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Abstract

A bilateral teleoperation system comprises a human operator, a teleoperator, and an environment. Without exact
models for the teleoperator’s terminations (i.e., human operator and the environment), it is typically assumed
that they are passive but otherwise arbitrary. Based on this assumption, the stability of the teleoperation system
is investigated through Llewellyn’s absolute stability criterion for the teleoperator. However, the assumption of
passivity of the terminations is less than accurate and may be violated in practice. Using Mobius transformations,
this paper develops a new powerful stability analysis tool for a two-port network coupled to a passive termination
and another termination that is (a) input strictly-passive (ISP), (b) output strictly-passive (OSP), (c) input non-
passive (INP), or (b) disc-like non-passive (DNP). While this new stability criterion is applicable to any two-port
network, we apply it to bilateral teleoperation systems with position-error-based (PEB) and direct-force-reflection
(DFR) controllers. Simulations and experiments are reported for a pair of Phantom haptic robots.
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Abbreviations

LTI Linear time-invariant

PEB Position error based

DFR Direct force reflection

DFR(PD) Force-position with PD position controller

DFR(P+D) Force-position with P+D position controller

RHP Right half plane

LHP Left half plane
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ISP Input strictly-passive

OSP Output strictly-passive

INP Input non-passive

ONP Output non-passive

DNP Disc-like non-passive

EOP Excess of passivity

SOP Shortage of passivity

OER Operator emulating robot

Nomenclature

fm Control signal for the master

fs Control signal for the slave

fh Operator’s force

fe Environment’s force

xm Master position

xs Slave position

Cm(s) Position controller for master

Cs(s) Position controller for slave

kpm , kvm Proportional and derivative gains of Cm

kps , kvs Proportional and derivative gains of Cs

Zm Impedance of the master

Zs Impedance of the slave

µ Position scaling factor

λ Force scaling factor

α Ratio Cm(s)/Cs(s)

β Initial energy of a passive system

δ EOP of an ISP system

ε EOP of an OSP system

η SOP of an INP system

υ SOP of an ONP system

ρ SOP of a DNP system

Zij The i-th row and j-th column element of an impedance matrix
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Figure 1. (a) A two-port network connected to two one-port network terminations, and (b) the driving-point impedance at
port 1, Za1 = V1/I1, when port 2 is terminated to a passive impedance z2.

Rij Real part of Zij

Iij Imaginary part of Zij

z2 Impedance coupled to port 2 of a two-port network

Za1 Driving-point impedance at port 1 of a two-port network

A,B,C Parameters of a generalized circle in the complex plane

1. Introduction

Stability analysis of a bilateral teleoperation system is challenging due to two typically unknown elements
in its two ends: the human operator and the environment Hannaford and Wood (1989); Yan and Salcudean
(1996); Hokayem and Spong (2006). For analysis of stability, a teleoperation system is typically modeled
as a two-port network teleoperator connected to the two one-port network terminations (Fig. 1-a), where
the teleoperator comprises the master, the slave, their controllers, and the communication channel and the
terminations are the human operator and the environment. By definition, absolute stability of a two-port
network will guarantee the stability of the coupled system resulting from connecting the two-port network to
two passive but otherwise arbitrary one-port network terminations. Equivalently, two-port network absolute
stability requires that the driving-point impedance seen at one of the ports is passive when the other port
is terminated to a passive one-port network (Fig. 1-b) Haykin (1970). Therefore, the notion of absolute
stability has been applied to the stability analysis of coupled two-port networks with limited information
about the terminations.

1.1. Llewellyn’s absolute stability criterion

For stability analysis of a bilateral teleoperation system, sometimes the passivity of the teleoperator is
investigated Anderson and Spong (1989); Lee and Spong (2006); Niemeyer and Slotine (2004); Nuno et al.
(2011), which is sufficient for its absolute stability Haykin (1970). The teleoperator’s absolute stability is a
less conservative condition compared to its passivity. Due to stability-transparency trade-offs in a bilateral
teleoperation system, minimizing conservatism in stability analysis is important Lawrence (1993); Li et al.
(2013); Kim et al. (2013).

A well-known absolute stability criterion for two-port networks was proposed by Llewellyn Llewellyn
(1952) and applied to bilateral teleoperators Adams and Hannaford (1999); Hashtrudi-Zaad and Salcudean
(2001); Aziminejad et al. (2008). Llewellyn’s absolute stability criterion gives closed-form conditions involv-
ing the immittance (impedance, admittance, hybrid, and transmission, Aliaga et al. (2004)) parameters of
a two-port network for it to be absolutely stable Haykin (1970); Ku (1963).
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1.2. Assumption on termination passivity

Llewellyn’s absolute stability criterion requires both of the terminations of the two-port network to be
passive. Passivity of a linear time-invariant (LTI) system is equivalent to the positive-realness of its input-
output relationship in the frequency domain (transfer function or impedance in the context of this paper)
Marquez (2003). Equivalently, a passive LTI system has an impedance with its Nyquist diagram entirely in
the right half of the complex plane (RHP).

Expecting the passivity of both of the terminations of a teleoperation system can be unrealistic and
overly restrictive in some applications. A two-port network’s termination may simply be non-passive Hirche
et al. (2009); Matiakis et al. (2009). On the other hand, a termination can be strictly-passive. Later in
the paper, we will discuss specific examples of such terminations for bilateral teleoperation systems. In
this paper, a powerful tool is developed for stability analysis of a two-port network coupled to a passive
termination and a non-passive or strictly-passive termination with certain constraints on the termination’s
impedance.

Interestingly, to have a stable coupled system, it suffices if, after terminating the two-port network to
a one-port network that is not necessarily passive, the driving-point impedance seen at the remaining (i.e.,
open) port is passive. This is because connecting a passive termination at the currently open port of this
two-port network will inevitably result in a passive and thus stable system even though the opposite port
might have been connected to a non-passive termination. As we will see later, this can be explained by the
concepts of excess of passivity (EOP) and shortage of passivity (SOP) for feedback-interconnected systems.
Briefly, when two systems are connected in a negative feedback loop, the stability of the interconnected
system is guaranteed if both systems are passive. If one of the system has EOP, the other system may have
SOP without risking the instability of the interconnected system Sepulchre et al. (2012).

1.3. Leveraging termination knowledge in stability analysis

Utilizing knowledge about a termination in the analysis of stability of a coupled two-port network
has been increasingly investigated by researchers. For instance, knowing a lower or upper bound on the
impedance of a termination helps to model the termination as an arbitrary impedance coupled to a series
or shunt impedance, respectively Hashtrudi-Zaad and Salcudean (2001); Adams and Hannaford (2002). In
another work, notion of bounded impedance absolute stability (BIAS) is applied to a teleoperation system
in the scattering domain and the resulted stability conditions are expressed as bounds on the reflection
coefficients Haddadi and Hashtrudi-Zaad (2012). The teleoperation system can be modeled in the inte-
gral quadratic constraints (IQC) formulation to reestablish stability conditions with known bounds on the
termination Polat and Scherer (2012).

Also, recent work shows that conventional absolute stability criteria can be extended to strictly-passive
Jazayeri and Tavakoli (2012b) and non-passive terminations Jazayeri et al. (2013).

In recent works, stability analysis of two-port network systems have been studied when the terminations
are either ISP or INP. In Jazayeri and Tavakoli (2012b) two approaches are applied to extend Llewellyns
absolute stability. In the first approach, the driving point impedance at port 1 is assumed to be in the RHP
and the admissible Nyquist region for termination 2 is found. In the second approach, port 2 is assumed to be
a right- or left-shifted RHP and the resulting driving-point impedance at port 1 becomes a disc, which should
be entirely in the RHP for stability of the coupled two-port network. In Jazayeri et al. (2013), the second
approach is applied when the terminations are non-passive rectangular impedance or right-shifted RHP
impedances. In both above work, the stability analysis is applied to a PEB-controlled bilateral teleoperation
systems. This paper leverages the second approach when the terminations are INP/ISP/ONP/DSP/OSP
and applies the results to PEB- and DFR-controlled bilateral teleoperation systems. In addition, this paper
verifies the resulting stability conditions in simulations and experiments with operator-Emulating-Robot
(OER).

