
University of Alberta

O v e r - f it t in g i n G e n e r a l i z e d L i n e a r E v a l u a t io n M o d e l s

by

Siddhartha Chinthapally

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful­
fillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-13804-1
Our file Notre reference
ISBN: 0-494-13804-1

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my parents and teachers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

We consider the problem of parameter over-fitting in sparse generalized linear mod­

els and empirically compare early stopping, regularization, weight clamping, and

combinations thereof in the context of the backprop algorithm. New insights into

the problem of over-fitting are given based on feature frequency. Results obtained

for optimizing parameters of function approximators for synthetic data sets and a

popular board game suggest that weight clamping depending on feature frequency

combined with early stopping can outperform the other considered techniques in

terms of test-set over-fitting.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I extend my gratitude to all the people who made this thesis possible. First and
foremost, I thank my supervisor, Michael Buro, for getting this thesis started and

for the constant guidance and support over the duration of the thesis. Throughout
this period he provided me with lots of ideas, helped me whenever I got stuck,

taught me lots of new things, enouraged me whenever I was down and has been a
great company. This thesis would not have been possible without him.

I am also grateful to the GAMES group for the various interesting lectures and
the games parties. I also thank all my teachers here at the graduate school for the
wonderful courses. I thank Herb Yang, Martin Muller, Michael Bowling, Michael
Buro and Guohui Lin for introducing me to various interesting fields in computer

science.
I gratefully acknowledge the financial support provided the University of Al­

berta, the Department of Computing Science and iCORE.
I thank Shubhankar Chatterjee for proof-reading earlier drafts of this thesis and

for his useful comments. I also thank my friends in Edmonton — Shallu, Raj,
Biswaroop, Divya — for their moral support over the past two years.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
1.1 Machine L earn ing .. 1
1.2 Types of L earn ing .. 2
1.3 O v er-fittin g .. 3

1.4 Contribution of Thesis ... 4

1.5 Organization of T h e s i s ... 5

2 Generalized Linear Evaluation Model 6
2.1 Linear M odels ... 6

2.2 Generalized Linear M o d e ls .. 8

2.3 Least-Squares Method ... 9
2.3.1 Linear Least-Square O ptim ization ... 9
2.3.2 Non-linear Least-Square Optim ization...................................... 11

2.4 Generalized Linear Evaluation Model (G L E M) 13
2.4.1 Advantages of G L E M .. 15
2.4.2 Configuration Selection ... 15

2.4.3 P a tte rn s .. 16

3 Multi-Layer Perceptrons and Over-fitting 18
3.1 Perceptron.. 18

3.2 Multi-Layer Perceptrons (M L P) ... 19

3.3 Error Back Propagation... 19
3.4 Enhanced G L E M ...23
3.5 Learning Rate and M o m en tu m ..24

3.5.1 Optimal Learning R a t e ..24
3.5.2 M om en tum ... 26
3.5.3 Adaptive Learning Rate .. 27

3.6 O v er-fitting ...28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.7 How to Overcome Over-fitting? ... 29
3.8 Early Stopping .. 31
3.9 Regularization... 32
3.10 T R I : A Metric-Based Approach to Model Selection.............................. 32

3.11 C la m p in g .. 34
3.12 Weighted R egulariza tion .. 35

3.13 Rare-Feature S e t s ... 35
3.14 Top M ultip lier.. 36

4 Software, Experiments, and Results 39
4.1 Evaluation Function Definition F o rm at... 39

4.1.1 T o p o lo g y ...40

4.1.2 Features..41
4.2 Optimization P ro c e s s .. 43

4.2.1 I t e r a to r ..43

4.3 Experimental S e tu p ... 44
4.4 Synthetic D a ta ... 44

4.5 R esults.. 48
4.5.1 Effects of Rare Features and Rare-Feature S e t s 48
4.5.2 Empirical Comparison of T ech n iq u es ...49

4.6 Othello ... 57

5 Conclusions and Future Work 60
5.1 Future W o rk .. 61

Bibliography 62

A Synthetic Application Function Definition Files 64

B Othello 66
B .l Function Definition File for Othello Application, Model M l 68

B.2 Function Definition File for Othello Application, Model M2 69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

4.1 Network corresponding to the d e fin itio n ..42
4.2 Learning rate and momentum values used in synthetic data experi­

ments..48
4.3 Parameters used for generating the data sets, rare-feature sets and

the corresponding parameters used for clamping, vmax G {1 , 2 ,3 ,4}.
pr - percentage of rare features, / - average frequency of a rare feature. 51

4.4 Model — M l, a = 0.5, pr = 80%, f = 4. Each column indicates
the number of times the corresponding algorithm ranked first, sec­
ond, third, fourth and fifth with respect to the validation error. The
best six algorithms sorted by performance are shown............................... 54

4.5 Model — M l, a = 1.5, pr = 80%, f — 4. Each column indicates

the number of times the corresponding algorithm ranked first, sec­
ond, third, fourth and fifth with respect to the validation error. The
best six algorithms sorted by performance are shown...............................54

4.6 Model — M l, a = 0.5, pr = 20%, / = 7. Each column indicates
the number of times the corresponding algorithm ranked first, sec­
ond, third, fourth and fifth with respect to the validation error. The
best six algorithms sorted by performance are shown............................... 54

4.7 Model — M l, a = 1.5, pr = 20%, / = 7. Each column indicates
the number of times the corresponding algorithm ranked first, sec­
ond, third, fourth and fifth with respect to the validation error. The

best six algorithms sorted by performance are shown............................... 55
4.8 Model — M2, a = 0.5, pr = 80%, / = 4. Each column indicates

the number of times the corresponding algorithm ranked first, sec­

ond, third, fourth and fifth with respect to the validation error. The
best six algorithms sorted by performance are shown............................... 55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.9 Model — M2, a = 1.5, pr = 80%, / = 4. Each column indicates
the number of times the corresponding algorithm ranked first, sec­
ond, third, fourth and fifth with respect to the validation error. The

best six algorithms sorted by performance are shown........................... 55
4.10 Model — M2, a = 0.5, pr = 20%, / = 7. Each column indicates

the number of times the corresponding algorithm ranked first, sec­
ond, third, fourth and fifth with respect to the validation error. The
best six algorithms sorted by performance are shown........................... 56

4.11 Model — M2, a = 1.5, pr = 20%, / = 7. Each column indicates

the number of times the corresponding algorithm ranked first, sec­
ond, third, fourth and fifth with respect to the validation error. The
best six algorithms sorted by performance are shown........................... 56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 C lu sterin g .. 3
1.2 O ver-fittin g ... 4

2.1 Linear Least-Square Exam ple.. 11
2.2 Gradient D e s c e n t ... 13
2.3 One of the patterns used in LOGISTELLO. Each hex represents an

atomic feature which can take value {0 , 1 , 2 } depending on whether
the square is white, empty or black.. 17

3.1 Perceptron.. 18
3.2 A Multi-layer Perceptron with a 2-node input layer, a 3-node hidden

layer and an output n o d e .. 2 0

3.3 The upper layer of node k is shown. The error propagates from the
upper layer to node k, while the function computation happens in

the opposite direction... 2 2

3.4 Enhanced version of G L E M ... 24
3.5 Different learning rates affecting speed of co n v erg en ce 25
3 .6 f ^ x) = 13.026 + 0 .1 2 6 x ... 30
3 .7 f 2(x) = 3.60 - 0.204x + 0.337x2 ... 30

3.8 f 3(x) = 3.54 - 0.427x + 0.338x2 + 0.004a:3 .. 30
3 .9 f A(x) = 6.03 + 0.475x - 0.21x2 - 0.012x3 + 0.008x4 30

3.10 f 5(x) = 4.16 + 8.34x + 1.4Lr2 - 0.588x3 - 0.019x4 + 0.007x5

over-fits the d a ta ... 30
3.11 Test error of the functions / i , / 2, f$,............ ...30
3.12 Early Stopping .. 31
3.13 Geometric view of model selection... 33

3.14 Clamping using a ramp function. The absolute value a feature
weight can take is clamped by a function M (f) of the feature fre­

quency / ... 34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.15 Function to be learnt, represented as a network 36

3.16 Error surface with 2 m in im a ...38
3.17 Error surface in one half of the sp a c e ... 38

4.1 Overview of the data flow in the optimization p ro c e ss 40
4.2 Overview of the Optimization P ro c e s s .. 43
4.3 Different models used for the synthetic data ex p e rim en ts 45
4.4 The set of experiments depicted in a tree form.. 47
4.5 Test set error comparison between two data sequences with differ­

ent percentage of rare features. The test set with a high percentage
of rare features p = 0 .8 exhibits over-fitting while the other does
not. The model used is M l..49

4.6 Test set error comparison between two data sequences using dif­

ferent test sets. There is no over-fitting when a regular test set is
used. But using a rare-feature set (R3, criterion - R S i with feature
frequency at most seven) exhibits over-fitting. The model used is M l. 50

4.7 Test set error using different norms...50
4.8 A typical distribution of mean-squared test error (early stopping

value) of an algorithm over 100 data sequences...52
4.9 Sample b o x p lo t .. 53

4.10 Performance of the plain algorithm on various Othello rare-feature
sets for stage 1 and Model M l. Over-fitting is higher for the rare-
feature set that has a lower average frequency of features........................58

4.11 Performance of different algorithms on stage 1 of Othello on test set
R 2. R - Regularization, C(f , V) - Clamping with critical frequency

f and vmax V ...59
4.12 Performance of the plain algorithm on various Othello rare-feature

sets for stage 1 using test sets R 2 and the regular test set using the
plain algorithm.. 59

B .l Othello ru le s .. 67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Machine Learning

Machine learning is the subject that deals with making machines (computers) learn.
Machine learning is quite widespread these days and machine learning techniques
have been successfully applied in varied fields of applications like manufacturing,
banking, genetics, medical applications, control systems, computer games etc. One

of the earliest applications of machine learning has been in Samuel’s checker games
[Sam59][Sam67]. The field of machine learning is closely related to statistics as
data analysis is at the core of both fields. However, machine learning deals with

the design of algorithms to process this data to achieve learning. Machine learn­
ing is also related to the broad field of Artificial Intelligence. In fact, some of
the successful applications of machine learning have been in computer games like

Backgammon [Tes95] and Othello [Bur99][Bur97]. A detailed survey of machine

learning techniques applied to games is presented in [FiirOl].
It is difficult to precisely define learning. Let us look at what comprises learning.

Webster’s dictionary defines learning as “to gain knowledge or information; to fix
in mind”. Machine learning derives some of its methods from biologically inspired
models. If we adapt the dictionary definition of learning to machines we can say
that a machine learns if it can modify itself by interacting with the environment
so that it improves its performance or its ability to predict outcomes. Forms of
interaction between a machine and the environment include data, reward and error

feedback.

It is possible to make machines experts by transferring the human domain knowl­
edge. But this method cannot be applied to all situations and machine learning is a
strong candidate in those situations. Some of those situations are as follows:

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• In some cases the relationship between inputs and outputs is difficult to define
or not known, even though a large number of sample inputs and outputs are
known. In other words, the function is not known and machine learning can

be used to learn a function which approximates the unknown function.

• Machine learning can be used to discover hidden relationships between items.
Data mining studies unearth interesting correlations in consumer behaviour.
For example, shopping sites like Amazon.com suggest other useful purchases

based on data mining studies.

• When the system is dynamic, we can use machine learning techniques to
make the system adapt to the changes rather than redesign the system each
time. Sometimes the specification of the environment may not be known at

the time of designing. For example, in an elevator control design the usage
details for the elevator like frequency of use etc are unknown at the design
time and may change with time. If a busy user moves to sixth floor from third
floor, the elevator would learn the new pattern and maximize its performance.

1.2 Types of Learning

Machine learning can be broadly classified into supervised learning, unsupervised
learning and reinforcement learning. In supervised learning the system is given a
set of training samples for which the outputs are known. The system has to make
a hypothesis h which approximates the unknown function / we are trying to learn.
In other words, the system has to leam to predict based on the samples provided.

The most common types of problems encountered in supervised learning are curve-
fitting, real valued function approximation, and classification. Curve fitting as the

name suggests is the problem of fitting the outputs to a real valued function of the
inputs. Classification deals with mapping each input vector to one of the several
classes of outputs. The most popular method used for supervised learning is a
form of gradient descent which is called linear regression in linear models and error
backpropagation in neural networks.

In unsupervised learning, the system is given a set of unlabeled training samples.
Usually the goal is to cluster the samples into various sets. So, no output exists for

a single sample. Since there exist measures to calculate the goodness of a clustering

no other outputs are required. The data points can be clustered based on how closely

related samples of one group are (diameter of the cluster) and how distinct samples

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.1: Clustering

from different clusters are (distance between clusters). In Figure 1.1 the data can be
clustered into classes C\, C'2 and C's as shown. For instance, unsupervised learning

is used in the classification of species in bio-informatics.
In reinforcement learning, the learner has to choose a policy that determines the

action to perform in a particular state. The learner is rewarded for its actions by the
environment. The goal of reinforcement learning is to choose a policy that maxi­
mizes the total reward. The learner accomplishes this by judiciously exploring the

action space and using the knowledge gained form previous experience to exploit
in the current state. For an in-depth study of reinforcement learning see [SB98].

