INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect repreduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

UNIVERSITY OF ALBERTA
PATH RESTORABLE NETWORKS

By @

RAINER R. IRASCHKO

A thesis submitted to the Faculty of Graduate Studies and
Research in partial fulfilment of the requirements for the degree
of Doctor of Philosophy

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

EDMONTON, ALBERTA

Spring 1997

il

National Library Bibliothéque nationale

of Canada du Canada

Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Your fia Volre référence

Qur file Notre référence

L’auteur a accord€ une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-34872-5

Canada

UNIVERSITY OF ALBERTA

Library Release Form

Name of Author: RAINER R. IRASCHKO
Title of Thesis: PATH RESTORABLE NETWORKS
Degree: DOCTOR OF PHILOSOPHY

Year this Degree Granted: 1997

Permission is hereby granted to the University of Alberta to reproduce single copies of
this thesis and to iend or sell such copies for private, scholarly, or scientific research pur-
poses only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as hereinbefore provided, neither the thesis nor any substantial
portion maybe printed or otherwise reproduced in any material form whatever without the
author’s prior written permission.

Revis L.

Rainer R. Iraschko

69 Johnson Street
Thonhill, Ontario
L3T 2N9

Date: Dee 5 199¢

To see a World in a Grain of Sand
And a Heaven in a Wild Flower

Hold Infinity in the palm of your hand
And Etemity in an hour!

1. William Blake, Auguries of Innocence

UNIVERSITY OF ALBERTA

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled

“Path Restorable Networks”

submitted by Rainer R. Iraschko in partial fulfiiment of the requirements for the degree

of Doctor of Philosophy.

Wayne D. Grover (Supervisor)

O/Z‘Le' ma«_ Greaer

Mike H. MacGregor (Co-SupeJrvisor)

/OB -

\/DaCe Allen (University ZTemal Examiner)

Jo Culbefson UL/A/
/ =y,

Jaft Conradl
Ry, (bl .

Bruce Cockburn

QA lismn

Janelle ' Harms

Date: Nov. 15, 1996

Abstract

Abstract

Intense competition between transport network service providers and the wide-
spread deployment of vulnerable high-capacity fiber optic transport facilities has created
the need for capacity-efficient transport networks with short restoration times. Ensuring
service continuity affordably and quickly is called the restoration problem in modem tele-
communications practice. Solving the restoration problem not only requires restoring a
failure quickly, but determining an economic capacity placement which permits full resto-
ration. This thesis solves the restoration problem in path restorable mesh networks by
formulating a capacity design methodology, and an optimized distributed real time path
restoration mechanism, named OPRA. .

One of the main contributions of this thesis is OPRA. OPRA synthesizes link-dis-
joint loop-free pathsets that are very close to the multicommodity, max-flow ideal by
autonomous, database-free, self-organizing interaction between nodes. The results pre-
sented in this thesis show that OPRA will in practice very likely restore a failure in a tightly
spared network in less than two seconds, regardless of a network’s size and topology,
the distribution of alarms in time, and the number and location of connected demand
pairs affected by a failure.

The second main contribution of this thesis is the capacity design methodology
which uses integer programming. The integer program formulated in this thesis uses flow
constraints based on a suitable set of predefined routes over which pathsets are imple-
mented to optimize the spare and/or working capacity of a path restorable network. The
results presented in this thesis show mesh restorable networks using path restoration are
the most capacity efficient, reducing the total capacity of the corresponding span restora-
ble network design by up to 19%.

Together these advances make feasible path restorable transport networks
which restore failures within two seconds and require less spare capacity than existing
transport networks. In the envisaged network, capacity would be minimized using the

integer program, and failures would be restored in real time in an entirely autonomous
distributed manner using OPRA.

Acknowledgements

During the past four years many people have encouraged and helped me
through my studies. There are so many individuals I'd like to acknowledge, it would be
impossible for me to list everyone on this page. Those of my friends not mentioned here
should know that their support was appreciated.

To begin, | want to thank my family. My family is my foundation which keeps me
strong and allows me to face life cheerfully. My Mom and Dad taught me that there is noth-
ing | can’t do. Their love and support gives me the strength and confidence | need to be
successful. | also want to thank my sister and “brother”, Elke and Ed, who helped me keep
life in perspective with weekend escapes “foreality” in the form of skiing and scrambling.

When | came to TRLabs four years ago my intent was to complete a M.Sc. The
prospect of doing a Ph.D. was intimidating and foreboding. Had Dr. Grover not recog-
nized my ability to complete a doctoral degree | would not be here today. | want to thank
Dr. Grover for his guidance during the past four years as my supervisor. | also want to
thank my co-supervisor, and paddling buddy, Dr. MacGregor. | also drew upon his knowl-
edge and advice frequently, which sometimes encouraged me to go windsurfing so that |
would maintain a healthy balance between work and piay.

Besides my supervisors, | want to thank all of the people at TRLabs. TRLabs is a
great place to study because of the people that work there. Jim Slevinsky whose musical
anecdotes made me laugh when | was stressed, deserves special mention. | also want to
acknowledge Nona McDonagh and Corinna Johnson who put up with me. | want to thank
the TRLabs gang: Jason “Stubby” Palm, Master Demetrious “Lou” Stamatelakis, Master
Danny Yau Chung Li, Dr. Ping Wan, and Master Ashish Duggal, who made working at
TRLabs enjoyable. | also want to mention Kent Ryhorchuk, who helped me obtain the IP
results presented in chapter 4, and became a very good friend.

In addition to my friends at TRLabs, | had the support of Dana Budnyk and David
Carr from the University of Alberta Ski Team. | also want to thank my good friends Allan
and Claudia Chow, Scott and Margret Mandel, Dean Michaels, and Jorge Nogera for
their support.

Finally | want to mention my girifriend Sue Lucenko. It is appropriate | thank her
last because she walked into my life in the final year of my studies during the most diffi-
cult time. Her love, patience, and care helped me endure to the end.

Table of Contents

Table of Contents
PART [: Introduction and Capaclty Placement Methodology 1
Chapter 1. Introduction and Background 2
1.1 The Restoration Problem 2
1.2 Economic Impact of Outages 2
1.2.1 Restoration Time Objectives 3
1.2.2 Capacity Efficiency Objectives 5
1.3 Present Methods for Transport Network Restoration 5
1.3.1 Automatic Protection Switching 6
1.3.2 Self-Healing Rings 8
1.4 Mesh Restoration of Transport Networks 11
1.4.1 Centralized vs. Distributed Restoration 12
1.4.2 Span vs. Path Restorationccccceeceeeceevecerrecrceceecessesccssssoenes 13
1.4.3 Preplanned vs. Dynamic Restoration 15
1.4.4 Optimized Distributed Dynamic Path Restorationccccceeeeeuueee. 17
1.5 Capacity Placement for Mesh Survivable Networksccccceecvecceescnencs 20
1.5.1 Using Heuristics to Solve the Capacity Placement Problem 20
1.5.2 Using Integer Programs to Solve the
Capacity Placement Problemeceeeerverecrneercsssessscecsssnsecsens 22
1.6 Research Contributions of this TheSISc.ccceceecerereecrerreresecerencccseesncans 26
1.7 0UtliNg Of TRESIS ..ccvveciiererircnsinsurenanssensssensansonsnescrssnsanssosessansssnssassssenes 27
Chapter 2. Transport NEtWOIKSc.cccercccenireenenssesaessneseessssessesnsesssassessasssssssssesoses 29
2.1 SONET reeseereserresaseaaetestesaestasaesarestasaresseessesarasanesnnes 29
2.1.1 Distributing Alarms in a SONET Network 32
2.1.2 SONET Data Communications Channel (DCC)cccveececerrcsans 35
2.1.3 State-based Signalling in a SONET Network .36
2.1.4 SONET DCSs eeeeneseesaearasssaesansssaransanes 37

2.2 Relationship to ATM

Table of Contents

Chapter 3. Restoration as a Routing Problem 45
3.1 Describing Transport Networks using Graph Theoretical Terms 45
3.2 Relating Path Restoration to Call and Data Routing a7
3.3 Routing Formulation for Path Restoration 49
3.4 Complexity Considerations 53
Chapter 4. Capacity Placement in Mesh Restorable Networks 56
4.1 Lower Bounds on Spare Capacity Requirements in
Span and Path Restorable Networks. ...56
4.2 Integer Program Formulation 62
4.2.1 Integer Program Formulation for Spare Capacity Placement
in Networks with Pre-defined Demand Routing 62
4.2.2 Integer Program Formulation for Combined Optimized Spare
and Working Capacity Placement 66
4.3 Networks Investigated 68
4.4 Capacity Placement Test Results 71
4.5 Discussion of Capacity Placement Resuits 79
4.5.1 Capacity Savings of Path Restoration in Networks with
Pre-defined Demand Routing w . 79
4.5.2 Capacity Savings due to Joint Working and
Spare OptimMIZAtionc.cceecerverererseeessnessesesencessssensons .81
4.5.3 Routing Effects of Joint Working and Spare Optimization 82
4.6 Summary of [P Network Designscceeeeecceeercceeenioeeerescnnnnes .84
4.7 Conclusions . . 85
PART II: Optimized Distributed Path Restoration Algorithm 86
Chapter 5 Performance Metrics and Theoretical Objectives for OPRA 87
5.1 Operational Performance MetriCscccceeerveereecaccaceccerenne 87

5.1.1 Span Restorability and Network Restorability .88
5.1.2 Speed Related Performance Measuresco...ueeue...88

Table of Contents

5.2 Intrinsic Path Metrics ...90
5.2.1 Path Number Efficiency (PNE) M
5.2.2 Path Length Efficiency (PLE) 92
5.3 SUMMACY .covueerrrereceeeeeserscmsecsstsostossorsscssssssssencsasssssssssosssssssssasssasstsssesssannns 93
Chapter 6. The Interference Heuristic for Coordinating Pathset Formation 94
6.1 The Interference Principle ...94
6.1.1 Validating the Interference Principle:
A Centralized Path Restoration Algorithm 97
6.2 Distributed Implementation of a Path DRA based on
the Interference Principle .103
6.2.1 End-node Bottleneck Effect and the need for
Bidirectional Flooding 110
6.3 Conclusion ..112
Chapter 7. Distributed Interaction via Restoration StateletScccceveeeceeieonnecrecrenns 113
7.1 State Based Signalling via Restoration Statelets113
7.2 Content and Uses of Restoration Statelet Information Fields 114
7.3 Factors Determining Statelet Lengthcoevveeemmeeiresrscevccscvennscnnrecnne 123
7.4 Classifying Restoration Stateletsccceevecnnnnicccrsisccncssseericnsesnsssenns 126
7.5 Relationships between Restoration Stateletsccoccevvecveneeiecnieenicnnenne. 126
7.6 The Logical Environment of @ NOdEeeeeeeeiccecniecnincnvcrinererereceeneanene 128
7.6.1 Port Status Register 128
7.7 SUMIMAY ceceecreensieanisssnsssassnssnssssssssessssssssssrossssassossessesssssassaasssssssssssesnsasens 132
Chapter 8. Description of the Optimized Distributed Path
Restoration Algorithm (OPRA)cccccmvmmrrvmiecrerneneriesnessssanseesssecssssens 134
8.1 Finite State Machine (FSM) Representation of OPRAccecerueeeneen. 134
8.2 Initializing and Activating OPRAceveenerccssceccnenns ... 137
8.2.1 Initialization (State 11, INItAliZE)cceeverrcrerserenecacrecsrensosoraenees 137

8.2.2 Idle State (State 14)138

Table of Contents

8.2.3 Receipt of an Alarm (State 7, New_AIS) 139

8.3 Bidirectional Selective Forward Flooding 143
8.3.1 Forward Flood Management Logic (State 12, Broadcas)) 144
8.3.2 Event Parsing at a Tandem Node (State 1, Tandem_~Node) 151
8.3.3 Amrrival of a New Restoration Statelet at a

Tandem Node (State 2, New_Statelet) 153
8.3.4 Overwriting a Restoration Statelet at a
Tandem Node (State 3, Statelet_Ovwrl) 156
8.3.5 Disappearance of a Restoration Statelet at a
Tandem Node (State 4, Statelet Vanish) 158
8.4 Recognizing a Match 158
8.5 Reverse Linking 163
8.5.1 Receiving a Reverse Linking statelet
(State 5, Complement_Statelef) 165
8.6 Restoration Path Confirmationccecceiececrceeseesscreccncssessreersnenscannnne 169
8.6.1. The Arrival of a Statelet at a Destination Node
(State 9, Destination_Node) 169
8.6.2 Processing a Forward Flooding or a Complemented Statelet
at a Destination Node (State 8, Receive_Statelel)cauue..... 170
8.6.3 Processing a Confirmation Statelet at a Tandem Node
(State 6, Confirmation)cceecivsncsncenircccsessssssnesscsssnssasane 174
8.6.4. Traffic Substitution (State 10, Restore_Signal)cccceeeeerevveasenns 175
8.7 Terminating a Restoration Event 176
8.7.1 Cancelling Outstanding Statelets (State 13, TimeOu) 176
8.8 Network Level View 177
Chapter 9. OPRA Implementation Detailsccccrmvecercricceccrvnnscseerevsencenes 179
9.1 Preventing Looping Event Sequences 179
9.2 Correct Sequencing of Port Updates183
9.3 Re-Initiating Reverse LINKING ...ccccecevmecemeneccrcenssresnenccsncssennnna 184

9.4 Optimizing the Forward Flooding Processcceccoevemerrcccerrnvereceeneens 186

Table of Contents

Chapter 10. Implementation of a Simulation Test-Bed for OPRA 188
10.1 Modelling Environment 188
10.1.1 Modelling OPRA ... eerrieccessaceercsesssnsarecmsanssacssesasssssessenees 189
10.1.2 The Testbed 190
10.2 Testbed Description 191
10.2.1 OPNET's Network Domain 192
10.2.2 OPNET's Node Domain .194
10.2.3 OPNET’s Process Domain 196
10.3 Port Card Process Model 196
10.4 Polling Mechanism Process Model 198
10.5 Initiating a Network Failure 203
10.6 Collecting Working and Restoration Path Datacccccceecvvrcernceeenenee 203
10.7 Verifying OPRA’s Operation .205
Chapter 11. OPRA Test Results cretesasesensecoresasnses 207
11.1 Test Networks 207
11.2 Test Result Presentation Format .208
11.3 Option SetiNGS ..cccceecemsnrnicceisssnncscrsarnenssssessccsancssctssnsontesarsseassesssesanseses 211
11.4 Experimental Results in a Metropolitan Networkc.ccccevevvrerecneen.. 213
11.4.1 Optimized Spare Capacity Design for a Path

Restorable Network without Stub Releasec.uccuvennene.... 213

11.4.2 Combined Capacity Design for a Path Restorable
Network with Stub Release 217
11.5 Experimental Results in a Long Haul Networkcccoceveeeecrvnennennee. 221

11.5.1 Optimized Spare Capacity Design for a Path

Restorable Network without Stub Release 221

11.6.2 Combined Capacity Design for a Path Restorable
Network with Stub Release ... 225
11.6 Interpretation and Discussion of ReSUltscccccereerccerrercecreneerrrecannen. 229

11.6.1 Restoration Trajectories230

Table of Contents

11.6.2 Restoration Path Times 232
11.6.3 Restoration Path Lengths ...233
11.6.4 Interference Numbers 234
11.6.5 Scatterplots 234
11.7 Summary of all OPRA Test Results 235
11.8 Conclusion 236
Chapter 12. Effects of Decreasing the Processing Delay 238
12.1 Study Network 238
12.2 Test Result Presentation Format ...239
12.3 Option Settings . .239
12.4 Experimental Resuits in Metropolitan Network
Without StUD REIASE ...cuueimccrermeenneccrstritetcstscstrsscasisnnensacncanas 240
12.5 Interpretation of RESUILS ..meecieeeceeeeeeeetn ittt ecsnes s cssnenes 243
12.5.1 Restoration Trajectories 243
12.5.2 Restoration Path Times . 244
12.5.3 Restoration Path Lengths .--244
12.5.4 Interference NUMDErSeeeeecceieenricnecennccensensnsecnceneas .244
12.5.5 SCALEIPIOLS .eeeeereereeeereecereeceerecessenceessemacrerasaraneecassesassansssssossns 245
12.6 CONCIUSION ...ueeiiiinccicirsnnrenissrannencocssssessssassasnessses . .245
Chapter 13. Effects of Random Individual Link Failure Timescccceeecccvenccevreccssnns 246
13.1 Staggered Alarms cereenreeensnnrans 246
13.2 Direct Exposure of OPRA to Staggered Alarmscccccceeceeeccsnncssenncens 247
13.3 Study NEIWOIK ..ccciiiirnrenitirinienerersrsneessrsesssesasssssssasesesssssssossssossasssssens 247
13.4 Test Result Presentation Formatoeevcniernnncssienicrincnirccenenns 247
13.5 Option Settings .c.cccvrerrceeecerccnenae eeemeeeessenneense 248

13.6 Experimental Results in Metropolitan Network with Stub Release 248
13.7 Interpretation of Resulits
13.7.1 Working Path Failure Times
13.7.2 Restoration TrajeCtories ... e eeeecrereeeecereccsvessieccecsssnccnsersenaes 252

Table of Contents

13.7.3 Restoration Path Times 253
13.7.4 Restoration Path Lengths 253
13.7.5 Interference Numbers 254
13.7.6 Scatterplots 254
13.8 Conclusion 254
Chapter 14. Eliminating the Interference Heuristic in OPRA 255
14.1 Eliminating the Interference Heuristic 255
14.2 Study NetWOrKcccccveecrrisniciccsisscccsonnessnsssnsesnssonsessass 256
14.3 Test Result Presentation Format 256
14.4 Option Settings 257
14.5 Experimental Results in a Metropolitan Network
without Stub Release 257
14.6 Interpretation of Resuits . 260
14.6.1 Restoration Trajectories 260
14.6.2 Restoration Path Times 261
14.6.3 Restoration Path Lengths 261
14.7 Conclusion ... 262

Chapter 15. Achieving Restoration Levels Proportional to a Network’s

Pre-Failure Connectivity After Multiple Span Failures 263
15.1 Network Recovery from Multiple Span Failures and Node Loss 263
15.2 Study NEIWOTK ...cccrrcrrecniissacssencsonecssnnsssssaeessseessssensssasassssssnsnressassasssanaass 265
15.3 Test Resuit Presentation Format: Starplots 265
15.4 Option Settings seensessssssassrsssssasssssasssesans 266
15.5 Experimental Results in Metropolitan Network with Stub Release 267

15.5.1 lIN_STEP Set to Zero ... 268
15.5.2 [IN_STEP Set to Fifty 270
15.6 Interpretation and Discussion of Results 272

15.7 Conclusion 273

Table of Contents

Chapter 16. Concluding Discussion 275
16.1 Review of Thesis 275
16.2 Summary of Research Results 280
16.3 Further Research 281

16.3.1 Implementing the Interference Heuristic in ATM Networks 281
16.3.2 Further Studies in Capacity Placement 283
16.3.3 Effects of Network Topology on Capacity Placement

in Mesh Restorable Networks 283
16.3.4 Multi-Commodity Max-Flow Pathset Characterization 284
16.3.5 A New Approach to Avoiding the End-Node

Bottleneck Traversal Problem 284
16.3.6 Alarm Distribution in the Event of Node or

Multiple Simultaneous Span Failures 285
16.3.7 Reversion 286

16.3.8 Bypassing Tandem Nodes 286

List of Tables

List of Tables
Chapter 2. Transport Networks
Table 2.1. Plesiochronous Digital Hierarchy 30
Table 2.2. Levels of the SONET Signal Hierarchy 31
Table 2.3. Comparing Mesh Survivable SONET and ATM Networks................ 43

Chapter 3. Restoration as a Routing Problem
Table 3.1. Comparative aspects of packet, call,
and restoration routing problems. 49
Table 3.2. Computational complexity of various routing formulations................ 54

Chapter 4. Capacity Placement in Mesh Restorable Networks

Table 4.1. Test Network Characteristics 68
Table 4.2. Capacity Design Case 1 75
Table 4.3. Capacity Design Case 2
Table 4.4. Capacity Design Case 3 76
Table 4.5. Capacity Design Case 4 77
Table 4.6. Capacity Design Case 5 77
Table 4.7. Capacity Design Case 6 78
Table 4.8. Standard deviation in span working capacity

confirming demand routing dispersion effect......ccc.ceeeeccenrrecvenerecennes 82
Table 4.9. Average Working Path Lengths 83
Table 4.10. Summary of IP Network Designs 84

Table 4.11. Summary of Spare Capacity Designs Normalized to Case 1.......... 84

List of Tables

Chapter 6. The Interference Heuristic for Coordinating
End-to-End Pathset Formation
Table 6.1. Performance Studies of a Centralized Path Restoration
Mechanism based on the Interference Heuristic 101

Chapter 7. Distributed Interaction via Restoration Statelets
Table 7.1. Classifying Restoration Statelets 126

Chapter 11. OPRA Test Resuits

Table 11.1. Operational performance metrics 229
Table 11.2. Intrinsic path metrics 229
Table 11.3. Test Network Characteristics 230
Table 11.4. Summary of all OPRA Tests.. 235

Chapter 15. Achleving Restoration Levels Proportional to a Network’s
Pre-Fallure Connectivity After Multiple Span Fallures
Table 15.1. Restored Capacity with IIN_STEP set to zero for metropolitan
network with stub release after the failure of spans 9-10 & 5-7........ 269
Table 15.2. Restored Capacity with IN_STEP set to zero for metropolitan
network with stub release after the failure of spans 9-10 & 5-7271

List of Figures

List of Figures

Chapter 1. Introduction and Background

Figure 1.1. Restoration Time Impact 4
Figure 1.2. 1:1 Automatic Protection Switching 7
Figure 1.3. Types of Self-Healing Rings .10
Figure 1.4. Span vs. Path Restoration 14
Figure 1.5. Mesh Restoration Architectures 16
Figure 1.6. Survivable Transport Network Architectures 18
Figure 1.7. Example illustrating sub-optimality of “ad-hoc”

path restoration 19
Figure 1.8. Cutsets 23
Figure 1.9. Predefined Routes 25

Chapter 2. Transport Networks

Figure 2.1. Path Alarm Distribution in a SONET Network 33
Figure 2.2. SONET DCS functional diagram with enhancements
to support state-based signalling 38
Figure 2.3. ATM VP-Based Network Architecture and Nodal Functions 42
Chapter 3. Restoration As A Routing Problem
Figure 3.1. An anti-reflexive symmetric muitigraph,
i.8. @ transport NEWOTK......ccceeeeeecereerenaeneascssaesaessnsesneracssensssassans 46
Chapter 4. Capacity Placement In Mesh Restorable Networks
Figure 4.1. Average number of spans used per node to restore a failure.......... 59
Figure 4.2. Lower bounds on redundancy in mesh restorable networks........... 60
Figure 4.3. Integer Program Notation 63
Figure 4.4. Topology of Network 1 69

Figure 4.5. Topology of Network 2........................ ...69

List of Figures

Figure 4.6. Topology of Network 3 69
Figure 4.7. Topology of Network 4 70
Figure 4.8. Topology of Network 5 70
Figure 4.9. Network 1 Designs 72
Figure 4.10. Network 2 Designs 73
Figure 4.11. Network 3 Designs 73
Figure 4.12. Network 4 Designs 74
Figure 4.13. Network 5 Designs 74
Figure 4.14. Optimization of Spare Capacity 80

Chapter 6. The Interference Heuristic for Coordinating

End to End Pathset Formation

Figure 6.1. Concept of Interference Numbers 96
Figure 6.2. Program used to test the interference heuristic 99
Figure 6.3 Span Interference Numbers 106
Figure 6.4. Generating a cyclical path using negative

span interference numbers 108
Figure 6.5. Examples of basic target broadcast patterns 109
Figure 6.6. Principle of End-Node Bottlenecking 112

Chapter 7. Distributed Interaction via Restoration Statelets

Figure 7.1. Information fields in @ statelet.....ccineiricnnsieceriencnrncesncsseanaes 114
Figure 7.2. Indexing statelets 117
Figure 7.3. Setting the Reverse Linking Indicator in a statelet .120
Figure 7.4. Initiating a loop-back test using the Confirmation Indicator............. 122
Figure 7.5. Precursor Relationships at Tandem Nodes ..127
Figure 7.6. Information fields in the PSReg .129

Figure 7.7. Alarm detection related PSReg contents
after the failure of a working path ..130

List of Figures

Chapter 8. Description of the Optimized Distributed Path
Restoration Algorithm (OPRA)

Figure 8.1. OPRA State Transition Diagram 136
Figure 8.2. Identifying a severed precursor 140
Figure 8.3. Broadcasting precursors 146
Figure 8.4. Establishing a restoration path one hop long 148
Figure 8.5. Growing a statelet's broadcast mesh away from the source........... 149
Figure 8.6. Computing the composite broadcast pattern at a node................... 150
Figure 8.7. Re-rooting a precursor185
Figure 8.8. Rerooting a broadcast mesh after

a precursor has changed positions 156
Figure 8.9. Problems when two tandem nodes

complete a match simultaneously 160
Figure 8.10. Ignoring a match when a node is attempting to

establish a restoration path one hop long 161
Figure 8.11. Avoiding “hair-pins” when forming restoration paths 162
Figure 8.12. Receiving a reverse linking statelet 165
Figure 8.13. Reverse linking 167
Figure 8.14. Initiating a loop-back test A71
Figure 8.15. Problems associated with anchoring a statelet's

broadcast mesh at the SOUICEccceveercerasecrssnrceensesensneananas 172

Chapter 9. OPRA Implementation Detalls
Figure 9.1. Competition between statelets at a node

.............. 179
Figure 9.2. Using the handicap indicator to avoid oscillations 180
Figure 9.3. Correct sequencing of port updates ...183
Figure 9.4. Overwriting a precursor from the same
statelet family on a activated port .184
Figure 9.5. Initiating forward flooding statelets on
different spares on a connecting SPanc..ccceeeeceeceevsereeseesessees 187

List of Figures

Chapter 10. Implementation of a Test-Bed for OPRA
Figure 10.1. OPNET Network Domain specification for network number 1....... 193
Figure 10.2. OPNET Node Domain specification for a

DCS terminating four spans 195
Figure 10.3. State transition diagram for process model path_DCS_ports 197
Figure 10.4. Model of the polling mechanism used by OPRA 198
Figure 10.5. State transition diagram for process model Timer 200
Figure 10.6. Sample output generated by OAM node... 204

Chapter 11. OPRA Test Resuits
Figure 11.1. Restoration trajectories in a metropolitan

network without stub release 213
Figure 11.2. Distribution of restoration path times in a metropolitan
network without stub release over all span cuts 214

Figure 11.3. Distribution of restoration path lengths found by OPRA in a
metropolitan network without stub release over all span cuts......214
Figure 11.4. Distribution of restoration path lengths in the IP design for a
metropolitan network without stub release over all span cuts......215
Figure 11.5. Distribution of interference numbers in a metropolitan

network without stub release over all span cuts..............ccceeaueeee 215
Figure 11.6. Path time versus interference number for all span

cuts in a metropolitan network without stub release 216
Figure 11.7. Path length versus interference number for all span

cuts in a metropolitan network without stub releaseccocueeee.. 216
Figure 11.8. Restoration trajectories in a

metropolitan network with stub release........c.ccoeevencuivnneveeeennn. 217
Figure 11.9. Distribution of restoration path times in a metropolitan

network with stub release over all span cuts 218

Figure 11.10. Distribution of restoration path lengths found by OPRAin
a metropolitan network with stub release over all span cuts........ 218

List of Figures

Figure 11.11. Distribution of restoration path lengths in the IP design for a

metropolitan network with stub release over all span cuts........... 219
Figure 11.12. Distribution of interference numbers in a metropolitan

network with stub release over all span cuts 219
Figure 11.13. Path time versus interference number for all span

cuts in a metropolitan network with stub release 220
Figure 11.14. Path length versus interference number for all span

cuts in a metropolitan network with stub release 220
Figure 11.15. Restoration trajectories in a long haul

network without stub release 221
Figure 11.16. Distribution of restoration path times in a long haul

network without stub release over all span cuts 222

Figure 11.17. Distribution of restoration path lengths found by OPRA in

a long haul network without stub release over all span cuts......... 222
Figure 11.18. Distribution of restoration path lengths in the IP design for a

long haul network without stub release over all span cuts............ 223
Figure 11.19. Distribution of interference numbers in a long haut

network without stub release over all span cuts 223
Figure 11.20. Path time versus interference number for all span

cuts in a long haul network without stub release 224
Figure 11.21. Path length versus interference number for all span

cuts in a long haul network without stub release........cccceeueueen.... 224
Figure 11.22. Restoration trajectories in a long haul

network with stub release .225
Figure 11.23. Distribution of restoration path times in a long haul

network with stub release over all span cuts 226
Figure 11.24. Distribution of restoration path lengths found by OPRA in

a long haul network with stub release over all span cuts............. 226

Figure 11.25. Distribution of restoration path lengths in the IP design for
a long haul network with stub release over all span cuts.............. 227

List of Figures

Figure 11.26. Distribution of interference numbers in a long haul

network with stub release over all span cuts 227
Figure 11.27. Path time versus interference number for all span

cuts in a long haul network with stub release 228
Figure 11.28. Path length versus interference number for all span

cuts in a long hau!l network with stub release 208

Chapter 12. Effects of Decreasing the Processing Delay
Figure 12.1. Restoration trajectories in a metropolitan

network without stub release 240
Figure 12.2. Distribution of restoration path times in a metropolitan
network without stub release over all span cuts 241

Figure 12.3. Distribution of restoration path lengths found by OPRA in a
metropolitan network without stub release over all span cuts......241
Figure 12.4. Distribution of interference numbers in a metropolitan

network without stub release over all span cuts.. 242
Figure 12.5. Path time versus interference number for all span

cuts in a metropolitan network without stub release 242
Figure 12.6. Path length versus interference number for all span

cuts in a metropolitan network without stub releasecc.c....... 243

Chapter 13. Effects of Random Individual Link Failure Times
Figure 13.1. Distribution of alarms in a

metropolitan network over all span cuts ...248
Figure 13.2. Restoration trajectories in a metropolitan

network with stub release 249
Figure 13.3. Distribution of restoration path times in a metropolitan

network with stub release over all span cuts ...250

Figure 13.4. Distribution of restoration path lengths found by OPRA in
a metropolitan network with stub release over all span cuts........ 250

List of Figures

Figure 13.5. Distribution of interference numbers in a metropolitan

network with stub release over all span cuts 251
Figure 13.6. Path time versus interference number for all span

cuts in a metropolitan network with stub release 251
Figure 13.7. Path length versus interference number for all span

cuts in a metropolitan network with stub release 252

Chapter 14. Eliminating the Interference Heuristic in OPRA
Figure 14.1. Restoration trajectories in a metropolitan

network without stub release 258
Figure 14.2. Distribution of restoration path times in a metropolitan
network without stub release over al! span cuts 259

Figure 14.3. Distribution of restoration path lengths found by OPRA in a
metropolitan network without stub release over all span cuts......259

Chapter 15. Achleving Restoration Levels Proportional to a Network'’s
Pre-Fallure Connectivity After Multiple Span Fallures
Figure 15.1. Ideal star plot for metropolitan network with stub release

after the failure of spans 9-10 and 5-7. 266
Figure 15.2. Star plot with [IN_STEP set to zero for metropolitan network

with stub release after the failure of spans 8-10 and 5-7. 268
Figure 15.3. Star plot with [IN_STEP set to fifty for metropolitan network

with stub release after the failure of spans 8-10 and 5-7. 270

Chapter 16. Concluding Discussion
Figure 16.1. Suspending reverse linking as a result
of bidirectional flooding 285

ADM
AIE
AIS
APS
ATM
BER
B-ISDN
BLSR
CBR
CCSN
CDF
CPU
CRC
DCC
DCS
DMUX
DP
DRA
DS
EMA
E/O
FCC
FERF
FSM
FOTS
GOS
IIN

List of Abbreviations

ATM Adaptation Layer

Add Drop Multiplexer

Alarm Interrupt Enable

Alarm Indication Signal

Automatic Protection Switching
Asynchronous Transfer Mode

Bit Error Rate

Broadband Integrated Services Digital Network
Bidirectional Line Self-healing Ring
Constant Bit Rate

Common Channel Signalling Network
Cumulative Distribution Function
Central Processing Unit

Cyclical Redundancy Check

Data Communications Channel
Digital Crossconnect System
Demultiplexer

Diverse Protection

Distributed Restoration Algorithm
Digital Signal

External Module Access

Electrical to Optical Converter
Federal Communications Committee
Far End Receive Failure

Finite State Machine

Fibre Optic Transmission Systems
Grade Of Service

Initial Interference Number

List of Abbreviations

IntNo
P
ksp
LAN
LOF
LOH
LOS
LP
LTE
MUX
NID
NRR
OAM
oC
O/E
OoLT™
OPRA
osli
PDH
PDN
PL
PLE
PNE
POH
PS
PSReg
PTE

REG
RSCIE
RxReg

List of Abbreviations

Interference Number

Integer Program
k-successively-shortest link-disjoint paths
Local Area Network

Loss Of Frame

Line Overhead

Loss Of Signal

Linear Program

Line Terminating Equipment
Multiplexer

Node Identifier

Network Restoration Ratio
Operation and Management

Optical Carrier

Optical to Electrical Converter
Optical Line Terminating Multiplexer
Optimized Distributed Path Restoration Algorithm
Open Systems Interconnection
Plesiochronous Digital Hierarchy
Plesiochronous Digital Network
Private Line

Path Length Efficiency

Path Number Efficiency

Path Overhead

Protection Switch

Port Status Register

Path Terminating Equipment

Return Alarm

Regenerator

Restoration Statelet Change Interrupt Enable
Receive Register

List of Abbreviations

RxRS Receive Restoration Statelet
SDH Synchronous Digital Hierarchy
SHN Self-Healing Network (The span DRA described in [25])
SHR Self-Healing Rings

SOH Section Overhead

SONET Synchronous Optical Network
SPE Synchronous Payload Envelope
STE Section Terminating Equipment
ST™ Synchronous Transfer Mode
STP Signalling Transfer Point

STS Synchronous Transport Signal
TOM Time Division Multiplexing

™ Terminal Multiplexer

TxReg Transmit Register

VBR Variable Bit Rate

VvC Virtual Circuit

VCl Virtual Circuit [dentifier

VP Virtual Path

VPI Virtual Path Identifier

X-25 A packet-switched network access standard

(uv)

(uy, up, Uz, Us)
[a1, ag, agl

[P]

I[Pl

c(ay)

C((P)

d

o

ny

fil'.p

gd

h ()

Xy

Lir

List of Symbols

List of Symbols

a span between nodes uand v

a set of nodes defining a route
a set of links defining a path

path P as an ordered set of links
the number of links in path P

the cost of link g;

the cost of path P, sometimes shortened to Cp

the average degree of a node

the number of demand units between end-node pair r

the total number of demand pairs affected by span cut xy, sometimes
shortened to D; where i is a tag for span xy

the total number of non-zero demand pairs in the demand matrix

he restoration flow through the p'" restoration route for demand pairr
upon the failure of span i

the working capacity required on the gt working route to satisfy the
demand between node pairr

is the logical path length of restoration path i.

the number of restoration paths used by relation A-Z to restore work-

ing links lost upon the failure of span x-y, sometimes shortened to kg
where r is a tag for demand pair A-Z, and s is a tag for span xy.

the restoration level required for demand pair r upon the failure of
span i

n

O(f(x))

Ql’

f

Rnye

RSi

to1
toi

List of Symbols

the number of nodes in a network

the set of all functions bounded above by a positive real multiple of
f(x), provided that x is sufficiently large.

path P as a vector of links

the total number of eligible restoration routes for demand pair r upon
the failure of span i

the total number of working routes available to satisfy the demand
between node pair r

apath definedas [(A u;), S; 1 ;4 11 [(U; 10 U;2) 0 S;00 [0 4] o

LCU ey =10 D) Si iy i ngy, 1]
where:

u; , is the a™ node traversed by path i

s; » is the b™ span traversed by path i

(A, u; o) are the nodes terminating span s; ,,

lip,cisthe ct link used on the b*" span traversed by path i
n(i) is the logical path length of path i

the set of all kﬁf restoration paths, i.e. the restoration plan for node
pair (A,Z)

network redundancy
the total fraction of a network’s working capacity that is protected

the lowest Rs; of any span in the network

the restorability of span i, having w; working links
the number of spare links on span b

the number of spans in a network

the time required to complete the first path of a restoration plan

the individual outage experienced by the i working path restored

& TFC

np
5,

8r, i

nq
S

List of Symbols

the average of t, ; over all working links restored in a restoration event
the time required to complete the last path of a restoration plan

the time required to restore 95% of all individual links

number of link disjoint restoration paths that are topologically feasible
between node pair A-Z, combined with those restoration paths from
every other demand pair to be restored, over the unused spare links in
the network after the failure of span x-y.

the average demand lost per relation over all span cuts

the number of working links on span j

the average working capacity per span

the number of demand units lost by demand pair A-Z upon the failure

of span x-y, sometimes shortened to X{" where r is a tag for demand
pair A-Z and i is a tag for span xy.

takes the value of 1 if the p!f restoration route for demand pair r after
the failure of span i uses span j, and 0 otherwise

takes the value of 1 if the it restoration path for demand pair r after
the failure of span xy uses span b, and 0 otherwise

takes the value of 1 if the qt" working route for demand pair r uses
span j

PART I: Introduction and Capacity Placement
Methodology

The two main research contributions of this thesis are a path restorable network
capacity placement methodology, and an optimized distributed real time solution to the
path restoration problem, named OPRA. The first part of this thesis focuses on the
capacity placement methodology. It is described in detail in chapter 4. Chapters 1
through 3 define the restoration problem and develop the background necessary to differ-
entiate the current work from prior research.

Chapter 1, Introduction

Chapter 1. Introduction and Background

1.1 The Restoration Problem

“Hurricanes, fires, floods, tornadoes, terrorist bombings: These and other disas-
ters exact a great physical, emotional, and economic toll. The disruption of telecommuni-
cation services is part of this toll - services that are vital not only for life under normal
circumstances, but also for recovery from disasters themselves.” [15]

With the integration of computers and telecommunications, the dawn of the so-
called “information age” is upon us, and telecommunications has become a vital part of
our life. Service disruption is no longer being tolerated and at the same time, the conse-
quences of service disruption are becoming more severe.

Disrupting telecommunication services causes both tangible and intangible
losses for users as well as for service providers. To ensure service continuity, service pro-
viders have increased their efforts to alleviate such disruption. A challenging task cen-
tered on these efforts is how to ensure service continuity affordably. This is formally
called the restoration problem in modern telecommunications practice.

Solving the restoration problem involves reestablishing the carrier signals lost
due to a failure such as a cable cut. In the transport network, restoration is achieved by
rapid and accurate rerouting of carrier signals over a set of replacement paths through
the spare transmission capacity in the network. These restoration paths need to be inde-
pendent from each other as well as capacity and topologically feasible in the network.
The restoration problem is significantly different from the well-studied packet routing and
call routing problems and presents demanding real time computational challenges. To
date there has been no published report of an optimized distributed real time solution to
the path restoration problem. Such a technique and a network capacity design methodol-
ogy which exploits this technique are the main contributions of the present research.

1.2 Economic Impact of Outages

Optical fibre systems are today the transmission medium of choice for telecom-
munication networks. Their higher capacity, higher reliability, longer repeater spacing,

Chapter 1, Introduction

greater security, smaller size, growth potential, and lower cost when compared to copper
and radio transmission systems, has led to the large scale deployment of fibre optic
transmission systems (FOTS) in the transport network. Furthermore, the large capacity of
FOTS, and the fact that they become more economical when loaded with large amounts
of aggregated traffic, has resulted in sparsely connected transport networks with fewer
but more heavily loaded routes.

Despite the advantages of FOTS, it is a cable-based technology and susceptible
to frequent damage. Due to the high volume of traffic being carried by fewer fibre sys-
tems, the consequences of a service disruption are severe. With transmission capacities
of 2.488 Gbps (OC-48) possible over fibre optic systems, up to 37 152 phone conversa-
tions (or an equivalent amount of data) can be simultaneously transmitted over a single
pair of optical fibres. The failure of a single cable, which may carry up to 48 fibres, can
therefore seriously degrade the performance of a telecommunication network. Further-
more, due to the increased necessity of communications with bankers, purchasing man-
agers, stock brokers, retailers, and so forth, a network failure may result in revenue
losses of $75 000 US to $100 000 US per minute of outage [25].

1.2.1 Restoration Time Objectives

The motivation for pursuing the fastest possible restoration times is not purely
economic. A sudden disconnection during an active transaction in networks of point-of-
sale transaction terminals, automated tellers, personal computers, etc. can cause an
uncertain state from which the end application may not recover, and if it does, it may be
at the expense of terminating the transaction in progress. Therefore, as the volume of
data communication grows, it becomes especially important to avoid the loss of connec-
tions in progress.

A major connection-dropping event not only threatens user applications but also
the stability of circuit switches. It is not known with confidence how software-controlled
switching machines react to dynamic traffic surges resulting from major connection-drop-
ping events and the ensuing synchronized call re-attempts. Many suspect that more than
one total crash has been due to such transients [25]. Therefore, restoring a failure quickly
before the call-dropping threshold mitigates the threat of transients to circuit switches,

Chapter 1, Introduction

decreases the possibility of malifunctions in user applications, and minimizes the eco-
nomic impact on industry.

The call-dropping threshold for most circuit switched services is 2 seconds. Voice
service is not significantly degraded if restoration is achieved prior to 2 seconds because
only those voiceband circuit-switched calls affected by the failure that are on trunks asso-
ciated with older channel banks are dropped, and the total number of trunks in the public-
switched network that are carried on older-type channel banks is less than 12%. [61] Fur-
thermore, as data rates increase it becomes especially advantageous to restore data
services quickly so that the amount of application information which must be recovered is
minimized. Figure 1.1 below illustrates the impact of various restoration times on industry

and the network. The time objective of the restoration algorithm presented in this thesis
dissertation is 2 seconds.

\ Fagrats
Call-droppin
g\ll'Clrcgg 9 Reportable
Senviess) Networc Melr Socia
Congestion Impacts
Private Line
. Disconnects Social/
Jigger Packet (X.25) Dusiness
eover Potential mpa
g of CCSN Packet (X.25) DiSOOﬂl'lBC'tS
a STP Disconnects Data Session
P Links Voiceband Potential Data
g Potential ~ Calls Session
] Voiceband ~ Depending ''Me9
o Disconnects ©n Channel
2 (<5%) Bank
s Vintage
S5 Effect Cell
n Rerouting
Process
Service “Hit”
(Reframes)
Protection
Switching
*>
0 50 ms 200 ms 2s 10s 5 min 30 min

Restoration Time (After detection of failures and completion of DCS cross-connects)

Figure 1.1. Restoration Time Impact [adapted from 61]

Chapter 1, Introduction

1.2.2 Capacity Efficiency Objectives

Fast restoration times can not always be achieved economically because fast
simplified restoration generally requires increasing network redundancy. Network redun-
dancy is defined as the ratio of spare to working capacity in a network. Networks with
large redundancies are less economical because the spare capacity required to protect
them is expensive. In addition to minimizing restoration time, minimizing the capacity
requirements of the transport network while maintaining the ability to restore the most
common types of failures quickly, is an equally important objective when solving the res-
toration problem. The network design methodology presented here minimizes the capac-
ity requirements of a transport network while maintaining the ability to restore the most
common types of failures within two seconds.

It is of course impossible and uneconomical to protect a network from every type
of failure. Considering the infrequency of multiple simultaneous cable cuts and the low
failure rate of circuit switches, modern transport networks are generally engineered to
completely restore only single cable cuts. The most common type of failure considered in
the restoration problem is the single cable cut, and unless otherwise specified is implied
here when referring to a failure. However, with the restoration method developed in this
thesis, recovery from node failures as well as multiple simultaneous cable cuts is possi-
ble.

Together, a design methodology which minimizes the capacity requirement of the
transport network and a restoration algorithm which restores any single cable cut solves
the restoration problem. To restore all lost signals in an efficiently spared network the res-
toration algorithm must use a minimum amount of spare capacity. Often speed and
capacity efficiency must be traded off against each other. The restoration algorithm pre-
sented in this thesis aims to use only a portion of the spare capacity required by existing
or proposed restoration algorithms and still restore a failure within two seconds.

1.3 Present Methods for Transport Network Restoration

Currently diverse routed 1:1 protecticn switching has been widely deployed to
protect the transport network from failures, not so much because it achieves the fastest

Chapter 1, Introduction

restoration times possible as shown in Figure 1.1, but because it can be implemented
using current technology. Two restoration techniques employing protection switching
include Automatic Protection Switching (APS) and Self-Healing Rings (SHR) [16, 22, 69].

1.3.1 Automatic Protection Switching

APS is a restoration technique that automatically reroutes signals from a working
line to a dedicated protection line during a signal outage. APS is the simplest and fastest
facility restoration technique. The APS switching technique is sometimes referred to as
span switching because APS is performed on an entire optical system.

A span is defined as the collection of all point-to-point DS-3 or OC-n links, work-
ing or spare, in parallel between two nodes. A span may be thought of as a pipe through
which traffic can “flow”, although its composition as discrete links is ultimately important
because a solution to the restoration problem must specify precise connections between
links.

When the protection system is physically diverse from the working fibre sheath
(referred to as Diverse Protection or DP), APS can protect a transport network from sin-
gle cable cuts. However, only when every working system is paired with a protection sys-
tem, referred to as a 1:1 APS architecture, is 100% restoration possible. The minimum
redundancy of a survivable transport network employing 1:1/DP APS systems is there-
fore 100%.

Given that a 1:1 APS architecture does not share a protection system with multi-
ple working systems, the 1:1 APS switching protocol defined in the Synchronous Optical
Network (SONET) standards permanently bridges the head end and only switches at the

tail end as shown in Figure 1.2. Referring to Figure 1.2, the 1:1 APS switching protocol
can be summarized as follows:

Chapter 1, Introduction

WEST EAST

Tail
End
Head i Py
End OLTM Working System OLTM Switching

Bridging @ F'_
—— p
——1—3 MUX | E/O > A (1) » O/E | DMUX S

N -
links —] DMUX | O/E [L E/O | MUX [€T3-+

i |< span >| ®) E :

':
'y
4 —-’ --Jl

Pl.*d--# MUX | EO t----- @-----’ O/E {DMUX | -+ links
S ¢ -

Puu— DMUX|O/E [~~~ "\“S/ "~ ol E/O [MUX [€°°

e -~ ~ -

Head
OLTM End

Bridging

TE'?]IL @ OLTM Protection System

Switching

— Working Signal
----- Protection Signal
@ Indicates the n-th step of the protocol

PS: Protection Switch
OLTM: Optical Line Terminating Multiplexer

Figure 1.2. 1:1 Automatic Protection Switching [adapted from 69]

1. A uni-directional failure of multiple links is recognized by the receiving performance
monitor at the east end of the span.

2. The APS controller at the east end of the span operates a tail-end transfer relay in the

protection switch and connects to the working links being received over the protection
system.

3. The APS controller at the east end informs the west end controller of the failed links

Chapter 1, Introduction

4. The APS controller at the west end of the span operates a tail-end transfer relay in the
protection switch and connects to the working links being received over the protection
system.

In the event of a bi-directional failure, both ends of the span may simultaneously

bridge to the protection system. Note that the protocol only communicates over the pro-
tection system.

1.3.2 Self-Healing Rings

Networks employing 1:1/DP APS can be evolved to Self-Healing Rings (SHRs).
SHRs may require less fibre, fewer optical/electronic devices, and fewer regenerators
than 1:1/DP APS systems. The evolution to a ring architecture is generally not difficult
considering the numerous similarities between APS systems and SHRs.

APS systems are line switched systems and are most closely related to Bidirec-
tional Line Switched Self-Healing Rings (BLSRs). However, all SHR networks provide
redundant bandwidth and/or network equipment so disrupted services can be automati-
cally restored following network failures like APS systems. A SHR network chains muiti-
ple Add Drop Multiplexers (ADMSs) together in the form of a working ring and establishes
a second spare communications path parallel to the first as shown in Figure 1.3. ADMs
add traffic to, drop traffic from, and pass traffic along the ring, as well as performing pro-
tection switching in the event of a failure. Survivable ring networks restore a failure by
employing protection switching between the spare and working ring similar to the opera-
tion of 1:1/DP APS architectures. SHR networks also require a minimum of 100% redun-
dancy because there must be sufficient restoration capacity on the spare ring to restore
any failure on the working ring, much like 1:1 APS systems which require one-to-one
redundancy between working and protection systems.

Numerous SHR architectures are possible, each of which offer complete surviva-
bility for single cable cuts. If a ring performs protection switching between the ADMs ter-
minating a failure, the architecture is referred to as a line or span switched ring. If
protection switching is performed between the ADMs which add traffic to and drop traffic
from the ring, the architecture is referred to as a path switched ring. When the spare and

Chapter 1, Introduction

working rings only transmit in one direction, the ring is referred to as unidirectional, other-
wise it is referred to as bidirectional. Furthermore, at the physical level, the spare and
working rings associated with a bidirectional architecture may or may not share the band-
width of a single FOTS system, requiring that bidirectional rings either be designated as 2
fibre (spare and working rings share the bandwidth of one FOTS system) or 4 fibre (spare
and working rings reside on different FOTS systems). The four different logical ring
design architectures are summarized in Figure 1.3.

Like APS systems, SHR networks can restore a network very quickly. SHR net-
works typically achieve restoration within 150 msec. However, these low restoration
times are achieved at the expense of high network redundancy. Each working ring in a
SHR network requires an entire spare ring to recover from a failure. Therefore, the redun-
dancy of a SHR network can never be less than100%, and is typically around 300%
given that the last rings placed in a multiple ring design often protect a small amount of
working capacity. [27, 30]

To completely protect a network using ring technology, multiple rings are
required. Initially the design must define the rings (number, size, and location) and route
the working traffic through these rings from source to destination. Then the capacity
required by the spare rings may be calculated. Growing a multiple ring network may be
even more difficult than engineering the initial design. The addition of a new ADM to a
SHR network requires at best breaking a single ring and inserting the node and adding a
new ring requires at best over-laying the new ring on an existing design. At worst adding
a new ADM or ring requires redesigning the entire SHR network.

Chapter 1, Introduction

[£
L 2 Fa®
& LY
4' * Do) 2
-“— ' Sad

LJ

L X 4

G EX

(a) Prefailure (b) Bidirectional Line (c) Bidirectional Path
Demand Switched SHR (2 Switched SHR (2
Routing Fibre or 4 Fibre) Fibre or 4 Fibre)

M | :
J

P F o * L 2 »
4 [*e 2 4 [N\ ’3 o 4 [f* **\ »
n : :
. N "‘ . . .
'0.‘ ‘o' S ,'-‘0' '0. '0'
(d) Prefailure (e) Unidirectional Line (f) Unidirectional Path
Demand Switched SHR (2 Switched SHR (2
Routing Fibre or 4 Fibre) Fibre or 4 Fibre)

m—— \Norking Ring =====s Protection Ring I___—_I ADM

Figure 1.3. Types of Self-Healing Rings

10

Chapter 1, Introduction

1.4 Mesh Restoration of Transport Networks

SHR and APS architectures can be implemented using current technology. How-
ever, the recent development of Digital Crossconnect Systems (DCS) and the adoption of
networks with physically diverse routes and closed topologies has created the opportu-
nity to advance the state of network restoration.

DCS machines are in many respects similar to a computer, and a transport net-
work consisting of Digital Crossconnects is similar in many respects to a distributed mul-
tiprocessor. Mesh-based survivable or restorable network architectures exploit the
intelligence of a DCS-based transport network to minimize the amount of spare capacity
required to protect working demands (2, 7, 11, 13, 28, 29, 57, 71]. In mesh restorable net-
works the spare capacity on one span contributes in general to the survivability of many
other spans. Network redundancy is not dedicated to restoration of one span or ring.
These networks are called “mesh restorable” not to imply that the network is a full mesh,
but to reflect the ability of the rerouting mechanism to exploit a mesh-like topology
through highly diverse and efficient rerouting of failed signal units.

Mesh restoration typically is envisioned to operate at the logical layer rather than
the physical layer. Physical layer network designs like APS and SHR are sectionalized
and use separate fibre facilities and/or equipment as protection resources. Logical layer
designs are more global in the sense that they share the spare capacity on all spans to
protect the entire network. By sharing spare capacity, mesh restoration requires signifi-
cantly less total network capacity than APS or SHR to fully protect a network. Mesh tech-
niques can yield full survivability with redundancy that is inversely proportional to the
average nodal degree of the network. For real networks which tend to exhibit nodal
degrees between 3 and 4.5 there is the prospect of full survivability with as little as 30%
to 50% redundancy. [27]

Furthermore, it is generally acknowledged that mesh restorable networks can
grow more elegantly and flexibly than ring or APS restorable networks. The addition of a
new switch to a mesh network simply involves informing any node to which the new
switch is connected what the spare capacity connecting them is, and ensuring 100% net-
work survivability involves at most increasing the spare capacity on a few spans.

11

Chapter 1, Introduction

Considering the capacity savings of mesh-restorable networks, the relative sim-
plicity of their planning, and their associated cost savings which will grow as switching
costs decrease [27], mesh restorable networks appear to be an attractive alternative
technology to APS and SHR. However, the advantages of mesh restoration are gained at
the expense of increased complexity. Whereas the main difficulty with APS and SHR net-
works is high cost and capacity consumption, the challenge in a mesh design is minimiz-
ing the time it takes to restore a failure. Minimizing the restoration time often leads to an
increase in system complexity.

A variety of mesh restoration techniques of varying complexity exist. The follow-
ing sections explain, categorize and differentiate these techniques. The new restoration

algorithm presented in this thesis is also categorized and distinguished from previously
proposed restoration mechanisms.

1.4.1 Centralized vs. Distributed Restoration

At the most general level of abstraction, mesh restoration requires three concep-
tual steps: (a) accessing a network description, (b) computing a re-routing plan, and (c)
deploying cross-connection actions to put the plan into effect. Centralized and distributed
restoration can be differentiated by examining the steps of the restoration process.

In step one of the restoration process, centralized mesh restoration accesses a
database at a central controller which stores information about all network nodes, con-
nectivity maps, and spare facilities. In distributed restoration the network itself is the data-
base; rather than accessing a central controller, each DCS obtains local network
information from the links impinging on it.

To fulfil step two of the restoration process, centralized restoration computes the
best rerouting paths for all failed signals based on the most recent network information
available in the controller’s database. Distributed restoration computes the rerouting plan
in a distributed fashion across the entire network so that each DCS only computes the
part of the composite routing strategy which it is required to implement. The computed
set of restoration paths form the rerouting plan in both cases.

In step three of the restoration process, centralized restoration requires down-
loading the rerouting plan to all DCS machines. However, distributed restoration leaves

12

Chapter 1, Introduction

the computed set of restoration paths in place at each DCS node, obviating the need to
download any rerouting plan.

While centralized and distributed restoration disperse information of the rerouting
plan differently in step three of the restoration process, both centralized and distributed
restoration may deploy the cross-connects required to implement a rerouting plan in the
same way. The ways in which cross-connection actions may be deployed at a DCS are
explained in section 1.4.3.

Centralized restoration is challenged with problems related to the size, cost,
complexity, and vulnerability of the surveillance and control centre needed for transport
management. A centralized system is also dependent on the ability to maintain a com-
plete, consistent, and accurate database image of the network which necessitates redun-
dant high-availability telemetry arrangements. As a result, centralized restoration is not
only slower in real time than distributed restoration but runs the risk that a failure in the
network will coincide with downtime at the central control site or a failure in the telemetry
arrangement.

In a distributed approach there are no dependencies on telemetry or a central
control site; the network is the computer on which the reconfiguration algorithm runs.
Therefore, the distributed approach is less vulnerable than a centralized approach. Fur-
thermore, distributed mesh restoration algorithms have the potential to compute a rerout-
ing plan much faster than centralized algorithms because they use the network as their
database, and perform distributed processing over all DCSs. However, distributed resto-
ration algorithms tend to be more complex than centralized algorithms because they
must ensure that the routing decisions computed in isolation at every DCS coordinate
with the routing actions taken by all other nodes. The restoration algorithm presented in
this thesis is a distributed mesh restoration technique.

1.4.2 Span vs. Path Restoration

In addition to categorizing a mesh restoration technique as either centralized or
distributed, mesh restoration can be divided further into two classes: path and span res-
toration. Span restoration re-routes failed signal units over a set of replacement paths
through the spare capacity of a network between the two nodes terminating a span cut.

13

Chapter 1, introduction

Path restoration reroutes failed signal units over a set of replacement paths between
each of the end source and destination nodes affected by a failure. Figure 1.4 illustrates
the difference. When span S-T fails, span restoration finds replacement path segments
directly between nodes S and T, whereas path restoration finds end-to-end replacement
paths between demand pairs A-C and B-D.

— Original Path .

— Original Path mm Restoration Path wmm Restoration Path
---- other spans ---- other spans ' ---- other spans
a) Pre-failure b) Span c) Path
Demand Restoration Restoration
Routing Example Example

Figure 1.4. Span vs. Path Restoration

In principle path restoration is more capacity efficient than span restoration
because it distributes simultaneously required replacement paths over a wider region of
the network, increasing the alternatives available when optimizing capacity placement
such that a reduction in spare capacity is possible. In contrast, span restoration creates
replacement paths between the end-nodes of a failure so that inefficiencies may result in
the form of “backhauls” as shown in Figure 1.4. Backhauls result in a greater use of spare
capacity than is required to restore a failure. They arise in span restoration and not in
path restoration because span restoration does not consider the end-to-end routing of the
actual demands affected by a span cut. Path restoration attempts to quickly and effi-
ciently re-provision all of the demands affected by a failure across the entire network.

Path restoration also inherently provides for restoration of transit paths after node
loss. Given that 100% restoration will likely be impossible after a node failure because
those connections terminated on the failed node cannot be recovered, it may be undesir-

14

Chapter 1, Introduction

able for a path restoration algorithm to simply result in a maximum of total capacity
restored over all relations affected, or accept a random pattern of replacement paths.
Rather, node recovery may require an overall pattern of individual restoration levels on
each relation that is proportional to its prefailure connectivity [47]. Span restoration algo-
rithms do not aim to address node failures.

The elimination of backhauls and the ability to restore node failures suggests that
it will be desirable to use path restoration rather than span restoration. However, path
restoration is more complex than span restoration because it requires finding a set of
replacement paths between multiple source and destination pairs, as opposed to rerout-
ing the same total number of failed signal units between a single pair of nodes. While
span restoration algorithms which maximize network restorability and use as little spare
capacity as possible find a set of k-successively shortest link disjoint replacement paths
between the end nodes of a span cut [19], it is not known how the replacement paths
between the source and destination of all working connections affected by a failure
should be routed to achieve the max-flow. The restoration algorithm presented here
implements path restoration and uses a heuristic to find a set of link disjoint replacement

paths which results will show very often achieves the max-flow possible between those
relations affected by a failure.

