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| Thxs thesis focuses on the des1gn and &galys:s of J

. portable efficient algo:xthma ﬁor graph theoretxc:ptoblems.{f*."
°' 'ffThe aim 1s tb gain a deepcr 1nsight into the. nature of (J‘;f‘.' }
f;parallei computation' in ﬁhtticular*concerning the t:me andflfj :
,fhatdware resource tradeoffs as well as the po:tability of S

algprzthms among computer modtts* The class of problems fu;f;~f

| dveatigated are he follou1ng: t;nding the.lfj”;ﬂ/iﬁaabn
ff»_ anceztors for vertex pairs ofj;?jfrecfed tree; finding all

fundamentj1z 5f  §£of an uﬂdirected graph determinxng a.

2

dxrected spanning foreat of an undzrected graph° solv1ng the;;f-

two colorabil:ty, bri&be~connectiv1tg, bridgg-connectav*

augmentation and biconnectxvity problems fj[]1"und1rected

""i;graph. For the PRAM(P&rallelfi; ). lt 15 3h°'“ th‘t ‘11

ﬁthese algorxt”T f”C;ieV= th' 0‘19 ") time bound (lgn denotes;fj7j§

:  ‘7“’,nw and n is the size offthe vertex act), with the txrst jj{; 

two algorithms using n;n/lgnﬁ processors and the remaining

o *’algorithms Uking n;n/lg nﬁ PrOcessorx. With the exceptlon °ff;ﬁk.r

ffthe £irst two_algorxthmsz thes.;rgsults 3‘9 optimal 'ith

respect touthe’timq;processor product fot dense‘graphs._lt




o . than the ordxnary matrix mult1p11catzon algor1tn‘Lon the :
oo abstract model (d and d" are dxameters) This result’
»,,ffx\ ' _1mmed1ately 1mp11es that ell these algorzthms could achxeve v»/;e»f“

~the o(n) tlme bound on the MCN (Mesh -connected Networks)"ﬂﬂ
" the 0(1g*n) tzme bound on the PSN (Perfect/Shuffle[/. .
'Networks) Ccce (Cube connect/d/eycles), OTN (Orthogonal Tree -"

T

[;?Networks), orc ( gonal Tree Cycles), SIMD- CCC,KSIMD

SRR -con ected Computers) and the D(Ign) time bound on the
;/;;:;5%;e WRAM model using at'most ne processors. ‘The expec?ed time ;
,Wcomplex1ty of these algotxthms is also: dxacussed It is
_-showﬂ that w1th the exception of the last two problems, all
d“}the algorithms have expected tlme 0(1gn 1glgn) on: the PSN,.
ACCC OTN OTC SIMp- ~cce and the PRAM and have e{pected time
JO(Dglgn) on the WRAM It is also shown that for the . |
"fconventzonal sequentxal computer model, the b1connect1v1ty
l"_'and brxdge connect1v1ty elgorxthms could rd% in opt1me1 time

*;and spece., “ J ok
| e A genereI*pmogram scheme fot find1ng the brxdges of an' _‘
i 5}"7und1tected graph 1s also presented._lt 13 shown thet by | Ff:.‘ ‘

hbzfsubstztut1ng verzous speczf1c funct1ons tor the parameters )}

:'1€fif{biﬂ the ptogtam scheme e number of optxmal elgorithms for
Zﬁf:;apifznding the brxdges can be derzved. Included in these :fe ijf» :
B jthe known optimal sequential algorzthms end nev optxmal
7'“¥ﬁff?fpar£\1el)elgotzthms tor fznd&ng the brxdges.vﬂff?‘ i“fﬁ

i The possibilzty of breaching the U(lg’n) time bound is

| '7ffelso exem1ned. It 13 shown that for the recognition problems

.,lpof split grephe and permutation graphs, 0(lgn) determiniztic :f{f}f;[
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‘time algorithms can be deduced from good characteristic

theotems. o - S A ?‘f B }b»
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Chapter 1

INTRODUCTIOﬁ

1.1 Background

\The édvances in device tedhnology over' the past'aecade
have contributed an enormous ‘'increase in the speed of
compufation; However, as the speed of compufer devices-reach
their ultimate physical limitations, system performance in
the future can only be significantly imprbyed throﬁgh
parallefism. This has stimulated much of the research
activity on parallel tomputation during the past decadé.
Since the basic role of computers is to carry out
computation, the design of efficient algorithms for various
classes of problems is always desirable. A% avresulf,
research in thié area has been very active. In th@s thzsis,
our concern is graph theoretic problems.

Graph theoretic problems arise naturally in many
contexts. For instance, scheduling in operations,f?search,
analyzing networks and designiné potential circuit boafds in
electrical engineering, -designing reliable networks for
communication, identifying isomorphic structures in chemicél
compounds and investigating the fine structures of the gene,
etc., can all be cgyveniently formulated in terms of graphs.
Due to the widespread applicationg of graphs, theé?eéign of.
effiéient algorithms for graph theoretic problems isaq; both
theoretical and practical ihtErest. For the énnventiohal

sequential computer, ah enormous number of papers devoted to



efficieh; graph algorithms have been publiehed over the last
twenty.Qears. By contrast, there were ﬁew,such-algorithms
for parailel computer models until the‘mid—sexenties_when
several O(lg*n) time'® parallel algorithms fQ’*bhe
graph-connettivity and transitive closure problems appeared
Since then| the design of efficient algorithms for graph
theoret;; problems on parallel computer models has drawn a
great deal of interest. However, desplte these efforts, \\
efficienf parallel graph algorithms are still comparatively
rare. | ) | o

v . ) :

Of the parallel elgorithms published in the literature,
most arefdesigned for the SIMD shared memory model, allowing
read conf%ictswbuf not write cgnflic;s. Recently,‘the name |
.PRAM (Parellel RAM) was attached to this model[WYLL79,
BORO82] and has been widely accepted. Briefly speaking, the
PRAM has an unlimited number of seduentialvRAM's all of
which have access to a common memory of unlimited size (we
shall.call these sequential hAM's "processors’” henceforth),
Each processor is assigned a upique positive integer called
the processbr index. At any time, several processors may
read the same memory location at the same time, but at no
time may mbre than.one of them write into the same memory
location. The processors are synchronized and operafed under
the control of a'single instruction’stream propagated by.a
control unit. There is also an eneble/disable mask which can
be used to prevent a subset of the prdcesSors from.exeeﬁting

e G e - o e =

' 1gn stands for rlogzn1 and n is ghe size of the vertex set
of the'undirected graph.: ,



an instruction.

As opposed to the conventional sequential computer, one
haﬁ to account for the amount of hardware resources used
~when one designs aléorithms for a parallel computer model.
The hardware resoufces are measuted.in terms of‘%ﬁe number
of processors, or the size of the chip area if VLSI
technology ES employed. This makes thé situatibn more  °
.complicated, as-thege are now three resourcés - time, memory
space, hardware resource - for which one has to ac@bunt.
Partly because the relafionships between these three
resources are noflwell understood yet, and partly because of
memory space is éheap cbmparea to time and hardware
resources, researchers have alvays ignored the ' space
resources (unless they are unreasonably large) and
concentrated on minimizing the amount of time and hardware
‘resources (in particular, the nuﬁbgr of p;ocessors) used in
designiné~parallel algorithms;

From the description of PRAM, it is nqt difficult to
perceive that there is a close relatidnéhip between

‘bsequential RAﬁxaanpﬁAM. Let A bé an algorithm;desighed for

a problem P on the PRAM. If A takes T(n) time and P(n)
processors for an instance of P of size n, then gzven a
sequential RAM,}the sequential RAM can simulate execut1g4 of
algor1thm A on the PRAM by ‘executing every 1nstructlon/;f A.
“P(n) txmes. At the Ith repetit1on, the. sequent1al RAM u111
behave exactly lxke the ith processor of the PRAM when the

PRAM is execut1ng A. Clearly, it would take a total of-

-/



\ .

T(n)?b(ni time for the sequential RAM to complete the
execution of algor1thm A An Jmpllcat;on of this. observatlon

is that T(n)-P(n)ZL(n) where L(n) is the lower bpund for

¥

problems of size n on the sequentlal RAM. |

| Let G(V,E) be a graph where |V|=n.? There are two data
structures which have been widely used to }epresent G on the
sequent1al RAM. ‘These arekthe adgacency Llst and adjacency
matrix[TARJ72,EVEN79]. If an adjacency list is used to
represent G, then it is well-known that L(n)=(n+|E|).
However, adjacency l1sts seem to be 1nappropr1ate for SIMD .
computems A more appropr}ate data structure which has been %
w;dely used is-the adjacency matrxx, and throughout this
theSis,-we,shall'use adjacency matrix/to represent graphs on
parallel computers. For graph theoretic problems concerning:
n%P-trivial monotone’ graph prﬁpbrties, it has been:proven
that if the input graph is reptesented by an nxn‘adjacency
%?tr1x, then L(n)=0(n* ) [KIRK74, RIVEJG] Moreover; it is
-ea51ly shown that for non- tr1v1al graph theoretlc‘ problems,
Q(lgn) is a lower bound for T(n) on the PRAMISAyAJJ] As a
‘consequence, P(n)zrn’/lgn1 on the PRAM for ach1ev1ng\the
0(lgn) time bound for non-tr1v1al ‘graph theoret1c problemsxr

, 1f the adjacency matr1x is used as 1nput data structure. In

" other words,_1n des1gn1ng parallel graph algor1thms on. the o

—————--—————‘-----a—

3 All graph- theoretlc terms are defined in Sectlon 1. 3 -

A graph property is non-trivial if there are some graphs

possessing the property and some which-do not. A graph -

. property is monotone if vhenever' a graph G(V,E) possesses o
- the property, then any graph G' (V E") where E is. a subset of

. .E' also possesses the property ! P o

.4 .A graph theoretic problem is non- tr1v1al 1£ at least one

® of 1ts output is a_ funstion of all its 1nput. B



N o
PRAM, the 0(lgn) time and rn? /1gn1 processors bound is the
'best one <can possxbly ach1eve if adjacency matrlces are used

to represent graphs Up to the present, no one has managed '

to ach1eve the O(Ign) t1me bound on the PRAM. The best t1me\ ,

3 bound ach1eved S0 far is 0(lg n), and there is strong )

evidence that’ 0(lg n) may ‘be a lower bound for time on the -

PRAM, although no proof has been g1ven. Consequently, the )}‘

Jflmore prom131ng optzmal bounds one could ach1eve on the. PRAM
are the 0(1g*n) time and In /lg M processors bounds.p

Many of the graph theoretxc problems .do haVe parallel

i

' algor1thms ach1ev1ng the 0(lg‘n) t1me bound However, the “w;

number of processors used to ach1eve th1s t1me bound is |
’always greater than G&n’/lg n). The only exception 1s the

| fgraph-connectivxty problem and some of its egu;valent a‘//'
g problems. The flrst parallel algor1thm for th1s problem*

. runnang ‘on the 'PRAM ach1eved the O(lg\n) t1me bound thh n"

bprocessors[ARJQ]S REGB?B] The processor bound was then

‘1mproved to n* 1ndependently by leschberg[HIRSJS] and V‘l.sy

dSavage[SAVAJJI and to: O(|E|+nlgn) by . 'Ja [JAJAJS] (E 1s

" the edge set of. ‘the given graph) leschberg, Chandra and e

Sarwate[HIRSJQ] further 1mproved the processor bound to ’

‘.O(n’/lgn) and Wyllze 1mproved 1t to n+iE|[WYLL79] F1nally,;p"

p,bound to O(n’/lg n) (note that Ja Ja and Wyllxe s

‘7'algor1thms have T(N) P(H)Zﬂ(n‘ Thxs does not 91Ve rxse to e

»f a. contradlctzon to our prevxous dxscussxon, because they dxd S

Y

7 fﬁhnot use adjacency matrlces to represent graphs. Thelr zj*7"

PR

~

. : Ch1n, Lam. and Chen[CHIN81 CHINBZ] managed to 1mprove the j;fjfff



§

v‘f.'graph connect1v1ty problem) have been reporte

”fthese models[NASSB1 NATHB1, NATHBZ ATALBZ AWERB3] >

'~1iffthe follow1ng:*f1nd1ng the lowest common ancestors for
'b"svaertex palrg of a d1rected tree, f1ndzng all fundamentalj
Lf*ffcycles of an undrrected graph determ1n1ng a d;rected

"7fft3ﬂannxng forest of an undzrected grﬂpht solvrng the 13??

»results are not optimal for elther‘sparse'grapHS'or dense

graphS) Parallel algor1thms for other graph theoretic

' problems ‘which ach1eve the O(lg n 't me bound but w1th a

ot

greater number of prgcessors in- the p AM can be found 1n

o [ARJO?S ATALBZ CHAN?G GOLD7J JAJA?B J JA82 REGHJB SAVAJ?I
”,SAVA81] Others whrch run 1n a(n) time can_be found_rn
o [ARJO?S ECKS77a, ECKS]7b REGB78, SHIL81,V sua1a] |

The PRAM has rece1ved the most attentxon in the*past

decade but. has also received cr1t1c1sm fqr 1ts

¥

1mpract1cab1l1ty for construct1on by current technology. In

view of thls, some researchers began to des1gn graph

'**;algafffﬁas for other more restrxct1ve models Wh1ch can be

-y

Ja,' graph algor1thms .on these models 1s much more dszlcult thanf,

lon the PRAM up to the present tzme, only a few algorlthms

| Jffor some bas1c graph theoret1c problems (maxn y for the

'for a few of '

,pg

~e

*d1 2 Thesxs Outlxne and Ma:n Results

In th15 thesxs,,we focus on the desrgn and analysxs of \h”

“’35re££ic1ent algor1thms for a class of graph theoretxc problemsb.75§

L

lfon var1ous computer models. Th1s class of problems 1ncludes R




g

'complexlty analy51s 15 prov1ded

I T

| two-colorability,:bridges connectivity, bridge-connectivity

augmentatlon and b1connect1v1ty problems .of an und1rected

"»graph and recogn1z1ng spllts graphs and permutat1on graphs.

!

Th1s class of problems has drawn a great deal of 1nterest

"recently and efflcaent algorxthms for slov1ng them on

Varlous computer models have ‘been developed[ATALaz SAVA81
. : ,
REIF82a REIFBZb]

Tradltxonally, whenever an- algorlthm 15 presented, 1t
is desxgned w1th a pabt1cular model in mlnd and 1ts"w

/.

for that model only. There

_are at least two drawbacks thh th1s approach F1rstly, 1t

is d1ff1cult to compare two dlfferent algor1thms for the

ﬁf,same problem 1f they are’ de51gned for dszerent computer
_ models.‘Secondly, extra effort has to be made ‘in order to

‘~car¥y it over to other models. A typlcal example ig

’-_’erschberg s graph connect1v1ty algor1thm wh1ch was

| '?:(orthogonal Tree Cycles) by Nath Maheshwarl and
" f[;nhatt[NATH81 NATHBZ]. It would be conven1ent 1f the

""ﬂiﬁ]}moderate condrtxons._‘}ffﬁ¥;;;[g7jfi.>{¥

RN

’*or1ginally deszgngd for the PRAM. It was then 1mp1emented on”

;,the MCN (Mesh-connected Networks) by Nasslmz and -

Sahnx[NASSB1]~ on the PSN (Perfect Shuffle Networks) by

vV-Schwartz[SCHWBO], on the WRAM by Sh1loach and ‘
p~V18hk1n[SHIL823 v15382]; and f1nally on the PSN (Perfect T,
| ’“»Sthfle Networks), OTN (Orthogonal Tree Networks) and QTC

‘ ”r‘ffcomplexxty analys1s of an algorlthm °°“1d be qhven 1" SUCh a

“57¥;W3Y that 1t would be valxd for any model satisfying certaln




In this thesis, we shall design ¢£fi¢ient algorithms
which a§é~portable in the sense that they can run
';efficiently'on many computer~models..1n partfcﬁlar; they run .

on an abstract model, called MMM vhich 1ncludes a large
class of paral&él computer models as spec1al cases. "

In the next sect1on, def1n1t1ons are prov1ded for terms

and notat1ons to be used '. subsequent chapters.
In Chapter 2,,eff1c1ent algorithms are‘presented for
" the class of graph-theoretic ptoblems‘liSted above except
,theﬂlast-two problems on the PRAM. All these algorithms
. “achieve the Oflg;n) time bbund mith therfirst}two
Valgorlthms using nrn/lgn1 processors and. the rema1n1ng
| algor1thms using nrn/lg Ny processors. In all cases, our
*algorxthms are better than the best prev1ously known
algor1thms and in most cases reduce the number of processors
1used-by a\factor of nlgn Moreover, our algor1thms are
~;opt1malpw1th respect to the time- processor product for dense
g graphs with the except1on of the flrst two algorithms.
In Chapter 3; it is. shown how the algor1thms presented
, 'an Chapter 2 could be 1mplemented efflcxently on. other more
'.g{restrxct1ve SIMD models. Thls is accomp11shed by f;rst
| Epropos1ng an abstract model, called MHM whxch sat15f1es

"1dcerte1n moderate constra1nts and then 1mplement1ng the

z’fllalgor1thms on\the MWW.YIt 15 shown that most of these

"°{§falgor1chms ach1eve the 0(19 n’ bzme b°““d wlth In /1gn1

'h°5ff,processors on the BRAM and many r38t51Ct1V° SI”D m°d°15’ thef |

o 9’;.:"ff_*".,;fD(lgn) tlme bound w1th n processors on the W (‘ str""gerﬁ,




PRAM), and the 0(n) time bound with n? processors on the
.Mesh connected Networks. = S |

In Chapter 4, the 1mp1ementat1on of these algorlthms on
the conventlonal sequent1al model 1s explored It is shown
that the b1connect1v1ty algor1thm can be 1mp1emented on the
sequentxal computer rn opt1mal time and . space. Moreover, the ‘
*algor1thm is shown to be a generallzatlon of the best B
prev1ously known sequential algor1thm~£or the-same problem.‘
»The brzdge connect1v1ty algor1thm is also general1zed to a
general program scheme for f1nd1ng ‘the brxdges in’ an
‘undzrected graph Thls general program scheme includes most .
, of the best prev1ously known sequent1al algor1thms as
spec1al cases In add1t1on to that, nev parallel algor1thms,
1nc1ud1ng the one presented in Chapter 2 can be deduced
from.lt. U | - | |
In Chapter 5 the poSsibilityvot“bre;ching the>0€1g’n)
t1me bound 15 exam1ned Based Zn some of the recent re5u1ts‘
'due to Rexf[REIFBZa REIF82b], it is shown that ‘given any |
"probablllty error €, 0<e<1, our algor1thms could run 1n .