1.4. Examples of non-passive and strictly-passive terminations

For a human operator, non-passivity may occur in many cases Chopra et al. (2008); Rodriguez-Seda
and Spong (2009). On the other hand, a typical environment may be strictly-passive in many applications.
Examples of these are given below.
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Let us consider an example of a non-passive termination in a master-slave teleoperation system. When
the master is manipulated by a human operator, the operator is typically assumed to be passive. This
assumption is valid for tasks that involve a relaxed arm such as sensing (or relaxed grasp) tasks Hogan
(1989); Dyck et al. (2013). However, the human operator is non-passive in many other practical cases
including in posture-maintenance (i.e., rigid grasp) tasks Dyck et al. (2013) or trajectory following tasks
Jazayeri et al. (2013). This is intuitively understood by considering a teleoperator that has been designed
to be passive. The interconnection of this passive teleoperator and a passive environment will be passive
van der Schaft (1999). Therefore, the only source of net energy in the system can be the human operator.
If the human operator is also passive, no active motion can exist in the system. Thus, the human operator
must be generating energy, e.g., when following a trajectory. Another example of a non-passive termination
in a teleoperation system is a non-passive environment. This happens when external forces such as gravity
enable the environment to do work on the teleoperator. As another example, a beating heart in a surgical
teleoperation system is an environment that emits energy.

In another example, let us consider a teleoperation system with a strictly-passive termination. A mass-
spring-damper system is output strictly-passive with excess of passivity equal to the system damping. In
general, in the presence of viscous friction (i.e., damping) an otherwise passive environment becomes strictly-
passive.

1.5. Methodology

In this paper, a stability analysis tool is developed to investigate the stability of a two-port network cou-
pled to a passive termination and either (a) a strictly-passive termination or (b) a non-passive termination.
Llewellyn’s absolute stability criterion is derived as a special case of the proposed stability criterion. While a
passive impedance has a Nyquist diagram in the RHP, the Nyquist diagram of a strictly-passive impedance is
placed only in a subset of the RHP. Conversely, the Nyquist diagram of a non-passive impedance trespasses
the jω-axis and into the left half of the complex plane (LHP).

Input strictly-passive (ISP) and output strictly-passive (OSP) systems have Nyquist diagrams inside a
right-shifted RHP and a disc to the right of and tangent to the origin, respectively Lozano et al. (2007); Hill
and Jensen (1998). The borderlines of these regions are expressed by lines or circles in the complex plane.
Similar to ISP and OSP systems, their non-passive counterparts are defined as input non-passive (INP) and
output non-passive (ONP) systems with Nyquist diagrams inside a left-shifted RHP and a disc to the left
of and tangent to the origin, respectively. Since the notion of ONP does not correspond to useful physical
systems, a more useful alternative is defined as a disc-like non-passive (DNP) system whose Nyquist diagram
is placed inside a disc centered at the origin. The stability criterion proposed in this paper applies to a
two-port network connected to a passive termination and to another termination that is ISP, OSP, INP or
DNP.

A mass-damper-spring system with force input and velocity output is an example of OSP systems and
a lead-lag controller is an example of ISP systems. In order to determine if a given linear time-invariant
system is ISP, OSP, INP or DNP one can plot the Nyquist diagram of its transfer function.

A human operators impedance (with velocity input and force output) is a DNP system for the following
reason. The human arm impedance’s magnitude has an upper bound depending on the muscle strength and
arm configuration. As shown in Dyck (2013), Dolan et al. (1993) and Tsuji et al. (1995), the impedance
of the human operator’s arm is shown to be inside an impedance ellipse in the x-y directions. As a result,
in either of x or y directions (please remember that our paper deals with a 1-DOF model of the human
operators impedance), there is an upper bound on the arm impedance while the impedance phase can vary.
As shown in Section 2, this upper bound is the radius of the DNP impedance disk in Fig. 2-f. This justifies
why the human arm is modeled as the DNP impedance in Fig. 2-f. Boundedness of the human operator
impedance can be verified through its physical interpretation. Impedance by its definition is the mapping
from the force input to the velocity output for various frequencies. As shown in Dyck (2013), Dolan et al.
(1993) and Tsuji et al. (1995), the human arm impedance can be modeled as a mass-spring-damper system.
The Nyquist plot of such a second-order system system will necessarily be bounded because the damping
term is not zero.

5



/ Control Engineering Practice 00 (2015) 1–28 6

1.6. Advantages of the proposed stability criterion

Taking into account the SOP of a non-passive termination as proposed in this paper will allow to predict
the potential instability of a coupled two-port network where the conventional absolute stability conditions
fails to do so. Also, the proposed stability criterion will help ensure the stability of a coupled two-port
network terminated to a non-passive termination by choosing the controllers gains in a more stringent
fashion compared to the conventional absolute stability condition. On the other hand, taking into account
the EOP of a strictly-passive termination as proposed in this paper will enable us to reduce conservatism
in controller design and potentially enhance teleoperation performance compared to when the conventional
absolute stability condition is used. In fact, strict-passivity of the terminations allows having a non-passive
teleoperator while preserving coupled stability, which can help to improve performance.

1.7. Organization of the paper

The paper is organized as follows. First, mathematical background and definitions are presented in
Section 2. In Section 3, Mobius transformations of regions in the complex plane are applied to find stability
condition when a termination is ISP, OSP, INP, or DNP. While the results of Section 3 are applicable to
any two-port network, an important application of the new conditions is in bilateral teleoperation systems
discussed in Section 4. A simulation study for a teleoperation system is presented in Section 5. In Section
6, the experimental results are presented for a teleoperation system. Finally, concluding remarks and future
work are presented in Section 7.

2. Mathematical Preliminaries

This section includes definitions and prerequisite theories that are used in the subsequent sections.
Notions of passivity, absolute stability, positive realness, and strict-passivity are defined below. In the
paper, all the units are in SI unless specified otherwise.

Notation:

• A, a and A(s) denote a matrix, a scalar and a variable in Laplace domain, respectively. Complex
conjugate of a is denoted by ā.

• A circle in the complex plane is expressed as C(r, c), where r ∈ R is the radius and c ∈ C is the centre
of the circle. The area inside this circle is denoted by the disc D(r, c).

Assumptions:

• The dynamics of the master and slave robots are LTI and known 2.

• The dynamics of the human operator and the environment are LTI but not necessarily known.

• The communication link between the master and the slave has negligible time-delay.

2.1. Definitions of passivity and absolute stability

Definition 1. Lozano et al. (2007); Sepulchre et al. (2012) A system with input u(.) and output y(.) where
u(t), y(t) ∈ Rm is passive if there is a constant β such that∫ t

0

yT (τ)u(τ)dτ ≥ β (1)

for all functions u(.) and all t ≥ 0. The constant β is the energy stored in the system at time t = 0.

2Feedback linearization (inverse dynamics) approach converts the nonlinear and coupled dynamics of an n-DOF robot to a
decoupled, LTI system Spong and Vidyasagar (2008); Isidori (1999).
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Definition 2. Lozano et al. (2007); Hill and Moylan (1977) A system with input u(.) and output y(.) where
u(t), y(t) ∈ Rm is ISP if there are constants β and δ > 0 such that∫ t

0

yT (τ)u(τ)dτ ≥ β + δ

∫ t

0

uT (τ)u(τ)dτ (2)

for all functions u(.) and all t ≥ 0. The value δ is the EOP for the ISP system.

Definition 3. Lozano et al. (2007) A system with input u(.) and output y(.) where u(t), y(t) ∈ Rm is OSP
if there are constants β and ε > 0 such that∫ t

0

yT (τ)u(τ)dτ ≥ β + ε

∫ t

0

yT (τ)y(τ)dτ (3)

for all functions u(.) and all t ≥ 0. The value ε is the EOP for the OSP system.

Definition 4. In Definition 2, if δ < 0, the system is INP with SOP of η = −δ.

Definition 5. In Definition 3, if ε < 0, the system is ONP with SOP of υ = −ε.

Instead of ONP systems in Definition 5, we define a more useful class corresponding to DNP systems as
below.

Definition 6. An LTI system G(s) is DNP with SOP of ρ if |G(jω)| ≤ 1/2ρ.

Definition 7. Khalil (2001) A p× p proper rational transfer function matrix G(s) is positive real if

• all poles of all elements of G(s) meet Re{s} ≤ 0,

• any pure imaginary pole jω of any element of G(s) is a simple pole and the residue matrix lims→∞(s−
jω)G(s) is positive semidefinite Hermitian.

• for all real ω for which jω is not a pole of any element of G(s), the matrix G(jω)+GT (−jω) is positive
semidefinite.

2.2. Lemmas of passivity and absolute stability

For a scalar rational transfer function, the last part of Definition 7 reduces to ReG(jω) ≥ 0. The
following lemma establishes the connection between passivity of a transfer function and the region covered
by its Nyquist diagram in the complex plane.