1.4.3 Preplanned vs. Dynamic Restoration

In mesh restorable networks, cross-connections can be deployed at a DCS either
by referencing a database of restoration paths, known as preplanning, or the cross-con-
nections can be derived dynamically as a restoration algorithm identifies rerouting paths.
The preplanned method requires that each DCS store all, or most, of the rerouting infor-
mation related to the restructuring of the network for all preplanned failure scenarios. In
the event of a failure, techniques using preplans, such as those described in [12, 42, 58],
selectively broadcast information regarding the failure throughout the network. Each DCS
receiving one or more of these messages determines the cross-connections it needs to

implement in order to restore the failure based on the rerouting information stored in its
local database.

15

Chapter 1, Infroduction

In contrast, the dynamic method does not require the DCS to store any database
of network configuration. Rerouting decisions are made in real time based on either the
state of the network at the time of the failure (as is the case in distributed restoration), or
the state of the network stored in a database at a central controller (as is the case in cen-
tralized restoration), and cross-connections deployed as restoration paths are identified.
Figure 1.5 summarizes the architectural differences between distributed and centralized,
and preplanned and dynamic mesh restoration. Not shown in Figure 1.5 is the central
operations and management centre (OAM) common to all architectures which collects

alarms, and ratifies the completed restoration plan of any restoration mechanism as an
follow up action.

(a) Preplanned Centralized (b) Dynamic Centralized
Mesh Restoration Architecture Mesh Restoration Architecture
O ocs
g Database of
restoration paths
—— Span
----- Telemetry
() Dynamic Distributed []| ofnetwork
(c) Preplanned Distributed ynamic Distribute of netwo
Mesh Restoration Mesh Restoration information
Architecture Architecture

Figure 1.5. Mesh Restoration Architectures [adapted from 69]

16

Chapter 1, Introduction

In the event of a failure, centralized dynamic mesh restoration initiates a search
for the best rerouting path for each failed signal based on the current network state

stored in the controller's database. After finding the optimal restoration paths?, the con-
troller sends commands to selected DCSs prompting them to change their switching
matrixes and reroute the failed signals. Modem centralized dynamic restoration tech-
niques such as those reported in [7, 8, 14] are capable of restoring a network failure
within minutes, but unable to achieve restoration within seconds because of the time
required to collect alarms and download the new routing plan.

In distributed dynamic mesh restoration the network is the database that is
accessed at the time of a failure and used to compute the optimal restoration pathset.
Completion of the restoration algorithm leaves a restoration plan in place exactly as
would have been downloaded had the plan been centrally computed.

In general, compared to the dynamic rerouting method, the preplanned method
requires higher memory, may have more difficulty adapting to rapid network changes,
and may have a lower reliability because it cannot prepare and place preplan information
in all nodes for all possible failure scenarios. However, the preplanned method can be
faster because it eliminates any real-time dependencies on a central controller and mini-
mizes the processing requirements at a DCS during a failure. Preplanned restoration
opens up the possibility that a fast cross-connection DCS could actually match survivable
protection switching architectures in terms of restoration speed, while still deploying
capacity efficient restoration pathsets which are the main benefit of mesh restorable net-
works. [28]

Any span or path, centralized or distributed, mesh restoration algorithm can
deploy the required cross-connections by either referencing a preplanned database or
dynamically. The distributed path restoration algorithm presented in this thesis restores
failures by deploying cross-connections dynamically.

1.4.4 Optimized Distributed Dynamic Path Restoration

Ideally a restoration algorithm should restore a network failure quickly (within two
seconds), require little administration overhead, handle numerous failure scenarios (not

1. Optimal restoration paths maximize the restorability of a network, Rn as defined in chapter 5,
while using as little spare capacity as possible as explained in chapter 3.

17

Chapter 1, Introduction

just single span cuts), be highly reliable, easily accommodate network growth, adapt itself
to any network topology, and require a minimum amount of spare capacity. Of all the res-
toration architectures discussed thus far (see Figure 1.6), mesh restorable networks
employing distributed dynamic path restoration have the greatest potential to satisfy
these goals. One of the main contributions of the present research is a distributed
dynamic path restoration algorithm, named OPRA, that satisfies all of these goals.

Survivable Transport Network Architectures
Networks Employing Protection Switching Mesh Restorable Networks
e
APS SHR Centralized Restoration | Distributed Restoration |
| |

Span Path Span Path
Restoration Restoration Restoration Restoration

Preplanned Preplanned Preplanned Preplanned

Restoration Restoration| Restoration Restoration|

Dynamic Dynamic Dynamic Dynamic
Restoration Restoration, Restoration Restoration
== Classification of the restoration method
discussed in this thesis

Figure 1.6. Survivable Transport Network Architectures [69]

To date several distributed dynamic span restoration algorithms have been
reported [2, 7, 11, 13, 29, 57, 71], many of which claim the ability to perform path restora-
tion [11, 43, 55, 57]. In general, any span restoration algorithm can be tumed into a rudi-
mentary path restoration scheme by iteratively applying the span restoration algorithm to
all affected source - destination demand pairs. Using a span restoration algorithm to per-
form path restoration in this way was previously called Capacity Scavenging [28]. While
Capacity Scavenging can be used in path (and hence node) restoration, the recovery

18

Chapter 1, Introduction

patterns obtained from uncoordinated concurrent (or arbitrary sequential) execution of a
span restoration algorithm for every demand pair affected by a node or span failure may
not yield an optimal allocation of recovery levels amongst affected demand pairs.

The sub-optimality of “ad-hoc” path restoration that may result from Capacity
Scavenging is illustrated in Figure 1.7. Capacity Scavenging is just as likely to find the
first pathset identified in Figure 1.7 rather than the second preferred pathset. As a result,
Capacity Scavenging may result in one demand pair receiving a maximum number of
restoration paths (relation A-D in Figure 1.7 (a)) and others receiving none (relation G-D
in Figure 1.7 (a)). Furthermore, given a network with a fixed amount of spare capacity,
Capacity Scavenging might use long restoration paths when a larger number of efficient
shorter restoration paths that restore more lost capacity are possible.

Relation Lost Capacity X Failed Span
A-D 3 e Restoration Path
B-D 2 .
----- Unused Spare Capaci
G-D 1 P pactty

Restorability = 5/ 6= 83% Restorability = 6/ 6= 100%
Possible restoration pathset Preferred restoration pathset

Figure 1.7. Example illustrating sub-optimality of “ad-hoc” path restoration

19

Chapter 1, Introduction

While a few distributed dynamic path restoration algorithms have been reported
[42, 62], none attempt to find the optimal restoration pathset. The term optimal as used
here implies a pathset which restores the maximum amount of lost demand topologically
feasible. Distributed dynamic path restoration algorithms developed to date have focused
on achieving restoration within the two second call-dropping threshold, and have given
capacity efficiency secondary consideration. The research presented here is unique in
that it is the first distributed dynamic path restoration algorithm which attempts to config-
ure the surviving spare links of a path restorable network into an optimal multicommodity
max-flow pathset, and do so within the two second call-dropping threshold.

1.5 Capacity Placement for Mesh Survivable Networks

Solving the restoration problem not only requires restoring a failure but determin-
ing an economic capacity placement which permits full restoration. While sections 1.3
and 1.4 have introduced and discussed prior work regarding the development of restora-
tion algorithms, this section categorizes the capacity placement technique presented in
this thesis and differentiates it from previously proposed capacity placement methods.

1.5.1 Using Heuristics to Solve the Capacity Placement Problem

Two general techniques have been used to solve the complex capacity planning
problem. They include using either integer programming or heuristic techniques. Heuris-
tics are usually used to guide a greedy algorithm that incrementally adds or deletes spare
capacity from a network, as in {11] and [67]. For example, the algorithm in [67] realizes a
near-minimum spare link assignment in a span restorable network in two phases: forward
synthesis and design tightening.

Phase one in [67] iteratively addresses the question: given one new spare link to
‘spend’, where should it be placed to yield the greatest step increase in aggregate net-
work restorability? Restorability is defined formally later in this thesis, but may be inter-
preted here as the ratio of restored to lost working capacity. In the forward synthesis
phase, a spare link is temporarily added to a span ‘X'. Then, each span in the resulting
network is cut one at a time in sequence, and the working capacities of the cut span
rerouted through the spare capacity of the surviving portion of the network using an effi-

20

Chapter 1, Introduction

cient k-shortest link disjoint paths algorithm. The average restorability of all span cuts is
then calculated, and the spare link removed from span ‘X'. A spare is then added to
another span, and the global restorability increase recomputed. After the global restora-
bility has been calculated for all possible placements of the spare, an additional spare is
permanently added to the span on which it gives the greatest global restorability
increase. This process is repeated, adding one spare at a time, until there is no span on
which an extra link gives an increase in network restorability.

At this point, restorability has reached 100% or a stalling point has occurred. A
stalling point is a network state in which the addition of a single spare doesn't increase
restorability. If restorability is 100%, the initial network spare capacity placement design is
complete. If a stalling point has occurred, all possible additions of a two-link path seg-
ment are analysed for the greatest increase in global restorability. The pair of link place-
ments which result in the largest increase in restorability are then accepted and the
algorithm retums to trying to add one spare at a time. If pairs of links cannot overcome
the stalling point, a shortest complete restoration path is added to a span that is currently
not fully restorable, and then the algorithm returns to trying to add one spare at a time.

Phase one, forward synthesis seeks a steepest ascent in restorability against
redundancy. Tightening in [67] whittles away at redundancy while clamping restorability
at 100%. Forward synthesis uses a greedy strategy, so there will generally be some
opportunities for improvement by selective eliminations and redistribution of spare capac-
ity. In particular, forward synthesis cannot foresee future additions of spare capacity that
may make a present increment unnecessary. Tightening compensates for this.

The first stage of the tightening phase eliminates any spares which can be
removed without any reduction in restorability. When no links can be removed without a
loss in restorability, tightening examines all combinations of capacity-saving redistribution
in the spare link assignments. Tightening searches for opportunities to add “n” spares
while removing “n+1” other spares. Redistribution with n=1 is attempted first, then n=2.
Tightening is complete when redistribution at n=2 cannot remove any spares without
decreasing restorability. There is no conceptual reason to stop at n=2 redistribution, but
there is little or no improvement after n=2 [67].

21

Chapter 1, Introduction

This sort of a capacity placement technique assumes some knowledge of the
routing of replacement paths after a network failure. In [67] an efficient k-shortest link dis-
joint paths (ksp) algorithm is repeatedly used to identify replacement paths and calculate
restorabilities. While near optimal span restoration algorithms find a set of k-successively
shortest link disjoint replacement paths between the end nodes of a span cut [19], it is not
known in general how the surviving spare links of a path restorable network should be
configured to achieve the multicommodity max-flow between those relations affected by
a failure. A fast centralized algorithm similar to the one used in [67] to calcuiate restorabil-
ities in a span restorable network has not been identified for path restoration. It is the
intent of the present research to compare the spare capacity required in span and path
restorable networks in which working and spare capacity has been optimized. Without a
fast centralized ksp-like algorithm to identify the multicommodity max-flow through the
spare capacity of a network between those relations affected by a failure, it is difficult to
solve the capacity placement problem in a path restorable network using heuristics.

Therefore this thesis solves the capacity placement problem using integer programming
techniques.

1.5.2 Using Integer Programs to Solve the Capacity Placement Problem

Recently, Linear Programming (LP) or, more specifically, linear Integer Program-

ming (IP), has been applied to the problem of optimal! spare capacity planning in a span
restorable network. Integer programming requires defining a set of constraints and an
objective function which in this case solve the capacity planning problem. However, the
number of constraints required by an integer program to find the optimal capacity place-
ment in a network of practical size is often prohibitively large. To function effectively, the
constraint system for formulating the IP must be defined carefully.

One approach has been to develop constraints for the spare capacity placement
problem based on a network’s cutsets after the failure of a span [57, 67]. A cutset is a set
of spans which when severed divide a connected network into two distinct parts. Figure

1. The term optimal when used in conjunction with capacity planning, rather than restoration, refers
to that network design which has the minimum amount of spare capacity required to restore all
individual span failures.

Chapter 1, Introduction

1. 8 shows two cutsets in a small study network. Cutset number 1 consists of spans 1-2,
1-3, 3-5, and 4-5, and cutset number 2 consists of spans 2-3, 1-3, 3-5, and 3-4. Those
cutsets which limit the maximum flow possible between those nodes seeking recovery
paths after a failure determine the spare capacity required on each of the spans in the
network. For example, if span 3-5 fails in Figure 1.8 and the network is fully span restora-
ble, the number of recovery paths possible between nodes 3 and 5 depends in part on
the spare capacity on spans 1-2, 1-3, and 4-5 in cutset number 1, and the spare capacity
on spans 2-3, 1-3, and 3-4 in cutset number 2. If the spare capacity on each of the spans
in cutset number 2 limits the maximum number of replacement paths, or flow, possible
between nodes 3 and 5, cutset number 2 is the minimum cutset.

l . cutset number 2

cutset number 1

Figure 1.8. Cutsets

In a 100% span restorable network the minimum cutsets for any given span fail-
ure must not limit the number of restoration paths between the nodes immediately termi-
nating the failed span to less then the number of working paths traversing the failed span.
An [P formulation based on cutsets which finds the optimal spare capacity design limits
the minimum flow across all cutsets for all span failures to the lost working capacity on
the severed span, and has an objective function that minimize the spare capacity of the
network. This type of a constraint formulation is based on the min-cut max-flow theorem

[37].

23

Chapter 1, Introduction

However, it is usually impractical to include all cutsets in the constraint set since
the number of cutsets is an exponential function of the size of the network. Choosing cut-
sets to populate the constraint set iteratively after intermediate, not fully restorable, spare
capacity designs, can reduce the size of the constraint set dramatically. Prior work in [67]
and [67] populated the constraint sets with cutsets iteratively until the solution provided a
spare capacity placement which was 100% span restorable and minimized total spare
capacity.

In [67] the set of incident cutsets for every span form the initial constraint set. The
incident cutsets are those which contain the spans adjacent to one of the end-nodes of
the span under consideration. For example, cutset number 2 in Figure 1.8 is an incident
cutset given the failure of span 3-5. If the network is not fully restorable after solving the
constraint formulation resulting from all incident cutsets, one restorability constraint is
added for each span which is not fully restorable. This additional constraint is found by
removing the available restoration paths for that span, and finding a cutset in the resulting
network. In [67] this cutset is found by identifying the connected sub-networks in the
reduced network, combining sub-networks until only two remain, each containing one of
the end-nodes, and then identifying the spans which are adjacent to both sub-networks.
These spans compose the new cutset constraint. The IP is then re-executed with the
augmented constraint system. After a few iterations, the network typically becomes fully
restorable.

A more recent approach has been to specify flow constraints based on a suitable
set of predefined routes over which pathsets must be implemented [36,53]. An example
of three predefined routes is shown in Figure 1.9. In the event span 3-5 fails, restoration
paths would be limited to following one or more of the three routes shown between nodes
3 and 5. An [P formulation using this approach which optimizes the placement of only
spare capacity in a 100% span restorable network was reported in [36]. In such a formu-
lation the working capacity design is given and fixed, and the constraint set is based on
eligible restoration routes between each pair of nodes terminating a span. When the IP

completes, the total flow feasible along those restoration routes is adequate to restore
the lost capacity of any span cut.

24

Chapter 1, Introduction

route number 2

route

route : < number 1

number 3

Figure 1.9. Predefined Routes

An IP which jointly optimizes working and spare capacity in the context of a
restorable ATM network was reported in [53]. in such a formulation the constraint set is
based on eligible working and restoration routes.

The capacity placement technique presented in this thesis also uses flow con-
straints. In this thesis the spare capacity placement, as well as the joint working and
spare capacity placement, of a path restorable network is optimized using an IP with con-
straints derived from a set of predefined routes. However, unlike the IPs presented in [36]
and [53], the IP formulation presented in this thesis uses a highly diverse route set that
exploits mesh-like topologies in restorable SDH networks to optimize working and spare
capacity, or only spare capacity, in either span or path mesh restorable networks.

Comparing an [P based on route flow assignments to an IP based on cutsets,
unlike the constraint set formed using cutsets, the constraint set formed using eligible
routes only has to be defined once, and a solution will be ensured in a single linear or
integer program run with no iteration. Moreover, while either approach specifies the mini-
mum spare capacity requirements per span, the route-based approach also yields details
of the actual paths and routing used to restore each span failure. This information is help-
ful when evaluating the performance of a distributed restoration mechanism operating in
the target capacity design [29], and useful in a centralized restoration mechanism that
accesses a database of feasible restoration paths [7].

25

—ove.

s
=
2
-~
H

-eo le¥l e

Chapter 1, Introduction

1.6 Research Contributions of this Thesis

Two of the main research contributions of this thesis are a path restorable net-
work capacity design methodology using integer programming, and an optimized distrib-
uted real time solution to the path restoration problem, named OPRA. Together these
advances make path restorable transport networks feasible. In the envisaged network,
capacity would be minimized using the IP design methodology presented, and failures
restored in real time in an entirely autonomous distributed manner using OPRA.

The integer program presented in this thesis is the first precise formulation pub-
lished which can jointly specify the working and spare capacity design of a synchronous
digital path restorable transport network, and is flexible enough to accommodate different
capacity design options such as stub release. (Stub release is explained in chapter 4.) In
addition, this IP specifies the optimal routing of working and restoration paths. Although
this pathset information is used to evaluate the performance of OPRA in this thesis, it
merits mentioning as a research contribution because it is possible to use this restoration
pathset information to achieve centralized restoration.

OPRA is the result of the first thorough exploration, development, realization,
and testing of a bidirectional distributed path restoration algorithm. While OPRA defines
one particular method for restoring network failures, two central principles integral to
OPRA discussed in detail in chapter 6 that are applicable to any path DRA and represent
significant research contributions include the interference heuristic and the end-node bot-
tleneck traversal problem.

Furthermore, the conventional program written to test the interference heuris-
tic named Interference Tester represents original work, and merits mentioning as a
research contribution because, like the IP, it identifies a restoration pathset that could be
used to achieve centralized restoration.

Another research contribution stemming from the investigations of a distrib-
uted path restoration algorithm is the realization of a general purpose testbed environ-
ment for continued DRA research and/or development. This testbed is an experimental
system rather than just a simulator which permits direct transfer of a distributed restora-

tion algorithm's code if the logical node (DCS) model defined in the testbed is complied
with.

26

Chapter 1, Introduction

The research contributions discussed above are summarized in the following list:
1. OPRA

2. the integer program formulation for optimal' capacity design

3. the interference heuristic

4. recognizing and solving the end-node bottleneck traversal problem
5. Interference Tester

6. the pathset identified by the integer program formulation

7. a general purpose DRA testbed environment

1.7 Outline of Thesis

The first (present) chapter introduced the restoration problem and presented the
background necessary to differentiate the current research from prior work.

Chapter two reviews transport networks and the technology used to facilitate
mesh restoration. In this review the essential differences between SONET and ATM, and
how those differences effect the functioning of a mesh restoration algorithm are high-
lighted.

Chapter 3 formally states the path restoration problem using graph theoretical
terms and explains the differences between it and the packet routing and call routing
problems.

Chapter 4 describes a method for capacity optimization of path restorable net-
works and quantifies the capacity benefits of path restoration over span restoration. The
further benefits of jointly optimizing working and spare capacity placement in path restor-
able networks are also quantified.

Chapter 5 is devoted to consideration of appropriate figures of merit through
which the performance and efficiency of a new path restoration algorithm (here OPRA)
can be assessed systematically and quantitatively. Coilectively chapters 1 through 5
establish the framework necessary to describe OPRA in detail.

1. The term optimal when used in conjunction with capacity planning, rather than restoration, refers
to that network design which has the minimum amount of spare capacity required to restore all
individual span failures.

27

Chapter 1, Introduction

Chapter 6 begins to explain the proposed distributed dynamic path restoration
algorithm. The principle at the heart of OPRA which enables it to find a near optimal set
of link disjoint replacement paths within two seconds is introduced.

Chapter 7 explains how OPRA uses state-based signalling as the framework for
interaction between nodes, and the logical environment within which OPRA functions.

Chapter 8 presents a detailed description of OPRA emphasizing the logic neces-
sary to restore a failure. The actions each DCS in a network must perform in response to
various interrupts received during the restoration process are explained in this chapter.

Chapter 9 presents the procedures required to effectively test OPRA using dis-
crete event simulations. The nodal logic presented in this chapter supplement OPRA’s
core procedures presented in the previous chapter.

Chapter 10 describes the OPNET testbed in which OPRA was implemented for
experimental characterization.

Chapter 11 evaluates OPRA's ability to restore all single span failures in a metro-
politan and a long haul network using the testbed presented in chapter 10.

Chapter 12 investigates the impact of reducing the processing delay associated
with executing OPRA, compared to the value used in the previous chapter.

Chapter 13 reports the behaviour of OPRA when presented with a random series
of individual link failures, as opposed to a “quillotine” (i.e. simultaneous) model of a cable
cut.

Chapter 14 quantifies the benefits of the interference heuristic which enables
OPRA to synthesize a near optimal multi-commodity max-flow restoration pathset in usu-
ally less than two seconds.

Chapter 15 investigates OPRA's ability to restore multiple span failures, and
synthesize a restoration pathset which appoints to every affected demand pair an amount
of spare capacity proportional to that network’s pre-failure connectivity.

Chapter 16 concludes this thesis with a review of the main development, a sum-
mary of the research contributions made, and recommendations for further research.

28

Chapter 2, Transport Networks

Chapter 2. Transport Networks

This chapter provides background on the networks whose capacity design will be
optimized and into which the distributed dynamic path restoration algorithm will be
deployed. The relevant network environment is that of the SONET/SDH transport net-
works. In general, transport networks must provide the physical connectivity, establish-
ment, maintenance, and release of connections. The Synchronous Optical Network
(SONET) defines the first layer, physical layer, of modem transport networks, and
recently Asynchronous Transfer Mode (ATM) has emerged as a leading candidate to fulfil
the services associated with the next two layers, the data link and network layers, of a
transport network. The distributed dynamic path restoration algorithm proposed in this
thesis dissertation can be deployed in either the SONET or ATM layer. Considering that
SONET is a relatively mature technology compared to ATM, the current research investi-
gates the performance of the distributed dynamic path restoration algorithm assuming a
SONET technology platform.

The following sections review SONET and ATM, focusing on those aspects of
each technology which facilitate mesh restoration. In this review the essential differences

between SONET and ATM, and how those differences effect the functioning of a mesh
restoration algorithm are highlighted.

2.1 SONET

High speed transport carrier signals are usually the end product of multiplexing
many lower speed signals together. As a digital carrier signal traverses the transport net-
work it is usually multiplexed and demultiplexed many times. Maintaining the visibility of
low speed signals within the carrier signal is a goal achieved by SONET but not by the
older Plesiochronous Digital Hierarchy (PDH), e.g. DS-1/2/3-based, transport networks.
The following discussion introduces SONET networks by comparing them to PDH trans-
port networks.

A Plesiochronous Digital Network (PDN) uses point-to-point transmission sys-
tems and a layered multiplexing scheme to provide the physical connectivity, establish-
ment, maintenance, and release of connections. In a PDN framing occurs at each

29

Chapter 2, Transport Networks

muitiplexing step, and each point-to-point transmission system is clocked independently.
Wihile all the clocks in a PDN are free running, they nominally operate at one of the stand-
ardized rates set in the Plesiochronous Digital Hierarchy (PDH) shown in Table 2.1.

Table 2.1. Plesiochronous Digital Hierarchy (North America)

Digital Signal Level Data rate (Mbps)
DSO 0.064
DS1 1.544
DS2 6.312
DS3 . 44736
DS4 274.176

Within each rate in the muitiplexing hierarchy, the various transmission systems
in a PDN operate at slightly different frequencies. In order to multiplex signals with slightly
different bit rates it is necessary to adjust the various input signals to a common rate by
adding or deleting bits. The PDH specifies specific positions in a signal where special
bits, referred to as stuff bits, may be eliminated or added without corrupting the transmit-
ted information. While adding and deleting stuff bits in an input signal according to the
rules stipulated in the PDH does not corrupt the information being transmitted, it does
render the tributary signal inaccessible after multiplexing. In the PDH it is impossible to
discern the difference between a stuff bit and an information bit in the payload of any dig-
ital carrier signal above the DSO0 level without demultiplexing the high speed signal into its
constituent tributary signals.

In the Synchronous Optical Network (SONET) the payload remains visible after
muitiplexing, foregoing the need to completely demultiplex a high speed signal into its
constituent parts in order to recognize the information being transmitted. Instead of using
stuff opportunities like the PDN to achieve frequency justification among plesiochronous
signals, SONET uses pointers to indicate the variable start position of each individual
tributary signal within the payload of a synchronous high speed carrier signal. The syn-

30

Chapter 2, Transport Networks

chronous portion of a SONET carrier signal used to transport a tributary signal is called
the Synchronous Payload Envelope (SPE). SONET is able to retain payload visibility by
using pointers to indicate where the information being transmitted begins within the base
level synchronous transport signal. The base level synchronous transport signal in
SONET is the STS-1.

Payload visibility allows for single-step multiplexing and demultiplexing which
reduces the number of redundant terminations and interfaces at a node, and allows
greater equipment integration in terms of physical size and application functionality. All
low speed tributary signals in SONET can be multiplexed to a standardized high speed
bit rate in a single step. Furthermore, while the tributary signals to a STS-1 may be syn-
chronous or plesiochronous, SONET uses a universally distributed clocking signal to syn-
chronize all transport signals. By slaving all clocks in a SONET network to one universal
clocking signal, all STS-Ns are synchronized and the need for frequency justification
between SONET transport signals is eliminated.

With the advent of Fibre Optic Transport Systems (FOTS) and bit rates much
faster than those specified in the PDH, retaining payload visibility as well as defining sig-
nal formats for bit rates faster than DS-4 is necessary. SONET standardizes the use of
pointers to maintain payload visibility as well as high speed carrier signal formats as
shown in Table 2.2. Unlike the PDH, the bit rates of the higher levels signals in the
SONET signal hierarchy are a multiple of the of the base level bit rate (i.e. STS-1).

Table 2.2. Levels of the SONET Signal Hierarchy

Digital hierarchy level

hicc)a‘r):r(::at:y L(i&%;‘)e ANSI CCITT
level (“SONET") | (“SDH")
ocA 5184 | STS- :
oc3 156552 | STS3 | STM-
0C9 46656 | STS9 -
0OC-12 622.08 8TS-12 STM-4
OC18 | 93312 | STS18 ;

31

Table 2.2. Levels of the SONET Signal Hierarchy

Chapter 2, Transport Networks

) Digital hierarchy level
hict)af'):r%at:y '-('&%;ast)e ANSI cCITT
level (“SONET) (“SDH")
0C-24 1244.16 STS-24 -
OC-36 1866.24 | STS-36 .
0C-48 2 488.32 STS-48 STM-16

2.1.1 Distributing Alarms in a SONET Network

The path, line, and section overhead added to the service payload of a SONET
signal provide support for a host of modern operational control, configuration, and surveil-
lance systems. The optimized distributed path restoration algorithm presented in this the-
sis is one of the applications which could be supported by SONET. The restoration
algorithm uses the STS Path Alarm Indication Signal (AIS) supplied by SONET to acti-
vate the algorithm, and also uses SONET’s line overhead to propagate its state indica-
tions to adjacent nodes.

The STS Path AIS is associated with the path overhead of a SONET signal, and
is used to notify the path terminating equipment (PTE), i.e. the source and destination of
a working path, of a failure. The location where a payload tributary signal is mapped into
and removed from a SPE is the PTE. In contrast to a PTE, Line Terminating Equipment
(LTE) is responsible for multiplexing STS-1 frames into STS-N frames and Section Termi-
nating Equipment (STE) is responsible for preparing a STS-N signal for physical trans-
port. A single piece of network equipment may perform the functions associated with a

STE, LTE, and PTE. Referring to Figure 2.1, in the event of a unidirectional failure a Path
AIS is generated as follows:

32

Chapter 2, Transport Networks

Path
Line or Span) Line or Span
Section | ‘ Section
STE- LTE-1 STE-2 ®
©—9Q op @ N °or—©®
PTE'1 ": hatl .4 : hal : — A : — PTE'Z
7N 7

eg. TM eg. REG eg. ADM eg. REG eg. TM

ADM ADM DCS ADM ADM

DCS DCS DCS DCS

: . @ tneAls _ ® PatnAlS g

. (® Protection Switching ; 5

. (® uneFERF : X

3 STS Yellow :
ADM Add Drop Muiltiplexer PTE Path Terminating Equipment
AIS Alarm Indication Signal REG Regenerator or Repeater
DCS Digital Crossconnect System STE Section Terminating Equipment
FERF Far End Receive Failure S§TS Synchronous Transport Signal
LTE Line Terminating Equipment ™ Terminal Multiplexer

® Indicates the n-th step of the
protocol

Figure 2.1. Path Alarm Distribution in a SONET Network [adapted from 69]

1. A unidirectional failure such as a partial cable cut occurs between PTE-1 and STE-1.

2. STE-1 enters a Loss of Signal (LOS) state 100 psec after the onset of an all 0’s pat-
tem.

3. STE-1 generates a Line AlS to LTE-1 within 125 psec after entering the LOS state.

4. LTE-1 enters a Line AIS state after receiving five consecutive SONET STS-1 frames
with the Line AIS set.

Chapter 2, Transport Networks

5. LTE-1 attempts to restore the failure using APS or SHR systems in current practise.
This is an aspect that may change with the present work.

6. LTE-1 alerts PTE-2 and the upstream LTE (PTE-1 in Figure 2.1) of the failure within

125 psec after entering the Line AIS state by transmitting a Far End Receive Failure
(FERF) signal and a Path AIS as shown.

7. PTE-2 enters the Path AIS state after receiving three consecutive SONET STS-1
frames with the Path AIS set.

8. PTE-2 transmits an STS Yellow alarm to PTE-1 upon entering the Path AlS state, and
after waiting a minimum of 50 msec for any protection switching systems present to
restore the failed working paths they were meant to protect, activates the distributed

optimized path restoration algorithm for those demand pairs whose working paths
have not been restored.

9. PTE-1 acknowledges the STS Path Yellow alarm after receiving ten consecutive
SONET STS-1 frames with the STS Path Yellow alarm set. PTE-1 then waits a mini-
mum of 50 msec to allow any protection switching systems in place to restore those
transport signals they were meant to protect before activating the distributed optimized
path restoration algorithm as described in step 8.

Given a bidirectional failure, alarms are distributed by the terminating equipment
on either side of the failure following steps similar to those described above. However,
unlike the unidirectional failure scenario, the optimized distributed path restoration algo-
rithm is activated in both PTEs by Path Alarm Indication Signals rather than by Path AIS
and STS Yellow alarm signals.

Chapter 2, Transport Networks

2.1.2 SONET Data Communications Channel (DCC)

In addition to distributing the alarms required to activate the optimized distributed
path restoration algorithm, SONET facilitates communication between the nodes
involved in a restoration event. While path level alarms as shown in Figure 2.1 will be
required to activate OPRA, communication during a restoration event must occur at the
line-level rather then the path-level because a solution to the restoration problem must
specify precise crossconnections at a LTE between line-level signals. The Line Overhead
(LOH) of a SONET transport signal includes a nine-byte, 576 kbps, Data Communica-
tions Channel (DCC) to facilitate message-based communications between nodes at the
line-level.

When the DCC is used as the framework for communication between nodes,
interactions take place by means of packetized messages explicitly addressed to another
node. Packet contents are typically high-level constructions explicitly relating to com-
mands or operations of a particular application. In traditional messaging if a node wishes
to send a message it appends a destination address to the message. The message is
then passed through the network from node to node. At each node, the entire message is
received, processed, and then transmitted to the next node. Processing a message
requires traversing a protocol stack to determine the command or operation that must be
performed. A message is delayed at each node for the time required to receive all bits of
the message, process the message, plus a queuing delay waiting for an opportunity to
retransmit to the next node. The DCC can be used to carry messages of all types, and
any node in the network can send messages addressed to any other node, not only adja-
cent nodes.

Message based communication using the DCC is not suited to real-time traffic.
The delay through the network is relatively long and has relatively high variance. Consid-
ering that the objective of this research is to restore a failure in less than two seconds,
message-based communications will be too slow, as found in [63]. Given the current per-
formance characteristics of messaging-based communication on the DCC, coupled with
the concerns of routing and message congestion at the time of a failure, using the DCC
for signalling in DCS distributed restoration is not recommended [63].

35

Chapter 2, Transport Networks

2.1.3 State-based Signalling in a SONET Network

State-based signalling is the repeated application of static or quasi-static fields to
individual links of a transport network such that a framework for interaction between
nodes is established. State-based signalling is an attractive alternative to message-
based communication because it is potentially much faster. The preceding work on the
SHN presented in [25] showed that the persistent nature of state-based signalling and its
space divided nature has benefits in simplicity and robustness when used to communi-
cate during a restoration event because network state information is stored on the links of
the network. These links function as memory locations, and the network fabric is the
memory space within which an algorithm operates. There is no overhead required by the
algorithm to communicate with an adjacent node or to determine the current logical state
of a neighbour. The information is always available on the links terminated at the node.

As explained in [25], a network using state-based signalling as the framework for
interaction does not require extensive or any explicit error correction. If one instance of
an information field is errored, the receive hardware register holds its last valid value and
accepts the next repetition of the field when correctly received with the checksum vali-
dated in hardware. There is no input message queuing; new information overwrites rather
than follows the information in a field. With state-based signalling, every node interacts
with its neighbours through highly parallel means, exploiting each link leaving its site for
coupled memory-like interaction over fast, dedicated physical-layer channels.

Simple dedicated hardware in the DCS port and one or both of the unused bytes
in the LOH of a SONET transport signal is all that is required to facilitate state-based sig-
nalling in a network. The optimized distributed path restoration algorithm presented in this

thesis uses state based signalling to communicate during a restoration event as recom-
mended in [63].

36

Chapter 2, Transport Networks

2.1.4 SONET DCSs

SONET specifies the transmission and muiltiplexing standards required to send
information in a transport network. The hardware that terminates the digital signals and
automatically cross-connects their constituent (tributary) signalis is the Digital Cross-con-
nect System (DCS). DCSs provide the flexible network control required to implement a
mesh restoration mechanism.

A DCS historically provides a defined interface point at which standard imped-
ance, power levels, digital waveshapes, and timing jitter are guaranteed so that all items
of equipment that source, sink, or transport a digital carrier signal can be interconnected
in any manner desired. The DCS, which is designed to integrate signal add-drop, cross-
connect, multiplexing/demuiltiplexing, etc. into a single piece of network equipment, can
eliminate back-to-back multiplexing and reduce the need for intermediate electrical distri-
bution frames.

A variety of DCS machines have been developed for various applications and a
standardized notation has arisen to describe a DCS. The notation DCS n/x denotes two
attributes: n is the highest digital hierarchial transmission level at which the DCS machine
can interface to transmission equipment and x is the lowest digital level at which the DCS
can switch sub-multiplexed tributaries.

The functional diagram of a SONET DCS that switches digital signal levels
slower than the digital hierarchical transmission level interfaced (i.e. x<n) is shown in Fig-
ure 2.2. When a high-speed signal is terminated at the DCS, it is first demultiplexed into a
set of tributary channels. These tributary channels are then cross-connected to appropri-
ate output ports for either service or facility grooming, or restoration. The tributary chan-
nels that are switched to the same output port are multiplexed together and converted to
a high-speed, time division multiplexed, stream. This stream is then sent to the appropri-
ate destination over a fibre facility. The cross-connect matrix, which performs channel
switching, is rmanaged by a controller that changes the switching matrix, as necessary.

37

Chapter 2, Transport Networks

SONET DCS

A h

i

XCZOo

;

xXcZ

;

xXcZ0o

- . —— - - ———

xcg

& Register required for state based signalling
= DCS interface port

Figure 2.2. SONET DCS functional diagram with enhancements
to support state-based signalling [adapted from 25]

Figure 2.2 also shows the enhancements required if a DCS uses state-based sig-
nalling as the framework for interaction between nodes. As shown, each port requires a
register capable of storing, receiving, and transmitting the information fields associated
with state-based signalling. Each port register is provisioned to store and transmit the
fields of one outgoing signal, and receive and store the fields of one incoming signal.

From the DCS processor point of view, the register is static memory which can be
used to modify the fields used for state-based signalling on the outgoing signal of a port.
The fields of a register modified by the DCS processor are continually repeated on the
outgoing signal by special circuits in the port card.

In addition to altering the state of an outgoing signal at a port, the register shown
in Figure 2.2 retains the status of an incoming signal. The state of a link is extracted from
the line signal at a port by a serial-in parallel-out register, and stored in a second parallel-
in parallel-out register. The serial-in paraliel-out register accumulates individual bits from

38

Chapter 2, Transport Networks

the incoming line signal and serially shifts them past circuits that recognize the beginning
and end of an information field, as well as verifying the integrity of the field using either
simple persistence checking or a checksum calculation. When a complete and verified
information field is received in the first register, and it is different from the field in the sec-
ond output register, the new value is latched into the output register and the processor
informed of the change. The second register always holds the last valid state of a field for
presentation to the DCS processor. A more complete description of the registers required
to facilitate state-based signalling is given in [26]

The functional architecture of the DCS as shown in Figure 2.2 is currently under
investigation. The present generation of DCS machines are not designed with fast resto-
ration in mind. Historically, DCSs were seen to fulfil the role of provisioning and transport
network rearrangement only. This is reflected in the current specification of 1 second
cross-connect times [28]. During routine provisioning and rearrangement on DS3/STS-1
streams there is little reason to hurry and every reason to be cautious. However, in dis-
tributed restoration, connections are deduced locally within each node during an emer-
gency, and specifications for normal crossconnection times should not apply. In order to
reduce the restoration time, a prompt-connect specification is necessary during restora-
tion. A prompt connection can be considerably faster than 1 second with only software
changes primarily to waive spare port testing and connection verification, in which case
cross-connection is technically feasible in 20 to 40 msec. [28]

Furthermore, present DCS architectures may use serial message processing
and serial path cross-connection. By switching to a parallel CPU-based processing archi-
tecture and a parallel path cross-connection capability, a DCS's performance may be
enhanced such that one STS-1 path is cross-connected in 10 msec [70].

It may be difficult to restore a network before a call in progress is dropped using
present DCS system architectures if crosspoints cannot be operated quickly enough
either due to large workloads during a restoration response or because of implementation
choices. As a result, research that is being conducted in parallel with this work suggests
that it can be useful to pre-operate restoration crosspoints between spare links before
any failure has occurred, putting the network into a statistically optimal state of readiness
[50]. When a failure occurs some of the preconfigured restoration path bundles can be

39

Chapter 2, Transport Networks

used immediately. If more restoration paths are needed, they can be obtained by the opti-
mized distributed path restoration algorithm presented in this thesis. The first advantage
of preconfiguration is that the number of crossconnection operations may be greatly
reduced or eliminated for a portion of the affected traffic. This will reduce restoration time.
Second, after utilizing preconfigured restoration paths, the workload of a real-time resto-
ration algorithm will be lower because it will be searching for fewer paths. Preconfigura-
tion as explained in [50] is not related to the functionality or performance of a distributed
restoration algorithm, and does not alter the way OPRA would be used.

The time required to cross-connect a STS-1 path depends on the architecture of
a DCS and the number of preconfigured restoration path bundles available. The cross-
connect time is independent of the mesh restoration algorithm used to restore a failure.
Therefore, the restoration times recorded in all of the results presented in this thesis do
not include the time required to cross-connect a STS-1 path. The restoration times pre-
sented are the times required to complete the last restoration plan for all the nodes in the
network restoration pathset.

It is difficult to predict the time required to complete the last cross-connection for
all the nodes in the network restoration pathset from the restoration times presented in
this thesis because the restoration pathset is built up as restoration paths are found. Con-
sidering that restoration paths identify the cross-connections a node must implement to
restore lost working paths, and are rarely all found at once, a DCS may begin completing
cross-connections before a node's entire restoration plan is realized. For example, if res-
toration paths are found sequentially, and the time interval between each find is greater
than the time it takes for a DCS to physically complete a single cross-connect, the time at
which all of a node's cross-connections are completed after the start of a restoration
event is equal to the time that the final cross-connection at a node is completed. Only
when the time interval between finding restoration paths is greater than the time it takes
for a DCS to physically complete a single cross-connect will the restoration times pre-

sented in this thesis include the time required to complete all of the cross-connections for
all of the nodes in the network.

40

Chapter 2, Transport Networks

2.2 Relationship to ATM

SONET networks provide a high-capacity transport system with powerful network
operations and maintenance capabilities. However, traditional synchronous time division
techniques used in SONET networks, which divide bandwidth into a number of fixed
capacity channels, require all data to be transported at one of the standardized transmis-
sion rates shown in Table 2.2. These characteristics make SONET most efficient at sup-
porting Constant Bit Rate (CBR) services such as voice service, which map well into the
available fixed-capacity channels. Thus, SONET alone may not be adequate to support
B-ISDN because it does not provide sufficient flexibility to manage a variety of bandwidth
requirements within the same network. B-ISDN will allow for the efficient provisioning of
telecommunications services to business and residences by providing a common, high-
speed interface that can integrate voice, data, graphics, and video information.

The technology platform proposed to carry B-ISDN is a packet-oriented transfer
mode known as Asynchronous Transfer Mode (ATM). The packets used to organize and
transport information in an ATM network are fixed-size entities known as cells. ATM is
asynchronous in the sense that the recurrence of cells containing information from an
individual user are not necessarily periodic. ATM technology combines the flexibility of
traditional packet-switching technology, which is efficient for supporting services with var-
ious bandwidth requirements, with the determinism of TDM, which is suitable for support-
ing services requiring stringent delay requirements.

Both the SONET and ATM network architecture for switched services are made
up of two switches at the ends of a path and a transport network which conveys signals
through intermediate nodes such as DCSs. In both cases, all major call processing and
management functions are performed at the two end nodes of a path, and the transport
network is designed to deliver signals as quickly and as cost-effectively as possible with a
minimum amount of processing.

As shown in Figure 2.3, the ATM switch, which is composed of a high-throughput
cell switch and a high-performance processor, handles VP assignment, setup, process-
ing, and capacity allocation, as well as VC routing. ATM DCSs, which are used for provi-
sioning VPs in broadband transport networks as well as for VP routing, simplify network
configuration and provide flexible routing and capacity allocation.

41

Chapter 2, Transport Networks

VCI Control (Call by Cali)

- —— -y

: Cell rout-
ting by VPI

s

VPL 1

| VPI 2

: End Node Function

¢ -Call setup
-Call admission control
-VP assignment
-VP capacity allocation
-VP route selection
-Traffic control
~Call routing by VCI
-VCl conversion

......................

Figure 2.3. ATM VP-Based Network Architecture and
Nodal Functions {adapted from 69]

Several applications of the VP concept exist. VPs provide a logical direct link
between two nodes. This simplifies signal transport between two nodss. In addition, VPs
can provide protection switching or alternate routing in case of a failure. Features of ATM
VP technology which facilitate network restoration include non-hierarchical multiplexing
(as shown in the ATM DCS in Figure 2.3), hidden paths, and Operation and Management
(OAM) cells.

A hidden path is a VP that can be preassigned without reserving any capacity for
it. Unlike a SONET DCS, which can only support path cross-connection with a single bit
rate, the ATM DCS can cross-connect VPs with any bandwidth.

42

Chapter 2, Transport Networks

The OAM cell facilitates communication between nodes in an ATM network, anal-
ogous to the DCC in SONET. A restoration mechanism deployed in an ATM network can
broadcast and acknowledge path rerouting signals using OAM cells. OAM cells can be
inserted into the main ATM cell stream at any time as long as there is available capacity.
OAM cells are suitable for message based signalling as described in section 2.1.2, but
are unable to support state-based signalling as described in section 2.1.3. Table 2.3 high-
lights the differences between SONET and ATM mesh survivable networks.

Table 2.3. Comparing Mesh Survivable SONET and ATM Networks

SONET ATM
B Protection Level STS-path VP
Equipment SONET DCS ATM DCS
Path being cross-connected digital path virtual path
(physical) (logical)
Path capacities that can be a single STS rate any*
cross-connected* defined in the SDH*
Multiplexing hierarchy SDH none
Framework for interaction message or state- cells**
between nodes based signalling

*A SONET DCS can cross-connect only STS signals defined in the SDH which have the same rate,
whereas any VP with a capacity ranging from zero to the line rate can be cross-connected by an ATM DCS.
** Whether ATM cells are suitable for signalling in DCS distributed restoration requires further research.

A restoration mechanism deployed in an ATM VP-based network may use con-
cepts similar to those used by a restoration mechanism deployed in a SONET based net-
work. Like its SONET counterpart, a mesh ATM VP-based restoration mechanism can be
controlled in a centralized or distributed manner, classified as either a span or path resto-
ration mechanism, and be implemented in a preplanned or dynamic fashion.

Several restoration mechanisms have been proposed for ATM VP-based trans-
port networks using ATM DCSs [21, 42, 44]. Most of the ATM restoration algorithms pro-
posed to date rely on a pre-plan of back-up VPs which are assigned zero bandwidth

Chapter 2, Transport Networks

when idle. While the routing problem is addressed in these mechanisms, the span capac-
ities required to support the sudden volume of cell traffic generated by active back-up
VPs, without significantly increasing celi delay, buffering, and loss, has not. While no cells
travel along a backup VP in [21,42, 44] during normal operation (no failures), ultimately
the physical bandwidth to carry the restoration plus ordinary traffic must be present along
the backup route if one is to rely on it in an emergency. Suitable bandwidth margins must
be maintained on ali links that may be required to bear a combination of working and
backup VP routes so that if a failure occurs the bandwidth on those links can accommo-
date the sudden increase in traffic. None of the proposed ATM restoration mechanisms
take into consideration the impact an active back-up VP with non-zero bandwidth will
have on the Grade of Service (GOS) of an ATM network.

Furthermore, restoration traffic flows in an ATM network will be of a very different
nature than existing traffic models: they will appear as sudden step-like increases in
aggregate cell flow, already statistically multiplexed as a composite of individual sources.
Given that restoration flows correspond to shifts in flows occurring within the body of the
transport network itself, these demands are not subject to, or regulated by, the usual
source-feedback and/or source throttling flow control mechanisms such as the leaky
bucket. Therefore, ATM restoration might present a new and quite specialized traffic
source “model” to be incorporated into the engineering of link utilization and buffer depths
efc.

Even though ATM uses cells to transport information, a standardized physical
layer bit stream, like SONET, will be used to transmit them. In an ATM network that uses
SONET as the physical layer, the payload of the SONET SPE is used to transport ATM
cells, and there is no difference between SONET and ATM payload restoration from a
user’s perspective. Furthermore, ATM networks are still in their infancy relative to SONET
networks, and the debate about which layer (either the ATM or SONET layer) of a trans-
port network should be used to restore a failure is currently unresolved. Given these cir-
cumstances, the description of OPRA presented in this thesis fits into a SONET level,
rather than an ATM level, restoration strategy.

Chapter 3, Restoration As A Routing Problem

Chapter 3. Restoration as a Routing Problem

A solution to the restoration problem, while providing affordable service continu-
ity, requires specifying precise connections between links in adjacent spans. This chapter
formally states the restoration problem using graph theoretical terms and explains the dif-
ferences between restoration and the packet routing and call routing problems. This
chapter begins with a review of the technical terms defined in graph theory required to
formally state the restoration problem and concludes with a discussion of the complexity
of the restoration problem. A similar discussion on this issue is found in [25]. This chapter

revisits these issues due to their importance here and extends their consideration to the
case of path restoration.

3.1 Describing Transport Networks using Graph Theoretical Terms

A transport network consists of a finite set of nodes, and a finite set of directed
links. A directed graph consists of a finite set of vertices and a finite set of arcs. The
graph theoretical entities of vertices and arcs are equivalent to the nodes and directed
links of a transport network. A directed link, x, is described as an ordered pair (u,v) where
u and v are the nodes directly connected by the directed link. Node u is where the
directed link begins, and node v is where it terminates. A common graph theoretical
equivalent is that x has its tail at v and its head at v.

An edge is a pair of directed links (arcs) between two nodes which have opposite
directions. The common term edge in graph theory is analogous to the term link in this
work, albeit there are many links on each span in general as this is the multigraph nature
of the present problem. For a link x, c(x) is the length, distance, cost, or weight of x. A link
is said to be positive or negative based on the sign of its weight. In the restoration prob-
lem, links have only positive weights.

A reflexive graph has a self-loop at every node; an anti-reflexive graph has no
self-loops. In a symmetric graph, every (u,v) directed link has a retumn directed link (v, u).
An anti-symmetric graph has no two nodes sharing such a pair of directed links. Trans-
port networks are inherently anti-reflexive and symmetric. Because a single link is com-
posed of a pair of directed links, it is helpful at various times to analyse transport

45

Chapter 3, Restoration As A Routing Problem

networks as undirected networks of links between nodes or as symmetric directed net-
works with pairs of directed links between nodes as shown in Figure 3.1.

A graph is simple if it is anti-reflexive and symmetric and has at most one pair of
links between any two nodes, each pair having the same endpoints but opposite orienta-
tion. The specialized form of graph needed for representation of the restoration problem
is called a muitigraph. A multigraph is an anti-reflexive, symmetric network in which any
pair of nodes can be joined by any number of symmetric link pairs in parallel as shown in

Figure 3.1.

—» arc /directed link

<« edge/link

- edge/link

Figure 3.1. An anti-reflexive symmetric muitigraph, i.e. a transport network

As shown in Figure 3.1, a path is an ordered set of concatenated links that may
be represented by the set of links present in the path: [P] = [a4, ag, ag], or as a vector P =
(uq, Uy, Ug, Ug) where uy is referred to as the source or origin and us is called the target or
destination. The length of path P is given by

C([P]) = Y c(a) (Va;e [P]) 3.1.1
A path whose endpoints are distinct is said to be open whereas a path whose endpoints
coincide is a closed path or a cycle. A simple path does not use any link more than once,

and a loopfree path does not include any node more than once. Every loopfree path is by
implication simple. In restoration each path found must be open and loopfree.

46

Chapter 3, Restoration As A Routing Problem

3.2 Relating Path Restoration to Call and Data Routing

Both span and path restoration differ from packet data and call routing in similar
ways. Therefore a development similar to the one presented in [25] which addressed the
span restoration problem is followed here, and a formal statement of the path restoration
problem is developed starting with a comparison to packet data and call routing.

There are a number of algorithms for packet data and circuit switched networks
that accomplish distributed routing, but use essentially centralized computational meth-
ods to derive the routing plan. These schemes either:

(a) perform routing calculations at a central site using
a global view of the network and download the
results to each node [60, 64], or

(b) include a scheme of mutual information exchange
through which all nodes of the network first build a
global view, then execute an instance of a central-
ized algorithm, and extract the part of the global
routing plan that applies to their site [56, 60].

In either approach the final routing policy is put into effect in a distributed manner,
but there is no truly distributed computation of the routing plans. A distributed implemen-
tation of a routing plan as described above is distinct from a distributed computation of a
routing plan. The real-time demands of the restoration problem motivate the search for a
scheme where computation and route deployment are both part of a single distributed
process involving only isolated action by every node.

The algorithms that determine routings which optimize delay or blocking in
packet and call routing can be quite sophisticated. Ultimately, however, the solution can
be specified for any (origin, destination) pair (A,Z) in the form of one route in a simple net-
work graph:

fi = (A, up) (Up, Ug) (U, Uyg) ... (Uny, Z) (8.2.1)

47

Chapter 3, Restoration As A Routing Problem

where u; is a node of the network, and r; specifies a loopfree route in a simple graph
which is the sequence of nodes through which packets will be relayed. There is no con-
straint on the simultaneous use of any link in this route by different node pairs. All rout-
ings can re-use and access any link through delay queuing or blocking contention.

In dynamic call routing, the call attempt replaces the data packet, and trunk
groups, accessed through blocking contention rather than delay queuing, replace the
links of the packet routing problem. In this case r; specifies the sequence of trunk groups
over which a new call attempt should be successively offered for call establishment. Oth-
erwise, the situation is the same in terms of the information required to specify a routing
solution. In this case, delaying an attempt is not usually an option. Individual calls must
be allocated to specific links in the sequence of trunk groups that they occupy.

For path restoration a link is dedicated to at most one transport carrier signal.
Path restoration of a span cut requires dedicated unique replacement paths between the
source and destination of every failed working path. The target number of restoration
paths is equal tc the number of failed working links. Restoration attempts to allocate to
each relation enough restoration paths to replace the lost working links. Each restoration
path is dedicated to the logical replacement of one failed working path. The routing of
replacement paths as a group must be consistent with finite capacity limits on each span.
Unlike packets or calls, there is no equivalent form of blocking-based, contention-based,
or delay-based shared access to links on a span. A carrier signal completely fills a resto-
ration path in space, time, and frequency. The restoration path-set must therefore be:

(a) mutually link disjoint throughout, and
(b) collectively consistent with the capacity of each span of the network.

in contrast to packet and call routing where a sub-optimal routing state may
mean some excess delay or blocking (graceful forms of degradation), the penalty for fail-
ure to satisfy (a) and (b) in restoration is abrupt and complete outage for carried services.
Table 3.1 is a summary of the comparative aspects of call, packet, and restoration rout-
ing.

48

Chapter 3, Restoration As A Routing Problem

Table 3.1. Comparative aspects of packet, call, and
restoration routing problems [adapted from 28]

Packet routing Alternate call routing Path restoration
Span structure a single logical a single logical trunk multple links
“pipe” group e.g. DS-3s or STS-1s
Span capacity allotment queuing blocking restoration algorithm dedicates
scheme. i.e. time sharing i.e. space sharing | individual links in ime and space
to individual replacement paths
Grade of service (GOS) path delay call biocking network availability
metric (delay engineered) (traffic engineered) (restorabllity engineered)
Type of network graph simple simple multigraph
Application data communication voice telephony physical bearer service for all
voice and data services
Impact of extended failures increased delay increased blocking loss of all calls in progress plus
(i.e. greater than 2 seconds) of originating calls service outage

3.3 Routing Formulation for Path Restoration

Path and span restoration both require identifying a set of link disjoint paths in a

mesh restorable network, and the routing formulation for path restoration presented here
parallels the development presented in [28] for span restoration, using similar notation.
Most differences result from the fact that variables in a routing formulation for path resto-
ration often are associated with a specific relation, requiring that a superscript, AZ, which
identifies the demand pair to which a variable belongs, be added to the notation used in
[28].

A solution to the path restoration problem for span (x, y) must include the foliow-
ing information for each (A,Z) demand to be restored:

k;‘f = min(W:yz, 7‘:5) 3.3.1
Rtyz = [I'1...I’k] 3-3.2
where:
k;‘f = number of restoration paths used by relation A-Z to restore links lost upon the

failure of span x-y, sometimes shortened to k" where r is a tag for demand pair
A-Z, and s is a tag for span xy,

49

Chapter 3, Restoration As A Routing Problem

= number of working paths from relation A-Z which traverse the failed span x-y,

= number of fink disjoint restoration paths that are topologically feasible between

% &%

node pair A-Z, combined with those restoration paths from every other demand
pair to be restored, over the unused spare links in the network after the failure
of span x-y,

R:yz = set of I(,:yz restoration paths, of various lengths, with each path r; defined as:

fi= DAY S; 00 g, 00 D0 Uy 2)s S o 1o LWy 10 D Spaye i, o]
where:

u, , is the a node traversed by restoration path i

S; , is the b™ span traversed by restoration path i

(A, u; ;) are the nodes terminating span s; ,

li b isthe o link used on the bth span traversed by restoration path i

k(i) is the logical path length of restoration path i.

Riyz is called the restoration plan for node pair (A,2) in the event that span x-y

fails. r; details all the information required for a single restoration path, specifying exactly

which links in adjacent spans must be cross-connected. The cross-connect information

for each replacement path is specified at each node because restoration manipulates the
individual links within a span.

Determining the restoration plan for each node to be restored is complicated by
the fact that the following constraints must be simultaneously satisfied:

Constraint 1: Link Disjointness
A single link can only be used once in a single restoration path:

if I; b o € r; then I; b, ¢ Can appear only once in r; and libc® r forall i=j.

50

Chapter 3, Restoration As A Routing Problem

Constraint 2: Span Capacities
The number of restoration paths traversing a span must not exceed the number of spare
links on that span:

D, K

n Doy

DY 8:; »S|sy| forall spans b= xy and all span failures xy
re=1i=1

where

ny is the total number of demand pairs affected by span cut xy

8:; » takes the value of 1 if the i restoration path for demand pair r after the failure of
span xy uses span b, and 0 otherwise

|sy is the number of spare links on span b

Constraint 3: Mapping Preservation

In addition to finding the required number of paths between relations, each end-to-end
relation which uses more than one restoration path must share a common scheme of
ordering the replacement paths to avoid transposition in the traffic streams substituted
over the restoration paths. For path restoration, mapping preservation can be achieved
by identifying the destination node of a restoration path to the source node, and correctly

pairing receive and transmit signals using the STS ID included in the section overhead of
every SONET signal.

Constraint 4: Minimum Capacity Utilization
Minimize the spare capacity used to restore a span failure:

D, K

Xy “xy

Min1 Y) C(r,)} for all span failures xy

r=eli=1

where
ny is the total number of demand pairs affected by span cut xy.

C(r) is the cost of path r;.

51

Chapter 3, Restoration As A Routing Problem

Constraints 1 through 3 are essential for the basic function of restoration: con-
straint 1 says that the paths created must be fully link-disjoint, constraint 2 says they
must respect the finite span capacities present, and constraint 3 says they must share a
common end-to-end identifying scheme for correct traffic substitution. While it is essential
that constraints 1 to 3 are satisfied, for an operational mechanism constraint number 4 is
an objective, which will have to be substantially satisfied for industry to accept the solu-
tion generated by the restoration algorithm.

The routing formulation for span restoration can be derived from equation 3.3.1
and 3.3.2, and constraints 1 through 4, by replacing the relations to be restored AZ with

the end-nodes of the failed span xy (e.g. I(x‘yz = k"yxy). Compared to span restoration,

determining Tfyz and satisfying contraint number 4 for path restoration is much more dif-

ficult. In path restoration, the replacement paths from each demand to be restored must
be simultaneously feasible and their number globally maximized, which requires making

efficient use of a network’s spare capacity. Tﬁyz cannot be determined in isolation for a

single relation and locally maximized, rather Tfyz should be set so that the amount of lost

capacity restored is maximized globally over all demands to be restored. Furthermore,

the solution to the restoration problem is not simplified when Tfyz is greater than Xtyz

because contraint number 4 requires that the combined set of all replacement paths from
each demand to be restored use as little spare capacity as possible.

in summary, the path restoration problem can be stated in graph theoretical lan-
guage as follows: find a link-disjoint restoration pathset for every demand pair to be
restored which minimizes the total spare capacity used in a multigraph subject to span
capacity constraints with mapping preservation.

52

Chapter 3, Restoration As A Routing Problem

3.4 Complexity Considerations

In an attempt to compare the relative difficulty of solving the span and path resto-
ration problems, this section analyses the theoretical complexity of various routing formu-
lations for restoration. The computational complexities presented here, do not apply to
any distributed restoration mechanism, rather they are intrinsic single processor views of
the complexity of the basic problems. The centralized single-processor complexity of the
various routing formulations gives some insight into each probiem, and a relative indica-
tion of the difficulty associated with implementing a distributed restoration algorithm to
satisfy each formulation.