O(Igp),t1me u51ng IEIn’lgn processors op the PRAM w1th

{probabzllty less than 3 that an erro?‘&ili dccur. It 1s also'

*1"‘.

"f‘{:shoun that the expected t1me complexrtx ﬁonpibst of the o

lffalgorithms descrxbed in. Chapter 3 1s 0(lgn lglgn) on. the

. PSN, ccc, o'm o:rc smn ccc and pmu and 13 O(Iglgn) on thej
'*rWRAM The recognxtlon problems for splxt graphs and o

’[Qpipermutat1on graphs are also studxed and 0(lgn) determ1n15t1c

prt1me algorxthms are presented. -rp}f"“'awhh
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Finally, in Chapter 6, our results. are summarized and

some open problems for further research are listed.

1.3 Deiinitions and Notations ?

A graph G(V E) con51sts of a £1n1te/non~empty set’ V of
lvertxces and a set E of pa1rs of vertrces called edges |
Without loss of generallty, we. assume v={1,2,...,n}
throughout this thesxs I1f the edges are unordered palrs,
then G is und:rected' otherw1se G is- ‘directed. G(V E) is
sparse if |E|=0(n) and is dense if |E|=0(n )., For undlrected'
‘graphs, an edge jo1n1ng the vertlces a and b is represented
by (a,b);-Furthernore, (a,b) and (b,a) are consxdered as

| identicai eiements.*For'directed graphs;'an-edge}fron_uertex
a to vertex bis represented by <a,b>. a»isdcaiied'the tai; .
B 'kvof the edge whlle b is called the head of the edge. The
underlylng graph of a d1rected graph G' (V E ) is an
| und1rected graph G(V E) such that (u, v)eE S <u,w> br
S uksE'. A graph G' (V' E ) is, a subgraph of a graph Glv, E) '
| ':’1f V' is a subset of V and E'fxs a subset of E..Let V' be a
e ctflsubset of V. The graph G’(V' V'xV AE) is called a subgraph
| ',h;of Glv, E) 1nduced by V' (A stands for set 1nter$ectxon |
:‘here). An . ad;acency natrix M of an und1rected (resp. -
ifpﬁ'dxrected) graph G(V E) is a nxn Boolean matrrx such that

| ﬂfdi;M[u,vl-l 1ff (u, v)eE (resp. <u v>¢E)

Let P-{uo,ua,...,ug} be a sequendb of vertlces of an egftcif

undxrected graph G(V E) P 1s calIed a walk 1n G 1£

(Uo,uu.1)¢E 0$I<k. Re' say that (u,,u‘.,) 15 an ng. on p,,':V»V;E~

B LT
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—

The lengthrof P is k. A path is a walk in"which u.tu, for

l"‘*- | r#] A cycle is a walk in wh1ch u,=u. andtno edge. 1n G f

'.'appears more than once. A s1np1e cycle is a path in whxch
Ui=Ux . Dtrected walks, dxrected peths, dlrected cycles and C
dxrected sxnple cycles are deflned in the s1m1lar way.

ﬁ;i Let G(V E) be an und1rected graph°‘1f for every two :

S .

vert1ces\u v in V, there 1% a path 1n G Joxnxng u and v,

.fthen G is- connected Each connected max1mal subgraph of G is

‘f”called a connected co-ponent of G. The dxeneter of G is theh )

| ,length of the longest m1n1ma1 path betueen all vertex palrs
- 1f G is connected and is the- longest dxameter of all the
_connected components of/G/Tf/& 1s'd1sconnected' Dlameters

"‘s can be def1ned in a s1m11ar way Let v

for dercted gr"

I ///// G 1ﬂc1dent on v. If the degree of v 1s 0 th v 1s called

" ; an 1solited vertex, 1f the dégree of v ‘s 1, then v 1s ;e‘
called a pendent. If all vert1ces~ n G have the same degree,

mw’:thgn G is a reguler graph//

A tree 15 a connected undxrected graph w1gi:no cycl

7¢1n 1t Let T(V',E') be a drrected graph T 15 sa1d to have a trgzﬂﬂ

sireachable from r

?-treot r, 1f PeV' and every vertex VeV';,

aj¢v1e a dzrected path.}lf the underlyxng und1rected graph of T

[A*‘jzs a tree, then T is’s dxrected tree. If moreover, the

fff]jfunderlyxng graph of T 1s a subgraph of lgoonnected

hf?l;‘?’ﬁniﬁfﬂlrlh in G. A d;rected torelt 1s a qraph "h°5°

"”“tf;i*connected components ere dlrected trees..If T 15 a dlfeCted

be a tef/;n/ei The degree of v 15 the number of edges 1n'g

‘.-.;,/-_*’,. ; -

'lffifund1rected greph G(V E) such that V'-V, then T 1s a d1rected “!)77



: ' P o
forest such- that each dxrected tree in T 1s/a/directed

” -

spannxng tree of a connected component/of an undlrected -
/ B

— e

vice versa, then T is called a'fdrected spanni

»*fdrest«of G. If the edges of
"resu1t1ng graphff =3 ‘ nverted'spanning forest of Gr

"ng treesi/fnverted trees, inverted forests

edge in a d1rected (resp 1nverted) tree ‘a is the father'
b and b is a son of a. Let ¢, d be an ;'“ rtices in a.
| dlrected (resp.,lnverted) tree T c 1s;an ancestor of d 1f
. C—d or there exists a dlrected path fr m c to d (resp fromb
d to c) 1n T. c 1s a proper ancester of d 1£ c is an- “_ -
ancestor of d and cad d 15 a descendant of c if ¢ is an’ |
| ;1h3 ancestor of d | | £ .; | -
1}"? .i;fa~". Thp/ughout this. the51s,‘we denote the undirectedlvpath
o from vertex a to vertex b in a (d1rected) tree by [a**b],'
/and by [a**b) 1f vertex b 1s to be excluded If the path .
- cons1sts of Jt 1east one edge, then the '*'/{s removed from ,".
| the notat1on Moreover, we denote usv 1ff u 1s an ancestor b _-,';
of v 1n the tree and ufv 1ff u 1s a proper ancestor of V. ;f: f};!,f;
Let T(V E ) be an 1nverted (dlrected) spanning forest of anld -
und1rected graph G(V E) The graph G-T s an undlrected |

”f7f g;aﬁh whose vertex set 15 V and whose “dge Set s

’thE-{(u,v)”<v,u>eE'} Any edge in G-T 1s called a non—tree
' edge..ﬂp 51mp11£y our notat1on, we shall use E E' to denote

the edge set of G-T Let G (V,,E,) and Gz(Vz,Ez) be two fj;eg!;;;l:;;

le;graphs'i61UG; 1s a graph whose verte7 set 1s V UV; and the



P
I3

e

of v 15 deflned to be k Postorder number can be deflned

"-Ag;51m11arly. ‘,3ﬁ77ffffﬁq

if?;such that w 1s a common ancestor of u and*v Vnd any other ;“rif

13

S . .
. edge set’is EWE.. GiAG: is a graph whose vertex set is

V1AV, and the edge set is E, AEz (A stands for set e

1ntersectlon here) G HG; is a graph whose v/rtex set 1s "7
V UVz and :hie edge set con51sts of edges that 5re e1ther 1n’
7 or Ez, but nat in ‘both-

An 1nverted (dlrected) tree T is called an ordered tree T

jzrf the sons of eVery vertex in T are ordered If v is the

Ith son of a vertex 1n T then the rank of v’ is i.

The preorder and postorder traversals of an. 1nverted

N \) . . . -(

(dlrected) tree are deflned as follow5°'

Preorder traversal R P

»

91) visit the root’ of the tree.h . _-f S

(11) Traverse each subtree of the root in preorder Aan__
.order of rank;l, . 'j,te T e %* -
'.'Poétbrdér{t:g§;§;§1,. i o
(1) T i:ave.rse eéc‘hv’l subtree of the root i ;":.PbstQ'rd_erx,‘ in
! . order of rank, "4.41 o ”,)}'dj h»‘,v-lkgl =

(11) V151t the root of the tree. -fh: ,'”“” ";;'1' S +;

'Note that there 1s no 1nordéw traversal for trees as there:: auufugﬁ%

is no obv1ous place to 1nsert a root among 1ts descendants.-

Al

'If 1n the course of traver51ng an ordered tree 1n preorder,,‘*

~vertex v 1s the kth vertex vlsrted, then the preorder number

"f 9’?.. 2

Let T(V‘ E ) be a d1rected tree, and u,VeV The lowest o
' A e

'common ancestor LCA(U v) of u and v 1n T'rsqthe vertex WeV'
ib N
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common ancestor of u andlv in T is also an ancestor of w in
T: If T is a spanning tree of a connected, undirected graph
G, let (u,v) be an edge in G-T, then the cycle in G
consisting of the paths [u**LCA(u,v)], [Lca(u,v)*»v] and the
edge (v,u) is a fundamental cycle in G. An undirected graph
G(V?E) is 2-colorable (bipartite) if V can be partitioned
into V, and V, such that no edge in G has both of its
end—vgrtices in V, or V,. For ecf, e is a bridge in G iff e
is not on any cycle in G. Let B be the set of bridges in G;
then every connected compoﬁent of the graph G'(V,E-B) is a
bridge-connected component of G. The bridge-connectivity
augment?fion pfoblem is the problem of adding the minimum
numbefﬁof edges to a graph so as to bridge-connect the
graph. For aeV, if there exist u,veV such that u, v, a are
all distinct and tha{févery path connecting u and v in G
passes through a, then & is called 4 separation vertex of G.
A gréph is biconnected if it contains no separation vertex.
Every maximal biconnected subgraph of‘G is called a
biconﬁected component of G. .

Let G(V,E) be an undirected graph. G is independant if
E=@ and G is complete if E=VxV. An’ irected graph G(V;E)
is.a split graph iff V can be pa!!gi?ined into two disjoint
subsets V,,V: such that the graph G1(V,,E1) induced by V, is
indebendeht and the graph G:(V,,E;) induced by V., is |
complete. We shall call {G,(V,,E\),G2(V;,E2)} a split of G.

A élique in‘G is a maximal complete subgraph of G.
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Let p=[P(1),P(2),P(3),...,P(n)] be a permutation of V.
Let E(P5={(i,j)|P"(i)<P"(j) and i>j or P~ (i)>P ' (j) and
j<j, i,jeV}, where P~ '(j) is the element in V which P maps
into i. The permutation graph of P is the undirectéd graph

3

G(V.E(P)). A directed graph G'(V,E') is transitive if (i,J)

P

and (j,K)eE' » (i k)eE'.



Chapter 2
EFFICIENT *ALGORITHMS FOR THE PRAM
2.1 Introduction and Previous Results
In this chapter, we shall present efficient algorithms

for the class of graph theoretic problems listed in the

Introduction except the recognition problems of split g;dphg\\\

and permutation graphs which will be deal with in Chapter 5.
The computer model we use is the widely accepted
PRAM[WYLL?S]. In subseguent chapters, we will consider the
implementation. of .these algorithms on other computer models.
The class of problems we investigaté in this chapfer
has been,studied by various people before. The best known
results for the %RAM were due to Savage and Ja'Ja'[SAVA81].

They désigned parallel algorithms for these problems and

" achieved an 0(lg?n) time bound with the processor-time

products being O(n*lg*n) for the directed spanning tree
problem and being 0(n*) or O(n*(1lgn)™) where‘m23 for the
remaini?g problems. In this chapter, the algorithm we
present fpr the lowest common ancestors problem takes
0(;q/nK1.ign+n/K) time with nK(K>0) processors, where q is
thetnﬁmber of vertex pairs whose lowest common ancestors are
“to be found. The algorithm for the fundamental cycles |
pfoblem takes O(|E|/nKq.1lgn+n/K+1g*n) fime withinK(K>0)
processors, where E is the edge set of the undirected graph.
The algorithms for the directed spanning forest, the

2-colorability, the bridge-connectivity, the

16
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bridge-connectivity augmentation and the biéonnectivity
problems all take 0(n/K+1g?n) time witﬁ nK(K>0)- processors.
In particular, an 0{(lg’n) time bound can be achieved with
K=(n/lgny for the first two problems and,with K=rn/lg’nq for
the remaining problems. Since the_processbrwtime prodﬁcts of
" our algorithms are at most O(n*lgn),for 0<Kscn/lg?ny, our
algorithms are better than SaVage and Ja'da's' in all cases
and in most cases use a factor of nlgn fswér'proceésors.
Egcept for the algorithms for the first two problems, the
précessor—time broducts of our algorithms are 0(n?), which
is optimal for dense graphs. |

Besides.béing more efficient, our algorithms also
assume bgunded péralleliﬁm as épposed to the unbounded
parallelism adopted by Savage, Ja'Ja' and many others.
Bounded parallelism is more realistic as it can cope with
the situation where the qpmber of processors available is
smaller than the input size.

Throughout this chapter, we assume that the input to
each algorithmsﬁisvan adjacéncy matrix, ahd the arithmetic
operations, +, - as well as the boolean operations each
takes one time unit to execute..

2.2 Preliminary Results
2.2.1 Two Useful Lemmas - ' ;g
» In'this-section; ve list two lemmas which will be ‘used

frequently in analyzing the time And prgceséor'compiexities
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in this chapter.

Lemma 2.1: Given n elements {ao,*@:i, ... , @an-1}, let f be a
function to be applied to every element. If computing f(a,)
takes t time units and K(21) processors are provided, then
f(a,), 0%isn-1, can be computed in rn/K,-t parallel time

units.