For example, reinforcement learning has been successfully applied to improve the
performance of an elevator controller [CB96].

For a thorough discussion of machine learning, its relation to various fields and
various types of learning refer to standard text books in machine learning [Nil96],
In this thesis, we restrict ourselves to supervised learning.

1.3 Over-fitting

One of the problems encountered when using supervised learning with neural net­
works or regression is over-fitting. In what follows, we refer to the sequence of
input vectors with the corresponding labeled outputs which is used for training as
training data or training set and the sequence of inputs with labeled outputs which
is used for testing as test data or test set. Though the terms training set and test

set are widely used, they are not sets in strict sense as they can have duplicate data.

Strictly speaking, they are multi-sets.
We say a model over-fits if it approximates the function on training samples

with low error while having a high error when tested for samples from an unseen

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test error

Training errorerror

iterations

Figure 1.2: Over-fitting

test set (Figure 1.2). Over-fitting occurs when the system fits not just the signal
but also the noise associated with the signal. The system adjusts itself so that it
approximates the noisy training data but generalizes poorly on test data. Over­
fitting leads to bad predictions even when trained on a large data set for a long time.

In this thesis we look at ways to overcome over-fitting and compare the results to
existing techniques.

1.4 Contribution of Thesis

The contributions of this thesis are the following

• New insights into the problem of over-fitting in Generalized Linear Evalua­
tion Models (GLEM) based on feature frequency.

• We propose new techniques to actively prevent over-fitting in GLEM and
compare their performance relative to existing techniques such as regulariza­
tion.

• A novel over-fitting measure that uses a test set containing rare features.

• An improved model for constructing evaluation functions using patterns by

extending GLEM to include non-linear functions.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Software for performing training while preventing over-fitting for GLEM.
The software can also be used to test new ideas for preventing over-fitting.

1.5 Organization of Thesis

The remainder of the thesis is organized as follows:

Chapter 2 deals with Linear Models, Generalized Linear Models and Generalized

Linear Evaluation Models.

Chapter 3 discusses various issues involved in Supervised Learning. Enhance­
ments to speed up learning and to improve the generalization of the system
are discussed. The problem of over-fitting is also discussed. Chapter 3 also

discusses the techniques used to overcome the problem of over-fitting.

Chapter 4 gives an overview of the software, details on the experimental setup and
the results of simulations on a simple synthetic application and on Othello

game.

Chapter 5 summarizes the results from the experiments, makes conclusions and

suggests directions for further research.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Generalized Linear Evaluation
Model

In this thesis we focus on Generalized Linear Evaluation Model [Bur98] and its ex­
tensions. GLEM can be viewed as an extension of Linear Models and as a variation
of Generalized Linear Models. Before describing GLEM we will discuss Linear

Models and Generalized Linear Models in some detail.

2.1 Linear Models

Linear Models are statistical models that fit the measurements taken (outputs) as
a linear combination of the observables (independent input variables) while mini­
mizing the norm of the residual1 vector. Let X be the vector of independent input

variables and y be the function. Linear Models describe a linear relation between y

and the x, s.
y = b0 + 61X1 + b2x 2 H b bnx n

The solution to this will be the vector b of parameters that determines the model.
This can be solved exactly if the number of equations is equal to the number of un­
knowns and all the matrices have full rank. Usually this is not the case in practice.

The system is over-specified and there are more samples than unknowns i.e more
equations than variables. The solution now is to fit the observations into a model
which minimizes the residual norm. For the i t h observation we can write the equa­

tion as

‘We use the terms residual and error interchangeably throughout this thesis though their m ean­
ings are different in strict statistical sense. Error refers to the difference betw een an observation and
its expected value (unobservable), w hereas residual is an observable estim ate o f the error.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

y l — 60 + b\x \ + 62^2 + ' ■ ■ + bnx ln + el

where el is the residual corresponding to the i th sample. The system of equations
can be written as follows:

= b0 + b\x \ + b2x \ T ■ ■ ■ T bnx^ + e1

y 2 = b0 + bxx \ + b2x 22 H h bnx \ + e2

yN = b0 + bxx x + b2x 2 -|--------- h bnx " + eN „ N , „ N

In matrix form :

(y l \ (1

y 2 —
1

{ y N j I 1

XI nn 11 JbC)
X X X n

X1 \ (bo \

X l b i
+

X n / \ b n) \ e N)

The whole system of equations can be compactly represented in matrix form as

Y = X B + E

where Y is an N x 1 vector of measurements/outputs, X is N x (1 + n) matrix of
inputs where each row is an input vector for one output in Y , B is an (n + 1) x 1

matrix of parameters where each parameter corresponds to one input and E is an
N x 1 vector of residuals where each component is the error of the corresponding

output.
The model is called linear because it is linear in the parameter vector B . For

instance, the following model

y = ax\ + bx2 + c

is a Linear Model because it is linear in the parameters a, b and c while the model

y = ax\ + bx2 + ab

is not a Linear Model. Often, the parameter vector B is estimated using the maxi­
mum likelihood principle.

The maximum likelihood estimate finds a parameter vector which most likely
results in the observed outputs. The following example explains the concept. A

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

person has three race horses with the probability of winning a race equal to 0 .1 , 0 .2

and 0.7 respectively. There are 10 races each day and only one of the 3 horses is
entered in races on a particular day. Suppose a horse won exactly 4 races on a day.
The question is which of the horses is it. Now, we calculate the likelihood of each
horse and choose the one with maximum likelihood.

Likelihood of 4 wins out of 10 given (p = 0.1) = (0.1)4 (0.9) 6 « 0.011

Likelihood of 4 wins out of 10 given (p = 0.2) = (0.2)4 (0.8) 6 0.088

Likelihood of 4 wins out of 10 given (p = 0.7) = (0.7)4(0.3) 6 0.037

The maximum likelihood principle says that it is most likely horse number 2 was en­
tered in the races on that day. Calculating the likelihood this way for large systems
is impractical. Fortunately, under the Gauss-Markov conditions of uncorrelated,
homoescedastic (all errors have the same variance) and zero mean errors the max­
imum likelihood method is equivalent to the least-squares optimization [PTVF92],
The ubiquitous least-squares method is discussed in the following sections.

Generalized Linear Models are an extension of Linear Models. A Linear Model is

not sufficient in cases where the relationship between the output and input is not
linear. For example, in chess, the material value is a good indicator of the chance
of winning the game. The difference in the winning chance between having one
Queen and having two Queens is larger than the difference between having three

Queens and four Queens. In other words, the relationship between the number of
excess Queens and winning chance is non-linear.

To account for this non-linear relationship between inputs and outputs, General­

ized Linear Models apply a non-linear function to the output of a Linear Model. A
Generalized Linear Model describes a non-linear relationship between inputs (x^s)
and the output (y) in the following form

where g is a non-linear function usually S-shaped in the form g{x) = i+l-* if
the output is restricted to (0,1). Least-squares optimization can be used for the

generalized linear model as well.

2.2 Generalized Linear Models

y = gipQ + biX i + b2x 2 H b bm x m)

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Least-Squares Method

The least-squares method tries to minimize the sum of squares of the residuals and
thus finds a function which fits the data. The goodness of the fit is measured by
the error function which is minimized. It is the most commonly used optimization
technique as it has nice theoretical properties and simple algorithms.

The problem can be formulated as follows. We are given a sequence of data

points
D = (xi ,yi) , i = 1, 2, . . . , N

and we are supposed to find a function / such that

f (x i) ~ Vi

We now find a solution to the function (assuming we know the form of the function)
in the parameter space which minimizes the sum of the squares of the residuals.

E = ~ / (^))2
i= 1

If the function / is linear in the parameters to be optimized - like in the Linear
Models - we use the linear least-square method which has an algebraic solution. If

the function / is non-linear in the parameters to be optimized we use non-linear
least-square methods such as gradient descent. Generalized Linear Models fall into
this category.

2.3.1 Linear Least-Square Optimization

We want to find the solution to the system of equations

Y = X B + E

that minimizes | \E\ | where Y is an rn x 1 vector of outputs, X is m x (1 +n) matrix
of inputs where each row is an input vector for one output in Y , B is an (n + 1) x 1

matrix of parameters where each parameter corresponds to one input and E is an

m x 1 vector of residuals.
\\E\\ = \ \ X B - Y \ \

The I2 norm of a vector V can be written as a the dot product of V T and V.

\\E\\ = (X B — Y) t (X B — Y)

= (X B f X B - (X B) t Y - Y t X B + Y t T

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

At the minimum the derivative with respect to B is equal to zero. Differentiating
both sides with B at the minimum gives

0 = 2X t X B - 2X t Y

Therefore, a vector B that minimizes \\E\\ also solves the following equation

X t X B = X t Y

The above is a system of linear equations with n + 1 equations and n + 1 un­
knowns. The system can be uniquely solved if X TX has full rank. In which case,
the solution can be found as

B = (X t X) ~ 1X t Y

Example

Let us try to find a straight line y = b0 + bxx which fits the following points the

best. The points are : (1,1.5), (2,1.5), (2.5, 2.6), (3.0, 2.95) and (5.0,4.0).

/ I I \
1 2
1 2.5
1 3.0

V I 5 . 0 /

Y

(1.5 \
1.5
2.6
2.95

V 4 0 !

X r X = 5 13.5
13.5 45.25

, X t Y = 12.55
39.35

(.X TX) ~ 1 -
1

44
45.25 -13 .5
-1 3 .5 5

0.83
0.62B = (X t X) ~ 1X t Y ft

The equation of the best fit straight line is

y = 0.83 + 0.62 • x

(see Figure 2.1). The same method can be used to find a best-fitting polynomial too
as it is still linear in the parameters to be optimized.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

y = 0.83 + 0.62*x
5

4

3

2

1

0
5 61 2 3 40

X

Figure 2.1: Linear Least-Square Example

2.3.2 Non-linear Least-Square Optimization

Non-linear least-square optimization methods usually use some form of gradient
to direct their search for a minimum. Methods which use just the first derivative

like gradient descent are called first-order methods. Methods which use higher-
order derivatives also are called higher-order methods. Conjugate gradient, GauB-

Newton and Levenberg-Marquardt methods are examples of second-order methods.
GauB-Newton and Levenberg-Marquardt methods are known to work very well for
a small number of weights. However, their space requirements are quadratic in
the number of weights and hence they are infeasible for larger number of weights.
They also involve matrix inversions which are expensive operations. Conjugate

gradient method has a space requirement that is linear in the number of weights.
A theoretical analysis presented in [Sch94] indicates that the conjugate gradient

method takes fewer iterations to converge than gradient descent. On the other hand,
conjugate gradient methods perform more computation in one iteration compared to
gradient descent methods. An empirical study [SL94] of standard gradient descent
and conjugate gradient methods in neural networks on N2N encoder benchmark
problem shows that both methods have a near equal median time complexity. In the

following we present the gradient descent method.

If E(w) is differentiable at the current point W cur

E (W) = F (W cur) -I- V £ '(W cur)T(W — W cur) + higher-order terms

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ignoring the higher-order terms and differentiating both sides with respect to W

ve(w) = ve(wcur) + v 2E(wcur)(w - wcm.)

At W = Wmin the gradient is zero, which implies

W mm = Wcur - (V 2E (W cur))~1V B (W cur)

where V 2B is the Hessian matrix of E. If E is quadratic in w then the compo­
nents of the Hessian would be constants and we can write the equation in the more
familiar form.

Wmm = W cur - (3VE{W cur)

where (3 is the learning rate.

Let us consider a simple case where we have two variables to be optimized.

f (x) — ax + b

N

2 — 1

N

2 = 1

d2E 2 d2E ^ Ar J d 2E d2E
2 2 xh > a n d ^ d b ^ d ^ d b ~ z 2 Xi
2 = 1 2 = 1

The determinant of the Hessian is

N

i f f n = 4 u j : X 2

2 = 1

which can be shown to be > 0 using induction. Therefore, the error surface is

convex and gradient surface can be used to find a minimum as shown in Figure 2.2

(only one dimension is shown). The parameter weights are updated as follows.

a := a + 5a

x d E *oa = — — • (3
oa

where (3 is the learning rate parameter which controls the speed of convergence.
Parameter b is updated similarly. In each iteration the weight moves in the direction

where the magnitude of the gradient decreases. Finally, the weight a reaches the

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w

Figure 2.2: Gradient Descent

minimum where the gradient is 0 and therefore there won’t be any more changes to
a once it reaches the minimum. The learning rate (3 controls the effect of gradient

on the weight update. A small value for (3 results in slow convergence while a
large value might result in divergence. Techniques to speed up learning and adapt
learning rates are discussed in Chapter 3.