Lemma 1. Lozano et al. (2007); Slotine and Li (1991) Consider an LTI rational transfer function G(s).
Assume that all poles of G(s) have negative real parts. The system is passive if and only if ReG(jω) ≥ 0 for
all frequencies ω (Fig. 2-a).

Similarly, Lemmas 2-3 below make the connection between EOP of ISP and OSP systems to the corre-
sponding Nyquist diagram regions in the complex plane.

Lemma 2. Lozano et al. (2007) Consider an LTI rational transfer function G(s). Assume that all poles
of G(s) have negative real parts. The system is ISP with EOP of δ if and only if ReG(jω) ≥ δ for all
frequencies ω (Fig. 2-b).

Lemma 3. Lozano et al. (2007) Consider an LTI rational transfer function G(s). Assume that all poles
of G(s) have negative real parts. The system is OSP with EOP of ε if and only if the Nyquist diagram of
G(jω) is contained in the disc D(1/(2ε), 1/(2ε)) for all frequencies ω (Fig. 2-c), i.e., ReG(jω) ≥ ε|G(jω)|2.

Dual to the EOP of an ISP system (Lemma 2), we can relate the SOP of an INP system to its Nyquist
diagram region. For example, if G(s) is an INP system with SOP of η, then ReG(jω) ≥ −η (Fig. 2-d).

Passivity has been vastly used in the teleoperation literature to ensure stability. The connection between
passivity and absolute stability is made via the following lemma.
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Figure 2. Nyquist diagrams of (a) a passive system, (b) an ISP system with EOP of δ, (c) an OSP system with EOP of ε, (d)
an INP system with SOP of η, (e) an ONP system with SOP of υ, (f) a DNP system with SOP of ρ.

Lemma 4. A two-port network is absolutely stable if and only if for any passive but otherwise arbitrary
termination of a port, the driving-point impedance at the other port is passive.

Lemma 5. In the complex plane of z, a line and a circle are expressed by the following unified formulation:

Azz̄ + B̄z +Bz̄ + C = 0 (4)

where A,B,C ∈ C are the parameters of the circle or the line. If A = 0, (4) reduces to the equation of a
line. If A 6= 0, (4) expresses the following circle Levinson and Redheffer (1970):

C(
√
|B|2 −AC
|A|

,−B/A) (5)

3. Main results

Mappings of the regions in the impedance plane are introduced in Section 3.1. In Section 3.2 and
Section 3.3, these mappings will be applied to find stability conditions for a two-port network with a non-
passive and strictly-passive terminations, respectively.

3.1. Mapping of regions via Mobius transformation

A two-port network is expressed by its impedance Z matrix as[
V1(s)
V2(s)

]
=

[
Z11(s) Z12(s)
Z21(s) Z22(s)

] [
I1(s)
I2(s)

]
(6)

where the pairs (V1,V2) and (I1,I2) denote the voltages and currents at the two terminals. When port 2
is connected to a termination with impedance z2 (Fig. 1-b), the driving-point impedance Za1 at port 1 is
expressed as

Za1 = Z11 −
Z12Z21

Z22 + z2
=
z2(Z11) + (Z11Z22 − Z12Z21)

z2 + (Z22)
(7)

8
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In the following, the result of mapping two general areas representing the impedance z2 – a rectangle
and a disk – will be found in the Za1 impedance plane.

3.1.1. Mapping of a rectangular impedance via Mobius transformation

In order to investigate the stability of a two-port network with ISP or INP terminations, we introduce
the following theorem to study the mappings of such terminations.

Theorem 1. Suppose that the termination z2 has a rectangular shape in the complex impedance plane,
namely −a ≤ Rez2 ≤ b, −d ≤ Imz2 ≤ c as shown in Fig. 3-a. This region in the z2 plane is mapped by the
Mobius transformation (7) to a crescent-like region in the Za1 plane defined by the outer circle

C( |Z12Z21|
2(R22 − a)

, Z11 −
Z12Z21

2(R22 − a)
) (8)

and the inner circle

C( |Z12Z21|
2(R22 + b)

, Z11 −
Z12Z21

2(R22 + b)
) (9)

after excluding the following two discs:

D(
|Z12Z21|
2c+ 2I22

,
Z11 + jZ12Z21

2c+ 2I22
) (10)

D(
|Z12Z21|
2d+ 2I22

,
Z11 + jZ12Z21

−2d+ 2I22
) (11)

2

The mapped region in the Za1 plane is shown in Fig. 3-b. Proof of Theorem 1 is given in Appendix Ap-
pendix A.
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Figure 3. A rectangle in the z2-plane (a) is transformed into the hatched region in the Za1-plane (b). The circles are marked
in relation with the corresponding lines.

Remarks:

• The circles shown in Fig. 3 resemble a rotated and translated Smith Chart, which has been applied to
investigating the stability of a bilateral teleoperation via reflection coefficients Haddadi and Hashtrudi-
Zaad (2010).

• By increasing the parameters a, b, c and d in Fig. 3-a, the outer circle of the crescent in Fig. 3-b
enlarges, the inner circle shrinks, and the two discs on the top and bottom shrink.
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3.1.2. Mapping of a disc impedance via Mobius transformation

In order to investigate the stability of two-port networks with DNP or OSP terminations, we introduce
the following two theorems to study mappings of such terminations.

Theorem 2. Suppose that the termination impedance z2 is a disc defined by D(M, 0). This region is mapped
by the Mobius transformation (7) to the following region in the Za1-plane:

D(
|Z12Z21|M2

||Z22|2 −M2|
,
−Z22Z12Z21

|Z22|2 −M2
+ Z11), if |Z22| 6= M.

ReZa1 >

(
R11 −

Im{Z12Z21}
2R22

)
, if |Z22| = M , Z22 ∈ R

(12)

2

Proof of Theorem 2 is given in Appendix Appendix A.
While Theorem 2 finds the transformation of a disc-like region (corresponding to a DNP termination),

the following theorem finds the transformation if the disc is shifted to the right by M (corresponding to an
OSP termination).

Theorem 3. Consider a Mobius transformation of (7). A disc in the z2-plane inside of C(M,M) is mapped
by the Mobius transformation (7) to the following region in the Za1-plane:

D(
|Z12Z21|M2

||Z22 +M |2 −M2|
,
−Z22Z12Z21

|Z22 +M |2 −M2
+ Z11),

if |Z22 +M | 6= M.

ReZa1 >

(
R11 −

Im{Z12Z21}
2(R22 +M)

)
, if |Z22| = M , Z22 ∈ R

(13)

2

Proof of Theorem 3 is similar to the proof of Theorem 2 and is omitted for brevity.

3.2. Stability of a two-port network with non-passive terminations

Shortage of passivity for a termination of a two-port network means that the coupled network may be
unstable even if Llewellyn’s conditions are met. Therefore, more stringent conditions for stability will be
found in this section for two types of non-passive terminations.

3.2.1. Stability of a two-port network with an INP termination

Let us assume that a non-passive termination’s impedance covers a rectangular area in the complex
plane. If the region is partially in the LHP with bounds on the real and imaginary parts of the complex
impedance, the termination is INP. In Theorem 4 below, the absolute stability condition for a two-port
network with this INP termination is introduced.

Theorem 4. Consider the two-port network (6) and assume that, as shown in Fig. 1-b, the driving-point
impedance seen from port 1 is Za1 while port 2 of the two-port network is terminated to an impedance z2.
Assume that z2 is INP with −a ≤ Rez2 ≤ b and −d ≤ Imz2 ≤ c as shown in Fig. 3-a with a, b, c, d ≥ 0. If
port 1 of the two-port network is terminated to a passive impedance, the necessary and sufficient condition
for stability of the coupled system comprising the two-port network, the passive termination at port 1, and
the INP termination at port 2 is

(i) Z11 and Z22 have no poles in the RHP,

(ii) Pure imaginary poles of Z11 and Z22 are simple and have positive residues, and

10
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(iii) For all real positive frequencies ω,

R11 ≥ 0

R22 ≥ a
2R11R22 − Re{Z12Z21} − |Z12Z21| − 2R11a ≥ 0

(14)

2

Proof of Theorem 4 is given in Appendix Appendix A.
Remarks:

• The parameters b, c and d do not appear in the stability condition (14) due to the fact that the inner
circle and the top and bottom circles in Fig. 3-b are not the source of any constraint when ensuring
the passivity (i.e., the positive realness) of the driving-point impedance Za1. In other words, besides
the parameters of the two-port network, stability depends only on the lower limit of the real part of
the INP impedance z2 (i.e., -a) for the two-port network.