Lemma 2.2:[CHIN81,CHINB2] Given n elements {ao, 814 eoe
a,-1} and K processors, A(n)=ao%a *az*...*an- can be

computed in T parallel time units where * is any associative

W

binary operator and
T = n/Kq-1 + 1gK if Ln/24>K
= 1gn o if Ln/24sK

©

2.2.2 Finding All Paths from the Vertices to the Roots in an

:Invérted Forest

in'this~se¢tion, we present a method for qonstrdqfihg
an array, denoted by F*, in which each‘uow‘contains a path
from a veftéx to a fobt in an inverted forest. The array |
willibe very useful in the deéigﬁ of parallel algorithms
vbresented in the follpﬁing-sections. . . ‘{

Let T(V',E') be éﬁ inverted forest with IV'I=n.]Wi£hohti‘
i léss pf'genérality, we assumeIV'={1,2,..2;n}f Let {T;} b?g.
_the ‘set of all inverted trees in T and {r;} be phe set of

~all their roots.
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Definition : f s VY - v iska function such tha%
F(/) = the father of the vertex | in ijor\ll{ﬁ,};
F(r) = r, ¥refr,}. | |
The funct1on F can be represented by a dlrected graph F ‘
which can be constructed from T by addlng a self-loop at
each root n; in 7. “ R
From‘the functionhE( we define F*,kzo; as foilows:
Definition : F*: V',%* V', k20,aié a fungtion such that
FeU)=i, VieV'; e
F* (I)=F(F""(I)) VieV' k>0,
If i isa ‘vertex in T,, F*(i) is the kth ancestor of I in T,
or.ry. -
De£1n1txon :{ For each ieV', if | is in T,, for some. Js ‘then

depth(l) =m1n{k|F*(l)-P, and OSRSn-1}

| The concepts’ F* (i) k20, and depthi i), 1sisn, were‘firSt-'

1ntroduced by Savage in ‘[SAVA77], It was shown that g1Ven |
: the funct1on F of a d1rected forest T (T could be a d1rected
‘Yiforest or its 1nverted forest), F* (1), 0sksn-1, and
}:kdepth(l) 1SiSn, can be computed 1n 0(lgn) txme w1th n*
processors and nIn/lgnﬁ ptocessors respect1ve1y..1n the
following, we will show in Theorem 2.3 that F“(i), OSksn--
f1sisn, can 1ndeed be computed in. 0(lgn) t1me.w1th nIn/lgnﬂ

,»processors or in 0(lg1n) t1me wlth nrn/lg‘nq processors and

~ then depth(l) in. O(lgn) add1t1onal t1me wzth n processors.,fff:o'

'~Thooioiv2.3:(i)tGiQen{tho;tonotion?f;ofpafditéotedgotpahfxfuJ
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..inverted fotest T, F*(i),jsiSn,Osksn-1 can be computed in
0(n/K+1gn) timerwith nx(xbo)‘proceSSorg on a PRAM, (11)
.Given F*ti), 1sfsn, 0sksn-1, and nK(K>0) processors,

._ depth(i),1sisn can be computed in O(Ig(n/K)) t1met1f‘Kéi or
| in 0(;1/K1 Ign) time if O<k<1 on a PRAM

}
Proof: To_compute F*, for all 0<ksn-1, we proceed in two

steps: ’
1. for f: 157<n pardo F°(/): =i' F'(I)'=F(I) dopar,
2. for t:=0 to 1lg(n-1)-1 do
for s:1$s8s2%, j:1<i<n pardo
' F"""(i) t= F3®*t(p* (i))

dopar,
1f nK processors are given, it is clear that step 1 can be

computed in 0(;1/K1) tlme(Lemma 2. 1) Step 2 can be computed

ins zt0£n-s)-1 (Iz /K'|)
= lgke Zif(i 0 (12'/Ky)
< 1gK + 1g(n—1)-lgx + 1/K Zidsgi) 0 2°

=0(n/K+lgn) time un1ts

. Once F*(i) 1</sn, 0sksn=1, are computed depth(i) 1<js<n, can

| = be found by performzng a binary search on the ordered

v_sequence Fe(]),F* (I),.....,F""(I), for each i, search1ng

for the’ left- most occurrence of rj u51ng F""(I)(sr,) as the

'7*m‘key. Th1s takes 2 total of 0(;1/K1 lgn) t1me units if 0<K<1. m>
j*:_E’or KZl, the search 15 performed in: the followxng way. | |

:-d1V1de the sequence into ;n/Kq segments, ass1gn one

'f'processor to each segment and perform simultaneously a 3

“—j1b1nary search to search for the 1eft-most occurrence of r,-."

'";;}1n each segment After th1s step, every processor compares _f'-d'

/

“hfii‘ Due to the 11m1tat1on of our character set, he must use IQQ '

to represent lg in. superscrxpts and subscr1pts.
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the element 1t finds with the precedlng and succeed1ng
elements in the sequence. There is exactly one processor
whxch does not have all the three elements distinct or . .
identical and th1s processor locates the left-most
occurrence of r; in the sequence. Thls takes a total of
0(lg;n/K1) t1me units. ® |

| The actual computat1ons of F“(i) 1sf5n OSksn- , and

_dépth(l) 1Sf5n, are performed in an array F* in which

F* [I k] contains F¥(f). After the computatlons are f1n1shed
-each row of F* is rxght shifted 80 that all the P, S except
the left-most one are el:mlnated As a consequence, the |
r1ght-most column of the array contalns only the roots from
»{r,}. Furthermore, for each vertex i, all occurrences of |
*appﬁhr only"’ 1n column (n—1) depth(i) For each row i, a.
number, n+i, actlng as an undeflned value, 1is 1nserted 1nto
the first (n-1) ~-depth{( i) entrles. These adjustments are done
.,for conven1ence and not out of necess1ty and they take

O(n/K) time w1th nK(K>0) processors(Lemma 2 1) The adjusted
| array, F’, of an inverted tree 1s deplcted 1n Flgure 2.1, 'f

;Note that the ith row in P* conta1ns the path from vertex f

to a”root rn T.

E:’2 3 Construct:nq‘a Dxrected Spannxngvrorest in an Undxrected ;

Graph s
In thas sectlon, we present an ef£1c1ent parallel

;jhyalgorlthm for constructlng a\dxrected spann1ng forest 1n an.

”5hund1rected graph G(V E) In v1ew of the fact that 1t*15 the 'h\ ’,
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r'i_rthese 1-tree loop w111 be 1nc1uded in the undxrected -'

© 23

inverted spanning forest of G which is useful in the design
of other parallel algorithms in the following sections, the
algorithm presented below actually constructs an inverted
spann1ng forest. Nevertheless, convertxng an 1nverted
spannzng forest into a d1rected spann1ng forest is
straightforward. This algorithm will serve as the backbone
of the other algorithms preSented‘in the following'sections.
"It takes 0(n/K+1g?n) time if nK(Kzl),processors’are
available and could achieve the 0{(1g%n) time bound nsing the
optimal‘number of processors. The,previous best result takes
h‘ proCessors to achieve the 0{(1g’n) time bouhd[ShVAJ?]

This algor1thm 1s based on ‘the algor1thm for f1nd1ng an
und1rected Spann1ng forest presented in {CHINBZ] and the
-array F’ presented in the last sectlon. The latter is used
:‘to assxgn a d1rect1on to each edge in the undlrected
spanning forest generated by the former. |

We flrst give a general descr1pt1on for the strategy
used in our algor1thm. In the course of runn;ng the
1f lgorzthm for fzndxng an und1rected spannlng forest[CHINSZ]

'a number of 71- tree-loops [HIRS?Q]L are generated. Each of
,E these. 1 tree loop is a- dlrected graph whose vertlces are
supervert1ces generated durlng the prev1ous 1terat10n (a

supervertex 1s a vertex in G or a 1 tree loop) The edges of

¢ we assume the reader 1s fam1l1ar-w1th the undlrected :

. Spanning: forest ‘alg orithm, For those who are not, we refer
them to reference 'CHINB2). ' T
T A 1-tree-loop is'a dxrected graph 1n whxch every vertex ffg
has outdegree 1 and in. whxch there ‘is exactly one cycle and
',‘the length of the cycle 1s 2.‘ ER T , L

e
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" spanning forest and all these edges are directed edges whose
directions are ignored by the algorithm in [CHINB82]. If the
only loop in a I;tree-loop is destroyed by eliminating,thé
out-going edge from the smallest-numbered-vertex, the
resulting graph is an inverted tree. As a reshlt, when the =
ioops of all the 1-tree-loops are destroyed in thisgyay, the
resulting graph (built by embedding the modified (acyclic)
1-tree—loops created during one iteration'into the modified
(acyclic) 1-tree-loops created during the following

iteration) may welJ be an inverted spanning forest. B

Unfortunately, this is not the case rn{generaifhecause some

vertices may result in having"two fathers. This situation is
depicted.in Figure 2.2, where a directed edge <a,b> is
selected during iteration j+1 to connect two supervertices

S, and S, created during iteration Jj. The two graphs

—

v » | g
However, since a is not the root r, of S, @ will have two

resulting from the two supervertices are inverted trees.

fathers after S,  and S, have.been included int%ra;;ingle
.supergertex. Therefore, the graph S{USz is-qﬁg/;; inverted,
tree, by‘definition, unless the directions of all the‘edges‘
:on the path from a to r, ate reversed The same situation
"occurs in S :US; when the directed edge <c,d> is selected to
connect Sz and S;. To overcome th1s dlfflculty,'we have to f
‘vreverse the d1rectzons of all edges on -the path from a to r,'
and those on the path from C to. p,; The array F*, descr1bed

,‘1n Sectlon 2, contalns the path from . any vertex to a root 1n

“-an 1nverted forest T hence we can generate the array F*"

L]
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- : | e
| o The dlrectlon of every edge
4 ‘on this path Js to be reversed

v

: to form an 1nver'ed tree



- covering both §, and S,. By retrieving the ath row and the
cth row of F’, we can identify the set of all edges whose

directions are to be reversed in S, and S.; respectively.

Our algorithm runs in two stages.

Algorithm DSF :
Stage 1: (* The first stage is basxcally a modified version
of the algorithm for finding aa.'undirected spanning forest.
We refer the reader to reference [CHIN82] for the details.*)
Execute the gorlthm for f1nd1ng an undirected spap
tree; during each 1terat1on J. 15j<1lgn, record the jfollow]
1nfo;matlon , . -
.~ a. Convert the forest of all 1-tree-loops_
durlng this iteration into a fore inverted trees
by eliminating the edge fr
smallest- -numberkd-v of each T-tree- loop and
store the f in a vector F;. (¥Note: This vector
the function F defined in Section 2.%) -
—Record the 'actual' edges in G establishing the
connection specified in F;. (* Note: The edges
recorded in F;, are pseudo edges which connect
'supervertices'. They do not exist in G. However, for
each pseudo edge, there exlsts a correspondlng actual
edge in G.*) —_
c. The vector D[1 n] generated during this 1teratlon‘
is stored as D;. (* Note: D;[v] is the supervertex
containing vertex v when iteration j is completed.*)

Stage 2:

1. Generate F3's from F; 1<J<lgn

2, (% Adjust the d1rectlons of the edges, starting from
those recorded during iteration lgn, gradually -down to

_ those recorded during 1terat1on 1. *)

'l

R':={veV|D,gnlvl=v}; ‘ |
(% Note: In the followlng for -lobp, R' contains the tails
of those actual edges in G which connect ‘two supervertlces
in the-inverted trees generated dur1ng iteration j, where
" j<islgn. It'includes all those vertices which have two or
‘more fathers in the’ d1rected/graph formed upon the inverted
trees *). : .
- . for. J--lgn downto 1 do
i - ‘begin )
S i) For every r eR' roe A .
o © . reverse the dlrectlon of every pseudo ~edge lying.
.Y - on the path from the supervertex D,[r'] to the

‘root of the inverted tree, 1n F,; conta1n1ng
& : ¢ . '
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ii) Oyrput all the 'actual' edges in G correspondlng to
he pseudo edges 1in Fi;:

1) R'=R'U{veV|v is the tail of an 'actual’ edge

: " output in step ii)}

end; =

. A complete example is given in Figure 2.3 and a

. \ |
detailed implementation using the method described above 1is
given in -the Appendix.

B 3

Theorem 2.4: Algorithm ﬁEF correctly.generates an inverted
spanning-forest for an undirected graph. °
Proof: (Backward induction) In Stageil, an invertedlforest
F, is correttly generated during each iteration
I 1<j<lgn[CHIN82] In Stage 2, supp051ng that after
'proce551ng F, ,j€i<lgn, an inverted forest F| is created
Clearly, F' and F, must have the same vertex sét V. When
Wprocess1ng Fioq, it should be clear that there exists a one
" to one correspondence between the vertlces in. V; and the
.inverted trees in F;_,. This 1mp11es that no two 1nstances
of r' in R' will belong to the same invertedltrée.ln F;-,.
)As afresult, after;Stép 2 i), each lnverted tree in F;_, is
effectively modified so as to root at the supervertex
. Dy et ). These‘modified inverted trees are then embedded
'1nto the 1nverted forest F in: Step 2 ii), the resultlng
‘directed graph F,-,hls clearly an 1nverted forest. But
”F,9n=F,9n is an 1nverted fprest 1n1t1ally, therefore by

v ) 4
y 1nductlon, F' must be an 1nverted forest and hence an

[

-rinverted spannlng forest for G n o f‘. ' __', ,,.;t

o - N
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Figure £ 3 (i) G(V,E)

Figure 2.3(i) A potential inverted spanning tree of G.

—— a directed edgé selected during the first iteration;
—— a directed edge selected during the second iteration;
—»»> g directed edge selected durmg the third iteration.

s SRR
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Figure 2.3(iii) An inverted spanning tree of G.
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Theorem 2.5: Finding an inverted spanning forest takes
O(n/K4lg’n) time with nK (K21) processors on a PRAM.
Proof: Stage 1 takes O(n/K+lg’n) time with nK (K1)
processors[CHIN82]. Since the total number of edges in the
'inverted forests is at most B

ndnLn/21-|J<2n
the creation of F;j, 15jslgn, in Step 1 of Stage 2 cen be
done in Of n/K+lgn) time with NK(K>0) processors (Theorem

2.3). Steps 2 ii) and iii) each takes 0(1) time. for each

iteration. Since the size of F‘,1SJS1gn, is e
/2 'yxpn/20 1, Step 2 i) requires
Zyey “—n/2j 4 2/NK4
< lgn + Zy¢Yrn/2'-'42*/nK
= 0(n/K+1gn) time for lgn iterations.
Hence the theorem.®
Note that the processor-time product is 0(n*), when

1SK$n/1g®ny, the algorithm is thus optimal for dense

graphs.

2.4 Finding the Lowest Common Ancestors of q Vertex Pairs in
a Directed Tree
As with the,invertedispanning fofest algorithm, the
lowest common ancestor algorithm presented in this section
plays a key role in the development of pafallgl algorithms
for bther graph theoretic éroblems to be‘discugged in the
following sections. The previous best algorithm was due to

Savage and Ja'Ja'[SAVA81]. Their algorithm first computes
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the transitive closureYof the adjacency matrix of the
directed tree, and then uses the transitive closure to
determine the set of all common ancestors of every vertex
pair. The min$ operation is then appliéd over each set of
common‘ancestors to determine the lowggtvcommon ancestors
for all the vertex pairs. Since there are at worst 0(n?)
vertex pairs and each takes n/2 processors to evaluate the
ming operator, this algorithm feQUirgS 0(n?) processors to
achieve the 0(1g?n) time bound.

In this section, we shéll show that we can cqmbiﬁe the
array F° ‘described in Section 2.2.2 and the binary search
technigue to develope a hew algorighm for the {Qwest common
ancestor problem which takes at worst n? proégssbrs to
achieve the 0(lgn) time bound.

Let T(V',E') be a directed tree and V'={1,2,...,n}. Let
a and b be a pair of vertices and ¢ is their lowest common
ancestor; then’rbw a and row b of F* will have identical
contents between‘cglumn (n-1)-depthl{c] and column n-1,
inclusive, and will have different contehts in the other
columns. As a result, to deﬁermine C, we can perform-a
binary search on row a and row b simultaneously in the
following way: if the two entries being examined in row a
and row b (in the same column, of course) ére different, the
sear?h is continued on the right-half, otherwise it is
continued on the left-half. It takes 0(lgn) time‘units to

find c with one processor. In general, we have:
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Theorem 2.6: Given g vertex padirs, 1sgs<n?, finding the
lowest common ancestors for these vertex pairs takes
0(q/PKy.1gn+n/K) time on a PRAM if nK(K>0) processors are

available.
Proof: Construct;ng the array F° takest(n/K+lgn) time -
(Theorem 2.3) and finding the 16;;§E common ancestors of the
g vertex pairs takes rg/nK,.lgn time unitsTQif nk<qgsn?{Lemma '
2.1) or 1lgn+1 time unité{ if nK>g. Thus findéng the lowest
common ancestors of q(Iquni) vertex pairs, takes
0( rg/nK4.1gn*+n/K) time with NK(K>0) processors.®

A detailed description of this algorithm is given in
the Appendix (see Algorithm LCA). In particular, when K=n

and rn/lgn, the lowest common ancestors can be found in

0(1gn) and 0(lg?n) time respectively.

-

. ) ' :
2.5 Finding all Fundamental Cycles of an Undirected Grap

Without loss of generaiity; we assume that the
undirected graph G(V,E) is connected from this section
onwards, unless othefwise stated. A ) .

| It is known that a set of fundamental cyclesiof a
connected, undirectéd graph G(V,E) can be detérmined from a
spanning tree T(V,E') of G [REIN77]. Specifiéally, let
LCA(a,b). be the lowest common ancestor of a and b in T‘and
(a,b) is an:edge in G-T, theﬁ (a,b) together with the paths
'[b**LCACa,b)] and [LCA(a;b)#*al form a fundamental cycle. |

Baséd on:the*above”bbservatibn, we can easily find a ‘

‘set of fundamental cycles of G as £olloﬁs{

-
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First, an inverted spanning tree T of G is<foupd;ﬁu51og
the algorithm presented #n Section 2.3 which takes
0(n/K+1g*n) time with nK(K21) processors.‘Algorithm LCA (see
‘Appendix) is then called to determine the lowest common
ancestor for every pair of vertices (a,b) in G-T. The
algorzthm returns the ordered pair (LCA’ F*) and the vector
depth, where LCA‘[a,b] contains the lowest common ancestor
of (a,b). A vector P* is then created such that P*[v]
contains the value (n-1) depth[v] which is the column number;'
of v 1ngF'r Hence, for each (g,b) in G-T, the path from
oolumn P?[a],to_column P‘[LCA‘[a,b]]rin‘row a and the path
from column P*[b] to column P*[LCA*[a,b]] in row b of F* and
the edge (a,b) determine a fundamental cycle in b. | |
4' The correctness of the algorithm is easily verified.
Since the number of vertex pairs qélE[-|E'|;fthe.algorjthm'
obviously takes O(r|E|/nK5 lgn+n/K+lg’n)‘time with nK(k21)
processors. In partlcular, the 0(lg?ny t1me bound is |
vach1eved w1th K=n/1gn. Note that the output of the algorlghm‘
are stored in an 0(n?) compact data,structure, which
consists of the triple (P*, LCA’,F ). .

