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ABSTRACT 

 

Physical interaction with environment and object 

manipulation play an important role in development of 

children’s cognitive and perceptual skills. For children who 

have severe physical impairments, one of the biggest 

concerns is the loss of opportunities for meaningful play. 

Assistive robots can enable children to engage in play 

activities. In this paper, we focus on robotic assistance for 

position-following play activities such as pick and place. This 

task is done via a master-slave teleoperation system with the 

master robot in the child’s hand and the slave robot 

performing the task in the environment. In the demonstration 

phase, a therapist (or, in general, a helper such as a parent) 

holds the slave robot in the task environment to modify and 

assist the child’s movements as the child controls the master 

robot. A Learning from Demonstration (LfD) technique, 

which utilizes Gaussian mixture models (GMM) and 

Gaussian Mixture regression (GMR), is used to learn the 

helper-administered assistance to the child for completing the 

task. These probabilistic models provide insight into how the 

helper assisted the child by analyzing the multiple trials of 

demonstration in the presence of the helper. In the robotic 

assistance phase, the robot will utilize the learned data to 

assist the child in the helper’s absence and on a child-specific 

and as-needed basis. The efficacy of this framework is 

validated through experimental conducted involving a 2D 

play environment.   

Keywords: Assistive technologies, Teleoperation  

system, Learning from demonstration, Impedance control    

 

1. INTRODUCTION 

 

    Cerebral palsy (CP) is a group of non-progressive disorders 

in the central nervous system (CNS) that causes permanent 

posture and movement impairments in children within the 

first few years of their life [1, 2]. The most common 

symptoms of CP are poor coordination in performing a 

voluntary movement, weakness, stiffness of muscles, tremor, 

delay in acquiring motor skills and difficulty in speaking or 

swallowing. CP is the dominant origin of motor disability in 
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childhood, which affects 1.5 to more than 4 per 1,000 

children around the world [3, 4].  

    Although the CP symptoms are permanent, they may be 

improved. Physical therapy and occupational therapy can 

help children with CP to ameliorate their motor function and 

live more independently by adjusting to their impairment [5]. 

However, based on a systematic review [6], these therapeutic 

approaches are only mildly effective to rehabilitate CP 

symptoms. A more crucial concern for children with severe 

disability is missing the ability and opportunity to interact 

with real physical environments for object manipulation or 

general play[7]. This deprivation can hinder and adversely 

affect their natural, social, cognitive, perceptual and linguistic 

development [8]. To address this issue, we are motivated to 

develop a semi-autonomous robotic-assistance framework 

that only requires short-term involvements of a “helper” such 

as a parent or a therapist (called “therapist” from this point 

on, for brevity). This platform will not only assist the child to 

achieve meaningful play through robotic interface to regain 

their natural development, but will also ensure their active 

physical participation by using an assist-as-needed (AAN) 

strategy [9].  

    Providing direct human assistance to patients with 

disability is very expensive and impractical [10]. Thus, 

robotic manipulators have been suggested to take on this 

burden. The robots are appropriate for assistive purposes as 

they can perform a repetitive task for long durations without 

getting exhausted or bored. They can also measure valuable 

sensory data to evaluate the users’ performance and learn 

their unique execution and behavioral characteristic [11]. 

Robotic devices can also take the form of master-slave 

teleoperation systems, in which a human user handling the 

master robot controls the slave robot interacting with a task 

environment [12]. This can be helpful as children with 

disability will be empowered to perform tasks beyond their 

motor capability and/or range of motion by using position and 

force scaling in the teleoperation system [13]. 

    A teleoperation system can be unilateral (without haptic 

feedback) or bilateral (with haptic feedback). In the former, 

the slave follows the position of the master while there is no 

force feedback from task environment of the slave being sent 

to the master. In the latter, there is bilateral signal 
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transmission between the master and slave robots, which 

provides the human operator with the feeling of the remote 

environment and an experience of “telepresence” [14]. In the 

ideal “transparent” condition, the bilateral teleoperation 

system provides perfect force-position reflection between the 

master and slave robotic manipulators. Thus, the operator 

perceives perfect telepresence, as if he/she is directly 

interacting the task environment [12, 15]. 

    Robotic-assistance with an AAN strategy not only 

motivate children’s active participation in the task, but also 

provokes motor recovery and physical therapy. Several 

control frameworks have been suggested for ANN including 

impedance/admittance control [16], which is most beneficial 

in applications with human-robot interaction as the robot 

controller imposes a virtual mass-spring-damper behavior in 

the interaction dynamic [17, 18]. This provides an adjustable 

flexibility required for interactive tasks. A virtual impedance 

model connecting the patients’ hand to a moving target along 

the predefined trajectory was defined in [19, 20]. Thus, the 

patient will not feel any assistive force unless he/she deviates 

from the target trajectory. A force tunnel produced by a 

virtual impedance model that restricts the patient in directions 

orthogonal to his/her movement direction was developed in 

[11]. In [10], a time limit was also proposed for patients to 

finish a task by defining a moving virtual wall that would 

push and assist the patient in case they were moving slower 

than expected. The authors in [21] used position, force and 

impedance control to provide a virtual-tunnel model for 

guidance in the tangential and virtual-wall-like restriction in 

the normal directions of the trajectory.  