Table 3.2 shows a progression in computational complexity as routing formula-
tions become increasingly sophisticated. This table is similar to the one presented in [28],
except for the value associated with a path restoration mechanism using a minimum
amount of spare capacity. The fifth routing problem formulation is slightly different
because it represents implementing path restoration via successive shortest paths for all
possible orderings of demands, as explained below, instead of all permutations of individ-
ual demand relations, as explained in [28]. While each formulation is exponential in com-
plexity and pertains to a path restoration mechanism that uses a minimum amount of
spare capacity, minor disparities in complexity result from finding the solution in slightly
different ways. The following development of the computational complexity of a path res-
toration mechanism is similar to the one presented in [28] in the first four cases, and only
digresses in the fifth case to be consistent with the explanation presented here.

The first computational complexity shown in Table 3.2 is the complexity of finding
a single shortest replacement route in a simple graph. This is equivalent to the call or
packet routing problem of a single shortest path. The problem of finding a single shortest

replacement path between two nodes of a network is of O(n?) complexity when solved
using Dijkstra's shortest path algorithm [17], and O(nlogn) complexity using a binary min-
heap [48]. The first routing formulation in Table 3.2 can only be satisfied by a span resto-
ration algorithm which implements a single route between the nodes terminating a failed
span. This is the simplest approach but requires the most spare capacity of any mesh
restoration scheme because all of the spare capacity needed to restore a span has to be
in place on some single route.

53

Chapter 3, Restoration As A Routing Problem

Table 3.2. Computational complexity of various routing formulations {adapted from 28]

Routing Problem Formulation Computational Complexity*
1 Find a minimum cost alternate route in a O(n2)
simple graph i.e. a trunking network
2 Span restoration via k-shortest link dis- 2) _ 2
joint replacement paths O(ks- n) = O(n)
3 Span restoration via minimum cost maxi- O(.)
mum flow
4 Path restoration via successive shortest O(K .. (n—1)) _ O(4)
paths analogous to Capacity Scavenging p'M =3 = A"
5 Path restoration using a minimum 2 . (n-1
amount of spare capacity O(kp- n. [Q—(E——) . W]!) =
(=)

* nis the number of nodes in a network

The second formulation in Table 3.2 is for span restoration via k-successively-
shortest link-disjoint paths, found by repeated application of a single shortest path algo-
rithm. There is no increase in the basic order of complexity for this step. The worst case
increase is a multiplier (ks) equal to the maximum number of working links per span.

The third formulation represents span restoration with minimum cost maximum

flow routing. Algorithms for Max Flow are of O(n®) to identify the maximum feasible flow
between two nodes [24]. The pathset that realizes this flow must be found as a separate
problem.

Computational complexity rises another order of magnitude when non-optimal
“ad-hoc” path restoration, as explained in section 1.4.4, is used to restore a failure. Unlike
span restoration, reconfiguration in path restoration is not bounded by a region surround-
ing the failure, rather each network demand affected by the span cut is re-routed from its
source to its final destination. The complexity of the fourth formulation in Table 3.2
assumes that one span cut may affect k, working paths from every relation in the net-

Chapter 3, Restoration As A Routing Problem

work. Theoretically '—7(+'12- relations or demand pairs are possible in a network of n

nodes. Since computing the k successively-shortest link-disjoint loop free paths between

two nodes of a network has O(n?) complexity, the problem of finding k successively-
shortest link-disjoint loop free paths between all node pairs has complexity

O(kp- n. er'—u) However, this is a naive form of path restoration because the

total number of restoration paths feasible in a network depends on the order in which the
pathsets are found. A distributed path restoration algorithm which satisfies this routing
formulation would likely be sub-optimal in path number and spare capacity usage, and
not reliably yield 100% restoration.

For path restoration with assured maximization of the total restoration capacity,
the problem becomes a case of multi-commodity maximum-flow, and is exponential in
complexity. All possible allocations of restoration paths need to be identified in order to

find the optimal! restoration pathset. The fifth routing formulation presented in Table 3.2
is for a path restoration mechanism which instantiates patiii resioration via successive
shortest paths for all possible orderings of demands to find a near optimal restoration
pathset. If the average demand per node pair is w; the number of ways all demands can
be restored is equal to the number of ways all the demand can be sequenced. If we have

LRULAD) (g'” .w demands, they can be sequenced in ["(g——UW]' ways. The com-

plexity of computing a near optimal restoration pathset by initiating path restoration via
successive shortest paths for all orderings of the demands severed by a span cut is

2 o (n-1))
therefore O(kp n [——2 w]! .

The upper limits on the complexity of the various routing formulations presented
in Table 3.2, derived above using restoration path counting arguments, indicate that only
a distributed restoration algorithm like OPRA is likely to restore a failure within the two
second call-dropping threshold. OPRA presented in Part Il of this thesis.

1. Optimal restoration paths maximize the restorability of a network, Rn as defined in chapter 5,
while using as little spare capacity as possible as explained in chapter 3.

55

Chapter 4, Capacity Placement in Mesh Restorable Networks

Chapter 4. Capacity Placement in Mesh’
Restorable Networks

Solving the restoration problem not only requires restoring a failure but economi-
cally determining the capacity placement required to facilitate restoration. The total
capacity required by a transport network to satisfy demand and protect it from failures
contributes significantly to its cost. Methods have been developed to place spare capac-
ity for span restoration in a network with a given set of working span sizes. [11, 36, 57,
66, 67] Path restorable networks can, however, be even more capacity efficient because
the restoration problem is solved by end-to-end re-routing. This chapter describes a
method for capacity optimization of path restorable networks and quantifies the capacity
benefits of path restoration over span restoration. The further benefits of jointly optimizing
working and spare capacity placement in path restorable networks are also quantified by
extending the method. This chapter in conjunction with the optimized distributed path res-
toration algorithm solves the restoration problem and satisfies the goals established in
section 1.4.4. This chapter begins with the development of a theoretical lower bound on
redundancy for path restoration, and ends with the economical design of a network’s
capacity. Aside from the bounding considerations that follow, this chapter corresponds to
the recently published work on this topic by the candidate {41]. The theory and results of

this chapter not only support the further work on OPRA but constitute one of the main
contributions of the thesis.

4.1 Lower Bounds on Spare Capacity Requirements in Span and Path
Restorable Networks.

Redundancy is defined as the ratio of total spare to working capacity. A theoreti-
cal lower bound on the redundancy of 100% path restorable networks is useful to quantify
the difference in capacity efficiency between path and span restoration, and determine
whether path restoration is more or less capacity efficient than span restoration.

1.These networks are called mesh restorable not to imply that the network is a full mesh, but to reflect the ability of the
rerouting mechanism to expioit a mesh-like topology through highly diverse and efficient rerouting of failed signal units.

56

Chapter 4, Capacity Placement in Mesh Restorable Networks

In the following analysis let:

S = number of spans in a network,
n = number of nodes in a network,

d= 2.8/n =average topolqgical degree of nodes in the
network (i.e in terms of sbans not links),
w; = working capacity per span
w = average demand per relation severed by a span cut
s
2w
= j=i
S

z (number of relations routed over span i)
f=1

W = average working capacity per span
S

X W

=1

nl—

If we assume, for lower bounding considerations only:

a) network restoration is limited by the number of spares
incident with the end-nodes of a failure,

b) each span carries the same capacity W,

c) each relation has the same demand w affected by a
span cut,

then immediate egress for rerouting of failed capacity for the end-nodes of a failed span

in a span restorable network is possible if the total spare capacity on the (d-1) unaffected
spans terminated at these nodes is enough to accommodate the lost capacity W.

57

Chapter 4, Capacity Placement in Mesh Restorable Networks

Given these assumptions, if span restoration is used to restore a failure as
shown in Figure 4.2, each span must have W/(d-1) spares, making the minimum total
spare capacity in the network:

Cs = gz S
and the total working capacity in the network is:
Cw=W-S

Therefore, the lower limit on the redundancy of a span restorable network is

Cs w S 1
Rspa,,=5;= T W "~ T 4.1.1

This is a well known result previously reported in [18] and [66]. A similar derivation for the
case of path restoration using the same assumptions is presented next.

Consider using path restoration to restore a span cut and assume that the surviv-
ing portions of a failed path are not initially released. Unlike span restoration, most of the
“failure nodes” in path restoration will still have access to all d spans during a failure
because they are the end-nodes of the demands, distant from the failure location. How-
ever, the local egress capacity for rerouting a particular demand pair is still the sum of the
spare capacity on the (d-1) unaffected spans, unless the surviving portions of a cut path
are released. To clarify this point consider a node which uses a span on which its working
traffic was disrupted to restore lost capacity. Then some other node in the network will be
prevented from using two spans to restore its lost capacity. For example, as shown in
Figure 4.1, if node A which is distant from a span cut uses the incident span on which it
lost working capacity, named span y, for restoration, node Z which is adjacent to node A
will not be able to access span y to restore its lost capacity even though node Z didn't
lose any working capacity on span y. Therefore, even in path restoration, on average (d-
1) spans must carry the lost capacity at each node, but now the end-nodes are many, and

on average are concemed only with the portion of W that pertains to their individual
demand pairs, w.

58

Chapter 4, Capacity Placement in Mesh Restorable Networks

node A uses all the spare capacity on
spany to restore its lost capacity

/I*/spa"v
<
node A

node A uses d (i.e. 4) node Z uses d-2 (i.e. 2)
spans to restore its spans to restore its lost
lost capacity w capacity w

Vo

Average number of spans used by nodes Aand Z
to restore their lost capacity = (d +d-2) /2 = d-1

node Z

Figure 4.1. Average number of spans used per node to restore a failure

In a path restorable network it is advantageous to release the surviving portions
of a cut working path and make those links available to the restoration process. This
option is called stub release. Stub release is an option in a path restorable network but
does not arise in a span restorable network because span restoration only replaces the
cut portion of a connection as shown in Figure 1.4 in chapter 1, where as path restoration
is equivalent to reprovisioning a completely new working path. In Figure 1.4 for example,
the span cut shown leaves six stubs, two pairs of red stubs between A-S and C-T, and
one black stub between D-S and B-T, which can be optionally released at the time of the
failure and added to the pool of spares available for restoration.

If stub release is used, egress for rerouting of a particular demand pair would
require that on average the sum of the spare capacity on d spans be greater than or
equal to the lost capacity. In the following analysis, if the path restoration algorithm uses
stub release, d-1 should be replaced with d.

If a span cut affects w units of demand per node, path restoration requires in this

limiting case that each span have w/(d-1) spares to restore the failure. The total spare
capacity in the network is then:

w
Cs=ﬁ's

89

Chapter 4, Capacity Placement in Mesh Restorable Networks

while the total working capacity in the network remains:
CW = W‘ S
Therefore, a lower limit on the redundancy of a path restorable network is:

Cs w S 1 w
Ran = C =g T WS~ a1 W 4.1.2

In other words the redundancy of a path restorable network benefits directly in proportion
to the extent to which demands for each node pair are kept to a minimum on each span
of the network. This can imply dispersion of demand routing, a concept returned to later.

Equations 4.1.1 and 4.1.2 are illustrated graphically in Figure 4.2. Note that
equation (4.1.1) can be derived from equation (4.1.2). In span restoration only the end-
nodes of a span cut are directly involved in restoring a failure in which case w = W and
equations (4.1.1) and (4.1.2) become equivalent, as they should.

---- Working Capacity (W)
Spare Capacity (S)
Demand / Span

Lost demand / Relation
Nodal degree

Number of spans in
the network

Spare Capacity / Span

U>°-‘<’E|

»

Span Restoration Path Restoration
Sgc+ Sap= Wp Sec+ Sap= Y. Wpyx
The spare capacity on spans BC and X
BD must exceed the working capac- The spare capacity on spans BC and BD
ity lost on span AB. must exceed the total lost working capacity

sourced by node B to any other node x.
Minimum redundancy:

W/(d-1)-8 1 Minimum redundancy:
WS T d-1 w/(d-1)-S_ 1 w
w-S d-1 w

Figure 4.2. Lower bounds on redundancy in mesh restorable networks

60

Chapter 4, Capacity Placement in Mesh Restorable Networks

A single span cut will sever at most W units of working capacity, so that w< W.
Equation (4.1.1) is therefore an upper limit of equation (4.1.2), which implies the redun-
dancy of a path restorable network should always be less than or equal to the redun-
dancy of a span restorable network.

From equation (4.1.2) it is apparent that as w decreases, the lower bound on
redundancy for path restoration decreases. This suggests that the average demand lost
per relation can be minimized if working capacity is spread over many diverse routes. In
this case instead of severing all of the demand from a few relations, a small amount of
demand is lost by many relations.

Both w and W will change for various demand routing schemes and network
topologies. More indirect routing schemes will increase the value of W and reduce w,
while shortest path routing will minimize the value of W. Indirect routing schemes spread
demands over many diverse paths in a network, decreasing w and increasing the number
of nodes involved in restoring a span cut. Shortest path routing tends to maximize the
value of w.

In addition, increasing the connectivity of a network can help decrease the value
of W by concentrating less capacity on each span. The number of diverse paths over
which demands can be spread will also increase, tending to decrease w.

In general it appears that the number of spares in a path restorable network is
minimized in a fully connected mesh which employs an indirect demand routing scheme.
Though decreasing w and increasing W would minimize the redundancy of a path restor-

able network, such a network may not be optimal! in terms of the total number of working
and spare links required. The aim when designing a 100% path restorable network is not
only to minimize the spare capacity, but to minimize the sum of the working and spare
links required. Towards the end of this chapter the results from the path restorable net-
work designs in the case of jointly optimized working and spare planning are inspected to
see the extent to which this “dispersion” hypothesis may be manifested.

1. The term optimal in this chapter implies a network which requires the minimum amount of working
and spare capacity to restore all individual span cuts.

61

Chapter 4, Capacity Placement in Mesh Restorable Networks
4.2 Integer Program Formulation

In this research Integer Programming (IP) is applied to the problem of optimal
capacity planning in a mesh restorable network. A flexible [P formulation is presented
here which can be used to optimize the placement of either the spare or working or com-
bined capacity of either a span or path restorable network. The approach uses flow con-
straints based on a set of eligible predefined routes over which pathsets may be
implemented. The solution to the IP tableau specifies the optimal capacity placement per
span as well as the actual paths used to restore each possible span failure. The minimum
capacity per span required to restore all individual span failures is of primary interest, and
the restoration pathset information is of secondary importance. However, the restoration

pathset information would be of primary importance if used to formulate a centralized res-
toration mechanism.

4.2.1 Integer Program Formulation for Spare Capacity Placement in Networks
with Pre-defined Demand Routing
The following IP formulation optimizes the spare capacity placement of a path

restorable network given a fixed working capacity design. The following notation, illus-
trated in Figure 4.3, will be used.

Cj Cost of a link (working or spare) assigned to span j.
) Number of spans in the network.
LS The restoration level required for demand pair r upon the failure of span i.

0<LI<1 (for 100% network restorability L;" = 1 for all r and all i).

D Total number of non-zero demand pairs in the demand matrix.

D; Total number of demand pairs affected by span cut i

dr Number of demand units between end-node pair r.

Xf Number of demand units lost by demand pair r upon the failure of span i.
Pf Total number of eligible restoration routes for demand pair r upon the

failure of span i.

62

Chapter 4, Capacity Placement in Mesh Restorable Networks

£-P The restoration flow through the pth restoration route for demand pair r
upon the failure of span i.

QF Total number of working routes availabie to satisfy the demand
between node pair r.

gt The working capacity required on the g working route to satisfy the
demand between node pairr.

8; f Takes the value of 1 if the p™ restoration route for demand pair r after the
failure of span i uses span j, and 0 otherwise.

t;;' ? Takes the value of 1 if the Q¥ working route for demand pair r uses span j.

w; Number of working links (i.e. transport capacity units) on span j.

S Number of spare links on span j.

possible restoration X

routes for A-B after
the failure of span i,
represented via

nLp
5,

route for A-B
represented

via gjf"l

Q=1 e---- Other Spans

Figure 4.3. Integer Program Notation

Chapter 4, Capacity Placement in Mesh Restorable Networks

The objective function is:

S
Min { > C; (sj)}

j=1

The constraints to be satisfied are:

1) Restoration flow meets target restoration levels for each demand pair r:

) M

pRALI A

p=1
vr=1,2,...,D.
Vi=1,2,...,S.

2) Span j's spare capacity is sufficient to meet the simultaneous demands of all restora-
tion routes that use it to restore a single span failure:

D, P
GEDY 28;’]‘.’4‘?" >0
r=1lp=1

V() =1,2,...,8.i#j

3) The total demand lost by relation r after the failure of span i is the sum of the flows over
relation’s r working routes traversing span i:

o
Y 0= X
qg=1
vr=1,2,..,D.
Vi=1,2,..,8.

64

Chapter 4, Capacity Placement in Mesh Restorable Networks

4) The flows on restoration paths, f;’p , and working paths, gr’ q, are non-negative inte-

gers.

5) Spare capacities, s It and working capacities, w i are non-negative integers.

As formulated, this IP can be adapted to optimize spare capacity placement for
either a span or path restorable network. if a span restorable design is desired, the set of
all node pairs affected by a failure is restricted to just the single pair of nodes terminating

the severed span, i.e. D; = 1, and X{ = w;.

To represent stub release in the [P, constraint number 2 is augmented as follows:

2a) Span j's spare dimensioning is sufficient to meet the simultaneous demands of all
restoration routes that use it to restore a single span failure (first double sum) after
releasing the surviving portions of cut paths (second double sum).

D, P} D, ¢
r,p P rq r,q n4q
SR DIDIL ALY S LI I WD W AR Ar S EL
r=1p=1 r=1q=1
V(i,j) =1,2,...,8. i#j

Eligible working and restoration routes are specified in the IP constraint set using

¢;?,and 877 respectively. These routes are not themselves predefined restoration plans

or predetermined working or restoration routes. They define the set of routes that could
be used by the IP in order to optimize the capacity placement in accordance with the
objective function. There will in general be many more eligible routes than actually used.

65

Chapter 4, Capacity Placement in Mesh Restorable Networks

All distinct routes between demand pair end-nodes (or span end-nodes depend-
ing on the case) must be represented in the constraint system to find the minimum spare
capacity placement. However, because the number of distinct routes in a network of S

spans is 0(2’) , the number of distinct routes entered as constraints typically has to be
restricted in practice. The size of the route sets used to implement the above IP were
restricted by limiting the length of eligible routes in a manner similar to the “hop-limited”
approach described in [36]. Eligible routes could only be longer than the length of the
shortest route by a limited number of hops and a given geographical distance limit. How-
ever, the use of hop and distance limits can prevent some long routes, which may be
needed in some networks, from entering the route set. Consequently the hop and dis-
tance limited set of distinct routes was supplemented with the k-successively shortest
disjoint routes between all pairs of nodes. This set of supplemental k-shortest disjoint

routes between a node pair is relatively small, obviating the need for any distance limiting
factors.

4.2.2 Integer Program Formulation for Combined Optimized Spare and Work-
ing Capacity Placement

The constraint system presented in section 4.2.1 is adequate for span and path
restorable designs without jointly considering the routing of working demands before a
failure. The IP can be extended to simultaneously optimize the working path routing and
spare capacity placement of a path restorable network. An IP formulation which mini-
mizes the sum of working and spare capacity must not only determine the spare capacity
per span and the routing of all restoration paths, but also the working capacity per span
and the routing of all working paths. By adding the following two constraints (6 and 7) to
the IP formulation presented previously, the solution will include the values of w;, and

g’ »4 which will now minimize the total capacity-cost required in a path restorable net-
work.

66

Chapter 4, Capacity Placement in Mesh Restorable Networks

The objective function now becomes:

S
Min{ > Cis;+ wj)}

j=1

Subject to constraints 1 through 5 defined previously, and:

6) The total capacity on the working routes allocated to node pair r can carry all the
demand of relation r:

7) Span j’s working capacity is sufficient to meet the pre-failure demands of all relations
which cross it:

D QO
o B 3G -0

r=1qg=1
Vi=12,..,S.

As before, the joint formulation can also be adapted to optimize the capacity
placement in a span restorable network by designating the source and destination of all
working paths cut by a span failure as the immediate end-nodes of the severed span (i.e.

D; =1, and X{" = wj), and eliminating stub release (i.e. using constraint 2, not 2a).

67

Chapter 4, Capacity Placement in Mesh Restorable Networks

Furthermore, the IP formulation can be extended for the general case of multiple
span and node failures by using the subscript i to identify the failure scenario rather than
the failed span. In this case none of the constraints would be changed. However, the eli-
gible restoration route set for different failure scenarios may be different because only
those restoration routes which are topologically feasible in the failed network are included
in the eligible route set for that failure scenario. For example, span j from restoration

route p and relation r for failure scenario i, identified by 82}’ in the eligible restoration

route set, must not be cut by failure scenario i.

4.3 Networks Investigated

Five networks and demand matrices previously studied for span restoration were
used to test the IP formulations presented in section 4.2. The characteristics of each net-
work are detailed in Table 4.1 énd the topology of each network is shown in Figures 4.4 to
4.8. The demand files associated with each network are presented in the technical report
which accompanies this thesis [38]. Network one is a test network which has a uniform
point-to-point demand matrix with two demand units between all node pairs. This is
“SmaliNet” as used in [25]. Network two is a metropolitan area model which was pub-
lished with a demand matrix, used here, based on industry data [63]. Network three is
another metropolitan area model based on a Canadian city. Networks four and five and
their point-to-point demands are representative of long haul networks.

Table 4.1. Test Network Characteristics

Network r':‘:& :sf gl:é:sf néAt\\llv%m p?tl-ct,é-cgt am?tﬁ of
degree demands demand
1 10 22 4.40 45 90
2 15 28 3.73 67 824
3 20 31 3.10 153 2152
4 53 79 2.98 347 858
5 30 59 3.93 263 8312

68

Chapter 4, Capacity Placement in Mesh Restorable Networks

Figure 4.4. Topology of Network 1 Figure 4.5. Topology of Network 2

Figure 4.6. Topology of Network 3

69

Chapter 4, Capacity Placement in Mesh Restorable Networks

G omjaN jo ABojodo | ‘gt ainbi4 ¥ lomjaN Jo ABojodo . */ ¥ ainbiy

70

Chapter 4, Capacity Placement in Mesh Restorable Networks

4.4 Capacity Placement Test Results

The capacity placement for each network detailed in section 4.3 was optimized to
restore all single span failures. The first three cases optimized the placement of spare
capacity in span and path restorable networks given a working capacity design. The
working capacity design in cases 1, 2, and 3 split the routing of demand between a node

pair as evenly as possible over the node pair’s equally logically shortest disjoint routes.
For example if

a) 7 units of demand need to be routed between
nodes A and B,

b) the length of the shortest logical route between
nodes A and B is 6 hops, and
¢) five disjoint routes 6 hops in length, identified as

routes 1 -5, are topologically feasible between node
A and B,

two units of demand would be routed over route 1, two units of demand would be routed
over route 2, one unit of demand would be routed over route 3, one unit of demand would
be routed over route 4, and one unit of demand would be routed over route 5. The latter
three cases, i.e. cases 4, 5, and 6, are repeats of the first three but with jointly optimized
placement of spare and working capacity. The six cases are summarized below:

Case 1: Optimize the placement of spare capacity in a span restorable network.

Case 2: Optimize the placement of spare capacity in a path restorable network without
stub release.

Case 3: Optimize the placement of spare capacity in a path restorable network with
stub release.

Case 4: Optimize the placement of working and spare capacity in a span restorable
network.

71

Chapter 4, Capacity Placement in Mesh Restorable Networks

Case 5: Optimize the placement of working and spare capacity in a path restorable

network without stub release.

Case 6: Optimize the placement of working and spare capacity in a path restorable

Total Network Capacity (Links)

network with stub release.

Figures 4.9 through 4.13 summarize the six case designs completed for each
test network in terms of total network capacities. A sample design is presented at the end
of this section. Details of each IP run, including execution times and the size of the route
sets used by each tableau are presented in Tables 4.2 through 4.7. Details of each net-
work design, including the number of spare and working links per span, are presented in
the technical report which accompanies this thesis [38]. The correctness, of each design
was verified using independent tools which tested that the working capacity satisfied all
entries in the demand matrix, and that all failed working paths were 100% restorable
using either span or path restoration, as appropriate to the case.

195

190 |

185 ¢

180

175 |

170

Span restorable

Path restorable
(no stub release)

Path restorable
with stub release

- -
Spare capacity Combined working
optimization only and spare capacity ¢
optimization
[J
AN
N
\
\
AY
N
\
-~ AY
S~ N
- AY
Te \
AY
3 4
Case

Figure 4.9. Network 1 Designs

72

Total Network Capacity (Links)

Total Network Capacity (Links)

Chapter 4, Capacity Placement in Mesh Restorable Networks

3000 - -
e Span restorable
2900 } - > a Path restorable 1
Spare capacity Combined working (no stub release)
optimization only and spare capacity ¢ Path restorable
2800 | ? optimization with stub release 1
2700 |
N
2600 | AN)
AY
2500 } “.
N
»
2400 }
2300 |
2200 |
-~~~ _
. T---e
2100 — L N
3 4 5 6
Case
Figure 4.10. Network 2 Designs
8400 —_
e Span restorable
- —_—
& Path restorable
8200 Spare capacity Combined working (no stub release) 1
optimization only and spare capacity @ Path restorable
optimization with stub release
8000
7800
7600
AN
n
~ < . .\
7400 > -~ < N N
~ ~ ~
e N
7200 t+ S
N
a- -
I
7000 " . .]
2 3 4 5 6
Case

Figure 4.11. Network 3 Designs

73

Total Network Capacity (Links)

Total Netwark Capacity (Links)

Chapter 4, Capacity Placement in Mesh Restorable Networks

5200 v v v v
e Span restorable
- - & Path restorable
5000 ¢ Spare capacity Combined working (no stub release) 4
optimization only and spare capacity ¢ Path restorable
optimization with stub release
4800 |
4600 |
4400 + .
AN
= -~
4200 | el |
~ ~ . ~
’ = ~ -~
\\‘.‘
4000 | ~~_ 4
e
3800 i A i i
2 3 4 6
Case
Figure 4.12. Network 4 Designs
56000 v r g ey
o Span restorable
55000 - - s Path restorable
54000 Spare capacity Combined working (no stub release)
optimization only and spare capacity ¢ Path restorable
. optimization with stub release
53000 . 4
* N
52000 AN
* A Y
51000 ~.
N
50000 *
49000 *..
48000 S . 4
47000 L]
46000 T~
Te
45000
2 3 4 6
Case
Figure 4.13. Network 5 Designs

74

Chapter 4, Capacity Placement in Mesh Restorable Networks

Tables 4.2 through 4.7 presented next list the following information for each of
the five networks investigated:

1. Excess Distance Factor. This factor specifies how much longer
than the shortest route, in terms of physical distance, a potential
restoration or working route between a demand pair may be.

2. Excess Hop Factor. This factor specifies how much longer than the
shortest route, in terms of logical hop count, a potential restoration
or working route between a demand pair may be.

3. No. of eligible restoration routes: This entry specifies the total
number of potential routes available to the IP given the set of all
distinct routes which satisfy the excess hop and distance factors,
plus all routes in the set of k-successively shortest disjoint routes
between all demand pairs not included in this set.

4. No. of constraints: This entry specifies the total number of con-
straints in the IP formulation, i.e. the number of rows in the IP tab-
leau.

9. No. of variables: This entry specifies the total number of variables
in the IP formulation, i.e. the number of columns in the IP tableau.

Table 4.2. Capacity Design Case 1

No. of

Network DEi)s(tcaenscse Ech:ss eligible No. of No. of
P restoration|constraints| variables
Factor Factor

routes
1 0o o 6 360 485 6 382
2 oo P 9 901 785 9929
3 o P 5327 962 5358
4 2211 15 10 002 1435 10 063
5 560 5 10 005 2 497 10 064

75

Chapter 4, Capacity Placement in Mesh Restorable Networks

Table 4.3. Capacity Design Case 2

No. of
Network D";;‘tcae::e E’écfss eligible | No.of | No.of
P restoration {constraints| variables
Factor Factor
routes
1 3 3 7 526 570 7 549
2 53 4 9978 783 19 253
3 261 3 10018 1274 10 047
4 155 1 10 021 3954 10 000
5 90 1 10 071 3076 10 121
Table 4.4. Capacity Design Case 3
No. of
Excess Excess .,
Network | Distance Hop ehglblg No. °.f NP‘ of
restoration |constraints| variables
Factor Factor
routes
1 3 3 7 526 570 75 49
2 53 4 9978 783 19 253
3 261 3 10 018 1274 10 047
4 155 1 10 021 3954 10 000
5 a0 1 10 071 3076 10 121

76

Chapter 4, Capacity Placement in Mesh Restorable Networks

Table 4.5. Capacity Design Case 4

Working |Working| Res. Res. No. of
route route route route eligible No. of No. of
Network | excess | excess | excess | excess working & con st;ai ntsvari a.bl es
distance| hop |distance| hop [restoration
factor | factor | factor | factor routes
1 5 P o Po 21097 552 21 142
2 68 6 o o 20677 880 20733
3 530 7 o 0 20 641 1146 | 20703
4 0 0 2 505 16 20516 2128 | 22802
5 0 0 434 6 20532 3126 | 20650
Table 6. Capacity Design Case 5
Working |Working| Res. Res. No. of
route route route route eligible No. of No. of
Network | excess | excess | excess | excess working & con st;aints vari a{bl es
distance| hop |distance | hop [restoration
factor | factor | factor factor routes
1 0 0 4 4 36 260 956 19 253
2 0 0 30 4 21 094 1478 | 21120
3 0 0 230 2 20 492 2679 |23233
4 0 0 37 0 20 450 9303 | 20608
5 0 0 0 0 20 566 8122 |20684

Chapter 4, Capacity Placement in Mesh Restorable Networks

Table 7. Capacity Design Case 6

Working { Working| Res. Res. No. of
route | route route route eligible No. of No. of
Network | excess | excess | excess | excess | working & c onst.raints vari a'bl es
distance| hop | distance| hop |restoration

factor | factor | factor | factor routes

1 0 0 4 4 36 260 956 19 253
2 0 0 30 4 21094 1478 | 21120
3 0 0 230 2 20 492 2679 | 23233
4 0 0 37 0 20 450 9303 | 20608
5 0 0 0 0 20 566 8122 | 20684

For each network topology and capacity placement technique the number of
spare and working links per span, the physical length of each span, the nodes terminat-
ing a span, and the physical and logical redundancy of the network are specified in [38].

The design for network number 1, capacity design case number 1 from [38], is shown
below as an example.

Span NodeA NodeB Distance Working Spare
1 0 1 1.000000 8 3
2 0 2 1.000000 7 4
3 0 3 1.000000 7 4
4 1 3 1.000000 5 3
5 1 4 1.000000 6 4
6 1 5 1.000000 9 1
7 2 3 1.000000 7 3
8 3 6 1.000000 4 0
9 3 7 1.000000 9 1
10 3 4 1.000000 6 0

78

Chapter 4, Capacity Placement in Mesh Restorable Networks

11 4 6 1.000000 7 1
12 4 7 1.000000 5 1
13 4 5 1.000000 6 4
14 2 8 1.000000 10 0
15 2 6 1.000000 4 4
16 6 8 1.000000 5 3
17 6 7 1.000000 4 0
18 7 8 1.000000 7 3
19 7 9 1.000000 7 3
20 5 7 1.000000 6 2
21 8 9 1.000000 6 4
22 5 9 1.000000 7 3

Total Number of working links = 142

Total Number of spare links = 51

Total Number of working and spare links = 193
Physical Redundancy = 0.36

Logical Redundancy = 0.36

Average Network Nodal Degree = 4.40

4.5 Discussion of Capacity Placement Results

4.5.1 Capacity Savings of Path Restoration in Networks with Pre-defined
Demand Routing

To quantify the capacity benefits of path restoration in networks with established
working routes, the total capacity required in cases 2, and 3 was normalized to that of the
comparable span restorable design (case 1). Figure 4.14 shows that when the placement
of spare capacity is optimized, path restorable designs without stub release require
between 4% and 15% less fotal capacity than the span restorable designs. The corre-
sponding reductions in spare capacity investment were from 5% to 19%.

79

Chapter 4, Capacity Placement in Mesh Restorable Networks

Resuits also show that stub release can further reduce the total capacity required
in a path restorable network between 1% and 8%, as seen in Figure 4.14. Whether this
further savings is worthwhile in practice may depend on the extent to which stub release
complicates reversion to the original pre-failure state. In large networks the economic
benefits of stub release may be substantial considering that stub release decreased the
total number of links required in network 5 by 2695 (Figure 4.13, case 2 vs case 3).

case 1 - span restoration gg case 2 - path restoration mR case 3 - path restoration R
without stub with stub release
release

Normalized Total Capacity Requirements

Network

Figure 4.14. Optimization of Spare Capacity

80

Chapter 4, Capacity Placement in Mesh Restorable Networks

4.5.2 Capacity Savings due to Joint Working and Spare Optimization

The total capacity savings gained when working path routing and spare capacity
placement are jointly optimized is seen in Figures 4.9 - 4.13 when cases 1 - 3 are com-
pared to cases 4 - 6. The benefit of combined optimization ranges from a total capacity
reduction of 4% to 27% in the span restorable designs (comparing case 1 and case 4
results), averages 8% in the path restorable designs without stub release (comparing
case 2 and case 5 results), and is about 7% in the path restorable designs with stub
release (comparing case 3 and case 6 results).

Combined working and spare capacity optimization requires approximately dou-
ble the number of routes to define its constraint system relative to those required for
spare capacity optimization alone. This is because eligible working routes need to be
specified in addition to eligible restoration routes. Given that the set of eligible routes is
much larger when determining a combined capacity design, the constraint systems for
cases 4, 5, and 6, include a smaller proportion of all possible routes than the constraint
systems used to optimize the placement of spare capacity. It was only possible to include
all routes in the constraint set and find the global optimum spare capacity placement for
networks 1, 2, and 3 in a span restorable design (case 1).

Similarly, the constraint set for all path restorable designs included a smaller pro-
portion of all possible routes than the constraint set for all span restorable designs. Path
restoration needs to consider eligible working and restoration routes for all node pairs in
the demand matrix, unlike span restoration which only needs to consider restoration
routes between the nodes terminating a cut span. As a result, even though approximately
the same total number of restoration routes were used to define the constraint system in
each case, the jointly optimized designs included a smaller fraction of all possible routes
when compared to the spare capacity designs, and the path restorable designs included
a smaller fraction of all possible routes when compared to the span restorable designs.

A design is more likely to be near the global optimum when the IP is presented a
proportionally larger area of the solution space. Therefore, the path restorable and com-
bined capacity designs here may not be as close to their optimal capacity placement as
the span restorable and spare capacity designs are to their global optimum, i.e. the bene-
fits for cases 5 and 6 (especially) may be even greater than reported here. However, the

81

Chapter 4, Capacity Placement in Mesh Restorable Networks

theoretical benefits are not expected to be much greater than those reported here
because of the large size of the eligible route set used in each case and the relatively
small number of routes from that set used by the IP to restore a failure. For example, of
those eligible routes specified for network number one in Tables 4.2, 4.4, and 4.5, a total
of 105, 125, and 187 routes are used by the IP in cases 1, 3, and 4 respectively. It there-
fore seems plausible that the eligible route set formulated in each case is large enough to
contain those routes which the IP needs to find the optimal capacity placement.

4.5.3 Routing Effects of Joint Working and Spare Optimization

The jointly optimized designs have some interesting properties which upon closer
examination reveal characteristics associated with demand routing dispersion from the
bounding considerations presented at the beginning of this chapter. When the IP is
allowed to jointly optimize the placement of working and spare capacity in a network, it
will choose working paths which are coordinated with the network restoration process. In
span restorable networks this means that demands may sometimes be routed via paths
longer than the shortest path. Table 4.8 indicates that one outcome of joint optimization is
relatively evenly loaded span working quantities. This probably arises because an even
distribution of span working quantities tends to prevent a single span failure from signifi-
cantly raising the spare capacity requirements of the network. With the latitude to seek
longer working routes, the IP does so to gain this benefit.

Table 4.8. Standard deviation in span working capacity
confirming demand routing dispersion effect

Standard deviation | Standard deviation
Network of wj in case 1 of W in case 4
designs designs
1 1.59 0.891
2 68.2 34.6
3 115 97.5
4 27.3 22.2
5 617 536

82

Chapter 4, Capacity Placement in Mesh Restorable Networks

As noted in section 4.1, in path restorable networks it is often advantageous to
disperse point-to-point demands over working paths such that the impact of a span fail-
ure affects many relations, even when such paths are slightly longer than the shortest
route. Spreading the impact of a failure over a large region of the network increases the
alternatives available when optimizing capacity placement and lowers the theoretical
bound on redundancy for path restoration. Longer working paths also increase the
amount of capacity available for stub release. However, the aim when designing a restor-
able network is not only to minimize the spare capacity, but to minimize the sum of the
working and spare links required. Because longer working paths require more links, it is
reasonable to expect that the IP design should have working paths which deviate only
slightly from the shortest route. Indeed, Table 4.9, confirms that the average working path
length in the path restorable designs is longer than the average working path length in
the span restorable designs, but only marginally so. This suggests that the IP is able to
achieve significant route dispersion of demands (Table 4.8) without actually increasing
route lengths much in doing so (Table 4.9). Furthermore, Table 4.9 in conjunction with
Figures 4.9 - 4.13 reveals that in all cases path restoration with stub release benefited the
most from a tendency to allow longer working paths in the optimal design.

Table 4.9. Average Working Path Lengths

Shorl:tgst pafth Jointly optimized designs
routing o
Network © egg:igg: s1, ?Ban_ restoraﬁon Path .restoration z?hths:ﬁgt?ergg‘e
2, and 3) esign case 4) | (Design case 5) (Design case 6)
1 1.6 km 1.6 km 1.6 km 1.6 km
2 156.5 km 17.1 km 16.7 km 17.8 km
3 109.4 km 115.1 km 118.0 km 131.3 km
4 818.5 km 848.9 km 839.4 km 994.7 km
5 123.3 km 128.6 km 133.1 km 137.9 km

83

Chapter 4, Capacity Placement in Mesh Restorable Networks

Despite the advantages of combined working and spare optimization, deploying
and operating jointly optimized networks may be difficult in practice because working
routes might have to be rearranged in the face of changing demand to retain overall joint
capacity optimality. Given that the working capacities of most transport networks have
already been defined, it may be a practical decision to continue provisioning working

capacity based on shortest path routing, and separately optimize the placement of spare
capacity.

4.6 Summary of IP Network Designs

The following tables summarize the six capacity designs for the five networks

shown in Figures 4.9 - 4.13, and the normalization values used to construct the plot
shown in Figure 4.14.

Table 4.10. Summary of IP Network Designs

Total capacity requirements
Network | Case1 | Case2 | Case3 | Case4 | Case5 | Case6
(links) (links) (links) (links) (links) (links)
1 193 181 179 186 177 172
2 2 958 2 655 2428 2159 2158 2134
3 8 250 7 526 7 287 7 479 7125 7 061
4 5070 4292 4134 4174 4043 3915
5 55024 | 53031 | 50336 | 49237 | 47143 | 45516

Table 4.11. Summary of Spare Capacity Designs Normalized to Case 1

Normalized spare
Network capacity requirements
Case1 | Case2 | Case3
1 1.00 0.94 0.93
2 1.00 0.90 0.82
3 1.00 0.91 0.88
4 1.00 0.85 0.82
5 1.00 0.96 0.92

Chapter 4, Capacity Placement in Mesh Restorable Networks

4.7 Conclusions

Mesh restorable networks using path restoration with stub release are the most
capacity efficient. Optimizing the spare capacity placement in such networks against all
single span failures eliminated up to 19% of the total capacity of the corresponding span
restorable networks studied here (see Figure 4.14 case 1 vs. case 3). The benefits of
path restoration are also apparent when one considers that the average redundancy of
all path restorable designs which optimized the placement of spare capacity only was
66%, and 87% for all span restorable designs.

The capacity required in a 100% path restorable network with stub release can
further be minimized by an average of 7% when jointly optimizing the placement of spare
and working capacity. The benefits of jointly optimizing working path routing and spare
capacity placement are more pronounced in span restorable designs. Comparing jointly
optimized span restorable designs to the baseline of a spare-only optimized span restor-
able design, as much as 27% may be saved in terms of total network capacity.

These findings and the IP design method for path restorable networks are one of
the main contributions of this work. The integer programming formulation used to solve
the spare and combined capacity placement problem in this chapter is flexible enough to
accommodate span or path restorable networks and stub release if desired. A completed
IP run specifies not only the spare and working capacity per span, but also the corre-
sponding routing of working and restoration paths. Though it is possible to use the resto-
ration pathset information to achieve centralized restoration, it is used here instead to test
OPRA's ability to efficiently restore a span cut as explained in the next chapter.

85

PART Ii: Optimized Distributed Path
Restoration Algorithm

The second part of this thesis focuses on an optimized distributed real time solu-
tion to the path restoration problem, named OPRA. OPRA is the result of the first thor-
ough exploration, development, realization, and testing of a bidirectional distributed path
restoration algorithm. Part two of this thesis begins by defining appropriate figures of
merit through which the performance and efficiency of OPRA can be assessed systemat-
ically and quantitatively. Then the principle at the heart of OPRA which enables it to find a
near optimal set of link disjoint replacement paths within two seconds is explained. OPRA
itself is described in detail in chapter 8. The remaining chapters present the testbed in

which OPRA was implemented for experimental characterization and results from various
tests of OPRA.

86

Chapter 5, Performance Metrics and Theorstical Objectives for OPRA

Chapter 5. Performance Metrics and Theoretical
Objectives for OPRA

This chapter presents appropriate figures of merit through which the performance
and efficiency of OPRA, or any other distributed path restoration scheme, can be
assessed systematically and quantitatively. These figures of merit are the same as those
presented in [25] for span restoration, but evaluated differently as explained in this chap-
ter given that this work investigates path restoration. One performance measure of obvi-
ous interest is speed of restoration. Another is the restorability of each span and the
network as a whole given only the theoretical minimum of spare capacity. Restorability is
the key measure for evaluating the operational performance of a distributed restoration
mechanism and the spare capacity design of the network in which the mechanism oper-
ates.

In addition to defining speed-related and restorability performance measures,
which can be categorized as operational metrics, two intrinsic path metrics are also dis-
cussed in this chapter. Intrinsic path metrics assess the efficiency of a restoration mecha-
nism by measuring the method’s ability to make maximum use of the resources which it is
given relative to an idealized reference behavioural model. The two intrinsic path metrics
discussed in this chapter are the Path Number Efficiency (PNE) and Path Length Effi-
ciency (PLE).

5.1 Operational Performance Metrics

In any real transport network each span has a finite number of working and spare
circuits. When a span is cut in such a network, the prime concern is to restore all of the
lost working capacity on the given span. The ability to do this depends on the amount and
placement of spare capacity in the network, as well as on the method used to find the
restoration paths. Full restoration of working circuits may or may not require all of the
paths that are topologically possible between all of the relations affected by a span cut.
This distinguishes the operational measures of performance from the measures which
are of interest from a theoretical performance viewpoint. In the latter, one wishes to char-

87

Chapter 5, Performance Metrics and Theoretical Objectives for OPRA

acterize the intrinsic ability of a method to find efficiently all the paths that are topologi-
cally possible.

5.1.1 Span Restorability and Network Restorability

In an operational context, the utmost concern is with the proportion of failed
working capacity that is restored. The restorability (or restoration ratio) of an individual
span, i, having w; working links is:

min(w, k)

Rs; = ———— 5.1.1.1
i w;

where k; is the number of restoration paths feasible using the restoration mechanism
deployed in the network. Whenever k;> w;, Rs; = 1. The restorability of a network as a
whole (also called the Network Restoration Ratio (NRR)) is:

s s
Y. [min(w, k)1 [Rs;- w]
Rn = [=1 - =1

S 5
Z fw)l Z (w]
i=1 =1
where S is the number of spans in the network. Note that Rn is not the average of individ-
ual span restorabilities as ratios except if all spans have equal w;. As defined, Rn weights

5.1.1.2

the restorability of each span by the size of each span, so that it expresses the total frac-
tion of working capacity that is protected, not the average fraction protected on each
span. This reflects the impact large spans have on network restorability.

The worst case restorability of a network (to span failures) is defined as the low-
est span restorability level of any span in the network:

Rn,. = min(Rs) ieS 5.1.1.3

In the case of Rn < 1.0, Rny is a lower bound on Rs;.

5.1.2 Speed Related Performance Measures

When considering a restoration scheme, four speed-related figures of merit are
of interest. The first three of these can be applied either to an individual span cut or to a

88

Chapter 5, Performance Metrics and Theoretical Objectives for OPRA

network as a whole by averaging the corresponding measure for every span cut in the
network:

A. First path time t,;: This is the time required to complete the first path of a res-
toration plan after the receipt of the first alarm. Its importance is primarily to assess the
impact of a failure on high priority demands, and to characterize the speed of a distrib-
uted restoration algorithm when it acts in a mode imitative of an APS system for single-
link failures. One may arrange priority use of the first path(s) found in a restoration plan
so as to minimize the outage for priority services. The first path time indicates the mini-
mum interruption that a priority service would see and gives an immediate indication if
any portion of the affected traffic was restored before the call dropping threshold.

B. Complete restoration time tg: This is the time to complete the last path that
can be realized for restoration of a given span-cut. “Complete” does not imply 100% res-
toration. Rather, it is the time at which the transient restoration event is complete, how-
ever the outcome.

C. Individual and mean path outage times t,, ;, and t, ayg: 1 is the individual out-
age experienced by the ith working path restored. When several working links fail simulta-

neously the path outage times are identical to the sequence of path completion times. But
in general, the onset of individual link failures may be time-dispersed within the failure

event. Then t;; is the elapsed time from the failure of the it path until its individual resto-
ration.

to,avg is the average of t,; over all working links restored in a restoration event.
This is not necessarily the restoration time tg divided by k, the number of paths found.

Due to the high degree of parallelism in some distributed restoration algorithms, the res-
toration time for the whole event (tg) can be virtually the same as the individual outage

time for every path (t) when link propagation delays exceed nodal processing delays.
D. 95 percentile restoration time, tgs: This is defined for a whole network, based

on the individual outage times of all working paths, over all span cuts of the network. This
is the time by which 95% of all individual links are restored and is the value at which the
cumulative distribution function (CDF) of t,; equals 0.95:

89

Chapter 5, Performance Metrics and Theoretical Objectives for OPRA

fs
[t 1(x)dx = 0.95 5.1.2.1
0

where 5, i(x) is the probability density function of individual path outage times. The ration-

ale for a 95 percentile level for specifications and measurement of outage times is that
such a measure is less influenced by single extreme events in a sample.

5.2 Intrinsic Path Metrics

Span, network, and worst case restorability all depend on both the network
design and the restoration re-routing scheme. Considering satisfactory restoration may

be achieved by a weak routing mechanism in a generously spared network!, separate
intrinsic performance measures of a distributed restoration mechanism are needed. To
assess the intrinsic efficiency of a proposed restoration mechanism, the results found by
the restoration algorithm under evaluation must be compared to an ideal reference solu-
tion. Intrinsic path metrics thereby measure the restoration mechanism’s ability to make
efficient use of a network’s spare capacity.

The routing effectiveness of a distributed restoration algorithm (DRA) may be
evaluated by saturating the available spare capacity in a network design with a “full
stress” path forming exercise. One way to do this given a path DRA is to assume each
span cut in a network severs an effectively infinite number of working paths from every
demand pair, and comparing the resulting pathsets found by each path restoration mech-
anism being evaluated to a reference solution. This approach is analogous to comparing
the routing effectiveness of span DRAs by assuming that an effectively infinite number of
working links are severed given any span cut in a test network, and comparing the result-
ing pathsets found by the span restoration mechanism to a reference solution as
explained in [28]. However, performing a full stress test on a path DRA by severing an
infinite number of working paths from every demand pair means running long simulations
that require large amounts of computer memory for even moderately large networks.
Unlike span restoration, the number of node pairs affected by a span cut in a path restor-

1. Generously in this context means having considerably more spares in total than the minimum
theoretically required for 100% restorability of every span.

90

Chapter 5, Performance Metrics and Theoretical Objectives for OPRA

able network cannot be limited to a single pair of nodes. Consequently, exposing a path
restoration mechanism to maximal path-finding stress by severing an infinite number of
working paths from every demand pair is impractical for realistic transport networks.

The routing effectiveness of various path DRAs are compared in this thesis under
conditions of maximal path-finding stress using very tightly spared 100% restorable net-
works with little or no excess spare capacity. A “full stress” path forming exercise is possi-
ble using such tightly spared networks because the DRA being evaluated will saturate
the available spare capacity in them. The 30 capacity efficient network designs presented
in chapter 4 with Rn = 100% have little or no excess spare capacity and are therefore
suitable to evaluate the routing effectiveness of various distributed path restoration algo-
rithms.

The six capacity designs explained in section 4.4 for the five networks shown in
section 4.3 form a set of 30 capacity efficient network designs that will be used to evalu-
ate the performance of OPRA. Each network’s spare capacity as detailed in [38] is the
minimum required to restore all single span failures by the corresponding restoration
mechanism. Ten of these designs optimize the placement of capacity to facilitate span
restoration. However, in this thesis the mechanism used to restore a failure will always
perform path, not span, restoration. All network designs are 100% restorable if the resto-
ration pathset specified in the solution of the IP is used to restore a span cut. Any restora-
tion mechanism deployed in these networks must make extremely efficient use of a
network’s spare capacity in order to restore all of the working paths severed by a span
cut. Though a restoration mechanism does not necessarily have to duplicate the pathset
found by the IP, the aim is for it to make equally efficient use of a network’s spare capacity
in order to restore all span cuts. The 30 network designs produced in chapter 4 will serve
as stringent tests of any restoration mechanism's ability to efficiently restore a span cut.

5.2.1 Path Number Efficlency (PNE)

The routing efficiency, loop-freedomness, and predictability of a path restoration
algorithm can be evaluated by comparing the pathsets found by the distributed path res-
toration algorithm under test to the reference pathsets found by the IP presented in chap-
ter 4. The reference restoration pathsets are extracted from the IP capacity design

91

Chapter 5, Performance Metrics and Theoretical Objectives for OPRA

information using the variable P to identify which routes in the set of eligible predefined

routes have a non-zero flow. The variable f{"P identifies the restoration flow through the
p® restoration route for demand pair r in the IP formulation presented in the previous
chapter. Each non-zero unit of flow identifies one reference restoration path which follows

that route specified by £P, i.e. route p.

Using this reference restoration path set, Path Number Efficiency is defined as:

S
2 kdra.l
PNE=[sd 5.2.1.1

Zkref.l
I=1

where kqra ; is the number of paths found for span-cut i by the distributed restoration algo-
rithm (DRA) under test, and kg, is the number of paths for span-cut i in the reference
pathset. Failure to realize the number of paths found by the reference solution appears
as a PNE less than 1. PNE = 1 implies ideal topologically-limited performance equal to
that of the reference, or IP solution in this case. PNE = 1 does not necessarily imply
100% restorability because the restoration ratio depends on both the working and sparing
levels in the network. Conversely a 100% restoration ratio does not imply PNE = 1 for the
routing mechanism. Rn = 100% implies a restoration mechanism can fully restore each
span of a network. Rn = 100% does not necessarily imply a restoration mechanism

achieves ideal topologically-limited performance equal to that of the reference or IP solu-
tion.

6.2.2 Path Length Efficiency (PLE)

In restoration it is desirable to minimize any additional signal path delay for conti-
nental-scale networks and to make efficient overall use of a network’s spares. In the
extreme, poor routing in terms of path length, or looping paths, may also cause a drop in
path number, so PLE and PNE are not totally unrelated. PLE is defined as the total dis-
tance of all paths in a restoration plan relative to the total path length of the correspond-
ing reference solution pathset. PLE is defined only on the total length of the pathset,

92

Chapter 5, Performance Metrics and Theoretical Objectives for OPRA

allowing individual path details to differ in two restoration plans which may be equivalent

in terms of overall length efficiency. The path length efficiency of a distributed restoration
algorithm in a given test network is:

S K
2 [Z L(Pref.l.l):l

_I=1lj=1
PLE= 5

2 [Ek': L(Pdra.l.l)]

I=1L[=1

5.2.2.1

where L(P) is the length of path P, P is the j™ path in the restoration plan for failed

span i from the reference solution and Py, i is the J path in the distributed algorithm’s
restoration plan for the failed span i. k is the number of paths in the restoration plan iden-
tified by the distributed path algorithm or the reference solution. The PLE should not be
used when the PNE of the reference solution and the distributed algorithm are not identi-
cal, because it is only meaningful to compare pathset length between solutions that have
the same number of restoration paths. Note also that PLE is defined such that a path

length total longer than the reference solution produces a PLE less than 1, (i.e. PLE=1is
ideal).

5.3 Summary

The figures of merit presented in this chapter are the same as those presented in
{25}, and are necessary to systematically and quantitatively assess OPRA’s performance
in a manner that decouples its fundamental routing efficiency from exact levels of sparing
in a network, just as they were necessary in [25] to systematically and quantitatively
assess the performance of a span restoration mechanism, i.e. the SHN. The suite of net-
work capacity designs presented in chapter 4 are to be used to test OPRA’s ability to
restore a network failure. Collectively the chapters to this point define a test-bed for any
restoration mechanism, and establish the framework necessary to facilitate the detailed
description of OPRA in the following chapters.

93

Chapter 6, The Interference Heuristic for Coordinating Pathset Formation

Chapter 6. The Interference Heuristic for
Coordinating Pathset Formation

The aim here in developing a distributed path restoration algorithm is to find a
restoration pathset which maximizes Rn. Considering the number of permutations and
combinations of paths possible when considering path restoration for even moderately

large networks, it is often impossible to search the entire solution space for the optimal?
restoration pathset in a practical amount of time, warranting the use of a heuristic to find
a near-optimal pathset. This chapter presents the key heuristic at the heart of the pro-
posed distributed path restoration algorithm, named OPRA, which enables it to find a col-

lectively near-optimal set of link-disjoint replacement paths in potentially less than two
seconds.

6.1 The Interference Principle

Most distributed restoration algorithms developed to date have focused on
restoring span cuts before the two second call-dropping threshold in span restorable net-
works, or have implemented path restoration by methods equivalent to uncoordinated
Capacity Scavenging. The distributed path restoration algorithm presented here, the
Optimized Distributed Path Restoration Algorithm (OPRA), is unique in that it is the first
algorithm which configures the surviving spare links of a path restorable network into a
collectively near optimal multicommodity max-flow pathset. While optimizing capacity effi-
ciency, OPRA maintains high restoration speed due to the parallelism inherent in its dis-
tributed implementation and its ability to synthesize a complete restoration pathset in a
single pass. Unlike capacity scavenging, OPRA does not simply initiate multiple concur-
rent or sequential independent instances of a span restoration algorithm for each
demand pair affected by a failure.

The heuristic used by OPRA to find a capacity-efficient restoration pathset is
based on insights gained from extensive emulation and exploration of potential proc-
esses for path restoration. OPRA is the result of a systematic research methodology, as

1. The term optimal in part I of this thesis implies a restoration pathset which restores the maximum

amount of lost demand topologically feasible, i.e. maximizes Rn, while satisfying constraints 1
through 4 defined in section 3.3.

94

Chapter 6, The Interference Heuristic for Coordinating Pathset Formation

presented in this chapter, that began with extensive manual simulations. Initially path res-
toration was simulated in numerous test networks with Rn < 100% by tracing out on
paper restoration paths through a network’s spare capacity. Spare links would be con-
catenated together to form a restoration pathset and visually improved to restore as
much lost working capacity as possible. Numerous simulations were performed in order
to identify principles that led to the formation of a multi-commodity max-flow restoration
pathset.

One of the main principles was found to be that given the set of all possible resto-
ration paths, those paths which traverse spans with low spare capacity and/or nodes of
low degree should be used last to maximize the restorability (Rn) of a network. Paths
which traverse spans with low sparing and/or nodes of low degree render a large number
of other restoration paths infeasible. Consequently OPRA prefers to use restoration
paths which eliminate the fewest other restoration paths. This principle is referred to as
the interference principle, and its distributed implementation in OPRA is the basis of the
interference heuristic described later in this chapter.

Before proceeding directly to a distributed implementation of the interference
principle, its effectiveness at maximizing Rn is verified. To do this, the “interference
number” of a restoration path is defined. The interference number of a restoration path is
defined as the number of other paths that a particular restoration path eliminates when all
restoration paths synthesized in isolation by a restoration mechanism for each affected
node pair are overlaid. The concept of a path’s interference number is illustrated in Figure
6.1. Two relations are affected by the failure of the span between nodes 8 and 9. Given a
network with a single spare link per span, Figure 6.1 shows the k-shortest link disjoint
replacement paths for each affected demand pair in isolation. When the two sets of resto-
ration paths are overiaid, it becomes clear that some paths are more “costly” than others
in a global sense when evaluated in terms of the number of other restoration paths ren-
dered infeasible by one path’s existence. For example, restoration path 2 does not pre-
vent the formation of any other path in either of the two pathsets, whereas
implementation of restoration path 3 prevents formation of paths 4, 6, and 7. Path 3 is
therefore assigned an interference number of three. In Figure 6.1 the overall restorability
is maximized in the available sparing when the paths with the lowest interference num-

95

Chapter 6, The Interference Heuristic for Coordinating Pathset Formation

bers are chosen to restore the failure. Five units of demand can be restored using those
restoration paths with the lowest interference number i.e. paths 2, 4, 5, 6, and 7, while
only a maximum of 3 units of demand can be restored if restoration paths with the largest
interference numbers, i.e. paths 1, and 3, are used.

(a) Network topology showing (b) k-shortest link disjoint
one spare link per span and restoration paths between
demand pairs to be recovered nodes 1 and 8 in isolation

(c) k-shortest link disjoint (d) interference between
restoration paths between individual restoration
nodes 2 and 5 in isolation pathsets

Restoration Path Interference Number
1 2 (contention on spans 2-3 and 2-8)
———mm— 3 3 (contention on spans 1-5, 5-7, and 7-8)
——— 4 1 (contention on span 1-5)
—— 5 1 (contention on span 2-3)
—— G 1 (contention on span 5-7)
eREmDuas 7 2 (contention on spans 2-8 and 7-8)

Figure 6.1. Concept of Interference Numbers

96

Chapter 6, The Interference Heuristic for Coordinating Pathset Formation

Using restoration paths with low interference numbers to restore a failure inher-
ently avoids creating and using spans and/or nodes which act as bottlenecks. By avoid-
ing bottlenecks it is hypothesized that the number of restoration paths possible in a tightly
spared network and the sharing of spare capacity between all relations seeking to restore

lost demand is maximized. This hypothesis is confirmed by the results presented in the
following section.

6.1.1 Validating the Interference Principle: A Centralized Path
Restoration Algorithm

To test the use of interference number as a tactic to maximize network restorabil-
ity (Rn) in a path restoration context, a conventional program was written which used
those restoration paths with the lowest interference number to restore a failure. This pro-
gram, named Interference Tester, is not the complete path restoration heuristic used in
OPRA, and may find path interference numbers different from those shown in Figure 6.1
because a path’s interference number depends on the path set used to evaluate it. Inter-
ference Tester was used as a centralized benchmark to approximate the pathset that
would be found by a distributed interference heuristic, and to justify in advance the devel-
opment of a true distributed restoration algorithm based on the local processing of inter-
ference numbers.