At thlS polnt, it is 1nterest1ng to note that the best 7
sequential algorithm for the fundamental.cycle problem has_»
time complexity O(n’)[REIN]J] Our aiéoritﬁm preSented-here
1mmed1ately 1mpl1es a sequentlal algorlthm hav1ng t1me
complex;tyAO(n’lgn) While our performance is better, we do
not intend to claim that 1t»;§ ah 1mprovement over the

prerious result. This is becausé the output data strdctures .
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of the: two sequential algorithms are substantially L
different However, for cases where the fundamental cycle
’algor1thm is us@ﬂ as an internal" routlne, our algorlthm will

be better as it requ1res less time and space.

2. 6 2-coloring an Undirected Graph <
No previous work was reported for this problem except
[JAJABZ] in which the O(1g*n) time and n? processors
complexities were mentloned However, the descrlptlon of/fge,
algorithm was not given. In this section, we shall. presept :
: o

an eff1c1ent algor1thm vhich achieves the O(lg n) time bound

using only nrn/lg*ny processors. We first prove a lemma.

Lemma 2{7:.An undirected graph G(V,E)fis
2-colorable(bipartite) iff it has no fundamental cycles of
' odd length. o |
Proof: The 'only if’ part is immediate from the well—knewn
| property of bipartite graphs, neTely an uqdirectedpgraph is
bipartite iff it has no cycle of odd length.
Let G has no fundemental cycles of odd length and C.be any '
‘ cycle 1n G. There exists a set of fundamental cycles r such
‘that C-UF[REINJJJ Cons1der two fundamental cycles C\ and C,
~in F Let C'=C NC: and £(C,) denotes the léhgth of C,.
;_QClearly, l(C )=1(C )+I(Cz) 28L(C1AC2) where A denotes "set
- intersection’ here. Since 2(C,), £(Ca), Ztl(C AC;) are all

even, I(C ) has to be even. A sxmple 1nduct1on will reveal .

;
. that C=UF is an even cycle. .



From Lemma 2.7, we immediately have:

'Corollary 2.8: Let T be an 1nverted spannlng tree of G. G is
2- colorable(b1part1te) iff for any edge @ in G-T, one end
vertex of e must be of even depth while the other is of odd
‘depth. ‘A _
Our'algorithm‘ig based on Corollary 2.8. The input to ,
the algorithm is an adjaeency matrix'of the undirected graph
G(V,E). First, an inverted spanning tree T of G is o
cohstrqceed. A flag is then associeted’with every vertex
paif in VaV. *This flag ie Set to true iﬁitially;aThen for
every non- tree edge (u,v) in G T, the condition : "Is one of
the depths of u, v odd while the other is even7“ is téﬁted
“1f the answer is negatlve, then the a550c1ated flag w111 be
set to fplse. After this step, all the flags qre qnded~
tpgether;-G is hipeftite.iff'thebreSult is true. If G is
bipattite, then‘thefyertex set‘V»is»pe;titioned.inth vV, and
V;; This can be accomplished by sorting the set of ordered

pairs {(:depih(v)’is odd',v) |veV}.

Algérithm Bipartite:

p1. Construct an 1nverted spanning tree T for G(V E)
2.(i) for all (u,v)eVxV-pardo flaglu, vl:=true dopar-
(ii) for all (u v) in G-T pardo
flag[u v]'=(de€th is. odd)/\(depth[v] is even)
/ (depthlu] is even)/\(depth[v] is
- odd)
 dopar; ‘
(1) Bipartlte'=/\n ,flag[i J] _ o
(ii) if Bipartite ‘then . -
. be in ' '
={v|depth[v] is even}~ *

!

35
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{vldepth[v] is odd}
end l

Theorem 2.9 Algorithm Bipartite takes 0(n/k+1g’n) time with
nK(Kz1)‘processors on a PRAM.

Proof: With nK(K21) grocessors, Step 1 takes O(n/K+lg*n)
time(Theorem 2.5). By Lemma 2.1, Steps 2(1) and 2(ii) take
O(n/x) time. Step 3(i) takes 0(n/K+ng) t1me units (Lemma
2.2). Step 3(ii) takes at most O(lgn-lglgn).tlme[BOROSZ].
The theorem thus follows.®

. N
2.7 Finding the HLCA(u)'s
. RN .

2.7.1 Motivation "and Definition

In the following sections,mthe set of fundamental
- cycles of G plavs an important rnle in developing optimal
‘algorithms for the bridge—connectivity and biconnectivity
problems. As a result, the eff1c1enc1es of these algorithms
rely on how well we can manlpulate the fundamental cyéles.
To prevent any fundamental ycle from be1ng con51dered

\. 7 .
exce551vely, ve assoc1ate w;th each of them exactly two
‘Tvert1ces and con51der it, only at those two vert1ces. These
two vertlces are determ1ned as follows: let T be an inverted

;'spann1ng tree on which the fundamental cycles are generated _ ‘_ ;.

- and C be any of the fundamental cycles. The two vertices

»iassoc1ated with C are the end- vert1ces of ‘the non- tree edge o
determ1n1ng C. W1th th1s strategy, every fundamental cycle

is con51dered exactly tw1ce.
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Let.u be any vertex in G. We find the higﬁest vertex in
T Which can be reached from u via a fundamental cycle -
associated gith.u. This vertex is clearly an ancestor of u.
Furthermore, all the edges on the closed.pagﬁ from U to this
vertex are guéranteed to lie within the sahEAfundamental
cycle while edges which lie below u or abeve this vertek may
or may-not have this pfoperty. We denote this vertex with
HLCA(u) (the prefix H stands for the highest). A precise
definition is given below. . | |
Definition: Lef G(V,E) be an undirected'graph a;d T(V,E') be
its'inQef&ed spanning-tree. Let weV, HLCA(u)=LCA(u,v) where
: (q,v)eE-E‘U{(u.u)} and depth(LCA(u,v))sdepth(LCA(u,v!)),
Viu,v') eE-E'ULu,u) . | o

Figure 2.4 illugtrates HLCA(u). The solid lines and
circles represent the edges and‘#ertices of an’inverﬁed
spanning tree of an undirected gfapb. The dotted lines-
represent the}edgés in_fhe gfaph.G-Tvemerging from a
particulat vertex u. |

Tc'cdmpute-HLCA(u) Vuévv we may fifsf.use the lowest
common ancestor algorzthm to find
Lca(u,v),¥u,v )cE—E U{(u,u)} and then apply Lemma 2.2 to
flnd HLCA(U),VUeV. However, in doing so, we w111 requ1re
O(IIEfE'I/nK1.lgn+n/K5 time 1f NK(K>0) p:gcessors ‘are
available. In this>sectioﬁ, we show a waY'bf finding -

HLCA(U) Vu:V in 0(n/K+lgn lglgn) time with nK(lgn>K21)

‘pro&essors or in 0(n/K+lgn) t1me with nK(K21gn) processors,
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& | @

e HLCA (u)

1 2 3

- -
- .
-

Figure 2.4

"~ An :illustration of HLCA(U)
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" This method allows us to design optlmal parallel algorithms

f, the graph theoretic problems discussed in the followlng

m?uting the HLCA(u)'s Based on Preorder Numbering
» method is based on the preorder.numbering of the
fEes in an ordered spanning tree T(V,E') of G. We denote

 preorder number of a vertex v by pré(v).

}mma 2.10: Let u, veV. Then ve<u iff
(V)SpPe(u)<pPe(v)+nd(v) where nd(v) is the number of

lscendants of v.

pof : Immediate from the definit?on of preorder traversal.s

2.11: Let (u,v),(u,wieE-E'. |
(i) 1f pné(v)<pne(w)%pré(u)}f

‘ then depth(ﬁCA(U v))ﬁaepth(tCA(u)W));
(ii1) if pre(v)>pne(w)>pne(u)
. . then depth(LCA(u v))Sdepth(LCA(u w)).
Proof: (1) By Lemma 2.10, pre(LCA(u,v))spre(v) and pre(u) .
<pr“e(LCA.(u,v))+‘nd_(LCA(u,v)),. Therefo;e pre(LCA(u,v))<pre(w) A
<pre(LCA(u,u))+hd(LCA(u,v)), By Lemma 2.10,';¢A(u,v)sw;
Hence, depth(LCA(u,v))Sdepth(LCA(Ufw)). Part-(ii) cau'be;
proved s1m11arly LI | |

 Lemma 2.11 polnts out that we can reduce the problem of

finding HLCA(u) to that of £1nd1ng the lowest common

‘ancestor of two pafticular vertices in {V|(u,v)kE-E?}U{u}.



. Definition: Let ueV, W={v|(u,v)eE-E"}U{u}.

pmax (u)=v, where veW and pre(v)pre(w) ,¥wel;

pmin(u)=v; wvhere vel and pPé(V?épﬂé(w),VWeW.

M»

Corollary 2.12: _
" HLCA(U) = (ming) {LCA(u, pmin (u) ) , LCA (U, pmax(u)) ).

Proof: Immediate from Lemma 2,1ﬁ.'-

Corollary 2.13: HLCA(u)=LCA(pmin(u),pmai(u)0.

 Proof: From Corollary 2.12, HLCA(U)ipmih(U) and

HLCA (u)<pmax (u). Thus, HLCA(U)sLCE(pmin(uj,pmak(u)).

By defini;ion, bne(pm%h(u))Spne(u)Spne(pmax(u§).

_implies pPe(LCA(pmln(U) pmax(u)))Spre(u)

<pre(LCA(pmin(u), PmaX(u)))+nd(LCA(pm1n(u) phax(u))).

Lemma 2.10, LCA(pmln(u),pmax(u))su. Therefore

Lca(pmin(u), pmax(u))siCA(u pmin(u)) and

LCA(pmln(u) pmax(u))sLCA(u pmax(u)) By Coroliary 2.12,

Tea(pnin(u), pmax(u))sﬂLCA(u) .
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By

»Lemma 2. 14‘ Let T(V E') be a- @1rected tree whose vertlce§

‘have been labelled in preorder thengflndlng HLCA (u),

VUGVI

can be done in 0(n/K+lgn) time wrth nK(K>1) processors on a

PRAM.

Proof' To compute pmax(u) and pm1n(u) VUeV, we need

0(n/K+ng) tlmecw1tH?ﬁK(K21) processors(Lemma 2. 2), and to

f1nd HLCA(U) VUeV ‘we need to - find the lowest common’

ancestors of the n (pmzn(u),pmax(u)) palrs. Thls ‘takes

LS
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O(n/K+lgn) time with nK(K>0) processors(Theorem 2. 6) =
Flgure 2 4 glves an 1llustrat10n to the above lemmas
and corollarles The numbers in the circles’ are.the preorder
numbers ot the vertlces For 1nstance, the. preorder number
of u is 21 For convenlence, we name each vertex by its
preorder number. It can be easily checked that
depth(LCA(u,122)<min(depth(LcA(u,18)),depth(hCA(u,16))), and
_that depth(LCA(u,ZB))<depth(LCA(u,24)). Eurthermore,‘
pmin(u)=12, pmax(u)=2By and LCA(12,28)=3 which is clearly

HLCA(u) .

2;7;3 Computing the Preorder Numbers
The crucial step in computing HLCA(u),VYueV, is to
determine the preorder numberstefficiently’ The common way

[

of numberlng the vertices of a tree in preorder is to

traverse the tree. However, this w111 result in an O(n) time

algorlthm wh1ch is unde51rable In the followzng 1emma, we
show that we can carry out preorder numberlng 1n parallel by

computatlpn rather‘than by traver51ng the tree.

Lemﬁa 2‘15- ﬁet T(V'E«);be‘an oggered tree; for:each VeV,

pre(v) z, z‘nd(t)+na(v) SeANC(V) teEBRO(S); j »
| o= z, nds(F(s) Pank(s)-1)+a+depth(v), SeANC(v)- {n}
" .'where ANC(v) is the set of all ancestoavof v, |
AEBRQ(s) ;s the set of all elder brothers of:é;.b
“nd(t) is the number of descendants of t,.‘ '

na(v)‘ls the number of,ancestors of Vi
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nds(v,j) is the total number of descendants of the
first j sons of v,

and rank(s) is the rank of s, i.e. the position of s among

all its brothers.

Proof: Trivial.ms

Let us consider the inverted spanning tree given 1n
Figure 2.4 again. Consider the vertex u, pre(u)=21, the
ancestors of U are the vertices 21, 17, 15, 7, 3 and 1. The
number of descendants of the elder brothers of each of these
vertices except the root are 3, 1, 7, 3, and | respectively.
These numbers sum up to 15. The number of ancestors of u 1is
6, this gives rise to a total sum of 21, which 1s the
preorder number of u.

Using Lemma 2.15, we want to show that the preorder

‘numbers pre(v),¥veV can be determined in O(n/K+1lgn-1glgn)

time with‘nK(Kz1) processors. Assuming that an inverted tree
T represented by an array T[1..2,1..n] such that
{<T[1,i],T[2,i)>|1<si<n}=E' is given ( Specifically, TV, il=i

and T[2,i)=F(i), 1<is<n. We assume T[2,r)=0 for the root r).

'

Algorithm Preorder:
Step 13 Compute the ar;%y F* and the vector depth for
Step 2: Order the sons of every vertex in T, 1i.e.
) ‘compute rank(v),¥veV;
Step 3: Find nds(v,j),¥veV, 13j5n(v), where n{v) is the
number of sons of v;
Step 4: Compute pre(v),VveV. =

Lemma 2.16: Algorithm Preorder takes 0(n/K+ign-lglgnk?time

.wifh nK(lgn>k21) processors or in 0(n/K+i§h) time with
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nKk(K21gn) processors on the PRAM.

Proof: Step 1 can be done in O(n/K+lgn) time(Theorem 2.3).
In Step 2, the ordered pairs {<T[2,i),T[1,i)>|1<isn} are |
sorted. This can be done in 0(lgn-lglgn) time with n
processor or in 0(lgn) time with nlgn processors[BOROgZ].
Assuming that the sorted T is stored 1in T'[{1..2,1..n], then
T' can be divided into segments such that in each segment,
the first row contains the same vertex v in every entry, and
the second row contains the set of all sons of v in T. The
relative position of vertex | in the second row of the
segment in which i resides, is the rank of i, i.e. Paqk(i).

In step 3, nd(v),¥veV, are first computed by scanning
the ((n-1)-depth(v))th column of f‘ and counting the number
of occurrences of v. By Lemma 2.2, this takes 0(n/K+1gK)
time. After this, nds(v,j),¥veV,1<jsn(v), are computed using
the followig@ formula:

nds(v, j)=L{..nd(s,), 1sjsn(v).

It has been shown in [KOGG73] that the partial sums
zi{.,a., 1sjsn, can be computed in O(1gp) time if n
processoiivare given. Since for each vertex v, v has n(v)
sons, fﬁ; time needed to compute nds(v,j),1sjsn(v), is
O(lg(n(v))) if n(v) processors are assigned to V. (This is
'possible if we make use of the sorted array T'). As a
result, all these partial sums, nds(v,j),1sjsn(v),¥veV, can

be computed in parallel in max{0(lg(n(v)))} =0(lgn) time

with Zn(v) =n-1 processors.
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Finally, in step 4, pre(v),¥veV is computed using the
~formula given in Lemma 2.15. We assume nds(v,0)=0,¥veV. Note
that ANC(v) is available in the vth row of F' starting from
column (n-1)-depth(v) to column (n-1), and na(v) equals
depth(v)+1. By Lemma 2.2, this takes 0(n/K+1§K) time.
'Summing up, pre(v),¥veV can be determined in
O(n/K+1gn-1glgn) time with NK(1lgn>K21) processors or in

O(n/K+1gn) time with nK(K2lgn) processors.®

2.7.4 Conclusions

Theorem 2.17: Computing HLCA(u), VueV can be done 1in
0(n/K+lgn-lglgn) time with nK(lgn>K21) processors or in
O(n/k+1gn) time with nK(K21lgn) processors on the PRAM.