• As a special case of Theorem 4, by setting a = 0, b = ∞, c = ∞ and d = ∞, the region covered
by the impedance z2 becomes the entire RHP (i.e., all passive impedances). Evidently, when a = 0,
our stability condition (14) reduces to the well-known Llewellyn’s absolute stability criterion for two
passive terminations Ku (1963):

R11 ≥ 0

R22 ≥ 0

2R11R22 − Re{Z12Z21} − |Z12Z21| ≥ 0 (15)

• The difference between the stability conditions (14) and (15) is in their second and third conditions.
As expected, compared to (15), (14) is more stringent because a ≥ 0 and it provides for stability of
the two-port network coupled to an INP termination.

• a is indeed the SOP of the INP termination z2 according to Definition 4 and the non-passive dual of
Lemma 2.

3.2.2. Stability of a two-port network with a DNP termination

In many applications of bilateral teleoperation, the knowledge about the non-passive termination, e.g.,
human arm, can be translated to a maximum amplitude of its impedance van der Helm et al. (2002); Park
et al. (2011). This maximum impedance is the same as the radius of the disc for a DNP termination, which
is expressed as |z2| ≤ M . Passivity of a two-port network connected to a DNP termination can be studied
using the following theorem.

Theorem 5. Consider the two-port network system (6) and assume that, as shown in Fig. 1-b, the driving-
point impedance seen from port 1 is Za1 while port 2 of the two-port network is terminated to an impedance
z2. Assume that z2 is DNP with |z2| ≤ M , where M > 0 is known. If port 1 of the two-port network is
terminated to a passive impedance, the necessary and sufficient condition for stability of the coupled system
comprising the two-port network, the passive termination at port 1, and the DNP termination at port 2 is

(i) Z11 and Z22 have no poles in the RHP,

(ii) Pure imaginary poles of Z11 and Z22 are simple and have positive residues, and

11
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(iii) For all real positive frequencies ω,

R11 ≥ 0

R22 ≥ 0

R22(|Z11|2 −M2)− Re{Z11Z12Z21}
− |Z12Z21|M ≥ 0, if |Z11| > M.

−R22(|Z11|2 −M2) + Re{Z11Z12Z21}
− |Z12Z21|M ≥ 0, if |Z11| < M.

− 2R22R11 − Re{Z12Z21} ≥ 0, if Z11 = M.

(16)

2

Proof of Theorem 5 is similar to the proof of Theorem 4 with the difference that the region covered by
the non-passive termination is now a disc, which requires using Theorem 2.

3.3. Stability of a two-port network with strictly-passive terminations

Having excess of passivity for a termination of a two-port network allows for more flexible stability
conditions. Input and output strict-passivity of a termination are considered separately in the following two
subsections.

3.3.1. Stability of a two-port network with an ISP termination

Theorem 6. Consider the two-port network system (6) and assume that, as shown in Fig. 1-b, the driving-
point impedance seen from port 1 is Za1 while port 2 of the two-port network is terminated to an impedance
z2. Assume that z2 is ISP with Rez2 ≥ δ ≥ 0. If port 1 of the two-port network is terminated to a passive
impedance, the necessary and sufficient condition for stability of the coupled system comprising the two-port
network, the passive termination at port 1, and the ISP termination at port 2 is

(i) Z11 and Z22 have no poles in the RHP,

(ii) Pure imaginary poles of Z11 and Z22 are simple and have positive residues, and

(iii) For all real positive frequencies ω,

R11 ≥ 0

R22 ≥ −δ
2R11R22 − Re{Z12Z21} − |Z12Z21|+ 2R11δ ≥ 0

(17)

2

Proof of Theorem 6 is similar to the proof of Theorem 4 with the difference that δ = −a.
Remark:

• The last condition in (17) for coupled stability of a two-port network with an ISP termination can
be compared to its non-passive counterpart in (14). It is clear that the latter is more conservative.
Intuitively, for coupled stability, the two-port network should absorb more energy when connected to
a non-passive termination than when connected to a strictly-passive termination.

3.3.2. Stability of a two-port network with an OSP termination

In many applications of bilateral teleoperation, the only knowledge about the strictly-passive termination
is that its Nyquist diagram is a disc that is centered on the positive segment of the real axis and is tangent
to the imaginary axis at the origin. This disc can be expressed as ReG(jω) ≥ ε|G(jω)|2, where ε is EOP of
the OSP termination. If ε = 0, the termination becomes passive as its Nyquist diagram will be in the RHP.

12
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Theorem 7. Consider the two-port network system (6) and assume that, as shown in Fig. 1-b, the driving-
point impedance seen from port 1 is Za1 while port 2 of the two-port network is terminated to an impedance
z2. Assume that z2 is OSP with Rez2 ≥ ε|z2|2, where ε > 0 is known. If port 1 of the two-port network is
terminated to a passive impedance, the necessary and sufficient condition for stability of the coupled system
comprising the two-port network, the passive termination at port 1, and the OSP termination at port 2 is

(i) Z11 and Z22 have no poles in the RHP,

(ii) Pure imaginary poles of Z11 and Z22 are simple and have positive residues, and

(iii) For all real positive frequencies ω,

R11 ≥ 0

R22 ≥ 0

R22(|Z11 +M |2 −M2)− Re{(Z11 +M)Z12Z21}
−|Z12Z21|M ≥ 0

|Z11 +M | > M (18)

2

where M = 1/(2ε). Proof of Theorem 7 is similar to the proof of Theorem 4 with the difference that the
region occupied by the Nyquist diagram of the termination is now a disc, which requires using Theorem 3.

4. Application to Bilateral Teleoperation

The coupled stability conditions presented in Sections 3 are valid for any two-port network. In this
section, the two-port network is assumed to be a bilateral teleoperator. In this context, the voltage-current
pair (V ,I) for the impedance matrix (6) is replaced by the force-velocity pair (F ,sX). The coupled stability
theorems in Section 3 for strictly-passive and non-passive terminations will be applied to a teleoperator
coupled with a non-passive human operator and a strictly-passive environment.

4.1. Modelling of bilateral teleoperation systems

For a 1 degree-of-freedom, bilateral teleoperation system, the master and the slave robots are modelled
as LTI systems

sXm(s) =
1

mms+ bm
(Fh(s)− Fm(s))

sXs(s) =
1

mss+ bs
(Fe(s)− Fs(s)) (19)

Also, the operator and the environment are modeled as

Fh(s) = F̃h(s)− sZh(s)Xm(s) (20)

Fe(s) = F̃e(s) + sZe(s)Xs(s) (21)

In the above, F , Z and X denote the force, the impedance and the position, respectively. Also, the subscripts
h, e, m and s denote the operator, the environment, the master and the slave, respectively. Furthermore,
F̃ represents the exogenous force.

Bilateral teleoperation systems with position error based (PEB) and direct force reflecting (DFR) con-
trollers are shown in Fig. 4. For the PEB architecture, the teleoperation controllers and the impedance
matrix of the teleoperator are shown in Table 1, where Fm,s are the controller outputs. In this case, the
controllers of the master and the slave are Cs(s) = kps/s + kvs and Cm(s) = kpm/s + kvm , respectively,
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Figure 4. A bilateral teleoperation system, (a) with PEB control, and (b) DFR control.

where kvm , kvs , kpm , kps ≥ 0. For the DFR architecture, the slave robot’s position controller may be PD3

(named DFR(PD) architecture) or P+D (named DFR(P+D) architecture) Willaert et al. (2011). The dif-
ference between these two is that position controller for the slave robot; see Table 1. The controllers and
the impedance matrices of these two DFR controllers are shown in Table 1, where µ and λ are the position
and force scaling factors. Also, Zts = Zs + Cs and Ztm = Zm + Cm .

Table 1. Controllers of bilateral teleoperation systems and their impedance matrices

Controller Control law Impedance matrix

PEB

{
Fm(s) = Cm(s)(Xs(s)−Xm(s))

Fs(s) = Cs(s)(Xm(s)−Xs(s))
ZPEB =

[
Ztm Cm
Cs Zts

]
DFR(PD)

{
F ′m(s) = Fh(s)− λFe(s)
F ′s(s) = Cs(s)(µXm(s)−Xs(s))− Fe(s)

ZPD =

[
Zm + µλCs λZts

µCs Zts

]
DFR(P+D)

{
F ′m(s) = Fh(s)− λFe(s)
F ′s(s) = kp(µXm(s)−Xs(s))− skvXs(s)− Fe(s)

ZP+D =

[
Zm +

µλkp
s λZts

µkp
s Zts

]

4.2. Teleoperation system stability conditions for passive, INP and ISP terminations

Table 2 compares the necessary and sufficient stability conditions for the PEB, DFR(PD) and DFR(P+D)
controlled teleoperation systems when one of the ports is connected a passive, INP or ISP termination. These
conditions have resulted from substituting the impedance matrices of PEB, DFR(PD) and DFR(P+D)
controlled teleoperation systems from Table 1 into the stability conditions (14), (15) and (17) for INP,
passive and ISP terminations, respectively. Derivations of these conditions are omitted for brevity. Note
that the position scaling factor µ and the force scaling factor λ appear together in the stability conditions.