    The major drawback of stated assist-as-needed 

frameworks is the requirement for robot programing by the 

therapist in order to plan the desired trajectory. Therapists 

typically do not have the required programming skills. Also, 

it would be an arduous struggle for them to mathematically 

model these task-dependent assistance models every time the 

task changes (e.g., if the locations of object picking and 

placing change). As a result, a learning from demonstration 

(LfD) technique was utilized for rehabilitation applications in 

[22, 23]. In this framework, the therapist demonstrates to the 

robotic system the required assistance (external force and/or 

displacement inputs) for task execution by simply performing 

the task multiple times. Then, by using Gaussian mixture 

model (GMM) and Gaussian mixture regression (GMR) [24], 

the robotic system assists the task performance in the 

therapist’s absence. This strategy is useful as it replaces the 

need for robot programing with hands-on physical 

demonstrations of the robot role by a human.  

    In this paper, the goal is to propose a robotic AAN 

framework for a two-dimensional (2D) position-following 

pick-and-place task via a teleoperation system. In this 

framework, for the first time, a tunnel-like T-N 

impedance/admittance controller is designed together with 

Learning from Demonstration (LfD) techniques. The 

proposed scheme with its demonstration and robotic 

assistance phases is sketched in Fig. 1. In the first phase, the 

therapist provides assistance as needed and cooperates with 

the child to perform the task for few times. In this phase, the 

therapist assistance is modeled by a GMM and the average 

trajectory demonstrated by the therapist is approximated 

using GMR. In the second phase, tangential-normal 

impedance models are proposed so that the master robot 

handled by the child assists the child to follow the average 

demonstrated trajectory in the tangential direction and resists 

the child’s motion in the normal direction. In both of the 

tangential and normal directions, the level of 

assistance/resistance can be adjusted by tuning the 

parameters of the impedance models.  

 

Fig. 1.  The  schematic of proposed robotic assistance framework including 

demonstration and assistive phases. 
 

 

2. DYNAMICS OF MASTER-SLAVE 

TELEOPERATION SYSTEM  

 

The nonlinear dynamics of the multi-DOF master and slave 

robots side in the Cartesian coordinates are [25] 
 

𝑀𝑥,𝑚(𝑞𝑚)�̈�𝑚 + 𝐶𝑥,𝑚(𝑞𝑚, �̇�𝑚)�̇�𝑚 + 𝐺𝑥,𝑚(𝑞𝑚)                    (1)

+  𝐹𝑥,𝑚(�̇�𝑚)   =  𝐹𝑚 + 𝐹𝑒𝑥𝑡,𝑚                     
 

𝑀𝑥,𝑠(𝑞𝑠)�̈�𝑠 + 𝐶𝑥,𝑠(𝑞𝑠, �̇�𝑠)�̇�𝑠 + 𝐺𝑥,𝑠(𝑞𝑠)                                 (2)

+  𝐹𝑥,𝑠(�̇�𝑠)     =  𝐹𝑠 +  𝐹𝑒𝑥𝑡,𝑠                 
 

where 𝑥𝑚 and 𝑥𝑠 ∈ 𝑅𝑛×1 are, respectively, the positions of 

the master and slave end-effectors in the Cartesian 

coordinates. 𝑀𝑥,𝑚(𝑞𝑠) and 𝑀𝑥,𝑠(𝑞𝑠) ∈ 𝑅𝑛×𝑛 are the inertia 

matrices, 𝐶𝑥,𝑚(𝑞𝑠, �̇�𝑠) and 𝐶𝑥,𝑠(𝑞𝑠 , �̇�𝑠) ∈ 𝑅𝑛×1 contain 

Coriolis and Centrifugal terms, 𝐺𝑥,𝑚(𝑞𝑠) and 𝐺𝑥,𝑠(𝑞𝑠) vectors 

represent position-dependent forces such as gravity, 𝐹𝑥,𝑚(�̇�𝑠) 

and 𝐹𝑥,𝑠(�̇�𝑠) ∈ 𝑅𝑛×1 are the friction forces, 𝐹𝑚 and 𝐹𝑠 ∈
𝑅𝑛×1 are the control signals for the robot’s actuators and 
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𝐹𝑒𝑥𝑡,𝑚 and 𝐹𝑒𝑥𝑡,𝑠 ∈ 𝑅𝑛×1 are the external forces exerting on 

robots’ end-effector. In this paper, the master and slave robots 

are respectively in contact with child and the therapist. This 

means that the external forces are 
 

𝐹𝑒𝑥𝑡,𝑚 =  𝐹𝑐ℎ                                                                         (3) 
 