Proof: Lemmas 2.14, 2.16.®

Remark:

Since the first write-up of our algorithm for computing
preorder numbers[TSIN82a], we have discovered that Schwartz
described a method for computing preorder numbers on the PSN

which is similar to ours{SCHW80].
2.8 The Bridge-connectivity Problem

2.8.1 Introduction

The previous best algorithm for finding the bridges in
an undirected graph on the PRAM first appeared in [sava77].

It was then reported in [SAVA81]. This algorithm achieves
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the O(l1g*n) timeé bound with n*lgn processors. In this
section, we present an optimal parallel algorithm‘which
achieves the 0(lg*n) time bound using only nrn/ig‘nq
processors.

The bridge-connectivity problem consists of two
subproblems, namely finding the bridges and determining the
bridge-connected compogents of an undirected graph. We

consider the problem of finding the bridges first.
)

2.8.2 Finding All the Bridges in an Undirected Graph
& o
The efficiency of our algorithm relies on the following

Lemmas.

Lemma 2.18: Let G(V,E) be a connected, uqdirected graph. If
e=(a,b)ef is a bridge of G, then every inverted spanning
tree of G contains either <a,b> or <b,a>//(

Proof: Trivial.s

Lemma 2.19: ¢ is not a bridge iff e is on a fundamental

cycle.
Proof: Immediate from the definition of bridges.®
{

—-

i The input data is again assumed to be an"adjacency
matrix of "G(V,E): By definition, an edge e is‘a bridge in G
iff e is not contained in.any cycle in G. Since there are a
total of |E| edges and a possible exponential number of

cycles in G, basing our algorithm to find the set of all

bridges on the definition may require an unmanageable number
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of operations. Forfunatély,,thanks to Lemmas 2.18 and 2.19,
we need only consider those edges vin an inver;ed spanning
tree of G and the fundamental cycles generated from that
spanning tree. This allows us to start with a manageable
size of edge§ and cycles.

Let T(V,E') be an inverted spanning tree of G and
<a,F(a)>=eeE'. We shall show below (Theorem 2.20) that e is
a bridge iff e is not included.jn the same fundamental cycle
~as any descendant of a in T. {ﬁ other words, e does not lie
on any of the paths [ i#~+HLCA({)] where | is a descendant of
a in T. Using this characteristic of bridges, we can find

all the bridges efficiently.’

Theorem 2.20: Let T(V,E') be an inverted spanning tree of a
connected, undirected graph G, and e=<a,b>ef’.

(a,b) is a bridge of G iff for each desceﬁdaht [ of a, there
. does not exist (i,j) in G-T such that

depth(LCAL i, jl)<depth(a). ‘
Proof: Let e=<a,b>e¢E' be such that (a,b) is a bridge inxG.
1f there 'exists (i,Jj) in G—T such that i is a descendant|of 4

a in@T and depth(LCA[i,jl)<depth(a), then the path

[ i—j#+LCA[ ], jle+p—a%~+i] is a cycle cohtaining e. This

leads to a contradiction by Lemma 2.19. | | R
vConversely, if e=(a,b) is no;-a bridge, then by Lemma 2.19, \\
e is on a fundamental cycle C, i.e. there exists (i,j) in |

G-T such that
C : [i—j*» LCALI,jle=i].
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e#(l j) because e is not in G-T (Lemma 2.18). As a result, e
is either on the path [J—*LCA[I jl] or on the path
[LCALi,jl—=i], implying )
depth(J)zdepth(a)>depth(b)zdepth(LCA[k j1) or
depth(i)Zdepth(a)>depth(b)2depth(LCA[I,]]). Hence in either

case there exists (i,j) in G-T such that i is a descendant

of a and depth(LCALi,j1)< depth(a).=

Algorithm Bridges: A :
1. Construct an inverted spanning tree T(V,E') for G(V,E).

2. Compute HLCA(u), VueV.
3. Compute a(u), VUeV where
: a(u)=m1n{depth(HLCA(w))| usw}.
4. For each <u,F(u)>eE', check if depth(u)Sa(u) (x (u,F(u))
is a bridge iff depth(u)sa(u) x) = ’
The complexities of Algorithm Bridges is analyzed

below.

Theorem 2.21: Algorithm Bridges runs in 0(n/K+1g?n) time
with nK(K21) proceséors on a PRAM, ‘ '
Proof: With NnK(K21) processors, step‘1 takes O(n/K+1g*n)
time (Theorem 2.5), Step é_takes 0(n/K+lgn-igign)‘time |
(Theorem 2.17). By using thé array F* for T(V;E'), Steps 3
and 4 takes 0(n/K+1gK) time(Lemmas 2.1 & 2.2). Hence,
algorithm Bridges runs in 0(n/K+lg®n) time with”nK(Ké1)

processors.®» s . ,

2 8.3 The Bridge-connected Components of an Undirected Graph
Once the bridges of a connected, und1rected graph are

determined, its brldge-connected components can be ‘ A\
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determined. Specifically, we eliminate‘all the bridges in G
and then use Algorithm MOD.CONNECT[CHINB1;CHIN82J to ‘find
the conﬁected components of the resulting graph. Each of the
connected components thus found is a bridge‘conhécted
component of G. | ' .

The algorithm obviously runs in 0(n/K+lg*n) time with
NK(K21) proceséors on a PRAM,
2.9 The B;ide—cbnnectivify Augmentation Problem

No previous result was reported in the literature for
this problem. The élgorithm presented here is a parallel
version of Eswaran and Tafjaﬁ's sequential
algorithm[ESWA76]. We list their algorithm below and refer
.the reader to the reference cited for its cqrrectness. Note
that the undirected graph G may be Qisconnected in this

section.

Algorithm Brconnect[ESWA76]: .

(# Given an undirected graph G(V,E), add the minimum number
of edges to G so that the resulting graph is
bridge-connected #)

1. Find the bridge-connected components of G;-

2. Coridense G into an acyclic graph Go(Vo,Eo) by collapsing
each bridge-connected component of G into a single
vertex; ‘ R ' '

3. Construct an edge set A; to connect the trees of Go so

" that the resulting graph T, (Vo ,EoUA:) is an undirected
tree. A, is defined as follows: :
Let {v(i)]|1sis2m} be a set of vertices of Go, such
that o )

(i) v(2i-1) and v(2i) are each a‘ pendant or

an isolated vertex in the jth tree;

(ii) v(2f-1)=v(2i) iff the jth tree is an

- isolated vertex. - o

Then A1é{(v(2i),v(21+1))l15i<M};

H N S

<
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4. Convert T, into an inverted tree for which the root has
two or more sons and label its vertdces with preorder
numbers, then sort its pendants by preorder number;

5. Construct an edge set A; to bridge-connect T,, where A,
is defined as follows: . .

Let {v(i)]|15isp} be the sorted sequence of
pendants where p is the number of pendants.

6. Let V, be a set of vertices containing exactly one vertex
from each bridge-connected component in G and
m: Vo — V, be a 1-1 correspondence such that =~ '(v)
corresponds to the bridge-connected component
containing v. Define A = {(x(u),n(v))|(u,v)eA,UA;}. (%
A is the minimum set of edges bridge-connecting G x). ®
The construction of the sets A4,, A, forms the main part

r

‘of our algorithm, we handle them in the following lemmas.

Lemma 2.22: Given.an adjacency matrix of Go(Vo,Eo),
constructing the edge set A, can be done in O(m/K+1g?*m) time
with mK(K21) processors, where m=|V,]|. |

Proof: Firs£, find ;he connected component of Go, i.e.
compute C(v), VveV, such that C(u)=Clv) iff u,v belong to
the same connected éomponent in Go. This takes O(m/K+lg’m)
time with mK(K21) processors[CﬁIN81,CHINBZ]. Then sort the .
set {<C(v),v>|1svsm}. This fake§ O(lgmlglgm) time with m
processors[BOROBZ].}Aftér that,,assign one processor to each
<C(v),v>,1sv<m, and compare the C value of that element with
the C value of the followiqg element, say <C(u),u>, in the
sorted sequence. The processé; will add (u,v) to A, iff
C(U)*C(V)u This takes 0(1) time with m—1.procéssors, Hence,
constructing A, can be done in O(m/K+1lg’m) time with mK(K21)
proceséors.l | *

L

Lemma 2.23: Given an adjacency matrix of the undirected tree
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T(Vo,E'), the edge set A4, can be constructed in O(m/K+lg*m)
time with mK(K21) p?ocessors, where m=|¥,].

proof: Find an inverted tree To of T, such that the root has f.
more than.one son. Thié takes O(m/K+lg’m) time with mK(K21)
processors(Thgorem 2.§). Then l?bel the vertices with
preorder numbers and identify-the pendants as follows: sort
{<Ftv),v>|1sv<m}. Clearly, the vertices having the same
father are in consecutive positions aftergsorting. To avoid
write conflicts, only the processor assign;d to the leftmost
vertex of each segment of vertices having_the same father in
the sorted sequence will write a 1 into an appropiate entry
of an array mark to indicate that the father is a
nonpendant. Conse@uently, maﬁk(v)=1 1ff v is a nonpendant,
(Each mark(;) has the initial value 0). After'that, sort
{<mark(v),v>|1sv<m} to seperate the pendants from the
nonpendants. .Finally, Sort the pendants ®in ascending order
by preorder by sorting the set {<pre(v),v>|mark(v)=0}. Let p
be the number of pendants and Pank(v).be thé position of v
~in the sorted sequence. add (u,v) to A, if
rank(u)=rank(v)+lp/24. all these steps take at most
0(lgmlglgm) time wiﬁh m processors, .®

With the helP of Lemmas 2.22 and 2.23, we are ready to

analyze the performance of Algorithm Brconnect.

Theorem 2.24: Algorithm Brconnect runs in O(n/K+lg?n) time
'with NK(K21) processors on a PRAM.

Proof: In Step 1, the bridges and bridge-connected

-y
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components of G(V,E) are determined. This takes‘O(n/K+lg’h)
time with nK(K21) procéssorS[CHIN81,CHIN82]. In §%ep-2;fto
condense G(V,E) into Q(V;,Eo): we just have to defermiﬁe Vo
and E,. Clearly; Vg’éan be formed by adding.to it exactly
one vertex froq/éach briage—connectéd component of G (each

/

of these ver;lées serves to represents a bridge-connectg@
component). ;or convenience, we choose the smallest—numggred
vertex from each component. As a result, we immediatély have
Vo={v|v=C(v)} and.Eo={(C(u),C(v))[(u,v) is a bridge of G}.
Note that the array {CLy)|1$vsnf and the bridges are
determined in Step 1, énd as a consequence, determining Vo
and E, takes O(1) time with n processors. Steps 3,4 and 5
‘takes 0(n/k+1g%n) time with nK(R21) processors by Lemmas
”2.22 and 2.23 (note that msn). Finally, in Step 6, due to
the way we construct V,, theive;tices of V, are a;so
vertices of V,‘therefore, A=A,UA, and no transformafion is
required. Thus this step takes O(1) time.<ﬁence, thg theorem
follows.®

L]

2.10 The Biconnectivity Problem

'2.10.1 Introduction
Like the béidge-connectivity‘prleemn this problem also

'consists of two subproblems, namely finding the set of all

biconnected components and finding the set of all separation

vertices in an undirected graph. The previous best fesults

on this problem were due to Savage and Ja'Ja'[SAVABi]. They
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presented two algorithms; one runs in 0(lg?n) time with
n*/1lgn processors while the other runs in 0(lg’nlgB) time
with |E|n+n*1gn processors where B is the number of

" biconnected components in the graph. .
- . E R

In this section, the algorithm we present could run 1in
0(1g*n) time with only nprn/lg?*n, processors.

?

2.10.2 Fipdihg all Biconnected Components in an Und;rected
Graph | f
In this éection, we present an optimal éarallel
algorithm for finding all biconﬁect%d,compogénts of a
connected, undirected graph G(V,E).]Since a biconnected
component can be compietely determ?Aed by its vertex set, it
suffices to-find the vertex sets of all the biconnected

‘components of G. Our algorithm is based on the following

lemma.

Lemma-2.25: (i) For each edge (a,b)ef there exists a‘unique

biconnected componeht in G containing the edge.

(ii) All edges in the same simple cycle in G
belong to the same biconne;téd component in
G.

(iii) Let C,- and C; be two simple cycles having an:
édge in common. Then C, and C; bélong to the
same biconnected component in G.

The general strategy of our algoriﬁhmdis as follows.

Given the undirected graph G, we begin by constructing an
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) inverted spanning tree T of G. From T, we generate a set of
fundamental cycles of G. From Lemma 2.25(i) and (ii), every
fundamental cycle falls entirely within a unique biconnected )
component. We then use these fundamental tyéles as the
building blocks and begin to merge those cycles‘having
common edges into bigger circuits. By Lemma 2.25(iii), each
of these circuits belongé to exactly one biconnected
component. We then merge the circuits havin% common edges
into y;t bigger ciréuits. This process is carried on until
no further merge is possible. Then every circuit génerated
Eontriﬁutes to a biconnected component in G. | T

h : To make the fundamental cycles easier to handle, we
remove tﬁe non-tree edge from each of them. This is
legitimate‘because no two fundamental cycleé can possibly

intersect at a non-tree‘edée. The,advantage is that the
number of edges ihvolved is now reduced from 0(n*) to n-i.
This modification also implies.that we are in fact
manibulatiné the branches of T rather than the fundamental
cycles and that the process of merging the\fund?mgﬁsal
cycles has become the process of merging branches into
subtreés. Consequently; when the merging"process is |
‘éomplg£§77the result is a set of trees each of which is a
séanhing tree4of‘a.distin¢t biconnected component of G.
\Obviously, the vertex sets of these trees are the vertex
setsvof the biconnected cpmponehts of G.

| The_merjjng p£ocess cannot be time-consuming for

ise the performance of the entire algorithm will be




54

!
degraded. The method we use 1in our algorithm is to reduce -
the merging process to the problem of finding the connected
component of an undirected graph derived from the inverted

spanning tree 7.

Définition: Let T(V,E') be an inverted spanning tree of
'G(V,E). Let e,=<a,F(a)>,e,=<b,F(b)>eE'. Then

e.le;

iff.(i) e, is on [a+*-+HLCA(a)] or e, is on

' [b+-HLCA(D) ];
or (ij) (a,b)eE-E' and neither asb nor bsa in T.
From the definition;'if e e, then e, and é;‘belong to

the same fundaméntal cycle. It 1is easiiy shown that if e,le;

and e,Ae,;, then e, and e, belong to the same simple cycle in

G. This is easily generalized to:

U

/

Lemma 2.26: If e.be;, €205, ..... , ©€,.,0e,, then there

exists a simple cycle in G containing both e, and e,.

Definition: Let G(V,E) be an undirected graph add T(V,E') be

its inverted spahniné tree. Then G"(E',Eﬁ) is an undirected

’gfaph in which (ei,e:)eE" iff eibe,. ’
v .

The following theorem establisﬁe% the relationship

' between G and G". |

_ Theorem 2.27: e and e’ belong to the same conhected

component in‘G“ iff e and é'*belongftp the same biconﬁected»

q.

. s e



- 55

component in G. .
Proof: Let e and e belong to the same connected component
in G". Then there exists a path t e, €1, «.. , €4, €' in G".
This implies that ede, and e,Ae, and ... and e,Ae'. By Lemma
2.26, e, e' belong . to the same cycle in G. By Lemma

2.25(i1), e and e' belong to the same biconnected component
in G. |

Let e and e' belong to the same bioonnected component’in G.
Then there exists a simple cycle C containing¢g and e' in G.
Let Fvbe the set of fundam:ntal cycles 5uch that C=4T.
Construct an undlrected graph H(T,E) such that (C,,C;)eZ iff
'C, and C, have a common edge Clearly, H cannot be
vdisconnected for otherwise C cannot be a simple eycle. Let
P={C, }1.1 be the shortest path in H,auch'that éeCﬁ, e'eC,.
;Let e; be a common edge of C, and Ci.,,- I<i<t. J:

Let (ai,b;) be the edge in G-T determining C, 1<4<t Let
ela,), elb;) be.the edges in T such thatle(a-) <ai,F(a.)>
and e(bi)=<b,,F(b;)> ‘then in each C,, we have (i) .
e(a)se(b,) and (e, ,dela,) or e -10e(b, )) and (eiv.{se(a.)' or
eise(b))); of (ii) e ibe(a) and e8e(a)); or (iii)
e{-,Ae(bi) and e;Aé(bi),\In any of the caees, there is a
path ftom ei-1 to e in.G". In particular, there ie a path
from e to e, and a path from &, to e' 1n-G"- Uoining ali '
these paths together, we have a path from e to e' 1n-G"

Hence, e and e' belong to the ‘same connected component in

G. = , - 5

%
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Algorithm:Biconnect

1. Find an inverted spanning tree T(V,E') of GV, E);

2. Compute HLCA(v) VveV; :

3. Construct an undirected graph G"(E',E") such that

(e,,e;)eE™ i1ff e,0e;.