2.4 Generalized Linear Evaluation Model (GLEM)

The Generalized Linear Evaluation Model [Bur98] has its roots in the Generalized

Linear Model. This is a model which goes beyond just the optimization of the
weights and also tries to generate the features. The GLEM framework has been
largely inspired by the work done while developing a world-class Othello program,

LOGISTELLO [Bur97], The model is specified as follows. Let P denote the se­
quence of data points or samples from which data is extracted. Let A be a finite set
of integer valued atomic features. Let

R a = { /(•) = k \ f e A, k e Z}

be the set of relations over A that maps features to integers. Configurations are
combinations of these relations in R A. In case of Othello (rules described in Ap­
pendix), an example of a configuration could be white disc on A4 and black disc on
A5.

For a position p £ P we define the value of a configuration c = rq A • ■ • A ri as

,/ / NN f 1 if n a • • • A n = true
| 0 if ri A • ■ ■ A r; — false

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A configuration is said to be active in a position if its value is 1 in that position. In

the above example, the value of the configuration is 1 if a game position actually
has a white disc on A4 and a black disc on A5, otherwise the value is 0. Restricting
the configuration values to 0 ,1 has computational advantages as we see later.

We define the Generalized Linear Evaluation Model - GLEM (P , A, g) below.
The evaluation functions in GLEM have the following form

fw{p) = 9 (■ val(ci(p))
\ i=i

where c1?. . . ,cn are configurations over Ra, w, G M are weights and g : M —> R is

a differentiable and monotonic function.
Therefore, GLEM is a Generalized Linear Model over the active configurations

in a position. The advantage of having binary values for configurations is that there
is no need for performing explicit multiplication with weights. The value can be
calculated by only using summation.

The weights are determined using a least-squares optimization. Given a se­

quence of labeled data points (p i , l i) \ i = 1, • • • , N and a set of configurations

c i , . . . ,cn and a function g, the weights are chosen so that the sum of the squared
error

N

E (w) = ~ fw(Pi))2
i= 1

is minimized.
In the discussion that follows we will use Othello as the application for GLEM

to illustrate concepts. This model has the power to represent any evaluation func­
tion. For instance, by considering every possible board position as a configuration

we can generate any evaluation function including the perfect evaluation function,
at least in theory. This can be achieved by considering each different disc on a
different square to be an atomic feature.

A = { f s\fs(p) = contents of square s in position p}

A feature need not be simple to be atomic, complex features could be made

atomic. Using simpler atomic features results in a higher number of possible con­

figurations and hence the model can distinguish a larger number of positions. Thus
GLEM has the interesting feature that the expressive power of the model can be set
by the user.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4.1 Advantages of GLEM

GLEM has various properties which are desirable when designing practical evalua­
tion functions.

• Using the basic atomic features, various complex configurations can be built
in the process leading to the discovery of important features. Atomic features
need not be basic, they can be complex as well. This freedom allows us to
generate evaluation functions of varying expressiveness naturally.

• By restricting the configuration values to binary values we can eliminate the
time-consuming multiplication operation. Usually in games, speed is impor­
tant and GLEM helps keep the time-overhead low.

• Non-linear effects can be modelled by combining various relations into a con­
figuration. If we use a monotonic function we need not even compute g. In a
game search tree we only need to compare between evaluation values and the
actual evaluation values are not needed. So, if g is monotonic, we need not
compute it.

• The weight-fitting process is efficient as the system is mostly linear. Even
systems with large sets of weights of the order of a million could be fitted in

a reasonable amount of time.

Evaluation functions for games need to be accurate and easy to compute. The
following things have to be considered when selecting the training positions and
configurations. Positions must be labelled with minimal error and they have to
cover the type of positions the system is expected to encounter. For instance, us­
ing only games between grandmasters for training may not be a good idea as they

hardly make blunders and this does not give the system a chance to learn simple but
important features. The configuration set should be expressive enough to explain
the data and should not be tailored too much to avoid over-fitting.

2.4.2 Configuration Selection

Configurations are conjunctions over the set of relations over the atomic feature

set A. Configurations are built over atomic features. Therefore, atomic features
should be simple enough so that the important features of the game can be easily

constructed using these features. Moreover, these atomic features can be combined

in several different ways to give rise to new features. Atomic features should be

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

constructed on an abstracted layer. For example, in Othello many features of an
evaluation function are based on the local board configurations. So for this game
the abstraction needed is minimal, whereas in other games like chess a Queen at

one end of the board can influence many parts of the board. The abstraction needed
here is higher than in Othello. One abstraction here could be based on dependency
graphs for pieces. The level of abstraction needed for atomic features is dependent

on the application and the available time and space.
Automatically generating a set of configurations in a reasonable amount of time

that does not under-fit or over-fit is a non-trivial task. Given an atomic feature set
A, training position set P and a minimal match count k, [Bur98] gives a simple

algorithm for generating configurations over A that appear at least k times in P.
The idea is to iteratively increase the length of the configurations beginning with
atomic features as configurations. At each step the algorithm tries to increase the

size of the previously generated configurations by specializing them, until the match
count drops below k.

In spite of the efficient ways to do this discussed in [Bur98], it is still a time
and space consuming process. A large number of active configurations for each
position slows down the evaluation as a larger number of configurations have to be
computed. To counter this problem, the match count k can be increased. Increasing

the match count reduces the number of active configurations but it causes the system
to be less expressive.

One approach is to restrict the configurations to mutually exclusive sets called

Patterns.

2.4.3 Patterns

A Pattern is a set of all possible most specific configurations over a subset of the
atomic features.

pat t ern[f i , . . . , f m\ = { rhh A . . . A rm U \riM = (/<(.) = k) , k <G range(f i)}

An example of a pattern (EDGE+2X - 1 0 x 1 block A i Z?iC\ D \E \ FxG\ II i B 2 G 2) in
Othello is shown in Figure 2.3. This results in 310 configurations. The set of these

310 configurations is the pattern A iB iC \D \E \F \G ±H \B^G -i- Patterns are easy to
build and easy to evaluate. However, it is possible that patterns may not capture
all the essential features required. But their speed and ease of construction make
them particularly attractive for use in game evaluation functions. There is a trade­

off between using large patterns which capture a more complex evaluation function

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A B C D E F G H

1 0 0 0 0 0 0 0 0
2 0 0
3

4

5

6

7

8

Figure 2.3: One of the patterns used in LOGISTELLO. Each hex represents an
atomic feature which can take value {0 , 1, 2 } depending on whether the square is
white, empty or black.

but are slow to be evaluated in game play and small patterns which are fast but
inaccurate. Another problem associated with using large patterns is that they are
sparse. Large patterns will have fewer training samples and over-fitting might set
in as a result. The problem of over-fitting and techniques to overcome them are

discussed in Chapter 3.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Multi-Layer Perceptrons and
Over-fitting

The linear models described in Chapter 2 are useful for approximating functions
that are linear in the weights. In order to approximate non-linear functions we
have to use a non-linear model like a Multi-Layer Perceptron (MLP). An MLP is a
network of perceptrons arranged in a layered structure. The next section describes
perceptrons and their computing power.

3.1 Perceptron

A perceptron is a multi-input, single output computing unit. The computation in
a perceptron is divided into two stages - the accumulation stage and the activation
stage as shown in Figure 3.1. In the accumulation stage a function (usually sum­
mation) is used on the inputs and a single output is calculated. In the activation

stage a non-linear function like the sigmoid (g{x) = 1 +],-s) or hyperbolic tangent

output

wn

Figure 3.1: Perceptron

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(g(x) = ta n h (:?;)) is applied to the sum to give a single output. Other commonly
used activation functions include the step or threshold function and the sign func­
tion defined below.

A perceptron is a Generalized Linear Model. Therefore, the class of problems that

can be learnt by a single perceptron is same as the class of problems that can be
learnt by a Generalized Linear Model. A perceptron can only represent linearly
separable functions. It is possible to learn any linearly separable function using
perceptrons provided the samples are linearly separable.

A Multi-layer Perceptron is a network of perceptrons. The perceptrons are net­

worked in a layered structure with the outputs of one being the inputs to others. A
network structure where all the links are forward or unidirectional, and there are no
cycles is called a feed-forward network. In other words, a feed-forward network
can be described by a directed acyclic graph. The other type of networks called re­
current networks allow all types of connections. In this thesis, we concentrate only
on feed-forward network structures. Figure 3.2 shows a 3-layered, fully connected
MLP. The function computed by an MLP is determined by the network structure

and the weights on each link. Like the linear models described before, we can per­
form a gradient descent on the weight vector to learn a function using an MLP. This
process is popularly known as error back-propagation or simply back-propagation.

3.3 Error Back Propagation

Let us define a few terms that are helpful in the derivation of the equations for back-
propagation. We derive the equation for a single output case. The case for multiple

outputs is analogous.

• Ik - Input vector for node k.

sign(x) =
if x > 0
if x < 0

output — g WiX^j

3.2 Multi-Layer Perceptrons (MLP)

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Wk - Weight vector for node k.

• Sk = h • Wk - Weighted sum of the inputs of node k .

• o(k) = g(sk) - output for node k.

• UL(fc) - {z|the output of k is an input to *}.

We can apply the same gradient descent algorithm here too. For a weight w ki in the

network the update rule would be

dE{W)
Awki = - g — ------

OVOu

Wki is the weight corresponding to Ith input of node k. The difficult part is calcu­
lating the partial derivatives for each weight. It is possible to analytically calculate

these derivatives for each weight, but it is cumbersome. We can make use of the
network structure and the chain rule of calculus to overcome this problem.

Let p be the output node, and D = { X t, y, } be the data set used for training.
We can then write the error function as follows

E (W) = \ - O .M) 2
i

input

output

input

Figure 3.2: A Multi-layer Perceptron with a 2-node input layer, a 3-node hidden
layer and an output node

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We first consider the case where the node is an output node (k = p) .

erri = y* - ot (p)

d E 1 d
dw.pi 2 dw.'pi

^ 2 (V i ~ O i (p)) ‘

pi

’Pi

do(p) do(p) ds(p)
dwpi ds(p) dwpi

= dg(s(p))
ds(p)

= g ' (s (p)) x p i

dE

X p l

dw.’p i
= - J 2 erE 9\ s (p)) Xpk

= - X > r * g'(s(p))

A Wpi = V ^ 2 e r r i g ' (s (p)) x ph

i

For a sigmoid g (x) = , y^a;) = g (x) (1 — g (x)) and for g { x) = tanh(x),
y'(:c) = (1 — g (x) 2) . If we use a sigmoid activation we can write the weight update

as follow s:

A wpi = V ^ 2 e r r loi (p)(l - Oi(p))xph
i

Next we consider the case when the node is a hidden node. For any weight wuu

d E d E
d w ki ds{k) X k l

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UL(k)

Figure 3.3: The upper layer of node k is shown. The error propagates from the upper
layer to node k, while the function computation happens in the opposite direction.

For any node i above k, s(i) is a function of s{k). Therefore we can write

d E sr-' d E ds(i) do(k) d s (k)
dvjki ie“ fc) ds(i) do(k) ds (k) dwkl

■sr-̂ d E dg(s (k))

= i e m k) ^ Wlk " W Xkl

= 9 '{s{k)) Y - ^ ^ i k X k i
i e U L (k) ̂ ’

We get a relationship between the |^ | and those of the nodes in its upper layer,
which makes the calculations easy to perform.

d E , ^ d E
S (i) = 9 (s W) E

v ' i e U L (k) v J

We can now write the algorithm as follows:

1. For an input X , calculate output o[k) for all the nodes.

2. Calculate the value for each node as :

err = y — o(p)
d E

= —err g'(s{k)) (for output node)
ds(k)

= Sf{s{k)) Y frXi) Wik (for hidden node)
 ̂ J i&UL{k) V '

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. The weight changes are calculated as follows:

d E

A w a = " d i (k) XM

4. Finally the weights are updated. If the weights are updated after seeing each

sample it is called online training. If they are updated after each epoch i.e
after seeing all the training samples once, it is called stochastic or batch train­
ing. For batch training the weight changes from all samples are summed up
before updating the weight.

W (W) _ « , A W
Wkl ~ Wkl + L^ Wkl

3.4 Enhanced GLEM

A natural way to enhance the computing power of the model is adding networked
non-linear nodes on top of the linear core like in an MLP. In order to keep the
network size manageable we have to use intelligent ways of dealing with large
number of input configurations. If the number of configurations is large it would be
infeasible to view each configurations as a potential input node. We have to work at
some level of abstraction over the configurations. Patterns described in Chapter 2

are good candidates for this. Since the number of active configurations for each
pattern is finite we can conveniently carry out the optimization process by storing
the network weights at the lowest level in a table with each table corresponding to
one pattern. The table entries store the weights for different pattern configurations.
In Figure 3.4 the left half shows the network structure without tables and the right
half shows the structure with tables. Since the inputs are binary we can store the
weights in the tables and during computation we can retrieve the corresponding

weight for a particular input by indexing into the table. We can use the outputs

from these pattern tables as inputs to the network above. This gives the new model
more computing power because of the non-linear nodes in the top level network.
At the same time the extra computational cost is minimal due to the largely linear
nature of the lower layers where most of the computation is done.