𝐹𝑒𝑥𝑡,𝑠  =  −𝐹𝑡ℎ−𝐹𝑒                                                               (4) 
 

where 𝐹𝑐ℎ ∈ 𝑅𝑛×1 is the child’s force exerted on the master 

robot, and 𝐹𝑡ℎ ∈ 𝑅𝑛×1  and 𝐹𝑒 ∈ 𝑅𝑛×1  are, respectively, the 

therapist’s and the task environment’s forces applied on the 

slave robot. Note that as the slave interacts with the task 

environment, the therapist pulls/pushes the slave in order to 

assist the child in terms of completing the task. It is assumed 

that the slave robot is either inherently back-drivable or is 

properly impedance controlled to follow externally-imposed 

motions. 
 

3. DEMONSTRATION PHASE 

 

    In this paper, a pick and place game is chosen as the 

position-following task for the child. The child interacting 

with the master robot manipulates the slave robot to perform 

the task in the remote environment through a teleoperation 

system. Meanwhile, the therapist interacts with the slave 

robot in order to assist and modify the child’s movements, 

considering the child’s unique motion and posture 

characteristics. The position trajectory data from multiple 

task trials is saved to be encoded using GMM and GMR.  

    Transparency in the teleoperation system is provided when 

perfect position and force tracking are simultaneously 

achieved in the master-slave robotic setup. In order to provide 

transparency, the Direct Force Reflection (DFR) architecture 

is employed [11]. In this control method, the master position 

trajectory is transmitted to and tracked by the slave robot. 

Also, the slave-therapist interaction force is reflected back to 

the master robot to be fed back to the child, as schematically 

shown in Fig. 2.   
 

  

 

 

 

 

 

 

 
 

Fig. 2.  Direct force reflection (DFR) strategy for the cooperation of 

the child and therapist in the demonstration phase. 

 

    The obtained data from cooperative demonstration of the 

pick-and-place task through a transparent teleoperation 

system is constructed by 2-dimensional position vector (𝑆𝑃 ∈
𝑅2) and a 1-dimensional time variable (𝑆𝑡 ∈ 𝑅). The size of 

the total demonstration dataset is determined by the number 

of sampled data in each trial (N), multiplied by the total 

number of demonstration trials (M). So the resulting M. N 

samples form the total database of 
 

{D =  [
𝑆1,1

𝑃     𝑆1,2
𝑃   …  𝑆𝑚,𝑛

𝑃  … 𝑆𝑀,𝑁
𝑃

𝑆1,1
𝑡     𝑆1,2

𝑡   …  𝑆𝑚,𝑛
𝑡  … 𝑆𝑀,𝑁

𝑡 ] ∈ 𝑅3×𝑀.𝑁                    (5) 

∶  ∀ 𝑚 ∈ {1,2, … , 𝑀}, 𝑛 ∈ {1,2, … , 𝑁} }   
 

    In (5), m and n subscripts indicate the 𝑛𝑡ℎ sample of a 

signal in the 𝑚𝑡ℎ demonstration. The Gaussian Mixture 

Model (GMM) will be used to statistically model the 

demonstration database (𝐷 ∈ 𝑅3×𝑀.𝑁). The GMM is a 

probabilistic model that represents the data by a mixture of 

finite Gaussian probability density functions (PDF) [26] as 
 

 𝑓(𝑆𝑃, 𝑆𝑡|𝜃𝑖) =  ∑ ℎ𝑖𝒩(𝑆𝑃, 𝑆𝑡|𝜇𝑖, Σ𝑖)𝐾
𝑖=1                           (6) 

 

in which 
  

𝒩(𝑆𝑃, 𝑆𝑡|𝜇𝑖, Σ𝑖)

=  
1

√(2𝜋)3|Σ𝑖|
 𝑒

−
1
2

(([𝑆𝑃;𝑆𝑡]−𝜇𝑖)
𝑇

Σ𝑖
−1(([𝑆𝑃;𝑆𝑡]−𝜇𝑖)))

               (7) 

 

𝜇𝑖 = [
𝜇𝑖

𝑃

𝜇𝑖
𝑡 ] , Σ𝑖 = [

Σ𝑖
𝑃 Σ𝑖

𝑃𝑡

Σ𝑖
𝑡𝑃 Σ𝑖

𝑡 ]                                              (8) 