4. Find the connected components {B,} of G". (x Note: Every
connected components of G" uniguely determines the
vertex set of a biconnected component in G and vice
versa. %) ®

Theorem 2.28: Algorithm Biconnect runs in O(n/K+1l1g'n) time

with NK(Kz1) processors on a PRAM.

.
[N /

\
s 'J"\

Proof: With NK(K21) processors availlable, Step ! takes
O(n/K+1g*n) time (Theorem 2.5). Step 2 takes
O(n/K+1gn-1glgn) time (Theorém 2.17). Step 3 can be carried
ou£ as fplloQS:_Construct an adjacency matrix M" for G": for
every eef', M"le,e'] and M"[e',e] are set to 1 1iff (1) e' 1s
on the path [a*-HLCA(a)] or (ii) (a,b) is in G-T and neither
asb nor bta in T, where e=<g,F(a)> and e'=<D,F(b)>. Due to
|E'|=0(n) and the availablity of F°, testing the above
conditions takes O(n/K) time with nK(Kz21) brocessors(Lemma
2.1)% Step 4 takes 0O(n/K+1g?*n) time[CﬁIN81;CHIN82]. Hence,
Algorithm Biconnect takes 0(n/K+lg?n) time with NK(K21)
processors. ® |

For completeness, we would like to point out that,the
algorithm ;9{ finding all biconnected componehts can be used
to determine the sef of all bridge§ as well. This 1s based

on the fact that an edge. e of G is a bridge iff e.is a

biconnected component of G.



©2.10.3 Finding all the Separation Vertices in an Undirected
Graph

Let T(V,E') be an inverted spanning tree of G(V,E) and
B, is a biconnected component of G. Then B AT must be
connected and is thus a tree. Let aeV. 1f a 1s not the root
r of T, then a is a separation vertex of G iff & is the root
of B,AT for some biconnected component B, of G. Moreover, r
is a separation vertex 1iff r is the root of B;AT and B AT,
where B,, B, are two distinct biconnecggd‘components of G.

These ideas are embodied in the followiggg lemma.

Lemma 2.29: Let T(V,E') be an inyverted spanning tree of

I

et

G(V,E); r be the root of T and (B.}:., be the set of
biconnected components of G.

a is a separation vertex of G

iff a is the root of B,AT for some j, if a#r;

or a is the root of B,AT and B;AT for some itJ' i1f a=r.
Proof: Only if part: Let a be a separation vertex of G.
There exist biconnectéd components B,, B,, i#] such that a
beldngs to both B, and 8,([AHO74](Lemma 5.4,p.181).

1f a#r, we may assume without loss of generality that

<a,F(a)> belongs to B,AT. Let r; be the root of B,AT. There
exists a péth P, in B, from a to r;. There also exist a path
P, in T from r; to‘LCA(a,P,),andma path P, in T from a to
LCcA(a,r;). Clearly, P, and P, contain no edges in B,. But
then P,, P, and P; give riSe/to a simple cycle in G which

will contradict the fact that B, B, are biconnected
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components unless a=r,. Thus @ is the root of B,AT.

1f a=r, then there exists é path P from r, tec g in T.
Since B,AT is connected, all the e@ges on P must belong to
B,AT. But then r, cannot be the roétféf B.AT unless a=r,.
The saﬁe argument 1mplies that a=r,.

If part: Let a=r and a i1s the root of B,AT and B,AT where
f#j. Let s, and S, be a son of a in B,Al and B AT
respectively. Suppose after removing a from G, the resulting
graph remains connected. Then there must be a path from r,
to r, in G not passing through a. However, t%is path and the
edges (a,r.), (d,r,) will form a cycle in G which implies
that G, and G, cannot be biconnected components. Therefore
the removal of a from G must disconnect G which means that a
_is a separation vertex.

Let a#r and a is the root of some B AT. consider F(a)
and s, where S, 1s a son of a“fﬁ‘B,AT. F(a) Soes not belong
to B, for otherwise a,canﬁot be the root of B,AT. By
applying an aréﬁment similar to the one above, we can show

that removing & from G would result 1in disconnecting F(a)

and s,. Hence a is a separation vertex of G.®

As a consequence of Lemma 2.29, the algorithm for
finding the biconnected components can be used to determine

the set of all separation vertices of G as follows.

i
1

Theorem_2.3p:ﬁThe set of separation vertices can be found in

O(n/K+1g*n) time with nK(K21) processors on a PRAM.



59

Proof: First, the set of all biconnected components 1s
determined. This takes O(n/K+lg?n) time with NK(Kz1)
processors(Theorem 2.28). Next, the head of each eeft' ,
head(e), is determined. This obviously takes O(1) time with
nK processors. Then the set of all head(e)'s are divided
into groups such that those e's belonging to the same
biconnected component have their head(e)'s grouping
together. This involves sorting and takes 0O(lgn-1lglgn) time
with n processors or 0(lgn) time with nlgn »
processors[BOR0O82]. Finally, the head(e) with the smallest
depth in each group is selected, these head(e)'s form the
set of separation vertices. r is included in the set iff r
is selected from two' or more groups. This step takes
O(n/K+1gK) time with nK processors(Lemma 2.2). ®

Finally, to determine the biconnectivity of a
connected, undirected graph G. We can check the numbers of
separation vertices 1t has. Clearlg, G is biconnected iff

9

there is no separation vertices. This takes O(n/K+lg’n) time

with NK(K21) processors.

2.11 Conclusions

In the preceding sections, we assume in most cases that
nk, the number of processors available,.satisfies the
condition K21..This means that the number of processors
available is not lgss than n. In faét, this assumption is
made for convenience only because most of the previous work

assumed unbounded parallelism. To make use of some of those
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results in the course of developing our algorithms, we found
. ¢ . : o

it most convenience to assume K21, Nevertheless, it 1s not
difficult to extend our results to cases where O<K<1 if

Brent's theorem 1s used.

Théorem 2.31:[BREN74] I1f a synchronized computation C
consisting of a totalvbf g operations can be performed 1in t
parallel time units with sufficiently many processors, then
C can be performed in (g-t)/py+t time units with p(>0)

processors.

Using the above theorem, 1t 1is easily shown that Lemma
2.2 can be generalized to: "Given an array of n? elements,
{a,;} 1<i,js<n, and nK(K>0) processors, A(i)=a.,*a.z*...*a,},
1sisn can be computed in (n*-n-1gn)/nky+1gn=0(n/K+1lgn) time

units.” Similarly, Preparata’'s sorting algorithm can be

_executed in nlg*n/nkq+1gn=0(lg*n/K+1gn) time/G;}ts if

nK(K>0) processors are available.
Extension of all of our results from NK(K21) to NK(K>0)

can be accomplished in a similar way.

The parallel algorithms presented in tﬁis chapter are
optimél for dense graphs except for the prbblem of fiﬁding
the lowest common ahcestors of vertex pairs .in a directed
tree, and the problem of finding all fundamental cycles in
an undirected graph. 1f an optimal algorithm for finding the

lowest common ancestors running in 0((n+q)/nK) time with



61

nK(K>0) processors is found, fhen the performance of the
algorithm for finding the fundameﬁtal cycles 1is alsop ‘
improved without any modification. Moreover, this
achievement will provide us with_an alternate way to compute
HLCA(v) ,¥veV, which is crucial in the design of optimal
parallel algorithms for the last four problems.

We feel that several techniques we use in this chapter
deserve fufther attention as they may be useful in
developing efficient algorithm for other graph theoretic
problems or even for problems in other é}sciplines.

The first is the one used in handling graph theoretic
problems which are strongly related to cycles. If we were to
handle all thé cycles directly, we could hardly.expect the
resulting algorithm to be polynbﬁial with‘:espect to the
time-processor product because the number of cycles in a
graph can be exponentially large. The technique Qe use 1s to
restrict our domain of consideration f;om the set of cycles
to the set of fundamental cycles (note that there are at
most O(n*) of them). We also reduce the number of egd?s to
nggpnsideréd from |E| to n-1 by constrﬁcting an inverted
spggning'tree T for the given graph Gvand considering only
the édges in T. This elaboration allows us to start with a
'managable nﬁmber of items which reQuite no more tﬁén 0(n*)
'operations. Then by computing the function HLCA(u)'s, much
of the information‘convéyed by the fundamental cycles can be
stored under the HLCA(u)'s. Consequently, the possible

number of operationé is further reduced to 0(n®) which makes
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>

the 0(n*) time-processor product possible. We believe that
this technique may prove to be useful in other graph
theoretic problems which are cylce-oriented.

The second is described in Lemma 2.2 which simply says
that to compute an associative operation involving n items,
if the well-known recursive-doubling technigue 1s used, we
need n/2 processors to achieve the O(lgn) time bound. |
However, if we have only n/lgn processors available, then we
can still achieve the O(lgn) time bound with only a slightly
larger constant factor. THis technique 1is ;ery useful as it
allows us to reduce the number of pfocessors used without
affecting the order of magnitude of time. The technique was
known previously but was not prqperly utilized.

The third one makes use of the observation that if a
computation requires a number of iterations and after each
iteration, the problem size is reduced by at le;st half,
then the total amount of time required (in terms of order of
magnitude) to complete the computation is the same as that

required by the first iteration. Specifically, L%, oT/2'<2T

for any k>0.

L



Chapter 3
IMPLEMENTATION ON THE MMM MODEL
. :

3.1 Introduction

In this chapter, we propose a genéral computer model,
called MMM, which includes all the paraliél computer models
on which an ordinary matrix multiplication algorithm exists. G
Since almost every existing computér model has an algorithm
for the‘matrix muitiplicatién problem,. the‘model proposed
has a gréat degreé of generality.‘ln fact, it inclgdes all
" of the Qell—knowﬁ existing parallel computer models listed
below: ‘

MCN(Mesh connected Networks)tCANNGQ,DEKE81,ATALSZ],

PSN(Perfect Shuffle Networks)[STON71],

CCC(Cube-conhected Cycles)[PﬁEP81],

OTN(Orthogonal Tree Networks)[NATH81],

OTC(Orthogonal Tree Cycles)fNATHBﬂ],

SIMD-CCC (SIMD Cubé—connééted_Computers)[DEKESl],

PRAM(SIMD Sharea Memory Model ai}owﬁng read

conflicts)[WYLL79]

WRAM(SIMD Shared Memory Model allowing read and write

e

conflicts)[SHILB1].

Let 0(t(n)) and'H(h)-dehote the time and hardware
resources(in terms of number-of’précessors’and chip aréa)
required by thetnxn.érdinary matrix multiplication
algorithm. We Shall show that our'algoritth'take'at worst a

i

63 | :
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factor of max(lgd,lgd")+1, 1<d,d"<n, more time and the same
amount of hardware fesoﬁrces as those required by the matrix
multiplication algorithm on the MMM. Since on many of the
well-known existing models, g%é matrix multiplication
algorithm takes at most 0(1lgn) time and H(n) hardware
resources, our algorithms are therefore bounded above® by
O(1lgn*(max(lgd,1gd")+1)) in time and H(n) in hardware
resources on those models. This result turns out to be very
efficient as 1t outperforms the previously known best

algotrithms on many models.

1=

s

3.2 The Computer Model MMM

3.2.1 Definitions

definitioﬁ: Let (S,+,%,0,1) beoa ring and M, be the set
of nxn matrices oVef S. An ordinary matrix multiplication
algorithm for M" is an algorithm which takes advantage of
only the associative property of + in multiplying any two
matrices in M,.. ‘ -

Note that the well-known Strassen algorithm{STRA69] is
not an ordinary matrix multiplication algorithm because it
makes use of the additive inverse property of +. There are

two reasons why we consider only ordinary matrix

. —— ————————

* The tgrm 'bounded above' need some clarification, Here we
mean that the algorithms will take O{(t(n)s*(max(lgd,lgd")+1)) .
time and H(n) hardware resources if the algorithms are
indeed implemented in a way using matrix multiplication.
However, as it will be clear in the following section that
our adgorithms do not rely on matrix multiplication, other
more efficient techniques could be used if they were
available. ]



65

multiplication algorithms here; The.first is because for

most, of the existing computer models, the only known

algorithm for multiplying matrices is an ordinary matrix
multiplication algorithm. The second reason is that in the
rest of this chapter, we will frequently encounter matrices
whose elements are chosen fromvcloséd‘semirings[AHb74], and
closed semirings do not possess the additive inverse
property. As a result, matrix multiplication algorithms for
matrices over a ring which make use of the additive inverse
property capnot be applied to these matrices.

Thé MMM(Matrix Multiplication Model) has the following
feagures:

(i) there exists an ordinary matrix multiplication
algorithm; .

(ii) each processor containg‘a constant number of registers
éhd is capable of carrying out ahy of the operations +,
-, *, N/, /\, ~, =, #, s, 2in constant time;

(1ii) communication between interconnected processors and
between registers wi£hin the same proce%sor takes
'constaﬁt time,

In representing the given‘undirected graph, an
adjacency matrix M is used. The entry M[i,j] of M is stored
in the M register of processor PE[i,j}, 1si,jsn. In general,
fegister” say A, in PE[i,jI is denoted by A[/,j]. Aqgain,
without loss of generality, we assume G is connected and the

- ——— - - -—— .-

'As a métter of féct, multiplication is not used in our
algorithms, the *'s appearing in the algorithms are just a
shorthand of the if.. .then. . .else,‘tatgment
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vertex set V={1,2,3,...,n}, throughout this chapter. We use
v d to denote the diameter of G, I to denote the summation of
integers and an APL type of syntax to describe our
algorithms. As a result, 0 will represent both the integer
zero and the boolean constant 'false' and 1 will represent
both the integer one and the booiean constant "true'. As an

example, cx(a=b) is equivalent to 1if a=b then Cc else 0.

Definition: A function f is called an extended monadic
function w.r.t. i, j if the arguments of f are of the form
OPli,j] where OP is either the name of a register or a
function of i, j. We denote it by f[i,]Jl.

The following lemma dominates the rest of this chapter.

Lemma 3.1: The following operatien céuld be carried out on
the MMM using thé same.ordeg of magnitude of time and
hardware resources as the ordinary maarix multiplication
algorithm.

MLi, j1:=F =0, ((F Ui k), Falk, J1))) ¥ 0,J, 1si,jsn,
wﬁere M{i,j] is a register of processor PEIi,j]; f,,‘fz, f,
are exténdedhmonadic functions w.r.t. I,k; K,J and i,J
respectively. II is a composité function of the arithmetic

: e

and'bogleanvoperations mentioned in the definition of MMM

and £ is an associatiye operator.

Proof: Trivial. =



3.2.2 Some Perliminary Results

In ﬁhé following sections, in proving the resource
éomplexitiegﬂof each step of the algorithmi, we shall use
the following strategy: we show that the step can be carried
out by a methodlsimilar to that used by the matrix
multiplication glgorithm. The advantage of this strategy
sﬁould be obvious as it allows us to carry out our ahalygis
without having to deal with.the detailed structure of the
model (e.g. how the procesSors are connected_together). A
typical example is data routing which is always.neeéed in
parallel algorithms and whose implementétion and efficiency
are greatly model-dependent. Usiwg the above strategy, data
routing can be handled in a.model—indepéndent‘way.

Broadcasting the contents of a register columnwise or.
rowwise is needea ffequently in subsequent discussions. We
give a bdund on its resource complexities in the followiﬁg
lemﬁa using the above-mentioned strategy.

A

Lemma 3.2: Let PE[i,Jj) 1s<i,jsn, be a set of procéssors. The
time and hardware resources needed?lg brbadcast the contents
of register M[a,b) columhwise (rowwise) is at worst the same
as that needed by the ordinary matrlx multlpllcat1on

ﬁf?gor1thm on the MMM

Proof: To broadcast the contents of Mla, columnvise, we

o

perform .
Mlw,b]:= ‘Zk((dummy[w,k]*0)+(M[k,b]*'k) 1Swsn;

or simply, | ' 5 8
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Miw,b):= L. ((dummylw,K}*0)+MIK,b]) -, 1swsn, if Mla,b] is
the only possible non-zero term in the column.

Here dummy can be any register as 1ts appearance is just to

ensure that the resulting expression conforms to the one

s&§ted in Lemma 3.1, it is irrelevant 59 the computation.

Clearly, M{w,bl=Mla,b], t1s<wsn. By Lemma 3.i, the lemma

follows.

Bfoadcasting rowwise can be handled in the similar way. ®
We have to emphasize that we do not mean that

br&hdcaéting the contents of a register columnwise or

rowwise has to be actually done in the above way;'We‘merely
want to show that ifs complexity is bounded above by that of
matrix multiplication.

The following are some basic results which will be
referred to frequently in the rest of this chapter.