The two important factors to be considered while using any training method

are the speed of convergence (if it converges) and the quality of the solution. The
quality of the solution or generalization performance can be evaluated by measuring

the error on a test set. In the following sections we look at ways to improve the

speed of convergence and the generalization performance.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 Learning Rate and Momentum

The learning rate used in the learning process affects the speed and convergence
of learning. For some learning rates the weight vector diverges, some are slow to

converge while an optimal rate can result in convergence to a minimum in one step.
In this section we will look at how to find an optimal learning rate. In general, the
error E is not quadratic in the weights and is multi-dimensional. Let us simplify
the problem by assuming a one-dimensional quadratic error function E. Then there
exists an optimal learning rate rjopt than can be analytically calculated. For a learn­
ing rate 77 < rjopt, the weight update is smaller than the optimum and convergence

requires multiple steps. For a learning rate rjopt < V < 2rjopt , the weight update is
larger than required. As a result the weight will overshoot the minimum and oscil­
late about it. This also results in multiple steps to reach a minimum. For a learning

rate 77 > rjopt, the weight update is so large that it results in a higher error than
before the update. This results in divergence as shown in Figure 3.5.

3.5.1 Optimal Learning Rate

Let us assume a one-dimensional, quadratic error function E. Then we can write

the gradient descent equation as

t+i t d E w + = w — rj——
dw

We can expand E using a Taylor series around the current weight w cur.

7-1/ \ 7-1/ \ | / \ d E { w cur) 1, \ 2 isE(w) = E (w cur) + (w - wcur) --------+ - { w - wcur) K
ow 2

Note that since E is quadratic, higher-order terms are zero and the second derivative
is a constant. Differentiating with respect to w on both sides gives

Output

Network

Output

etwork

Figure 3.4: Enhanced version of GLEM

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

l=opt opt<l<2opt

►

l<opt l>2opt

Figure 3.5: Different learning rates affecting speed of convergence

d E d E{wcur)
+ (w - wcur) K

dw dw
At the minimum point the derivative is zero. Substituting w = w min gives

dE{wcur)
dw i^min ^cur)E 0

1 d E (w cur)
K dw

Comparing this with the gradient descent equation yields

^min. — 'UJru

Vopt
1

K
1

Qyj 2 E(WCUr)

If E is not quadratic in the weight, then the higher-order terms may not be zero
and the second derivative is not a constant. In such cases the 7]opt calculated above is
only an approximation and convergence is not achieved in a single step. However, it
might serve as a good approximation if the higher-order terms are small. In practice

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the error function E is usually multi-dimensional. In such a case, determining n opt
for a quadratic error function requires more complex calculations.

We can expand the error function E around W cur as follows

E (W) = £ (W cur) + V £ (W cur)T(W - W cur)+

^ (W - W cur)Ttfw cur(W - W cur)

where /7wt;ur is the Hessian matrix. In order to obtain a minimum in optimal num­
ber of steps we have to use different learning rates for different weights. It can be
shown that the optimal learning rate for the ith weight is ifopt = j-, where A.(is the
1 th eigenvalue of the Hessian matrix [LBOM98],

If we are constrained to choose a single learning rate then we must pick the
smallest of all those learning rates so that we don’t diverge.

2
7) < -----

^max

The ratio of the maximum to the minimum eigenvalues determines the number of
steps required to converge. If the ratio is large then we will be taking small steps in
the Xmin direction which actually requires large steps and as a result the convergence

is slow.

3.5.2 Momentum

Another trick that is used to speed up learning is momentum [DPH8 6], The previ­
ous weight change multiplied by a factor 0 < fi < 1 , called momentum, is added
to the current weight change to make the learning faster. The new weight update

becomes
9 E

A w t+1 = Tj— - + f iAwt
ow

If a weight is oscillating around a minimum then its successive weight changes have
opposite signs and momentum helps by decreasing the effective weight update and
thus helps in reaching the minimum faster. If a weight is in a low curvature area,
using momentum results in a larger update and thus helps move over the flat areas

faster thereby speeding up convergence. The momentum factor ji controls the effect
of the previous update in the present state. Having a large value for /j, helps in

covering the flat areas faster but might result in excessive oscillations in areas of
high curvature. Conversely, having a small value for /i helps reduce the oscillations

but is of not much use in flat areas of the error surface.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5.3 Adaptive Learning Rate

Calculating the optimal learning rate as described in the previous section is feasible
if the error surface is known and the number of dimensions is small. Usually in real

world problems, the number of dimensions is high and computing the Hessian is a
cumbersome task. To tackle these problems we have to use a variable learning rate.
The learning rate has to be adapted so as to make convergence faster. If we find that
the current error is greater than the previous one, the error might be actually diverg­
ing and the learning rate should be decreased. If the error is decreasing then we can
increase the learning rate as we seem to be moving in the right direction. There ex­
ist a number of different schemes for adapting the learning rate. A popular scheme

is to multiply the learning rate by a factor rj+ > 1 when the error decreases in suc­
cessive iterations and by a factor rj~ < 1 when the error increases in successive

iterations. It has been proved in [Lju77] that a learning rate that is asymptotically
exponentially decreasing (i.e = 77̂ 0 < p < 1) is sufficient to guarantee
convergence. Another scheme is to use a running average of the form 77̂ = j —j .
This learning rate scheme performs well in the final stages. Although it guarantees

convergence, it is slow in the beginning as the learning rate is decreased very drasti­
cally. Using a larger value for the initial rate can lead to instability in the beginning.
It has been shown in [Gol87] that an learning rate that is asymptotically of the form

?](*) = con5tta— achieves convergence at an optimal rate.
Based on the above observations [DM90] proposed the following scheme known

as Search-Then-Converge schedule.

„ < • > - J L

rj{t) _ (̂o)

C + t

1

where K and C are constants and t is the current epoch number. The idea behind
this scheme is to keep the learning rate high initially (search phase, t < C) so that
the weights reach close to a minimum in this phase. In the next phase (converge
phase, t > C), the learning rate decreases almost inversely proportional to t and
the parameters converge at a near optimal rate. A more advanced Search-Then-
Converge schedule presented in [DCM92] automatically finds the parameter C.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6 Over-fitting

The problem of over-fitting is encountered in most optimization processes when
data is not accurate. Over-fitting occurs when the optimization process fits not only
the output but also any errors that may have been present in the output. For example,
some outputs could be erroneously labelled and the optimization process fits the
data to those erroneous outputs as well. The consequence of over-fitting is poor
generalization. When such a system is tested for performance on a test set not used
in optimization, the performance of the system can be seen to degrade after a certain

point. Over-fitting can also occur as a result of an overly complicated system trying
to fit a simple function. The converse case of over-fitting is under-fitting where the
system is not complex enough to capture the relation between input and output.

Over and under-fitting can be explained in terms of statistical bias and variance.

Statistical bias is the difference between the mean value and the true value. Statisti­
cal variance is the variance of the function with respect to its mean. Let is consider

the following setup where f*(x) is the true unknown function to be approximated,
D = (a;,, t,)\i = 1, • • • , N be the sequence of data points given for training where
ti = f* (x i) + ej. Let us assume the e^s are normally distributed with zero mean
and a variance a 2. Let y(x) be the function that is produced after training the model
over D. We use yt to denote y (x t). We can write the mean-squared error as

The true generalization error of this approximate function y is given by the expec­

tation of the mean-squared error E.

((U - Vi) 2) = ({U - f i + f i - Vi) 2)

= (e l) + ((f i - Vi) 2) (Since (e*) = 0)

= + ((f i - f a) + t o) - y ^) 2)

= v 2 + (i f i - (y i)) 2) + (((y i) - Vi) 2) + 2 (K ^ t y ^ H f y f E z y ^

({yi) - yi) = (yi) - (yi) = 0

In other words, the generalization error is the sum of error variance, variance of

the model and square of the model bias. An under-fitting model has a high bias

i= 1

((ti — yi)2) = a 2 + bias2(y) + variance(y)

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and an over-fitting model has high variance both resulting in a high generalization

error. This problem is often referred to as bias-variance trade-off. As the model
starts fitting the data both bias and variance reduce. After a certain point the bias
decreases and variance increases as the function becomes more complex. A func­
tion with high curvature has a high variance as the function value changes rapidly.
Therefore, the problem of obtaining a model which has good generalization can be
viewed as a trade-off between the bias and variance of the model.

The following example illustrates the concepts of over-fitting and under-fitting

using polynomial fitting. The points were generated using a quadratic f (x) =
0.4a;2 + 0.86a; — 3 and a normally distributed error with 0 mean and standard devia­

tion 10 was added. Then these points were fitted with various polynomials starting
with a linear fit (which clearly under-fits as it is not complex enough to capture the

data) till a polynomial of degree five where all the points are exactly on the curve.
The polynomials are shown in Figure 3.6.

The resulting functions were tested against a set of 5 perfectly labelled points
{ (-2 , -3 .12), (-1 , -3 .46), (0, -3 .0) , (1, -1 .74), (2,0.32)}. Figure 3.11 shows the
/2 test errors of these functions against this set. As can be seen from the figure func­

tions / 2, fs are the best approximators as expected. The linear function f \ under-fits
while / 4, / 5 over-fit. / 5 has high variance as the function value changes quite rapidly
over short distances in x direction. Consequently, it results in poor generalization
as seen in Figure 3.11.

3.7 How to Overcome Over-fitting?

There are ways to overcome the problem of over-fitting. The easiest way is by

having more training data. This method works when the model is fixed and there is
a way to get more data. But it is not always possible to generate more data easily, for
example in medical applications. Also, in some cases the chosen model might be
dependent on the amount of data available. Having more data results in choosing a
more complex model which has higher expressive power. For example, in the case

of Othello, having more data would allow us to use larger patterns, which could
result in a better evaluation function. But these larger patterns also require larger

amounts of data and we end up having almost the same ratio of data and parameters.
Other approaches to avoiding over-fitting when having a fixed amount of training

data are described in the next sections.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

error

Fig. 3.6: / i(x) = 13.026 + 0.126a:

f2(x) --------

-10
5 10-10 •5 0

Fig. 3.7: f 2(x)
0.337a;2

= 3.60 - 0.204a;

f3(x)

-10
10-10 •5 0 5

Fig. 3.8: f 3(x) = 3.54 - 0.427a;
0.338a;2 + 0.004a;3

f4(x)

-10
5 10-10 •5 0

Fig. 3.9: fa(x) = 6.03 + 0.475a;
0 .2 1a:2 - 0 .0 1 2 a:3 + 0.008a;4

50
f5(x)

40

30

20

10

0

-10
10-10 •5 0 5

Fig. 3.10: f 5(x) = 4.16 + 8.34a; +
1.41a:2-0 .5 8 8 x 3-0 .0 1 9 x 4 + 0.007a;5
over-fits the data

2 3 4 5
Degree of ploynomial

Fig. 3.11: Test error of the functions
/ l > f2, h , f4, fb

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test error

error Training error

early stopping point #iterations

Figure 3.12: Early Stopping

3.8 Early Stopping

Early stopping[Pre98] attacks at the core of over-fitting. If we assume that the test
set is representative of the data that would be actually encountered then the perfor­
mance on the test set reflects the generalization performance closely. Therefore, the
model has the best generalization when the error on the test set is minimal. Early
stopping suggests to stop the training when the test error begins to increase as in­
dicated in Figure 3.12. Applying early stopping to the example in Figure 3.11 sug­
gests that the best function to approximate the unknown function is / 2, a quadratic

as expected. Early stopping also helps in reducing the training time. There ex­

ist many empirical approaches to early stopping [Pre98]. For instance, instead of
taking the error of one iteration we could average over a window period of k itera­
tions. Another approach is to stop training only when the ratio of the current error
to the minimal error found exceeds a predetermined threshold. However, empirical
studies [Pre98] have shown that these complex stopping criteria did not result in
significant (~ 4%) improvement in generalization error while being much slower
(4 times) compared to the simple method. Early stopping does not change the way
the optimization process is done, it is a passive way of avoiding over-fitting. There

are other methods to overcome over-fitting by changing the error function. These
methods are discussed in the following sections.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.9 Regularization

Regularization is a penalty-based method for overcoming over-fitting. In these
methods a penalty term R (also called regularizer) is added to the error function

E to form a new error function E r .

E r = E -\- R

The idea behind regularization is that the penalty term captures the causes of over­
fitting. Thus, by adding a penalty term to the error the optimization process would

minimize the penalty term too thereby minimizing over-fitting. Usually, over-fitted
models have high curvature in some areas (in order to fit the error associated with
the data closely) which requires large feature weights. For example, in the polyno­
mial fitting discussed above / 5 has the highest L2 norm among the five. Therefore,
by restricting the weight, we can reduce the curvature and hope to reduce over­

fitting. By adding the norm of the weight vector as a penalty term to the error
function we can hope to avoid large weights. This is also known in literature as

ridge regression or weight decay.

E R = E + a - \ \ W \ \ 2

Then the gradient descent equation becomes

A = A w — aw

where A w ^ is the weight change in the regularization algorithm A w is the weight
change in the usual algorithm and a is the regularization parameter. As the regu­
larization algorithm is equivalent to removing the actual update by a portion of the
current weight, it is also called weight decay.