 

where 𝒩 represents the joint 3-dimensional normal 

probability density function (PDF). K is the number of 

Gaussian mixture models. 𝜃𝑖 = {ℎ𝑖 ∈ 𝑅3, 𝜇𝑖 ∈ 𝑅3, Σ𝑖 ∈
𝑅3×3}𝑖=1

𝐾 , denotes the prior weight, the mean value and the 

covariance matrix for each of Gaussian mixture components, 

respectively. The Expectation-Maximization (EM) algorithm 

[27] is used to iteratively train the GMM model (𝜃𝑖) on total 

dataset (D), which is subject to the following constraint: 
 

∑ ℎ𝑖 = 1

𝐾

𝑖=1

, ∀𝑖;  0 <  ℎ𝑖 < 1                                                     (9) 

 

The obtained GMM models should be customized to be 

utilized for the trajectory following task of pick and place 

considered in this paper. The average demonstrated position 

in a given time is needed for feeding to the controller later in 

robotic-assistance phase. This conditional probability is 

achieved using Gaussian Mixture Regression (GMR) [22] as      
 

𝑓(𝑆𝑃|𝑆𝑡 = 𝑡) =  ∑ 𝜔𝑖𝒩(𝑆𝑃|𝜇𝑖
�̂� , Σ𝑖

�̂�) 

𝐾

𝑖=1

                              (10) 

𝒩 (𝑆𝑃|𝜇𝑖
�̂�

, Σ𝑖
�̂�

) =  

      
1

√(2𝜋)2 | Σ𝑖
�̂�

|

 𝑒−
1
2

((𝑆𝑝−𝜇𝑖
�̂�

)
𝑇

 Σ𝑖
�̂�−1

((𝑆𝑝−𝜇𝑖
�̂�

)))                    (11) 

 

where 𝜇�̂� , Σ�̂� are the expected mean and covariance matrix of 

the 𝑖𝑡ℎ conditional probability as    
 

𝜇𝑖
�̂� = 𝜇𝑖

𝑃 + Σ𝑖
𝑃𝑡(Σ𝑖

𝑡)−1(𝑆𝑡 − 𝜇𝑖
𝑡) ∈ 𝑅2                                (12) 

Master
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Σ𝑖
�̂� =  Σ𝑖

𝑡 +  Σ𝑖
𝑃𝑡(Σ𝑖

𝑡)−1 Σ𝑖
𝑡𝑃 ∈ 𝑅2×2 .                                   (13) 

 

The probability that 𝑆𝑡 is in the 𝑖𝑡ℎ Gaussian distribution 

component (𝜔𝑖) is 

 

𝜔𝑖 = 𝑃(𝑖|𝑆𝑡 = 𝑡) =  
ℎ𝑖𝒩(𝑆𝑡|𝜇𝑖

𝑡 , Σ𝑖
𝑡)

∑ ℎ𝑙𝒩(𝑆𝑡|𝜇𝑖
𝑡 , Σ𝑖

𝑡)𝐾
𝑙=1

                       (14) 

  
now, the single Gaussian distribution of the conditional 

expectation of 𝑆𝑝, given  𝑆𝑡 = 𝑡, can be approximated as 
 

𝑓(𝑆𝑃|𝑆𝑡 = 𝑡) ≈  𝒩(𝑆𝑃|𝜇�̂�, Σ�̂�),                                         (15) 

 

𝜇�̂� = ∑ 𝜔𝑖 . 𝜇𝑖
�̂�𝐾

𝑖=1  ,  Σ�̂� = ∑ 𝜔𝑖
2. Σ𝑖

�̂�𝐾
𝑖=1                                (16) 

 

𝜇�̂� is the average position demonstrated during the 

cooperation of the child and the therapist at each time.  

Considering the orthonormal 2-dimensional Cartesian 𝑋1 −
𝑋2 coordinates, these vectors can be rewritten as  
 

𝜇𝑡
�̂�

= [
𝜇𝑡

𝑃𝑋1̂

𝜇𝑡

𝑃𝑋2̂  
],                                                                        (17) 

 

where the subscript t represents the time in which the 𝜇 �̂� is 

achieved. 𝜇𝑡

𝑃𝑋1̂ ∈ 𝑅  and  𝜇𝑡

𝑃𝑋2̂ ∈ 𝑅 denote the projection of 

𝜇𝑡
�̂� along the 𝑋1 and 𝑋2 coordinates, respectively.   

    In summary, the demonstrated trajectory is modeled in the 

𝑋1 − 𝑋2 − 𝑡 space via the GMM/GMR algorithms. For a 

given time, the expected 2-dimensional 𝑋1 − 𝑋2 statistical 

model for the demonstrated position is approximated via 

(15)-(16). Then, the expected average position in that time is 

calculated in each of 𝑋1 and 𝑋2 using (17), which will be later 

utilized in our proposed controller (Fig. 4).  