A flow chart of Interference Tester is shown in Figure 6.2. Initially Interference
Tester identifies all node pairs affected by a failure. If stub release is being used, the sur-
viving portions of cut working paths are added to the pool of network spare capacity. Next
a composite set of eligible restoration paths, consisting of each affected node pair's k-

successively shortest link-disjoint! paths found in isolation, is identified. Those restora-
tion paths which traverse the end-nodes of a failed span are not included in the set of all
eligible restoration paths when other feasible restoration paths exist for that demand pair.
This is done to model a distributed restoration algorithm which restores paths that
traverse nodes of low degree last, given that a span failure decreases the degree of the
nodes terminating a cut span by one.

1. Recall, in this work a link is only one unit of capacity on a span. This is not the same as
span-disjoint paths.

97

Chapter 6, The Interference Heuristic for Coordinating Pathset Formation

From the set of all eligible restoration paths, the path with the lowest interference
number is identified, and used to restore one unit of lost capacity. The interference number
of a path is calculated by removing the spare capacity needed to support that path from the
network and counting the number of other restoration paths rendered infeasible as a result.
The spare capacity used by that restoration path is then returned to the network and the
process repeated for the next eligible restoration path. This implementation of the interfer-
ence principle only increments the value of a path's interference number when the remain-
ing spare links on one or more span’s the path traverses is equal to one.

If two or more restoration paths have the same minimum interference number, three
options are available to resolve the tie, all of which are tested in the results presented sub-
sequently. The first option selects the path associated with the relation which has lost the
larger amount of demand, as to restore capacity in proportion to demand. The second
option restores the relation with the fewest restoration paths. The last option selects the
shorter restoration path, so as to use the least amount of spare capacity.

Spares used to complete a restoration path are removed from the network at
each iteration when a unit of lost capacity is restored. When all of the lost capacity for a
given span failure has been restored, or no feasible restoration paths remain, interfer-
ence Tester returns the networks spare capacity to its pre-failure values, and begins
another iteration of the same steps described above for the next span cut, until the restor-
ability of all spans in the network has been evaluated.

A completed Interference Tester run specifies a routing of restoration paths. Though
it is possible to use this restoration pathset information to achieve centralized restoration, it
is used here instead to test the use of the interference number as a tactic to maximize net-
work restorability (Rn). If the results from Interference Tester, presented subsequently,
indicate that the interference principle maximizes Rn, efforts to transform it into a heuristic
which may be used by a distributed path DRA are warranted.

98

Chapter 6, The Interference Heuristic for Coordinating Pathset Formation

)

Release the surviving portions of cut working
paths when employing stub release. reset sPiia;e

CFind the k -shortest link disjoint restoration paths)

- Y 1

between those node pairs with unrestored lost

C

Exclude those paths which traverse the end-nodes of the
failed span when other feasible restoration paths exist

Determine the interference number
of each eligible restoration path.

Restore a demand using the path with the
lowest interference nu r. If two or more
have the same minimum interference

number, restore either:

a) the path associated with the node pair which
has lost the largest amount of demand,

b) the path assoclated with the node pair which
has the fewest number of restoration paths

c) the shorter path

CElimlnate the appropriate spares from the network)

No Hasallthe _ Yes

demand been
W

Figure 6.2. Program used to test the interference principle

99

Chapter 6, The Interference Heuristic for Coordinating Pathset Formation

The results from Interference Tester are presented in Table 6.1. Path restoration
was simulated in three of the five networks presented in Chapter 4 to gain insights on the
effectiveness of the interference principle at maximizing Rn. Network 1, the small test
network, as well as networks 2 and 4, representative of a metropolitan and a long haul
network respectively, were used in the investigation. Using the 100% path restorable net-
work designs specified by the IP presented in chapter 4 as reference, the Path Number
Efficiency (PNE) of a path restoration mechanism based on the interference principle is
shown.

For comparison, the PNE of a path restoration mechanism based on uncoordi-
nated sequenced Capacity Scavenging was also calculated. As explained in section
1.4.4, Capacity Scavenging is the use of a span restoration algorithm to find replacement
paths between the source and destination of every demand pair affected by a failure
either successively or by letting all span restoration instances execute concurrently. The
set of k-successively shortest link disjoint paths between those demand pairs seeking to
restore lost capacity was used to model the restoration pathset found by the span resto-
ration algorithm used in Capacity Scavenging. Rather than a concurrent implementation,
the Capacity Scavenging results presented in Table 6.1 correspond to an implementation
that restores one demand pair at a time. Four different demand pair orderings were
investigated. The relations to be recovered were arranged in increasing and decreasing
order according to the geographical distance separating them, and the amount of
demand lost.

Given that the average PNE of all the values presented in Table 6.1 for a restora-
tion mechanism based on the interference principle as implemented in Interference
Tester is 98.8% with a standard deviation of 1.97%, restoring those paths which traverse
spans with low sparing, and/or tandem through nodes of low degree last, often maxi-
mizes the path restorability of a network. All three options for resolving ties were equally
good, suggesting a path’s interference number alone is sufficient to maximize Rn. Real
networks will likely have somewhat more spare capacity than the tightly designed refer-
ence networks used to test the interference principle due to the provisioning interval and
the modularity effects of transmission systems. Therefore, based on the results pre-
sented in Table 6.1, a restoration mechanism based on the interference principle will
likely achieve 100% network restorability in practice.

100

Chapter 6, The Interference Heuristic for Coordinating Pathset Formation

0580]8) QNJS M uopelolses yied
%20 %S'66 %S'66 %.'66 %S'66 %8'66 %L.'66 %5'86 ‘uopezjwpdo Ayoeded paujquiod t
9sBaja) QRIS OU LM LoRBIOISES thed
%¢'1 %8'66 %001 %6'86 %¥'86 %286 %E'66 %E'26 uopezjwpdo Ayoedes paujquiod 4
esBejal qnis UM uopeloises yied
%9'0 %001 %6°66 %8'66 %266 %9'66 %8'66 %G'86 ‘uopezjwpdo Ayoedes eseds t
©586]a) GN}S OU LM UopeJojsel yied
%'} %9'66 %566 %0°66 %6'96 %2 66 %¥'66 %9'96 ‘uopezjwypido Ayoedes eseds 4
©S80ja) QIS YUM uofieiolsel yed
%60 %66 %001 %¥'L6 %L'66 %G'96 %5'96 %¥'66 ‘uopezjwgdo Aordes paujquiod 2
esEa|al IS OU Liim uopeIoises Yied
%E'L %666 %E'66 %6'66 %¥'L6 %E'66 %8'86 %6'.6 uopezjwpdo Ayoedeo paujquiod [4
0588J8) qNJS YIM uopeioises yled
%8'2 %2'96 %E'S6 %226 %G'e6 %806 %.'68 %Z€6 ‘uopeziwpdo Ayoedeo eeds e
9sBO{as QIS OU LiiM uopeIoise) yied
%81 %1'G6 %6'v6 %L'v8 %9'26 %9'v6 %626 %1°26 ‘uopezjwpdo Ayoedeo ereds 2
e589]9) QN}S Yym uopeIoisas yied
%12 %001 %001 %001 %86'.68 %6°L68 %2 L6 %9'66 ‘uopeziwpdo Kloedes peujquiod 3
esBo|al qnis ou Lum uopeloises yied
%9'S %001 %001 %001 %.L'€6 %166 %1'G6 %L'€6 uopezjwpdo Ayoedeo paujquiod I
0s80j9) qNIS Yim uopelojses ed
%0 %001 %00} %001 %001 %004 %00} %001 ‘uopezjwpdo Ayoedes eseds b
9SB6|8 QIS OU LM uopeIoisal Yied
%L'L %001 %E'66 %00L %9'86 %E'66 %001 %¥'v6 ‘uopezjwpdo Ayoedeo eseds 1
o"””“._ N%_"s guopdo | zuopdo | tuopdo { Buiseesou) | Buisealoap mﬂn_vwwomﬁ_ mcemcnwwwn 6 o
Bugnses Kq suopejel | Aq suopeial | ¢ q suope;s | Aqsuogees ese) iso) ubjseq AoedsD pomMeN
3Nd 18pi0 1epio lepi0 JepI0
u| esBaIOU|
ebeiony | ©ldoupd esusiapeiul ey) uo peseq 6ujbueaeog Ajorde) Bujsn

wisjuByosw uopeiolses Yied e jo 3Nd|

wsjuBydew uojjeiolsas yred 8 jo INd

ojdioutd 90UBIBHBIU| BY) UO PISE] WSIUEYISI UORBIOISSH UIed PaZ[BAUSD € JO SSIPMS 8UBWLOLed °|'9 8|qEL

101

Chapter 6, The Interference Heuristic for Coordinating Pathset Formation

Given that the average PNE of all the values presented in Table 6.1 for Capacity
Scavenging is 97.2% with a standard deviation of 2.75%, compared to 98.8% and 1.97%
for the interference principle when implemented using a restoration path’s interference
number, a path restoration mechanism based on the interference principle is likely to per-
form better than a path restoration mechanism based on iterative and sequential Capac-
ity Scavenging. In Table 6.1, the path restoration mechanism based on the interference
principle finds on average 1.6% more restoration paths than Capacity Scavenging, and
on average only 1.2% fewer restoration paths than topologically feasible.

As shown in Table 6.1 Capacity Scavenging does remarkably well in terms of
PNE. However, only a distributed path restoration mechanism based on the interference
principle promises to restore a failure before the two second call dropping threshold.
Even though distributed span restoration algorithms are likely to restore a span failure
within two seconds, their repeated application in sequenced Capacity Scavenging would
increase the total restoration time beyond the call-dropping threshold. Given the impor-
tance of restoring a network failure quickly as explained in chapter 1, speed is the main
reason for pursuing a distributed path restoration algorithm based on the interference
principle.

It may be argued that pursuing such a path DRA is unwarranted given that
Capacity Scavenging is itself a distributed path restoration algorithm. However, a path
restoration mechanism based on iterative Capacity Scavenging, and not the interference
principle requires some type of a preplan and/or centralized implementation to at least
dispatch the affected demand pairs in the prescribed sequence and coordinate Capacity
Scavenging events. The goal of the present research is to develop a distributed algo-
rithm, and only concurrent execution of Capacity Scavenging for all affected pairs satis-
fies this goal.

While concurrent Capacity Scavenging could potentially restore a failure before
the 2 second call dropping threshold without some type of preplan and/or centralized
implementation, the restoration pathset resulting from concurrent Capacity Scavenging
does not explicitly adhere to the interference principle and will likely not correspond with
the pathset found using iterative Capacity Scavenging. These pathsets will likely not cor-
respond because the ordered sequence in which demand pairs synthesize restoration

102

Chapter 6, The Interference Heuristic for Coordinating Pathset Formation

paths in iterative Capacity Scavenging is not present in concurrent Capacity Scavenging
by definition. Given that the pathsets from iterative and concurrent Capacity Scavenging
will likely differ, the PNE from concurrent Capacity Scavenging likely won't correspond
with the PNE values shown in Table 6.1.

It is difficult to characterize the restoration pathset concurrent Capacity Scaveng-
ing would find because of its uncoordinated nature, making it difficult to reliably predict
concurrent Capacity Scavenging’s PNE for all failures. While concurrent Capacity Scav-
enging may achieve a very high PNE in some cases, it may not in others, and engineer-
ing a restoration mechanism that may unpredictably perform poorly for certain span
failures is undesirable.

In conclusion, the goal of achieving an optimal solution to the restoration problem
and the results obtained with Interference Tester favour developing a distributed path res-
toration mechanism based on the interference principle. This principle led to the definition
of a restoration path’s interference number and is the basis of the interference heuristic
described next. The following section begins developing the interference heuristic by
explaining how the interference principle is adapted to a distributed implementation.

6.2 Distributed Implementation of a Path DRA based on the
Interference Principle

Distributed restoration algorithms generally rely on some form of a flooding
process, and in the case of single iteration pathset forming DRA'’s like the SHN [25] and
OPRA, incorporate some form of selective rebroadcasting to find an optimal set of link
disjoint replacement paths. Flooding is a routing strategy which requires no network
information and works as follows: a signal is sent by a source node to each of its
neighbours; at each neighbour the incoming signal is retransmitted on all outgoing links
except for the link that it arrived on. The basic idea of flooding may be familiar from data
networks where it is used to distribute updates on network configuration. However,
flooding in a DRA is quite specialized relative to these general notions of single flooding.

Distributed restoration exploits flooding in a way that derives a complete set of
link-disjoint non-looping paths between two nodes, ideally doing so in only one iteration.

103

Chapter 6, The Interference Heuristic for Coordinating Pathset Formation

The pathset must be collectively shortest and consistent with the exact quantities of spare
links available on each span in the network.

At first glance it is tempting to assume that simple flooding addresses the
distributed restoration problem. However, simple flooding will only solve the distributed
restoration problem if one replacement path on one route is selected per iteration [28]. For
a distributed restoration algorithm, such as OPRA, flooding must be significantly modified.
While simple flooding does enumerate all distinct routes in a network, the output from a
distributed restoration algorithm must be a set of mutually feasible paths, not just a list of
all routes. Simple flooding will generate a huge number of distinct routes, many of which
are not capacity consistent paths or have loops [28]. The challenge for a distributed
restoration algorithm is to find the relatively small subset of mutually consistent paths
within the large number of distinct routes generated by flooding. OPRA uses the
interference principle as represented in the interference heuristic to guide and control the
flooding process such that a near-optimal link-disjoint restoration pathset is found in a
single flooding phase.

Using the interference principle in Interference Tester required determining a
restoration path’s interference number. However, a distributed path restoration algorithm
does not have access to a database of potential restoration paths, which makes it
impossible to adapt the interference principle to a distributed implementation by counting
how many other restoration paths a given path eliminates, as this implies a global network
view. By design the desired DRA will not have more than a local-node state view, and a
distributed restoration mechanism requires that the interference principle be implemented
using only local information at a node.

Shifting from a global to a node-local view requires associating interference
numbers with the state based signals used to establish the framework for interaction
between nodes in a DRA. These state based signals are referred to as “signatures” in the
SHN [25], and the opportunity is taken now to both revise the name signature into
restoration statelet, both to be slightly more descriptive in going forward in this new work,
and to distinguish an SHN signature from an OPRA “signature” because of the new fields

present in the latter. (The fields of a restoration statelet are described in detail in the
following chapter.)

104

Chapter 6, The Interference Heuristic for Coordinating Pathset Formation

In the node-local view, the basic target broadcast pattern at a tandem node
executing OPRA aims to forward one restoration statelet on one link on all spans it
terminates except the span on which that restoration statelet arrived. The basic target
broadcast pattern at a source node executing OPRA aims to forward on each span a
number of restoration statelets equal to the number of working paths lost by this node.
These basic broadcast patterns are similar to those presented in the SHN in [25] because
they ensure many diverse restoration paths are evaluated when synthesizing the optimal
restoration pathset. While the basic target broadcast pattemns in the SHN and OPRA are
similar, the rules which mediate the competition between statelets for outgoing spare links
at a node are substantially different.

Often the target broadcast pattern at a node cannot be satisfied fully for each
incoming restoration statelet because a span can only support a limited number of
restoration statelets, equal to the number of spare links it contains. The interference
principle is used to mediate the competition between restoration statelets for rebroadcast.
Applying the interference principle in a node local context requires that those restoration
statelets which lead to the formation of restoration paths that traverse spans with low
sparing be deferred. Adapting the interference principle to a distributed implementation
requires calculating a span’s interference number, rather than a path’'s interference
number. If spans with low sparing are assigned a high interference number, and spans
with high sparing are assigned a low interference number, and restoration statelets
traversing spans with low interference numbers are preferentially rebroadcast first at a
node, a distributed implementation of the interference principle is achieved. This
distributed implementation defines the interference heuristic.

The number of other restoration statelets that cannot obtain rebroadcast in a given
span determine that span’s interference number. The interference number of a span is
calculated by counting the number of restoration statelets competing to be forwarded on
a span and subtracting from this sum the number of statelets the span can support.

As shown in Figure 6.3 (a), two restoration statelets on span 2, three restoration
statelets on span 3, and one restoration statelet on span 4, want to access the three spare
links available on span 1, resulting in a span interference number of three for span 1.
Likewise, restoration statelets originating at a node must compete with incoming signals

105

Chapter 6, The Interference Heuristic for Coordinating Pathset Formation

for available spares. As shown in Figure 6.3 (b), the node wants to transmit two restoration
statelets on each span it terminates and also satisfy the single restoration statelet received
on span 2, resulting in an interference number of zero for span 1. (Dealing with negative
interference number is discussed later in this chapter.) Notice that the interference number
of a span remains constant while the target broadcast pattern is fulfilled at a node because
the number of restoration statelets which would like to be forwarded on a span and the
number of spare links available on that span for rebroadcast decrease monotonically in

unison.
(a) Link 2 v (b) Link 2
[S S N ' L S S N
Link1 <] *[[Link3 ' Link1 «; :+ +r Link3
A :1' : e
E |Span 1 : :'E. E%Span1
Span 4| Lk 1 E Span 4]~ Link 1
Link 1 | e 1 Link 1 R TR e T
by g ot $534 L s uink2
- | Y ARAN v A4S
. 1 Span2 Link2 ~{Spanz Link3
Span3|:] :| - X Span 3 :S :_
ool i v vivi
Link 1 l l lu’nks : k1 4 4 4 Link3
Link2 : Link 2
Span| interference Number E Span l Interference Number
1 6-3=3 X 1 3-3=0
2 7-2=5 ' 2 2-3=-1—= 0
3 6-3=3 : 3 3-3=0
4 8-1=7 ; 4 3-1=2
< —»::; Abidirectional Arestoraton ... Unused
link statelet link

Figure 6.3. Span Interference Numbers

During restoration the interference number of a span will change as restoration
statelets appear and disappear at a node. Caiculating the interference number of a span

106

Chapter 6, The Interference Heuristic for Coordinating Pathset Formation

associates larger values with spans that are in high demand and have little spare capacity,
and smaller values with spans that are in low demand and have a lot of spare capacity.

The interference number of each span a restoration statelet traverses is added to
the value of that statelet's interference number field. Initially the value of a statelet’s
interference number field is zero at the source node for a given demand pair, and
accumulates as a statelet is rebroadcast at tandem nodes. The interference number of a
path can then be estimated from the sum of the interference numbers of all the spans a
statelet traverses. As verified by the resuits presented at the end of this thesis, the
interference principle implemented at the node level using the interference heuristic, which
rebroadcasts those restoration statelets with the lowest interference number first, results
in a near optimal restoration pathset at the network scale because paths which traverse
spans with low sparing are not used unless no other restoration paths remain.

When there are fewer spares on a span than there are restoration statelets
wanting to obtain rebroadcast through it, a span's interference number is a positive
integer. When there are more spares on a span than there are restoration statelets
wanting to access it, a span's interference number is zero. A span is never allowed to have
a negative interference number, as shown in Figure 6.3 (b), because negative interference
numbers can lead to looping restoration paths.

If spans are allowed to have negative interference numbers, it is possible that a
statelet travelling a cyclical path will have a lower interference number than its
predecessor, identified as the precursor as in Figure 6.4, at the node completing the cycle
(node 1 in Figure 6.4). If the interference number of the statelet arriving at node 1 in Figure
6.4 is less than that of its precursor, OPRA would shift the root of the broadcast pattern at
node 1 from the span between the source and node 1 to the span between nodes 1 and
3, forming a loop in which the statelet may cycle forever.

When spans are prevented from having negative interference numbers, a statelet
which has travelled a cyclical path never has a lower interference number than its
precursor. [t may have the same interference number if all the spans it traverses have an
interference number of zero, but since statelet arrivals which are not of the lowest
interference number for that family are ignored by OPRA, looping paths are prevented.
(Details of the rules OPRA foliows when processing statelets are detailed in chapter 8 and
only mentioned here to explain the need for positive span interference numbers.)

107

Chapter 6, The Interference Heuristic for Coordinating Pathset Formation

< -- Interferance | interference
Span number of | number of
span statelet

; 0-1 0 0
-2 0 0

empty link —— - 1 1
M \ precursor and root - 0 -1

of b&adgnst pattem
0 (Source at node

Figure 6.4. Generating a cyclical path using negative span interference numbers

Limiting the interference number of a span to zero prevents those spans which
have a lot of spare capacity from attracting statelets. In a sense a positive interference
number may be viewed as a warning to statelets that traversing a span is “expensive”,
and a negative interference number may be viewed as an advertisement to statelets that
traversing a span is “cheap”. However, setting a lower limit of zero on the interference
number of a span does not compromise OPRA's ability to synthesize a near-optimal res-
toration pathset because a span's interference number is only zero when an abundance
of spares exist in the network. In a generously spared network, finding a pathset that
achieves 100% restoration is simple. When sparing is scarce and it is critical to optimize
the restoration pathset, span interference numbers are generally greater than zero and
OPRA is more effective in finding restoration paths.

An example of the basic broadcast pattern which results at the node level when
the interference heuristic is followed and those restoration statelets with the lowest
interference number are rebroadcast first at a tandem node is shown in Figure 6.5 (a).
Figure 6.5 (b) shows a similar situation when a node simultaneously rebroadcasts/
tandems and sources restoration statelets. The broadcast patterns shown in Figure 6.5
assume each statelet belongs to a different demand pair, and that each demand pair lost
one unit of demand. The broadcast patterns shown aim to forward one restoration statelet

108

Chapter 6, The Interference Heuristic for Coordinating Pathset Formation

on one link on all spans the node terminates, except the span on which a restoration
statelet arrived in the case of a tandem node. The broadcast pattemn for each statelet is
either fully satisfied in Figure 6.5 (i.e. has one rebroadcast in every span) or is partially
satisfied to the greatest extent possible, consistent with a statelet’s overall rank in terms
of its interference number and the relative spans in which it and other statelets lie. The
structure of this broadcast pattern is a result of the interference heuristic and explained in
more detail in chapter 8, including any changes resulting when statelets belong to the
same demand pair.

(a) + (b) Link 2
l Link 1 *1 Link 3
. k1o 10 1 Lin
: 22t
. e 1.
: we |+ [+|Span1
. P I
' g M
: Span 4]~ Link 1
Link 1 + Link1 Wiyl e sl
> e Al Sl €5 Link2
Spanz Unk2 | Span2 Link3
AE : SRR
Span 3 < 1. X Span3|:: {. |:
. .] L 3 .
l l: ll ' V. V.V
tnk1 + 4 4 unk3 . tink1 4 4 4 Link3
Link 2 ' Link 2
|
]
. ranking from fowest to highest| . ranking from lowest to highest
re:tt:tr:lt;?n based on the value of a \ msstt;‘;g‘tm based on the value of a
statelet’s interference number] statelet’s interference number
span 1, link1 1 : source 1
span 2, fink 1 2 X span 2, link 2 2
span 4, link 1 3 !
span 1, link 2 4 X
span 3, link 1 5
< =::: Abidirectional Arestoration _ ___ ... Unused
link statelet link

Figure 6.5. Examples of basic target broadcast patterns

As shown in Figure 6.5 (b), a distinction between the SHN [25] and OPRA is that
a single node executing OPRA may simuitaneously initiate transmitting restoration

109

Chapter 6, The interference Heuristic for Coordinating Pathset Formation

statelets, a function performed by a node when acting as a source, and rebroadcast
statelets from other demand pairs, a function associated with a tandem node. It may also
receive restoration statelets from the far-end node of a failed working path terminated at
that node, a function associated with a destination. In contrast, a single node in the SHN
functions as either a Sender, Chooser, or tandem node for a given “fault instance”, but
never as a Sender, Chooser, or tandem node simultaneously. Given that a single node
executing OPRA must be able to perform three roles simuitaneously, the terms Sender
and Chooser from the SHN, which explicitly associate one role with a single node, are
avoided when describing OPRA. Instead, the functions performed by a node classify
whether it is acting as a source, destination, or tandem node for the statelet being
processed.

The interference number of a span quantifies the competition between restoration
statelets for spares at a node, similar to the way the interference number of a path
quantifies the competition for spare capacity in a network in the prior centralized view.
Ultimately the interaction and competition between statelets results in a restoration path
as explained in subsequent chapters.

Estimating the interference number of a path based on span interference
numbers, which may be different from the interference number of that path as calculated
using Interference Tester, lends itself to a distributed implementation. All nodes in a
network can simuitaneously and independently calculate a span's interference number as
restoration statelets appear and disappear. Furthermore, the interference number of a
span can be added to the interference number of a restoration statelet before it is
transmitted on that span, so that the interference number of a path accumulates as the
restoration statelet transits a network. When restoration statelets traversing spans with
low interference numbers are preferentially rebroadcast first at a node, a distributed
implementation of the interference principle is achieved. This distributed implementation
of the interference principle is called the interference heuristic.

6.2.1 End-node Bottleneck Effect and the need for Bidirectional Flooding

While the interference number of a span can be used by a restoration algorithm to
defer using paths which traverse spans with relatively few spare links, it cannot be used
to defer using paths which traverse nodes of low degree. It is especially advantageous to

110

Chapter 6, The Interference Heuristic for Coordinating Pathset Formation

defer selecting restoration paths which tandem through the source or destination of lost
demands. A strong principle identified while performing manual path restoration
simulations is that the spare links incident with the source and destination of a failed
working path are most efficiently used to restore the demand originating at that node
because two spare links can then be used to restore two units of lost demand instead of
one.

Figure 6.6 illustrates the problem encountered when multiple node pairs search
for replacement paths simultaneously. if only one of the nodes from a relation affected by
a failure searches for replacement paths, referred to as ordinary flooding in Figure 6.6 (a),
it is possible that some replacement paths will traverse through the nodes of other affected
relations. In Figure 6.6 the magenta restoration path for relation 2-5 traverses node 1,
which is the source for relation 1-8. If 2-5 restores one unit of lost capacity by using the
magenta restoration path, then 1-8 can restore at most two units of demand.

To defer traversing nodes of low degree, and more importantly, avoid early
traversal of the source or destination of relations to be restored, both nodes from a relation
affected by a failure could search for replacement paths concurrently. When this is done,
the spare links incident with the source and destination of a failed working path are seized
so that they may be efficiently used to restore the demand originating at that node. If
ordinary flooding in Figure 6.6 is replaced with bidirectional flooding, restoration statelets
would be transmitted on each of the links terminated at nodes 1, 2, 5, and 8. This would
prevent any restoration path in Figure 6.6 from traversing either the source or destination
of a relation to be restored.

OPRA therefore uses a double-ended or bidirectional flooding scheme. This is in
contrast to the SHN described in [25], and to concurrent Capacity Scavenging which
employs ordinary flooding as depicted in Figure 6.6. While two distributed span restoration
algorithms published to date have employed bidirectional flooding in principle [10, 21],
they used it to reduce the restoration time rather than optimize the restoration pathset.
Though bidirectional flooding may decrease the restoration time of the distributed path
restoration algorithm presented here, it is primarily necessary as part of the strategy to
optimize the restoration pathset because it is an effective way to avoid the end-node
bottleneck traversal problem. Spans local to an end node of a demand pair wiil by this
principle be quickly seized into anchoring paths for that demand pair.

111

Chapter 6, The Interference Heuristic for Coordinating Pathset Formation

A single spare link
Restoration g \
Statelet

Failure of span 8-9 affects relations 2-5 and 1-8

(a) Network topology showing one (b) Network state after
spare link per span and the restoration statelets
initiation of ordinary flooding. have propagated one hop.

(c) Network state after (d) Final steady state of the
restoration statelets network until either node
have propagated two hops. 1 or 5 acknowledge a

restoration statelet.

Figure 6.6. Principle of End-Node Bottlenecking

6.3 Conclusion

A distributed path restoration algorithm based on the interference heuristic along
with a bidirectional flooding scheme promises to achieve an optimal solution to the resto-
ration problem within two seconds. The following chapters explain and analyse such a
path DRA named OPRA. OPRA is one of the main contributions of this work

112

Chapter 7, Distributed Interaction via Restoration Statelets

Chapter 7. Distributed Interaction via
Restoration Statelets

OPRA uses state based signalling as the framework for interaction between
nodes, using restoration statelets for nodal interactions. The fields of a restoration state-
let form part of the logical environment with which nodes executing OPRA interact in real
time. This chapter explains distributed interaction via restoration statelets and the logical
environment at a DCS within which OPRA functions. In discussing interaction via restora-
tion statelets in this chapter, it is inevitable to delve partially into how OPRA works, the
topic of the next chapter. The reader is asked to view such forward allusions to the algo-

rithm as a form of introduction to concepts which are revisited in depth in the next chap-
ter.

7.1 State Based Signalling via Restoration Statelets

Interactions between nodes in transport networks can take place over a reserved
data link using messages explicitly addressed to neighbouring nodes, or via state based
signalling as explained in chapter 2. State based signalling relies on a defined set of
information attributes associated with a transmission link to communicate a change in an
adjacent node’s state vis-a-vis the connecting link. Unlike a messaging channel which
transmits information through a single serial communication channel between nodes,
exchanging information using state based signalling exploits the high degree of spatial
parallelism inherent in a transport network by virtue of the links between nodes, and avoids
protocol stacks.

OPRA relies on state-based signalling as the framework for interaction because it
has benefits in simplicity and robustness, and is potentially much faster than message-
based communication. State-based signalling requires that every port at a DCS has a
receive and transmit register which is capable of storing the quasi-static information fields
repeatedly applied to individual transport links. The receive register must have read status
and the transmit register must have write status as seen by the processor. As explained

113

Chapter 7, Distributed Interaction via Restoration Statelets

in chapter 2, in a SONET network, restoration statelets may be transmitted by one or both
of the unused bytes in the line overhead of a STS-1.

The nodes of a network in which OPRA is deployed interact solely through the
restoration statelets (statelets) on the links between them. Restoration occurs as a
network-level by-product of the isolated actions of each node, and the processor at each
node acts only as a specialized statelet-processing engine during execution of the OPRA
task.

The algorithm deployed at each node sees the outside world through the statelets
arriving on the links at its site. Nodes influence each other indirectly by reacting to the
statelets received, and changing the number and content of the statelets transmitted.
While restoring a failure each node (DCS) acts as an isolated processor of statelets, sitting
in and reacting to a sea of changing statelets.

7.2 Content and Uses of Restoration Statelet Information Flelds

The fields of a statelet are not intended for general purpose communication. A
node originating a statelet does not necessarily know who will receive that statelet or who
will be influenced by it. Figure 7.1 shows the structure of a statelet, excluding the
implementation specific fields for framing and data validation, which are always present.
The subsequent discussion outlines each field of a statelet and the principle behind its
use, deferring some details until later. The framing and checksum fields are omitted in the
this discussion because their function is obvious. Explicit framing may not be needed in
fact as this is derived from the SONET frame timing, where the line overhead bytes are
identified and demuiltiplexed to line-level applications and processing functions.

Retumn reverse .
node A . interference | repeat confirmation
D |source | destination | index ei!tarm number count }inkingm indicator | mode

Figure 7.1. Information fields in a statelet

114

Chapter 7, Distributed Interaction via Restoration Statelets

The function of many of the fields shown in Figure 7.1 are similar to those
associated with a signature [25], which is used to facilitate state based signalling in the
SHN. In the following explanation of the role of each restoration statelet's field, these
similarities are identified.

Node [D (NID): The contents and use of the NID are the same as that of the NID
field in a signature. As discussed in [25], this field is always asserted by a node when it
applies a statelet to a link. The NID field is assigned the network-wide identifier of the node
originating the statelet. The NID is not used for explicit routing purposes as it may seem
natural to assume; rather it is used to deduce link-to-span logical associations. Each DCS
groups links arriving at its site into logical spans based on the property that all incoming
statelets with the same NID have come from the same adjacent node, and therefore form
a logical span.

_ Span entities are an important logical construct in distributed restoration
algorithms because the geographical diversity of a network’s topology is resolvable at the
span level. Using the NID eliminates the requirement for stored tables describing the
composition of spans at each node because each node in which OPRA is deployed can
deduce link-to-span associations from the NID for itself. Although the spans of a network
are easily apparent from a centralized point of view, each node in which OPRA is deployed
sees only an unstructured array of ports and must deduce span associations, and other
logical implications of the topology, for itself. Using the NID also ensures that the network
topology as seen by OPRA is up-to-date, even in the event of maintenance or service
rearrangement.

Under normal operating conditions where there are no failures a null statelet is
placed on every working and spare link in a network. In a null statelet all fields except the
NID are set to nuill.

Source and Destination: Source and destination fields function as a label
identifying the demand pair to be restored. In the event of a failure, these fields are
assigned non null values by the nodes terminating a severed working path. Tandem nodes
repeat these fields but never overwrite or change them.

The source and destination fields are also used to establish the logical direction
of a statelet based on the order of the node names. For example, if node x is entered into

115

Chapter 7, Distributed Interaction via Restoration Statelets

the source field and node y is entered into the destination field of the statelet transmitted
on link z, then the statelet on link z is tracing a restoration path from node x to node y.

The source and destination fields are similar to the source and target fields of a
signature in [25]. However, unlike the source and target fields of a signature, which identify
the two nodes directly adjacent to a span failure, the source and destination fields identify
the demand pair affected by a failure, and multiple demand pairs are usually affected by a
single span failure. Furthermore, unlike the source and target fields of a signature, the
source and destination fields of a restoration statelet do not serve as “labels” which keep
the processing for one “fault instance” separate from all others. OPRA is a path restoration
mechanism capable of restoring muitiple span failures simultaneously without requiring
that an instance of the DRA be initiated for each separate span failure. The source and
destination fields simply allow a node receiving a statelet to determine whether or not it is
the destination of that statelet, and if so, to which affected demand pair involving this node
the received statelet belongs.

Index: The index field of a statelet is analogous to the index of a signature in [25].
It is used in the SHN and OPRA to uniquely identify a statelet family which may resuit in
one link-disjoint path and to manage the contention which results from the several path
construction efforts that occur concurrently in both OPRA and the SHN.

The index field is assigned a unique number by the source of a statelet at the start
of the forward flooding phase. Indexing is not repeated at a source node for a given
demand pair, but runs sequentially over all spans and ali statelets initiated by a node, as
shown in Figure 7.2. Only source nodes, i.e. the end-nodes of a failed working path,
generate index numbers. Similar to the index field of a signature in the SHN, the index field
of a statelet is generated once and never altered by any other node.

In Figure 7.2, if demand pairs A-B, and A-Z lost 1 and 2 units of demand,
respectively, the outgoing statelets shown would correspond to the target broadcast
pattern for node A when functioning as a source. The target broadcast patterns for source
and tandem nodes are presented in greater detail in the following chapter.

116

Chagter 7, Distributed Interaction via Restoration Statelets

Source: A,
Destination B
-------- Source: A,
Destination Z
5
Span 3 & & 2 Span1
3¢ 4---

Indexes

Figure 7.2. Indexing statelets

Whereas only a single Sender node in the SHN generates index numbers, all the
demand pairs affected by a span failure generate index numbers in OPRA, and index
numbers are only unique for a single demand pair. Therefore, the index field alone cannot
represent a sub-family of statelets like it can represent a sub-family of signatures in the
SHN [25]. As shown in Figure 7.2, index 1 is used twice; once by demand pair A-B,
represented in red, and once by demand pair A-Z, represented in blue. The source and
destination in conjunction with the index field uniquely identify a statelet family in a network
executing OPRA.

Each source, destination, and index field triplet originating at a source node
becomes common to a larger set of statelets rebroadcast by tandem nodes, defining ail
statelets in one of the multiple concurrent flooding processes initiated by OPRA. The
tandem node rules for contention amongst these flooding instances for access to available
links treats statelets belonging to the same family in certain ways, and in different ways
across families. The notion of competition between statelet families is central to OPRA
because of its connection with the interference heuristic as discussed in the following
chapter.

Return Alarm Bit (RA bit): Whenever a node observes an alarm on a working link
it sets the return alarm bit in the reverse direction statelet. in the case of a unidirectional
failure, such as a one-way single-regenerator, splice, fiber, or connector failure, the RA bit
ensures that both the source and destination of a failed working path correctly activate

117

Chapter 7, Distributed Interaction via Restoration Statelets

OPRA. When a failure is bidirectional, the RA bit is redundant as other alarms activate
OPRA in both the source and destination. All operations on the RA bit are delegated to the
DCS port hardware, releasing OPRA from the task. This attribute is inherited directly from
the SHN signature and simply extended here to use on an end-to-end path basis.

Interference Number (IntNo): The interference number of every statelet
transmitted by a node is increased by the current value of the interference number of the
span used to transport the statelet. The interference number of a span is calculated by
counting the number of statelets competing, not qualifying, to be forwarded on a span, and
subtracting from this sum the number of paths the span can support, as shown in Figure
6.3.

Statelets initiated by a source node compete with statelets from other demand
pairs for which this node functions as a tandem node for outgoing spare links. The
interference number of all statelets initiated by a source are assigned the same
interference number. The initial value of a statelet’s interference number is determined by
the value of a node’s Initial Interference Number (IIN).

While the initial interference numbers of all statelets initiated by a source node are
usually set to zero, they may be increased after a lost working path is restored in order to
facilitate restoring at least one working paith from another demand pair affected by the
same failure. The target broadcast pattern of the statelet with the lowest interference
number is always satisfied first to the greatest extent possible at a tandem node, so
increasing the interference number of all statelets emitted by a source gives statelets from
other relations a better chance of being rebroadcast at tandem nodes.

Typically, the interference number of a statelet accumulates as it traverses the
network. However, the interference number of a statelet is dynamic and may decrease as
well as increase as statelets on other index, source, and destination families arrive and
disappear at tandem nodes. While the interference number of a statelet may decrease, it
is never less than zero because the interference number of a span is never allowed to be
negative. Furthermore, any increase or decrease in a statelets interference number will
cause a chain reaction in which the change is propagated down each branch of a statelet's

family’s logical tree, that spatially extends in all directions, and forms that family’s
broadcast mesh.

118

Chapter 7, Distributed Interaction via Restoration Statelets

The interference number of a statelet is the primary factor influencing the logic of
tandem nodes when statelets are in contention for rebroadcast. As mentioned previously,
the statelet with the lowest interference number is always rebroadcast first at a tandem
node.

Bepeat Count The repeat count field is a logical hop counter with the same basic
role as it had in the SHN [25]. 1t is part of a mechanism used to control the distance a
statelet propagates in a restoration event. Associated with the use of the repeat field are
two constants, the repeat-limit (also called maxRepeats) and the Initial Repeat Value
(IRV), which are embedded in OPRA. When a source initiates a statelet, it assigns the IRV
to the repeat field. maxRepeats is a network wide constant but the IRV is a node-specific
constant so that, if desired, the range of a statelet can depend on which node acts as its
source. This permits a region-specific range for restoration. The maximum number of hops
that any statelet will be allowed to propagate away from the source is determined by
subtracting the IRV from maxRepeats. The IRV can be made positive to reduce range, or
negative to increase range.

While the range of a statelet is limited to maxRepeats, the maximum logical hop
length of a restoration path found by OPRA is twice the value of maxRepeats because now
both of the nodes from a demand pair to be restored behave as sources, analogous to
Senders in the SHN [25], following a failure. Each node traversed by the logical tree from
a statelet family mesh increments the repeat field and rebroadcasts the statelet, except if
the repeat limit would be exceeded. Any statelet that arrives at a node with a repeat value
equal to or greater than the repeat-limit is ignored.

Beverse linking Indicator (complement field): As mentioned previously, OPRA
employs bidirectional flooding when synthesizing restoration pathsets. After a failure, both
end-nodes terminating a severed working path, named A and Z here, begin transmitting
statelets that form the base or root of a broadcast mesh from a single source-destination-
index statelet family, as shown in Figure 7.3. At this stage of restoration, nodes A and Z
behave analogous to Senders in the SHN which initiate an index specific, rather than a
source, destination, and index specific, flooding pattern. Unless a restoration path is one
hop long, the statelet's initiated by A and Z will in general be rebroadcast through the
network and meet at some tandem nodes, as shown in Figure 7.3. When a statelet

119

Chapter 7, Distributed Interaction via Restoration Statelets

initiated by node A collides with a statelet initiated by node Z, the source-destination field
is recognized as a match and a potential restoration path is identified. This event is called
a match in OPRA. After a match, the reverse linking indicator of the forward flooding
statelet initiated by node A is set to the value of the index of the statelet initiated by node
Z, and conversely for the reverse linking indicator of the statelet initiated by node Z.

Forward flooding statelet
with reverse linking A statelet family
indicator field set to nuil /

Reverse linking

statelet with reverse
A linking indicator field
source = setto 3 source =7
destination = Z destination = A
index = 1 match index =2

source = A
g!n%sﬁnaﬁzon=2
index = v
_______________ 4= I!L " oo e
- source =Z
destination = A
source = A index =3

destination = Z
index=3

source = Z

destination = A
Reverse linking index = 1
indicator field is null

Reverse linking
indicator field set
to2

Figure 7.3. Setting the Reverse Linking Indicator in a statelet

Once the reverse linking indicator is set to a non-null value, the statelet from node
A follows a path paralleling the forward flooding path of the statelet initiated by node Z, as
shown in Figure 7.3. A statelet whose reverse linking indicator is set is always paired with
another statelet whose logical direction is its exact complement, so the source of the
statelet initiated by node A is the destination of the statelet initiated by node Z, and vice-
versa. Consequently, a statelet with the reverse linking indicator set is often referred to as
a complemented statelet, and the reverse linking indicator is often referred to as the
complementfield. Reverse linking is complete when a complemented statelet reaches the
source of the forward flooding statelet with which it is matched.

When the forward flooding statelet paired with a complemented statelet does not
disappear at a tandem node, the reverse linking process is similar to the one described in

120

Chapter 7, Distributed Interaction via Restoration Statelets

the SHN [25]. In this case the arrival of a complement statelet at a tandem node causes
the complement condition to be propagated toward the source of the forward flooding
statelet with which the reverse linking statelet is paired, and the cancellation of all other
statelets on that source-destination-index family, reopening the local tandem node
competition for new statelets on other families. However, unlike the reverse linking
process in the SHN, a crosspoint order may not be given at this stage because the forward
flooding statelet paired with a reverse linking statelet may disappear as explained in detail
in chapter 8. In OPRA the forward flooding statelet paired with a complemented statelet
may disappear even after reverse linking is continued locally at one node. This trait is one
key characteristic which distinguishes reverse linking in OPRA from reverse linking in the
SHN, and is required to synthesize a near optimal restoration pathset as tested and
confirmed in the results presented at the end of this thesis.

Confirmation Indicator OPRA allows a statelet to be overwritten by a statelet from
another family up until reverse linking is complete. In the event that the forward flooding
statelet which is paired with a complemented statelet is overwritten locally at one node,
reverse linking is stopped at that node. To determine whether or not the two
complemented statelets initiated after a match reach their destination, the demand pair to
be restored (A and Z in Figure 7.4) perform a loop-back test using the confirmation
indicator.

This confirmation phase is not an optional choice in deployment orimplementation
of OPRA because without it, in the event that the red reverse linking statelet reaches node
A and the blue reverse linking statelet never reaches node Z, node A in Figure 7.4 would
erroneously assume a complete restoration path existed between itself and node Z. Unlike
the SHN, the state-based nature of the event-sequence during reverse linking that forms
the paths of a statelet family, which in the SHN is defined by a signature’s index and in
OPRA is defined by a statelet's source-destination-index label, does not constitute an
inherent end-to-end continuity test. Only the confirmation phase of the restoration process
constitutes an inherent end-to-end continuity test in OPRA.

The confirmation phase is initiated after the complemented statelet destined for
the node with the smaller ID, node A in Figure 7.4, reaches its destination. This continuity
test mimics the loop-back test often performed to check a new circuit in a

121

Chapter 7, Distributed Interaction via Restoration Statelets

telecommunications network, and involves transmitting a statelet with the Confirmation
indicator bit set along the path traced by the complemented statelet. A statelet with the
confirmation indicator set will be referred to as a confirmation or confirmed statelet. A
confirmation statelet starts at the source with the smaller node (node A in Figure 7.4),
proceeds to the destination along the path traced by the reverse linking statelet, and
returns to the source if a valid restoration path exists.

Confirmed statelet performing a loop-back test Forward Flooding statelet
\ ﬂ;\
y4
C\ﬂ N v % A~ j()
A 7 Y —1— Y Y Z
il % _/ : N

———

Reverse Linking statelet

Figure 7.4. Initiating a loop-back test using the Confirmation Indicator

mode: The mode field of a statelet is used to identify the particular application
which should be executed using OPRA’s real-time distributed autonomous path-finding
capability. OPRA has been primarily oriented around path restoration. This involves
special considerations such as alarm detection and checking that links are in spare status
before using them for rerouting. These and other aspects specific to the restoration
application appear in the description of OPRA which follows.

However, the central result of the algorithm is a real-time distributed autonomous
mechanism for finding multiple link-disjoint paths in a muiti-graph. This basic core of the
algorithm can easily be extracted from the description here. This path finding capability
can also be adapted to a number of other applications. Some applications that have been
recognized and studied, to varying degrees, include:

- real time path restoration (presented in this thesis)
- distributed preplanning for restoration [54]

- network restorability audit [6]

- network capacity audit [6]

122

Chapter 7, Distributed Interaction via Restoration Statelets

- service provisioning on demand [6, 34]
- self-traffic engineering [6, 25, 46, 49]

The incorporation of this mode indicator in OPRA follows the previous work done
in [25] where it was proposed that the SHN be extended in this way to permit such a vari-
ety of applications built upon the basic pathset synthesis utility the algorithm provides. It

seems opportune therefore to explicitly provide for such generalized applications in defin-
ing OPRA's statelet's.

7.3 Factors Determining Statelet Length

The factors determining the bit size of the various fields of a statelet are based on
several planning and implementation considerations. A statelet's length must be specified

so that network growth is allowed for. Two measures of a network’s size are reflected in
the statelet:

(a) maximum number of nodes: this determines the length of the
three node-name fields - NID, source, and destination.

(b) maximum number of working links on any one span: this
determines the maximum number of bits that could be
required for the index field of a statelet.

Not every field of a statelet is dependent on the size of a network. The RA field requires
only a single bit to echo a receive failure to the far-end node.

The interference number of a statelet depends on the number of statelet's
competing to restore lost working paths after a network failure. In the event of a single
span failure, the maximum interference number of a statelet can be estimated by
multiplying the link-size of the largest span in a network by the degree of the largest node
in the network and by the hop length of the longest restoration path allowed. A

conservative estimate of the IntNo field’s size would set it large enough to accommodate
an interference number of this magnitude.

123

Chapter 7, Distributed interaction via Restoration Statelets

When 4 bits are used to transport the repeat count, a maximum repeat count limit
of 16 spans is possible, and restoration paths are restricted to a maximum of 32 hops. A
32 hop maximum restoration path length limit is certainly sufficient for an extensive search
of the solution space in even the largest networks used to test OPRA’s ability to synthesize
a near optimal restoration pathset.

The reverse linking indicator is set to the value of a statelet’s index after a match,
as explained in the previous section. Therefore, the size of a statelet's complement field
shouid be the same size as a statelet’s index field.

The confirmation indicator is always assigned a unique value upon initiating a
loop-back test. The size of a statelet’s confirmation field should be large enough to assign
a unique value to each restoration path initiated by a node. The maximum number of
restoration paths for a given demand pair will never be more than the size of the largest
span in a network. Therefore, an estimate of the confirmation indicator's bit size is the
binary number for the link-size of the largest span in a network.

The size of a statelet's mode field depends on the number of applications which
may use OPRA’s path finding capability. OPRA may be adapted to a number of
provisioning, network audit, and network functions. The reservation of 3 bits for the mode
field would allow development of up to 8 different applications which reuse OPRA's kernel
at each node.

The size of a statelet’s parity or checkbits depends upon whether simple repetition
rather than parity checking is used to verify a statelet’s fields. Simple repetition could
reduce the effective statelet transfer speed by a factor which could be significant enough
to affect real time performance. A single parity check bit could therefore be used to qualify
received statelets, eliminating the need to wait for repetition in most cases. However, 2
errors within a statelet would defeat a one bit parity check. Ultimately, a 5 or 6 bit Cyclic
Redundancy Check (CRC) would be the most conservative allocation to make. CRC-6
computation is simple to implement in a shift register circuit, and provides virtually zero
probability of an errored statelet being interpreted as a state change, especially if

repetition/persistence is also relied upon to generate a changed statelet event in a DCS
port.

124

Chapter 7, Distributed Interaction via Restoration Statelets

statelet Field

NID

source

destination

index

RA

IntNo

repeat count

reverse linking indicator
confirmation indicator
mode

CRC

statelet word alignment

Anticipated statelet bit length

(optional)

When one or both of the unused bytes in the LOH of a SONET transport signal is
used to transmit statelets, no word alignment field is required to identify the start of a
statelet. However, in some methods for statelet transport [26], it is impossible to use the
timing attributes of the carrier signal to frame on a statelet. In this case one constantly
toggling bit will allow simple statistical frame alignment on a statelet. If the statelet word
alignment bit toggles in every statelet repetition, framing is simple and fast. Fast, robust,
framing can also be derived from the presence of an embedded CRC or FEC code, without
explicit allocation of framing overhead [26].

Based on the information just presented, and the size of the actual transport

networks shown in Figures 4.5 to 4.8, the following statelet field sizes were assumed in all
of the OPRA tests performed:

{need depends on transport environment)

126

Chapter 7, Distributed Interaction via Restoration Statelets

This anticipated statelet bit length is a natural allocation for a SONET OPRA
implementation because a single SONET line overhead byte yields 8 bits of information.
Given 9 bytes of statelet contents, plus a byte to align on the repetition sequence, a
statelet's insertion time on a span would be 1.25 msec.

7.4 Classifying Restoration Statelets

In the description of OPRA, statelets are classified into 3 groups depending on
which information fields are assigned null values. The names given each group reflect
the characteristics of the statelets associated with that class as shown in Table 7.1. _

Table 7.1. Classifying Restoration Statelets

statelet class Common characteristics

NiD X% nuil

source X nuil
destination X null
index % null
Forward flooding statelet IntNo % null
repeat count X% null

mode X null
Reverse Linking Indicator = null
Confirmation Indlcator = null

Reverse Linking or Only the Confirmation Indlcator fleld
Complemented statelet from this class of statelets Is nulf
Confirmation statelet No fields from this class of
statelets are null
Null statelet Each field from this class of statelets

except the NID is null

7.5 Relationships between Restoration Statelets

As alluded to in section 7.2, special relationships may exist between various
statelets during a restoration event. These relationships are formally defined here.

The Precursor Relationship: For each statelet family present at a tandem node,
the port at which the root of the rebroadcast tree for that statelet family is found is called
the precursor for that statelet (see Figure 7.5). Transmitted statelets from the same family
as the precursor are referred to as the branches of the rebroadcast tree. The precursor of

126

Chapter 7, Distributed interaction via Restoration Statelets

a statelet family usually has the lowest interference number of all incoming statelets at the
node on the same source-destination-index label and always is the root of the broadcast
tree for that mesh. A precursor is a directed one-to-many relationship. One incoming
statelet can be the precursor for many outgoing statelets, and every outgoing statelet has
only one precursor. The precursor relationship strictly applies between statelets, meaning
the precursor of a source-destination-index label may change ports at a node while
restoring a failure.

statelet belonging to the
sr:éne family asbme "
precursor, but wi
“— a higher interference
number

No statelet received
at this port

N

Branches of the
rebroadcast tree
Precursor and root >
of broadcast tree Tandem node

Figure 7.5. Precursor Relationships at Tandem Nodes

Restoration Statelet Families: A family is the network-wide set of statelets with the
same source, destination, and index. All of the statelets from the same family have the
same logical direction, i.e. from source to destination regardless if the statelet is classified
as forward fiooding or a complemented statelet. Each statelet family may lead to the
establishment of at most one restoration path. During forward flooding, a family of statelets
expands outward from the source, tracing a path which is always connected back to the
source via the sequence of precursor relationships established through preceeding
tandem nodes in a statelet family’'s mesh.

Maltched Restoration Statelets: Two precursors, x and y, form a match when the
source of statelet x is the destination of statelet y, and the source of statelet y is destination
of statelet x. Before a forward flooding statelet is rebroadcast at a tandem node, each port
is checked to see if the received statelet matches any other received statelet. Matched
statelets do not need to have the same index, but must both be precursors and be on the

127

Chapter 7, Distributed Interaction via Restoration Statelets

same source-destination label. Only statelets whose confirmation and reverse linking
indicator fields are null can establish a match, i.e. a match can only be defined between
forward flooding statelets. While a match condition arises frequently in OPRA, reverse
linking is not always initiated. Initiating reverse linking after a match in OPRA is carefully
controlled to minimize initiating reverse linking procedures which are destined to fail, and
maximizing those which lead to the creation of a near optimal restoration pathset as
explained in detail in the following chapter.

7.6 The Logical Environment of a Node

It is necessary to define a hardware environment in which OPRA executes in
order to establish a model logical programmers can reference when establishing and
specifying OPRA. The hardware environment described in this section is not the only
implementation of OPRA possible, but one which is consistent with the hardware environ-
ment developed to support the SHN [25].

OPRA views the ports which interface the links of the transport network as the
logical environment of a node. The port is the location at which statelets are received,
and through which statelets are applied to a link. Each DCS port has storage registers for
one transmit statelet and one receive statelet. in addition to the statelet registers, a regis-
ter is required to store port specific, rather than link specific, state information. The Port
Status Register (PSReg) stores port specific information pertaining to both the transmit
and receive links terminated at that port. Section 7.2 covered the details of transmit and
receive port registers; this section covers details of the PSReg.

7.6.1 Port Status Register

The PSReg includes the following one-bit status fields: Line Alarm, Path Alarm,
spare, activated, Restoration Statelet Change Interrupt Enable (RSCIE), Alarm Interrupt
Enable (AIE), Alarm Indication Signal (AlS), and Receive Restoration Statelet (RxRS). It

also includes an associated port (assoc-port), an associated span (assoc-span), and
Trace field as shown in Figure 7.6.

128

Chapter 7, Distributed Interaction via Restoration Statelets

Line | Path assoc- assoc-
Alarm | Alarm | AlIS | spare | RSCIE | AIE | activated RxRS port span Trace

Figure 7.6. Information fields in the PSReg

The function of many of the fields shown in Figure 7.6 are similar to those
associated with the port status register presented in [25] for the SHN. In the following
explanation of each field these similarities are identified.

Line Alanmm: A Line Alarm occurs when a port terminates a link that is cut, as
shown in Figure 7.7. Any number of incoming link conditions such as signal loss, framing
loss, clock recovery, loss of lock, high BER, etc. may trigger a line alarm signal at the LTE
as described in section 2.1.1.

Path Alanr: A Path Alarm occurs when a port terminates a failed working path.
Any number of incoming link conditions such as signal loss, framing loss, clock recovery,
loss of lock, high BER, etc. may trigger a path alarm signal at the PTE as described in
section 2.1.1. The path alarm informs a node it will be involved as a source and destina-
tion in the restoration process.

Alarm Indication Signal (AIS): The AIS bit is used to indicate which ports lost live
traffic due to the failure of either a working or previously found restoration path. The AIS
bit of all ports in a failed working path or a failed restoration path are set to true. OPRA
uses the AIS field, along with the Line Alarm and spare bits, to determine which ports
may be released after a failure when performing stub release. Only ports with AIS = true,
spare = false, and Line Alarm = false are eligible for stub release, as shown in Figure 7.7.
When a working port is added to the pool of spare capacity available for use in restora-
tion, the activated and AlS fields of the PSReg are set to false.

129

Chapter 7, Distributed Interaction via Restoration Statelets

Line Alarm = False Line Alarm =True Line Alarm = False

Stub Path Alarm = False Path Alarm = False Path Alarm = True
release AlS = True AlS = True AlS = True
possible l l l

OISRy,

[&

release
Line Alaim = False Line Alarm =True Line Alarm = False possible
Path Alarm = True Path Alarm = False Path Alarm = False
AlS = True AlS = True AlS = True

Figure 7.7. Alarm detection related PSReg contents
after the failure of a working path

spare: The spare bit is set by the DCS in the course of normal provisioning activ-
ities and never changed by OPRA. Under normal network conditions of no network fail-
ures, the spare bit of those ports not carrying any demand is set to true, and the spare bit
of those ports carrying demand is set to false. Unlike the use of a port's spare bit in the
SHN [25], the spare bit here is not used by OPRA to identify those ports available for use
in restoration at the time of a failure because under abnormal network conditions, such as
after restoring a failure, a port with its spare bit set true may be part of a restoration path
used to restore an earlier failure. OPRA uses the spare bit along with the Line Alarm and
AIS bits to determine which ports can be released after a failure when performing stub
release, as explained previously.

activated The activated bit indicates whether a port is logically connected, and
identifies those ports available for use in restoration at the time of a failure. If the acti-
vated field of a port is false, OPRA may use that port to transmit a statelet. Under normal
network conditions the activated bit of a spare port is set false, and true for a working
port. After stub release, the activated bit of a working port added to the pool of spare
capacity available for use in restoration is set to false.

The activated bits of ports part of a forward flooding process are always set to
false. The activated bits of ports part of a reverse linking process are always set to true.

130

Chapter 7, Distributed Interaction via Restoration Statelets

(As described in section 7.2, a pair of logically connected ports at a node part of a
reverse linking process whose activated bits are set to true are not physically cross-con-
nected in a DCS’s switching matrix until OPRA confirms a path’s continuity (see Figure
7.4).) Unlike the spare bit, OPRA toggles the value of the activated bit between true and
false when a link becomes part of a reverse linking and forward flooding process respec-
tively. During the course of restoration, the activated field of a port may toggle between
true and false many times while the paths traced by all statelets coalesce into a near opti-
mal replacement pathset.

The activated field is not simply an indicator if a link is in statelet use or not,
rather it indicates when a link is part of a reverse linking process, which may or may not
lead to the successful synthesis of a restoration path. During the synthesis of a restora-
tion path a single link may be part of multiple distinct reverse linking and forward flooding
processes as described in detail in the following chapter. Before, during, and after, a res-
toration event, the activated field indicates which ports are not part of a reverse linking
process and OPRA can use to transmit new forward flooding statelets.

Restoration Statelet Change Interrupt Enable (RSCIE): The receipt of alarms and
statelets generates interrupts sent to OPRA for processing. A port’s interrupts can be
masked by setting the RSCIE false. Setting the RSCIE false prevents a port from partici-
pating in a restoration event, effectively tuming that port off. The use of the RSCIE is the
same as the SCIE in the SHN [25].

Alarm Interrupt Enable (AIE): AIE is used to inhibit alarms on failed links. If the
AIE is set false, a port is prevented from receiving alarms. Usually the AIE is only set
false after a link receives an alarm, ensuring that repeated alarms are prevented from
interrupting OPRA. The use of the AIE is the same as the AIE in the SHN [25].

Beceive Restoration Statelet (RxRS): Whenever a statelet is received and con-
firmed, possibly by a hardware level check for CRC or repetition, and that statelet is dif-
ferent from the current contents of the receive register, the RxRS bit is set to true. This
informs OPRA that a statelet-change event has occurred in that port. It is possible that
multiple restoration statelets and/or alarms arrive at a node while OPRA is responding to
an interrupt. Only after OPRA has completed processing an interrupt does it acknowl-

131

Chapter 7, Distributed Interaction via Restoration Statelets

edge newly received statelets as indicated by a port's RxRS field. The use of the RxRS is
the same as the RSDEL in the SHN described in [25].

assoc-port and assoc-span: assoc-port and assoc-span store the identity of the
port to which this port is connected logically by the precursor relationship during restora-
tion, or physically connected via the local DCS matrix after restoration. During restora-
tion, the assoc-portand assoc-span fields of all ports point to the location of the precursor
for the outgoing statelet transmitted on that port. Given a completed restoration path, the
assoc-port and assoc-span fields record physical cross-connect information.