3.10 TRI : A Metric-Based Approach to Model Se­
lection

A different approach to model selection to counter over-fitting has been discussed
in [Sch97]. This approach assumes that the model spaces from which a model
has to be selected form a nested sequence; that is, H 0 C Hi C H 2 ■ ■ ■ see Fig­
ure 3.13. Then choose the best approximator of the given samples from each class
h*0, h \ , h 2 , Finally, use some measure to pick one function from these. The idea

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.13: Geometric view of model selection.

is as follows: The training and test samples can be assumed to be random obser­
vations drawn from the joint probability distribution PXy of samples {X) x labels
(U). This distribution can be decomposed into the conditional distribution Py/x
(which we are trying to learn) and the marginal distribution PX - Using Px , a dis­
tance measure between two hypotheses can be defined as the average discrepancy of
the hypotheses on random x-objects. We can also extend this distance definition to

the condition distribution P y / x • It can be noted from Figure 3.13 that the sequence
of empirically closest functions have decreasing distances to the target. Now, we

know the distance of each of the empirically closest functions Hq, hi, . . . to the
target conditional and also the distance between the functions in the sequence. Us­
ing this information we can detect over-fitting. The intuition is that if two successive
functions in the sequence are both individually close to the target but have large dis­
tance between them, then it can be seen from simple geometry that one of them is
wrong. We choose the one which has lower complexity, i.e the earlier one. The

rule can be summarized as : “choose the last function in the sequence that does not

violate the triangle inequality with any of the preceeding functions”.
This method is reported to work well when choosing a model from a hirerachy

of models. In our case, we don’t know how training iterations correspond to com­
plexity of the model.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 c

Figure 3.14: Clamping using a ramp function. The absolute value a feature weight
can take is clamped by a function M (f) of the feature frequency / .

We propose another way of looking at over-fitting by concentrating on rare features.
Over-fitting is also caused by having rare features in samples with errors (by ‘rare’

we refer to the frequency of occurrence in the training set). The intuition here is that
when these rare features appear in training and the label has error, a lot of the error

is blamed on these features. Rare features by definition being infrequent would
have shared a large portion of the errors by the time training is done. When these

rare features appear in the test set they produce bad predictions causing over-fitting.
Clamping reduces this error by restricting the value a weight can take depending on
the number of occurrences. The absolute value a weight can take is clamped by the
clamping function M (f) , where / is the frequency of the feature. In Figure 3.14
the weights for features appearing at most C times are clamped by a ramp function
running from value vmin to vmax. We call the value C critical number. Therefore,
the maximum absolute weight, M (f) , attributed to a feature appearing / times is

The ramp function used above is just one example. The function that is used
for clamping should be monotone and should approach oc for large values. The
intuition behind these requirements is that a feature appearing more frequently will
probably acquire a more accurate weight after the training is done and therefore it

should be less constrained which can be achieved by having a higher clamp value.

This requires the function to be increasing. Furthermore, if a feature occurs fre­
quently in training it is probably best not to constrain it. This implies the clamping

function should approach oo for large values. Other functions that satisfy the above

3.11 Clamping

MU)
V m in T q (V'im a x Vmin) i f / < C

for / > C

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

properties can used instead of the ramp function depending on the domain. It is

not known whether there exists an optimal clamping function which results in the
best generalization error. Experimental results in Chapter 4 show that clamping is
a viable alternative to be considered while training.

3.12 Weighted Regularization

Weighted regularization combines the ideas of clamping and regularization. Here
the weights that are added to the penalty term are weighted by a factor inversely
proportional to the frequency of their occurrence. The error function E for weighted
regularization is given by:

E w r = E +
i

where /(*) is a function of the frequency of feature i. When all the features have
similar frequencies, weighted regularization approaches regularization. By choos­

ing a function that has a higher value for lower frequency features we are forcing
the corresponding weight of that feature to be small. This idea is similar in spirit
to the idea behind clamping. The exact form of the function f { i) that results in an
optimal generalization performance is not known.

Clamping and regularization are independent of early stopping. So these meth­
ods can be applied in conjunction with it. Early stopping can be viewed as a passive

way of countering over-fitting while clamping and regularization can be viewed as
active approaches.

3.13 Rare-Feature Sets

We propose another way of detecting over-fitting in Generalized Linear Evaluation
Models based on feature frequency. We define a rare-feature set RSk as a multiset

of data points selected from a test set. The criterion for selection is that at least k
features of a sample must be rare (defined with respect to frequency of occurrence
in the training set).

V^Ti, V i) £ T (X i , H i) £ R S k iff rc(i) > k

where rc(i) is the number of rare features in sample i and T is a test set. We

define RSk (c) to be a rare-feature set with k rare features and the frequency of rare

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.15: Function to be learnt, represented as a network

features being at most c. Though we use the set notation in the above definition, we

mean multisets. Our claim is that the model prediction for these samples worsens
as it starts to over-fit. Focusing solely on the R S i results in pronounced over­
fitting effects. Rare-feature sets can be used when the test set does not show over­
fitting but the performance in real world worsens and over-fitting is suspected. Even

pronounced over-fitting can be observed by focusing on RSk, k > 1 . Using rare-
sets we have been able to detect over-fitting in a GLEM based model for optimizing
Othello weights, which did not show over-fitting on a usual test set. The over-fitting

effect on the rare-featured samples was washed out by the small improvement on a

large number of other samples.

3.14 Top Multiplier

One of the problems we have encountered during our experiments was the inability
to train the top level parameter which we call top multiplier. A top multiplier is used
when the range of the function computed is different from the range required. For

instance, in a network when a tanh function is used at the top of the network, the
range of the function is (—1,1). But if this network has to be used to train weights
for an application like Othello in which the sample labels are in the range [—64, 64]
a multiplier is needed. Another way to deal with this problem is to normalize the
data so that the range is between (—1 , 1).

Thus far we have inherently assumed the error function to be convex in the
weight space. If the error function is not convex there might be multiple minima or
no minimum at all. It would be difficult to find a weight vector which minimizes

the error using gradient descent. In this section we determine whether the error is
actually convex for a simple network with a top multiplier as shown in Figure 3.15
and if it has multiple local minima. For example, we are trying to learn a function

of the type
f (x) = w2g{w1x)

where g is a monotonic function (assume increasing function) like tanh(x) or
l

l+e~x'

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Given a data sequence D = {(xi, yi)}, the problem is to find a weight vector

w —< w°pt, > that minimizes the l2 error.

If the error is convex in the parameter w \ , w2 then there exists a vector <
W2Pt which corresponds to a minimum of the error surface and thus can be

learnt using gradient descent algorithm. The second derivative test for multiple
dimensions involves checking if the Hessian is positive definite. For the sake of
brevity we use g, to denote g(ivix,).

Since the Hessian is a symmetric matrix, we can now write down the Hessian.

Let 5i = f (x i) - yi

d 2E d 2E
dw j* dw\dw2

d 2E d 2E
dw2dwi dw%

Assuming the Si's are negligible and substituting the values we get

The determinant of H (w i, w2)
2

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

100

w 2
0.4 r f r 1

0 5 0.6

M - m in im um

1200
1000
800
600
400
200

w2
wl

Figure 3.16: Error surface with 2 min- Figure 3.17: Error surface in one half of
ima the space

Using the identity

J] a? ^ 6? >
i i \ i /

(which can be easily proved using induction) we can show

\\H\\ > 0

Therefore, we have proved H is positive semi-definite when the errors are small.

The error function for the data sequence

D = {(0.5, 0.53), (1.5,1.48), (2.5, 2.15), (3.5, 2.55), (-5 .5 , -2 .8 9), (-9 .0 , 2.99)}

and function
f = w2 tanh(u>i:r)

is shown in the Figure 3.16. The function has two minima as the function can be

written as
/ = w2 tanh(tyix) = — w2 tan h (—w\x)

Therefore, for every minimum located at (w \ ,w 2) there is a corresponding mini­
mum at (—wi, — w 2)• If we restrict the weight vector to one half of the space then
the function is convex as seen in Figure 3.17 and the minimum is at (0.36,3).

The above simple example shows that there exist multiple minima and the error
surface is convex only close to a minimum. The weight vector did not converge

when the starting weights were in between the minima. We have experienced a

similar problem while trying to learn the top multiplier. The model converged when

the top multiplier was fixed or kept almost fixed by using a very small learning rate.
With a fixed top multiplier the error surface became convex and we were able to
learn the weights to get to a minimum.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Software, Experiments, and Results

In this chapter an overview of the software and experimental setup is presented and
the results are discussed. We have developed software that is domain-independent
and can be used for training weights for any GLEM. The software [CB05] can
also be used as a neural network simulator by just using the numerical features
and omitting tables. The GLEM optimization software consists of two major parts -

optimizer (the domain-independent part) and application (the domain-specific part).
The application provides the interface to read the data in the application format and
to present it to the optimizer in a format that the optimizer recognizes. The input
to the optimizer consists of a set of table indices, label or output of the sample and
the index of the evaluation function (tJndices, label and e index respectively as
shown in Figure 4.1), as there could be more than one evaluation function that are

being fitted simultaneously. Using command line options, the user can specify the
evaluation function to be used, the algorithm to be used for optimization and other

parameters. The application provides the optimizer with the evaluation function
definition and the input as shown in Figure 4.1. The application in turn gets the

evaluation function definition form the user or a function that can be incorporated
into the application.

4.1 Evaluation Function Definition Format

The evaluation function definition consists of two parts — topology and features.

Topology refers to the structure of the non-linear network on top of the linear fea­

tures. Features refer to the tables and the numerical features of the function. The
lines beginning with # are comments and are ignored by the software. The format
of the file is as follows

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Function Definition(s)

{t_indices, label, e_index}

Read

Read

Data

Function
Definition
File

Application Optimizer

Figure 4.1: Overview of the data flow in the optimization process

; TOPOLOGY

< t o p o l o g y >

; FEATURES

< f e a t u r e s >

C o m m e n t s c a n o c c u r a n y w h e r e i n t h e f i l e

4.1.1 Topology

In the topology section the structure of the network is specified. Each line corre­
sponds to one node and has the node number, type and the list of its children. A

node i is called the child of node j if the output of i is a direct input of j . Each node
is identified by a unique number assigned to it.

There are two types of nodes — accumulator nodes and activation nodes. An
accumulator is a multi-input single output type of node while an activation node is
a single input single output node. Currently, there is only one type of accumulator

node — summation, for which the output is the sum of its inputs. Other types
of accumulator nodes - like an averaging node or a multiplicator node - can be

implemented within this framework with minimal effort. There are three types
of pre-defined activation nodes, namely - sigmoid, tanh and identity. The outputs
for these nodes are the sigmoid, tanh and identity functions applied to the inputs
respectively. Other activation nodes such as the simple threshold and sign functions

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can be added easily. The symbols in the definition file for these nodes are as follows:

‘sum’ for summation, ‘sig’ for sigmoid, ‘tnh’ for tanh, ‘ide’ for identity.
The input to an activation node is always from the output of an accumulator

node. However, an accumulator node can have inputs from activation nodes, tables

or numerical features. Since back propagation involves calculating derivatives these
functions have to be differentiable in the domain they are used.

4.1.2 Features

The other major section of the function definition is the features. Features represent

the configurations in GLEM. Since patterns are used, the features can be grouped
together conveniently into tables. There are two types of features — tables and

numerical features. Tables store pattern configuration weights. Numerical features
are not restricted to binary values and thus can take any real value.

Tables

A table definition starts with the letter ‘T ’ indicating it is a table, followed by the

table name, number of transformations and the size of the table (number of config­
urations). A transformation is obtained by applying a symmetric transformation (as
defined by the application) to the application data. For example, in Othello the sym­

metries are defined by geometry. Therefore, the transformations here are mirroring
and rotation. A pattern consisting of a 3 x 3 top comer in Othello thus has 4 trans­
formations. Hence, we can treat the 4 comers as being geometric transformations
of the same instead of viewing them as 4 different tables. Transformations help to
reduce the size of tables. The lines following the table definition line contain the

names of transformations and the node each connects to. It is possible for different
transformations to connect to different nodes in the topology.

A numerical feature line starts with the letter ‘N ’ and is followed by its name and
the node it connects to. A small example covering most of the details is presented
below. The evaluation function definition file and the corresponding structure are
shown in the Table 4.1. The numbers on the nodes in Table 4.1 correspond to those

in the text definition.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sum

Tnh Tnh

SumSum

num2

Tnh

numl

Sum

100#

T1 T2
100#

;TOPOLOGY
1 sig 2
2 sum 3 4 5
3 tnh 6
6 sum
4 tnh 7
7 sum
5 tnh 8
8 sum

;FEATURES
T T 1 1 100

T1-Transformation-1 6

T T2 2 100
T2-Transformation-l 7
T2-Transformation-2 7
T2-Transformation-2 6

N numerical-feature-1 8
N numerical-feature-2 8

Table 4.1: Network corresponding to the definition

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Optimization Process

The optimization process is started by calling the optimizer’s run method from
within the application. The optimizer contains a pointer to the application. The

run method gets the evaluation function from the application and creates an iterator
for reading the data as shown in Figure 4.2.