Lemma 3.3: The following operatibns can be carried out in

O¢t(n)) time with H(n) hardware resources on the MMM. |
(i) QLlu,v]:=2Z..fF(u, k), 1su,vsn;

(i1) Rlu,j):=Li. Flu,k), 1<jsn, 1susn.
where R is any register, f(u,ki is ;n extended monadic
functibn w.r.t. U, k and = is an associative operator.

Broof:' ,

=1, Fuk) is equivalent to Zi (F(u,k)+(dummy[K,v]#0)).

Similérlyf _ |

Zi..F(u,k) is equivalent to I, (f(u,k)s(ksj)).

" From Lemma 3.1, the lemma follows. L
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. » -
Lemma 3.4: Let O(t'(n)) and H'(n) be the time and hardware
resources required by the all-pair shortest path algorithm
on the MMM and G be an unweighted (directed or undirected)
graphvwith diameter d; thé%y ‘
t'(n)=t(n)*(lgd+1) and H'(n)=H(n). .

Proof: Let M be an adjacency matrix of G.

Coﬁstruct matrix D such that
1 if MLi,jl=1 and i#j;
pli,jY = {o if i=j;

te if MILi,jl=0.

g %
Compute the matrix D? as follows:
D' =D
D2**'[u,vl] m1nk(D"""”[u K] + Dt [k, v]), i21.

A simple induction w1ﬁ}‘reveal that D""[u v] contains -the
length of the shortest path from u to v consisting of no
more than 2' edges. Therefore after lgd iterations, D [u,v]
will conta1n the shorgfst dlstance from u to v in G. One
more 1terat10n is requ1red to verlfy that D* has been
computed. By Lemma 3.1, ‘%én)=t(n)*(lgd+1) and H' (n)=H(n). .
- o R ﬂ Q@ . @ ,

éggma 3. 5; Compﬁting the transitive‘closufe.of an adjacency
: matr1x ‘can be done in t"(n). time with H"(n) hardware
resources where t"(n)<t'(n) gnd H"(n)SH (n) |

Proof ¢ Let the tran51t1ve closure matrlx be M'- then

,'M'[a,b]=1_1ff D‘[a,b]¢+m_ = . -(
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3.3 Constructing a Breadth-first Search (Directed) Spanning
Forest of an Undirected Graph
In this section, we shall present %n eff.icient
algérithm for constructing a directed breadth-first
search(BFS) spanning forest for an undirected graph on the
MMM. ‘The method used was first 'implicitly' given by Savage

for the PRAM[SAVA77). It also appeared in. [DEKE81] and

[ATALBZ2].

Theorem 3.6: Given an nxn adjacency matrix M of an
undirected graph G(V,E), a directed BFS spanning forest for
G can be determined in O(t(n)-(lgd+1)) time with H(n)
hardware resources on the MMM, \
Proof: We shall construct an adjacency matrix 7 for the BFS
ISpanning forest (since an 1nverted spanning tree 1s more
éonvenient in some cases, the transpose of 7T, T' 1is also
constructed).
First, compute the all-pair shortest path matrix D¢ for
G‘and the trénsitive closure matrix Mf usiné Lemmas 3.5 and
3.6. Then for each connected |component of G, choose the
smallest-numbered vertex in 1t as ﬁhe rbof of its spanﬁiqgtf
tree. Since every smallest-numbered vertex of a connected
component satisfies the following property, namely, v is the
smallest-numbered vertex in a connected component iff -
M*[v,k]=0, ¥k<v, the set of all these vertices can be
determined easily as foll?ws: compute the partial sums

" .
Ranklu, jl:=Z¢.,M*[u,k], 15js<n, (Lemma 3.3(i)); then every

et



processor computes locally Replu, jl:=(Ranklu,jl=1) " \{u=7),
1<u, jsn. After this step, “it should be clear that Replr,rl]=1
iff r is the smallest-numbered vertex Qf a connected
component iff r 1s the rogt of a spanning tree (note that
Rep is a boolean array).

After all the roots r of the BFS spanning forest are
determined, the level of every vertex in the forest 1is also
determined. This is because level (v)=D[r,v]+1, YveV, where
r is the root of the tree containing v. We shall store
Jevel (v) 1nto level[v,v]i This is accomplished as follows:

levé}[r,v] := D[r,v]+1;

(Broadcast columnwise) Jevellk,v]:= Jevellr,v] Vv keV;
At this point, Jlevellv,vl=level(v), V¥veV.

Next, select a father for each vertex v which 1s not a

S

foot. This is accomplished in two steps. In the first step,
all the vertices whose levels are one less than that of v
are 1dentified:
(Broadcast rowwise) Jlevellv,k] := levellv,v] Vv, keV;
F'iv,jl:=\/.(levellv,kl=((1+]evellk, j1)*x(k=]))).
The second statement needs some explgnatioh: after
broadcasting Jevellv,v], ¥veV rowvise, Jevel [v,wl=level(v),
¥v,weV. As a result, the right-hand side of the statement is
equivalent to \/,(Jevel(v)= if (k=j)then(1+]evel (k))else0)
which in turns is equivalent.to if (Jevel(v)=(1+level(j)))
then 1 else 0. Hence, F'lv,jl=1 iff Jevel(v)=level (j)+1.

In the second step, the largest—numbered vertex which is one

level higher than v and is adjacent to v in G is selected as

v
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the father of v in the BFS spanning forest:
F[v,wj:=max.(if (F'{v,k]/\Mlv,k]) theﬁ k else O;r
(Lemma 3.3(1))
Note that F[v,v], for-v#r, contains the father F(v) of v in.
the BFS spanning forest.
Finally, construct an adjacency matrix T and its'transpose
f‘ to represent the BFS spanning forest. This 1is

accomplished by the following computations:

(Broadcast columnwise:) F'l[k,v] := Flv,v] Vv, keV;

(Broadcast rowwise:) F[v, k] := Flv,v] Vv keV;
‘([w,v] := (w=F'[w,v]) Vv, weV;
T'lv,wl := (w=Flviwl) Vv, weV.

Thus, T and 7' are boolean matrices such that/T[u,v]=1
(resp. T'lu,vli=1) iff u is the father (resp. a son) of v.

From Lemmas 3.1,'3.2, 3.4 and 3.5, we have: finding a
directed BFS spanning forest of an undirected graph takes

O(t(n)-(lgd+1)) time with H(n) hardware resources. ® /

3.4 Finding the Lowest Common Ancestors of all Vertex Pairs

in a Directed Tree

In this section,lwe implement the a'\lgorithm' for finding ]
the lowest common ancestors presented in Chapter 2 on' the

MMM .

‘Theorem 3.7: Given an adjacency matrix T of a directed tree
with diameter d, computing the lowest common ancestors of

4 )
all vertex pairs of the directed tree can be done 1in
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O(t(n)-(1lgd+1)) time with H(n) hardware resources on the

MMM,

Proof: First, construct the transpose 7' of T as follows:
every processor executes the Stategent Flu,vl:= if Tlu,v]
then U else 0; locally. Since there;is one and only one

nonzero F{u,v] value in each column, we may use Lemma 3.2 to

. broadcast these nonzero Flu,v]'s columnwise. After this

step, Flv,v] contains the father of v in the directed tree.
Then perform:

(Broadcast rowwise:) F[v,k]:=F[v,ij Vv,k;V;

T'[v,ul:=u=Flv,ul, Yu,veV.

From Lemma 3.2, this step takes O(t(n)) time with H(n)
hardware resources. N |
Next, compute the transitive closure T* and (T')" of T and
T' respectively. By Lemma 3.6, this step-takes |
O(t(n)-(lgd+1)) time with H(n) hardware resources. Note that
in theé course of computing the transitive closures, the

Jevel of each vertex is also determined (recall that

level (v)=1+D°[r,v] ¥veV, where r is the root of T) and

Jevel (v) is stored in Jevellv,v].
Finally, computée the matrix LCA:
(Broadcast rowwise:) Ievel[v,w]:=levelfv,v];
LCAli,j] := (max$), {(T')=[i,k1&(T*[K, jIxk)}.
The above expression in the braces should be interpreted as:
if k is an ancestor of |
then if K is an ancestor of»j then K

else 0 ,

R
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v

else O; o
The evaluation of the binary operation (maxs){a,b}‘neéds
some explanation. We proceed in two time units. In_the first
time unit, & and b are transferred simultaneously from
processors PE[i,k] and PE[k,j] respectively to a processor
PE(i,Jj,k] at which the binary operation is to be carried :
out. In the second time unit, Jevel(a) and Jevel(b) are
transferred simultaneéuSly from processors PE[i,k] and
PE[k,j) to PE[i,j,k). The values of Jevel(a) and Jevel(b)
are then compared in that processor and 1if le;el(a)‘is
greater, then a is the value of (maxs){a,b}, otherwise b is
the value. ﬁ
Computing the matrix LCA takes O(t(n)) time with H(n)

hardware resources.®

3.5 Finding a set of Fundamental Cycles of an Undirected
Graph
Aé with Section 5 of Chapter 2, we shall construct the .
matrices F;, LCA and P’ to represent the fundamental cycles
on the MMM. Since LCA has been digcussed in the lag; section

and P* can be easily determined from Jevel:

'(P’(v)=)P‘[v,v]:=n—level[v,v], we shall discuss only the

construction of F*.
Assuming that an adjacency matrix M of G(V,E) is given.

We construct the matrices T and T' for a BFS spanning tree

- of G. Clearly,' the diameter of the BFS spanhing'tree is not

greater than that of G..Tﬁen using Theérem 3;4, we compute
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the all-pair shortest path matrix (T')¢ for T'. Since for
any vertex U in an inverted tree, all Qertices'reachable
from u are located on the path from U to the root,
therefore, the uth row of (T')*® contains exactl& one i for
each J in the range [0,]/evél(u)), and containe‘ne j in the
range [level (u),n]. Consequently, F*(u) can be,cBmputed as
follows:

Frlu,k):=L,((T")[u,jl=(j, k)),

where = is defined as a=(b,c) = if a=c then b else 0.
Computing = canrbe done in a manner similar to that used for
computing (max$){a,b}. Specifically, we proceed.in two time
units. In the first time unit,” a and b are transferred
51multaneously from prcessors PE[u, J] and PE[] k)
respectively to a processor.PE[u,k,J] In the second time
unit, c'is transferred from PE[j, k] to PE[u,k,J]. a and C
are then compared in that processor. If they are equal, D is
the value of the computation, otherwiee the result is 0. \

Finally, ad?ustinc the array F° is straightforward and

!

takes no more than 0(t(n)-(lgd+ l;ﬁime with H(n) hardware
' v : b -1' he . 4

o | . ES
resources.n . ,wﬁz

3.6 2- color1ng an Und1rected Graph

»

We shall 1mplement Algorithm Bipartite on the MMM in

i

this section.

Theorem 3 8: Given an adjacency matrix M of an..

graph G, the 2- colorablllty problem can be sol@
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O(t(n)-(lgd+1)) time with H(n) hardw%re resources.

Proof: We generate 'the matrices T and T' for a BFS spanning
tree f of G using Theorem 3.6 and the adjacency matrix M' of
G-T by computing M' Uiy jl:=MLi,j)/\~(TLi, JIN/T'[i,j]) lOCééiy

at every processor. Note that M' is a boolean matrix such:

that M'[i,j]:=1 iff‘(i,j) is an edge in G but not in T. We
then examine every fundamental cycle in G by testing if
_level (i)#level (j), for every (i,j) in G-T, as follows:
(Broadcast rowwise:) levellv,wl:=levellv,v];
(broadcast columnwise:) Jevel'lw,v]:=levellv,v];
Flagli,jl:=levelli,jl#level " [i,Jj].
The previous statement 1is equivélent to
Flag[i,j]:=lével(i)¢level(j). Hé{e we-employ a property of
the BFS spannlng trees if (i,j)'fs an edge in G-T, then the

;s

difference between the levels of | and j cannot be greater
than 1. As a consequence, the conditiog i
"levelli,jlelevelli,jl" is equiQalent to that tested in Step
2(ii) of Algorithm Bipartite: “
Now, we assumé Flagli,jl has the initial value 1. We‘pfocged
to compute /\, ;Flagli,j] as follows: |
Bipartiteli,jl:=/\«Flagli, k], Yi,jeV; (Lemma 3.3(i));
Bipantite[i,j]:=/\kBipaFtite[R;j],-Vi,jev;
| o | (Lemma 3.3(i)).
At this point, G is 2—colorﬁble(bipartité)’iff
}; BlpartlteE1 1]=1.
Finally, -if BipartitelT, 1]—1, we compute’
Pantltlon[v,v]:=Blpartlte[v,v]/\(leyel[v,v]\is odd) locally

»
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-

[2 : )
at every processor. By Lemmas 3.1, 3.2, 3.5 and Theorem 3.6,

" the total time taken is O(t(n)-(lgd+1)) and the hardware

resources needed are H(n).m

3.7 The Bridge-connectivity Problem
In this section, we shall implement Algorithm Bridges
presented in Chapter 2 on the MMM. We shall determine the

set of bridge-connected components at the same time.

'Theofem 3.9: Given the nxn adjacency matrix M of G(V,E), the
set of all b}idges and bridge-connected com;onents in G can
}be determined in O(t(n)-(lgd+1)) time with H(n) hardwére
resources: on the MMM.

Proof: We proceed in 6 steps.

In Step 1, we construct the matriées T and T' for a BFS
spanning,tfee’g'of G(V,E). As a conseéguence, the matrix
ievel ié §lso available. Recall that:}eyel(v)=levef[v,v],
VveV, (Lemma 3. 6) | ‘

In Step_2, we compute ILCA(I ' J) wh1ch is the level of
LCA(I ,J) as follows.

. Compute the transitive closures T* and (T')" of T and

T' respectively. |

(Broéd¢a5£ rowwise) levellv,w) := Tevellv, v, Vv, weV;

ILCA[I Jli=max, {(T")" [/«k]*(T [k, _]J*Ievel[k ini.

.The expre551on in the above statement can be 1nterpreted as

if (T')" [I k]/\T"[k J]) then Ievel(k) else 0. NQte that in

partlcular, LLCA[v, v] Ievel(v) VVeV . v

-

<
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In Step 3, we construct an adjacency matrix M' for G-T
as weil as’the matrix £HLCA:

M Li,j) == ML, jY /N (~(TLi,J) N/ T'[i,j)]));

(note that M'[v,v]=1 VveV )

(HLCA[v,v] := min,{if M'[v,k] then (LCA[v,k] else 0},

(Lemma 3.3(1)); “
note that fHLCA[v,v] contains the level of HLCA(v) and
O<<4HLCA[v,vi<ievel(v) VveV.

In Step 4, we compute the array a:

(Broadcast rowwise:) fHLCA[v,w] := fLHLCA[v,v] VweV;

alv,w] := min,{T'[v,k]*?HLCA[K,w]};
Ngte that a[Y,V]=a(v). Moreover, alv,wl=alv,v] Vv,weV.

In Step 5, we compute the matrix Bridge: é‘

Bnidge[u,VJ%i\yg(T[u,k]/\((a[k,v]27évekik,v])/\(k=v)));
The right-hand side of the above statement is equivalent to
Tlu,vl/\la(v)2]level (v)), thus, Bridgelu,v]l=1 iff (U,v) is a
Sridge in G.

Finally, in Stgp 6, we compute the bridge-connected
components: -

fi:st remove the bridges:

MTLi,j1:=MLi, j1/\(~Bridgeli,j1);

closure (M")*.

[

then compute the%transitiye

From Theorems 3.5, 3.6 and Lemmas 3.1,73.2, 3.3 and the
fact that the diameter of M" can;otvbe greater than d, we
ha§é: the bridge—éénnectivfty préblém can be solved in
O(t(n)*(lgd+1)) time with HCn) hérdware resources on the

&

MMM.m - !
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3.8 The Bridge-connectivity‘Augmentation Problem

Invwhis section, we shall implement Algorithm Brconnect
of Chapter 2 on the MMM. We proceed in a step-wise manner.
First we show how G can be condensed into G, on the MMM in
Lemma 3.10. Then we construct the edge set A, in Lemma 3. 11
After that we discuss how a directed tree can be labelled in
perorder on the MMM in Lemma 3.12 and how -the edge set A,
can be constructed in Lemma 3.13. Finally, in Theorem 3.14
we combine Lemmas 3.10-3.13 to derive the resoutce
complexities of Algorithm Brconnect on the MMM.