Given that a port's span can always be obtained by reading the NID, only the
assoc-port field is fundamentally required for the OPRA implementation described in this
thesis. The assoc-span field is for convenience only. Furthermore, if the ports on a DCS
have a node-global numbering assignment, the assoc-span field is not even needed for
convenience, because a port in this case can be uniquely identified at a node by its port
number alone, without specifying the span in which that port lies.

Jrace: For each node terminating a working path, the Trace field records the ID of
the far-end node. The Trace field is required to identify the demand pair to be restored
after a failure in a path restorable network. While the path overhead of a SONET STS sig-
nal could carry the node ID of a signal's source, possibly using the J1 trace byte, such an
application has not been standardized in SONET. Consequently, OPRA stores the 1D of

the far-end node of a working path terminated at a port at the time a working path is pro-
visioned in the Trace field.

7.7 Summary

The receive statelet register, transmit statelet register, and Port Status Register
collectively form the memory space in which all data needed by OPRA are present and
automatically updated by hardware in response to external events outside the node itself.
All statelet processing rules are defined in terms of operations on the set of all registers at
the active ports of a given DCS node. From the viewpoint of OPRA, the host environment
is therefore an array of logical records called ports.

132

Chapter 7, Distributed Interaction via Restoration Statelets

Together, the RxReg, TxReg, and PSReg form the logical environment within
which OPRA operates. OPRA perceives its environment through these registers only. All
of the functions OPRA performs while restoring a failure require manipulating one or

more fields of these registers. The following chapter begins a detailed explanation of
these functions.

133

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

Chapter 8. Description of the Optimized
Distributed Path Restoration
Algorithm (OPRA)

This chapter presents a detailed description of OPRA emphasizing the node
logic to analyse and react to the various events encountered during the restoration proc-
ess, and thereby determine the protocol response by a node to those events. The overall
action of OPRA will be introduced in seven conceptual stages:

1) activation,

2) bidirectional selective forward flooding,
3) recognizing a match,

4) reverse linking,

5) restoration path confirmation,

6) traffic substitution, and

7) terminating a restoration event.

In reality, these phases are not exclusive, separate, or sequential, in time or space. They
occur in a heavily concurrent manner while restoring a failure. However, OPRA is
described in the following sections as if these phases were separate and non-overlapping
in time and space, solely to convey a functional understanding of the algorithm.

8.1 Finite State Machine (FSM) Representation of OPRA

At its highest level of abstraction, OPRA is implemented as a Finite State
Machine (FSM). As with the SHN, all processing by OPRA is of an event-driven nature
using FSM techniques to encode all behavioural rules, and can be described in terms of
two primary event types that drive the FSM: a statelet arrival and “alarm” events. Resto-
ration statelets as well as line and path level alarms generate interrupts which initiate
transitions in the algorithm starting from the idle or normal state (state 14 in Figure 8.1),

134

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

traversing one or more action blocks (states 1 - 13 in Figure 8.1), and ultimately returning
to the idle state.

Action blocks are referred to as forced states in OPNET [52], and the term forced
state is used throughout this thesis. OPNET is a comprehensive development environ-
ment supporting the modelling and performance evaluation of distributed systems by dis-
crete event simulation. OPNET was used to implement and test OPRA, and the C-code
and OPNET kemel procedures needed to model OPRA in OPNET are given in [40).

Each of the seven conceptual stages presented at the start of this chapter
require traversing one or more of the action blocks shown in Figure 8.1. States are mutu-
ally exclusive and complementary, meaning that OPRA is always exactly in one FSM
state or action block: more than one state or action block may never be occupied at a
time. OPRA moves between states in response to the interrupts it receives. The transi-
tions shown in Figure 8.1 that depart from the idle state indicate which action block is
executed, and the event condition that each change requires.

The condition which must be evaluated to determine whether or not OPRA
should enter the transition’s destination state appears as a parenthesized label next to
the arc. Transitions that have non-empty condition expressions are depicted as dashed
arcs; unconditional transitions are depicted as solid arcs. All transitions that depart from a
state are evaluated before OPRA progresses to any transition destination. Transitions
that emanate from a state are mutually exclusive at the time they are evaluated (no two
can simultaneously be true), and complementary (at least one is necessarily true).

The light state (state 14) shown in Figure 8.1 is the only state in which OPRA
may pause between interrupts, and is consequently referred to as an Unforced State in
OPNET terminology. Unlike state 14, OPRA does not wait for an interrupt while in states
1 - 13. As mentioned previously states 1 - 13 represent action blocks, and are referred to
as forced states in OPNET terminology. While forced states cannot represent actual sys-
tem states, they are useful to graphically separate the actions and control flow decisions
OPRA must perform in response to an interrupt. Graphically separating definitions of
decisions and actions into action blocks or unforced states as shown in Figure 8.1 pro-
vides better modularity for specification, as well as a more visually informative FSM.

135

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

wesbeq uopisUBIL 81EIS YHJO *L'8 @anbid

uoppuoo uopsuey Aidwy ¢————

PP

P it I R

b

uopipuod uopsuey fjdwe-uoN ¢=--c--=---- (yereavig ieeq puv YA qR3R)
P | (Uompuco)
{yusas roTyesITIUOD) (Jueas™ietejeigeateoey)
s\\\\llllll {aroezep))
- (Ao Teamg vz YUV Yoy quig) PR '
S o e - .
Y N \
II . .
(Jusas™yee3vig yuewe tduo)) . N ,.
PRTEN N S / \
e T ~ . A
\\ = ~ S w - ll lf * Y /
Se. S VO (qusaruivtan) t o \
(3wsas qeyuvAyere3vag) A o AN LN \
Pl Aadl N ll ~ . A} * \ '
»” Sea N SoN \ N v VF ,
el SeoN SO
(Jueas™3umsp™ereanag) o s {aruegep)

-
’ . Sso
~

~

.
]
!
]
4
]
¢
4
L4
L4
’
r
¢

ss-
I}
]
4 ’
i
) '
] .. 1] -
X H i - ﬂﬁﬂm-ﬂ.:vmﬂwvu == -———a.
" " ” (3ueanT™yete3wis~ney) L ,1: .~ \ (araezep)
” " \ ST -’ —. .~ S
] ~
" ") s ~ait | S « (3usarTyseoproxa)
\] ' . S N
|] - - o oy
_. \ r4 \
d TS0 ' rovoad]
}
R \ _
\ i € \ 2l
" preyeis | % (3maasTanoawrd)
\
- 14 48
f3v0owidy
— 3008 uojidy
ol loemspsaol @

eleis poasojun O

136

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

8.2 Initializing and Activating OPRA

After initializing the PSReg, RxReg, and TxReg, as well as a few memory loca-
tions OPRA uses, activation occurs when a path-level alarm is received at a node. In
reality the individual port alarm detections may be distributed in time, and OPRA is tested
later under both staggered alarm and concurrent alarm conditions. Detection of an alarm
raises an interrupt in response to which OPRA identifies all working ports that have an
alarm and all logical spans and links present at a node. The functions associated with the
activation of OPRA are categorized and implemented using three states shown in Figure
8.1: state 11 - Initialization, state 14 - Idle, and state 7 - New,_AIS. The following descrip-
tion of the activation of OPRA details the contents of these three states, i.e. the actions
OPRA must perform whenever it transits states 11, 14, or 7.

8.2.1 Initialization (State 11, Initialize)

At the heart of OPRA is a set of predefined responses to various events encoun-
tered while restoring a network failure. These responses are specified using the C pro-
gramming language and a few OPNET kemel procedures. Due to the unique nature of
OPRA, there were no OPNET kemel procedures which contained or encoded any of the
logic necessary to correctly process a statelet or alarm. A few OPNET kemel procedures
are used to manipulate linked lists. These linked lists, as well as other memory structures
used in the C code specification of OPRA, are initialized in state 11 when OPRA is loaded
into a DCS.

During initialization, the degree and ID of a node, as well as the total number of
links per span is determined. Then OPRA initializes four lists to increase its speed of exe-
cution by avoiding frequent searches of the whole node to find ports satisfying various
statelet conditions. The first list, rec_set, is used to track all non-null statelets received by
a node. The second list, spares, identifies all links available for use in restoration. The
third list, dmd_pair_list, is used to record the amount of demand lost by this node and the
IDs of the end nodes terminating the failed working paths sourced by this node. The
fourth list, precursors, is used to track the port and span of a statelet family’s precursor. A
copy of the first two lists, rec_set and spares, is initialized for each span terminated at a

137

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

node, while only a single copy of the third and fourth lists, dmd_pair_list and precursors,
is initialized at a node.

The procedures described above executed upon transiting state 11 are summa-
rized below:

1. Initialize variables.

2. Determine this node's degree.

2. Create one rec_set and spares list per span

4. Create one dmd_pair._list and precursors list per node.

8.2.2 Idle State (State 14)

After initialization, OPRA enters the idle state. This state is the only state in which
OPRA can pause between interrupts, and the only static state of the state transition dia-
gram shown in Figure 8.1. Consequently, all transitions in Figure 8.1 begin and end here.
Which trajectory should be followed in response to an interrupt is determined by the con-
ditions or logic associated with each transition.

Upon entering the idle state, the transmit statelet registers which OPRA changed
while processing an interrupt are latched onto the outgoing links of each altered port.
Latching a transmit register onto a link updates that link’s outgoing statelet. Registers are
latched onto links in the same order in which they were updated internally in OPRA’s exe-
cution sequence.

OPRA will remain in the idle state until the arrival of a statelet or until an alarm
occurs. Before leaving the idle state, OPRA determines which span and port originated
the interrupt.

When leaving the idle state, if a new restoration task is being started, OPRA
builds a list of all ports available for use in restoration. This list is named spares and is
built after the start of a restoration event rather than maintained independently at a node

so that OPRA can rely on the integrity of the data depicting the actual network structure
at the time of a failure.

138

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

The procedures executed upon transiting state 14 are summarized below:

1. Update the outgoing links at a node if necessary.

2. Determine which port issued the interrupt.

3. Populate the list spares with all ports available for
restoration when starting a new restoration event.

The transition which should be followed when exiting the idle state is determined
by evaluating the conditions shown in parentheses in Figure 8.1. A restoration event is
started when some node in the network detects a path level alarm. Detection of a path
level alarm raises an interrupt causing OPRA to determine whether the AlS is true for the

port initiating that interrupt. If so, the transition New,_AIS_event is followed from state 14
to state 7.

8.2.3 Receipt of an Alarm (State 7, New_AIS)

As shown in Figure 7.7, whenever a path or line level alarm is detected at a node,
AlS is true. Furthermore, AlS is true for every port in a failed working path even when no
line or path level alarms exist. While a port showing only a AIS alarm cannot initiate a res-
toration event, that port can be added to the pool of spare capacity available for use in
restoration. This is referred to as stub release. Since state 7 effects the local node’s role
in stub release as well as alarm processing, the transition condition from state 14 to state
7 is evaluated using the PSReg’s AlS field, rather than the line or path alarm fields.

The first function performed transiting state New,_AIS determines if a path or line
alarm exists on the port initiating the interrupt. If a path alarm exists, the ID of the far end
node terminating this failed working path, stored in the Trace field, is entered into a list
which records the number of alarms received per affected relation, dmd_pair_list. In addi-
tion, state New,_AIS releases the surviving portions of a cut working path when stub
release is employed by setting the AIS and activated fields of the PSReg to false, and
commanding the release of crosspoints between the ports on the failed working path.

If a port supporting a restoration path, rather than a working path fails, the
source, destination, and index of the restoration path must be determined. This informa-

139

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

tion can easily be determined from the transmit statelet register of the failed port. How-
ever, in the event that a precursor seeking a restoration path, rather than a completed
restoration path, is severed, as shown in Figure 8.2, the information on the transmit state-
let register of the failed port will not identify the source, destination and index of the failed
precursor. Furthermore, after the precursor is severed, all of the fields in the receive
statelet register on the failed port (port 2 in Figure 8.2) are set to null.

span1, port 1
branches from
the severed Register Fields immediately after the failure of span 2
precursor
statelet assoc-lassoc]
source| dest. | index j it
Span/Link| In/Out span | po
oA 1 in_ | nul [nal [nal | 2 | 2
Out A B (o4
2 (before| In A B C 3 3
failure) " Out | X | Y | Z
2 (after In nufl | null | null 3 3
faiure) Qut X Y z
span 3, port 3 3 In X Y ¥4 2 2
Out A B [}
- 4 In null | oull | nul 2 2
memems Statelet with source = A,
destination = B, index = C Out A B (o]
ssssmmm Statelet with source = X,
destination = Y, index = Z

Figure 8.2. Identifying a severed precursor

To identify the family of a severed precursor as shown in Figure 8.2, the
assoc_span and assoc_port fields of each port must be searched until a pointer to the
severed precursor is found. Whether a restoration path or a precursor existed on the sev-
ered port, the assoc_span and assoc_port fields identify the port to which this port was
connected, and the family of the statelet received on the severed link. For example, in
Figure 8.2, the assoc_span and assoc_port fields of span 1, port 1 point to the precursor
on span 2, port 2, identifying span 1, port 1, as a branch of the severed precursor. When
the branch of a severed precursor is identified, the family of the precursor can be identi-
fied because a precursor and its branches all belong to the same statelet family.

140

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

Once the family of the statelet received on the severed port is identified, all out-
going links transmitting a statelet belonging to the same family are either cancelled, or
possibly re-rooted. Re-rooting a precursor is only performed when a new precursor for
the statelet family on the severed port is found, and requires updating the assoc_span
and assoc_port fields of all the severed precursor's branches to point to the new precur-
sor. If a replacement precursor cannot be found, or if a restoration path carrying live traf-
fic was severed, all of the links transmitting statelets belonging to the same family as the
statelet received on the severed port are cancelled. That port is then removed from the
list of ports available for use in restoration and from the list of ports receiving statelets.

OPRA was designed to contend with the failure of working paths as well as com-
pleted restoration paths so that:

1. OPRA is capable of restoring restoration paths
synthesized in a previous restoration event in the
same network, and

2. OPRA is free to establish restoration paths using
any surviving spare links on a partially cut span,
as explained below.

_Given that it is impossible in reality to sever all links in a span simultaneously,
partxal and complete span cuts are indistinguishable from OPRA's node-local point of
view at the start of a restoration event. Therefore, OPRA may establish restoration paths
over a span which are destined to fail when the remaining spare links on that span are
severed. Without apriori knowledge whether a partial or complete span failure has
occurred, and to exploit any surviving spares on a partially cut span, OPRA needs to be
able to contend with the failure of both restoration paths and working paths.

Alternatively OPRA can avoid using any span containing at least one link with an
active Line Alarm signal, sacrificing the ability to use any surviving spares on a partially
cut span, and thereby avoid dealing with the failure of completed restoration paths syn-
thesized in the same restoration event. Assuming that once one link on a span fails, all
links on that span will eventually fail, simplifies a DRA's design and allows span DRAs

141

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

like the SHN to begin synthesizing restoration paths for all working links on a span con-
taining at least one failed working link. This is referred to as preemptive activation in [33]
and is practical in span DRAs like the SHN, but not necessarily in path DRAs like OPRA,
because the failure of one working path at a source/destination node distant from a fail-
ure does not mean all working paths from that demand pair traverse the severed span
and are destined to fail.

The procedures executed upon transiting state 7 are summarized below:

1. Record the demand pair affected by the failure of a com-
pleted restoration path or a working path as identified by
the alarm.

2. Release the surviving portions of a cut working path if
employing stub release.

3. If an uncomplemented precursor failed, rather than a
completed restoration path or a working path, reroot the
branches of that precursor onto a new precursor, other-
wise cancel its branches.

Which transition is followed upon leaving the New,_AIS state depends on whether
the port which issued the interrupt received an alarm, or an AIS signal on a working link
destined for stub release along with a forward flooding statelet simultaneously. in the
event an alarm was received, the default transition is followed back to the idle state. In
the event a statelet was received on a port just added to the pool of spare capacity avail-
able for restoration, either state 9 or state 1 follow. State 9 follows if this node is the des-

tination of the statelet just received, otherwise this node functions like a tandem node and
state 1 follows.

142

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

8.3 Bidirectional Selective Forward Flooding

After the arrival of a path level alarm at a node, that node initiates forward flood-
ing statelets on its spare links. Each primary statelet issued by a source from a given
demand pair is stamped with a locally unique index value. The basic target broadcast
pattern at a source node aims to transmit on all spans this node terminates a number of
statelets equal to the number of working paths lost by this node. Through rebroadcast at
tandem nodes, each primary statelet will become the root of a tree of logical associations
between statelets, all of which have the same source, destination, and index value in
common. The basic target broadcast pattern of a tandem node aims to forward one resto-
ration statelet on one link on all spans terminated at the node except the span on which
that restoration statelet arrived. Physically, the expansion is away from the source in all
directions, on each statelet family. There is no preferential orientation towards the desti-
nation, because neither the source nor any other nodes know which direction is “towards”
the destination.

Statelets propagate at carrier velocities and appear within milliseconds as state-
let arrival events at the ports of neighbouring DCS machines. The ensuing statelet inter-
rupt generated by the port causes the operating system of those nodes to invoke OPRA.
Nodes awakened by a non-null statelet with no line or path alarms on the associated link
behave as tandem nodes performing the functions associated with states 1 - 6.

The main function of a tandem node at this stage is selective rebroadcasting of
statelet's based on their interference number. The network-level effect of selective
rebroadcast is to activate yet more nodes as tandems. In this way, all nodes within a cer-
tain range of the source are alerted and develop an interacting mesh of rebroadcast pat-
terns on each statelet family. The range of influence of the forward flooding phase is
controlled by the repeat field of a statelet. As more tandem nodes become involved, the
interference patterns of their rebroadcast efforts becomes increasingly complex and rich
with information about the network’s topology and capacity. The interference heuristic is
responsible for mediating the competition between broadcast patterns such that a near
optimal restoration pathset is found.

143

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

The basic functions associated with selective forward flooding are reused in five
of the 14 states shown in Figure 8.1: state 12 - Broadcast, state 1 - Tandem_Node, state
2 - New_Statelet, state 3 - Statelet_Ovwrt, and state 4 - Statelet_Vanish. The contents of
these five states are described next.

8.3.1 Forward Flood Management Logic (State 12, Broadcasf)

The broadcast state is responsible for computing the broadcast pattemn at a
node. Computing the broadcast pattern at a node entails transmitting new forward flood-
ing restoration statelets, but it does not involve cancelling statelets on other links by prun-
ing the branches of a precursor, and/or transmitting a confirmation statelet.

The transition from the idle state to the broadcast state occurs when OPRA is
issued an interrupt indicating that the broadcast pattern should be computed. The polling
mechanism used to service all ports at a DCS during a restoration event, described in
detail in chapter 10, is responsible for issuing this interrupt.

Upon entering broadcast state 12, a list of all precursors present at the node is
compiled. The best statelet from a family is found and designated that family’'s precursor.
The best precursor for a given statelet family has the lowest interference number of all
forward flooding statelets belonging to the same statelet family. If two or more statelets
satisfy this condition, the one with the lower repeat count is chosen to be the precursor. If
two or more statelets are still eligible to be the precursor, the one which was the precur-
sor previously is chosen, otherwise one of the remaining candidates is designated the
precursor for that family arbitrarily. Precursors are only found for statelet families which
have not established a restoration path traversing this node, as indicated by the activated
field of a port.

In path restoration it is possible that a node will simultaneously source statelets
as well as rebroadcast statelets from other relations as a tandem node. For the statelets
initiated at a node, the source node itself acts as the initiating precursor as if an internal
“failed” working link existed. To ensure a source has the opportunity to initiate its own
statelets on some or all of the spare links leaving it, a flag named SOURCE-FLOOD-

INDICATOR is entered into the list of precursors whenever a node has its own demands
to be restored.

144

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

The list of precursors, is sorted from lowest to highest interference number. The
SOURCE-FLOOD-INDICATOR is assigned an interference number equal to the [IN (Ini-
tial Interference Number). The precursor at the head of the list is given the opportunity to
establish its broadcast pattem first. Subsequent entries in the list then satisfy their target
broadcast pattern to the fullest extent possible, using the remaining spare surviving out
going links after any stub release has occurred.

Whenever the value of the lIN is zero, source flooding precedes the broadcast of
all other precursors because source flooding precedes extending the broadcast mesh of
an externally arising precursor in the event a precursor’s interference number is equal to
the IIN. If two or more precursors have the same interference number, the one with the
lower destination ID is preferred. If a tie still cannot be resolved, the statelet with the
lower source ID is chosen. While the repeat count is used to resolve a tie between state-
lets from the same family vying to be that family’s precursor in the event both have the
same interference number, the repeat count is not used to resolve a tie between precur-
sors with the same interference number when sorting the list of precursors. Using the
method described above to sort the precursor list ensures one precursor will precede
another in the precursor lists constructed at all nodes. Consistently satisfying one statelet
family at all nodes in the event two or more precursors at a node have the same interfer-
ence number facilitates finding a match and helps decrease the restoration time, as
explained below.

Consistently satisfying the broadcast pattern of one statelet family at all nodes
receiving precursors with equal interference numbers promotes the growth of more com-
plete forward flooding meshes at the network level. An expansive broadcast mesh
improves a family's chances of either reaching its destination or finding a match. An
example is shown in Figure 8.3 where different colors represent different statelet families,
and the interference number of a statelet received by a node is written beside it using the
color assigned to its family. A match is possible in Figure 8.3 between solid and dashed
statelets of the same color. When the broadcast pattern of the blue precursor is satisfied
before the red precursor at all nodes, a match results. When the broadcast patterns of
precursors with equal interference numbers are arbitrarily satisfied, no match may be
found, as shown in the illustrative example.

145

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

'intNo=2

L
intNo =0 IntNo = 0 :
[

(b) The blue stateletis systematicaily treated
before the red statelet at all nodes where they
have equal interference numbers, i.e. node 1

(a) Precursors with equal interference numbers
are treated in an arbitrary order at a node

'
t
t
]
1
]
IntNo=2 '] IntNo=2
I - 4
)y s IntNo =0 | - s intNo =0
intNo = 2 , IntNo=2
F 3 [}
IntNo = 1)IntNO =1 : IntNo = 1 IntNo= 1
[}
intNo = 1 \ ! intNo = 1
]
intNo = 1 link : intNo = 1
> 2 ' 2
]
IntNo = 1 V IntNo =2 (: IntNo = 1V IntNo =2
1 I 1
IntNo=0 IntNo = 0

t
t
i
t
1

Figure 8.3. Broadcasting precursors

Given a sorted precursor list in a node, the composite broadcast pattern over all
families present at a node may be computed. When a SOURCE-FLOOD-INDICATOR is
encountered, the node attempts to transmit from each relation it sources a number of
statelets equal to the demand lost by that relation on the spares of each span. For exam-
ple, if 5 and 2 units of demand are lost between nodes A - X and A - Y respectively, node
A attempts to broadcast 5 statelets per span with source = A and destination = X, and 2
statelets per span with source = A and destination = Y. Similarly, because bi-directional
flooding is being performed, node X attempts to broadcast S statelets per span with
source = X and destination = A, and node Y attempts to broadcast 2 statelets per span
with source = Y and destination = A.

The interference number of each statelet initiated at a source is determined by
calculating the interference number of the span on which the statelet is transmitted and
adding this value to the IIN. The interference number of a span is calculated by counting
the number of precursors that need to transmit a statelet on that span in order to satisfy

146

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

their target broadcast pattern, and subtracting from this sum the total number of spare
links still available for use in restoration on that span. Ports locked by reverse linking are
not available to carry forward flooding statelets, and are therefore not subtracted from the
sum of statelets waiting to be rebroadcast. Since reverse-linking takes precedence over
forward flooding, an incoming complement statelet at a tandem node is reverse linked,
supplanting any outgoing forward propagating statelet occupying that port matched with
the reverse linking statelet, before span interference numbers are calculated. Reverse
linking is explained in greater detail later in this chapter.

The opportunity to establish restoration paths one hop long can arise when jointly
optimizing the placement of working and spare capacity in a network. This would imply
that a restoration path on the shortest route existed, but that the working demand was
routed on a different one-hop route in parallel or via a longer route. Normal provisioning
processes would put the working path on the shortest route. However in many of the
combined capacity optimization designs presented in chapter 4 (i.e. design cases 5 and
6), the IP routed demand over a few working paths longer then the shortest route in order
minimize the sum of working and spare capacity. When the working path routing is tai-
lored to facilitate the target restoration mechanism, restoration paths one hop long are
often possible, and OPRA is designed to exploit these opportunities when they present
themselves.

The opportunity to restore a failed working path using a restoration path one hop
long, as shown in Figure 8.4, is identified at a source node by comparing the destination
of a forward flooding statelet this node proposes to transmit on a port to the NID present
in the RxReg of that port. In the event the NID and destination fields are the same, a res-
toration path one hop long can be established, and only the source node with the larger
ID, as determined by comparing this node's ID to that same NID field identified previ-
ously, initiates sending statelets on the connecting span. Establishing a restoration path
one hop long represents the most efficient use of spare capacity in a network and is used
to restore lost demand whenever possible.

147

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

-

Nt ~
All_
5
rv"'
-l
O

N

link 2
empty link statelet

Figure 8.4. Establishing a restoration path one hop long

Only one of the nodes terminating a one-hop restoration path transmits statelets
(node 2 in Figure 8.4) to avoid occupying more links thar required, and to avoid entering
an indeterminate state. For example, in Figure 8.4, if node 1 transmits a statelet on link 2,
and node 2 transmits a statelet on link 1, two potential restoration paths may be identified
simultaneously. The one that should be chosen to restore the single failed working path is
indeterminate. Therefore only node 2 transmits a statelet on the span connecting nodes 1
and 2.

For a statelet entered into the list of precursors, OPRA attempts to transmit one
statelet on one link in each outgoing span, provided that span doesn’t contain an incom-
ing forward flooding statelet from the same family as the precursor. OPRA doesn't
attempt to transmit a statelet on a span which contains an incoming forward flooding
statelet from the same family so that a precursor’s broadcast mesh expands in a direction
away from that precursor’s source. As shown in Figure 8.5, whether the statelet on span
2 or 3 is chosen to be the precursor for the red statelet family at node 3, no branch should
be established on spans 2 or 3, because it would grow the red broadcast mesh towards
node 1. When this basic target broadcast pattern cannot be satisfied at a node for all fam-

ilies, the multi-family flooding pattern at a node is determined by competition among
statelets based on their interference numbers.

148

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

node 4
Forward flooding statelet
span 2
span 1 '/— empty link
span 4 span 3
node 1 node 2 node 3

Figure 8.5. Growing a statelet's broadcast mesh away from the source.

In a span where all links already bear active outgoing statelets, competition
among statelets may require that some families lose their outgoing statelet in that span.
When a precursor with a lower interference number cannot access a span filled with
statelets from other families, the precursor takes over the link occupied by the statelet
whose interference number is the highest among those statelets present on the outgoing
links of that span. The broadcast pattern for each precursor is adjusted until every precur-
sor is either fully satisfied or is partially satisfied to the greatest extent possible, consist-
ent with its overall rank in the list of precursors.

Every time the broadcast pattern is revised, the basic flooding pattern per statelet
is applied, working up from those precursors with the lowest interference numbers to the
highest, applying no statelet in a span that is already full. An example is shown in Figure
8.6. The patterns are graphically complex but the underlying principle is that maximal,
mutually consistent flooding patterns are provided for muitiple concurrent flooding proc-
esses, one per primary statelet emitted by a source. Their multilateral coordination at
every node is on the basis of an incoming statelet’s interference number. Statelet arrivals
which are not of the lowest interference number for that family are ignored.

149

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

link1 fink2
completed ;
restoration statelet Precursor
path . Ranki IntNo
Span | Link | In/Out ng
span 4 1 1 in Completed
Out | Restoration Path
2 In empty nul
link 1 = Out 1 2
3 In 4 4
Out 2 3
with / 2 1 In 5 5
source s
U N Er
2L i 2 In 3 2
INDICATOR ; {
| link 1) j Out 2 2
link 2 fink 3 3 1 In empty nulf
Out 1 1
Span/liN Interference Number 2 In empty | null
Out 3 3
N ° 3 | n 2 1
1 4 precursors - 2 spares = 2 Out 4 5
2 3 precursors - 2 spares = 1 4 1 In Completed
Out | Restoration Path
3 4 precursors -3 spares = 1
4 Unavailable, already cross-connected

Figure 8.6. Computing the composite broadcast pattern at a node

Finally, before the broadcast pattern at a node is computed, the Broadcast state
checks whether a precursor is able to form a match. The details of recognizing a match
are covered in detail later in this chapter.

The procedures executed upon transiting state 12 are summarized below:

1. Compile a list of all precursors present at this node. The
precursor for a given statelet family has the lowest inter-
ference number of all forward flooding statelets belong-
ing to the same statelet family. If two or more statelets

150

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

have the same minimum interference number, the one
with the lower repeat count is the precursor.

2. Order the precursor list from lowest to highest interfer-
ence number, using a precursor’s source and destina-
tion ID to resolve ties.

3. Check for a match.

4. Compute the composite broadcast pattern at this node
ensuring that:

a. opportunities to establish a restoration path one
hop long are exploited,

b. no statelet is transmitted on a span containing a
forward flooding statelet from that same family, and

c. the broadcast pattern for each precursor is either
fully satisfied, or partially satisfied, to the greatest
extent possible, consistent with that precursor’s
overall rank in the list of precursors.

8.3.2 Event Parsing at a Tandem Node (State 1, Tandem_Node)

Whenever a statelet destined to cause a rebroadcast on the same family to
another node is received, the rules and functions pertaining to updating the broadcast
pattern of a statelet as explained in this section apply. Unlike the functions required to
compute the composite broadcast pattern at a node, updating the broadcast pattern at a
node by definition here does not involve transmitting new forward flooding statelets on
links. Updating the broadcast pattern of a statelet is limited to pruning the branches of a
precursor, moving the root of a precursor, reverse linking a complemented restoration
statelet, and/or transmitting a loop-back test signal. Which function needs to be per-
formed depends on the nature of the incoming statelet received. A tandem node may
receive forward flooding, reverse linking, complemented, confirmation, and null statelets.
Each of these statelets must be processed differently, and determining the nature of a
statelet to facilitate its processing is the responsibility of the tandem node state.

151

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

Any time a statelet is received for which this node is not the destination, the tran-
sition from idle to tandem node accurs. Upon entering the tandem node state, OPRA
determines whether a null statelet was received and whether a statelet existed previously
on the port which issued this interrupt. If the port of the received statelet is non-null, it is
put into the list of all non-null statelet’s received by the node, rec_set.

Before exiting state 1, OPRA determines whether a precursor previously resided
on the interrupting port by searching the assoc_span and assoc_port fields of each
PSReg for a pointer to the interrupting port. To ensure OPRA functions correctly without
acknowledging every interrupt received, rather than searching this node’s precursor list,
which may be outdated from the time it was created in the Broadcast state, all of the
PSRegs at a node are searched for a branch rooted in the interrupting port. If any other
port points to the interrupting port, there was a precursor on the port which issued the
interrupt, and a branch from the precursor exists on the port whose assoc_span and
assoc_portfields point to it.

The procedures executed upon transiting state 1 are summarized below:

1. Determine whether a statelet existed previously at
the interrupting port, and if a null statelet now
exists.

2. Enter any new incoming non-null statelet into
rec_set.

3. Determine if the incoming statelet overwrote a pre-
cursor from another family. If so, record the source,
destination, and index of that precursor.

Three of the five possible transition conditions leaving the tandem state belong
conceptually to the stage described as bidirectional selective forward flooding, acting in a
manner similar to that of a Sender node as defined in the SHN [25]. Processing these
three events requires knowing whether a statelet existed previously at the interrupting
port, and if a null statelet now exists. The first of these transitions occurs when a new
non-null statelet arrives at a tandem node, and there was no prior statelet in that port.

152

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

The second transition condition occurs when a non-null statelet overwrites another non-
null statelet at a tandem node. The third transition condition is satisfied when a null state-
let overwrites a non-null statelet, i.e. a statelet vanishes. The destination states of these
three transitions, states 2, 3, and 4 respectively, are discussed next.

8.3.3 Arrival of a New Restoration Statelet at a Tandem Node (State 2,
New_Statelef)
When a non-null statelet is received at a tandem node on a previously empty
port, state 2 named New_Statelet in Figure 8.1 is entered. Upon entering New,_Statelet,
OPRA determines whether the new statelet is better than any other statelet belonging to

the same index-source-destination family. Of all the forward flooding statelets received at
a node belonging to the same family, the statelet which:

1. doesn't frace a cyclical path starting and ending at
its own source node, as detected by comparing the
incoming statelet’s source field to this node’s ID,

2. hasn't exceeded the repeat limit,

3. doesn't occupy a port which this node is using to
establish a restoration path one hop long,

4. doesn't belong to the family of a statelet already
complemented, and

5. has the lowest interference number,

is considered best. If two or more statelets satisfy these conditions, the statelet with the
lowest repeat count is chosen.

Conditions 1, 2, and 5 do not require further expianation; however, conditions 3
and 4 need some clarification. The third condition is required to ensure restoration paths
one hop in length are used whenever possible. When establishing a restoration path one
hop in length, as shown in Figure 8.4, only the node with the larger ID initiates sending
statelets on the connecting span. However, the node with the smaller ID, node 1 in Figure
8.4, is allowed to relay a statelet from another relation over link 1 on the connecting span,

153

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

until the statelet initiated by the adjacent node, node 2, is received. Therefore node 2
may momentarily receive a spurious statelet from another relation on a port which it is
using to establish a restoration path one hop long.

The fourth condition is required to ignore a late-arriving forward flooding statelet
from a family which either has already completed a restoration path, or is in the process
of reverse linking or confirming a restoration path. Such families are said to be comple-
mented locally at a node. While some late-arriving statelet may have a lower interference
number than an existing complemented statelet from the same family, that late statelet is
not allowed to interrupt its own families reverse linking or confirmation process. Consider-
ing that any statelet may establish a match and initiate reverse linking so that the restora-
tion time as well as the amount of spare capacity used to restore a failure is minimized,
OPRA prevents late-arriving forward flooding statelets from supplanting early arriving
statelets which are already complemented locally at a node.

When a new statelet is the best precursor at a tandem node, its port becomes the
precursor of that family. If 2 precursor existed prior to the arrival of a new best precursor,
the old broadcast pattern is re-rooted onto the new precursor. Otherwise the new statelet
waits until the broadcast state computes the composite broadcast pattern for this node.

The function of re-rooting a precursor is performed by updating the assoc_span,
and assoc_port fields of all the branches of the old precursor to point to the new precur-
sor. As shown in Figure 8.7, moving a precursor’s root requires:

1. finding and cancelling any branches (statelets) from the
old precursor lying in the same span as the new precur-
sor leftover from the old broadcast pattern, and

2. finding all elements of the existing broadcast fan and
swinging them to the new root.

154

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

when the broadcast pattern at this node
is computed, a branch may be broad-
cast on the span of the old precursor.

% old broadcast pattern

«f= new broadcast pattem

Qranemnann

~

old precursor

-8

< .
new precursor —» cancel this branch

Figure 8.7. Re-rooting a precursor

in general, whenever a precursor is overwritten, before its branches are can-
celled, OPRA checks whether those branches may be rooted onto a new precursor from
the same family. This is done because a precursor may disappear at a node, due to the
collapse of its broadcast mesh elsewhere in the network, or shift from one port to another
at the same node during the normal course of forward flooding, in which case the broad-
cast mesh of that statelet family should be rerooted rather than cancelled. Consider Fig-
ure 8.8, given that the red statelet overwrote the blue precursor on link 4 at node A, and
the blue statelet overwrote the red precursor on fink 1 at node A, instead of cancelling the
forward flooding statelets transmitted on links 3 and 5, it is advantageous to reroot the
blue broadcast pattern onto link 1, and the red broadcast pattern onto link 4. When the
broadcast pattern is rerooted instead of cancelled, reverse linking is continued at node A

rather than stopped, which is desirable because it may lead to the completion of a resto-
ration path.

155

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

Blue precursor shifted from port 3 to port 1.

el Forward flooding statelet

node A node B

NP S Reverse Linking statelet

link 4 link 6

Red precursor shifted from port 1 to port 3.

Figure 8.8. Rerooting a broadcast mesh after a precursor has changed positions

The procedures executed upon transiting state 2 are summarized below:

1. Determine if the statelet received should become the
precursor of that family. If so, reroot the branches of that
family onto the interrupting port.

8.3.4 Overwriting a Restoration Statelet at a Tandem Node (State 3,
Statelet_Ovwrt)

When a non-null statelet overwrites another non-null statelet at a tandem node,
state 3, Statelet Ovwrt in Figure 8.1, is entered. To facilitate processing, the overwrite
event is put into one of four classes:

1. a statelet overwrites an existing precursor from its own family, or

2. a statelet overwrites a non-precursor statelet on its own family, or
3. a statelet overwrites an existing precursor from another family, or
4. a statelet overwrites a non-precursor statelet from another family.

156

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

The first action associated with case 1 determines if the statelet received is better
qualified to be that family’s precursor than any other statelet present belonging to the
same family. If the statelet received is not the best, a new precursor is sought amongst
the other incoming statelets from the same family to replace the one overwritten. The old
broadcast pattern is then re-rooted onto the new precursor. If the repeat count of the new
incoming statelet exceeds the repeat limit, and no new precursor is found to replace the
one overwritten, any branches of the old precursor are cancelled. in the event a statelet
overwrites an existing precursor from its own family on a connected port part of a reverse
linking process, and the newly received statelet is qualified as best, the entry in that port’s
TxReg register is sustained with updated fields only.

If a statelet overwrites a statelet from its own family which was not the precursor,
the actions required to process the second case of statelet overwrite events are followed.
If the newly received statelet is found to be the best of all statelets received for that fam-
ily, the current precursor of that family is found. Because the new statelet overwrote a
statelet which was not the precursor of that family, the precursor for that family must
reside on another port. After finding that port, the family is re-rooted onto the new statelet
as precursor.

In the third case, if a statelet overwrites an existing precursor from another family
OPRA attempts to find a new precursor to replace the one overwritten. If a new precursor
is found, the statelet family for that index-source-destination label is rerooted, otherwise
the branches of the prior broadcast pattern from that family are cancelled. Then, if the
newly received statelet is best for ifs family, that family is rerooted onto the interrupting
port.

In case 4, the actions required to process a statelet which overwrites a statelet
from another family, which was not a precursor, are followed. If the statelet received is

best, the statelet family of the received statelet is rerooted onto the interrupting port, oth-
erwise nothing is done.

157

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

8.3.5 Disappearance of a Restoration Statelet at a Tandem Node (State 4,
Statelet_Vanish)

When a non-null statelet vanishes at a tandem node, state 4 named
Statelet_Vanish in Figure 8.1 is entered. Upon entering Statelet_Vanish, the port issuing
the interrupt is removed from the list of all non-null statelets received by a node, rec_set.
if the statelet which vanished was a precursor, OPRA looks within the other statelets on
that family to see if another has become the valid precursor. If a new precursor is found,
the old broadcast pattern is re-rooted onto the new precursor, otherwise the branches of
the old broadcast pattern are cancelled.

8.4 Recognizing a Match

When two forward flooding statelets meet at a tandem node, and the source of
one statelet corresponds with the destination of the other, and vice-versa, an event
known as a match occurs. While matches occur relatively frequently during the dynamic
phase of restoration, initiating reverse linking as a result is controlled to minimize starting
those reverse linking processes which are destined to fail, and maximizing those which
lead to the creation of a near optimal restoration pathset.

Before the composite broadcast pattern for a node is computed in the Broadcast
state, the possibility of forming a match between two precursors is evaluated. The proce-
dure responsible for identifying a match is placed in the Broadcast state so it can access
the same list used to compute the composite broadcast pattern for the node at the time it
is compiled and therefore up-to-date. Every statelet in the precursor list is checked to see
whether it is a match to the new statelet. When two forward propagating statelets in the
precursor list establish a match locally at a node the following conditions must be satis-
fied before initiating reverse linking:

158

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

1. The NID number of the node where the match occurred
must be less than the NID number of an adjacent node
which is transmitting one of the matched precursors and
receiving a forward flooding statelet from the same rela-
tion. (The NID is bomne in the statelet so this arbitration
is simple to effect.)

2. The node where the match occurred must not be sourc-
ing a statelet whose destination is the adjacent node on
either of the matched ports.

3. The matched statelets must not reside on the same span.

The first condition is required when a match occurs between a forward flooding
statelet just received and a precursor that was previously broadcast. Completing a match
involves cancelling the branches of a precursor and transmitting a reverse linking statelet
on the port of the forward flooding statelet just received. As shown in Figure 8.9, if both
nodes 1 and 2 simultaneously complete a match, node 1 transmits a reverse linking
statelet on link 2 and cancels the forward flooding statelet on link 1, while node 2 trans-
mits a reverse linking statelet on link 1 and cancels the branch on link 2. Subsequently
the forward flooding statelet on link 2 at node 1 disappears and the forward flooding
statelet at node 2 on link 1 disappears. When the forward flooding statelet on a matched
port disappears, the complemented as well as the forward flooding statelets on the
matched ports are cancelled as shown in Figure 8.9 (c), terminating the construction of a
possible restoration path. To avoid this, only the node with the smaller ID is allowed to
acknowledge a match, while the node with the larger ID simply waits for the arrival of the
reverse linking statelet on the matched port.

159

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

ime =t . ime =t + At, ime =t+ At, + At,

match

(a) recognizing a match ' (b) initiating reverse linking ‘' (c) failed reverse linking

— Forward flooding statelets cmady Reverse Linking statelets

Figure 8.9. Problems when two tandem nodes
complete a match simultaneously

if node 1 were a source rather than a tandem node, node 2 could safely complete
a match because node 1 would not cancel any forward flooding statelet that it sources,
even if it received a forward flooding statelet on link 2 from node 2.

The second condition is required in the event a restoration path one hop long can
be established. As shown in Figure 8.10, the match at node 2 is not recognized because
it would require transmitting complemented red statelets on spans 1-2 and 2-3, thereby
overwriting the blue statelet and eliminating the opportunity to create a restoration path
one hop long. Restoration paths one hop long represent the most efficient use of spare
capacity and are therefore given priority over longer restoration paths by this mechanism.
This also contributes to the principle of protecting each nodes adjacent spans for its own
demands to “escape” through the wider network, i.e. avoiding end-node region traversal
by other families.

160

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

Forward flooding statelet initiated
by node 2 propagating to node 1 Source for blue statelets
node 2
red statelets
sourced else-
where in the
network
node 3
match ignored
Desunauon for
blue statelet

Figure 8.10. Ignoring a match when a node is attempting to
establish a restoration path one hop long

The third and final condition avoids completing a match between two statelets
received on the same span. Such a match could create an inefficient restoration path
which forms a “hair-pin” turn as shown in Figure 8.11. In the event a forward propagating
statelet arrives at node 2 on link 4 shortly after the precursor on link 6 vanishes, a match
between links 3 and 4 is possible as shown in Figure 8.11 (b). However, recognizing the
match at node 2 would form a hair-pin turn which wastes spare capacity. Instead, OPRA
ignores the match at node 2 and waits for the complemented statelet on link 1 and the
forward flooding statelet on link 3 to be cancelled when the complemented statelet on link
3 disappears, before re-attempting a match between the forward flooding statelets
received on links 1 and 2.

161

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

complementad statelets ,
:
I
:
link 1 k2 1 fink 1
[}
I
connected :
ports 1
i
1
H
[}
'
link 5 P k6 1 s
'
i
I
1 node Avoid recognizing
! 2 matches which
match : form “hair-pins”
(a) precursor at hode 2 on port 2 vanishes (b) match possible between
ports 3 and 4 at node 2
————p Forward flooding statelet ___._, Reverse linking statelet

Figure 8.11. Avoiding “hair-pins” when forming restoration paths

When two matched precursors satisfy the four conditions explained above, they
are removed from the precursor list. All of their branches, except those on the matched
ports, are cancelled, and a reverse linking statelet is transmitted at each matched port,
i.e. their broadcast mesh collapses onto the matched ports.

Transmitting reverse linking statelets requires that the complemented field of the
reverse linking statelet be set to the index of the forward flooding statelet received on the
same port. Because the direction of a reverse linking statelet and that of its precursor are
the same, the source, destination, and index of a reverse linking statelet and its precursor
are the same.

The repeat count and interference number of a reverse linking stateiet are
needed to record the length and interference number of an entire restoration path from
source to destination. Therefore, the repeat field of a reverse linking statelet continues to
accumulate as it is repeated by a tandem node, and the IntNo field is set to the sum of

162

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

the interference numbers of the matched precursors. For example, if two matched pre-
cursors, x and y, have interference numbers of 3 and 7 respectively, the IntNo field of
both reverse linking statelet's transmitted is set to 10. Unlike the repeat counter, the IntNo
of a reverse linking statelet is never altered once set during a match by subsequent tan-
dem nodes.

After a match is completed, no other statelet may be transmitted on either of
those ports. The matched ports are locked by setting the activated field of the PSReg to
true. While statelets may not be transmitted on connected, or activated ports, new state-
lets may be received, including null statelets. Often a forward flooding statelet will disap-
pear or be overwritten on a connected port because it was supplanted or eliminated
elsewhere in the network. When a new statelet is received, the activated field is usually
set to false. The resetting of a port's activated field to false is explained in more detail in
the following section.

Though resetting a port’s activated field to false terminates reverse linking and
stops the construction of a restoration path, generally only those forward flooding state-
lets associated with suboptimal paths are overwritten. OPRA will abandon suboptimal
paths in favour of new and better restoration paths until those forward flooding statelets
with the lowest interference number, which represent the best paths are sustained, allow-
ing reverse linking to complete.

8.5 Reverse Linking

Reverse linking begins after a match is recognized and collapses the mesh of a
matched forward flooding statelet family in the network onto a subset of links that trace a
path between the matched statelet’s source and destination. The completion of reverse
linking identifies a path through the cooperating tandem nodes. The successful comple-
tion of the confirmation process for this path establishes one restoration path available to
restore one unit of lost demand.

While reverse linking is usually initiated by a match at a tandem node, the desti-
nation of a forward flooding statelet may also initiate reverse linking. It is possible that a
forward flooding statelet will not collide with another statelet from the same relation trav-
elling in the opposite direction before that statelet reaches its destination. Whether a for-

163

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

ward flooding statelet finds its destination or a match, a path is identified, and
construction of a possible restoration path is continued by initiating reverse linking.

When a reverse linking statelet arrives at a tandem node, OPRA takes the follow-
ing steps:

1) all rebroadcast statelets emitted by the tandem node
having the same source-destination-index family as the
reverse linking statelet are deleted,

2) a logical connection between the port where the reverse-
linking statelet and the port of the precursor for that fam-
ily is presently found is formed by setting the activated
field of the PSReq to true,

3) a new complemented statelet is originated in the trans-
mit direction at the port containing the precursor, and

4) general reorganization of the forward flooding statelets
at a node occurs to effect an optimized reallocation of
new ports available for restoration amongst the set of
statelet families still outstanding at this node. The com-
posite broadcast pattern is revised to take all effects of
statelet removals into account in the revised pattemn.

After transiting one or more tandem nodes, a reverse linking statelet arrives back
at the source of the forward flooding statelet with which it is paired. A complete bidirec-
tional path is then known to have been traced between the source and destination,
although no one node knows the overall routing. However, whether the path will be sus-
tained and utilized to restore lost demand isn't known until the continuity test associated
with the confirmation phase of the restoration process is performed. The following sec-
tions detail the functions associated with reverse linking. These functions are imple-
mented using state 5, Complement_Statelet, shown in Figure 8.1.

164

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

8.5.1 Receiving a Reverse Linking statelet (State 5, Complement_Statelet)

When a complemented statelet is received at a tandem node the transition condi-
tion leading from state 1 to state 5 in Figure 8.1 is satisfied. The first action performed
upon entering the Complement_Statelet state determines if the complemented statelet
received over-wrote a precursor from another family. if so, a new precursor is sought to
replace it.

Then OPRA determines whether reverse linking should be stopped or allowed to
continue. Reverse linking is only allowed to continue if the forward propagating statelet
with which this statelet is matched has not disappeared or been supplanted locally. Ref-
erencing Figure 8.12, to continue reverse linking at a tandem node the following condi-
tions must be satisfied:

1) the source field of the forward flooding statelet transmit-
ted on port 1 and received on port 3 must be equal to the
destination field of reverse linking statelet on port 1,

2) the destination field of the forward flooding statelet trans-
mitted on port 1 and received on port 3 must be equal to
the source field of reverse linking statelet on port 1, and

3) the index of forward flooding statelet transmitted on port
1 and received on port 3 must equal the reverse linking
indicator of the complemented statelet on port 1.

root
precursor l forward flooding statelet
\ port 1 /
.

port3
port2 \

reverse linking or

'\ complemented statelet

Figure 8.12. Receiving a reverse linking statelet

165

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

A by-product of these conditions is that the statelets on the receive and transmit
links of a given port are never both reverse linking or forward flooding. If these conditions
are satisfied, reverse linking continues, and the complemented statelet is further relayed
back to the source of the forward flooding statelet, supplanting the blue statelet on port 3
in Figure 8.12, otherwise reverse linking is stopped.

To explain why reverse linking may stop, consider Figure 8.13, in which the blue
forward flooding statelet is received at node 2 on link § before the reverse linking statelet
is received on link 3. Since the interference number of the blue statelet received on link 5
is less than the interference number of the red precursor on link 2, and the activated field
of link 3 is not set to true as shown in the table, the blue statelet on link 5 is allowed to
supplant the red statelet on link 3. Consequently, when the complemented statelet is
received on link 3 at node 2, reverse linking is stopped. Had the reverse linking statelet
arrived before the blue statelet, node 2 would have relayed the reverse linking statelet
along the path traced by the precursor on link 2 and logically connected links 2 and 3,
setting the activated field of both ports to true, thereby preventing the biue statelet from
transmitting any forward flooding statelets at node 2. When the activated field of a port is
set to true, no statelet may supplant the statelet being transmitted on that port.

When the blue forward flooding statelet is received at node 1 on link 3, the red
forward flooding statelet on link 4 is cancelled along with the red reverse linking statelet
on link 3. Subsequently the broadcast pattems of the blue precursor on link 3 at node 2
and the green precursor on link 1 are satisfied to the greatest extent possible, consistent
with the overall rank of the statelets.

- By suspending the reverse linking process of those statelets with higher interfer-
ence numbers, OPRA resolves itself into those restoration paths with the lowest interfer-
ence number. Unless the reverse linking process of a forward flooding statelet with a
large interference number is very quick, it may not succeed, as depicted in Figure 8.13.
Given that all the branches of a broadcast mesh seek a match simultaneously, many
reverse linking processes may be initiated at the same time for a given statelet family,
each racing to collapse the broadcast mesh on itself. Only the reverse linking process
which succeeds in cutting off all other branches in the broadcast mesh survives this race,

166

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

and all other reverse linking processes from that family die. Note that this is a mechanism

which helps self-allocate the available spare links amongst the relations to be restored.

di: reverse linking indicator
bold: forward flooding statelet
italic plain: reverse linking statelet

ri: reverse linking indicator
bold: forward flooding statelet
italic plain: reverse linking statelet

—» Forward flooding statslet -~~--4 PReverse linking statslet
IntNo=2 * IntNo = 2
link 2 X fink 1 fink 2
:
: link 3
node2 ; node1 S node 2
t 74
]
: link 4 link S : t]| link4 link 5
1
1 ' Il
2 4 IntNo =1 X IntNo =1 Iy
]
node 3 t node 3
:
-] H
match ! link6 ‘ § fink6
]
(a) time =t : (b) time =t + At,
]
'
Port Register Fields ! Port Register Fields
]
node] link [Tx/Rdsourceldest|index rii* | activated| ! nodef link |T: reeldestlindex i* | activated
1 1 Tx | nuil |null}nulijnuli| faise : 1 11 Tx | null {nulljrulljnull| false
Rx E F i |null ' Rx E F i {null
4] Tx|] A | B | x |null] tue |, 41 Tx] A | B | x |null] tue
Rx] B |A] vyl x X Rxc] B8 |A]ly]| x
3 Tx B Al yl x true : 31 Tx B Aly]l x true
Rx A B | x {nuil 1 Rx A B | x {nui
2 121 Tx]| nut |[nulljnulljnull| false : 21 21| Tx (o] D | u |nuli| false
Re] A B | x {null X Rx] A Bl x {nul
5 | Tx A B | x |null| false : 51 Tx A B] x |null| false
Rx | null | null| null | null ! Rx C D | u |null
3| Tx A B | x |null| false : 31 Tx c D | u null| false
Rx | null |null | null | nuli X Rx B |Alyl] x
3| 4] Tx B Al vyl x true : 3] 4] Tx B Al yl x true
Rx A B | x |nul 1 Rx A B | x {null
6 | Tx B Al yi x true : 6 | Tx B Alyl x true
Rx A B | x |[nuil : Rx A B | x |null
]

Figure 8.13. Reverse linking

167

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

If the forward flooding statelet paired with this complemented statelet has disap-
peared or been supplanted, reverse linking is stopped, and nothing else is done. Other-
wise the broadcast pattem of the precursor for the forward flooding statelet paired with
the complemented statelet (e.g. the statelet received on port 3 in Figure 8.12) is pruned
leaving only the branch on the port receiving the reverse linking statelet (e.g. the statelet
transmitted on port 1 in Figure 8.12). Pruning the branches of the precursor collapses the
broadcast pattern of the forward flooding statelet onto a single path and allows those
statelet families still vying for complete rebroadcast at this node to extend their broadcast
pattern. Reverse linking then transmits the complemented statelet on the port receiving
the precursor (e.g. port 3 in Figure 8.12), supplanting a statelet from another family if nec-
essary. Relaying a complemented statelet locks those ports involved in reverse linking
(ports 1 and 3 in Figure 8.12) by setting the activated field of the PSReg to true. In the
event a complemented statelet from another family is received on a connected port, the
connection is broken by nulling the outgoing links of the connected ports and setting their
activated field to false.

The procedures executed upon transiting state 5 are summarized below:

1. Determine if the incoming statelet overwrote a pre-
cursor from another family. If so, reroot the
branches of that old precursor onto a new precur-
sor; otherwise cancel its branches.

2. Determine whether reverse linking should continue.
if so, collapse the broadcast mesh of the received
complemented statelet onto the matched ports and
continue reverse linking; otherwise, do nothing.

168

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

8.6 Restoration Path Confirmation

After successfully transiting one or more tandem nodes, a reverse linking statelet
arrives at its destination, which is the source of the forward flooding statelet with which it
is matched. In addition to complemented statelets, a destination node may also receive
forward flooding statelets or confirmation statelets. A destination must therefore be able
to process three different types of statelets: forward flooding, reverse linking, and confir-
mation statelets. State 9, Destination_Node in Figure 8.1 identifies the type of statelet
received and performs functions common to the processing of all three. State 8,
Receive_Statelet, performs functions specific to the processing of forward flooding and
complemented statelets at a destination node. State 6, Confirmation, performs functions
specific to the processing of confirmation statelets at a tandem node. State 10,
Restore_Signal, performs functions specific to the processing of confirmation statelets at
a destination node. The details of states 6, 8, 9, and 10 relating to the confirmation of a
restoration path are discussed next.

8.6.1. The Arrival of a Statelet at a Destination Node (State 9, Destination_Node)

Whenever a statelet is received on an active port at a destination node, the tran-
sition condition leading from state 14 to state 9 in Figure 8.1 is satisfied. Upon entering
this Destination_Node state the statelet is inserted into the list used to track all non-null
statelets received at this node, rec_set. Next, OPRA determines whether the statelet
received over-wrote a precursor from another family by searching the assoc_span and
assoc_portfields of each PSReg for a pointer to the interrupting port. If a branch from an
old precursor is found, a replacement precursor for it is sought. Provided a new precursor

is found, the old broadcast pattern is re-rooted onto the new precursor, otherwise the
branches of the old precursor are cancelled.

169

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

8.6.2 Processing a Forward Flooding or a Complemented Statelet at a Destination
Node (State 8, Receive_Statelet)

Whenever a forward fiooding or a complemented statelet is received at a destina-
tion node, state 8, Receive_Statelet, is entered. If the interrupting port contains a forward
flooding statelet from an adjacent node the opportunity to establish a restoration path one
hop long exists. In this event, only the source with the larger ID initiates sending statelets.
The node with the smaller ID, i.e. this node, transmits a confirmation statelet to the adja-
cent node on the interrupting port and locks the port by setting the activated field of the
PSReg to true. Establishing a restoration path one hop long represents the most efficient
use of spare capacity, and the Receive_Statelet state checks if the interrupt was caused
by a forward flooding statelet from an adjacent node first.

Whenever a destination receives a forward flooding or a complemented statelet
from some node other than one adjacent to it, OPRA knows a path longer than one I{op
was traced. However, whether this path will be sustained is not known because only
when all the ports along the path are locked (i.e. activated = true for each port) is it
impossible to supplant those forward and backward propagating statelets that act as a bi-
directional holding thread for that path. Because none of the ports along the path traced
by a forward flooding statelet are locked until reverse linking is performed, the forward
flooding statelet received by a source or destination may disappear. For example, when a
forward flooding statelet arrives at a destination node and that statelet is supplanted at a
tandem node elsewhere in the network, the forward flooding statelet will vanish shortly
after being received. Furthermore, a complemented statelet received at an end-node will
vanish or be overwritten when the complemented statelet propagating in the opposite
direction fails to reach its destination. To sustain a path, both reverse linking statelets
resulting from a match at a tandem node must reach their destinations.

To ensure that all the ports along the path traced by a reverse linking statelet are
locked, the node with the smaller [D initiates a loop-back test by transmitting a statelet to
the far-end node with the confirmation field set to a unique value. If all the tandem nodes
along a path are connected, the far-end node receives the confirmation statelet and
sends it back to the originating node. When the source and destination of a restoration

170

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

path receive a confirmation statelet, a complete restoration path which will not disinte-
grate is identified.

The Receive_Statelet state is responsible for initiating the loop-back test to con-
firm the lock-in of a restoration path. When a complemented or forward flooding statelet is
received at a destination node on a port which is transmitting a statelet from the same
relation, and the receiving node’s ID is less than the ID of the node terminating the far-
end of the path, a confirmation statelet is transmitted on the interrupting port. Otherwise,
the activated field of the interrupting port is set to true and the node waits for a confirma-
tion statelet from the node with the smaller ID. If all the ports along the statelet’s path are
connected, the confirmation statelet will appear shortly. Otherwise the forward flooding or
complemented statelet in that port will disappear.

Both complemented and forward flooding statelets received at a destination node
on a port that is transmitting a statelet from the same relation are treated identically
because the port which initiated the statelet will be locked. As shown in Figure 8.14, even
though the statelet received at node 2 is not complemented, ports 1 and 2 at node 1 are
connected because a match condition exists. The statelet received at node 2 was not
complemented because the match at node 1 was recognized after transmitting the for-
ward flooding statelet on port 2.