OptimizerApplication

Output

Iterator p A I

Network

Read

Data
Evaluation Function

Figure 4.2: Overview of the Optimization Process

4.2.1 Iterator

The interface between the optimizer and the application is minimal. They com­
municate mostly through a data structure called an iterator. An iterator is a data
structure that allows the optimizer to read data which is present in the application
format. In other words, the iterator abstracts the application details from the op­
timizer. An iterator reads the data from the source and outputs it to the optimizer
in the form of a vector containing table indices and the corresponding sample la­
bel. The iterator also indicates the evaluation function index and returns false upon

reaching the end of sample sequence when called to get the next sample.

One optimizer can lit more than one evaluation function simultaneously. In
fact, it is recommended to do this in some cases. For example, in LOGISTELLO
each game stage (defined by the number of disks on board) has its own evaluation
function. However, to provide smooth transitions between game stages, data from

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

adjacent game stages are also used while training. Having the facility to train mul­

tiple functions simultaneously makes it possible to train all the evaluation functions
simultaneously using the same data sequence. Otherwise, data has to be split into
multiple sets which results in unwanted duplication of data. The problem becomes
more relevant when the size of the data sequence increases. A command line param­
eter tells the Optimizer to interpolate the data between stages. A value of n results

in a sample being interpolated to n stages each on either side of the the actual stage.
This increases the effective amount of data roughly by a factor of 2n. The learning

rates, momentum, number of iterations and other details of the optimization process
can be given as command line parameters.

4.3 Experimental Setup

Using the software that was described in the previous section we ran experiments

to test the performance of the algorithms described in Chapter 3 on Othello data
and on synthetic data. We also tested the performance on rare-feature sets. For
each run the performance was tested against five test sets. The test sets were of
two types. In plain test sets the frequency of features follows the same distribution
as in the training set. Rare test sets are created from plain test set by extracting
samples which contain rare features that also appear in the training set. Rarity
is defined by the frequency of occurrence of features in the training set. Using
different thresholds for rarity results in different rare-feature sets. We have used

four thresholds for rarity to extract four rare-feature sets in each of the applications.

4.4 Synthetic Data

In this section we describe our experiments with synthetic data sequences. We used
two different evaluation functions M l and M2 as shown in Figure 4.3.

k) = ii[i] + t 2[j] + t3[k] for M l

f { i i , i 2 , j i , j 2 , k i , k 2) = tanh(U[«i] +U [U]) + ta n h (f2[ji] + U [j2])+

tanh(f3[^i] + U[&2]) for M2

First, a model was chosen and then random configuration weights were stored in
the tables. These random values were generated using the rand() function of C and
were uniformly distributed between [—1,1]. The few network weights were set to

fixed values. A random normal noise with mean 0 and standard deviation a was

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SUM

M l M 2

Figure 4.3: Different models used for the synthetic data experiments

added to the output to account for labeling errors. Box-Miiller transform [Wei99]
was used to generate a normal distribution. We assume there is no error in the input
variables. The functions used for generating data can be written as

V = f + N (0, a 2)

The index generation scheme is described later in this section. Then the same eval­
uation model that was used to generate the data was used to fit this data. The table
weights were all set to zero before starting the optimization process. The network

weights were all set to 1.0 and bias weights were set to 0.01. We used three tables
containing 100 configuration weights each. Model M l had one transformation per

table while model M2 has two transformations.
Experiments were performed with these two models each with two values of a

and for each of the settings 100 data sequences were created. Each data sequence
consisted to 1000 training samples, 100 test samples (which was used for perform­
ing early stopping) and 2000 validation samples which were used to report the final
generalization error. Another dimension in the set of experiments was the presence

of rare features. In one setting, 80% of the features were rare and each rare feature

occurred about four times on average in the training set. In another setting only
20% of the features were rare and each rare feature appeared about seven times on

an average. The algorithms were run on these eight settings (each with 100 data

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sequences) and their performance was tested against five test sets for each run. The
experiments done are shown in a tree format in Figure 4.4. The numbers at the
leaves represent the number of different settings tried for each algorithm.

Index Generation

The synthetic data was generated in the following manner. There were two different
settings for rarity and percentage of rare features chosen. The first setting had

80% rare features and the rare features appeared on an average about four times
in the training set. The second setting had 20% rare features and the rare features

appeared on an average about seven times in the training set. There exists a relation
between the percentage of rare features p, frequency of occurrence of a rare feature

k, frequency of occurrence a non-rare feature I, the number of weights in the table
n t and the total number of samples n. The average frequency is given by ^ =
pk + (1 — p)l.

(= — (-1 ~ p nt
The specified percentage of rare features is achieved in the following way. An array
A of size nt is created and A[i\ is set to k for i < pn, and A[i] is set to I for i > pnt.
Another vector B of size n t is created such that

j=1

Then a random number r is generated between 1 and B[nt\. This random number
r is used to generate an i such that B[i\ < r < B[i + 1], The generated index i is a
close approximation of the distribution of configuration indices desired. Using the
above method data for eight different settings was generated. The set of experiments
is shown in a tree form in Figure 4.4.

The parameters for learning rates and momentum were chosen by experimen­

tation on a randomly chosen data sequence of size 1000. The learning rate and
momentum parameters were found by varying both of them simultaneously. First,

a reasonable range of learning rate was obtained by not taking momentum into ac­
count. This was done as we already have some idea about the range of the momen­
tum factor which is usually between 0 and 1[DPH86]. Then the learning rate was
varied by a step size of one tenth of the range and momentum by 0.1 and various
pairs of values were tested. Finally, the pair which converged fastest was chosen. In

case of complex models where a multilayer network is present on top of the tables

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rare
features

20%

ModelModel

Ml M2Ml M 2

WR

Algo

Figure 4.4: The set of experiments depicted in a tree form. The boxed node rep­
resents one of the eight experimental settings. The leaves of the tree represent the
experiments performed and the number indicates the number of different settings
tried. P - plain, R - Regularization, WR - Weighted Regularization, C - Clamping.
M l and M2 are different evaluation models and cr1,a 2 are the standard deviations
of the zero-mean normally distributed errors that are added to give a noisy label.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we used two learning rates. One learning rate 77 for the lower layers (tables) and a

different learning rate rjt for the topology part. In order to avoid recomputing the
parameters for learning rate and momentum every time the size of the training set
changes, we use the average error instead of total error. This helps to keep the learn­
ing rate independent of the size of the training set. One disadvantage of averaging
the error over all the samples is that features that are relatively less frequent are

learnt slower. We overcame this problem by dividing the error by feature frequency
instead of the training set size. The learning rate and momentum parameters that
are used in one particular setting are reported in Table 4.2.

Model V V t
M l 2.0 - 0.1
M2 5.0 2.0 0.1

Table 4.2: Learning rate and momentum values used in synthetic data experiments.

4.5 Results

In this section we provide empirical evidence of our claims for cause of over-fitting,
performance against rare-feature sets and compare the clamping technique we pro­
posed against regularization. Henceforth, unless explicitly specified otherwise, by

test set performance we mean the value obtained by applying early stopping in con­
junction with the algorithm being used.

4.5.1 Effects of Rare Features and Rare-Feature Sets

Over-fitting is higher when there are more rare features. In, other words a data se­
quence with a higher percentage of rare features is more prone to over-fitting. This
can be seen in Figure 4.5. The data sequence with 80% rare features exhibits over­
fitting while over-fitting in the data sequence with 20% rare features is negligible.

Though there is over-fitting in the 20% case too, it is not visible. However, even
a small amount of over-fitting can be detected by using an appropriate rare-feature

set. Figure 4.6 shows the performance of the same algorithm with the same weights
on a rare-feature set and a regular test set. The model shows significant over-fitting
in case of the rare-feature set but almost none for the usual regular set. This is due
to the fact that the rare features are small in number in this case (« 20%) and the
significant over-fitting on these samples is averaged out by a small improvement in

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test set error

1.28
1.24 freq = 4, p = 0.2

freq = 4, p = 0.8

1.16
1.12
1.08
1.04

0.96
0.92

0 30 60 90 120 150 180 210 240 270 300
iterations

Figure 4.5: Test set error comparison between two data sequences with different
percentage of rare features. The test set with a high percentage of rare features
p = 0.8 exhibits over-fitting while the other does not. The model used is M l.

prediction of the rest of the test set. Using a rare-feature set with lower threshold

criterion for rare features results in more pronounced over-fitting.
In cases such as medial applications where bad predictions are totally unaccept­

able, this approach can be considered to detect over-fitting. Another approach to
detect small over-fitting is to use the L 2n norm (n > 1) instead of the usual L 2
norm while testing. The idea here is that as n is increases the samples with higher
errors dominate the error value and consequently even a small over-fitting can be
detected by using a sufficiently large n. One extreme is to use which focuses
only on the largest error. Figure 4.7 shows the test set error calculated using differ­

ent L 2n norms for the same samples and algorithm. Although the values obtained

by using different norms can not be compared, there is a higher over-fitting when
using higher-order norms. This method is computationally expensive as it computes
the error for all the samples in the test set and uses more multiplications compared

to using a rare-feature set.

4.5.2 Empirical Comparison of Techniques

In this section we compare the clamping, regularization and weighted regularization

algorithms empirically. We have tried four settings for regularization with a values
set to 0.1,0.01,0.001, and 0.0001. We have tried twelve settings for clamping. We

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test set error

1.28
1.24 freq = 4, p = 0.2

freq = 4, p = 0.2 (R3)5-o
1.16
1.12
1.08
1.04

CT1

0.96
0.92

0 30 60 90 120 150 180 210 240 270 300
iterations

Figure 4.6: Test set error comparison between two data sequences using different
test sets. There is no over-fitting when a regular test set is used. But using a rare-
feature set (R3, criterion - R S i with feature frequency at most seven) exhibits over­
fitting. The model used is M l.

2.8
2.6
2.4
2.2

2
g 1 .8

1.6
1.4
1.2

1

0.8
0 30 60 90 120 150 180 210 240 270 300

iterations

Figure 4.7: Test set error using different norms.

50

T est set error

L infinity norm
LT6 norm

L8 norm
L4 norm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

used a simple ramp function with vmin set to 0. We used four values for vrnax (one,

two, three, and four) and three values for the critical frequency depending upon
the experimental setting. The range of configuration weights used for generating

data is [—1,1] and the functions have a range of [—4, 4], We assume that we do not
know the range of configuration weights and we can only observe the range of the
function. Therefore, vrnax ’s settings were chosen to cover the range of the function.
In case the range of the configuration weights is known, it can be used to set more
informed values for vmax. For weighted regularization we used the function f (i) =
— where K is a constant. This function was used as the average frequency of
1-1 ~K~~
a feature in this setting is ten and we wanted the function to have a negligible value
for i = 10. The different cr’s tried were 0.1,0.01,0.001, and 0.0001. The settings
used for generating data, clamping and generating rare-feature sets are shown in

Table 4.3

Pr, f Model a Clamping Settings R l , R 2 , R 3 , m
80%, 4 M l 0.5 C e { 4,7,10} R S x(j) , j £ { 2 ,3 ,4 , 5}
80%, 4 M l 1.5 C £ { 4 ,7 ,1 0 } ^ r O ') ^ ' £ {2,3 ,4 , 5}
20%, 7 M l 0.5 C £ {6,8,10} f? S iC ?) ,j£ { 5 ,6 ,7 ,8 }
20%, 7 M l 1.5 C £ {6,8,10} R S x{ j) , j £ { 5 ,6 ,7 ,8 }
80%, 4 M2 0.5 C £ { 4 ,7 ,1 0 } R S . U) ,] e { 6 , 7 , 8 , 9 }
80%, 4 M2 1.5 C e { 4,7,10} R S i (j) , j £ {6,7,8, 9}
20%, 7 M2 0.5 C £ {12,16,20} R S i (j) , j £ {2, 3,4, 5}
20%, 7 M2 1.5 C G {12,16,20} R S i (j) , j £ {2,3 ,4 , 5}

Table 4.3: Parameters used for generating the data sets, rare-feature sets and the
corresponding parameters used for clamping, vmax G {1, 2, 3,4}. pr - percentage
of rare features, / - average frequency of a rare feature.

A typical distribution of test set performance over the 100 different data se­
quences is shown in Figure 4.8. The distribution is close to normal as can be seen
from the figure. Standard statistical tests like Student’s t-test can be used to check
if the means of two random normal variables are different.

Boxplot

We use boxplots to represent the performance over 100 data sequences. A box plot
is an efficient method of displaying the median, upper and lower quartiles and the

maximum and minimum of a distribution. The box part of the plot represents the
middle 50% of the data. The upper edge of the box represents upper quartile (75 th

percentile) and the lower edge of the box represents lower quartile (2 5 th percentile).

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.8: A typical distribution of mean-squared test error (early stopping value)
of an algorithm over 100 data sequences.