 

 
                                                (a) 

 

 
  (b) 

Fig. 3.  LfD process: (a) The 3-dimensional Gaussian Mixture 

Models (GMM) capture the 3-dimensional 𝑋1 − 𝑋2 − 𝑡 dataset (D), 

and (b) The 2-dimentional 𝑋1 − 𝑋2 Gaussian probability density 

function (pdf) in a given time (t = 8s) resulting from GMR. 

 
 

4. ROBOTIC ASSISTANCE PHASE  

 

In this section, the aim is to propose a framework which 

utilizes the learnt average demonstrated position from the 

previous section so that the robot can take over the therapist’s 

role and autonomously assist the child to follow the desired 

point-to-point trajectory in the pick and place task. In this 

framework, two desired virtual impedance models are 

defined in the master robot. These impedance models control 

the interaction dynamic of the master robot around the 

average demonstrated trajectory (𝜇𝑡
�̂�) in tangential and 

normal directions. Then, the slave robot, which is in contact 

with task environment, follows the master position through a 

unilateral teleportation system so that the child can perform 

the task on his/her own.      
 

4.1. Master robot’s tangential-normal impedance controller 
 

The objective is to design a framework so that the master 

robot imitates the therapist’s demonstrated performance and 

provides assistance to the child to follow the average 

demonstrated position trajectory from point A to point B. 

Depending on the task and the child, it may be desirable for 

the therapist to provide different levels of 

assistance/resistance in directions that are tangential/normal 

to the trajectory’s direction. For this purpose, a tangential-

normal coordinate T-N in each time is defined by setting the 

average demonstrated position at the current time (𝜇𝑡
�̂�) as the 

origin of the new T-N coordinate. The rotation of the T-N 

frame can be computed via differentiating the average 

position trajectory (𝜇𝑡
�̂�) as 

 

𝜃𝑇,𝑡 = 𝐴𝑟𝑐𝑡𝑎𝑛 ((𝜇𝑡

𝑃𝑋2̂ − 𝜇𝑡−∆𝑡

𝑃𝑋2̂ ) (𝜇𝑡

𝑃𝑋1̂ − 𝜇𝑡−∆𝑡

𝑃𝑋1̂ )⁄ )         (18) 

   

𝑅𝑡 = [
cos (𝜃𝑇,𝑡) sin (𝜃𝑇,𝑡)

−sin (𝜃𝑇,𝑡) cos (𝜃𝑇,𝑡)
]                                         (19) 
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𝐻𝑡 = [
𝑅𝑡

−𝜇𝑡

𝑃𝑋1̂

−𝜇𝑡

𝑃𝑋2̂

0    0  1

]

3×3

                                                    (20) 

 

where 𝜃𝑇,𝑡 ∈ [−𝜋  𝜋] denotes the angle between the T-N and  

𝑋1 − 𝑋2 Cartesian coordinates in a given time (𝑆𝑡 = 𝑡), 

calculated by four-quadrant inverse tangent. ∆𝑡 represents the 

sampling period. 𝑅𝑡 and 𝐻𝑡  express the rotation and 

homogeneous transformation matrix [28], which maps each 

interaction  force and position vector from 𝑋1-𝑋2 to T-N  

coordinate at a given time (t) as 
 

[
𝐹𝑇

𝐹𝑁
] =  𝑅𝑡 [

𝐹𝑋1

𝐹𝑋2

] ,                                                              (21) 

 

[
𝑥𝑇

𝑥𝑁

1
] = 𝐻𝑡  [

𝑥𝑋1

𝑥𝑋2

1
]                                                                (22)               

 

    In the next step, at a given time, two virtual impedance 

model are defined in directions tangential and normal to the 

average demonstrated trajectory. This models indicates the 

desired linear interaction dynamic between the master robot 

and the target trajectory in T-N Cartesian space (Fig. 4) as 
 

𝑚𝑇 �̈̃�𝑇  +  𝑐𝑇 �̇̃�𝑇  +  𝑘𝑇�̃�𝑇  = −𝐹𝑐ℎ,𝑇                                 (23)        
 