=l forward flooding statelet == === §» reverse linking statelet

node 1 node 2
< source/
f dest.
port3

\/ match

activated = true confirmation statelet

Figure 8.14. Initiating a loop-back test

However, when a forward flooding statelet is received at a destination node on a
port that is not transmitting a statelet from the same relation, the port which initiated the

171

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

statelet will not be locked and it is not known whether there is still any demand to be
restored. If any lost demand remains to be restored from the relation identified by the for-
ward flooding statelet just received, this node sources a statelet from that relation on the
interrupting port.

Originally OPRA was designed such that forward flooding statelets received at a
destination node on a port that was not transmitting a statelet from the same relation
were ignored. However, it was found that anchoring a statelets broadcast pattern at the
source and destination did not yield the best pathsets. As shown in Figure 8.15, unless a
destination node is allowed to transmit statelets in response to the receipt of a forward
flooding statelet, the network may reach a state in which no matches are found and no
restoration paths are formed. Therefore, destinations were designed to tfransmit a com-
plemented statelet from the same relation as the received statelet on an empty port, or a
port occupied by a statelet from another relation, even if the node was already transmit-
ting a number of statelets equal to the demand lost by that relation on that span.

relation d elr:satn d colour
3-6 1 green
1-4 1 blue
1-3 1 red

Note: The interference number of a
statelet is set to zero at the source,
and when two or more statslets arriv-

Each statelet received ing at a node have the same interfer-
atnode 5 has the ence number, the blue statslet's
same IntNo

broadcast pattern is satisfied first, the
green statelet's broadcast pattem is
satisfied second, and the red statelet's
broadcast pattem is satisfied last.

Figure 8.15. Problems associated with anchoring a statelet's
broadcast mesh at the source

172

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

When the ID of the destination node receiving the forward flooding statelet is
greater than the ID of the statelet's source, a complemented statelet is transmitted on the
interrupting port, otherwise a confirmation statelet is transmitted. A confirmation statelet
may be transmitted immediately in some cases because not only will a confirmation
statelet ensure that all the ports in a path are connected, it will also collapse a forward
flooding statelet's broadcast pattern and set a port's activated field to true whenever pos-
sible.

The procedures executed upon fransiting state 8 are summarized below:

1. Establish a restoration path one hop long whenever pos-
sible.

2. If this node is transmitting a forward flooding statelet on
the interrupting port from the same relation as the state-
let received, and this node’'s ID is smaller than that of the
source of the statelet received, initiate a loop-back test.
Otherwise only lock the interrupting port by setting its
activated field to true.

3. If this node is not transmitting a forward flooding statelet
on the interrupting port from the same relation as the
statelet received, and unrestored demand from the rela-
tion identified by the received statelet exists, initiate a
loop-back test (transmit a complemented statelet) on the
interrupting port if this node’s ID is smaller (larger) than
that of the source of the statelet received.

173

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

8.6.3 Processing a Confirmation Statelet at a Tandem Node (State 6,
Confirmation)

When a confirmation statelet is received at a tandem node the transition condi-
tion leading from the Tandem state to the Confirmation state in Figure 8.1 is satisfied. If
the interrupting port is not connected (i.e. activated = false), OPRA determines whether
or not the statelet transmitted on that port, and the precursor to the statelet transmitted on
that port, are in a complement relationship to the confirmation statelet just received. Sim-
ilar to the processing of a complemented statelet at a tandem node, the confirmation
statelet received is relayed on the port containing the precursor to the statelet transmitted
on the interrupting port, thereby continuing the loop-back test if

1) the source of the forward ﬂobding, or complemented
statelet, transmitted cn the interrupting port and that of
its precursor are the destination of the confirmation
statelet,

2) the destination of the forward flooding, or complemented
statelet, on the interrupting port and that of its precursor
are the source of the confirmation statelet, and

3) the index of forward flooding, or complemented statelet,
transmitted on the interrupting port and that of its precur-
sor are equal to the reverse linking indicator of the con-
firmation statelet,

Relaying a confirmation statelet at a tandem node on a port which wasn't previ-
ously locked by reverse linking requires:

1) collapsing the broadcast pattern of the precursor for the
forward flooding statelet residing on the port receiving
the confirmation statelet, and

2) locking those ports terminating the confirmation statelets
by setting their activated fields to true.

174

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

Instead of simply checking that the port receiving a confirmation statelet is con-
nected, i.e. activated = true, before continuing a loop-back test, attempting to collapse the
broadcast mesh of a confirmation statelet as described above allows a destination node
to skip the last logical step of local reverse linking and transmit a confirmation statelet
immediately upon receiving a forward flooding statelet.

Whether a loop-back test is continued or not, the Confirmation state always
determines if the confirmation statelet received over-wrote a precursor from another fam-
ily. If so, a new precursor is sought to replace it. If a new precursor is found, the old
broadcast pattemn is re-rooted onto the new precursor, otherwise the branches of the old
precursor are cancelled.

8.6.4. Traffic Substitution (State 10, Restore_Signal)

When a node to be restored, i.e. a source/destination node, receives a confirma-
tion statelet, the transition condition leading from state 9 to state 10 in Figure 8.1 is satis-
fied. If this node is the destination of the confirmation statelet, a loop-back is performed
and the confirmation statelet retured to its source. The return path of the confirmation
statelet traverses the same set of ports traversed while propagating from source to desti-
nation.

If this node is the source of the confirmation statelet, and the confirmation field of
both the transmitted and received confirmation statelets on the interrupting port are
equal, a successful loop-back test is complete and a single unit of demand may be
restored over the path traced by the confirmation statelet. The forward and backward
propagating statelets that remain for a given family after successfully completing a loop-
back test act as a bidirectional holding thread for that restoration path, sustaining it as
long as the source and destination do not cancel them.

After successfully completing a restoration path, the source of the confirmation
statelet bridges one of the failed transport signals onto the restoration path. When a unit
of lost capacity is restored, a source/destination node increases the 1IN of all statelets it
sources in ongoing broadcasts by IIN_STEP. Increasing the IIN of those statelets
sourced by this node increases the likelihood that other demand pairs which have not

175

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

restored as much lost capacity as this node will complete one of their restoration paths. In
a network which is not 100% restorable, or in the case of node recovery, this helps to
achieve an overall pattern of individual restoration levels on each relation that is more
proportional to the network’s pre-failure connectivity, as shown in the results presented at
the end of this thesis. Given that the networks used to test OPRA were 100% restorable
against all single span cuts, [IN_STEP was set to zero when testing OPRA's ability to
restore all single span cuts.

After restoring a unit of lost capacity, the count of working demands to be
restored by this relation is decreased. When all of the demand between this node and a
far-end node is restored, all of the outstanding initial broadcast statelets for that relation
are cancelled.

8.7 Terminating a Restoration Event

OPRA synthesizes restoration paths until 100% restoration is achieved, at which
time it inherently stops itself, or until the time-out interrupt is issued, signalling the termi-
nation of a restoration event. In the event a network spared for less than 100% restorabil-
ity, OPRA will reach a static best effort restoration equilibrium, and the time-out interrupt
is needed to “tidy-up” a network by cancelling any forward flooding statelets which have
not been confirmed. Because OPRA is designed to restore a failure within two seconds, a
conservative time-out limit of 3 seconds was used in all tests.

8.7.1 Cancelling Outstanding Statelets (State 13, TimeOut)

Each node starts its own timer upon entering a restoration event. Given that not
all nodes are activated simultaneously, nodes are also not deactivated simultaneously.
When a node times-out, the transition condition leading from the idle state to the TimeOut
state is satisfied. Upon entering TimeOut state all of the statelets this node is sourcing
which have not successfully completed a loop-back test are cancelled.

176

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

8.8 Network Level View

The seven conceptual processes just described actually occur concurrently at
different stages and times at all nodes involved in a restoration event. Forward flooding
proceeds simultaneously for several statelet families while other statelet families may be
reverse linking. Each family of statelets, comprising the network-wide set of selective
rebroadcasts resulting from each primary statelet issued by a source, competes against
others to expand in the forward flooding process. Successful statelet families collapse in
the process of reverse linking.

During forward flooding the precursor of each statelet family that has the lowest
interference number over all statelets present at a node asserts its target broadcast pat-
tern fully. In a span where all links already bear active outgoing statelets, the link occu-
pied by the statelet whose interference number is the highest is supplanted. Each node
acting as a tandem continues to adjust the broadcast pattem for each precursor in
response to incoming statelet changes occurring at its ports so that every precursor at
the node is either fully satisfied, or is partially satisfied to the greatest extent possible,
consistent with the precursor’s overall rank in terms of the interference numbers of
incoming statelets and the spans in which it and other precursors lie. When the precursor
location for a statelet shifts, the broadcast pattern for that statelet family is rerooted onto
the new precursor and the composite broadcast pattern adjusted. When a new statelet
appears at a node, it is fitted into the composite broadcast pattern. When a statelet family
collapses due to a match or reverse linking, the composite broadcast pattern is reviewed,
and extended for one or more statelet families which did not previously receive a full
broadcast pattern at the node.

Reverse linking has the effect of dissolving a statelet family’s mesh except for the
subset of links traversing those nodes on the path of the reverse linking process. If no
precursor from that family exists when the complemented statelet reaches a node,
reverse linking is stopped. As long as reverse linking continues, a statelet family’s mesh
continues to collapse by suspending all transmit statelets from the given family except for
the statelets on the newly created path itself. Suspension of these statelets causes them
to disappear from the inputs of adjacent nodes, thereby collapsing the broadcast at those

177

Chapter 8, Description of the Optimized Distributed Path Restoration Algorithm (OPRA)

nodes as well, uitimately collapsing the entire mesh of any statelet family which success-
fully completes reverse linking onto a single path.

At the network level the effect is self-organizing contention amongst all statelet
families to expand their mesh with the goal of completing a match and collapsing that
mesh onto a path described by the trajectory of the reverse linking process. Freed links
are incorporated into remaining meshes. If these meshes succeed in completing a match,
they too collapse onto a path and make links available for other families and so on. All
this occurs simultaneously, in parallel across the network and is limited only by node
processing times, and link transmission and propagation delays.

This process is potentially very rapid because it proceeds asynchronously and
exploits all parallel manners of completing a match at once. Significant parallelism is
being exploited in both the spatial depth and breadth in the plane of the network; depth
referring to the number of spares on each span, and breadth meaning the geographical
diversity of the network topology.

Thus restoration proceeds self-paced until all statelet families have succeeded
and collapsed onto a path, or halts when no remaining statelet families can succeed in
expanding their mesh. In the latter case, a node suspends any remaining meshes by can-
celling those unconfirmed statelets which it originated. Furthermore, at any time that
100% restoration is achieved during the dynamic restoration process, a source suspends
any unneeded surplus statelets, collapsing unneeded meshes without waiting for a time-
out. In either case, in the final state, only bidirectional complementary statelet pairs per-
sist. Each pair runs the length of one continuous non-branching non-looping restoration
path that condensed out of the mesh of one statelet family. The result is a mechanism,
which results will show, produces link-disjoint loop-free pathsets that are very close to the
multicommodity max-flow ideal obtainable otherwise only by centralized IP computation.

Moreover, this is achieved by autonomous, database-free, self-organizing interaction
between nodes.

178

Chapter 9, OPRA Implementation Details

Chapter 9. OPRA Implementation Details

Chapter 9 presents the procedures required to effectively test OPRA using dis-
crete event simulations. The nodal logic presented in this chapter supplement OPRA's
core procedures presented in the previous chapter. The procedures presented in this
chapter are needed to exploit the implementation technique presented in the following
chapter.

9.1 Preventing Looping Event Sequences

OPRA usually allows a forward flooding statelet to be overwritten by a statelet
from another family. Whenever a new forward flooding statelet with a lower interference
number arrives at a node where all outgoing links contain non-null forward flooding state-
lets from other families, the new statelet is usually allowed to supplant another statelet
which has not been complemented and has a larger interference number, as shown in
Figure 9.1.

statslet 3 supplants statelet 1 < empty link

y
o N ’

‘,

»

statelet 3 »
statelet 1

IntNo statelet 1 > intNo statelet 2
IntNo statelet 2 > IntNo statelet 3

statelet 2

Figure 9.1. Competition between statelets at a node

179

Chapter 9, OPRA Implementation Details

Because discrete event simulations advance in small finite time steps, a situation

in which the statelets from two or more competing families continuously supplant one
another my arise. As shown in Figure 9.2, in a discrete event simulation it is possible that
a network will enter a cycle in which multiple nodes recognize a match, 9.2 (a), initiate
reverse linking, 9.2 (b), stop reverse linking due to the disappearance of the forward
flooding statelets, 9.2 (c), re-transmit new forward flooding statelets, 9.2 (d), and again

recognize a match opportunity.

(a) recognize match

node 4 node 3

(d) transmit forward flooding statelets

——p Forward flooding statelets

(b) transmit reverse linking statelets

|] L§

] [}

t [|
Increase the A 4 A ¢
handicap of all See-
forward flooding wmee
statelets by a
random amount node 4 node 3

(c) stop reverse linking

===« Reverse linking statelets

Figure 9.2. Using the handicap indicator to avoid oscillations

180

Chapter 9, OPRA Implementation Details

In reality this effect would likely resolve itself after one iteration, if it happened at all,
because the event sequences to create a loop as shown in Figure 9.2 are unlikely to
repeat themselves with the random timing variations present in the real world.

A key characteristic of OPRA is the supplanting of one statelet by another, and
simulating this process is necessary when testing OPRA’s ability to restore a failure in a
transport network. in any discrete event simulation of OPRA, the supplanting of one
statelet by another must be modelled, and a sequence of looping events as shown in Fig-
ure 9.2 resolved when it arises. To prevent such loops, a handicap is associated with
every statelet at a node.

In the discrete event simulations of OPRA, the handicap of a statelet is entered
into a separate information field along side those shown in Figure 7.1. The value of a
statelet's handicap is propagated throughout a family’s broadcast mesh and accumulates
whenever it is increased by a node, similar to the way a statelet's repeat count accumu-
lates.

When an outgoing statelet is overwritten, the value of its precursor's handicap is
increased such that it is more difficult to supplant that outgoing statelet in subsequent
competitions for broadcast. Before OPRA allows an incoming statelet with a lower inter-
ference number to supplant a statelet with a higher interference number as part of:

a) the forward flooding process, or
b) the beginning of the reverse linking process,
as shown in Figure 9.2,

the handicap of the incoming and outgoing statelet are compared. During forward flood-
ing, an incoming statelet is allowed to overwrite an outgoing statelet only if the handicap
of the incoming statelet multiplied by a weighting factor, named PRECURSOR-WEIGHT-
ING, is larger than the handicap of the outgoing statelet. Similarly, reverse linking is only
initiated if the handicap of the incoming matched statelets, after being multiplied by the
constant MATCH-WEIGHTING, is greater than the handicap of any outgoing statelets
from other relations being transmitted on one or both of the matched ports, as shown in
Figure 9.2. Once reverse linking is initiated, it is allowed to continue as long as the for-

181

Chapter 9, OPRA Implementation Details

ward flooding statelet with which a complement statelet is matched persists, regardless
of the handicap of any outgoing statelet occupying the outgoing link on a matched port.

In a sense the handicap indicator assigns a higher priority to statelets which have
been supplanted numerous times. To insure a statelet's handicap does not undo the
desirable effects of competition based on the interference heuristic, it is increased by a
very small amount, determined experimentally, so that the simple flux of events at a node
don't lead to the growth of a broadcast mesh which violates the interference principle.
Based on tests performed, a PRECURSOR-WEIGHTING and MATCH-WEIGHTING of 5
effectively eliminate any oscillations, i.e. non-self-settling interactions, without degrading
OPRA'’s performance, when the handicap of a statelet is initially assigned a value, as well
as increased by a random value, uniformly distributed between 0.1 and 1.

By slowly increasing the handicap indicator of all forward flooding statelets trans-
mitted by a random amount, eventually a point is reached where some, but not all, of the
nodes in a looping event sequence sustain a match or the broadcast pattern from one
precursor. For example, in Figure 9.2, node 1 will only recognize a match between the
red statelets received on spans 1-4 and 1-2 if the handicap indicator of the received
statelets after being multiplied by MATCH-WEIGHTING are larger than each of the hand-
icaps of the blue statelets sourced by node 1. If this node is the source of the statelet to
be overwritten by the reverse linking statelet (e.g. nodes 1 and 3 in Figure 9.2), the upper
and lower limits of the handicap assigned to a new forward flooding statelet are increased
by a random variable uniformly distributed between 0 and 0.1. If the statelet to be over-
written is the branch of a precursor (e.g. the red statelets broadcasted by nodes 2 and 4
in Figure 9.2), the handicap of the precursor is increased by a random variable uniformly
distributed between 0 and 0.1.

The constants MATCH-WEIGHTING and PRECURSOR-WEIGHTING control
how quickly oscillations are stopped. Larger values will allow OPRA to oscillate for a
longer period, while smaller values resolve the process very quickly. In the extreme, a
value of zero for MATCH-WEIGHTING would prevent a match from supplanting any for-
ward flooding statelets, and an infinite value for MATCH-WEIGHTING would always allow
a match to supplant a forward flooding statelet. Similarly, a value of zero for PRECUR-
SOR-WEIGHTING would prevent a forward flooding statelet from supplanting another

182

Chapter 9, OPRA Implementation Details

forward flooding statelet, and an infinite value for PRECURSOR-WEIGHTING would
always allow one forward flooding statelet to supplant another.

In conclusion, replacing and supplanting statelets is an integral part of OPRA;
these actions occur frequently while evolving the composite restoration pathset. Oscilla-
tions of the nature shown in Figure 9.2 are very rare, and it was found that a relatively
large value for MATCH-WEIGHTING and PRECURSOR-WEIGHTING compared to the
value of a statelet’s handicap quickly stopped any oscillations when they arose without
degrading OPRA's ability to find a near optimal restoration pathset.

9.2 Correct Sequencing of Port Updates

When processing a single interrupt, it may be required to fransmit two or more
statelets on a single span. When OPRA is implemented such that not all new statelets on
a span are presented to the DRA at once, unlike the implementation presented in the fol-
lowing chapter, the sequence in which those ports are latched to their respective links
should follow the same sequence OPRA followed in altering the contents of the transmit
statelet registers. For example, when the branch from a matched precursor on span x
resides on span y, and the precursor to which the precursor on span x is matched also
resides on span y, but not the same port, as shown in Figure 9.3, and new statelets are
processed immediately without waiting for all of the links on a span to be updated, the
branch on span y should be eliminated before transmitting the complemented statelet.
Latching all registers onto links in the same order in which they were updated intemally in
OPRA's execution sequence ensures that OPRA processes statelets within one span in
the proper sequence, regardless of how OPRA is implemented.

Matched statelet's

spany

&

This branch should be eliminated
..... Complemented statelets before the complemented statelet is
transmitted on span y

Figure 9.3. Correct sequencing of port updates

183

Chapter 9, OPRA Implementation Details

9.3 Re-Initiating Reverse Linking

Depending on the implementation of OPRA, the TxReg of a port which is part of
a reverse linking process, i.e. activated = true, may have to be cancelled and retransmit-
ted after a forward flooding statelet overwrites an existing precursor from its own family in
order to continue reverse linking. After the start of a restoration event, if OPRA is imple-
mented such that a mechanism external to OPRA is responsible for informing the DRA of
a new statelet arrival, like the polling mechanism explained in the following chapter, the
arrival of a statelet, qualified as best, which overwrites an existing precursor from its own
family on a activated port, requires retransmitting the entry in that port's TxReg register,
as explained below.

Two ports become activated when a match is found, as shown in Figure 9.4 (a).
Reverse linking continues at a tandem node, node 2 in Figure 9.4, as long as the forward
propagating statelet matched to the complemented statelet persists at that node.

—— Forward flooding statelet =«a=qdp Reverse Linking (complemented) statelet

@ (b) (©) @

Figure 9.4. Overwriting a precursor from the same
statelet family on a activated port

184

Chapter 9, OPRA Implementation Details

As shown in Figure 9.4 (b), if the precursor on span ¢ disappears at node 2 and
the forward flooding statelet to node 1 on span b is cancelled before the complemented
statelet on span b arrives at node 2, reverse linking stops. It is possible that a new for-
ward flooding statelet from the same family as the vanished precursor on span c arrives
on span d at node 2 shortly afterwards, and becomes that family’s new precursor as
shown in Figure 9.4 (c). Unless the DRA implementation is somehow able to inform
OPRA of the existence of the reverse linking statelet at node 2 without the RxRS flag
being set, the complemented statelet on span b at node 2 will not continue reverse linking
and follow the path traced by the new precursor on span d until node 1 cancels and
retransmits that same complemented statelet.

Therefore, when

1) the time interval between the disappearance and reap-
pearance of a statelet from the same family is very short,
as shown by the “gap” in Figure 9.4 (c), and

2) OPRA only processes those ports whose RxRS flag is
raised at discrete time intervals, as explained in the fol-
lowing chapter,

node 1 may not process the first disappearance event, because possibly another statelet
is being processed at that node, and determine that a statelet overwrote a precursor from
the same family on a activated port when processing the second reappearance event.
Unless node 1 cancels and retransmits the complemented statelet on span d, the reverse
linking event halted at node 2 is never restarted, as shown in Figure 9.4 (d). Restarting
the reverse linking process is desirable because it may lead to the formation of a restora-
tion path. In the discrete event simulations performed, given the situation depicted in Fig-

ure 9.4, OPRA cancelled and retransmitted the entries in the TxReg register of node 1 on
span b.

185

Chapter 9, OPRA Implementation Details

9.4 Optimizing the Forward Flooding Process

To reduce the number of times a statelet is supplanted when a match is com-
pleted, and thereby possibly reduce the restoration time, it is advantageous to choose dif-
ferent spares on a connecting span when both nodes terminating that span are sourcing
forward flooding statelets from different relations. As shown in Figure 9.5 (a), when nodes
1, 2, and 3, transmit forward flooding statelets on links 4, 5, and 6, a reverse linking event
destined to fail is initiated in nodes 2 and 3. Reverse linking is stopped at node 2 when
the blue forward flooding statelet is overwritten by the red complemented statelet, and at
node 3 when the red forward flooding statelet is overwritten by the blue complemented
statelet. However, when nodes 1, 2, and 3, fransmit forward flooding statelets as shown
in Figure 9.5 (b), re\)erse linking is completed and two restoration paths are found. As
shown in Figure 9.5 (b), OPRA is implemented such that different spares on a connecting
span are used when initiating forward flooding statelets at a source whenever possible so
as to minimize initiating reverse linking processes destined to fail.

186

Chapter 9, OPRA Implementation Details

—» Forward flooding statelet ____, Reverse linking statelet
source/destination source/destination
of red statelets of blue statelets

V. A V. A V.

link 4 link 5 link 6
Bidirectional Selective Forward Flooding

(@

1 fink1 2 fink2 3 k3 4

link 4 link 5 link 6
Initiate Reverse Linking match

1 fink1 2 fink2 3 link3 4
Tlink 4 “link 5 link 6
Stop Reverse Linking
1 linkki 2 link2 3 [ik3 4
(b)
fink 4 fink 5 ink 6

Bidirectional Selective Forward Flooding

1 link 1 2 link 2

Initiate and Complete Reverse Linking

Figure 9.5. Initiating forward flooding statelets on
different spares on a connecting span

187

Chapter 10, Implementation of a Test-Bed for OPRA

Chapter 10. Implementation of a Simulation
Test-Bed for OPRA

This chapter describes the testbed in which OPRA was implemented for
experimental characterization. Subsequent chapters report various results obtained with
this experimental implementation of OPRA.

The complexity of the asynchronous, event-driven, mutual interactions,
between nodes executing OPRA is a complex system level problem. By its nature, OPRA
is an asynchronous, massively parallel, multi-dimensional transient process. It engenders
many different types of constructive interactions between statelets; the state space of the
node and link combinations is large and changes with time. For these reasons an experi-
mental validation and research development method has been necessary, as opposed to
seeking theoretical proofs of performance. The main technique used in this work is com-
puter emulation of OPRA running concurrently at every node of representative networks.
In this approach an executable single-processor implementation of the intended protocol
is actually constructed and instances of it executed concurrently in every node of the var-
ious study networks using a concurrent programming, discrete event simulation environ-
ment. The collective behaviour of the network as a large scale system is then observed.

10.1 Modelling Environment

There are two completely separate and replaceable parts to the experimental
system which was used to test and develop OPRA:

1. the module that embodies OPRA, and
2. the testhed.

The testbed builds an environment within which OPRA operates as if identical instances
of it resided in the DCS machines of a real network. The testbed converts one physical
instance of OPRA into many virtual (concurrent) instances and facilitates their distributed
asynchronous interaction according to a defined network description. This experimental

188

Chapter 10, Implementation of a Test-Bed for OPRA

system reveals how small changes in the statelet processing rules impact the large scale
behaviour of the network. The research was mechanized this way to investigate complex
statelet interactions in large networks, and refine the logic and processing rules that con-
stitute OPRA.

10.1.1 Modelling OPRA

Given that a single specification of OPRA is needed which can be executed by
many nodes simultaneously, OPRA was written as a set of rules using finite state
machine (FSM) techniques. The testbed can therefore execute one instance of OPRA for
one node, suspend it, and use the same specifications to advance the processing for
another node, and so on.

Using FSM techniques in the specification of OPRA allows all behaviours to be
described in terms of actions in response to extemal events. FSM methods are often
used in telecommunications software design because of their natural pacing of
responses to external events with inherent task suspension when no events require
processing. Several benefits arise from using FSM techniques to specify OPRA:

1. It allows very structured thinking about problems related to the
algorithm in localized terms such as “if the current state is x,
and event y occurs, then what is the action to take?” Every
action in response to an event is itself a conventional algorith-
mic segment designed to realize the intended function. The
isolation from the overall problem complexity using this struc-
turing is helpful and desirable as a discipline in the develop-
ment of a software system for the massively parallel
interactions that distributed mesh restoration represents.

189

Chapter 10, Implementation of a Test-Bed for OPRA

2. Considerable confidence is obtained about the practicality of
OPRA in real crossconnect machines because the code is
written as it would be to run within the operating system of a
DCS machine in a real network. Furthermore, the interface
between the testbed and the protocol specification can be
made to appear as it would in a real DCS machine that
passes events through that interface to and from the other
nodes of the network, as well as applying appropriate inser-
tion, propagation, and execution time delays.

3. The testbed actually executes a specification of the algorithm.
Thus, when the desired network-level behaviour is obtained,
one can print out the algorithm, and obtain an executable C
language specification of the DRA.

10.1.2 The Testbed

The testbed executes multiple instances of OPRA concurrently in a manner
similar to the way a multi-tasking operating systems executes several instances of a
given application program. The testbed builds an environment in which each instance of
OPRA sees the environment of a single node interacting directly with the network in
which it is embedded. Any statelet applied to a link is delivered after appropriate delays to
the respective port at the node that is connected to the receiving end of that link, accord-
ing to the network description file. Unlike the module used to implement OPRA, the test-
bed knows the network’s design and converts any changes one node makes to the
transmit links at its site into future events occurring at other nodes. The testbed simulates
the interface to the DCS and passes events through it to and from other nodes in the net-
work using appropriate transmission, propagation, and execution time delays. Within the
testbed, OPRA's view of the world is the same in all relevant aspects as it would be in a
real DCS machine following the specifications presented in chapter 8.

190

Chapter 10, Implementation of a Test-Bed for OPRA

10.2 Testbed Description

The testbed was built using OPNET [52]. OPNET is a comprehensive devel-
opment environment supporting the modelling and performance evaluation of communi-
cation networks and distributed systems involving concurrent processes. System
behaviour and performance are analysed by discrete event simulation.

OPNET is used in this work to provide the basic virtual-time scheduling utilities
for concurrent asynchronous execution of OPRA with realistic propagation, transmission
and processing delays. Link propagation and other delays are calculated and incorpo-
rated in the scheduling of future events. An event originating at time now and place here
is scheduled so as to have its effect as an event occurring somewhere else in the net-
work determined by the network file at time (now + delay), where delay can be computed
or assigned by the test bed. OPNET manages the advance of virtual time in a manner
which allows different nodes to execute OPRA at overlapping moments in virtual time. All
events are scheduled on the time line, and nodes running OPRA task instances are only
invoked at those points in virtual time when an event occurs for them.

When active, a node executes OPRA according to its last state stored by
OPNET and the DCS port records visible to it. This may result in the creation of new
statelets or modification of currently transmitted statelets. When the node suspends exe-
cution of OPRA after one event-action-next state cycle as described in chapter 8, any
future events which have been caused by the execution of this node are put in a queue of
events scheduled for some future instant of virtual time. Then OPNET processes the next
event scheduled for the present instant in virtual time. When all events scheduled for this
instant in virtual time have been processed, the virtual clock is incremented to the next
instant in virtual time at which one or more events are scheduled. This series of steps
continues until no future events are scheduled.

In addition to OPNET's virtual-time scheduling utility, the testbed uses OPNET
objects, each with a configurable set of attributes. Collectively, these objects form a hier-
archial OPNET model, and the Network, Node, and Process modelling domains of
OPNET span all the hierarchial levels of the model. The structure of the network testbed
is described in terms of OPNET's Network, Node, and Process domains below.

191

Chapter 10, Implementation of a Test-Bed for OPRA

10.2.1 OPNET’s Network Domain

As part of the testbed, OPNET’s Network Domain is used to define the topol-
ogy of a transport network, which includes specifying the location of nodes and the work-
ing and spare links between nodes. Figure 10.1 shows the OPNET Network Domain
specification for network number 1 presented in chapter 4. In the Network Domain the fol-
lowing attributes are defined:

1. the receiver and transmitter terminating a span,

2. the length of a span,

3. the number of spare and working links in a span
terminated at a node, and

4. the capability of a node as explained below.

The specific capabilities of a node are defined by designating its model. For
example, in Figure 10.1 the model dgr4_node_path is designated for node 5. The specif-
ics of dgr4_node_path, which stands for a degree 4 node model capable of performing
path restoration, are presented in the following section. Attributes 1 through 4 can be
specified using OPNET's Network Domain graphical editor, however, to expedite testing
OPRA in many networks, these values were set with a program written at TRLabs that
uses OPNET's External Module Access (EMA) capability.

Two of the “nodes” shown in Figure 10.1 are not part of the network’s topology.
Instead of DCS machines, the “nodes” named Backhoe and OAM represent devices
needed to cut one or more spans in a network and to record information on completed

restoration paths respectively. Details of these nodes will be presented towards the end
of this chapter.

192

| JaQUINU 50M}OU 10} UOREOYOadS Ulewoq 3omaN LINJO “+'0L anbid

Chapter 10, Implementation of a Test-Bed for OPRA

m (v) g'0 ¢ PR m PoTqRUR : UOT3 TPU0d
A (‘6op) gp : uorgrcod & (3tq/339) 0°D ¢ 19q
(*6op) 1500000000005210 0~ ° uoyjrsod x_ o T Yy3buat
peTqeus @ :oﬁ..%:oo_ 2 10AT0001°6 q 19AT0001

0: &qtaotad 2 1939IwWsURIy ‘6 g J93jTHEURI]

0: pT 196N £ 10aT9031°g ® JIOATI933

9] yyed opou pabp Topou € 1933TMEURI] ‘g | ¥ JO3]TWEURI]
m G: oweu __ m §-8"weds : sweu
soanqrv (5) | coanqraay (6-g ueds)

soyxoeq

O

193

Chapter 10, Implementation of a Test-Bed for OPRA

10.2.2 OPNET's Node Domain

OPNET'’s Node Domain provides for the modelling of communication devices
that can be deployed and interconnected at the network level. In OPNET terms these
devices are called nodes, and in the context of mesh restoration, they correspond to
DCSs.

The node model for a DCS which terminates four spans, i.e. node model
dgr4_node_path, is shown in Figure 10.2. Node models are expressed in terms of
smaller building blocks called modules. In Figure 10.2, Timer, transmitter_1, receiver_1,
port_reg_1 etc. are all modules. All of the receiver and transmitter module’s capabilities
are substantially predefined and are configured through a set of built-in parameters as
shown. The receiver and transmitter modules attach a node (DCS) to communication
links in the Network Domain. All of the other modules are highly programmable, their
behaviour being prescribed by an assigned process model. OPRA is the process model
for the module OPRA. The process models inside the Timer and port_reg modules are
presented later in this chapter.

A node model may consist of any number of modules of different types. For a
DCS terminating 3 spans, instead of four as shown in Figure 10.2, one receiver, transmit-
ter, and port_reg module triplet would be removed, and for a DCS terminating five spans,
one receiver, transmitter, and port_reg module triplet added. Following this technique, the
base node model shown in Figure 10.2 can be modified to represent any degree DCS.
Only one receiver, transmitter, and port_reg triplet is required per span because a net-
work's link structure is resolved inside the port_reg module. Given that real networks may
have hundreds of links per span, each statelet transmitted or received at the port_reg
module is tagged with a number identifying the logical link with which it is associated.

As shown in Figure 10.2, two types of connection are provided to support
interaction between modules. These are called packet streams (solid lines) and statistic
wires (dashed lines). Statistic wires convey control information between modules. Packet
streams allow formatted messages called packets in OPNET to be conveyed from one
module to another. This does not mean packet message instead of state based interac-

tion is being modelled, but that OPNET’s paradigm of a packet is being used to convey a
single statelet change event.

194

Chapter 10, implementation of a Test-Bed for OPRA

sueds Jnoj BugeulwIa} SOQ € 40} oyeoyoads ulewogd apoN LINJO 20t ainbid

<=~ ! ‘8133W popuslI¥e
w1 ad oweu uodY
(31q/110) 0'0 : pIOYSLIY 920
K== TouuRyd

£ 30at000X owau

¢oINGTIIIV (£ 30AT0291)

T 3unod Tovmp |l g, @

————

m c\l Lqxzotad __

potquerp @ s3diqur A1040001

8 porqeetp : sadrjur oanyyey
porqeerp @ adxjuy wrcpus
potqeus : adijur wrebaeq

poTqesTp : TeAejuT adrjux

1opox ceasoxd 2wps

g 19%wLyL
oMLy ¢ oweu
m _
£9INQTIzIV (JowTy Y
i
|
TaINIYwsIeny ailm ofisniels m
"
!
vizo

¢"B23 x0d «

g a3ATION

r H

Lat1301ad

poqqestp : s3dijur A1840001

porqesTp @ s3dxur einyrey

PoTqReTp ¢ adxjur wyspus

poyqeus : 3drur wrebeq

poTqueTp : TeAssqur 3diguy
¢310d saq rud Topox seed0xd ||
0 bex33od : owau __

coanqIx3V (0 Bo3 310d) |

l/l/lnoulﬁo.n

T A3trotad
poTqeeTp ¢ sadiqur Axeaod91

porqustp ¢ e3diqur exnyres -

! ‘61330 POpUSIXD PoTquetp ¢ admur wiepua || © oL

s ad oweu u09T peTqeue : qdxyur wrebaq
¢-- ! TouuRyo — porquerp @ Teazequr 3dxuy
T ¢ 3unod TeuwRyd T090303d93ed 1opow ecoooxd
vado oweu

__ 2 1033 TWEURTY ¢ oWy
coaNqT13IY (2 1933 TMeURTY) |

€oanqgTIIV (veao) |

072233 pMsTIeIy

weeons joyoed

195

Chapter 10, Implementation of a Test-Bed for OPRA

10.2.3 OPNET's Process Domain

The tasks performed by port_reg, Timer, and OPRA of the Node Domain are
specified in the Process Domain using process models. Each process model is defined
using a combination of state transition diagrams, a library of high level OPNET kernel
procedures, and the general facilities of the C programming language. A process model's
state transition diagram defines a set of primary states that the process can enter, and for
each state, the conditions that would cause the process to move to another state. The
condition for a particular change in state and the associated destination state are called a
transition. Each state defines a set of actions which must be performed upon entering or
exiting that state. The actions can be extremely general in nature because they are
expressible as C language statements.

One process model, OPRA, has already been explained in detail. OPRA resides
inside the OPRA module and is assigned the name PathProtocol within the Process
Domain. The C-code and OPNET kemel needed to implement OPRA are given in {40].

The process model inside the port_reg and Timer modules shown in Figure 10.2. are
explained next.

10.3 Port Card Process Model

The functions associated with the port card of a DCS performing restoration
are defined in the path_DCS_ports process model. The path_DCS_ports process model
is responsible for receiving and transmitting statelet change events (as OPNET packets),
receiving alarms, and calculating the transmission and propagation delay of the span
connected to the port card. This process model implements the RxReg, TxReg, and
PSReg registers in accordance with the SONET DCS architecture presented in chapter
2. The state transition diagram of path_DCS_ports is shown in Figure 10.3. In Figure
10.3, the meaning of, and differences between, light and dark coloured states, and solid
and dashed transitions, are the same as explained in chapter 8 for Figure 8.1.

196

Chapter 10, Implementation of a Test-Bed for OPRA

(O unforced State (defanit)

-
- ~,

@ rorcedState ' '

-

——

-
-
-
-
-
-
-
-

-

— (iase] [ocir]

-
~-—-
-~
~
~ -

. -(??qtho.n.)- » Non-empty transition condition

—————» Empty transition condition

Figure 10.3. State transition diagram for process model path_DCS_ports

State 1, init, shown in Figure 10.3 is responsible for initializing all of the TxReg,
RxReg, and PSReg registers connected to the span associated with this process model.

State 2, Delay, is responsible for calculating the propagation and transmission
delay of any statelet transmitted on the span associated with this port. Assuming that one
of the unused bytes in the Line Overhead (LOH) of a SONET transport signal is used for
statelet transmission, and given that the size of a statelet is 80 bits, the serial insertion
delay for all spans in a network was fixed at 1.25 msec (80 bits / 64 000 bits/sec). The
propagation delay was calculated assuming fibre optic transmission systems would be
used to transmit a statelet: propagation delay = (span length in km) / (0.7 x 3x1 0% kmv/
sec).

State 4 is the idle state in which the port process model will remain and return
after either receiving an alarm or statelet, or transmitting a statelet. When an interrupt is
received, the idle state (i.e. state 4) determines which of these events is taking place.

When a port receives an alarm, state 3, Fail_Link, is entered. Fail_Link is
responsible for setting the LineAlarm, PathAlarm, Trace, and AIS fields in the PSReg of
the failed port. The AxRS flag of the failed port is also raised to indicate an alarm needs
processing by OPRA. If the alarm received is the first, the polling mechanism used to
service all ports at a DCS, described in the following section, is started.

197

Chapter 10, Implementation of a Test-Bed for OPRA

When a complete statelet is received at a port, and that statelet is different
from the one stored in the RxReg register, state 5, Rx_Statelet Reg, is entered,
Rx_Statelet_Reg latches the new statelet into the receive register and informs OPRA of
the change using the RxRS field. As in the Fail_Link state, if the statelet received is the
first, the polling mechanism used to service all ports at a DCS is started, if not already
active.

When a statelet needs to be transmitted, state 6, Tx_Statelet_Reg, is entered.
Tx_Statelet_Reg latches the new statelet onto the link terminated at that port after wait-
ing a period of time equal to the sum of the propagation and transmission delay.

The C-code and OPNET kernel associated with the Port Card Process Model are
given in [39].

10.4 Polling Mechanism Process Model

It is possible that multiple restoration statelets and/or alarms arrive at a node
while OPRA is responding to an interrupt. Furthermore, OPRA might ignore a statelet
while processing an interrupt if the statelet changes several times on a single link. There-
fore, OPRA is designed to handle multiple interrupts simultaneously and function cor-
rectly even after ignoring a number of statelet changes. The tasks OPRA performs
depend only on the states of the ports at a node at the instant a transition is initiated. This
processing is implemented by sequentially polling ports that have received a new statelet
or an alarm since the last poll (see Figure 10.4).

Compute the broadcasting pattem
Wait until polling interval elapses

DCS port

Update the
broadcast pattem

of the restoration
statelet signal
received on this port

Figure 10.4. Model of the polling mechanism used by OPRA

198

Chapter 10, Implementation of a Test-Bed for OPRA

Using a polling mechanism to sequentially cycle through all links terminated on a
DCS, acknowledges interrupts in an orderly fashion and controls the number of interrupts
generated while restoring a failure. Servicing interrupts at a node usually requires OPRA
to transmit one or more statelets. Therefore, increasing the time between polls will
increase the number of statelet changes ignored and decrease the number of statelets
generated. A polling interval of zero would have OPRA poll all ports continuously, check-
ing each port after a delay determined by the time required to:

1) process all ports whose link state has changed,
2) re-compute the broadcast pattern at a node, and
3) poll each port.

Though the broadcast pattern associated with an individual statelet is updated
every time a port is polled, the broadcast pattern at a node is computed only after all
ports have been serviced. Updating the broadcast pattern of a node may involve cancel-
ling restoration statelets on other links by pruning the branches of a precursor, reverse
linking a complemented restoration statelet, moving the root of a precursor, and/or trans-
mitting a loop back test signal; however, it does not entail broadcasting new forward
flooding restoration statelets. Only computing the broadcast pattern at a node can result
in transmitting new forward flooding restoration statelets. This computation is performed
at the end of a polling cycle because computing the broadcast pattern requires that the
most recent interference numbers of all restoration statelets received at a node be con-
sidered.

The functions associated with the polling mechanism which OPRA uses to
service ports that receive a new statelet or alarm are defined in the Timer process model
shown in Figure 10.5. State 1, init, is responsible for initializing the process model. State
2, Trigger, is an empty state in which the Timer process model remains until activated by

either state 3, Fail_Link, or state 5, Rx_Statelet_Reg, of the path_DCS_ports process
model.

199

Chapter 10, Implementation of a Test-Bed for OPRA

O unforced State

‘ Forced State

Figure 10.5. State transition diagram for process mode! Timer

The polling mechanisms of source/destination nodes are activated by alarms
in the case of an instantaneous span cut, and by either alarms or forward flooding state-
lets in the case of a staggered alarm scenario. The polling mechanism of a tandem node
is activated by a forward flooding statelet in either case. Because some nodes are acti-
vated by alarms, while others are activated by a forward flooding statelet, in both cases
the polling mechanisms of all nodes are rarely synchronized.

Upon activating the polling mechanism Timeris entered. If the time allotted to
restore a failure has not expired, Timer schedules another polling cycle in which all ports
whose RxRS flag is true are processed. The idle period between polling cycles is set by
the constant DELTA_T. In addition, upon entering Timer, all future external interrupts are
prevented from interrupting the polling mechanism so that once the polling mechanism is
activated it polls all ports at a constant rate until the time allotted to complete a restoration
event has expired.

After waiting the prescribed time between poliing cycles, DELTA_T, the loca-
tion of all ports whose RxRS flag is set to true are forwarded to OPRA at once in the form
of a list for processing. While OPRA processes those ports whose RxRS fiag was raised
during a polling cycle, new alarms and statelets are prevented from overwriting the con-
tents of the PSReg and RxReg registers. Given the SONET DCS architecture presented
in chapter 2, this would require preventing the first receive register of all ports from latch-

200

Chapter 10, Implementation of a Test-Bed for OPRA

ing to the second register. Holding the contents of the second register of all incoming
links constant during a single polling cycle ensures OPRA maintains a static picture of all
ports for the brief period it is servicing any ports whose RxRS flag was raised. Whether or
not some link state changes are ignored during this time interval is irrelevant because
only the current state of all links at a node at the instant OPRA is activated determines
the trajectory which is traced through OPRA's state transition diagram, Figure 8.1.

Though OPRA is insensitive to the order in which ports are polled, it is benefi-
cial to service all forward flooding statelets before servicing any reverse linking statelets.
Updating the broadcast pattern of all forward flooding statelets before updating the
broadcasting pattern of all complemented statelets ensures reverse linking statelets trace
back the path identified by the most recent precursor. While tracing back the path identi-
fied by a precursor which is destined to be eliminated or replaced is a legitimate action
dealt with by OPRA, it generates spurious statelet change events. Therefore, the polling
mechanism employed by OPRA updates the broadcast patten of all forward flooding
statelets before updating the broadcast pattem of all reverse linking statelets.

After completing one polling cycle, the polling mechanism sends OPRA a sig-
nal informing it that it should compute the composite broadcast pattern at this node. As
detailed in chapter 8, updating the broadcast pattem of an individual port may involve
cancelling restoration statelets on other links, reverse linking a complemented statelet,
moving the root of a precursor, and/or transmitting a loop back test signal; however, it
does not entail broadcasting new forward flooding statelets. Only computing the compos-
ite broadcast pattem at a node involves the possibility of transmitting new forward flood-
ing statelets.

A single list of all altered ports ending with an indication to re-compute this
node's broadcast pattern is submitted by the polling mechanism to OPRA for processing.
The processing delay associated with updating all ports on that list, as well as the time
required to compute the composite broadcast pattem at this node, is accounted for in the
polling mechanism’s process model by waiting in state 4, Delay, until OPRA has proc-
essed all altered ports and re-computed a node's broadcast pattern.

201

Chapter 10, Implementation of a Test-Bed for OPRA

Given that a static picture of all ports is maintained for the brief instant OPRA
services any ports which had their AxRS flag raised, the polling mechanism effectively
controls the pace at which OPRA processes statelets and alarms. As long as the polling
interval, plus the processing delay, dominate the propagation and insertion delays com-
bined, restoration time is determined mainly by node delays. Otherwise, restoration time
is limited by the lengths of links and the bandwidth available to statelets. These effects
are examined in more detail in the following chapters.

The time required to process a new statelet or alarm is set by the constant
STATELET_PROCESSING_DELAY. In most of the network restorability tests performed,
this was set at 1 msec. Given a DCS CPU clock rate of 200 MHz, and assuming a C-level
instruction takes 5 clock cycles to complete, approximately 40 thousand lines of C-code
may be executed in 1 msec. Processing one port requires in the worst case on the order
of a few hundred lines of C-code; 1 msec is therefore a very conservative estimate of the
time required to process an interrupt generated by either an alarm or a statelet. Further-
more, a processing delay of 1 msec is twice the value chosen previously {21].

An even larger processing delay was assumed for the time required to com-
pute a node’s composite broadcast pattem. In the worst case, computing the composite
broadcast pattern at a node may require servicing all ports at a node. BROADCAST-
DELAY was therefore set at a conservative value of 2 msec.

After a time equal to the processing delay of all ports whose RxRS flag was
set in the last polling cycle plus the time required to compute a node’s broadcast pattern,
the Delay state shown in Figure 10.5 is exited.

The C-code and OPNET kemel associated with the Polling Mechanism Process
Model are given in [39].

202

Chapter 10, Implementation of a Test-Bed for OPRA

10.5 Initiating a Network Failure

The node named Backhoe in the OPNET Network Domain shown in Figure
10.1 is responsible for disabling all the spans impacted by a failure. Up to 6 different
spans may be failed simultaneously, or randomly in time. Given the ability to fail 6 spans
simultaneously, OPRA's ability to restore node failures, muitiple span failures, and single
span failures can be tested using the network emulator.

Failing a span requires determining what working paths traverse the failed
span and setting the appropriate alarms on all ports traversed by the end-to-end working
path. This function is performed by node Backhoe. The line alarm of all spare links on the
failed span(s) are also set by node Backhoe.

The C-code and OPNET kernel associated with the Backhoe Process Model are
given in [39].

10.6 Collecting Working and Restoration Path Data

After a restoration event is completed, the node OAM records information on
the working paths severed and the restoration paths found by OPRA. Node OAM is anal-
ogous to a network’s operation and control centre that would oversee realtime restora-
tion. A sample of the output generated by the C code inside the OAM node is shown in
Figure 10.6.

The C-code and OPNET kernel associated with the OAM Process Model are
given in [39].

203

Chapter 10, Implementation of a Test-Bed for OPRA

- . ; * node pair impacted by failure and
! Source: 4, Destination: 6, Lost working capacity: 2 «g———1— nmbor of working paths fost by that

1 node pair
1 Working path lost at node 4 at time: 0.000 msec

]
[}
: Working path lost at node 4 at time: 0.000 msec :
1 Working path lost at node 6 at time: 0.000 msec .
' Working path lost at node 6 at time: 0.000 msec :
]
I
]
'

Source: 2, Destination: 4, Lost working capacity: 1

: Working path lost at node 2 at time: 0.000 msec
t Working path lost at node 4 at ime: 0.000 msec
I

times at which the source and
~f———+— destination of a failed working Jmh

received path level alarms an
OPRA was activated

» Source: 5, Destination: 6, Lost working capacity: 2
]

| Working path lost at node 5 at time: 0.000 msec
1+ Working path lost at node 5 at time: 0.000 msec
Working path lost at node 6 at time: 0.000 msec
Working path lost at node 6 at time: 0.000 msec

node pair impacted by failure and
Source: 5, Destination: 6, Restored working capacity: 2 = «g——L— quz:nh;vdof lost working capacity
restori

Index: 4, Time: 46.000 msec, Int. No.: 4, Path: 5-9 8-8 8-6
index: 10, Time: 154.000 msegc, int. No.: O, Path: 5-1 1-0 0-22-6

Source: 4, Destination: 6, Restored working capacity: 2 index, time, interference number, and

1
4
]
1
1
]
1
1

i i

' '

! 1

! '

! |

! 1

! 1

' !

! [

! 1

' 1

! 1

! 1

! 1

! 1

: . routing of restoration paths used to

1 [ndex: 1, Time: 60.000 msec, Int. No.: 6, Path: 4-33-6 ~®——T1— restore lost capacity between nodes

! Index: 3, Time: 87.000 msec, int. No.: 8, Path: 4-3 3-7 7-6 4and6

! Note: - the time shown is the virtual

! time at the instant this path

! completes its loop-back test

! - the digits specifying a restoration

X path's routing are node numbers

1

t

L}

1

]

t

1

]

]

§

)

i

1

t

Source: 2, Destination: 4, Bestored working capacity: 1

Index: 1, Time: 71.000 msec, int. No.: 4, Path: 2-0 0-1 14

Overall Restorabllity = 5/5= 1.00 --f—

Network restorability

o m == -

total number of statelets received by all
nodes participating in a restoration
event in a network

Number of statelet's received = 568 -

]

IIN_STEP =0 :

MAXREPEATS = 4 .

MATCH_WEIGHTING = 5 |
PRECURSOR_WEIGHTING =§ & L constants used by OPRA to

i

|

INT_NO_OFFSET =0 restore this failure

| STUB_RELEASE = 0

output from OAM node

Figure 10.6. Sample output generated by OAM node

204

Chapter 10, Implementation of a Test-Bed for OPRA

10.7 Verifying OPRA’s Operation

Given the complexity of OPRA and the transient asynchronous event-driven
interactions associated with distributed restoration, OPRA’s execution must be traced to
verify it. In small test networks OPRA's functionality was verified by manually tracing the
trajectories of all statelet families for entire restoration events. These tests ensured that
OPRA found a near-optimal restoration pathset, did not violate the capacity constraints
on any span, and functioned as explained previously.

For larger networks it was impossible to trace OPRA's execution by hand.
Consequently numerous assert statements were built into the C-code specification of
OPRA to define checkpoints at which one could verify its operation. Whenever OPRA
entered one of the states shown in Figure 8.1, most conditions which had to be true (or
false) while in that state were verified using assert statements. For example, in the
Tandem_Node state (state 1) shown in Figure 8.1, OPRA verified that if a precursor
existed previously at a port, the port was not empty.

As a final test of OPRA's operation and the consistency of the restoration path-
set found with the constraints presented in chapter 3, animations of various restoration
events were produced. Using movie-like animations of OPRA, it was possible to verify
that:

1. restoration paths were consistent with a network’s topol-
ogy,

2. OPRA stopped executing only when all lost capacity had
been restored or no other restoration paths were topo-
logically feasible,

3. the total number of forward flooding, reverse linking, and
confirmation statelets on a span never exceeded the
available link capacity on that span,

4. forward flooding statelets did not trace looping paths,

5. reverse linking statelets followed a path paralleling the
forward flooding statelet with which they were paired,

205

Chapter 10, implementation of a Test-Bed for OPRA

6. looping event sequences of the type described in chap-
ter 9 never persisted,

7. only those nodes impacted by a failure initiated sending
statelets,

8. of the two nodes terminating a restoration path, only the
node with the smaller network ID initiated a loop-back
test,

9. for a given statelet family, forward flooding was followed
by reverse linking,

10. for a given statelet family, reverse linking was followed

by a loop-back test, and

11. a transport signal was only restored after successfully

completing a loop-back test.

Combined, all of these tests verify that OPRA behaves as described previ-
ously, lending credibility to the results presented in the following chapters.

206

Chapter 11, OPRA Test Results

Chapter 11. OPRA Test Results

Having covered the theory of OPRA, the remainder of this thesis presents an
analysis of OPRA's performance using the testbed explained in the last chapter. This
chapter documents OPRA's ability to restore all single span failures in a metropolitan and
a long haul network.

11.1 Test Networks

In chapter 4, six capacity placement techniques were introduced which either:

1. optimized the placement of spare capacity in a span
restorable network (case 1),

2. optimized the placement of spare capacity in a path
restorable network without stub release (case 2),

3. optimized the placement of spare capacity in a path
restorable network with stub release (case 3),

4. optimized the placement of working and spare capac-
ity in a span restorable network (case 4),

5. optimized the placement of working and spare capac-
ity in a path restorable network without stub release
(case 5), or

6. optimized the placement of working and spare capac-

ity in a path restorable network with stub release
(case 6).

Of the six capacity placement techniques for the five networks presented in
chapter 4, and detailed in [38], OPRA's ability to restore all single span failures in a selec-
tion of 18 of those 30 designs was tested. This chapter is limited to detailing the results
from 4 of those 18 tests in order to verify the key characteristics of OPRA without pre-
senting an excessive amount of data. The conclusions drawn from the analysis of these

207

Chapter 11, OPRA Test Results

four networks are common to ail of the resuits obtained. A summary of the results
obtained for the other 14 test networks is given at the end of this chapter.

In this chapter, OPRA's ability to restore all single span failures in a represent-
ative metropolitan network (network 2), and a representative long haul network (network
4), is investigated. The topologies of networks 2 and 4 are shown in chapter 4 in Figures
4.5 and 4.7 respectively. The capacity placement of networks 2 and 4 was designed
using the IP presented in chapter 4 to either:

1. optimize the spare capacity placement of a path
restorable network without stub release given that the
working capacity design split the routing of demand
between a node pair as evenly as possible over the
node pair’s logically shortest disjoint routes (i.e. case
2 as defined in chapter 4), or

2. optimize the placement of working and spare capacity
of a path restorable network with stub release (i.e.
case 6 as defined in chapter 4).

The test results from these four cases were chosen because OPRA is a path
restoration mechanism, and of the four different path restorable capacity placement tech-
niques presented in chapter 4, cases 2 and 6 represent the relevant limits of maximum
sparing for operation of a path restorable mesh transport network.

11.2 Test Result Presentation Format

Span and network restorability, as well as restoration speed, are classified as
operational metrics, and the first two plots presented for each network design quantify
OPRA's performance using these operational metrics.

The first plot displays the restoration trajectory of all individual span failures in
a network. For an example see Figure 11.1. Each trace plots percentage restoration (0%

- 100%) against time. In addition to displaying each span’s restoration status as a func-
tion of time, the first plot identifies:

208

Chapter 11, OPRA Test Results

1. each span’s final restorability, Rs;,

2. the final restorability of a network as a whole, Rn,

3. the lowest span restorability leve! of any span in the
network, Rny,

4. the time required to complete the first path of a res-
toration plan, tpq,

5. the time required to complete the last path of a resto-
ration plan, tg,

6. the average time required to complete all restoration
paths possible in a network, t, avg, and

7. the time at which 95% of all working paths are
restored over all span cuts, tgs.

Given that the number of traces in each restoration trajectory plot equals the
number of spans in a network, it can be difficult to distinguish the trace of one span failure
from another. Consequently the trace of the span which experiences the shortest outage
before achieving 100% restorability is highlighted in red, and the trace of the span which
experiences the longest outage before achieving 100% restorability is highlighted in
green. The traces corresponding to Rn,, and tg are also highlighted. While displaying all

span restorability trajectories in a single graph makes distinguishing one trace from

another difficult, it does present the performance envelope of when and how many spans
are fully restored.

The second plot associated with each network design quantifies the statistics
of an individual outage experienced by a restored working path, t,;. See Figure 11.2 for
an example. A histogram which records the number of t,; values which fall in a given 50
msec. window follows each restoration trajectory plot.

The remainder of the plots associated with each network quantify OPRA's per-
formance using intrinsic path, rather than operational, metrics. Given that the networks
used to test OPRA were all 100% restorable against individual span cuts, the span

209

Chapter 11, OPRA Test Results

restorabilities of the restoration trajectory plot also quantify OPRA's Path Number Effi-
ciency (PNE). The final restorability of each restoration trajectory in this plot implicitly
compares the pathset found by OPRA to the reference pathset found by the IP, and may
be interpreted as OPRA's routing efficiency or PNE, instead of the span restorability, for
that span failure.

The network restorability of each network presented in this chapter was
always very close to 100%. Networks deployed in practice will likely have more spare
capacity than the tightly designed networks used to test OPRA because of the modularity
of transmission systems, and OPRA would likely achieve 100% network restorability in
such networks. Nonetheless, the Path Length Efficiency (PLE) of OPRA cannot be fairly
determined here because the PNE of the reference IP solution (100%) and OPRA
(97.9% - 99.7%) are not identical. Consequently, the distribution of the restoration path
lengths found by OPRA and the IP are shown in this chapter in the third and fourth plots
associated with each network instead. These two histograms facilitate comparing the res-
toration pathsets found by the [P and OPRA in the absence of a PLE value.

The fifth plot is a histogram of interference numbers. It captures for diagnostic
interests only the degree of competition amongst statelets attempting to restore a span
cut. For example, a smali quantity of large interference numbers indicates most restora-
tion paths found by OPRA don't prevent the formation of other restoration paths.

The final two plots associated with each network design compare a restoration
path’s interference number to the time the path was completed, and the path’s length.

In summary, the following seven plots are presented for each of the four net-
work designs discussed previously:

1. the restoration trajectories of all span cuts in terms of
restoration status vs. time,

2. a histogram of restoration path completion times over
all span cuts,

3. a histogram of restoration path lengths over all span
cuts,

210

Chapter 11, OPRA Test Results

4. a histogram of restoration path lengths used in the ref-
erence |P solution over all span cuts,

5. a histogram of interference numbers over all span
cuts,

6. a scatter plot relating interference numbers to restora-
tion path completion times over all span cuts, and

7. a scatter plot relating interference numbers to restora-
tion path lengths over all span cuts.

These plots are analysed in the discussion concluding this chapter.

11.3 Option Settings

For each of the test results presented in section 11.4 and 11.5, the values
assigned to the various options defined in OPRA are listed below:

1. IN_STEP = 0. When a unit of lost capacity is restored from
a relation, the source from that relation increases the initial
interference number (lIN) assigned to any statelets it initi-
ates in subsequent broadcasts by [IN_STEP. Increasing the
lIN of those statelets initiated by a source increases the
likelihood that other demand pairs will complete one of their
restoration paths. In a network which is not 100% restora-
ble, the variable [IN_STEP helps achieve an overall pattern
of individual restoration levels on each relation that is pro-
portional to the network’s pre-failure connectivity. Given
that the networks used to test OPRA were 100% restorable
against all single span cuts, lIN_STEP was set to zero
when testing OPRA's ability to restore all single span cuts.