The middle line or the notch represents the median. The whiskers extend for 1.5
times the inter-quartile range or till the maximum on the upper side or the minimum

on the lower side (whichever results in a smaller whisker). Circles beyond the
whiskers represent potential outliers. Boxplots help in quickly grasping the spread
of the variable. By drawing boxplots for two variables side-by-side comparisons
can be made easily. Figure 4.9 shows a few boxplots. We use p r to represent the
percentage of rare features and / to indicate the average frequency of rare features.

The amount of over-fitting can be gauged by comparing generalization errors

after performing 300 iterations. The amount of over-fitting in a clamping setting
with a fixed critical frequency increases as the clamp value is increased. This can
be seen in Figure 4.9 where plots 10-13 represent clamping with critical number 4
and vmax equal to 1, 2,3 and 4 respectively. For plots 14-17 the critical frequency
is 7 and for plots 18-21 it is 10. It can be seen that for the same critical number the

mean increases as the value vmax is increased. This is because the features are less
restricted and over-fitting sets is more pronounced. Also, for a fixed vmax the mean

decreases as the critical frequency is increased. This is because restricting more
number of rare features decreases over-fitting. This can be observed in Figure 4.9
by the decreasing mean of groups of four boxes with the same critical frequency.

We compare the above mentioned algorithms on the validation error. Each of

the algorithms were trained on a sample set of size 1000 and a test set of size 100
was used for locating the early stopping value. Finally, the generalization error
was estimated by testing the performance on a validation set of size 2000 samples.

In what follows, C (n, v) refers to a clamping algorithm with critical frequency n

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CM
CM

O

CO

CD

2 3 4 9 10 11 12 13 14 15 16 17 18 19 20 215 6 7 8

Figure 4.9: Boxplots of the test set performances after 300 iterations. 1 -
plain, 2-5 - regularization (0.0001, 0.001, 0.01,0.1), 6-9 - weighted regularization
(0.0001, 0.001, 0.01,0.1), 10-21 - clamping. Model - M l, a = 1.5, p r = 80%, / =
4

and value v; R (a) and W R (a) refer to regularization and weighted regularization
respectively with regularization parameter a and P refers to the plain version. All
the algorithms use early stopping. The results are reported in Table 4.4, Table 4.5,
Table 4.6, Table 4.7, Table 4.8,Table 4.9, Table 4.10 and Table 4.11. The tables
show the number of times a particular algorithm was ranked first, second, third,
fourth and fifth out of the 21 algorithms on the 100 different data sets. The columns
are ordered based on the ranks of the algorithms. Only the top six algorithms are

shown for each case.
From the above experiments we can see that clamping outperforms other al­

gorithms on generalization error. In particular, clamping performs better when the

percentage of rare features is high and the threshold is low (see Table 4.4, Table 4.5,
Table 4.8 and Table 4.9). In this setting clamping performs better even when the
error associated with the labels is higher. Actually, as the sample error is increased
clamping begins to dominate (see Table 4.5 and Table 4.9) with C (1 0 ,1) ranking

first 70 and 56 times respectively. Also, clamping algorithms have lesser over-fitting
i.e. when over-trained the performance degradation is not as severe compared to
regularization or plain algorithms.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rank |
Algorithms —>

C(7, 2) C(10, 3) C(10, 2) C(10, 4) C(7, 3) R(0.01)
#1 25 17 17 9 6 6
#2 32 18 5 8 11 1
#3 8 24 6 19 8 4
#4 11 10 11 16 15 0
#5 1 9 3 17 14 1

Table 4.4: Model — M l, a = 0.5, pr = 80%, / = 4. Each column indicates
the number of times the corresponding algorithm ranked first, second, third, fourth
and fifth with respect to the validation error. The best six algorithms sorted by
performance are shown.

Algorithms —>
Rank j C(10, 1) C(7, 1) C(4, 1) C(10, 2) R(0.1) C(7, 2)

#1 70 20 6 3 1 0
#2 17 55 7 15 1 1
#3 6 7 11 51 4 6
#4 0 4 36 6 6 16
#5 1 3 5 5 5 35

Table 4.5: Model — M l, a — 1.5, pr = 80%, / = 4. Each column indicates
the number of times the corresponding algorithm ranked first, second, third, fourth
and fifth with respect to the validation error. The best six algorithms sorted by
performance are shown.

Rank j
Algorithms —>

R(0.001) C(10, 1) C (8 ,1) C(10, 2) WR(O.OOl) C(6, 1)
#1 35 19 18 6 5 5
#2 19 8 18 9 17 11
#3 11 5 7 11 7 10
#4 5 4 8 15 6 11
#5 9 3 1 7 1 1

Table 4.6: Model — M l, a = 0.5, pr = 20%, / = 7. Each column indicates
the number of times the corresponding algorithm ranked first, second, third, fourth
and fifth with respect to the validation error. The best six algorithms sorted by
performance are shown.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rank j
Algorithms —>

C(10, 1) R(0.01) C(8, 1) R(0.1) C(6, 1) C(10, 2)
#1 37 16 12 11 7 7
#2 10 7 32 8 10 4
#3 8 13 5 7 17 7
#4 3 4 2 3 13 15
#5 1 5 1 2 4 14

Table 4.7: Model — M l, a = 1.5, pr = 20%, / = 7. Each column indicates
the number of times the corresponding algorithm ranked first, second, third, fourth
and fifth with respect to the validation error. The best six algorithms sorted by
performance are shown.

Rank .[
Algorithms —►

C(10, 1) C(7,l) C(10, 2) R(0.0001) C(7, 2) R(0.001)
#1 53 18 11 6 4 3
#2 14 48 5 5 2 6
#3 5 2 47 6 4 5
#4 1 4 8 10 18 6
#5 0 2 7 5 27 2

Table 4.8: Model — M2, a = 0.5, pr = 80%, / = 4. Each column indicates
the number of times the corresponding algorithm ranked first, second, third, fourth
and fifth with respect to the validation error. The best six algorithms sorted by
performance are shown.

Rank j
Algorithms —>

C(10, 1) R(0.01) C(7, 1) C(10, 2) C(7, 2) C(10, 3)
#1 56 28 7 4 2 1
#2 9 24 34 3 2 4
#3 9 14 15 21 8 3
#4 4 5 12 12 7 4
#5 1 3 1 12 15 6

Table 4.9: Model — M2, a = 1.5, pr — 80%, / = 4. Each column indicates
the number of times the corresponding algorithm ranked first, second, third, fourth
and fifth with respect to the validation error. The best six algorithms sorted by
performance are shown.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rank |
Algorithms —>

C(20, 1) WR(O.OOOl) C(16, 1) R(0.0001) C(12, 1) P
#1 45 19 11 7 6 5
#2 3 19 31 26 8 3
#3 8 17 5 24 15 12
#4 2 12 5 15 10 17
#5 2 9 1 6 16 25

Table 4.10: Model — M2, a = 0.5, pr = 20%, / = 7. Each column indicates
the number of times the corresponding algorithm ranked first, second, third, fourth
and fifth with respect to the validation error. The best six algorithms sorted by
performance are shown.

Rank j
Algorithms —>

C (20 ,1) R(0.01) WR(0.01) C(16, 1) P R(0.001)
#1 34 21 17 7 7 3
#2 2 17 19 23 7 9
#3 13 2 2 5 17 11
#4 2 2 3 7 9 11
#5 2 1 1 1 13 8

Table 4.11: Model — M2, a = 1.5, pr = 20%, / = 7. Each column indicates
the number of times the corresponding algorithm ranked first, second, third, fourth
and fifth with respect to the validation error. The best six algorithms sorted by
performance are shown.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 Othello

In this section we describe our experiments in a popular board game Othello. The
rules of the game are described in Appendix B. The set of patterns used in this
application are described in [Bur98], The Othello data was randomly split into two
sets - train data and test data. In the Othello application we divided the game into

13 stages based on the number of disks on the board. We used interpolation of data
between game stages a described in [Bur98] to create smooth transitions between

game stages.
The original ~ 16 million labeled game positions were divided into two sets

with ~ 15.9 million labelled samples forming the training set and the remaining
positions put into the test set. Four rare-feature sets R 4, R 2, R-.i and R 4 of type
R S i were extracted from the test set with the rarity criteria being feature frequency
at most 5,10, 20 and 50, respectively. We have tried five settings each for regu­
larization and weighted regularization and 20 settings for clamping (clamp values

8,16, 32,64,96 x clamp frequencies 5,10,20, 50). We have used a ramp function
with v\ set to 0 for the clamping. We report the experimental results for stage 1 of
the game where the evaluation function is the weakest.

Testing the performance of these algorithms on a usual test set did not show
significant over-fitting. The rare-feature set i?2 was used to detect over-fitting (see

Figure 4.10). Figure 4.11 shows the performance of various algorithms on the rare
test set f?2- In this example, clamping performs the best with respect to the mini­

mum test error followed by regularization. Also, over-fitting is more pronounced in
regularization compared to clamping. The plain algorithm with no clamping or reg­
ularization is the worst with respect to over-fitting. It can be seen in Figure 4.11 that

over-fitting in clamping algorithms reduces as the clamping threshold is lowered.
This is because a lower clamping threshold results in smaller weights for feature

weights and hence over-fitting is lower. As the clamping threshold is increased, the
algorithm behaves more like the plain algorithm because the feature weights are

almost unrestricted.
Figure 4.12 shows the effect of different models. Both the models (M l and

M2, see Appendix B) result in almost the same test set error and show no over­
fitting when tested on the regular test set. However, when tested on a rare-feature
set both the models shows over-fitting. Model M l results in higher over-fitting

compared to M2. The downside of using M2 in game play is that it computationally
more expensive than M l. The performance improvement obtained in the evaluation

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test set error for stage 1

R1
R2
R3

10.8
10.6
10.4
10.2

cr 9.6
9.4
9.2

8.4
20 80 1000 40 60

iterations

Figure 4.10: Performance of the plain algorithm on various Othello rare-feature sets
for stage 1 and Model M l. Over-fitting is higher for the rare-feature set that has a
lower average frequency of features.

function is compensated by slower computation. The net gain can be judged by

using it in actual game play.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test set error for stage 1

V-HO
fc
<D
X)
§

§
4J

C(10, 16)
C(10, 32)
C(10, 64)

Plain
WR(0.002)

R(0.002)

40 60
iterations

100

Figure 4.11: Performance of different algorithms on stage 1 of Othello on test set
R 2. R - Regularization, C(f , V) - Clamping with critical frequency / and vmax =
1/.

Perform ance o f M l and M 2 for stage 1

0
b<u

T3<D

cr
1

c
c3O

11.4
11.1
10.8
10.5
10.2
9.9
9.6
9.3

9
8.7

0

1 M 2 on R2
M l on R2

M 2 on regular test set
M l on regular test set

------------Q .-----------

u

20 40 60

iterations

80 100

Figure 4.12: Performance of the plain algorithm on various Othello rare-feature sets
for stage 1 using test sets R 2 and the regular test set using the plain algorithm.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Conclusions and Future Work

GLEM presents a natural way to define evaluation functions with increasing com­

plexity. We have proposed an enhancement to GLEM by incorporating non-linear
layered network over the existing models.

In this thesis we have looked at how the presence of rare features affects over­

fitting in GLEM. We have proposed a novel method of detecting over-fitting by
using rare-feature sets. Using rare-feature sets we have detected over-fitting in both
the application data we have considered — synthetic data and Othello data — which
were not detected using other test sets. We have empirically studied how the per­

centage and frequency of rare features affects over-fitting. Results presented in
previous chapter indicate that the presence of higher percentage of rare features in
the training set results in over-fitting of parameters during training. We have also

provided evidence that as the features become rarer over-fitting increases.
We have proposed new algorithms (clamping and weighted regularization) to

tackle this problem based on frequency of features. We based our algorithms on
the idea that a rare feature’s weight must be limited by a function of its frequency.
Weighted regularization did not perform much different from the plain regulariza­

tion on the problems we considered. This is because the exact form of the func­
tion which results in optimal generalization performance is not known. But we

know that function should have higher value for lower frequencies and should ap­
proach zero for higher frequencies. Results from the previous chapter show that
clamping-based techniques result in better generalization than regularization in sit­
uations where there is a high percentage of rare features. Also, clamping-based

techniques result in lesser over-fitting compared to regularization in this setting.
Therefore, when the test set is not representative of the distribution of data en­
countered in real world (corresponding to rare-feature sets in our experiments) or

bad predictions are unacceptable even for small portions of the data or there is a

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

high percentage of rare features with labeling error, clamping-based techniques are
strong candidates to be considered.

We have also seen in our synthetic data experiments that using early stopping

results in very little difference between the performance of various algorithms in
some cases. Therefore, early stopping should be used in conjunction with these
algorithms whenever possible.

5.1 Future Work

Some ideas that can be explored in future:

• GLEM can be applied to other domains. Go is a strong candidate to be consid­
ered. Unlike Othello where the abstraction needed was minimal, Go requires
a fair amount of abstraction as it is a complex game. However, state of the art
Go programs already employ many abstractions. For example, it is common
for Go programs to talk about abstractions like eyes, strings, liberties, blocks
etc. These abstract features can serve as atomic features for GLEM.