Discussions:

3Note that the impedance matrix (6) relates velocity to force (instead of position to force); this fact changes the representation
of the position controller from PD to PI.
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Table 2. Stability conditions for different choices of teleoperation system control architecture and different choice of terminations

Controller Passive INP ISP

PEB bmbs+bmkvs +bskvm ≥
(kvmkps − kpmkvs)2

4kpmkps

(kvm + bm)(bs − η) + bmkvs ≥
(kvmkps − kpmkvs)2

4kpmkps
&

bs + kvs ≥ η

(kvm + bm)(bs + δ) + bmkvs ≥
(kvmkps − kpmkvs)2

4kpmkps

DFR(PD) None None None

DFR(P+D) µλ ≤ 4bm
bs + kv

&

µλ ≤ bm(bs + kv)

mskp

µλ ≤ 4bm(bs + kv − η)

(bs + kv)2
&

µλ ≤ bm(bs + kv − η)

mskp
&

bs + kv ≥ η

µλ ≤ 4bm(bs + kv + δ)

(bs + kv)2
&

µλ ≤ bm(bs + kv + δ)

mskp

• Consider the (PEB, passive) entry of Table 2. The teleoperation system stability requires a lower
bound on the robots damping terms bm and bs and bounds on the master and slave controllers gains.
A sufficient condition for stability of this system is to have the master and the slave controllers
proportional to each other:

kps
kvs

=
kpm
kvm

(22)

The condition (22) is both necessary and sufficient for coupled stability if the master and the slave
dynamics only involves masses, i.e., bm = bs = 0.

• The (PEB, INP) entry of Table 2 is similar to the (PEB, Passive) entry of Table 2 with the exception
that bs is replaced by bs− η, where η is the SOP for the INP termination. The physical interpretation
of the above fact is that the SOP of the INP termination (connected at port 2) reduces the effective
damping of the corresponding robot (the slave robot), which has to be greater than a lower bound in
order to ensure stability. In other words, SOP of the INP termination necessitates higher damping
for the robot and makes the stability condition harder to satisfy. If the robot damping is not high
enough to make up for the SOP of the INP termination, the derivative term of the controllers must
be selected high enough to overcome non-passivity of the termination.

• For the (PEB, INP) entry of Table 2, also note that the robot damping terms bm and bs cannot be
both zero because it causes the left hand side of the first inequality to be negative. This result has
an intuitive interpretation. In the (PEB, Passive) case with no damping terms for the master and
the slave robots, we saw that the only choice for the controllers was (22). The non-passivity of the
termination should make this choice even more limited. However, no freedom is left in the controller
parameter space. Therefore, the termination cannot be non-passive.

• The (PEB, ISP) entry of Table 2 is similar to the (PEB, Passive) entry of Table 2 with the exception
that bs is replaced by bs + δ, where δ is the EOP for the ISP termination. The physical interpretation
of the above fact is that the EOP of the ISP termination (connected at port 2) increases the effective
damping of the corresponding robot (the slave robot), which has to be greater than a lower bound
in order to ensure stability. In other words, EOP of the ISP termination relaxes the lower bound
requirement on the robot damping and makes the stability condition easier to satisfy. Also, the robot
damping terms bm and bs are allowed to be both zero and the controller gain do not necessarily have
to be chosen according to (22).

• The INP column of Table 2 includes conditions that are expectedly more limiting than their coun-
terparts in the Passive column. In fact, the more non-passive the termination, the more restrictive
the stability condition for the coupled system. Conversely, the ISP column of Table 2 has stability
conditions that are less restrictive that their counterparts in the Passive column. In fact, the more
passive the termination, the more relaxed the stability condition for the coupled system.
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• With the DFR(PD) controller (i.e., force reflection for the master and PD position controller for
the slave), substituting the impedance matrix ZPD into the stability conditions (15), (14) and (17)
yields conditions that never hold for ω = 0. This fact has previously been reported in Tavakoli et al.
(2007). However, with the DFR(P+D) controller (i.e., force reflection for the master and a P position
controller and internal damping for the slave), there does exist a range of controller gains for stability;
this has also previously been reported in Willaert et al. (2011). Similar to the PEB controller, in the
DFR(P+D) case the effective damping of the robot is reduced or increased by the non-passivity or
excess of passivity of the termination, making the stability conditions more restrictive or more relaxed,
respectively.

4.3. Teleoperation system stability conditions for DNP and OSP terminations

Substituting the impedance matrices of PEB, DFR(PD) and DFR(P+D) controlled teleoperation systems
from Table 1 into the stability conditions of DNP and OSP termination, i.e., (16) and (18), results in
conditions of the following form

N (ω) = N8ω
8 +N6ω

6 +N4ω
4 +N2ω

2 +N0 ≥ 0 (23)

where Ni’s, i = 0, 2, 4, 6, 8, are functions of system parameters mm, bm,ms, bs, µ, λ, kv, kp and M . For the
DNP termination, N0 ≥ 0 corresponding to ω = 0 yields necessary conditions for stability that are shown
in Table 3. For the OSP termination, N0 is always non-negative for PEB, DFR(PD) and DFR(P+D)
controllers. Furthermore, in (23), the high frequency component N8 is non-negative for both DNP and OSP.
The terms N2, N4 and N6 may have sign changes depending on the parameters that are involved. Each
curve in Fig. 5 indicates the index N (ω) for a given M for the condition in the DFR(PD) row of Table
3. For any of the curves of Fig. 5, the condition of stability is that the entire curve is in the non-negative
region. This condition is satisfied for M = 4.8 but not for M = 5.1 because there are some frequencies in
the 0-100 rad/sec range where the curve becomes negative and hence the condition in (23) is violated.

Table 3. Necessary conditions for stability of the teleoperation system with DNP termination for PEB, DFR(PD) and
DFR(P+D) controllers.

Controller Condition for having N0 ≥ 0

PEB M ≤ bskpm + bmkps + 2kpskvm + 2kpmkvs
kps

DFR(PD) M ≤ bm + 2µλ(Bs+ 2Kv)
DFR(P+D) M ≤ bm + 2µλ(Bs+Kv)

In order to find stability bound, the stability conditions found in Theorems 5 and 7 can be tested over
a range of frequencies of interest for a haptic teleoperation system, e.g., 0-100 rad/sec. If the condition
N (ω) ≥ 0 is satisfied for the entire range of frequencies, the coupled system is considered stable. An
example of the stability index N (ω) for the benchmark teleoperator, a DFR(PD) controller, and a DNP
termination with various values of disk radius M is plotted in Fig. 5. The parameter of the teleoperation
system are mm = 0.015, bm = 0.01822, ms = 0.15, bs = 0.1822, kp = 10, kv = 2 and µλ = 0.02. In this
example, the maximum value of disk radius M of the DNP termination is found to be 4.92. Any higher M
for the DNP termination can cause instability.

5. Simulation study

A bilateral teleoperation system with PEB control (Fig. 4-a) is simulated in MATLAB/Simulink. Whereas
in the experiment in Section 6, we will be limited to having two identical master and slave robots, in the
simulations in this section we have the liberty of verifying the proposed stability criteria when the master
and the slave robots have different models. The selected model parameters are mm = 0.015 and bm = 0.0182
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Figure 5. The stability index is evaluated for different values of the disc radius for a range of frequencies.

for the master and ms = 0.15 and bm = 0.182 for the slave. Table 4 compares the theoretical stability condi-
tions (Theory columns) with the simulation results (Simulation Column). In each row of Table 4, the PEB
control gains, the operator impedance, and the environment impedance are changed and the robots positions
are monitored for boundedness to detect instability. In each Theory column of the table, the theoretical
stability conditions in Sections 4.2 and 4.3 are evaluated and the results are listed as either absolutely stable
(Abs. Stab.) or potentially unstable (Pot. Unst.).

In Table 4, the terminations are GP = 1
s+1 , GISP = s+0.5

s+1 , GOSP = 1
s+1 , GINP = s−0.5

s+1 and GDNP =
s−1
s+1 . The Nyquist diagrams in Fig. 6 show that the EOP values of the ISP and OSP terminations are 0.5
and 1, respectively. Also, the SOP values of the INP and DNP terminations are 0.5 and 0.5, respectively.
In all cases, the human operator exogenous force F̃h(s) is assumed to be a sine wave with a magnitude of 1
and frequency of 2π rad/sec and the environment exogenous force F̃e(s) is assumed to be zero.