𝑚𝑁 �̈̃�𝑁 + 𝑐𝑁 �̇̃�𝑁 +  𝑘𝑁�̃�𝑁 = −𝐹𝑐ℎ,𝑁                                  (24) 
 

where {𝑚𝑇 , 𝑐𝑇 ,  𝑘𝑇}  ∈ 𝑅+ and {𝑚𝑁 , 𝑐𝑁 ,  𝑘𝑁}  ∈ 𝑅+ refer to 

the desired virtual mass, damping and stiffness parameters in 

the tangential and normal directions, respectively. �̃�𝑇 =
 𝑥𝑑𝑒𝑠,𝑇 − 𝑥𝑑𝑒𝑚,𝑇 and �̃�𝑁 =  𝑥𝑑𝑒𝑠,𝑁 −  𝑥𝑑𝑒𝑚,𝑁 indicate the 

difference between the desired robot position 

{𝑥𝑑𝑒𝑠,𝑇 , 𝑥𝑑𝑒𝑠,𝑁} ∈ 𝑅 and the demonstrated trajectory at a 

given time {𝑥𝑑𝑒𝑚,𝑇 , 𝑥𝑑𝑒𝑚,𝑁} ∈ 𝑅 as transformed to the T-N 

frame, respectively. 𝐹𝑐ℎ,𝑇  and 𝐹𝑐ℎ,𝑁 ∈ 𝑅 denote the 

interaction force between the child and the master robot in T-

N coordinates, which are found as 
 

[
𝐹𝑐ℎ,𝑇

 𝐹𝑐ℎ,𝑁
]  =  𝑅𝑡 [

𝐹𝑐ℎ,𝑋1

𝐹𝑐ℎ,𝑋2

]                                                      (25) 

 

and, the average demonstrated trajectory T-N coordinate is 
 

[
𝑥𝑑𝑒𝑚,𝑇

𝑥𝑑𝑒𝑚,𝑁

1
] =  𝐻𝑡 [

𝜇𝑡

𝑃𝑋1̂

𝜇𝑡

𝑃𝑋2̂

1
 
] = [

0
 0
 1

 
]                                            (26) 

 

Equivalently, �̇̃�𝑇 , �̈̃�𝑇 , �̇̃�𝑅 and �̈̃�𝑅 are 
 

[
�̇̃�𝑇

�̇̃�𝑁

] =  [
�̇�𝑑𝑒𝑠,𝑇

�̇�𝑑𝑒𝑠,𝑁
] ∈ 𝑅2                                                       (27) 

  

[
�̈̃�𝑇

�̈̃�𝑁

] =  [
�̈�𝑑𝑒𝑠,𝑇

�̈�𝑑𝑒𝑠,𝑁
] ∈ 𝑅2                                                       (28) 

 

    In Fig. 4, the red and green orthogonal axes represent the 

T-N and 𝑋1 − 𝑋2  Cartesian coordinates respectively. The T-

N  origin is on the average demonstrated trajectory at a given 

time which acts as a moving target in this controller (𝜇𝑡
�̂�
). In 

the first step, the child’s applied force on the master (𝐹𝑐ℎ) is 

projected along T-N coordinates by (𝑅𝑡) and then exerted to 

their corresponding virtual mass-damper-spring  models that 

are connected to the virtual moving target (𝜇𝑡
�̂�
). These forces 

cause a deviation with respect to the moving target and find 

the desired master robot position in each of tangential/normal 

directions (𝒙𝒅𝒆𝒔,𝑻, 𝒙𝒅𝒆𝒔,𝑵), so that the master robot get 

connected to the desired virtual moving target via virtual 

impedance models. These desired positions are then map 

back to 𝑋1 − 𝑋2  coordinate (29) for the master robot to be 

followed. Accordingly, the child feels as if connected to a 

moving target (𝜇𝑡
�̂�
) via  virtual mass-damper-spring 

impedance models in each of tangential and normal directions 

(Fig. 4).  

 

 

 

 

    

 

 

 

    

           

 

 
 

Fig. 4.  The proposed virtual Tangential-Normal impedance 

controller.  

 

Therefore, the master robot not only follows the average 

demonstrated position, but also provides an adjustable level 

of freedom for the child to deviate from this trajectory in each 

direction. The larger the desired impedance parameters, the 

less the child’s freedom to deviate from the expected 

trajectory.   
 

[

𝑥𝑑𝑒𝑠,𝑋1

𝑥𝑑𝑒𝑠,𝑋2

1
] = 𝐻𝑡

−1 [

𝑥𝑑𝑒𝑠,𝑋𝑇

𝑥𝑑𝑒𝑠,𝑋𝑁

1
]                                              (29) 

 

4.2 Unilateral teleoperation control 
 

A unilateral teleoperation system (Fig. 5) is used, where the 

master position is transmitted to the slave side to be used as 

the desired position for slave:  
 

𝒙𝒅𝒆𝒔,𝒔 =  𝒙𝒎.                                                                    (30) 
 

Here, 𝒙𝒅𝒆𝒔,𝒔 ∈ 𝑹𝟐 denotes the desired position for slave robot. 

And, 𝒙𝒎 ∈ 𝑹𝟐 expresses the master robot position 

transmitted from master side. A PID controller is utilized, so 

that the master and slave robots follow their desired positions.  