211

Chapter 11, OPRA Test Results

2. MAXREPEATS = 6 for network no. 2, and 11 for network
no. 4. The maximum logical hop length of a restoration path
found by OPRA is twice the value of MAXREPEATS. Each
node traversed by a statelet increments that statelet's
repeat field and rebroadcasts it except if MAXREPEATS
would be exceeded. Any statelet that arrives at a node with
a repeat value greater than or equal to MAXREPEATS is
ignored. MAXREPEATS is set sufficiently large in all test
cases to ensure that restoration paths at least as long as
those specified in the reference [P solution are possible.

3. TIMEOUT = 3 seconds. The constant TIMEOUT signals
the termination of a restoration event and is set sufficiently
large to ensure OPRA is given enough time to find all resto-
ration paths topologically feasible.

In addition to setting those options required to execute OPRA, the foilowing values
were assigned to the options associated with the testbed:

1. transmission delay = 1.25 msec.

2. propagation delay calculated assuming FOTS

3. processing delay associated with updating a statelet,
STATELET_PROCESSING_DELAY, = 1 msec.

4. processing delay associated with computing the
broadcast pattern at a node, BROADCAST_DELAY,
=2 msec.

5. time between polling cycles, DELTA_T, =2 msec.

DELTA_T plus the processing delays is greater than the propagation and
transmission delay combined, so restoration time is mainly determined by node delays in
all of the test results presented here.

212

Chapter 11, OPRA Test Results

11.4 Experimental Results in a Metropolitan Network

11.4.1 Optimized Spare Capacity Design for a Path Restorable Network
without Stub Release
The following plots record OPRA's performance in a metropolitan network

(network number 2), with spare capacity optimized to facilitate path restoration without
stub release (design case number 2).

pAS
9t span failure 7-10,)
0.9 1 max. restorability
(Rnyg) =92.8%
08} i
/1
07}
§ 06} J
8
g os| VA
g ot
S o4l span failure 9-10, max. restorability = 97.3%
& : restoration time (tg) = 2 968 msec.
03l span failure 9-14, max. restorability =100%
* restoration time = 1 560 msec.
02¢ span failure 0-2, max. restorability = 100%
restoration time = 66.00 msec.
0.1} 4
Network Restorabliity (Rn) = 98.4%

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

Restoration Time (msec)

Note:

Time first alarm received at a node = 0 msec.
Time last alarm received at a node = 0 msec.

Time first restoration path found (t5,) = 66.00 msec.
Time last restoration path found (tg) = 2 868 msec.
Average restoration time (t; gvg) = 655.6 msec.

Standard deviation from average restoration time = 552.8 msec.
Time required to find 0.95 of all restoration paths (tgs) = 2 335 msec.

Figure 11.1. Restoration trajectories in a metropolitan network
without stub release

213

Chapter 11, OPRA Test Results

200 T T T AL S A T vry T T T T T
i Time first restoration path found (t,¢) = 66.00 msec.
Time last restoration path found (tg) = 2 968 msec.
° . Average restoration time (i g,g) = 655.6 msec.
E 150 } A1 Standard deviation = 552.8 msec. -
= tgs = 2 335 msec.
[
o |
S
§ ~
S 100 .
=3 L ~{ T
g
LL -
®]
g 1 -
2 80r 7
(o] Bin width « 50 msec.
| ~>n—
0 I | J1...on0] I—L fhe
0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
Restoration Path Completion Time (msec)

Figure 11.2. Distribution of restoration path times in a metropolitan
network without stub release over all span cuts

300. ML A S T L 11 L3 LA ML SRR
[Shortest restoration path = 14.00 km
250 | Longest restoration path = 86.00 km]
L Average path length = 33.42 km
ﬁ' (] Standard deviation = 13.38 km
3 A i
£ 2001 -
] 3
a
S
& 1s0f :]
O S
3
g
. i —~
g 100F 1
$!
-7}
A
e} [Bin width « 2 km.]
50 —> —
b [H an .
0 10 20 30 40 50 60 70 80 90 100
Restoration Path Length (km)

Figure 11.3. Distribution of restoration path lengths found by OPRA in a
metropolitan network without stub release over all span cuts

214

Chapter 11, OPRA Test Results

300 1 T T T ¥ T T T T T
[Shortest restoration path = 14.00 km

250 | Longest restoration path = 97.00 km 4
£ i Average path length = 43.43 km
< Standard deviation = 17.99 km
- b
£ 200 1
a =
a
k]
& 150]
) f W
g]
w 1 —
g 100 Bin width = 2 km.)
2 -«
2
L8 .
o 50 -. -

%9 "0 20 30 40 50 60 70 8 9 100
Restoration Path Langth (km)

Figure 11.4. Distribution of restoration path lengths in the IP design for a
metropolitan network without stub release over all span cuts

400 — ——— T T - —
Smallest interfarence numbers= 0

E 350 Largest interferance number = 288 p
E [Average interference number = 72.66
Z a0l Standard deviation = 75.52]
[+ S
(4] b
c S
[d L
3 2s0f 1
2 3
£ !
S 200¢ .
& r]
5 [
3 150+]
g :
u. X
§ 100 — Bin width = 5 -
g i —>
o 50 F 4

0 ; 111 - l'l-[]_‘-'ﬂ n]

0 50 100 150 200 250 300
Interference Number

Figure 11.5. Distribution of interference numbers in a metropolitan
network without stub release over all span cuts

215

Chapter 11, OPRA Test Resuits

300 v Y T Y T
1 . b L]
o 4 s .
£ 250 F t 3
3 3 b
4 : | .
8 N
e o
& o00 P
8 200 3 e ¢ o 3
o E S o *
g - L] . L '
s 150F Sttt . 0 e 3
o 9 .’0 . . '
§ 3 *. %! .
k= 4 *E % . S 1
S 100 :" o e 0 i ‘ ¢ 7
3 : *t e e .
m L L
EN SRR R S
- ° e

2 E Ja L . . e
E E ' . .°J, L3 . e . 3

0. - ...}1.. aal aaaa® P DU aliaaaaaas

0 5§00 1000 1500 2000 2500 3000

Restoration Path Completion Times (msec)

Figure 11.6. Interference number versus path time for all span
cuts in a metropolitan network without stub release

300 :'_'ﬁ' L] L4 ¥ L] ¥ L3 L4 L} L4
- '. L] L]
- .
E 250 F L :
S [
=z q]
8 e,)
S 9
= 200 F - . 3
=] ot | .
2 L) L)
[=4 ° L)
= z ! :l .
;.; 1505' l. . e o :.o e
§ : o.. °3 .:. ' . ° Ve
§ 100} T o « ” .
8 3 : ... o « ° hd
E oo :. ¢] *
g _ | c2 e L0
50 LI . e . . k
% < e 8 ®0%e g% .o ° . ..
* ¢ty d ‘3. S et e

= o % o oo * o o * .

0 VTR T . ld () Q.: lg '.':‘.rl‘.,h.- - JTPVITUTII TP

0 10 20 30 40 50 60 70 80 90 100

Restoration Path Length (km)

Figure 11.7. Interference number versus path length for all span
cuts in a metropolitan network without stub release

216

Chapter 11, OPRA Test Results

11.4.2 Combined Capacity Design for a Path Restorable Network with
Stub Release

The following plots display OPRA’s performance in a metropolitan network
(network number 2), with working and spare capacity optimized to facilitate path restora-
tion with stub release (capacity design number 6). This may be considered the worst-
case capacity minimum that a path restoration DRA could have to work with.

09 ¢ } 4
’ ope
4/ Network Restorability (Rn) = 97.9%
08¢ 4
-t span failure 5-7, max. restorability = 96.2%
0.7 ¢ / restoration time (tg) = 1 200 msec. 7
2 os}]
’3 span failure 9-10, max. restorability =100%
L 1 restoration time = 1 163 msec.
% OS5} 7 - 4
& i
g 04} |
& 5 span failure 7-10, .
03l max. restorability (Rn,,.) = 76.1%]
02}t 4
span failure 0-14, max. restorability = 100%
0.1 restoration time = 66.00 msec.
0 e n i A A P
0 250 500 750 1000 1250 1500 1750 2000
Restoration Time (msec)
Note:

Time first alam received at a node = 0 msec.
Time last alamm received at a node = 0 msec.

Time first restoration path found (t;,) = 47.00 msec.

Time last restoration path found (tg) = 1 200 msec.

Average restoration time (t, gg) = 402.2 msec.

Standard deviation from average restoration time = 215.8 msec.
Time required to find 0.95 of all restoration paths (tgs) = 851.0 msec.

Figure 11.8. Restoration trajectories in a metropolitan network with stub release

217

Chapter 11, OPRA Test Results

250 L 13 11 L3 L] T 1§ o
Time first restoration path found {tp1) =~ 47.00 msec.

[= Time (ast restoration path found (tg) = 1 200 msec. |
o 200 | Average restoration time (lp g,g) = 402.2 msec. -
E ! Standard deviation = 215.8 msec. 1
5 tgs = 851.0 msec.
é L -
Fy Bin width =
5 8 msec.
3
g [T B
= 100 i ‘
3 n
4 4
O 580F | J

0 0 250 500 750 1000 1250 1500 1750
Restoration Path Completion Time (msec)

2000

Figure 11.9. Distribution of restoration path times in a metropolitan

network with stub release over all span cuts

110

200 Ty T e LI TV
Shortest restoration path = 7.000 km
_ Longest rastoration path = 108.0 km
‘%, I Average path length = 34.74 km
S 150 _ Standard deviation = 17.44 km .
g -
[+
a
‘6 -
&
S 100 - _ .
3 o r—~—
g - 11 1~
(T8 =
?
g I || Binwidth=2im 1
2 sof —> .
(@]
0 .] 1 111 J jm Y .
0 10 20 30 40 550 60 70 80 90 100
Restoration Path Length (km)

Figure 11.10. Distribution of restoration path lengths found by OPRA in
a metropolitan network with stub release over all span cuts

218

Chapter 11, OPRA Test Results

200 L] L L] L] MM I ¥ 1 1] L] M S
[Shortest restoration path = 8.000 km
Longest restoration path = 101.0 km
Average path length = 48.17 km
-é, 1 Standard deviation = 12.84 km 1
S 150 2 n
- s
8
< Bin width «
[«] 2 km. —
P 5 > :
5 100 5 J
3 R o
'8 1] —
c 3 1
g sol . 1
e} a
(@] L
0 | e, ﬂ 1 O ' m |
0 i0 20 30 40 S50 60 70 80 S0 100 110
Restoration Path Length (km)

Figure 11.11. Distribution of restoration path lengths in the IP design for a
metropolitan network with stub release over all span cuts

250 M 1 T L] v L]
. _ Smallest interference number= 0
é - Largest interference number = 217
S 200 Average interference number = 48.53 .
E 1 Standard deviation = 44.75
o i i]
(3]
T 150 | .
£ |
S Binwidth =5
oy —>re«
% 100 1
(g
‘§ s
g Sor 1]
el
8 5
0 11} v o] PR
0 50 100 150 200 250
Interference Number

Figure 11.12. Distribution of interference numbers in a metropolitan
network with stub release over all span cuts

219

Chapter 11, OPRA Test Resuits

250 [L] ’ t T T

Individual Restoration Path Interference Number

LY Y
0 250 500 750 1000 1250 1500
Restoration Path Completion Times (msec)

Figure 11.13. Interference number versus path time for all span
cuts in a metropolitan network with stub release

250 f————T— . : , :
é : | .
Z 200F .]
§ S . .
s |- / e
'g 3
£ WOF | PR]
£ s ' ' . L }
[+] LY L]
a s . e [M o LI
c s L . ®e
X 100 F s e :l...: e o . J
g [] o 0 \. L] . o) .
g oo onfltial e
. . . .
E S0 o '1' i"o‘i .c'. R LA T . *e ° .]
2 o D Ny Boledre, o .
E s * ': .:-. ..f .o : :.‘ .'f'.a. o ¢]
K= 1 R o ° e oo]
0 [[] i:.. L] :.‘~“i ..3 ? [} ; * I ,. s I
0 25 50 75 100 125
Restoration Path Length (km)

Figure 11.14. Interference number versus path length for all span
cuts in a metropolitan network with stub release

220

Chapter 11, OPRA Test Results

11.5 Experimental Results in a Long Haul Network

11.5.1 Optimized Spare Capacity Design for a Path Restorable Network
without Stub Release

The following plots show OPRA's performance in a long haul network (network
number 4), with spare capacity optimized to facilitate path restoration without stub
release (capacity design number 2).

span failure 31-47,
max. restorability = 98.8%

0.6 restoration time (tg) = 2 798 msec. .

span failure 11-22, max. restorability =100% |

0.5 restoration time = 2 200 msec.

Span Restorability

0.4 |
i span failure 15-50,
0.3 |l max. restorability (An,,c) = 94.7%

02 H span failure 40-43, max. restorability = 100% -

restoration time = 27.00 msec.
0.1 ¢

s 7 Network Restorability (Rn) = 99.7%

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

Restoration Time (msec)

Note:
Time first alarm received at a node = O msec.
Time last alarm received at a node = 0 msec.

Time first restoration path found (ty1) = 26.00 msec.

Time last restoration path found (tg) = 2 798 msec.

Average restoration time (t, ayg) = 521.2 msec.

Standard deviation from average restoration time = 406.8 msec.
Time required to find 0.95 of all restoration paths (tg5) = 1 391 msec.

Figure 11.15. Restoration trajectories in a long haul network without stub release

221

Chapter 11, OPRA Test Results

250 L] L] 14 v ¥ L3 1} v T 1§ 1 v LY

t Binwidth = Time first restoration path found (t;;) = 26.00 msec.
:_io ":'f Time last restoration path found (tg) = 2 798 msec.

o 200 F Average restoration time (tp gvg) =~ 521.2 msec. .

g al Standard deviation = 406.8 msec.

= . tos = 1 391 msec.

g |

s 150 - 1 ’

g

= I

& 100 I s 4

3

c

o

a X

C s0 i h

00 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
Restoration Path Completion Time (msec)

Figure 11.16. Distribution of restoration path times in a long haul
network without stub release over all span cuts

150 LI L L v LA ¥

L]

Shortest restoration path = 8.000 km

-ﬂ Longest restoration path = 7 759 km
Average path length= 2 184 km

Standard deviation = 1 680 km

100 f .

50N Bin width = 100 km.

Observed Frequency of Path Length

0 Wnf-mhlo.mn
0 1000 2000 3000 4000 5000 6000 7000 8000
Restoration Path Length (km)

Figure 11.17. Distribution of restoration path lengths found by OPRA in
a long haul network without stub release over all span cuts

222

Chapter 11, OPRA Test Results

150 ey Ty AGRARRARDLL: Yrry v vrre
Shortest restoration path = 28.00 km
Longest restoration path = 7 292 km

£ Average path length = 2 308 km

@ Standard deviation = 1 646 km

3

g 100 i -

S -

Fy Bin width = 100 km.

=] | —> e

& W {1 m -

B S0 | 1

g | H 1 1

a

8 | m

0 1

0 1000 2000 3000 4000 5000 6000 7000 8000
Restoration Path Length (km)

Figure 11.18. Distribution of restoration path lengths in the IP design for a
long haul network without stub release over all span cuts

1000 T T T —
« 900 - Smallest interference number= 0 b
-é [Largest interference number = 186
3 800 Average interference number = 26.25 b
R g Standard deviation = 34.45
e T700F]
o [
Q 3
E 600 b
£ [
'i 500 y
2 s]
S 400 .
g 3
ué 300 | 1
& 200Ff]
2 g
C 100 - 1
0] §0 100 150 200
Interference Number

Figure 11.19. Distribution of interference numbers in a long haul
network without stub release over all span cuts

223

Chapter 11, OPRA Test Results

200 [
]
£
3 L
P-4 L
§ 150 [
2 i
e i
2 -
£ i
£ 100f
g :
c
2
g
2 i
€ 50 F
=]
%

%%

500

¥ AP

PSS |

Restoration Path Completion Times (msec)

1000 1500 2000

2500 3000

Figure 11.20. Interference number versus path time for all span
cuts in a long haul network without stub release

200 [T Y T T T T v
3 :
£ p
3
4 L i ° o*
8 150 - . - R 4
% 1 ° * . e ¢
S . . A L} * A K . .
E . XY : . ® e o LI . - e o
E [* .':‘ . o« e, g s . .
L] . o o o« ® .
§ 100 _-: e .. :'.. H ...‘.‘. * (X} :. s B
L . ey e %o es0%L " 2 o
g :‘. :".h . * $ o' ’ e %
E - e o :"&...3. ., ‘::.‘o.:....‘.‘t... . . .
3 A A Pt - T .]
ot 50 :5:. ETICY zt .go. .~ S, .0.“! °2% * % p
[} [ofe B o gt¢"e N4 . .,
E R - P 9“.@: ‘....a Gl Lt
2 ST I AL byttt gt
£ s]
0 o 1000 2000 3000 4000 5000 6000 7000 8060
Restoration Path Length (km)

Figure 11.21. Interference number versus path length for all span
cuts in a long haul network without stub release

224

Chapter 11, OPRA Test Resuits

11.5.2 Combined Capacity Design for a Path Restorable Network with
Stub Release

The following plots record OPRA's performance in a long haul network (net-
work number 4), with working and spare capacity optimized to facilitate path restoration
with stub release (capacity design number 6).

09}

0.8

N
W,

kS

07 Network Restorability (Rn) = 99.6%]

span failure 9-41, max. restorability = 96.2%
restoration time (tg) = 2 505 msec.

0.6

0.5

span failure 11-22, max. restorability =100%

0.4 restoration time = 2 119 msec.

Span Restorability

03

span failure 1-2, max. restorability (Rny,¢) = 85.2%
0.2

span failure 40-43, max. restorability = 100%

0.1} restoration time = 34.00 msec.

PR

0 250 S00 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

Restoration Time (msec)

Note:
Time first alarm received at a node = 0 msec.
Time last alamm received at a node = 0 msec.

Time first restoration path found (ty) = 18.00 msec.
Time last restoration path found (tg) = 2 505 msec.
Average restoration time (t; ayq) = 460.9 msec.

Standard deviation from average restoration time = 375.1 msec.
Time required to find 0.95 of all restoration paths (tg5) = 1 263 msec.

Figure 11.22. Restoration trajectories in a long haul network with stub release

225

Chapter 11, OPRA Test Results

300 T T T T T T T T T LM
3

Time first restoration path found (t5;) = 18.00 msec.

250 . Time last restoration path found (tg) = 2 505 msec.
g L 1L Average restoration time (tp, evg) = 460.9 msec.
= [Standard deviation = 375.1 msec.
£ 200 |] T tgs = 1 263 msec. .
a [
S
2 ! 1
g I
w X
® 100 "1]
4
[+] 2
2 1
O -

50 | 1
o P S Y | i

00 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
Restoration Path Completion Time (msec)

Figure 11.23. Distribution of restoration path times in a long haul
network with stub release over all span cuts

200 L] T L0 L] A 4 L] T L4
1 Shortest restoration path = 2.000 km
" Longest restoration path = 8 409 km
g 1 Average path length = 2 046 km
g 150 Standard deviation = 1 624 km 5
s
& 1
S i
g o0 | |l .
[+
=] 1 T
g
% | Bin width = 100 fan.
e 50 ! £ —>]
2)]
O
0 [PO I 5 1 g
0 1000 2000 3000 4000 5000 6000 7000 8000
Restoration Path Length (km)

Figure 11.24. Distribution of restoration path lengths found by OPRA in
a long haul network with stub release over all span cuts

226

Chapter 11, OPRA Test Results

200 A4 ALY L LAAAA MM AAAAAAAAAS A LA T L
! Shortest restoration path = 2.000 km
Bin width « 100 km. Longest restoration path = 7 292 km
—> l “— Average path length = 2 301 km
150 s Standard deviation = 1 646 km

100 { | .

50 H 3

Observed Frequency of Path Length

0 1000 2000 3000 4000 5000 7000 8000
Restoration Path Length (km)

Figure 11.25. Distribution of restoration path lengths in the [P design for
a long haul network with stub release over all span cuts

1250 ——r—y - v Y
- Smallest interference number= 0
2 - Largest interference number = 160
€ 1000 V Average Interference number = 24.32 4
=z : Standard deviation = 31.59
8
2
S L
S 750 F 1
§ S 4
©
%‘é seor)
u.
§ [Bin width = 5
g 20T —> 1
(o} '
(I 4 1
0 L e Pt
0 50 100 150 200

Interferenice Number

Figure 11.26. Distribution of interference numbers in a long haul
network with stub release over all span cuts

227

Chapter 11, OPRA Test Resuits

200 | A LI ¥ L] T T
2
E
> [.
2 [
g 180} * « ° b
=4 5
2
T .
]
= s S ..
S 100} *
< : oot [’
S o,
g g
o o o0 o
2 s ... Q .
@ 50 L . ol oo B
=] [Sof _o :‘ . .
% : ‘%f. C v . ‘- e
- 0 : * P A A .j .: P L]
1000 1500 2000 2500 3000
Restoration Path Completion Times (msec)

Figure 11.27. Interference number versus path time for all span
cuts in a fong haul network with stub release

200 [' I .

150 | . J

Individual Restoration Path Interference Number

0 1000 2000 3000 4000 5000 6000 7000 8000
Restoration Path Length (km)

Figure 11.28. Interference number versus path length for all span
cuts in a long haul network with stub release

228

Chapter 11, OPRA Test Results

11.6 Interpretation and Discussion of Results

The following tables summarize the results presented in the plots shown in the
previous two sections and discussed in this section, as well as the characteristics of each
test network.

Table 11.1. Operational performance metrics

Network Rn R to1 R tavg tos
e (msec) | (msec) | (msec) | (msec)
11.4.1 98.4% | 92.8% 66.00 2968 655.6 2335
(metro network without
stub release)
11.4.2 979% | 76.1% 47.00 1200 4022 851.0
(metro network with
stub release)
11.5.1 99.7% | 94.7% 26.00 2798 5212 1 391
(long-haul network
without stub release)
1152 99.6% | 85.2% 18.00 2505 460.9 1263
(long-haul netwark with
stub release)

Table 11.2. Intrinsic path metrics

Standard Standard Standard
A}Igﬁ&im deviation from A‘Ilegr'mgtim Deviation Avg. deviation from
Network (OPRA) avg. path (1P) fromavg. | interference average
(km) length (km) path length no. Interference
(OPRA) (IP) no.
11.4.1 33.42 13.38 43.43 17.99 72.66 75.52
(metro network without
stub release)
1142 34.74 17.44 48.17 12.84 48.53 44.75
(metro network with
stub release)
11.5.1 2184 1680 2308 1 646 2625 34.45
(long-haul network
without stub releass)
11.5.2 2046 1624 2 301 1 646 2432 31.59
(long-haul networi with
stub release)

229

Chapter 11, OPRA Test Results

Table 11.3. Test Network Characteristics

Avg. Avg. no. of | Avg. no. of .
No. of No. of Avg. span " Physical
Network network working spare links/
nodes spans degres length (km) links/span span Redundancy
11.41 15 28 3.73 10.3 567 38.1 0.79
(metro network without
stub release)
1142 15 28 3.73 103 55.0 212 0.37
(metro network with
stub release)
11.5.1 53 79 298 195 302 24.1 0.93
(long-haut network
without stub release)
11.5.2 83 79 2.98 195 334 162 0.50
(long-haul network with
stub release)

11.6.1 Restoration Trajectories

From the four restoration trajectory plots it is apparent that OPRA is able to
fully restore most span failures before the two second call dropping threshold. Network
restorability, which here is the same as that network’s PNE, ranges from 97.9% to 99.6%,
with an average restoration time over all cases of 510 msec. In each case, those spans
which OPRA fails to restore completely contain either the largest, or close to the largest,
number of working links. In the metropolitan network, for both capacity designs pre-
sented, the last three spans to reach their final restorability are the three largest spans in
the network. In Figure 11.1 these spans are 9-10, 7-10, and 9-14, with a final restorability
of 97.3%, 92.8%, and 100% respectively, and working link counts of 262, 250, and 168
respectively.

At the other extreme, those spans which OPRA restores first contain the
fewest, or close to the fewest, number of working links. The restoration trajectories for
these small spans are often nearly vertical lines because all of the restoration paths
required to restore these spans are identified at nearly the same instant as a result of the
parallelism inherent in OPRA. In general, restoration trajectories appear as a staggered

230

Chapter 11, OPRA Test Results

sequence of steps rather than a smooth trace because many statelets seek restoration
paths concurrently and in parallel during the restoration process, resulting in bundles of
restoration paths being found at discrete intervals in time as broadcast meshes from var-
ious statelet families grow and collapse in different regions of the network.

In each restoration trajectory plot, the average restoration time is close to 510
msec in spite of the large difference in size between the metropolitan and long haul
examples. Given that the metropolitan network consists of 15 nodes and 22 spans, and
the long haul network consists of 53 nodes and 79 spans, OPRA's ability to synthesize a
near optimal restoration pathset quickly regardless of the number of spans and nodes in
a network is apparent. This insensitivity to network size, where size is defined as the
number of nodes and spans in a network, stems from the fact that a node executing
OPRA only needs local knowledge of the links it terminates to compute that portion of the
composite routing strategy which it is required to implement. Unlike centralized restora-
tion, in distributed restoration the processing power of the platform on which an algorithm
like OPRA runs grows as the size of the network grows, thereby maintaining a relatively
constant restoration time regardless of the network’s size, as long as node delays domi-
nate.

With the conservative processing delays for the results in this chapter, a 100%
complete restoration plan could only be identified before the two second call dropping
threshold for the metropolitan network with stub release, as shown in Figure 11.8. How-
ever, each network’s complete restoration plan was identified before three seconds, and
the time required to find 95% of all restoration paths over all span cuts was less than two
seconds in all but one case. In Figure 11.1, the 95th percentile is skewed by the trace of
a single span failure. In Figure 11.1, the trace of span failure 9 -10 reaches a maximum
restorability of 97.3%, 2.968 sec. after the arrival of the first path level alarm. Given that
span 9 -10 is the largest span in this network with 262 links, the 95th percentile is raised
to 2.335 sec even though every other span in the network is restored before two sec-
onds. As shown in Figure 11.1, after a relatively quiet period centred around the 2 second
mark, at which time the broadcast meshes of numerous statelet families competing to
restore span failure 9 - 10 collapse, a final batch of restoration paths are found which
raise span 9 - 10's restoration to 97.3%.

231

Chapter 11, OPRA Test Results

With the best processing delays possible in practice, it is likely that a complete
restoration plan could be identified before the two second call dropping threshold in all of
the tests presented here. As discussed in the following chapter, reducing the processing
delay by a small amount, such that it remains realistic and comparabile to the values cho-
sen previously [21], the time required to complete the last path of the restoration plan of
the network with the largest tg here, i.e. the metropolitan network without stub release, is
reduced to less then two seconds.

Furthermore, as shown in Table 11.1, the Rn of each network was close, but
not quite equal to 100%. It is expected that each network would be 100% restorable in
practice because real networks will likely have somewhat more spare capacity than the
tightly designed reference networks used here to test OPRA, due to the provisioning
interval, and the modularity effects of transmission systems. This is apparent when an
estimate of how much sparing needs to be added to each network in order to reach 100%
restoration using OPRA is made. Such an estimate is possible by multiplying the total
amount of unrestored demand in a network by the average restoration path length, and
dividing that product by the total amount of spare capacity present in that network. For
example, the metropolitan network with no stub release could not restore 25 units of
demand. The average restoration path length in this network is 33.42 km as shown in
Table 11.2. Therefore approximately 835.5 km of spare capacity are required to make this
network 100% restorable using OPRA. This represents 3.7% of that network’s total
capacity. Similarly, the metropolitan network with stub release, the long-haul network with
no stub release, and the long-haul network with stub release, would require approxi-
mately 5.5%, 0.97%, and 1.8% of that network’s total capacity respectively to make them
100% restorable using OPRA.

11.6.2 Restoration Path Times

While all networks have similar average restoration times, t; ayg, the time it
takes on average to identify a restoration plan, tg, in a network with fewer spares is gen-

erally less than in a network with many spares. This is evident when the histogram of res-
toration path times for those networks engineered using stub release is compared to
those networks engineered without stub release. For both the metropolitan and long haul

232

Chapter 11, OPRA Test Restuits

networks, when stub release is used, the IP requires fewer spare links to engineer a
100% path restorable network, and tg, t; a4, and tgs all decrease. In general, when a net-
work has less spare capacity, the routing altematives available to forward flooding state-
lets are reduced and OPRA is more constrained in its search for an optimal restoration
pathset, thereby decreasing the restoration time. There is therefore a double benefit to
having the most efficiently spared network design. The obvious benefit is reduced cost.
Less obvious, but seen here, is increased speed of restoration.

11.6.3 Restoration Path Lengths

Comparing the restoration path length histograms from the solutions found
using OPRA and the IP reference solutions, for each of the four network designs, it is
apparent that OPRA tends to form shorter paths than the IP. For example, the average
length of the restoration paths OPRA finds in the metropolitan network with stub release,
as shown in Figure 11.10, is less than that found using the IP for that same network, as
shown in Figure 11.11. In every case, OPRA restores a larger proportion of lost working
paths using shorter restoration paths. However, synthesizing shorter restoration paths
results in either synthesizing a few restoration paths longer than those used by the IP or
a lower network restorability. The use of a few relatively long restoration paths to com-
pensate for the use of a large number of relatively short restoration paths is apparent
when the average and standard deviation shown in Figures 11.10 and 11.17 are com-
pared to the average shown in Figures 11.11 and 11.18 respectively. In each of these
cases, the average restoration path length found by OPRA is smaller than that of the IP,
and the standard deviation larger.

Even though OPRA seeks to complete those restoration paths with the lowest
interference number first, a forward flooding statelet with a larger interference number
may succeed at establishing a short restoration path because low t, i's as well as interfer-
ence numbers moderate the competition between forward flooding statelets. Therefore,
OPRA may establish a short restoration path with a larger interference number, instead
of a more capacity efficient long restoration path with a lower interference number,
because this is the minimal temporal path towards full restoration. The reference solution
set found by the IP is only concerned with minimizing a network’s capacity requirements,

233

Chapter 11, OPRA Test Results

whereas OPRA's combined objective is to minimize both the restoration time and the
spare capacity used. This leads OPRA to synthesize restoration paths generally shorter
than those of the IP. In all the tests presented here, this trait reduces OPRA’'s PNE to
slightly less than 100%, as shown in the network restorability figures associated with
each restoration trajectory plot, which range from 97.9% to 99.7%.

11.6.4 Interference Numbers

The interference number histograms give an indication of the intensity of conten-
tion amongst statelets attempting to restore a span cut. For example, a histogram with a
high average interference number indicates most restoration paths found by OPRA con-
flict with the formation of other possible restoration paths. In general, the number of state-
lets competing to restore a failure, and therefore each statelet's interference number,
increases as a network’s degree and spare capacity increases because such networks
can support a greater number of statelet families simultaneously.

Comparing the interference number histograms for a given network, it is appar-
ent that those histograms for networks employing stub release have a smaller average
interference number and lower standard deviation than the histograms for networks with-
out stub release. This is due to the fact that the amount of spare capacity available for
restoration is less with stub release so that fewer statelet families compete to restore a
failure simultaneously. Similarly, the average and standard deviation of the metropolitan
network’s interference number histograms are larger than those of the long haul network
because the metropolitan network has a higher average node degree, and more statelet
families compete to restore a failure simultaneously.

11.6.5 Scatterplots

OPRA seeks to complete those restoration paths with the lowest interference
number first, and usually does so as shown in the path time versus interference number
scatterplots, especially the scatterplots in Figures 11.20 and 11.27. The spread in the pat-
tern shown in each of these plots is due to the fact that a forward flooding statelet with a
larger interference number may succeed at establishing a restoration path because

234

Chapter 11, OPRA Test Resuits

speed as well as interference numbers moderate the competition between forward flood-
ing statelets.

Whether longer or shorter restoration paths are preferred by OPRA as a resuit of
selecting those restoration paths with the lowest interference number first is revealed in
the restoration path length versus interference number scatter plots. There is no apparent
correlation between restoration path length and interference number. Long restoration
paths are just as likely to have a large interference number as short restoration paths.
Therefore, OPRA may synthesize a long or short restoration path with almost equal prob-

ability as a result of selecting those restoration paths with the lowest interference number
first.

11.7 Summary of all OPRA Test Resuits

The following table summarizes OPRA’s ability to restore all single span failures
in the 18 network designs resulting from combining networks 1,2, and 4 with all six
capacity placement techniques explained in chapter 4. The values presented in this sum-
mary table are consistent with the interpretation and discussion presented in the previous
section.

One set of values shown in Table 11.4 is new however, and should be explained.
The last column in Table 11.4 presents the number of unique statelets transmitted per link
over all failures. This value is calculated by counting the total number of unique statelets
transmitted on all the spans in a network during a single restoration event, and dividing
that sum by the total number of spare links in that network. Only unique statelets are
counted because OPRA only processes unique statelets as explained in chapter 10.

The average statelet volume per link may be decreased by bundling failed links
from the same demand pair into a single group that is processed as one block at tandem
nodes. In mesh restoration the most efficient use of spare capacity is made when every
failed link unit is replaced by a replacement path of the same unit capacity. However, if
larger units are re-routed as a single block average statelet volume per link is decreased
[28]. Bundling is an implementation issue which is not investigated in this thesis.

235

Chapter 11, OPRA Test Results

Table 11.4. Summary of all OPRA Tests

IP capacity Average
oo | dodsncme | o | b || e |t | e |

chapter 4) . link*

1 %ase 1 100% | 27.00 | 2400 | 71.06 3.437 3.048 13.6
Case 2 100% | 25.00 | 251.0 | 77.89 4246 3.169 15.7

Case 3 100% | 28.00 | 235.0 | 78.66 4.880 3.239 173

Case 4 100% | 27.00 | 206.0 | 69.20 5218 2.859 16.6

Case 5 97.2% | 28.00 | 243.0 | 82.12 4275 3.319 164

Case 6 98.6% | 27.00 | 266.0 | 81.48 3.936 3.464 17.9

2 Case 1 99.6% | 70.0C | 1999 | 625.9 52.54 32.36 6.23
Case 2 98.4% | 66.00 | 2968 | 655.6 72.66 33.42 7.84

Case 3 98.0% | 62.00 | 1959 | 5433 65.27 33.12 7.38

Case 4 98.9% | 52.00 | 1381 410.5 45.69 35.27 9.78

Case 5 99.7% | 54.00 | 1135 | 410.0 51.39 36.86 11.4

Case 6 97.9% | 47.00 | 1200 | 402.2 48.53 34.74 123

4 Case 1 99.5% | 24.00 | 2876 | 546.3 19.89 2161 11.8
Case 2 99.7% | 26.00 | 2798 | 521.2 2625 2184 245

Case 3 99.7% | 23.00 | 2774 | 527.4 25.27 2199 26.0

Case 4 99.1% | 15.00 | 2553 | 481.5 21.00 2203 205

Case 5 99.3% | 21.00 | 2725 | 496.6 24.67 2216 31.0

Case 6 986% | 18.00 | 2505 | 460.9 24.32 2046 315

* The average statelet volume counts the number of unique statelets transmitted per link over all failures.

236

Chapter 11, OPRA Test Restuits

11.8 Conclusion

OPRA restores all single span failures in a network relatively quickly and effi-
ciently. Given the conservative processing delays and tightly designed networks used to
find the results presented in this chapter, a complete restoration plan which fully restores
any single span failure would likely be identified before the two second call dropping
threshold in each of these networks in practice.

In all of the tests presented in this chapter, a network’s restorability and the PNE
of the process was never less than 97.9% and the average restoration time never more
than 656 msec. The difference in PNE between the solutions found by the IP and OPRA
may be attributed in part to OPRA's combined objective to minimize both the restoration
time, and the spare capacity used restoring a failure.

At the heart of OPRA is the interference heuristic through which the DRA self-
organizes network spares into a near optimal multicommodity max-flow restoration path-
set. In accordance with this heuristic, those paths with the lowest interference number
are generally found first. Unlike a path's restoration time and its interference number, -
there is no correlation between a restoration path's length and its interference number.
Therefore OPRA may synthesize long as well as short restoration paths.

While the topology and size of any network designed to survive all single span
failures have little impact on the restoration time and PNE, they impact a restoration
path's interference number. More constrained networks with less spare capacity and
lower average node degree cannot simultaneously support as many statelet families as
networks which have more spare capacity and a higher average degree, and therefore
the restoration paths of these more constrained networks have lower interference num-
bers.

The consistency of OPRA's restoration time and PNE in all of the tests performed
demonstrates the algorithm'’s flexibility and insensitivity to network size and topology.

237

Chapter 12, Effects of Decreasing the Processing Delay

Chapter 12. Effects of Decreasing the
Processing Delay

This chapter investigates the impact of reducing the processing delay associ-
ated with updating ports, re-evaluating the broadcast pattem at a node, and the delay
between polling cycles. The time required to process a new statelet or alarm is set by the
constant STATELET_PROCESSING_DELAY. The time required to re-evaluate the
broadcast pattern at a node is set by the constant BROADCAST_DELAY. The delay
between polling cycles is set by the constant DELTA_T. In the previous chapter, the
results presented assume a STATELET_PROCESSING_DELAY of 1 msec, a
BROADCAST_DELAY of 2 msec, and a DELTA_T of 2 msec. Given these conservative
processing delays a complete restoration plan could only be identified before the two
second call dropping threshold for the metropolitan network with stub release.

In this chapter the impact of reducing STATELET_PROCESSING_DELAY to
0.5 msec, BROADCAST_DELAY to 1 msec, and DELTA_T to 0.5 msec is investigated.
Given a DCS CPU clock rate of 200 MHz, assuming a C-level instruction takes 5 clock
cycles to complete, and that processing one port requires in the worst case on the order
of a few hundred lines of C-code, the processing delays considered in this chapter
remain realistic and comparable to the values chosen previously [21].

12.1 Study Network

The effect of reducing the processing delay in the network with the largest
g5th percentile restoration time Is presented in this chapter. The metropolitan network
without stub release required 2 335 msec to find 0.95 of all restoration paths over all span
cuts, and is used here to investigate the impact of reducing the processing delay associ-
ated with updating ports, re-evaluating the broadcast pattern at a node, and the delay
between poliing cycles. This network optimizes the spare capacity placement of a path
restorable network without stub release given that the working capacity design split the
routing of demand between a node pair as evenly as possible over the node pair's logi-
cally shortest disjoint routes (i.e. case 2 as defined in chapter 4).

238

Chapter 12, Effects of Decreasing the Processing Delay

12.2 Test Result Presentation Format

The same set of plots presented in chapter 11 for each network design are
presented here for the metropolitan network without stub release, except for the histo-

gram of restoration path lengths used in the reference IP solution over all span cuts
because it doesn't change.

12.3 Option Settings

The same values assigned in chapter 11 to the various options defined in
OPRA are reused here. In summary they are:

lIN_STEP =0
MAXREPEATS =6
TIMEOUT =3 sec.

Retaining these same option values facilitates a fair comparison between the
set of plots presented in chapter 11 for the metropolitan network without stub release and
the plots presented in this chapter.

In order to investigate the impact of reducing the processing delay, the values
assigned to the options associated with the testbed are different in this chapter than in

chapter 11. In this chapter the following values were assigned to the options associated
with the testbed:

1. transmission delay = 1.25 msec.

2. propagation delay calculated assuming FOTS

3. STATELET_PROCESSING_DELAY, = 0.5 msec.
4. BROADCAST_DELAY = 1 msec.

5. DELTA_T = 0.5 msec.

239

Chagpter 12, Effects of Decreasing the Processing Delay

12.4 Experimental Resuits in Metropolitan Network without
Stub Release

The following plots record OPRA's performance in a metropolitan network
(network number 2), with spare capacity optimized to facilitate path restoration without
stub release (design case number 2) with a reduced processing delay.

0.9
08
span failure 7-10,
07 Hi § max. restorability
; (Rnyc) =93.6%

Z osl
X
s 05 span fallure 9-10, max. restorability = 99.2%
2 =T restoration time (tg) = 1 595 msec.
o
g o4t
& span failure 0-2, max. restorability = 100%

0.3 restoration time = 32.00 msec.

02 kil span failure 9-14, max. restorability =100%

restoration time = 695.0 msec.
01} -
Network Restorability (Rn) = 98.9%
0 N s " " " "
0 250 500 750 1000 1250 1500 1750 2000
Restoration Time
Note:

Time first alarm received at a node = 0 msec.
Time last alarm received at a node = 0 msec.

Time first restoration path found (ty;) = 32.00 msec.

Time last restoration path found (tg) = 1 595 msec.

Average restoration time {t,avg) = 330.3 msec.

Standard deviation from average restoration time = 283.7 msec.
Time required to find 0.95 of all restoration paths (tgs) = 1 100 msec.

Figure 12.1. Restoration trajectories in a metropolitan network
without stub release

240

Chapter 12, Effects of Decreasing the Processing Delay

250 T T
B
H Time first restoration path found (i) = 32.00 msec.

200 Time last restoration path found (tg) = 1 594 msec. _
g Average restoration time (gvg) = 330.3 msec.
= Standard deviation = 283.7 msec.
T tg5 = 1100 msec.
& 150 | J
o
5 I
[}
g 1
§ 100 H .
3
2
2

Bin width = 50 msec.
& s0 ddh = 50]
0 11l JMan 0
0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
Restoration Path Completion Time (msec)

Figure 12.2. Distribution of restoration path times in a metropolitan
network without stub release over all span cuts

300 v v v v r v . v v
r Shortest restoration path = 14.00 km 1
[Longest restoration path = 86.00 km |
250 Average path length = 33.59 km -
% [Bin width = 2 o Standard deviation = 13.53 km]
s I —>
] [-]]
£ 200 1
[- .
a. K
S L
: -
g A
w 5 [
B 100 |- ‘} .
4 I
[}
8§ I - :
§ il |
0 s l—‘l_ 1 1

o

10 20 30 40 50 60 70 80 90 100
Restoration Path Length (km)

Figure 12.3. Distribution of restoration path lengths found by OPRA in a
metropolitan network without stub release over all span cuts

241

Chapter 12, Effects of Decreasing the Processing Delay

Observed Frequency of interference Number

400 T \
E Smallest interference number= 0
g Largest interference number = 288]
- Average interference number = 67.11 b
- Standard deviation = 68.61 1
300 H]
200 H .
100 { =
[Bin width = 5]
X —’H -]
0 : Im} J;rh_ n :
0 50 100 150 200 250 300
Interference Number

Figure 12.4. Distribution of interference numbers in a metropolitan

network without stub release over all span cuts

Individual Restoration Path Interference Number

300

250

200

150

100

50

\AARE SAARRAAAN

0
[
aasteaas

. L]
*
(]
'Y, o 000,
n

il
Siale ¥
' .-.Ho

L}
asaslasesssana

4

Y 'y

)
.
l‘..
.
.

28
§ %

[}
asaalaas

\aansgaasnasnansans RARARARRAS RARARARARE RAA

()
»
)
[
]

ianl

n

500 1000 1500 2000 2500 3000
Restoration Path Completion Times (msec)

|

Figure 12.5. Interference number versus path time for all span

cuts in a metropolitan network without stub release

242

Chapter 12, Effects of Decreasing the Processing Delay

300 ¢

2 3 S i
E 250 3 3
= E - . 3
& 3 3 ce 3
2 200 = . .]
] E - -]
g [] ° -]
£ E . [}]
g 150 3 e e o o - . g
g - o.. l - .l - .ur P
k=] o - ™~
g F -9 .0~
g 100 l ® . ®e .. | B - 3
« E - .
E} E L L -
% 5 F ¢ - 8z . . « T . >

- o 8 ‘:. L N ® - '] .. - ®e®
- l : - ..:.;.':'.'. & e . T .

0 C Leaa? .-93 L3 .?::.’ 70, {.9 —nim o
0 10 20 30 40 50 60 70 80 90 100
Restoration Path Length (km)

Figure 12.6. Interference number versus path length for all span
cuts in a metropolitan network without stub release

12.5 Interpretation of Results

12.5.1 Restoration Trajectories

Comparing the restoration trajectories presented in Figure 12.1 to those of the
same network in Chapter 11, itis evident that:

1. reducing the processing delay associated with
updating ports from 1 msec. to 0.5 msec,

2. reducing the processing delay associated with re-
evaluating the broadcast pattern from 2 msec to 1
msec, and

3. reducing the delay between polling cycles from 2
msec. to 0.5 msec,

243

Chapter 12, Effects of Decreasing the Processing Delay

nearly cuts the restoration time in half. The average restoration time moved from 655.6
msec. to 330.2 msec, and the time required to find 0.95 of all restoration paths decreased
from 2 335 msec. to 1 100 msec.

Reducing the delay also increased network restorability slightly. Network
restorability moved from 98.4% to 98.9%. Furthermore, the restorability of those spans
with the lowest restorability, Rn,,., and restored last, tg, increased slightly from 92.8%
and 97.3%, to 93.6% and 99.2% respectively.

Reducing the processing delay has little effect on which spans have the lowest
and highest restoration times, and which spans have the lowest restorability. In both Fig-
ures 11.1 and 12.1, span failure 0-2 has the lowest restoration time, span failure 9-10 has
the longest restoration time, and span failure 7-10 has the lowest restorability.

12.5.2 Restoration Path Times

Comparing histograms 11.2 and 12.2 it is apparent that the restoration time is
almost cut in half in each of ty4, tg, tp,avg, and tgs. However, the overall distribution of the
histogram is the same in both plots.

12.5.3 Restoration Path Lengths

Comparing histograms 11.3 and 12.3 it is apparent that the distribution of path
lengths found by OPRA does not change very much. The length of the shortest and long-

est paths are the same in both plots, and the average restoration path length and stand-
ard deviation are almost equal.

12.5.4 Interference Numbers

Comparing histograms 11.5 and 12.4 it is apparent that the distribution of inter-
ference numbers does not change very much either. The smallest and largest interfer-
ence numbers in both plots have the same value, and the average interference number
and standard deviation are almost equal.

244

Chapter 12, Effects of Decreasing the Processing Delay

12.5.5 Scatterplots

Comparing Figures 11.6 and 12.5 it is apparent that reducing the processing
delay has compressed the plot of interference numbers versus path completion times
along the horizontal time axis. This effect is expected because reducing the processing
delay reduces each path's restoration time. The scatterplots are similar in all other
respects. Those restoration paths with the lowest interference number are still usually
restored first, and the spread in the pattem shown is due to the fact a forward flooding
statelet with a larger interference number may succeed at establishing a restoration path.

Comparing Figures 11.7 and 12.6 it is evident that reducing the processing
delay has little impact on the plot of path length versus interference number. In both scat-

terplots there is no discernible correlation between a restoration path’s length and its
interference number.

12.6 Conclusion

Reducing the processing delay reduces the restoration time and has little
impact on a network's restorability. Given the realistic processing delays and the tightly
designed network used to find the results presented in this chapter, it is likely that a com-
plete restoration plan which fully restores any single span failure would be identified by
OPRA before the two second call dropping threshold in any network in practice.

245

Chapter 13, Effects of Random Individual Link Failure Times

Chapter 13. Effects of Random Individual
Link Failure Times

This chapter reports the behaviour of OPRA when presented with a random
series of individual link failures, as opposed to a “guillotine” (i.e. simultaneous) model of a
cable cut like the one used in the previous two chapters. A staggered series of individual
link alarms seems more plausible when a backhoe pulls a cable apart than the idealiza-

tion of an instantaneous complete failure, and verifies OPRA’s ability to cope with com-
plex failure stimuli.

13.1 Staggered Alarms

Given that OPRA reconfigures the spares of a network in 100's of millisec-
onds, a network failure may be ongoing while the restoration process is active. Random
link failures spread out over a few hundred milliseconds could, in principle, offer the
greatest potential for possibly adverse dynamic interactions. This chapter therefore
investigates the effects of individual alarms that are randomly distributed over an interval
of several hundred milliseconds on the behaviour of OPRA, similar to the investigations
performed previously on the SHN [32].

A Gaussian distribution of random failure times was used to produce stag-
gered alarm failure scenarios as in [32]. For the results presented here, individual link fail-
ure times have a standard deviation of 96.87 msec about an observed mean of 209.9
msec. This mean and standard deviation was chosen because it coincides with the time
scale of a single restoration event. Non-simultaneous link failures spaced at intervals
equal to, or longer than, a few seconds would be restored by OPRA in separate distinct
sequential restoration events. Such a test would be equivalent to running multiple inde-
pendent sequential tests of OPRA in a network with steadily diminishing spare capacity,
and not clearly verify OPRA's ability to cope with complex failure stimuli.

The assignment of failure times to individual links within the cross-section of a
failing span is made randomly, and without regard to working or spare status, so that the
overall span-cutting action appears random both in space and in time.

246

Chapter 13, Effects of Random Individual Link Failure Times

13.2 Direct Exposure of OPRA to Staggered Alarms

The results presented in this chapter assume OPRA is directly exposed to a
series of randomly timed individual link failures. In this case OPRA is re-invoked in
response to each new failure by a ‘late-alarm’ event while already active in response to
previous failures. Each such re-invocation causes a source node to update its primary
flooding pattern, and such changes have to propagate through the rest of the network,
altering the self-organizing dynamics of the network on-the-fly.

An implication of direct exposure of OPRA to staggered alarms is that a spare
link on a failing span may be used for restoration and then fail itself later. The ability to
restore over spare links on the same span as the failure is normally desirable because it
means that single fibre failures are restored in a manner analogous to today’s 1:N or 1:1
automatic protection switches (APS).

13.3 Study Network

The network used for the study of staggered alarms is the metropolitan net-
work with stub release investigated in chapter 11. This network has its working and spare
capacity optimized for path restoration with stub release (i.e. case 6 as defined in chapter
4). Of all the networks investigated in chapter 11 assuming a guillotine cable cut, the met-
ropolitan network with stub release was the only network for which OPRA identified a
complete restoration plan before the two second call dropping threshold. This network is
used here because any detrimental effects from staggered alarms on restoration time
and restorability will be clearest in this network when compared to the benchmark of the
simultaneous failure case presented in chapter 11.

13.4 Test Result Presentation Format

The same set of plots presented in chapters 11 and 12 are presented here for

the metropolitan network with stub release. In addition, a histogram of working link failure
times is presented.

247

Chapter 13, Effects of Random Individual Link Failure Times

13.5 Option Settings

The same values assigned in chapter 11 to the various options defined in
OPRA and the testbed are reused here. in summary they are:

lIN_STEP =0

MAXREPEATS =6

TIMEOUT =3 sec.

transmission delay = 1.25 msec.

propagation delay calculated assuming FOTS
STATELET_PROCESSING_DELAY, = 1 msec.
BROADCAST_DELAY =2 msec.

DELTA_T =2 msec.

13.6 Experimental Results in Metropolitan Network with Stub Release

The following plots show OPRA’s performance in a metropolitan network (net-
work number 2), with working and spare capacity optimized to facilitate path restoration
with stub release (design case number 6) under staggered alarm conditions.

200 N L L3 L] ¥
Time first alarm received

s Bin width = 10 msec. at a node = 0.000 msec.

! —>—]
@ - —} Time last alarm received 1
€ L atanode = 453.3 msec. -
= 150 | M .
g Average fallure time = b
=] 209.9 msec
w :] 1T
© [_} Standard deviation from

- — average faflure time = h
g 100 ¢ T 96.87 msec
S ~ | [~
g 8 T | —1
w B W—
B
% 50 F all T]
2 C H p
(@]

O >_I
0 50 100 150 200 250 300 350 400 450 500
Working Path Failure Times (msec)

Figure 13.1. Distribution of alarms in a metropolitan network over all span cuts

248

Chapter 13, Effects of Random Individual Link Failure Times

0.4

Span Restorability
(=]
n

0.3

0.2

0.1

span failure 7-10,
max. restorability (Rny,c) = 88.0%

restoration time (tg) = 1 388 msec.

span failure 0-14, max. restorability = 100%
restoration time = 353.9 msec.

Network Restorability (Rn) = 97.7%

span failure 11-12, max. restorability =100% 1

Note:

750 1000 1250 1500 1750
Restoration Time

Time first alamm received at a node = 0.000 msec.

Time last alarmm received at a node = 453.3 msec.

Average failure time = 209.9 msec

Standard deviation from average failure time = 96.87 msec

Time first restoration path found (t¢) = 26.00 msec.

Time last restoration path found (tg) = 1 388 msec.

Average restoration time (i avg) = 423.5 msec.

Standard deviation from average restoration time = 233.4 msec.
Time required to find 0.95 of all restoration paths (tgs) = 916.0 msec.

2000

Figure 13.2. Restoration trajectories in a metropolitan network with stub release

248

Chapter 13, Effects of Random Individual Link Failure Times

250 v r v v
i Time first restoration path found (t5;) = 26.00 msec.
] Time last restoration path found (tg) = 1 388 msec. |
o 200 I Average restoration time (tp avg) = 423.5 msec. -
£ [Standard deviation = 233.4 msec.]
i = 916.0 msec.]
] " Binwidtha les 1
a F 50 msec .
5 180 F—»M<— -
= 111
& 100 | SEEENe -
3 X]
Z -
Q - E
723
2 g 4
(@) 50 | -
0 » B 4 | Ll L L
o] 250 500 750 1000 1250 1500 1750 2000
Restoration Path Completion Time (msec)

Figure 13.3. Distribution of restoration path times in a metropolitan
network with stub release over all span cuts

200 . v v . T Y Y v Y r

: Shortest restoration path = 7.000 km

L Longest restoration path = 93.00 km)
c X Average path length = 37.34 km)
B 150 + Standard deviation = 16.48 km]
Q
- -
= 5
[
et - Binwidth = 2k ||
S X > |
g 100 |]
Q
§_ K -
£ L U
3 [|
2 4
2 50 4
0
o) 5

0 4 l 111 — 1
0 10 20 30 40 50 60 70 80 90 100 110
Restoration Path Length (km)

Figure 13.4. Distribution of restoration path lengths found by OPRA in
a metropolitan network with stub release over all span cuts

250

Chapter 13, Effects of Random Individua! Link Failure Times

Observed Frequency of Interference Number

800 T - .
700 F Smallest interference number= 0 3
C Largest interferance number = 124]
- Average interferance number = 15.99]
600 Standard deviation = 23.30 -
500 | .
400 +]
300 [3
200 |]
o Bin width = 5]
o —>». —]
[[N
ok b = ; .
0 50 100 150 200 250
Interference Number

Figure 13.5. Distribution of interference numbers in a metropolitan
network with stub release over all span cuts

Individual Restoration Path Interference Number

250 ¢ ~]

200 | 3

150 | 3
5 . 5

100 | . o, r . 3
: = W .:.. -) s -]
: ot BTN :
- B A * . .]

0F - a‘n"f":'.f.":- I owls Lo- E
[-3 S T XN L T 3
g TR AT
- e " o8 ® - -

0 " * =SS o -° 2
0 250 500 750 1000 1250 1500
Restoration Path Completion Times (msec)

Figure 13.6. Interference number versus path time for all span

cuts in a metropolitan network with stub release

251

Chapter 13, Effects of Random Individual Link Failure Times

250 ¢

: 1
2 : :
g F b
4 200 3
£
I ;
E S0F J
£ o]
< - .]
o]
s g T = ;
'§ 100 E’ - ® - . celv -:'
S 1 - - s . 3
« r i1 L - ea 0 ° o b ':. . N
Ef - PR N P - AU 3
s PP P Aamnldreiiol oL

- - - . aw -..‘
g : E :..:". -?....-..; .‘.‘j' .';-' ~.o' ’... -
r s L -
ot = 2
0 25 50 75 100 125
Restoration Path Length (km)

Figure 13.7. Interference number versus path length for all span
cuts in a metropolitan network with stub release

13.7 Interpretation of Results

13.7.1 Working Path Fallure Times

The working path failure times presented in Figure 13.1 approximate a Gaus-
sian distribution with a standard deviation of 96.87 msec about an average of 209.9
msec. This histogram presents the times at which the nodes terminating a failed working
path receive path level alarms. When the time scale of Figure 13.1 is compared to the
time scale of the restoration trajectory plot shown in Figure 13.2, it is apparent that both
the network failure and restoration process are active simultaneously.

13.7.2 Restoration Trajectories

Comparing the restoration trajectories presented in Figure 13.2 to those of the
same network in Chapter 11 in Figure 11.8, it is evident that staggered alarms do not sig-
nificantly reduce a network’s restorability or increase a network’s restoration time. The

2562

Chapter 13, Effects of Random Individual Link Failure Times

difference in network restorability, Rn, and average restoration time, t; ayq. between the
restoration trajectories shown in Figures 13.2 and 11.8 is only 0.2% and 21.3 msec
respectively. Even with staggered alarms, a complete restoration plan is identified for the
metropolitan network with stub release before the two second call dropping threshold.
While the average restoration times are very close, the restoration time of the
first span to be fully restored, highlighted in red in both plots, is significantly less in Figure
11.8 when compared to Figure 13.2. Under staggered alarm conditions, span 0-14 is fully
restored at a time of 353.9 msec, as opposed to 66.00 msec given a guillotine model of a
cable cut. In general, the restoration trajectories of those spans restored first in Figure
11.8 follow a more gentle slope under staggered alarm conditions, and complete their
restoration plan at a later time. However, the restoration time of those spans restored last
in Figures 13.2 and 11.8 does not change significantly. In both plots the time required to
find 0.95 of all restoration paths is close to 1 sec. Under staggered alarm conditions the
skew in the restoration trajectories is less because restoration paths are found one at a

time as alarms accumulate, instead of in bundles that drive the restorability of smaller
spans to 100% very quickly.

13.7.3 Restoration Path Times

Comparing histograms 13.3 and 11.9 it apparent that staggered alarms tend to
even out the distribution of restoration path completion times. Because restoration paths
are found one at a time in Figure 13.3 rather than in bundles at discrete intervals, the
probability that a large number of restoration paths are completed in a given 50 msec
window is less. Compared to Figure 11.9, the histogram in Figure 13.3 lacks the large
observed frequency of path times centred around 250 msec, and has a slightly larger
to.avg: tas, and standard deviation.

13.7.4 Restoration Path Lengths

Comparing histograms 13.4 and 11.10 it is evident that staggered alarms
increase the average restoration path length slightly. The average path length in Figure
13.4 is 37.34 km, compared to 34.74 km in Figure 11.10. However, staggered alarms do
not lead to individual restoration paths much longer than the average given that the

253

Chapter 13, Effects of Random Individual Link Failure Times

length of the longest restoration path in Figure 13.4 is less than the length of the longest
restoration path in Figure 11.8 by 15 km.

13.7.5 interference Numbers

Comparing Figure 13.5 and 11.12 it is apparent that staggered alarms have a
significant effect on the number of statelet families competing to restore lost capacity.
Staggered alarms reduce the number demand pairs actively seeking restoration paths
simultaneously. Consequently the value of the largest interference number, average
interference number, and standard deviation in Figure 13.5 is approximately half of those
values associated with a guillotine model of a cable cut.

13.7.6 Scatterplots

Comparing Figures 13.6 and 13.5 with Figures 11.13 and 11.14 respectively, it
is apparent that staggered alarms eliminate large path interference numbers. Staggered
alarms reduce the number of statelets seeking restoration paths simultaneously resulting
in smaller interference numbers. The scatterplots are similar in all other respects. Those
restoration paths with the lowest interference number are still usually restored first, and

there is no discernible correlation between a restoration path’s length and its interference
number.