Table 4. Comparing stability of teleoperation systems in theory and simulation.

#
Control gains Terminations Theory

Simulationkpm kvm kps kvs Zh Ze
(PEB, (PEB, (PEB, (PEB, (PEB,
Passive) INP) DNP) ISP) OSP)

1 10 2 20 2 GP GOSP Abs. Stab. - - - Abs. Stab. Stable
2 40 2 10 2 GP GOSP Pot. Unst. - - - Abs. Stab. Stable
3 10 1 20 2 GP GISP Abs. Stab. - - Abs. Stab. - Stable
4 20 1 20 2 GP GISP Pot. Unst. - - Abs. Stab. - Stable
5 5 1 20 2 GDNP GP Pot. Unst. - Pot. Unst. - - Unstable
6 5 1 20 4 GDNP GP Abs. Stab. - Pot. Unst. - - Unstable
7 10 2 40 2 GINP GP Pot. Unst. Pot. Unst. - - - Unstable
8 20 2 30 5 GINP GP Abs. Stab. Pot. Unst. - - - Unstable

From rows 1 and 3 of the table, we see that if stability in simulations is shown for a set of control gains
under the assumption that the terminations are passive, replacing a passive termination with a strictly-
passive termination (ISP or OSP) does not alter the result. Conversely, if instability in simulations is
shown for a set of control gains under the assumption that the terminations are passive, replacing a passive
termination with a non-passive termination may not alter the result; while rows 5 and 7 show two cases of
this.

Rows 6 and 8 show that the theoretical stability condition for passive terminations (i.e., Llewellyn’s
criterion) listed under the column (PEB, passive) expectedly fails to recognize instability if that occurs
because of a non-passive termination. Conversely, Rows 2 and 4 show that the theoretical stability condition
for passive terminations (i.e., Llewellyn’s criterion) listed under the column (PEB, passive) fails to recognize
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stability if that occurs because of a strictly-passive termination. In fact, when a termination is strictly-
passive, the teleoperation system may be stable even when the teleoperator is recognized by Llewellyn’s
criterion to be potentially unstable; our proposed stability criterion informs us about this, thus providing
an opportunity to leverage higher control gains for improved transparency while preserving stability.
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Figure 6. Nyquist diagrams of a ISP, OSP, INP and DNP terminations.

6. Experimental Results

In order to test the stability conditions, experiments are conducted on a pair of Phantom Premium
1.5A haptic devices (Geomagic Inc., Wilmington, MA), which form a bilateral teleoperation system. In the
following, two sets of experiments are shown for a strictly-passive termination and a non-passive termination.
Typically, it is the environment termination that is strictly-passive while it is the human operator termination
that is non-passive.

6.1. Experiments involving a strictly-passive environment

6.1.1. Experimental setup

We use the 1-DOF bilateral teleoperation system shown on Fig. 7 comprising two 3-joint Phantom
Premium 1.5A robots as the master and as the slave. The sampling period for the robot is Ts = 1ms. In
Figure 7, the first joint allows the robot to move the robots end-effector to right and left (x-coordinate).
The second joint of the robot moves the end-effector up and down (y-coordinate) and the third joint moves
the end-effector in and out (z-coordinate). Out of the three joints of each robot, the first (x) is teleoperated.
In this direction, the robot dynamics was identified as a mass-damper with a mass of mm = ms = 0.015
and a damper of bm = bs = 0.01822 Jazayeri and Tavakoli (2012a, 2013). The third joint (z) is locked
using high-gain control. The second joint (y) is used for a purpose explained below. In the experiments, the
environment is designed to be strictly-passive. To design such an environment, the slave robot’s end-effector
is connected via two springs from opposite sides to a stiff wall and at the same time slides a block of wood
on the table. While the spring is passive (lossless), the wood-table viscous friction (acting as a damper)
makes the environment strictly-passive. The viscous friction and, therefore, the EOP of the strictly-passive
environment can by controlled by changing the perpendicular force, which comes from the robot’s second
joint (y), on the wood block by the slave robot. In the following experiments, the environment either has a

18



/ Control Engineering Practice 00 (2015) 1–28 19

Figure 7. The experimental setup for testing ISP environment.

low EOP (τy = 0) or high EOP (τy = 0.2 N.m). Using the definition of the EOP (2), in an experiment the
values of EOP are identified to be 0.74 and 0.90, respectively. In the following, both PEB (Fig. 4-a) and
DFR (Fig. 4-b) controllers are used in the above-mentioned bilateral teleoperation system and in each case
the theoretical stability conditions are verified experimentally.

6.1.2. PEB architecture

The bilateral teleoperation system with PEB architecture (Fig. 4-a) is tested for different control gains.
The experimentally-obtained positions of the master and the slave are shown in Fig. 8 when the control
gains change according to Table 5. The top and the bottom rows of Fig. 8 correspond to EOP values of 0.74
and 0.90 for the ISP environment, respectively.

Figure 8. Master-slave positions for strictly-passive environment with PEB architecture. Top row has τy = 0 and and bottom
row has torque of τy = 0.2 N.m. The controller gains are given in Table 5.

Table 5. Stability condition for the bilateral teleoperation system with PEB controllers

# Figure
Controller gains

EOP
Theory

Experiment
Tracking

kpm kvm kps kvs (PEB, Passive) (PEB, ISP) Error
1 Fig. 8-a 20 2 30 2 0.74 Pot. Unst. Abs. Stab. Stable 0.49858
2 Fig. 8-b 20 2 40 2 0.74 Pot. Unst. Abs. Stab. Stable 0.27401
3 Fig. 8-c 1 2 40 2 0.74 Pot. Unst. Pot. Unst. Unstable -
4 Fig. 8-d 20 2 30 2 0.90 Pot. Unst. Abs. Stab. Stable 0.70815
5 Fig. 8-e 20 2 40 2 0.90 Pot. Unst. Abs. Stab. Stable 0.61674
6 Fig. 8-f 10 2 20 2 0.90 Pot. Unst. Abs. Stab. Stable 1.0726

In Table 5, each row shows a selection of control gains for the PEB controller. These controller gains
and the robot model have been substituted in the stability conditions of Table 2. In particular, the stability
condition in the (PEB, Passive) entry of Table 2 has led to the stability conclusion (i.e., stable or unstable)
listed in the (PEB, Passive) column of Table 5. Similarly, the stability condition in the (PEB, ISP) entry
of Table 2 has led to the stability conclusion listed in the (PEB, ISP) column of Table 5. Furthermore,
the cases of actual instability of the system manifested by growing or sustained oscillations is observed and
listed in the Experiment column of Table 5. The last column shows the Euclidean norm of the position
tracking error between the master and the slave.
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Comparing the controller gains in rows 1 and 2 of Table 5, it is seen that increasing the controller gain
kps leads to a lower tracking error; in general, as shown in Tavakoli et al. (2007) higher control gains improve
performance but undermine the stability of the system. The same phenomenon can be seen when comparing
rows 4 and 5. On the other hand, reducing the controller gain kpm from row 2 to row 3 or from row 5 to
row 6 results in an increase in the tracking error.

In all of the 6 experiments of Fig. 8, the conventional (Llewellyn’s) stability criterion, i.e., the condition
listed in the (PEB, Passive) entry of Table 2, predicts that the teleoperation system is potentially unstable;
see the (PEB, Passive) column of Table 5. In practice, however, EOP of the ISP termination causes the
teleoperation system to be stable; see the Experiment column of Table 5. This is because the conventional
stability condition in the (PEB, Passive) entry of Table 2 is conservative because it guarantees stability of
the two-port network for any passive termination regardless of its EOP value (which can be as little as zero
for a lossless termination). In reality, excess of passivity in a termination allows for tolerating a shortage of
passivity in the two-port network such that coupled stability is preserved. Allowing a non-passive two-port
network (teleoperator) gives us the flexibility to design less conservative and better performing controllers
by increasing the controller gains.