𝑭𝒄𝒉,𝑵 

𝒎𝑵 

𝒌𝑵 

𝒄𝑵 

𝒎𝑻 
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𝝁𝒕
�̂�
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Fig. 5.  Unilateral teleoperation system. The slave robot (in play 

environment) follows the position of master robot (child) that is 

connected to the virtual T-N impedance models.  

 

 

6. EXPERIMENTS AND DISCUSSION 

 

The proposed ANN framework using LfD is experimentally 

tested using a Quanser Rehab robot (Quanser Consulting Inc., 

Markham, Canada) as the master (Fig. 6a) and a Phantom 

Premium robot (Geomagic Inc., Wilmington, USA) as the 

slave (Fig. 6a). Both of the therapist demonstration and 

robotic assistance phases are implemented with a sampling 

time of 1 msec using the QUARC real-time control software 

(Quanser Consulting Inc., Markham, Canada). 

    A game is designed for the child such that he/she moves 

the slave robot through a teleoperation system, in order to 

pick a token from box A in a 2D play environment and put it 

in box B (see Fig. 6). A coil is mounted on the slave end-

effector and charged with electrical current when the robot 

reaches the box A for picking the metal token. This coil is 

discharged when the slave end-effector reach the box B for 

placing the token in this box. 

                                   

 
                                               (a) 

 

 

 

 

   
                       (b)                                            (c) 
Fig. 6.  The experimental set up: (a) Quanser Rehab robot (Master) 

and Phantom Premium robot (Slave) in the teleoperation system, (b) 

the game environment, where the task is to pick tokens from box A 

and place them in box B, and (c) the spring array (𝐾1, 𝐾2), modeling 

the child with disability in the master robot side.    

 
6.1 Demonstration Phase 
 

In this experiment, the child is simulated as a spring array that 

is pulled to the box A location at the beginning of the 

experiment (Fig. 6.c). This array will produce 2D forces 

while reaching its’ equilibrium point, which is not the box B’s 

location. Therefore, the simulated CP child cannot move the 

master and consequently the slave to the box B location and 

accomplish the pick and place task, as shown in Fig. 7, if 

unassisted. 

 
Fig. 7.  The simulated CP child (spring array) trajectory without 

therapist/robotic assistance.  

     

Accordingly, it is required that in the demonstration phase the 

therapist assists the child to correct the movement by 

applying assistive/resistive forces to the slave end-effector in 

the tangential/normal directions. This assistance is provided 

on an as-needed basis by considering the unique motion 

characteristic of the child. The obtained trajectories of the 

child and the therapist across 5 trials are shown in Fig. 8a. 

The GMM of these trajectories are shown in Fig. 8b. The 

average demonstrated trajectory and the corresponding 

variation manifold obtained from GMR are also illustrated in 

Fig. 8c.  
 

 
                                                (a) 
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                                                (b) 

 
                                                 (c) 

Fig. 8.  The cooperative task demonstration: (a) Therapist-child 

mutual position, executing the pick and place task for 5 trials, (b) 

the projection of 3D GMM on the 𝑋1 − 𝑋2 Cartesian coordinates, 

(c) the average and variability of the demonstrated trajectories, 

resulting from GMR.  

 

As seen in Fig. 8, the GMM and GMR models efficiently 

capture the average and variability of cooperative task 

execution. The therapist interaction force in Tangential and 

Normal directions for the trial number 4 is sketched in Fig. 9. 

 

 
                                                (a) 

 
                                                (b) 
Fig. 9.  Therapist-applied force in the task demonstration: (a) in 

Tangential direction, and (b) in Normal direction. 
 

Based on the structure of utilized spring array, the simulated 

child will exert a force in the normal direction along the 

trajectory. Thus, the therapist applied force in opposite 

direction (Fig. 9b) to increase resistance in normal direction 

and bend the mutual trajectory toward box B, while 

preserving the curve-like motion characteristic of child (Fig. 

7), in tangential direction. At first, the therapist applied force 

in negative direction to reduce the abrupt acceleration of the 

robots produced by spring array in Box A location (Fig. 9a). 

Then, the therapist has provided the positive force to assist 

the child to reach the destination.    

 

6.2 Robotic Assistance Phase 
 

The demonstrated average trajectory of the child-therapist 

cooperation in the previous phase are employed in this phase 

to perform the task in the absence of the therapist. The child 

deviation (in this phase) with respect to the demonstrated 

average trajectory (from the previous phase) is determined as 

a response to his/her interaction forces, using the proposed 

tangential-normal impedance models (23), (24). In order to 

evaluate the performance of the impedance model in terms of 

adjustment of the child’s flexibility, different sets of 

impedance models are defined and listed in Table 1. 