13.8 Conclusion

In summary, direct exposure of OPRA to staggered failure scenarios has little
impact on tg and Rn. The restoration plan for each span failure in the metropolitan net-
work with stub release is identified before the two second call dropping threshold just as
with the guillotine model of a cable cut. The only significant difference between the
results presented here and those presented in chapter 11 is a reduction in the number of
restoration paths with large interference numbers.

254

Chapter 14, Eliminating the Interference Heuristic In OPRA

Chapter 14. Eliminating the Interference
Heuristic In OPRA

This chapter quantifies the benefits of the interference heuristic which enables
OPRA to synthesize a near optimal multi-commodity max-flow restoration pathset in usu-
ally less then two seconds. This pathset is optimal in the sense that it uses a near mini-
mum amount of spare capacity when compared to the ideal IP reference solution. By
eliminating the interference heuristic in OPRA, and satisfying the broadcast mesh of all
statelets to the greatest extent possible in the order in which statelets arrive at a node,

the benefits of synthesizing a restoration pathset using the interference heuristic can be
quantified.

14.1 Eliminating the Interference Heuristic

The interference heuristic preferentially satisfies those incoming statelets
seeking rebroadcast with the lowest interference number first. Those statelets with the
lowest interference number do not traverse nodes of low degree, or spans of low sparing.
Satisfying such statelets first was found to be beneficial based on experiments performed
using the Interference Tester presented in chapter 6. The interference heuristic estab-
lishes a broadcast pattern which satisfies all statelets seeking rebroadcast at a node to
the greatest extent possible based on a statelet's overall rank in terms of its interference
number, and the relative spans in which it and other statelets lie. Late arriving statelets
with low interference numbers are allowed to supplant outgoing statelets from other fami-
lies which arrived earlier. Supplanting such high interference number statelets during the
forward flooding process usually halts the reverse linking process of those statelets with
higher interference numbers, and allows OPRA to resolve itself into those restoration
paths with the lowest interference number.

Eliminating the interference heuristic in OPRA means ignoring a statelet’s
interference number. In this case the broadcast pattern of the statelet which arrived first
at a tandem node, and is seeking rebroadcast, rather then that statelet with the lowest

interference number, is always satisfied to greatest extent possible, consistent with the

255

Chapter 14, Eliminating the Interference Heuristic In OPRA

relative spans in which it and other statelets lie. Late arriving statelets with low interfer-
ence numbers are not allowed to supplant outgoing statelets from other family’s such that
the broadcast pattern of the statelet which arrived first at a tandem node persists until col-
lapsed during reverse linking or the disappearance of that statelet's precursor. Eliminat-
ing the interference heuristic transforms OPRA into a bidirectional flooding DRA which
does not attempt to use a minimum amount of spare capacity.

14.2 Study Network

The interference heuristic affects a statelet's broadcast mesh the most when a
network’ s sparing is low, and the competition between statelets for outgoing spare links
at a node is high. In this case the average interference number of a statelet is high. The
benefits of the interference heuristic are most readily apparent in a network where the
contention amongst statelets attempting to restore a span cut is high. Of all the networks
investigated in chapter 11, those statelets from the metropolitan network without stub
release had the highest average interference number. Therefore, the network used to

quantify the benefits of the interference heuristic is the metropolitan network without stub
release investigated in chapter 11.

14.3 Test Result Presentation Format

The plot of the restoration trajectories, along with the histograms of restoration
path time and length, are presented here for the metropolitan network without stub
release. Plots and histograms similar to those presented in chapter 11 concerning inter-
ference numbers are omitted here because they are not relevant.

256

Chapter 14, Eliminating the Interference Heuristic In OPRA

14.4 Option Settings

The same values assigned in chapter 11 to the various options defined in
OPRA and the testbed are reused here. In summary they are:

IIN_STEP =0

MAXREPEATS =6

TIMEOUT =3 sec.

transmission delay = 1.25 msec.

propagation delay calculated assuming FOTS
STATELET_PROCESSING_DELAY, = 1 msec.
BROADCAST_DELAY =2 msec.

DELTA_T =2 msec.

14.5 Experimental Results in a Metropolitan Network without Stub
Release

The following plots display the performance of a bidirectional flooding path
DRA which does not use the interference heuristic in a metropolitan network (network
number 2), whose spare capacity is optimized to facilitate path restoration without stub
release (design case number 2). This DRA is equivalent to OPRA without the interfer-
ence heuristic. All results assume a guillotine model of a cable cut.

257

Chapter 14, Eliminating the Interference Heuristic In OPRA

1 —r v - v v

o9} B nf/]
% span failure 0-2, max. restorability = 100%
ost J restoration time = 66.00 msec. |
y
07} span failure 8-14, max. restorability = 100%
restoration ime = 1 371 msec.
;3_' 06}
B
s os| W
]
@
8§ o4}
Q.
@ ‘
03¢ [
Y/
o2l span failure 7-10, max. restorability (Rn,,.} = 60.7%
. restoration time (tg) = 2 109 msec.
0.1} oo
! [Network Restorability (Rn) = 92.4%
0

o] 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
Restoration Time

Note:
Time first alarm received at a node = 0.000 msec.
Time last alarm recsived at a node = 0.000 msec.

Time first restoration path found (t,4) = 66.00 msec.
Time last restoration path found (tg) =2 109 msec.
Average restoration time (t; avg) = 546.2 msec.

Standard deviation from average restoration time = 349.7 msec.
Time required to find 0.95 of all restoration paths (tgg) = 1 334 msec.

Figure 14.1. Restoration trajectories in a metropolitan network without stub release

258

Chapter 14, Eliminating the Interference Heuristic In OPRA

200 T T + L] 1 T 13 L3 14 ¥ 1]
Time first restoration path found (tp1) = 66.00 msec.
° W Time last restoration path found (tg) =2 109msec.
E 1 Average restoration time (t, .avg) = 546.2 msec.
‘Z 150 ~ Standard deviation = 349.7 msec. 1
«© [tgs = 1 334 msec.
o
.°- r—1
P [|
c
S 100} i .
g L
w -
L
c
[+ | =
§ = -
Bin width = 50 msec.
- —pr—
0 T L r] 1 1 1
0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
Restoration Path Completion Time (msec)

Figure 14.2. Distribution of restoration path times in a metropolitan
network without stub release over all span cuts

300 T

T Ty T

Shortest restoration path = 14.00 km
Longest restoration path = 86.00 km

£ 250 3 Bin width = 2 km. Average path length = 32.98 km]
e ! md i Standard deviation = 13.37 km
3
= i
g 200f]
‘o' L
N [
g L
S 1S0r]
g | I
w - B 1
® []
z 1 OO -]
[}
(%] -
L
o [
50]
A | 0

L

0 10 20 30 40 50 60 70 80 90 100
Restoration Path Length (km)

Figure 14.3. Distribution of restoration path lengths found by OPRA in a
metropolitan network without stub release over all span cuts

259

Chapter 14, Eliminating the Interference Heuristic In OPRA

14.6 Interpretation of Results

The benefits of the interference heuristic may be quantified by comparing the
results presented here of a a bidirectional flooding path DRA which does not employ the
interference heuristic to a bidirectional flooding path DRA which uses the interference
heuristic, i.e. OPRA. These benefits are quantified below in terms of network restorability,
Rn, and restoration time, i.e. to1, tR, tp,avg, and tgs.

14.6.1 Restoration Trajectories

Comparing the restoration trajectories presented in Figure 14.1 to those of the
same network in chapter 11 in Figure 11.1, it is apparent that eliminating the interference
heuristic in OPRA reduces the Rn by 6%. The benefits of the interference heuristic may
therefore be quantified as 6% in terms of network restorability. However, this measure
alone does not accurately capture the importance of the interference heuristic in OPRA
because it includes the restorability of all those spans in a network which have only a few
working links, and are easy to restore given the abundance of spare capacity available to
these spans. In any network whose sparing is designed to restore all single span failures,
the spare capacity requirements of a few single large spans usually determine that net-
work’s spare capacity placement, and usually only when these large spans are severed
are the benefits of the interference heuristic truly revealed.

The benefits of the interference heuristic can be better quantified when the
Rny,. of the plot shown in Figure 14.1 is compared to the Rn,, of Figure 11.1. In both fig-
ures the Rny, is for span failure 7-10, which is the second largest span in the network
with 250 working links. The difference between these worst case restorabilities is a better
measure because it is evaluated when the contention amongst statelets attempting to
restore a span cut is high, and the interference heuristic is needed most to synthesize a
near optimal multi-commodity max-flow pathset. This difference is 32.1% for the metro-
politan network without stub release. A difference of this magnitude is very significant and
reveals the importance of the interference heuristic in OPRA.

260

Chapter 14, Eliminating the Interference Heuristic In OPRA

14.6.2 Restoration Path Times

Comparing histograms 14.2 and 11.2 it is apparent that eliminating the inter-
ference heuristic reduces the t; avg, tr, and tgs. The reduction in t; 5y is small at 109.4

msec; however, the reduction in tg, and tgs, is significant at 859 msec and 1 001 msec

respectively. This reduction though, is not the resuilt of a substantially faster bidirectional
flooding path DRA when the interference heuristic is eliminated, as confirmed by the fact
that the t;1 of both histograms in Figures 14.2 and 11.2 are the same, rather it is mainly

the result of not synthesizing as complete a restoration pathset for those large spans that
are difficult to restore. Given that the interference heuristic only begins to affect a state-
let's broadcast mesh when a network’s sparing is low, and the competition between state-
lets for outgoing spare links at a node is high, it is likely that when a network is
generously spared, or when a small span is cut, OPRA will have restoration times com-
parable to those of a bidirectional flooding path DRA which does not use the interference
heuristic.

14.6.3 Restoration Path Lengths

Comparing the histograms in Figures 14.3 and 11.3 it is apparent that eliminat-
ing the interference heuristic does not significantly alter the restoration path length distri-
bution. The shortest restoration path in Figure 14.3 has the same length as the shortest
restoration path in Figure 11.3. Similarly, the longest restoration path in Figure 14.3 has
the same length as the longest restoration path in Figure 11.3. In addition the average
restoration path length and the standard deviation from this average in both histograms
are nearly identical. These similarities may be attributed to the fact that OPRA and a bidi-
rectional flooding path DRA which does not use the interference heuristic find similar
paths when there is no contention for spare capacity in a network after severing a small
span with few working links. Only when there is contention for spare capacity does OPRA
synthesizes a more complete restoration pathset, which has little impact on the restora-
tion path length distribution because the number of spans in the metropolitan network for
which there is little contention for spare capacity is larger than the number of spans for
which there is significant contention for spare capacity.

261

Chapter 14, Eliminating the Interference Heuristic In OPRA

14.7 Conclusion

The interference heuristic is needed in OPRA to synthesize a near optimal
multicommodity max-flow restoration pathset. The benefits of the interference heuristic
are most apparent when the large spans in a network are severed and there is a lot of
contention for spare capacity. This benefit is most accurately quantified comparing the
Rny,. of OPRA to a path DRA which does not employ the interference heuristic. The
results presented in this chapter show that eliminating the interference heuristic reduces

the restorability of the second largest span of the metropolitan network without stub
release by 32.1%.

262

Chapter 15, Achieving Restoration Levels Proportional to a Network's
Pre-Failure Connectivity After Multiple Span Failures

Chapter 15. Achieving Restoration Levels
Proportional to a Network’s
Pre-Failure Connectivity After
Multiple Span Failures

When a network is not fully restorable, it is desirable to achieve an overall pat-
term of individual restoration levels on each relation that is proportional to that network’s
pre-failure connectivity. In the event of a multiple span or node failure, there likely will be
a shortage of spare capacity in a network efficiently provisioned for span recovery, and
OPRA will not be able to fully restore every affected demand pair. In this case it is impor-
tant to obtain some non-zero apportionment to every demand, ideally pro-rated to the
pre-failure levels [28]. This chapter investigates OPRA's ability to restore multiple span
failures, and synthesize a restoration pathset which apportions to every affected demand
pair an amount of spare capacity proportional to that network’s pre-failure connectivity.

15.1 Network Recovery from Multiple Span Failures and Node Loss

Whether one span, multiple spans, or a node fails in a network, OPRA should
only synthesize restoration paths for those affected demand pairs which remain topologi-
cally connected. Only those demand pairs which remain topologically connected can be
restored by OPRA, or any other restoration mechanism. If OPRA is only informed of
these demand pairs, the simultaneous failure of one or more spans, or the simuitaneous
loss of one or more nodes, appears the same. The number of connected demand pairs
affected by a failure does not impact or alter OPRA's path synthesizing capability. Though
a simultaneous multiple span failure will likely affect more demand pairs than a single
span failure, and a node failure will activate OPRA in those demand pairs which had
working paths traversing the failed node, OPRA is unable to distinguish one case from
the other.

Networks are usually provisioned to survive ali individual span cuts (where a
span is defined as the collection of all transport signals between a pair of adjacent
nodes). In such 100% span restorable networks, there may be a shortage of spare

263

Chapter 15, Achieving Restoration Levels Proportional to a Network's
Pre-Failure Connectivity After Multiple Span Failures

capacity for recovery from node loss or muitiple span failures. When it is impossible to
fully restore every demand pair affected by a failure, it is important to obtain some non-
zero apportionment to every demand, ideally pro-rated to the pre-failure levels [28].
OPRA attempts to do this using the constant IIN_STEP. This chapter investigates
whether increasing IIN_STEP helps achieve an overall pattern of individual restoration
levels on each relation that is proportional to that network's pre-failure connectivity after
the simultaneous failure of multiple large spans.

As explained in chapter 8, when a unit of lost capacity is restored at a node,
the IIN of all subsequent statelets originating from that node is increased by IIN_STEP.
Increasing the [IN of those statelets sourced by a node increases the likelihood that other
demand pairs which have not restored as much lost capacity as this node will complete
one of their restoration paths. In a network which is not 100% restorable, this helps
achieve an overall pattern of individual restoration levels on each relation that is more
proportional to that network’s pre-failure connectivity as shown in the results presented in
this chapter.

In this thesis, the effects of varying the constant IN_STEP are investigated by
simulating multiple simultaneous span failures, rather than simulating node failures,
because a maximum number of relations for which at least one restoration path exists
may be affected. When a node fails it is impossible for any restoration mechanism to
restore those working paths which either originate or terminate at the failed node. How-
ever, when large spans of a network which don't divide that network into two or more
unconnected parts are failed simultaneously, a maximum number of topologically con-
nected demand pairs are affected, and a shortage of spare capacity is likely, in which
case OPRA will be vigorously challenged to achieve an overall pattern of individual resto-
ration levels on each relation that is proportional to that network’s pre-failure connectivity.

264

Chapter 15, Achieving Restoration Levels Proportional to a Network's
Pre-Failure Connectivity After Multiple Span Failures

15.2 Study Network

The effects of varying IIN_STEP could be investigated in any 100% span
restorable network, such as those presented in chapter 11, during the simultaneous fail-
ure of multiple large spans because numerous demand pairs would be affected and a
shortage of spare capacity would ensue. However, to ensure that a severe shortage of
spare capacity ensues, that network in chapter 11 with the lowest redundancy was cho-
sen here to investigate the effects of varying IIN_STEP.

As shown in Table 11.3, the metropolitan network with stub release has lowest
redundancy. Two spans were failed in this network to obtain the results presented in this
chapter: spans 9-10 and 5-7. These spans are two of the largest spans in the metropoli- .-
tan network with stub release. Span 9-10 consists of 122 working links and span 5-7 con-
sists of 106 working links. Combined, the simultaneous failure of these spans affect a

total of 20 connected demand pairs and 228 units of demand, and a severe shortage of
spare capacity ensues.

15.3 Test Result Presentation Format: Starplots

Starplots are used to show the impact of varying [IN_STEP. As explained in
[28], a starplot is a way of representing multi-dimensional data. Here it shows the fraction
of demand restored for each connected relation affected by a failure via the length of a

radius, all refations being displayed at equal angles around the circle. Ideally the star plot
is a perfect circle as shown in Figure 15.1.

265

Chapter 15, Achieving Restoration Levels Proportional to a Network’s
Pre-Failure Connectivity After Muitiple Span Failures

9-10 9-11 fraction of lost

3-10 ‘o demand restored
a7 . 6-11

10-14 ‘ ::: ~ 6-10
10-13 "tt:‘ ’:“‘ 11-14

&,A‘ 49

8-13

% %0 an %
LHRSY

18 14 5-12 relation affected
by failure

Figure 15.1. Ideal star plot for metropolitan network with stub release
after the failure of spans 9-10 and 5-7.

15.4 Option Settings

To evaluate the impact of IIN_STEP on the overall pattern of individual restora-
tion levels on each relation affected by the failure of spans 9-10, and 5-7, two sets of
resuits are presented, one with IN_STEP set to 0, and the other with [IN_STEP set to 50,
which is close to the average interference number of a statelet in the metropolitan net-
work with stub release as shown in Table 11.2. When IIN_STEP is set to zero, no relation
is given preferential treatment while synthesizing restoration paths. When IIN_STEP is
set to 50, OPRA favours restoring those relations which have restored as little as one unit

266

Chapter 15, Achieving Restoration Levels Proportional to a Network's
Pre-Failure Connectivity After Multiple Span Failures

of demand less than another relation because setting IIN_STEP close to the average
interference number of a statelet will enable a node to distinguish those statelets which
belong to a relation which has restored even one unit of demand more than another rela-
tion.

Other than the value assigned to IIN_STEP in the second set of results pre-
sented here, the same values assigned in chapter 11 to the various options defined in
OPRA and the testbed are reused here. In summary they are:

MAXREPEATS =6

TIMEOUT =3 sec.

transmission delay = 1.25 msec.

propagation delay calculated assuming FOTS
STATELET_PROCESSING_DELAY, = 1 msec.
BROADCAST_DELAY =2 msec.

DELTA_T =2 msec.

15.5 Experimental Results in Metropolitan Network with Stub Release

The following starplots, and accompanying tables, show the impact of
lIN_STEP on the overall pattern of individual restoration levels on each relation affected
by the failure of spans 9-10, and 5-7, in the metropolitan network with stub release.

267

Chapter 15, Achieving Restoration Levels Proportional to a Network’s
Pre-Failure Connectivity After Multiple Span Failures

15.5.1 IN_STEP Set to Zero

9-10 911 fraction of lost
3-10 demand restored
1.0
3-7 6-11
0.8
10-14 06 6-10
0.4
10-13 2 11-14
8-13 4-9
8-10 5-10
0-4 57
1-10 5-11 \
18 14 5-12 relation affected
by failure

Figure 15.2. Star plot with [IN_STEP set to zero for metropolitan network
with stub release after the failure of spans 9-10 and 5-7.

268

Chapter 15, Achieving Restoration Levels Proportional to a Network's
Pre-Fallure Connectivity After Multiple Span Failures

Table 15.1. Restored Capacity with [IN_STEP set to zero for metropolitan network
with stub release after the failure of spans 9-10 and 5-7

Restored
de}r\rflf::;e:alr Lost demand Z:m norcr’:alml:g: by
lost demand
4-9 12 12 1
5-10 52 0 0
5-7 8 8 1
5-11 4 0 o
512 4 0 0
14 4 0 0
1-8 1 1 1
1-10 4 0 0
04 4 0 0
8-10 6 6 1
8-13 1 1 1
10-13 17 0 0
10-14 25 25 1
37 4 0 0
3-10 1 0 0
9-10 40 18 0.45
9-11 2 0 0
6-11 4 4 1
6-10 31 31 1
11-14 4 0 0
TOTALS 228 106 -

269

Chapter 15, Achieving Restoration Levels Proportional to a Network’s
Pre-Failure Connectivity After Multiple Span Failures

15.5.2 lIN_STEP Set to Fifty

a-10 fraction of lost
3-10) 9-11 demand restored
10
37 6-11
0.8
10-14 0.6 6-10
0.4
10-13 2 11-14
8-13 1 49
8-10 5-10
04 57
1-10 5-11 \
18 51 relation affected
14 2 by failure

Figure 15.3. Star plot with IIN_STEP set to fifty for metropolitan network
with stub release after the failure of spans 9-10 and 5-7.

270

Chapter 15, Achieving Restoration Levels Proportional to a Network's
Pre-Failure Connectivity After Multiple Span Failures

Table 15.2. Restored Capacity with IIN_STEP set to zero for metropolitan network

with stub release after the failure of spans 9-10 and 5-7

Restored
de?:aendde:air Lost demand z:ﬁm no::armnigg by
lost demand

4-9 12 12 1
5-10 52 0] 0

57 8 8 1
5-11 4 0 0
512 4 0 0

1-4 4 0 0

1-8 1 1 1
1-10 4 0 0

0-4 4 2 0.5
8-10 6 6 1
8-13 1 1 1
10-13 17 0 0
10-14 25 25 1

3-7 4 0 0
3-10 1 1 1
9-10 40 15 0.375

9-11 2 0 0

6-11 4 4 1
6-10 31 31 1
11-14 4 0 0

TOTALS 228 106 -

271

Chapter 15, Achieving Restoration Levels Proportiorial to a Network’s
Pre-Failure Connectivity After Multiple Span Failures

15.6 Interpretation and Discussion of Resulits

Ideally the post failure starplots shown in Figure 15.2 and 15.3 should be cir-
cles, like the starplot shown in Figure 15.1, with the exception that the radius of the post
failure starplots may be less than one in the case of a multiple span failure in a network
designed to survive all individual span failures, like the one Investigated here. The signifi-

cant disparity between the post failure starplots and the ideal circular starplot can be
attributed to the fact that:

1. Speed as well as interference numbers moderate
the competition between forward flooding state-
lets. Speed moderates competition between
statelets in the sense that a quick forward flood-
ing statelet with a large interference number may
succeed at completing a restoration path if all
ports part of that restoration path are locked, by
setting the activated field of those ports to true,
before another statelet with a smaller interference
number supplants the high interference number
statelet on those ports.

2. OPRA uses restoration paths one hop long when-
ever possible.

3. It may be topologically impossible to appoint to
every affected demand pair a number of restora-~
tion paths proportional to that network's pre-fail-

ure connectivity through a failed network's
surviving spare links.

Despite the non-ideal shape of the starplots shown in Figures 15.2 and 15.3,
increasing [IN_STEP does help synthesize a restoration pathset which appoints to every
affected demand pair an amount of capacity more proportional to that network's pre-fail-
ure connectivity, as shown in the resuits. Visually comparing these stamplots it is apparent

272

Chapter 15, Achieving Restoration Levels Proportional to a Network’s
Pre-Failure Connectivity After Muitiple Span Failures

that increasing IIN_STEP has the desired effect of levelling the individual restorabilities
on each relation. Comparing Tables 15.1 and 15.2, it is apparent that the PNE of relations
0-4, and 3-10, increase from zero to 50% and 100% respectively, and the PNE of relation
9-10 decreases from 45% to 35% when [IN_STEP is increased from zero to fifty. In both
cases, 106 units of demand are restored. Increasing [IN_STEP from zero to 50 does not
decrease the Rn of the metropolitan network without stub release.

In general, increasing [IN_STEP will not necessarily decrease the Rn of a net-
work because this does not eliminate the interference heuristic within OPRA, rather it
stratifies the competition betwean statelets such that only statelets from relations which
have restored a similar amount of demand vie for available outgoing spare links at a
node. All relations which have restored a similar amount of demand define a single band
within which precursors compete for broadcast consistent with that precursor's overall
rank in terms of the interference numbers of incoming statelets in that band and the
spans in which it and other precursors lie. IN_STEP determines how many bands exist
and how clearly the boundaries between bands are marked. An IIN_STEP value of zero
groups all statelets in a single band. A very large IIN_STEP value creates a band for

each unit of demand restored and ensures statelets within different bands do not com-
pete for broadcast at a node.

15.7 Conclusion

Increasing IIN_STEP helps synthesize a restoration pathset which appoints to
every affected demand pair an amount of capacity proportional to that network’s pre-fail-
ure connectivity. IIN_STEP is only needed when insufficient spare capacity exists to
restore a network failure, which usually only occurs when two or more spans fail simulta-
neously or a node fails. IIN_STEP stratifies the competition between statelets such that
only statelets from relations which have restored a similar amount of demand vie for
available outgoing spare links at a node.

273

Chapter 15, Achieving Restoration Levels Proportional to a Network's
Pre-Failure Connectivity After Multiple Span Failures

This chapter also shows that OPRA can restore single or muitiple span and
node failures. These failures may occur simultaneously or sequentially. OPRA is able to
restore node failures because they appear the same as multiple span failures when
OPRA is only informed of those affected demand pairs which remain topologically con-
nected. OPRA is able to restore sequential failures which occur within the time it takes to
restore one failure because such a failure scenario is equivalent to presenting OPRA with
a set of staggered alarms, and OPRA is able to restore staggered alarms as shown in
chapter 13. Therefore OPRA is capable of synthesizing a near optimal multi-commodity
max-flow restoration pathset through a network's surviving spare links, independent of
the distribution of alarms in time, as well as the number and location of connected

demand pairs affected by a failure, as confirmed by the results presented in this and pre-
vious chapters.

274

Chapter 16, Concluding Discussion

Chapter 16. Concluding Discussion

This chapter concludes this thesis with a review of the main development, a sum-
mary of the research contributions made, and recommendations for further research.

16.1 Review of Theslis

Chapter 1 explains the need for capacity efficient transport networks with short
restoration times as a result of the widespread deployment of vulnerable high-capacity
fiber optic transport facilities. Existing methods for transport network design and restora-
tion are reviewed and distinguished from the research presented in this thesis. Through
this comparison the potential benefits of path restorable mesh networks in terms of
capacity efficiency are introduced. Two results are apparent at the end of chapter 1. The
first is that the capacity placement of a path restorable mesh network may be efficiently
determined using an IP formulation using flow constraints. The second result is that mesh
restorable networks employing distributed dynamic path restoration have the greatest
potential to restore a network failure quickly, require little administration overhead, handle
numerous failure scenarios, are highly reliable, accommodate network growth, adapt
themselves to any network topology, and require a minimum amount of spare capacity.

Chapter 2 provides background on the SONET signalling and control overheads
that can be adapted to support state-based signalling. State-based signalling applies a
set of static or quasi-static fields, called statelets here, repeatedly to individual links of a
transport network. OPRA uses state-based signalling as the framework for communica-
tion. Chapter 2 also defines a reference architecture for the DCS machine capable of
supporting the statelets OPRA interacts with.

Chapter 3 formally states the restoration problem using graph theoretical terms,
and explains the difference between it and the packet routing and call routing problems.
This chapter begins with a review of the technical terms defined in graph theory required
to formally state the restoration problem and ends with a discussion of the complexity of
the restoration problem. Chapter 3 concludes that the complexity of near optimal path
restoration requires a distributed implementation to restore a failure within the two sec-
ond call-dropping threshold in real time.

275

Chapter 16, Concluding Discussion

Chapter 4 describes a method for capacity optimization in path restorable net-
works, and quantifies the capacity benefits of path restoration over span restoration, as
well as the further benefits of jointly optimizing working and spare capacity. This method
uses flow constraints based on a suitable set of predefined routes over which pathsets
must be implemented to formulate an integer program capable of optimizing the spare
and/or working capacity of either a span or path restorable network with or without stub
release. A completed IP run specifies not only the spare and working capacity per span,
but also the corresponding routing of working and restoration paths. Though it is possible
to use this restoration pathset information to achieve centralized restoration, it is used
here instead to test OPRA's ability to efficiently restore a span cut. Chapter 4 concludes
that mesh restorable networks using path restoration with stub release are the most
capacity efficient. The findings presented in this chapter, along with the IP design method
for path restorable networks, are one of the main contributions of this thesis.

Chapter 5 is devoted to developing appropriate figures of merit, by adapting
those defined in [25] to a path DRA, through which the performance and efficiency of
OPRA can be assessed systematically and quantitatively. The measures defined in chap-
ter 5 may be categorized as operational performance metrics or intrinsic path metrics.
The operational performance metrics include span and network restorability, Rs; and Rn,
and speed related performance measures, tg, tgs, to,avg, @nd to1. The intrinsic path met-
rics include path number efficiency (PNE) and path length efficiency (PLE). Both PNE
and PLE are computed with respect to an ideal restoration pattern, and chapter 5
explains how the network designs presented in chapter 4 assist in this computation.

Chapter 6 presents the interference heuristic at the heart of OPRA through which
the DRA self-organizes network spares into a near optimal multicommodity max-flow res-
toration pathset. The interference heuristic grew from the network level interference prin-
ciple which recognized the advantages of avoiding the use of restoration paths which
traverse spans with low sparing and/or nodes of low degree. Transforming this network
level view of the interference principle into a distributed implementation requires associ-
ating an interference number with a statelet, and establishing a broadcast pattem locally
at a node based on the interference number of incoming statelets. The broadcast pattern
at a node is built up by forwarding that statelet with the lowest interference number on

276

Chapter 16, Concluding Discussion

one link on all spans, except that span containing the incoming statelet, and satisfying the
target broadcast pattern of all other incoming statelets to the greatest extent possible,
consistent with a statelet's overall rank in terms of the interference numbers of incoming
statelets and the spans in which it and other statelets lie. Every time a statelet is transmit-
ted, its interference number is increased by the value of the interference number of the
span it traverses. The interference number of a span is calculated locally at a node by
counting the number of statelets competing to be forwarded in a span, and subtracting
from this sum the number of spare links available for restoration in that span. The inter-
ference heuristic is a significant research contribution. Chapter 6 ends with the observa-
tion that a bidirectional flooding scheme is necessary to optimize the restoration pathset
because it is an effective way to avoid the end-node bottleneck problem. Spans local to
an end node of a demand pair will by this principle be quickly seized into anchoring paths
for that demand pair. Recognizing and solving the end-node bottleneck problem also is a
significant research contribution.

Chapter 7 explains distributed interaction via statelets and the logical environ-
ment at a DCS within which OPRA functions. This method of interaction stems from work
done by W. D. Grover [25]. During the course of this explanation, the fields of a statelet
are defined and their content and uses introduced. Among the advantages of using state-
lets is the result that OPRA effectively executes in an active memory space that is contin-
ually updated in a manner that implicitly reflects the properties of the host network, even
though no direct knowledge of that network is stored by OPRA. Chapter 7 also introduces
the set of DCS port registers which comprise the active memory space within which
OPRA executes, and through which it indirectly interacts with the world outside its node.

Chapter 8 presents a detailed description of OPRA, emphasizing the logic neces-
sary to analyse the various events encountered during the restoration process, and
thereby determine the correct processing of statelets. The logic which forms OPRA is
encoded in an event-driven FSM. When an instance of OPRA is executed concurrently
and asynchronously at every node of a network, responding solely to statelets, with no
direct interaction with other nodes and with no stored knowledge of network topology,
each node will derive isolated crosspoint operate decisions which coliectively synthesize
a near optimal restoration pathset between the source and destination of all demand

277

Chapter 16, Concluding Discussion

pairs affected by a failure when viewed at the network level. OPRA represents the sec-
ond main contribution of this thesis.

Chapter 9 presents the procedures required to effectively test OPRA using dis-
crete event simulations using the polling implementation detailed in chapter 10. The pro-
cedures presented in this chapter are needed to exploit the implementation technique
used to test OPRA in this thesis.

Chapter 10 describes the testbed in which OPRA was implemented for experi-
mental characterization. OPRA is a transient, non-linear, massively parallel, multi-dimen-
sional process. For these reasons an experimental research method was adopted in
which OPRA was actually implemented and executed in every node of the various study
networks using concurrent programming methods. This research methodology essen-
tially constitutes a series of experiments on a prototype implementation as opposed to
results obtained by simulation of the intended process.

The remaining chapters in this thesis analyse OPRA's performance using the
testbed explained in the last chapter. Chapter 11 evaluates OPRA's ability to restore all
single span failures in a metropolitan and a long haul network. OPRA restores all single
span failures in a network quickly and efficiently, and given the conservative processing
delays and tightly designed networks used to find the results presented in this chapter,
would likely complete a restoration plan which fully restores any single span failure
before the two second call dropping threshold in each of these networks. Furthermore,
the consistency of OPRA's restoration time and PNE in all of the tests performed, and
summarized in chapter 11, demonstrate the algorithm'’s flexibility and insensitivity to net-
work size and topology.

Chapter 12 investigates the impact of reducing the processing delay associ-
ated with a statelet. The processing delays considered in this chapter are less than those
used in chapter 11 but remain realistic and comparable to the values chosen previously
[21]. Chapter 12 shows that reducing the processing delay reduces the restoration time
without degrading a network’s restorability, and verifies that it is likely a complete restora-
tion plan which fully restores any single span failure would be identified by OPRA before
the two second call dropping threshold in any network.

278

Chapter 16, Concluding Discussion

Chapter 13 reports the behaviour of OPRA when presented with a random
series of individual link failures, as opposed to a “guillotine” model of a cable cut, and ver-
ifies OPRA’s ability to cope with complex failure stimuli. This chapter shows direct expo-
sure of OPRA to staggered failure scenarios has little impact on tg and Rn. The only
significant difference between random and simultaneous link failures is a reduction in the
number of restoration paths with large interference numbers. This is because staggered
alarms reduce the number demand pairs actively seeking restoration paths simultane-
ously.

Chapter 14 quantifies the benefits of the interference heuristic by eliminating
the interference heuristic in OPRA and satisfying the broadcast mesh of all statelets to
the greatest extent possible in the order in which statelets arrive at a node. The benefits
of the interference heuristic are most apparent when the large spans in a network are
severed and there is significant contention for spare capacity. This benefit is most accu-
rately quantified comparing the Rn,,, of OPRA to a path DRA which does not employ the
interference heuristic. The results presented in this chapter show that eliminating the
interference heuristic can reduce the restorability of a large span by up to 32%.

Chapter 15 investigates OPRA's ability to restore multiple span failures, and
synthesize a restoration pathset which appoints to every affected demand pair an amount
of spare capacity proportional to that network’s pre-failure connectivity. This chapter
shows that [IN_STEP helps achieve this goal by stratifying the competition between
statelets such that only statelets from relations which have restored a similar amount of
demand vie for available outgoing spare links at a node. In addition, this chapter in con-
junction with chapters 11 through 14 confirms that OPRA is capable of synthesizing a
near optimal multi-commodity max-flow restoration pathset through a network’s surviving
spare links, independent of the distribution of alarms in time, and independent of the
number and location of connected demand pairs affected by a failure.

279

Chapter 16, Concluding Discussion

16.2 Summary of Research Restlts

The main contributions of this thesis are:

1. a path restorable network capacity design method-
ology using integer programming;

2. an optimized, distributed, real-time solution to the
path restoration problem, named OPRA;

3. the interference heuristic which at the node level,
recognizes the benefits of satisfying the target
broadcast pattem of all incoming statelets based on
their interference number from lowest to highest,
where a transmitted statelet’s interference number
is the sum of the interference numbers of all spans
the statelet traverses; and

4. the end-node bottleneck traversal problem, which
in a path restorable network recognizes the benefits
of quickly seizing the spans local to an end node of
a demand pair in order to anchor paths for that
demand pair.

Together these advances make possible path restorable transport networks
which restore failures within two seconds, require little administration overhead, handle
numerous failure scenarios, are highly reliable, easily accommodate network growth,
adapt themselves to any network topology, and require a minimum amount of spare
capacity. In the envisaged network, capacity would be minimized using the IP design
methodology presented in chapter 4, and failures restored in real time in an entirely
autonomous distributed manner using OPRA, or any other path DRA similar to OPRA

which employs the interference heuristic and solves the end-node bottleneck traversal
problem.

280

Chapter 16, Concluding Discussion

In addition, the following aspects of this thesis, although used to assist in the
development of OPRA, are original and merit mentioning as research contributions
because of their alternate uses as explained below:

1. the conventional program written to test the inter-
ference heuristic named interference Tester. This
program identifies a restoration pathset that could
be used to achieve centralized restoration.

2. the optimal routing of restoration paths as identi-
fied by the IP used to evaluate the performance of
OPRA. This pathset could also be used to achieve
centralized restoration.

3. the OPNET testbed in which OPRA was imple-
mented for experimental characterization. This
testbed could be used to test many other path or
span DRAs.

16.3 Further Research

16.3.1 Implementing the Interference Heuristic in ATM Networks

The interference heuristic has been explained assuming an STM technology
platform like SONET. SONET will likely be the physical layer of future ATM networks, and
making the physical layer of a transport network responsible for the restoration of a failure
is often beneficial. However, several intrinsic features associated with ATM could
potentially be exploited to provide improved restoration techniques beyond those
established for SONET. The most important of these features are: ATM cell level error
detection, inherent rate adaptation, and nonhierarchial multiplexing. Regardless of the
technology platform made responsible for network restoration, if a network failure is
restored using distributed path restoration, the interference heuristic can guide the
algorithm such that capacity efficient replacement paths are found. How the interference

281

Chapter 16, Concluding Discussion

heuristic is adapted to find a restoration pathset in an ATM environment is briefly
discussed next.

When calculating the interference number of a span in an STM-based network as
shown in Figure 6.3 in chapter 6, the spare capacity of a span is determined by counting
the number of spare links available on the span. In ATM the spare capacity of a span
cannot be determined by counting the number of links available on a span. Instead, the
total spare capacity available on a span is determined by the sum of the spare capacity
available on each of the span’s constituent links, which may be some fraction of their total
capacity.

in STM networks the bandwidth of each digital signal is fixed, and the unit of
bandwidth a restoration statelet signal is seeking to restore is implicitly determined by the
bandwidth of the link on which the signal is transmitted. Thus in an STM network,
restoration statelet signals do not need to explicitly state the amount of capacity they are
seeking to restore. In ATM the bandwidth of a working path is not fixed; the route and
bandwidth of a digital signal are disassociated. In this case, a restoration statelet must
specify the amount of capacity it is seeking to restore.

The decoupling of a restoration path’s bandwidth and its routing in an ATM
network generalizes the calculation of a span’s interference number. The interference
number of a span in an ATM network is calculated by subtracting the sum of the capacities
specified by all restoration statelet signals waiting to access a span from the total sparing
on that span. Whereas the interference number of a span in an STM network will always
be an integer, in an ATM network the interference number of a span may be a real number.

ATM networks are still in their infancy relative to SONET networks, and the debate
about which layer (either the ATM or SONET layer) of a transport network should be used
to restore a failure is currently unresolved. Given these circumstances the description of
the logic necessary for determining the correct response by OPRA to various restoration
events assumed a SONET technology platform in this thesis. The description of the logic
necessary for determining the correct response by OPRA to various restoration events
assuming an ATM technology platform requires further research.

282

Chapter 16, Concluding Discussion

16.3.2 Further Studies in Capacity Placement

The capacity design methodology presented in this thesis applies directly to SHN
networks like SONET. Extending the IP formulation presented in chapter 4 to ATM net-
work requires further research. Without engineering a suitable bandwidth margin on all
links in an ATM network sufficient to carry the traffic from a combination of working and
backup VP routes, the GOS of restored VPs cannot be accurately predicted.

The sensitivity of the of the capacity placement results presented in chapter 4 to
the size of the candidate route set chosen for evaluation by the IP should also be investi-
gated. This would require comparing the total link count of the same network for different
candidate route set size.

Finally the impact of modularity on the capacity design of a network should be
investigated. In practice, links are provisioned in modules of a certain size, and before a
new module is added, the total capacity requirements of a network may be minimized if
the unused capacity in existing modules is used to form a new path.

16.3.3 Effects of Network Topology on Capacity Placement in Mesh
Restorable Networks

The topology of a network will affect how much more capacity efficient a path
restorable design is than a span restorable design, and how much a path restorable
design will benefit from stub release. If most of the demand in a network is between the
immediate end-nodes of a span, then in the limit, path restoration would not be much
more capacity efficient than span restoration. On the other hand, when the source and
destination nodes of demands affected by a span failure are separated from each other
by many hops, span and path restoration will result in very different restoration pathsets,
and path restoration will likely show significantly better capacity efficiency. The effects of

network topology on capacity placement in both span and path mesh restorable networks
requires further research.

16.3.4 Multi-Commodity Max-Flow Pathset Characterization

In order to solve the capacity placement problem in a path restorable network
using heuristics as explained in chapter 1, it is beneficial to have a fast centralized ksp-

283

Chapter 16, Concluding Discussion

like algorithm which identifies the restoration pathset and the multicommodity max-flow
through the spare capacity of a path restorable network between those relations affected

by a failure. Finding such an algorithm which characterizes a muiti-commodity max-flow
pathset requires further research.

16.3.5 A New Approach to Avoiding the End-Node Bottieneck Traversal
Problem

Bidirectional flooding is used in OPRA to avoid the end-node bottieneck
traversal problem. When a path DRA employs bidirectional flooding, a complemented
statelet can be over-written at the source of the forward flooding statelet with which it is
matched, as shown in the illustrative example presented in Figure 16.1. Only after a DRA
employing bidirectional flooding completes a confirmation process similar to the one
described in chapter 8, is a source/destination guaranteed that an incoming comple-
mented statelet acts as a bi-directional holding thread between itself and the source of
that statelet.

If ordinary flooding as shown in Figure 6.5 in chapter 6 is used by a path DRA
instead of bidirectional flooding, a complemented statelet arriving at its destination node
identifies a restoration path that will persist until those statelets that act as a bi-directional
holding thread for that path are cancelled. However, this does not mean reverse linking
would never be suspended in an ordinary flooding path DRA employing the interference
heuristic, because precursors may still be overwritten at tandem nodes during the for-
ward flooding process by late arriving statelets from other families with lower interference
numbers. Ordinary flooding would only ensure that a complemented statelet which
arrives at its destination node would not disappear, eliminating the need for a confirma-
tion phase similar to the one required in OPRA. However, if bidirectional flooding is not
used by a path DRA, another way must be found to avoid the end-node bottleneck traver-
sal problem. Identifying a path DRA which does not use bidirectional flooding to avoid the
end-node bottieneck traversal problem is a subject of further research.

284

Chapter 16, Concluding Discussion

———p Forward flooding statelet . ___, Reverse linking statelet

source/destination source/destination
of red statelets of blue statelets

0'—‘9'—‘9 ()

Bidirectional Selective Forward Flooding

link 1

Initiate Reverse Linking match

1 fink 1 2 3 link 3 4
Stop Reverse Linking

Figure 16.1. Suspending reverse linking as a result of bidirectional flooding

16.3.6 Alarm Distribution in the Event of Node or Multiple Simultaneous
Span Failures

Whether multiple spans, or a node fails in a network, OPRA should only synthe-
size restoration paths for those affected demand pairs which remain topologically con-
nected. Only those demand pairs which remain topologically connected can be restored
by OPRA, or any other restoration mechanism. In the case of a node failure, or a multiple
simultaneous span failure which divides a network into two or more disconnected parts,
alarm information should be distributed such that OPRA is only activated in those
demand pairs which remain topologically connected. For example, in the case of a node
failure, this means activating OPRA only in those demand pairs which had working paths
traversing the failed node. Alarm distribution in the event of node failures or multiple span
failures is a subject of further research.

285

Chapter 16, Concluding Discussion

16.3.7 Reversion

Reversion refers to the process by which a network is retumned to its original state
after a failure has been repaired. Reverting to the prefailure network configuration is
made more difficult with stub release because a restoration path may use a released
working link to restore a failure. In this case reversion would require releasing the restora-
tion path and reconfiguring the working path, instead of simply moving the restored trans-
port signal from the restoration path to the repaired working path. If reversion is
impractical, it may be desirable to limit the use of spares obtained through the process of
stub release to that demand pair which originally used that working path. Whether rever-
sion is needed at all in a path restorable network using stub release is currently being
investigated [42]. However, the spare capacity design of reversionless networks must
consider not only spare capacity sharing but also route transitions {42]. Reversion
remains a subject of further research in path restorable networks employing stub release.

16.3.8 Bypassing Tandem Nodes

When a path restorable network does not employ stub release, terminating work-
ing paths at tandem nodes is unnecessary. Furthermore, it is beneficial to bypass the
DCS at a tandem node because the port count, and therefore the size of the DCS, at
these nodes is reduced. Whether the savings resuiting from bypassing a DCS is larger
than the savings resulting from stub release is a subject of further research. If it is imprac-
tical to release all of the surviving portions of a cut working path, referred to as full stub
release, it may be practical to release some, but not all, of the surviving links in a cut
working path. This “partial” stub release also requires further research.

286

References

References

[1] Anderson, J., Doshi, B.T., Dravida, S., Harshavardhana, P., “Fast Restoration of ATM
Networks”, IEEE J-SAC Special Issue: Integrity of Public Telecommunication Net-
works, vol. 12, no. 1, Jan. ‘94, pp. 128 - 138.

[2] Baker, J. E., “A distributed link restoration algorithm with robust preplanning”, Proc.
IEEE GLOBECOM ‘91, Dec. 1991, pp. 306-311.

[3] Bates, B., Gregory, D., Voice and Data Communications Handbook, New York, NY:
McGraw-Hill Inc., 1996.

{4] Barezzani, M., Pedrinelli, E., Gerla, M., “Protection planning in transmission net-
works", Proc. IEEE ICC*92, 1992, pp. 316.4.1-316.4.5.

[5] Busche, M.T., Lockhart, C.M., Olszewski, C., “Dynamic k-shoriest path (DKSP) facility
restoration algorithm"”, Proc. IEEE GlobeCom ‘94, Dec. 1994, pp. 536 - 542.

(6] Capacity Scavenging in the Telecom Canada Network: A Preliminary assessment,
Telecom Canada Report - TM 91.015 (CR 89-16-01).

[71 Chao, C. W., Dollard, P. M., Weythman, J. E., Nguyen, L. T., Eslambolchi, H., “FAS-
TAR-a robust system for fast DS3 restoration”, Proc. IEEE GLOBECOM ‘91, Dec.
1991, pp. 39.1.1-39.1.5.

[8] Chao, C.W., Fuoco, G., Kropfl, D., “FASTAR platform gives the network a competitive
edge”, AT&T Technical Journal, July/August 1994, pp. 69 - 81.

287

References

[9] Chng, R.S.K., Botham, C.P., Johnson, D., Brown, G.N., Sinclair, M.C., O’'Mahony,
M.J., Hawker, ., “A multi-layer restoration strategy for reconfigurable networks”, Proc.
IEEE GlobeCom ‘94, Dec. 1994, pp. 1872 - 1878.

[10] Chow, C. E., Bicknell, J. D., Mccaughey, S., “Perfromance analysis of fast distributed
link restoration algorithms”, Intemnations! Journal of Communication Systems, vol. 8,
1995, pp. 325 - 345.

[11] Chujo, T., Komine, H., Miyazaki, K., Ogura, T., Soejima, T., “Distributed self-healing
network and its optimum spare capacity assignment algorithm”, Electronics and
Communications in Japan, part 1, vol. 74, no. 7, 1991, pp. 1-8.

{12] Coan, B.A., Vecchi, M. P., Wu, L.T., “A distributed protocol to improve the survivabil-
ity of trunk networks”, Proceedings of the 13th International Switching Symposium,
May 1990, pp. 173 - 179.

[13] Coan, B.A,, et al., “Using distributed topology updates and preplaned configurations
to achieve trunk network survivability”, IEEE Transaction on Reliability, vol. 40, no.4,
1991, pp. 404-416

[14] Davis, L., Cox, A., Qiu, Y., “A Genetic Algorithm for Survivable Network Design”,

Proc. of the Fifth International Conference on Genetic Algorithms, July, 1993, pp.
408 - 415.

[15] Dregidio, S., Reagor, B. T., “What do we do now?", Bellcore exchange, October
1994, pp. 4-9.

(16] Digital Network Notss, Technical Planning and Standards Engineer, Telecom Can-
ada, 410 Laurier Ave. West, Ottawa, Ontario, Canada, K1P 6H5, 1984.

288

References

[17] Dijkstra, E.W., “A note on two problems in connection with graphs”, Numer Math. vol.
1, 1959, pp. 269-271.

[18] Doverspike, R. D., Morgan, J. A., Leland, W., “Network design sensitivity studies for
use of digital cross-connect systems In survivable network architectures”, IEEE J-

SAC Special Issue: Integrity of Public Telecommunication Networks, vol. 12, no. 1,
Jan. ‘94, pp. 69 - 78.

[19] Dunn, D.A., Grover, W.D., MacGregor, M.H., “Comparison of k-shortest paths and
maximum flow routing for network facility restoration”, IEEE J-SAC Special Issue:
Integrity of Public Telecommunication Networks, vol. 12, no. 1, Jan. ‘94, pp. 88-99.

[20] Freeman, R.L., Telecommunication System Engineering, Second Edition, N.Y., N.Y.:
John Wiley and Sons Inc., 1989.

{21] Fujii, H., Yoshikai, N., “Restoration message transfer mechanism and restoration
characteristics of double-search self-healing ATM network”, IEEE J-SAC Special
Issue: Integrity of Public Telecommunication Networks, vol. 12, no. 1, Jan. ‘94, pp.
149 - 158.

[22] Gardner, L.M., Heydari, M., Shah, J., Sudborough, I.H., Tollis, I.G., Xia. C., “Tech-
niques for finding ring covers in survivable networks", Proc. IEEE GlobeCom ‘94,
Dec. 1994, pp. 1862 - 1866.

[23] Gersht, A., Kheradpir, S.,“Real-time bandwidth allocation and path restoration in
SONET based self-healing mesh networks”", Proc. IEEE ICC ‘93, May 1993.

[24] Gibbons, A., Algorithmic Graph Theory, Cambridge University Press, 1985.

289

Refarences

[25] Grover, W.D., Selfhealing Networks - A Distributed Algorithm for k-shortest link-dis-
joint paths in a multi-graph with applications in realtime network restoration, Ph.D.
Dissertation, University of Alberta, Fall, 1989.

[26] Grover, W.D., “A frame-bit modulation technique for addition of tranparent signalling
capacity to the DS3 signal”, Proc IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing, June 1887.

[27] Grover, W.D., “Case studies of survivable ring, mesh, and mesh-arc hybrid net-
works”, Proc. IEEE Globecom ‘92, Dec. 1992, pp. 633-638.

[28] Grover, W.D., “Distributed Restoration of the Transport Network”, Chapter 11, pp.
337 - 419 of Telecommunications Network Management into the 21st Century -
Techniques, Standards, Technologies, and Applications, edited by S. Aidarous and
T. Plevyak, New York, NY: IEEE Press, 1994.

(29] Grover, W.D., “The Selfhealing network: a fast distributed restoration technique for
networks using digital cross-connect machines”, Proc. IEEE Globecom ‘87, Dec.
1987, pp. 28.2.1-28.2.6

[30] Grover, W.D., Slevinsky, J.B., MacGregor, M.H., “Optimized design of ring-based
survivable networks”, Canadian Journal of Electronics and Computer Engineering,

Vol. 20, No. 3, 1995, pp.139 - 149.

[31] Grover, W., Venables, B.D., The Selfhealing Network Protocol: Functional Descrip-
tion and Implementation, TR-92-10, TRLabs Technical Report, 1992.

[32] Grover, W., Venables, B.D., “Performance of the Selfhealing Network protocol with
random individual link failure times”, Proc. IEEE ICC ‘91, 1991, pp. 22.2.1-22.2.7.

290

References

[33] Grover, W.D., Venables, B.D., MacGregor, M.H., Sandham, J. H., “Development and
performance verification of a distributed asynchronous protocol for real-time net-
work restoration”, /IEEE J-SAC Special Issue: Computer-Aided Modelling, Analysis
and Design in Communication Networks, Vol. 9, No. 1, 1991, pp.112 - 125.

[34] Grover, W.D., Venables, B.D., Sandham, J. H., Milne, A. F., “Performance studies on
a selfhealing network protocol in Telecom Canada long hau! networks”, Prec IEEE
Globecom ‘90, San Diego, 1990, pp. 403.3.1 - 403.3.7.

[35] Hasegawa, S., Okanoue, Y., Egawa, T., Sakauchi, H., “Control algorithms of SONET
integrated self-healing networks”, IEEE J-SAC Special Issue: Integrity of Public Tele-

communication Networks, vol. 12, no. 1, Jan. ‘94, pp. 110 - 119,

[36] Herzberg, M., Bye, S., “An optimal spare-capacity assignment mode! for survivable
networks with hop limits”, Proc. IEEE GLOBECOM ‘94, Dec. 1994, pp. 1601-1607.

[37] Hu, T.C., Integer Programming and Network Flows, Reading, MA: Addison-Wesley,
1969.

{38] lraschko, R.R., “IP Network Designs”, TRLabs Technical Report TR-96-10, October,
1996.

{39] lraschko, R.R., “OPRA Testbed C-code Specification”, TRLabs Technical Report TR-
96-11, October, 1996.

{40] Iraschko, R.R., “OPRA C-code Specification”, TRLabs Technical Report TR-96-12,
October, 1996.

[41] Iraschko, R.R., MacGregor, M. H., Grover, W. D., “Optimal Capacity Placement for
Path Restoration in Mesh Survivable Networks”, Proc. [EEE ICC96, June 1996.

291

References

[42] Kawmaura, R., Sato, K., Tokizawa, l., “Self-healing ATM networks based on virtual
path concept”’, IEEE J-SAC Special Issue: Integrity of Public Telecommunication
Networks, vol. 12, no. 1, Jan. ‘94, pp. 120 - 127.

[43] Komine, H., Chujo, T., Ogura, T., Miyazaki, K., Soejima, T., “A distributed restoration
algorithm for muitiple-link and node failures of transport networks”, Proc. IEEE
Globecom ‘90, Dec. 1990, pp. 459 - 463.

[44] Landegem, T. V., Vankwikelberge, P., Vanderstraeten, H., “A self-healing ATM net-
work based on muiltilink principles”, IEEE J-SAC Special Issue: Integrity of Public
Telecommunication Networks, vol. 12, no. 1, Jan. ‘94, pp. 139 - 148.

[49] Lin, N.D., Zolfaghari, A., Lusignan, B., “ATM virtual path seli-healing based on a new
path restoration protocol”, Proc. IEEE GlobeCom ‘94, Dec. 1994, pp. 794 - 798.

[46] MacGregor, M.H., The Self Traffic-Engineering Network, Ph.D. Dissertation, Univer-
sity of Alberta, Fall, 1991.

{47] MacGregor, M.H., Grover, W.D., “Investigation of a Cut-tree approach to network res-
toration from node loss”, Proc. IEEE ICC'95, June 1995, pp. 1530-1535.

(48] MacGregor, M.H., Grover, W.D., “Optimized k-shortest paths algorithm for facility
restoration”, submitted to /EEE Trans. Comm., Sept. 1992.

[49] MacGregor, M.H., Grover, W.D., Maydell, U. M., “The self-traffic-engineering net-
work”, Canadian Journal of Electrical and Computer Engineering, Vol. 18, No. 2,
1993, pp. 47 - 58.

292

References

[50] MacGregor, M.H., Grover, W.D., Ryhorchuk, K., “Optimal spare capacity preconfigu-
ration for faster restoration of mesh networks”, Submitted to Journal of Networks and
Systems Management, Special Issue on Fault Management in Communication Net-
works, March 1996.

[51] McDysan, D. E., Spohn, D. L., ATM Theory And Application, New York, NY: McGraw-
Hill Inc., 1995.

[52] MIL 8, Inc., OPNET Modeler Manuals, 3400 Intemnational Drive NW, Washington DC,
1994.

[53] Murakami, K., Kim, H., “Joint optimization of capacity and flow assignment for self-
healing ATM networks”, Proc. IEEE ICC*95, June 1995, pp. 216-220.

[54] Pekarske, B., “1.5 second rstoration using DS-3 cross-connects”, Trends in Network
Restoration Symposium, Edmonton, Canada, May 24-25, 1990.

[55] Restoration of DCS mesh networks with distributed control: Equipment Framework
Generic Criteria, FA-NWT-001353, Issue 1, Bellcore, Dec. 1992.

[56] Rosen, E.C., “The updating protocol of ARPANET’s new routing algorithm”, Compu-
ter Networks, vol. no. 1, February 1980, pp. 11 - 30.

[57] Sakauchi, H., Nishimura, Y., Hasegawa, S., “A self-healing network with an econom-
ical spare-channel assignment”, Proc. IEEE Globecom ‘90, Dec. 1990, pp. 438-443

(58] Saniee, I., “Optimal routing designs in self-healing communications networks”, Bell-

core, MRE 2D-362, 445 South Street, Morristown, NJ 07960-6438, fourth draft, May
1994.

293

References

[59] Sato, K., Okamoto, S., Hadama, H., “Network performance and integrity enhance-
ment with optical path layer technologies”, IEEE J-SAC Special Issue: Integrity of
Public Telecommunication Networks, vol. 12, no. 1, Jan. ‘94, pp. 159 - 169.

(60] Schwartz, M., Stem, T. E., “Routing techniques used in computer communications”,
IEEE Transactions on Communications, vol. 28, no. 4, April 1980, pp. 539 - 552

[61] Sosnosky, J., “Service applications for SONET DCS distributed restoration”, /[EEE J-

SAC Special Issue: Integrity of Public Telecommunication Networks, vol. 12, no. 1,
Jan. ‘94, pp. 59-68.

[62] Struyve, Kris, Demeester, P., “Design of distributed restoration algorithms for ATM
meshed networks”, Proc. of the 1995 IEEE 3rd Symposium on Communications and
Vehicular Technology, 1995, pp. 128 - 135.

[63] The Role of Digital Crossconnect Systems in Transport Network Survivability, SR-
NWT-002514, Issue 1, Belicore Special Report, Jan. 1993

[64] Topkis, D.M., “A k shortest path algorithm for adaptive routing in communications

networks", IEEE Transactions on Communications, vol. 36, no. 7, July 1988, pp. 855
- 859.

[65] Veerasamy, J., Venkatesan, S., “Effect of traffic splitting on link and path restoration
planning”, Proc. IEEE GlobeCom ‘94, Dec. 1994, pp. 1867 - 1870.

(66] Venables, B.D., Algorithms for the Spare Capacity Design of Mesh Restorable Net-
works, Master of Science Thesis, University of Alberta, Fall, 1992

[67] Venables B. D., Grover, W. D., MacGregor, M. H., “Two strategies for spare capacity

placement in mesh restorable networks”, Proc. IEEE ICC'93, May 1993, pp. 267-
271.

294

References

[68] Wideband and Broadband Digital Cross-Connect Systems Generic Criteria, FR~
NWT-000440, issue 3, Bellcore, Nov. 1993.

[69] Wu, T., Fiber Network Service Survivability, Norwood, MA: Artech House [nc., 1992.
{70] Wu, T., Kobrinski, H., Ghosal, D., Lakshman, T. V., “The impact of SONET digital
cross-connect system architecture on distributed restoration”, IEEE J-SAC Special

Issue: Integrity of Public Telecommunication Networks, vol. 12, no. 1, Jan. ‘94, pp. 79
- 87.

{71} Yang, C.H., Hasegawa, S., “FITNESS: Failure immunization technology for network
service survivability”, Proc. IEEE Globecom ‘88, Dec. 1988, pp. 47.3.1-47.3.5

295

IMAGE EVALUATION
TEST TARGET (QA-3)

3l 3l 2l

LR EE

2] a I~ hk
K E EFEEEETE

2l

18

I
I

16

14

125

150mm

4609 USA

N
hone: 716/482-0300
- 716/288-5989

~@Xauw

esarved

© 1993, Applied Image. Inc.. All Rights R