6.1.3. DFR architecture

The bilateral teleoperation system with a DFR architecture (Fig. 4-b) involves a 6-DOF force/torque
JR3 force sensor R©(Woodland, CA) and can have different control gains. The force sensor has an internal
low-pass filter with a cutoff frequency at 31.25 Hz. Here, a DFR(P+D) controller as described in the last
row of Table 1 is used and hence the stability condition in the last row of Table 2 applies. For brevity,
the experimentally-obtained positions of the master and the slave are not shown. In Table 6, each row
shows a selection of control gains for the DFR(P+D) controller. These controller gains and the robot model
have been substituted in the stability conditions of Table 2. In particular, the stability condition in the
(DFR(P+D), Passive) entry of Table 2 has led to the stability conclusion (i.e., stable or unstable) listed in
the (DFR(P+D), Passive) column of Table 6. Similarly, the stability condition in the (DFR(P+D), ISP)
entry of Table 2 has led to the stability conclusion listed in the (DFR(P+D), ISP) column of Table 6.
Furthermore, the cases of actual instability of the system manifested by growing or sustained oscillations is
observed and listed in the Experiment column of Table 6.

Table 6. Experiments on a teleoperation system with a DFR controller. The scaling factors are λ = 0.2 and µ = 0.5.

#
Control

EOP
Theory

Experimentgains (DFR, (DFR,
kp kv passive) ISP)

1 10 1 0.74 Pot. Unst. Abs. Stab. Stable
2 10 2 0.74 Pot. Unst. Abs. Stab. Stable
3 20 2 0.74 Pot. Unst. Abs. Stab. Stable
4 20 5 0.74 Pot. Unst. Abs. Stab. Stable
5 10 1 0.90 Pot. Unst. Abs. Stab. Stable
6 10 2 0.90 Pot. Unst. Abs. Stab. Stable
7 20 2 0.90 Pot. Unst. Abs. Stab. Stable
8 20 5 0.90 Pot. Unst. Abs. Stab. Stable

In Fig. 9, a comparison between DFR(P+D) and DFR(PD) controllers are made. For both controllers,
the parameters and gains are EOP = 0.74, λ = 0.5, µ = 1, Kp = 20, and kv = 0.1. In the experiments,
the DFR(PD) controller (Fig. 9-a) is unstable while the DFR(P+D) experiment (Fig. 9-b) is stable. This is
in agreement with the stability conditions given in the (DFR(P+D), ISP) and (DFR(PD), ISP) entries of
Table 2.
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Figure 9. Master-slave positions for an ISP environment in DFR teleoperation with (a) a DFR(P+D) controller, and (b) a
DFR(PD) controller.

6.2. Experiments involving a non-passive operator

6.2.1. Experimental setup

Typically, the master is manipulated by a human operator. For reasons described in the following, in this
set of experiments, the master is connected to another robot whose task is to manipulate the master. The
robot that takes the place of the human operator is called operator emulating robot (OER). Experiments
involving a human operator are not easily reproducible due to the fact that every person’s arm has a unique
physical characteristics. Even for the same human operator, the hand impedance and passivity/activity
varies from the beginning to the end of the experiment. Consequently, instead of a human operator, an
OER is used to manipulate the master. The OER comprises a controller that allows us to achieve a desired
SOP level while ensuring the non-passivity of the OER. In our experimental setup, the OER is a Phantom
Omni and is coupled to the master robot as depicted in Fig. 10.

For simulating non-passive behavior by the OER, the OER is programmed to follow a sinusoidal position
trajectory. In this way, the OER acts as a human operator who internationally moves the master. Internally,
the OER has a proportional-derivative control controller so that its end-effector follows the pre-programmed
trajectory. After the experiment with the OER coupled to the master is finished and all data is collected,
the SOP (parameter η) is identified using Definition 4. As depicted in Figure 4, the input and output of
the one-port network OER are the contact force and the velocity of the masters end-effector, respectively.
The mechanical coupling of the OER to the masters end-effector provides us with the measurement of
the contact force (using the force sensor) and end-effector velocity (using the Phantom Premiums position
sensor). Therefore, we have all of the measurements of all signals present in Definition 4, and η can be
found.

6.2.2. PEB architecture

The teleoperation system of Fig. 10 was controlled using a PEB controller. Two sets of controller gains
were used: (a) kpm = 10, kvm = 2, kpm = 10 and kvm = 2, and (b) kpm = 30, kvm = 2, kpm = 10 and
kvm = 2. In a separate experiment, the SOP of the OER was identified to be η = 0.745. Based on this
non-passivity, the stability condition of the (PEB, INP) of Table 2 is checked for the two controller gain
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Figure 10. Block diagram model of the OER connected to the master robot via a flexible link.

sets. The stability condition for passive terminations, i.e., the (PEB, Passive) entry of Table 2, identifies the
system with the first set of control gains as stable and with the second set of gains as unstable. However,
both sets of control gains make the system become unstable in practice. The (PEB, INP) condition of
Table 2 truly identifies both of the cases as unstable, which is in agreement with practice.

7. Conclusions and Future Work

Conventional stability analysis for two-port network systems relies on the assumption that the one-
port network terminations for the two-port network are passive. In the context of bilateral teleoperation
systems, where the terminations are the human operator and the environment, this assumption is less
than accurate. As a result, the conventional stability analysis will be either invalid (when a termination
is non-passive) or overly conservative (when a termination is strictly passive). In this paper, a powerful
stability analysis tool has been developed based on complex-plane Mobius transformations of the termination
impedance. The new stability criterion is able to give accurate assessment of (or conditions) for coupled
two-port network stability in the presence of a non-passive termination when the conventional stability
analysis may fail to identify potential instability. Conversely, the new stability criterion can provide more
flexibility in control design in the presence of a strictly-passive termination and, therefore, help to achieve
transparency improvement. Although the resulting stability conditions are valid for any two-port network,
they are applied to PEB-controlled and DFR-controlled bilateral teleoperation systems and are tested both
in simulations and experiments. In the future, the proposed approach can be extended to cases where
both terminations of a two-port network are non-passive or strictly-passive. For example, a non-passive
human operator may teleoperate a robot interacting with a non-passive (e.g., a beating heart) or a strictly-
passive environment (e.g., any environment modeled as a mass-spring-damper). Another useful direction is
to extend the approach presented here to multi-port network systems, which represent multilateral haptic
teleoperation systems, that possibly also involve multi-DOF robots (Li et al. (2014)).
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Appendix A. Proof of Theorems

Theorem 1

Proof. The rectangular shape in the z2 plane (Fig. 3-a) consists of four lines of Rez2 = −a, Rez2 = b,
Imz2 = c and Imz2 = −d. Each of these four lines will be transformed to a circle in the Za1 plane. In the
following, in Step 1 the mapping of the vertical line Rez2 = −a is found to be (8). Then, in Step 2, the
mapping of the vertical line of Rez2 = b is found and it is shown to be inside and tangent to the circle of (8).
Finally, in Step 3 the mappings of the two horizontal lines are found and the region inside the rectangles is
transformed.

Step 1:
Let us consider the vertical line of Rez2 = −a. The Mobius transformation (7) from z2 plane into

Za1 plane is split to three transformations, namely a linear transformation (ζ1 = z2 + Z22), an inversion
(ζ2 = 1/ζ1) and another linear transformation (ζ3 = Z11 − Z12Z21ζ2) Levinson and Redheffer (1970).

The three transformations are considered separately:

1. The first transformation is a linear transformation as ζ1 = z2 + Z22 that translates the LHP to
the right side by the real part of Z22, i.e. R22 − a (Fig. A.11-b). The resulting line is expressed as
Re{ζ1} = (R22−a), which can be converted to the general circle/line formulation as ζ1+ζ̄1 = 2(R22−a)
(i.e. A = 0, B = 1 and C = −2(R22 − a)).

2. The second transformation is an inversion ζ2 = 1/ζ1. Substitution of the definition of the new trans-
formation into result of step 1 reads as 1/ζ2 +1/ζ̄2 = 2(R22−a), which can be expressed in the general
form of −2(R22 − a)ζ2ζ̄2 + ζ2 + ζ̄2 = 0(i.e. A = −2(R22 − a), B = 1 and C = 0). This is an equation
for a circle and hence this is a circle C(1/2(R22 − a), 1/2(R22 − a)) (Fig. A.11-c). It should be noted
that R22 − a has to be positive because the vertical line in Fig. A.11b must be in the RHP.

3. The third transformation is ζ3 = Z11 − Z12Z21ζ2. Similar to the first transformation, the third
transformation is a linear transformation (Fig. A.11-d). For this transformation the magnifying factor
is Z12Z21 and translation is Z11. Therefore, the circle will be expanded or contracted by factor of

and Z12Z21 and the radius becomes ro = |Z12Z21|
2(R22−a) and the centre of the circle will be translated to
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co = Z11 − Z12Z21

2(R22−a) . The latter shows that a region expressed as Rez2 ≥ −a is mapped to a region

inside a disc express as in (8).
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Figure A.11. The Mobius transformation has been split into three transformations: from (a) to (b) is a linear transfor-
mation (horizontal translation), from (b) to (c) is an inversion, and from (c) to (d) is another linear transformation with
expansion/contraction in addition to a translation.

