreliable communication/asynchronous

measurements. The implementation of a common DMHE design relies on a communi-

cation network that coordinates information exchange among local estimators. From

a practical point of view, there are some practice issues that may be encountered in

a communication network, including time-varying delays, data loss and asynchronous

measurements. In future work, it is worth investigating how to propose an effective

DMHE scheme to handle the above imperfections with respect to communication.

204



Bibliography

[1] P. D. Christofides, R. Scattolini, D. Muñoz de la Peña, and J. Liu. Distributed model
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