                                          
                                       TABLE 1 

Adjustment of tangential and normal impedance models for 

various set of parameters. 

  

T < N  M C k 𝑺𝑻 

Tangential (T)   50× 𝑆𝑇 140× 𝑆𝑇 200× 𝑆𝑇 
{1,2,3} 

Normal (N) 100× 𝑆𝑇 280× 𝑆𝑇 400× 𝑆𝑇 

N < T m C k 𝑺𝑵 

Tangential (T) 100× 𝑆𝑁 280× 𝑆𝑁 400× 𝑆𝑁 
    
{1,2,3} 

Normal (N) 50× 𝑆𝑁 140× 𝑆𝑁 200× 𝑆𝑁 

                                             
Impedance parameters are chosen to provide the robot with 

appropriate transient response to child’s input forces and 

cancel the high frequency response, which corresponds to 

tremor in children with CP:  
 

𝜉 = 𝑐 2√𝑚. 𝑘⁄ =  0.7                                                       (31) 
 

𝜔𝑛 = √𝑘 𝑚⁄ = 2                                                              (32) 
 

Using these parameters in the virtual impedance models and 

applying the proposed impedance control strategy to follow 

the average demonstrated trajectory, the   𝑋1 − 𝑋2 trajectory 

of the slave robot (in the task environment) is as shown in 

Fig. 10.  
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                                               (b) 

Fig. 10.  Robotic assistance phase. Child’s trajectory: (a) more 

flexibility (less resistance) in the normal direction, and (b) more 

flexibility (less assistance) in the tangential direction. 
 

Impedance parameters adjust the trade-off between accuracy 

(more assistance/resistance) and flexibility (less 

assistance/resistance) in each of tangential/normal directions. 

Movement in the tangential direction highly contributes to the 

task accomplishment as the child is moving along the average 

demonstrated trajectory to reach the destination (box B). So, 

it is desirable to provide the child with more flexibility (less 

assistance) in the tangential direction to ensure his/her 

motivation and participation in task execution. However, the 

child’s ability to move along the average trajectory should be 

taken into consideration. As it is observed in Fig. 10b, 

choosing the impedance parameters by adjusting ST=1, the 

child is unable to reach the destination, because of inadequate 

assistance in the tangential direction.                                      

    Less resistance in the normal direction gives more freedom 

to the child for deviation in directions orthogonal to the 

tangential direction. The level of flexibility in the normal 

direction is limited by any spatial restriction in the task 

environment. In order to minimize this resistance and also, 

meet the required accuracy for task accomplishment, this 

parameter can be set according to the observed variability of 

demonstrated data in Fig. 8c. 

    Based on the above discussion, in this work, ST=2 has been 

selected for the assistance phase, which the adjusted 

impedance parameters not only provide more flexibility in the 

tangential direction, but also allows the child to have 

acceptable deviation in normal direction. The corresponding 

position deviations from the average trajectory in the T-N 

coordinates and also the applied interaction forces by the 

child in the T-N directions that generate these deviations, are 

sketched in Fig. 11. 
  

 
                                               (a) 

 
                                               (b) 

 
                                                (c) 
 Fig. 11.  Robotic assistance phase (ST=2): Child (a) deviation  

tangent to  trajectory (b) deviation normal to the trajectory (c) 

interaction force in T-N coordinates.   
 
 

7. CONCLUSION 
 

In this work, a robotic-assistance-as-needed framework was 

proposed for children with Cerebral Palsy (CP) to perform 2D 

position following task, by tele-manipulating the slave robot 

in the play environment. In the first step (demonstration 

phase), the therapist interacted with the slave robot to assist 

and correct the child’s movements. Using a learning from 

demonstration strategy, the Gaussian Mixture Model (GMM) 

and Gaussian Mixture Regression (GMR) techniques were 

utilized to approximate the average and variability of the 

demonstrated therapist-child trajectories.  

Then, in the robotic assistance phase (without therapist 

intervention), the impedance/admittance control method was 

applied such that the master robot provides a desirable 

flexibility for the child during following the average 

trajectory. Different impedance characteristics were defined 

for the child deviation (flexibility) in normal and tangential 

directions with respect to the average trajectory. As small as 

needed impedance parameters were employed in the 

tangential direction to provide appropriate flexibility 

(assistance) for the child and execute the task. However, by 

increasing the impedance parameters corresponding to the 

normal direction, the child deviation from the desired 

trajectory decreases.  

The validity of proposed framework was experimentally 

evaluated by using different sets of impedance parameters in 

tangential/normal impedance models. To have the same 

condition in different experiments, a spring array was 

designed for simulating the patient force on the master robot. 

In future works, the proposed strategy will be utilized for real 

children with CP to improve their ability and success rate in 

pick and place tasks on the play environment.   
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