Step 2:
Similar to Step 1, it is easy to show that the vertical line of Rez2 = b is transformed to a circle of (9).

In the following it is shown that the circle of (9) is enclosed by the circle of (9) and also the two circles
are tangent at the furthest point from the origin. Consequently, the area between the two vertical lines of
Rez2 = −a and Rez2 = b is transformed to a cresent as shown in Fig. A.12.
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Figure A.12. In analysis of the strip-like impedances the strip in the z2-plane (a) is mapped to a rotated crescent in the
Za1-plane (b).

In the following, it is proved that the circle corresponding to Rez2 = b is entirely inside the circle
corresponding to Rez2 = −a. The two circles of (8) and (9) resulted from expansions/contractions term
Z12Z21 followed by a translation by Z11 in the Za1-plane. Consequently, as depicted in Fig. A.13-a, an
extension of the line connecting the centres of these two circles (tatb) goes through the origin. Another
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conclusion is that the length of the line segment between the centres of the two circles, i.e., |tatb|, is identical
to the differences between to the radii of the two circles (i.e., |aro− bro|). Therefore, as shown in Fig. A.13-a,
the two circles must be tangent at their farthest points from the origin. Additionally, changing the bounds
on the real part of z2 will result in the circles shown in Fig. A.13-b. As the real value of z2 is allowed
to increase, the radius of the smaller circles decreases. Also, as the real value of z2 is allowed to decrease
further into the negative values, the radius of the larger circles increases (not shown in Fig. A.13-b).
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Figure A.13. The vertical lines in the z2-plane are mapped to circles in the Za1-plane. The vertical line at Re z2 = −a is
mapped to the larger circle in the Za1-plane while the vertical line at Re z2 = b is mapped to the smaller circle (a). As the real
value of z2 is allowed to increase (i.e., larger b), the radius of the smaller circle decreases while the circles still share the same
tangent point.

Step 3:
In this step of the proof, it is shown that the horizontal lines of Imz2 = c and Imz2 = −d are transformed

to circles of (10) and (11). Let us consider the horizontal line of Imz2 = c.
Similar to Step 1, the Mobius transformation (7) is split into three transformations, in which the first

and the third are linear transformations and the second transformation is an inversion. The line Imz2 = c is
expressed as z2 + z̄2 = 2cj and the definition of the first transformation ζ1 = z2 +Z22 is substituted to yield
the resulting line in ζ1-plane as ζ1− ζ̄1 = 2cj+ 2I22, where I22 = Im{Z22}. If it is assumed that I22 + c ≥ 0,
substituting the definition of the second transformation ζ2 = 1/ζ1 one can find the transformed the circle
in the ζ2 plane to be −(2c + 2I22)ζ2ζ̄2 + jζ2 − jζ̄2 = 0, which has the general circle/line formulation with
A = −(2c + 2I22), B = −j and C = 0. The equation in the ζ2-plane is C(1/(2c + 2I22),−j/(2c + 2I22)),
which is a circle below the origin but tangent to the real axis at the origin. The third transformation
ζ3 = Z11 − Z12Z21ζ2 bears a translation of Z11, mirrors the circle, expands the circle with expansion factor
of |Z12Z21| and finally rotates the circle around Z11 about the angle of Z12Z21. The resulting circle in the
Za1-plane is circle of (10).

As depicted in Fig. A.14 by increasing the imaginary level c in z2-plane makes the smaller circles in
Za1-plane, where all of the circles have a tangent point in common at Z11. The region corresponding the
region lower than the upper limit of Imz2 = c in the z2-plane is transformed to the region outside of the
disc expressed by (10) in the Za1-plane (see Fig. A.15).

Similar to the above mapping for Imz2 = c, it is easy to show that the mapping of the horizontal line of
Imz2 = −d is (11). The assumption of I22 + c ≥ 0 is also replaced by I22 − d ≤ 0.

Note that by increasing the limit on the imaginary part of the upper limit to infinity and decreasing the
lower limit to minus infinity, the mapped region in the Za1-plane becomes the entire plane due to the fact
that the radii of the circles decreases as the limit are going further from the real axis.

Combining the transformation of the four lines of Step 1, 2 and 3 the rectangle of Fig. 3-a in the z2 plane
is transformed to the portion of a crescent, where the two sides of the crescent are excluded from the region
as shown in Fig. 3-b expressed with the circles of (8)-(11) in the Za1 plane.

Theorem 2
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Figure A.14. The horizontal lines in the z2-plane are transformed into circles in the Za1-plane. As the horizontal line moves
up, the radius of the circles decreases. Yet, all of the circles are tangent at one point.

Proof. As explained in the proof of Theorem 1 the Mobius transformation (7) is split to three transforma-
tions. (1) a linear transformation of ζ1 = z2+Z22, (2) an inversion ζ2 = 1/ζ1, and (3) a linear transformation
ζ3 = Z11 − Z12Z21ζ2. Lines or circles are expressed in the formulation in the complex plane.

The border of the disc is C(M, 0) in the z2-plane and is expressed as z2z̄2 = M2 in the circle/line
formulation. From the first transformation of z2 = ζ1 − Z22, substitution of z2 is a shifted circle expressed
as ζ1ζ̄1− Z̄22ζ1−Z22ζ̄1 + |Z22|2−M2 = 0, which is a circle in the general expression with A = 1, B = −Z̄22

and C = |Z22|2 −M2. The second transformation is substituted as ζ1 = 1/ζ2. After simplification the
resulting shape is 1− Z̄22ζ̄2−Z22ζ2 + (|Z22|2−M2) ¯ζ2ζ2 = 0. Now, this shape can be either a circle or a line
depending whether |Z22| = M or not. If |Z22| 6= M the mapped shape in the ζ2-plane is a circle otherwise
it is a line. These two cases are considered separately below.

• If |Z22| 6= M , resulting shape is a circle C( M2

||Z22|2−M2| ,
Z22

|Z22|2−M2 ). The third transformation shift this

circle to another circle C( |Z12Z21|M2

||Z22|2−M2| ,
−Z22Z12Z21

|Z22|2−M2 +Z11) and the mapped region is inside this circle (see

Fig. A.16-b).

• If |Z22| = M , the result of the second transformation is a line 1 − Z̄22ζ̄2 − Z22ζ2 = 0. This line is
vertical only if the coefficient of ζ̄2 is zero, which requires that Z22 to have no imaginary part, and
otherwise the resulting region is a rotated and shifted half plane and hence there is no condition in
which guarantees the region to be entirely in the RHP. With the assumption of ImZ22 = 0, the mapped
region in ζ2-plane is a vertical line at ζ2 = 1/2R22. The third transformation shifts this vertical line
to R11 − Im{Z12Z21}/2R22. Therefore, the mapped region in the Za1-plane is the right hand side of
this vertical line (see Fig. A.16-c).

Theorem 4
27
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Figure A.15. The area between the two horizontal lines in the z2-plane are transformed into the hatched area in Za1-plane.
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Figure A.16. (a) a disc in the z2-plane inside C(M, 0), (b) if |Z22| 6= M , the mapped region is also a disc in the Za1-plane, (c)
if |Z22| = M , the mapped region is a shifted RHP.

Proof. Conditions (i) and (ii) are necessary conditions for ensuring positive realness of Z11 and Z22 in zero-
impedance conditions for ports 2 and 1, respectively. Let us consider the third condition of Theorem 4. As
shown in Fig. 1-b, the two-port network is connected to a passive impedance z2 and the input impedance
seen from the other port is assumed to be Za1. The two-port network will be absolutely stable if Za1 is
passive as well. The driving-point impedance Za1 is expressed based on the two-port network impedance
parameters Zij ’s and the termination impedance z2 as in (7).

The borderline of passivity in the z2 complex plane is a vertical line at −a. If ReZ22 ≥ a, and for similar
reason ReZ11 ≥ 0, Theorem 1 applies with b = ∞, c = ∞ and d = ∞. The passive region is mapped
to a disc inside of C(|Z12Z21|/(2(R22 − a)), Z11 − Z12Z21/(2(R22 − a))). The condition for passivity of the
driving-point impedance Za1 is that this disc with radius of ro and centre of co must be entirely in the RHP,
i.e., Reco − ro ≥ 0. Thus, the absolute stability becomes

2ReZ11ReZ22 − Re{Z12Z21} − |Z12Z21|
2(R22 − a)

≥ 0 (A.1)

This completes the proof.

28