• An ad-hoc ramp function was used for clamping in this thesis. A theoreti­

cal analysis should be conducted on the shape of the function to be used in
clamping. Also, we do not know of a good function to be used for weighted
regularization. However, we believe that for clamping the function should be
monotonically increasing and for weighted regularization the function should

be monotonically decreasing with frequency.

• We have based our algorithms on gradient descent. The problem of over­

fitting in GLEM when quadratic methods like conjugate gradients are used

can be explored. Empirical evidence [CLG01] suggests that conjugate gradi­
ent methods might result in higher over-fitting. It would be interesting to see
how frequency-based techniques can be applied here.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[Bur97] Michael Buro. The Othello match of the year, Takeshi Murakami vs
Logistello. ICCA, 20:189-193, 1997.

[Bur98] Michael Buro. From Simple Features to Sophisticated Evaluation
Functions. In H. J.van den Herik and H. Iida, editors, Computers and
Games: Proceedings CG’98. LNCS 1558, pages 126-145. Tsukuba,
Japan, 1998.

[Bur99] Michael Buro. How Machines have Learned to Play Othello. IEEE
Intelligent Systems, 14(6): 12-14, 1999.

[CB96] Robert H. Crites and Andrew G. Barto. Improving Elevator Per­
formance Using Reinforcement Learning. In David S. Touretzky,
Michael C. Mozer, and Michael E. Hasselmo, editors, Advances in
Neural Information Processing Systems, volume 8, pages 1017-1023.
The MIT Press, 1996.

[CB05] Siddhartha Chinthapally and Michael Buro. GLEM Software,
http://www.cs.ualberta.ca/mburo/software/glem.tgz, 2005.

[CLG01] Rich Caruana, Steve Lawrence, and C. Lee Giles. Overfitting in neural
networks: Backpropagation, conjugate gradient, and early stopping.
In Advances in Neural Information Processing Systems, Denver, Col­
orado, 2001.

[DCM92] Christian Darken, Joseph Chang, and John Moody. Learning rate
schedules for faster stochastic gradient search. In Proc. Neural Net­
works fo r Signal Processing 2. IEEE Press, 1992.

[DM90] Christian Darken and John Moody. Note on Learning Rate Schedules
for Stochastic Optimization. In J. E. Moody R. P. Lippman and D. S.
Touretzky, editors, Neural Information Processing Systems. Morgan
Kauffman, 1990.

[DPH86] S. Nowlan D. Plaut and G. Hinton. Experiments on Learning by Back
Propagation. 1986. Technical Report CMU-CS-86-126, Computer
Science Department, Camegie-Mellon University.

[FiirOl] Johannes Fiimkranz. Machine learning in games: A survey. In
J. Fiimkranz and M. Kubat, editors, Machines that Learn to Play
Games, chapter 2, pages 11-59. Nova Science Publishers, Huntington,
NY, 2001.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/mburo/software/glem.tgz

[Gol87] Larry Goldstein. Mean square optimality in the continuos time Rob­
bins Munro procedure. 1987. Technical Report DRB-306, Department
of Mathematics, University of Southern California.

[LBOM98] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Mueller. Efficient BackProp.
Lecture Notes in Computer Science, 1524:9-50, 1998.

[Lju77] Lennart Ljung. Analysis of Recursive Stochastic Algorithms. IEEE
Transactions on Automatic Control, 22:551-575, 1977.

[Nil96] Nils J. Nilsson. Introduction to Machine Learning. 1996.

[Pre98] Lutz Prechelt. Early Stopping - But When? Lecture Notes in Computer
Science, 1524:55-69, 1998.

[PTVF92] William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery. Numerical Recipes in C: The Art o f Scientific Com­
puting. Cambridge University Press, 1992.

[Sam59] A L Samuel. Some Studies in Machine Learning Using the Game
of Checkers. IBM Journal o f Research and Development, 3:211-229,
1959.

[Sam67] A L Samuel. Some studies in Machine Learning Using the Game of
Checkers ii - Recent Progress. IBM Journal o f Research and Develop­
ment, 11(6):601—617, nov 1967.

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. The MIT press, 1998.

[Sch94] Jonathan Richard Schewchuk. An Introduction to the Conjugate Gra­
dient Method Without the Agonizing Pain. August 1994. Unpublished
Draft.

[Sch97] Dale Schuurmans. A new metric-based approach to model selection.
In AAAI/IAAI, pages 552-558,1997.

[SL94] James V. Stone and Raymond Lister. On the Relative Time Complex­
ities of Standard and Conjugate Gradient Back Propagation. Neural
Networks, 1:84-87, 1994.

[Tes95] Gerald Tesauro. Temporal Difference Learning and TD-Gammon.
Communications o f the ACM, 38:58-68, 1995.

[Wei99] Eric W. Weisstein. Box-Muller Transform, From MathWorld
— A Wolfram Web Resource, http://mathworld.wolfram.com/Box-
MullerTransformation.html, 1999.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://mathworld.wolfram.com/Box-

Appendix A

Synthetic Application Function
Definition Files

M o d e l M l

; TOPOLOGY

1 ide 2
2 sum

; FEATURES

T TABl 1 100
tl-Transform-a 2

T TAB2 1 100
t2-Transform-a 2

T TAB3 1 100
t3-Transform-a 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Model M2
; TOPOLOGY

1 ide 2
2 sum 3 4 5

3 tnh 6
6 sum

4 tnh 7
7 sum

5 tnh 8
8 sum

; FEATURES

T TABl 2 100
tl-transform-a 6
tl-transform-b 6

T TAB2 2 100
t2-transform-a 7
t2-transform-b 7

T TAB3 2 100
t3-transform-a 8
t3-transform-b 8

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Othello

Othello is a two player, zero-sum perfect information game. It is based on a game

known as Reversi and is included in the games section of standard GNU/Linux

distributions as KReversi. The game is played on an 8 x 8 board by placing disks of

two colors — black and white. At the start of the game a player chooses one color

and uses it throughout the game. The objective of the game is to have maximum

number of disks on the board of your color at the end.

The game begins with the setup shown in Figure B .l with black to move first.

A move consists of placing a disk in one of the empty squares of the board, every

move has to outflank your opponent’s disks and replacing them with your disks. To

outflank means to place a disk on the board so that one or more of your opponent’s

continuous string of disks are bordered at each end by your disks. A string can

be horizontal, vertical or diagonal. After the disk is placed all those opponent’s

disks that are outflanked by the recently placed disk are replaced by your disks.

Figure B .l shows the board situation after white makes his move. If a player can

not outflank any of his opponents disks then his turn is also and his opponent moves

again. A player can not forfeit his turn if a move is available. A player can not

move over his own disks to outflank an opponents disk (see the diagonal box in

Figure B .l). The game ends when both the players have no more moves to make.

And the player with the maximum number of disks on the board is declared the

winner. Usually the game ends when the board fills up, but it is possible for the

game to end before all the 64 squares are filled up.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

•

• o •• o •

•

S t a r t i n g P o s i t i o n (B l a c k T o M o v e)

o o • o o o • oo• o• • o o o • o o • oooo • o • o oo o o• o o o o oo• o• o • • o • o • o o ooo o• • • • o o o o opo >o o o• • o o o o • • p,o• • ow§1/
o O 00

W h i t e T o M o v e

Figure B .l: Othello rules

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.l Function Definition File for Othello Application,
Model M l

;TOPOLOGY

1 ide 2
2 sum

;FEATURES

T 2x5 8 59049
A1B1C1D1A2B2C2D2E1E2 2
H1G1F1E1H2G2F2E2D1D2 2
A8B8C8D8A7B7C7D7E8E7 2
H8G8F8E8H7G7F7E7D8D7 2
A1A2A3A4B1B2B3B4A5B5 2
H1H2H3H4G1G2G3G4H5G5 2
A8A7A6A5B8B7B6B5A4B4 2
H8H7H6H5G8G7G6G5H4G4 2

T EDGE+2X 4 29646
A1B1C1D1E1F1G1H1B2G2 2
A8B8C8D8E8F8G8H8B7G7 2
A1A2A3A4A5A6A7A8B2B7 2
H1H2H3H4H5H6H7H8G2G7 2

T 3x3 4 10206
A1B1C1A2B2C2A3B3C3 2
H1G1F1H2G2F2H3G3F3 2
A8B8C8A7B7C7A6B6C6 2
H8G8F8H7G7F7H6G6F6 2

T HV2 4 3321
A2B 2C2D2E2F2G2H2 2
A7B 7C7D7E7F7G7H7 2
B1B2B3B4B5B6B7B82
G 1G2G3 G4G5 G6G7G8 2

T HV3 4 3321
A3B3C3D3E3F3G3H3 2
A6B6C6D6E6F6G6H6 2
C 1C2C3C4C5C6C7C8 2
F1F2F3F4F5F6F7F82

TH V 4 4 3321
A4B4C4D4E4F4G4H4 2
A5B5C5D5E5F5G5H5 2
D1D2D3D4D5D6D7D8 2
E 1E2E3E4E5E6E7E8 2

TD 8 2 3321
A1B2C3D4E5F6G7H8 2
H1G2F3E4D5C6B7A8 2

TD 7 4 1134
A2B3C4D5E6F7G8 2
H2G3F4E5D6C7B 8 2
A7B6C5D4E3F2G1 2
H7G6F5E4D3C2B1 2

TD 6 4 378
A3B4C5D6E7F8 2
H3G4F5E6D7C8 2
A6B5C4D3E2F1 2
H6G5F4E3D2C1 2

T D 5 4 135
A4B5C6D7E82
H4G5F6E7D8 2
A5B4C3D2E12
H5G4F3E2D1 2

T D4 4 45
A5B6C7D82
H5G6F7E82
A4B3C2D12
H4G3F2E12

T PARITY 1 2
PARITY 2

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.2 Function Definition File for Othello Application,
Model M2

;TOPOLOGY

1 ide 2
2 sum 3 4 5 6 7 8 9 10 11 12 13 14

#2X 5
3 tnh 15
15 sum

EDGE+2X
4 tnh 16
16 sum

#3X 3
5 tnh 17
17 sum

HV2
6 tnh 18
18 sum

HV3
7 tnh 19
19 sum

HV4
8 tnh 20
20 sum

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#D 8
9 tnh 21
21 sum

#D 7
10 tnh 22
22 sum

#D 6
11 tnh 23
23 sum

#D 5
12 tnh 24
24 sum

#D 4
13 tnh 25
25 sum

PARITY
14 tnh 26
26 sum

;FEATURES

T 2x5 8 59049
A1B1C1D1A2B2C2D2E1E2 15
H1G1F1E1H2G2F2E2D1D2 15
A8B8C8D8A7B7C7D7E8E7 15
H8G8F8E8H7G7F7E7D8D7 15
A1A2A3A4B1B2B3B4A5B5 15
H1H2H3H4G1G2G3G4H5G5 15
A8A7A6A5B8B7B6B5A4B4 15
H8H7H6H5G8G7G6G5H4G4 15

T EDGE+2X 4 29646
A1B1C1D1E1F1G1H1B2G2 16
A8B8C8D8E8F8G8H8B7G7 16
A1A2A3A4A5A6A7A8B2B7 16
H1H2H3H4H5H6H7H8G2G7 16

T 3x3 4 10206
A1B1C1A2B2C2A3B3C3 17
H 1G IF 1H2G2F2H3 G3F3 17
A8B8C8A7B7C7A6B6C6 17
H8G8F8H7G7F7H6G6F6 17

T HV2 4 3321
A2B2C2D2E2F2G2H2 18
A7B 7 C7D7E7F7 G7H7 18
B1B2B3B4B5B6B7B8 18
G 1G2G3 G4G5 G6G7G8 18

T HV3 4 3321
A3B3C3D3E3F3G3H3 19
A6B6C6D6E6F6G6H6 19
C1C2C3C4C5C6C7C8 19
F1F2F3F4F5F6F7F8 19

T HV4 4 3321
A4B4C4D4E4F4G4H4 20
A5B5C5D5E5F5G5H5 20
D1D2D3D4D5D6D7D8 20
E1E2E3E4E5E6E7E8 20

TD 8 2 3321
A 1B 2C3D4E5F6G7H8 21
H1G2F3E4D5C6B7A8 21

T D 7 4 1134
A2B3C4D5E6F7G8 22
H2G3F4E5D6C7B 8 22
A7B 6C5D4E3F2G1 22
H7G6F5E4D3C2B1 22

T D 6 4 378
A3B4C5D6E7F8 23
H3G4F5E6D7C8 23
A6B5C4D3E2F1 23
H6G5F4E3D2C1 23

T D 5 4 135
A4B5C6D7E8 24
H4G5F6E7D8 24
A5B4C3D2E1 24
H5G4F3E2D1 24

T D4 4 45
A5B6C7D8 25
H5G6F7E8 25
A4B3C2D1 25
H4G3F2E1 25

T PARITY 1 2
PARITY 26

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