4 , :
Lemma 3.10: Given an adjacency matrix M of G(V,E), the
s

forest Go(vo,éf) can be constructed in 0(t(n)*(lgd+1)) time
with H(n) hardware resources on the MMM,
Proof: We shall construct an adjacency matrix Mo.te
represent Go - |

First note that we can construct V0 by p1ck1ng a
representatlve from each bridge- connéited component of .G.
For convenience, we pick the smallest numbered,vertex from
each bridge*connected component since thls vertex can be'
determined ea51ly by eflng the method descrlbed in The®rem
‘vld d@é ha% the matrix B-rep such B- rep[v vi=1

s 'Ai

3. 6. s a
1ff v 1s theigmdllest numbered vertex of a ‘bridge-connected’

‘component Sff VeVo. Notetthat in the course of computing
B- rep, we also compute the matrlces Bnldges and (M")‘ (see
Algorithm Brldges Steps 5 and 6).% ) 3

9

7o determine the edge set Es,- we first determiney for
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each ueV,, the set V(u)={k|(j,k) is a bridge and u and J

belong to the same bridge-connected component}.

Specifically, we compute:
Cross—br;dge[u,k]:=\/,((M")'[u,j]/\éridge[j,k]).

Note that for'every devo} Cross-bridgelu,kl=1 iff keV(u).
~Next, we replace each Kk in V(u) with the vertex V in Vo such
that v represents the bridge-connected component containiné
K. This can be easily accomplished by computing: : &

(Broadcast rowwise:) B-repl[v,wl:=8-replv,v];

(Broadcast columnwise:) B-rep'{w,v]:=B-replv,vl;

a °ﬁT0[U,V]Zw\/k ( (B-replu,k)/\Cross-bridgelu,k])

/N ((M™)"[k,vA/\B-rep'[k,v]) ).

The above Statement should be interpreted as ‘
Tolu/vl:=(3Kk) (ueV,, and u cfosses a bridge to reach k, where
k is in the bridge-connected component as V wheré veVo).

An adjacency matrix'To for Go is thus constructed.

From Lemmas 3.1, 3.2, and Theorem 3.9, we have the
"indicated time and hardware resoﬁrce compléxities. =

$

‘Lemma 3.11 Given an adjacency matrix T, of Go(Vo.Eo),

constructing the edge set A, takes O(t(n)-(lgd+1)) time with

H(n) hardware resources on the MMM where d.is the diameter

-

of Go. ) . . .« v ] A‘

Proof: First computeATS and Rep(Theorem 3.6) and then
proceed in three steps,
In Step 1, we find the isolated vertices and select two

ﬁendants from each tree in Go. These are ¢he veg;ices-having
_ . . ‘ "~ v v

”
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k4

degree < 1. Therefore we begin by computing the degree of

each vertex u: |
degreelu,u):=L{. . Tolu, k] YueV, (Lemma 3.3(1));
ﬁ(Note: degreelu,u] is the degree of u in G.).

Based on degree, we compute Pen-isolu,ul:=(degreelu,ul<t)

locally at every processor. Then Pen-isolu,ul=1 iff u is a

pendant or an isolated vertex of Go. We assume

‘Pen-isolu,v]=0 for u#v.

The remaining part of Step'ﬂ is devoted.to isolating two
pendants from each non-trivial tree of G, and the isolated
vertices in QGo. The isolated vertices are lebelled with -1
while the two pendants from the same tree are labelled with
1 and 2 .respectively. The remaining verticee are labelled
with 0. We begin with computing a boolean matrix Pi such

that Pilu,v]l=1 iff v is a pendant of the tree represented'by

'y in Go or v is an isolated vertex. Note that in the %attef

case U musf equal to v.
'(Beoadcast columnwise:) Pen—iSo'[w,u]:=Pen-jsotu,b];
(Broadcast rowwise:) Rep[u,w]:;Rep[u,u];

" piluv]:=Replu,vI/AT3uvIAPen-iso' luvl. )

r , i .
Using Pi, we rank the pendants of every non-trivial tree:

TPRS[u,j1:=Ed. Pilu k], 1$jsn (Lemma 3. 3(iai)!

‘ The pendants we select from each tree afe those-whose PRS

values (ranks) equal to 1 or 2. We proceed to label the

1solated vertlces and ‘the selected pendants as follows.

For pendants e dfmpute. ’

Iabel[u vl]:i= if ((PRS[u v1<2)/\Pilu, v])

[ 3
A
i s : B



then PRS{u,v]
else 0;
The above statement should be interpreted as: if v 1s a
pendant of the tree represented by u and its rank 1n that
tree (PRS[u,v]) is 1 or 2, then label v with its rank else
label v with 0.
For isolated veftiéesl we compute:
labellu,ul:= 1f (PRS[u,ul=1)/\(degreelu,ul=0)
A then -1;

’

This completes Step 1. . &

=S ~

, .
In Step 2, we rank the trees in Go and pass the rank of

-y

each non;trivial tree to 1ts’ two selected pendants. Recarlﬁﬁ

that Rep[k,v]=Rep[kpA]=1 ¥k, veViin Step 1.
Pank[i,i]:=21=,Rep[k}i]; ' o
Clearly, rankli,i] is the rank of thg.tree representeq
by i in Go. | - | J

We then pass the rank of each non-trivial tree to 1its two

pendant vertices labelled with 1 or 2. = -

. '(Broadcast"rowwisé:) nank[é,u]érank[k,k] Yk,vVeV; ¢
ranklv,v1:=it. it Pilk,v] then ranklk,v] else 0;
At this stage, ranklu,ul=ranklv,v] iff u,v are the two
péhd&hts in the same tfee in Go. |
In Step ,(w?wcbﬁstguct the mz;xtrix‘A1 such that:
Avlu,v]=t 1fo\u v)eds: _ .
- Broadcast all the Iabel[u v] s with value -1, 1:pr 2

\ columnw1se. Since there is at most pne nonzero label. in
\ . Y

\ | .

«*
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each column, this broadcasting can be realized as

.

follows: ~ ' l -
}abel'[u,v}:=22=,.Iabel[k,v];
(Broedcast roweise:) Iabel[u,w]:=label[u,u]; S
(Broadcast columnwise:) rank'[w,ul:=ranklu,ul; 'E s

(Broadcast rowwise:) ranklu,wl:=rgnklu,ul; =

Finally, execute the following statement localgpy at every

- processor:

°

if {(PRS' [u v]—~1) (i.e. v is an isbiated veftex) and
the ranks of u and v differ in only 1 ana u isr
labelled with 1 or 2} or {u and“v3ate bqth‘ ’
seiected pendants but the rank of u is 1 greéter
than that of v while its lebel is. 1 less than that
of v or‘the reverse}‘ \ \

then A,lu,v]:=

else A lu,vl:

I B
The above’ condltlons ‘can be ea51lJ tested by retrieving the
K
h
l

contents, of the label; label', rahk and Pank' registers in -

. o - : :
each processor.” . -/

”

Erom Lemmas 3.1, 3.2, 3.3, 3.5 and Theorem 3.6, we have

1

the indicated time and hardware resource complexities. ®

’ Lemma 3 12: Given an adjacency ma‘ & f: a. dlrected tree ,

whose diameter is d labell1ng the vert}ces of the tree w1th

preorder numbeys can be done in 0(t(n)*(lgd+1)) tlm% WIth
H(n) hardware resources on the MMM. , iy )

RN

»
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/

Proof: We proceed in 3 steps. : S

In step 1, we compute nd(v), the-number of descendants
of v, for every v. This is easily accomplished by first
computing T* and then adding all Lhe 1's in each row of T*".
Recall that T‘[d,k]=1 iff k is a déscendant of U;

f‘nd[u,v]:=z:.,T[u,k]'.

In step 2, we compute nds(v), the sum of the
descehdgntsfof all elder brothers of v. Note that the‘SOQS“
of every vertex are ranked by their vertex numbers:

(Broadcast columnwise:) nd'}u,j]:énd[j,j];

L

Compute the sum of all the descehdants of the sons of u
. whose vertex numLér aré less than j. Note that j may not be
~a son of U here: 1' . | ~
ndslu,jl:= Z{:3(if Tlu, k] |

| .
| \ . - +then nd'-[u,k].

<
)

else 0),I(Lemha 3.3(41));
wa; set ndsiu,j] to zero if j is not a son of u.

nds[d,g]:=‘ii'T[u,j];then‘pds[u,jl\elge 0;

Finall@, in step Bi we computé, pré(v), the preorder
number using the formula giveh.in Lemma 2.15. "
(Broadcast nd§/;nlumnw1se :) nds'[w,jl:=ndslu,j], where

F(J):ug 51ﬁce every j has a single father, there is
exactly Qne non zero nds in each column, > Lemma 3.3
can be applied here. | Tl . x
(Recall again that T'tk,vli\\iff‘k ié'an ancestor bf‘
v.) S o
prelv,v]:=z, (nds' [v,k1¥T*[k,v]);

w7
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¥en compute \ . ry

bne[v,v]:=pre[v,v]+levéI[V,v] locally at every

processor. - <
Clea:ly, prelv,vi=pre(v).

From Lemmas 3.1, 3.2, 3.3 and 3.5, we haQe the

~

;ndicated time and hard&ire resource complexities. ®

Lemma 3.13: Given an adjacency'matf{; M of an undirected .

tree G whose diameter is d", construcfing the edge set A; to
N Bridééfconnect G'éan_be done in O(t(n):(lgd"+1)) time with
H(n) hardware resdurces. ‘
Proof: CoAstfuct an’adjacency matrix T for a (directed) BFS
spanning tree of G ana choose a vertex-wiéh degree greéter‘
th;n 1 as thé foot. Note that when n=2, the;e is no way to
bridge-connect G without introducing parallel edges. It is
therefore resonable to assume.n23 and th{s implies that a-
vertex of degree greater tﬁan ! must exist. This step

effectively converts G into a dlrected tfee whose root has

’ [}
at least two sons. i

) Next, opmpute the preordef numbers pre(v), ¥veV (Lemma.
3.12). Note that pPe[v,v]=pbe(V). Then.find the pendants and -\
sort them by preorder number :

| notleaf[u,u] =\t Tlu, k], (Lemma 3.3(i));

.hecall‘that T is a directed tree, - notleaf[u,u]fo iff v is
a pendant. :

Erase the preorder number of all non- pendants'

 prelu,ul:=if -notleaﬁ[u,u] then prelu,u] else 0;
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Order the pendants by preorder numbers: .
(Broadcast rowwise: ) prelu,wl:=prelu,ul; |
(Broadcast columnwise:) pre'lw, ul: =prelu, u]
Rank-leaf[u,u]:=2k,1(Pré[u,k]$pne [u, k1),
| — ‘\( 4 ‘ (Lemma(3.3(i));
}Sipce the root is a nonfpendant, Raﬁk—leaf[u,u}fn it uis &
ﬁ-pendant, and'Rank—leaf[u ul=n if u is a\non~pendant. As a
" result, the non- pendants\can be ellmlnated easily: |
Rank-leaf[u,ul:= if (Rartk- ~leaf [u,ul<n) |
~;hen Rank—leaf[u,u]
~ | éise 0; |
Thus, the pendants are sorféd by preorder number and
Rank-leaf[u,u] indicates the poéit{od‘of U in the sorted
'sequence.
Now, determlhe the total number of- pendants.
‘ T-leaf[u,u].—Z 21 (pre' [u k]>0), (Lemma3.3(i)); -
'; T-ieaf[u,u], VueV,'conta1ns the total number of perddnts
in the directed tree. » :
Finally, we construct Az as follows. , ; .
Fof all u Rank+leaf[u,u]>0, compute the rank of v such
that (u v) is to bq 1nserted 1nto Az.

Partner-;ank[u u] =if (Rank-leaflu, UISIT leaf(u, u]/21

W : then Rank- Iggglu ul+\T- leaqu u]/2J'
Note that the dlv1510n can. be real\ied by 'left sh1ft1ng one .
bit" Finally, | ) ‘ . o R :\\;“
(B{oadcgst rowvwise:) | f ! . | ‘

Partng;*{gnk[u,w]:3bar9ner*rank[u,u%; SR {.k'
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. p ‘ A

“.“seperetxon vert1ces at the same txme. fi»"

A
(Broadcast colum?viSe:)

Rank-leaf'lw,ulr=Rank-leaflu,ul; . = o A )

iﬂ?ﬁu V]?= (Rankeleaf'[u v]-Partner-rank[u v]).

\Up to thls point, we have 1ndeed constructed a
'directed’ edge set A, rather than the desjired undxrected"
edge set. ‘In order to. complefe the constrdit1on of A;, we '

may construct the transpose of the (d1rected) A, Just
/

vconstructed This process is exactly the same as that

descr1bed in Lemma 3.7, the d15cuss1on is thus omxtted
‘,'From'Lemmas 3.1, 3.2,:3.3, 3.12 and Theorem 3.6, we

have the 1nd1cated tlme and hardware ﬂesource complexxtxes.
. \ .

\
e
\

Theorem 3. it- The bridge-cbnnectivity augmentation problem

~. can be splved in O(t(n) (max(lgd lgd')+1)) txme with H(n)

hardware resources on the MWN, where d"1s the dxameter of

}Go(Vo,EoUAo). . . |
Prooi. Immed1ate from Lemmas 3.10, 3. 11 3,12{‘3.13'aﬁd the

!

mopservatxon:that_d" can be;greater then d. .

: 3 9 The B;connectxvxty Problen

&

In th1s sect1on, ve shall 1mp1ement Algorzthm Biconnect

o of chapter 2. .on the MMM We shell determine the eft/of all

-

T

ff Theore- 3 JS' leen an hdjecency matrxx M of en undxrected

'f-rjgraph G, the set of all seperatzon vertxces end bxconnected _,if



F“*if?f,of G' here t)

1

components in G can be determined in . . R -:EE.‘
o(tln)- (max(lgd 190')*1)) time, with H(n) hardware resources R
on the MW, where a" is the ‘alameter of G" defined in- 1-74""g*’i

3'Sect{on 2.10.2.

JEECRIS

‘Proof We. proceed 1n 5 steps.v,k;'l uf.%*’!ﬁf,  'ﬁfgf l’»u_*Q,f
y - ~f
Steps -3 are the mame as Steps 1 -3 of the elgor1thm

",for br1dge-connectiv1ty, thear d1scussxons are thus om1tt

Recall that after step 3 Ievel[v k] -level(v),.

'lHLCA[v, ]-IHLCA(V) v, keV and the adjacency matrzx M' of ?t!f”
GT is evaileble;"‘” »;f*f B ‘- o ';',1,..5 c:»«,’jfﬁé-‘
‘ In Step 4, we shall construct an adjacency matr1x M" ﬁ@; %‘ f3
‘ for G"(E' E*) and determxne the connected components oi G“;j |
'}(Broadcast rowwzse-) lHLCA[V k] 1= £BLCA[V v], Vv kgv;ﬁf .
| . inroadcast columnwise.)level [k v1 -Ieve;[v v], VV kfv, ‘He
', | (Broadcast columnwxse JlHLCA [k v]~-lBLCA[v v] VV ch"t'
| / g‘i._(Conmder 1f HLCA(u)ivsu) | ,,,
M"[u,v]'-(T [,V /\ (Ievel'[u v]>lm:.ca[u v]), S
' (Conszder 1f HLCA(V)fusv) : ' i
H”[u v]°-n"[u vl e o
L ‘ \/(T'[u,v]/\(level[u v]>IHLCA'[u v]))
:{;(Consxder the non -tree edges)gﬁ\;n;en?feife:}
e WMNPWWmW\/Wwvhqﬁw_' -
.tfig(t‘Note' 81nce each v un:quely determ1nes F(V), we iffeeﬁ <

'“Qconvenxently use v to tepresent (F(v) v) 1n the vertex set S

© Now compute wf» ‘this determines thé comected

‘t:}ficomponents of GW/




-,;?(_dv prd‘ ; w‘ ,\'vp' - ‘;“ a5
o . _ , _ St ﬁg.~.
In Step 5,. we shall determ1he the set of all separat1on
'vertlces of G Recall that F[g,vlsF(v), VveV after Step 1. '*'
Q(Broadcast columnwlse ) F'lk, vl = F[V vl, Vv, keV L
| Compute the matr1x subnoot sucﬁ thatosubﬁoot[v vl contains
‘the ‘oot of the subtree (of the BFS spann1ng tree) |
contaznxng v ‘ B S "7~ Lo B ’rf
{:V ver subnoot[v v].=(m1n$5 {if (M”) [v k] then F'[v k]}

-

Once subnoot is computed constructlng he matrix Spt

. such’ that Spt[v v]=1 1ff Vv is a separat1on vertex of G and )
ﬁaddxng these §eparat1on vert1ces to the connected components

Z._of G" to form “the b1connected components of G should be

stra1ghtforward. We omxtt théﬂdetazls here. | ov /*% f.

By Theorem ‘3.6 and Lemmas 3.1, 3.2, 3.3, 3. 5, and note.

2\n;that d" can be of O(n) even 1f d<<n, we have° the

. e>Q§3 10 Pertor-ance on Exxltxng Hodels

‘?bzconnect1v1ty problem can be sovled in

IZAO(t(n)*(max(lgd lgd")+1)) txme w1th H(n) hardware resourcesl

o ontheMws

Trew L - -

The axm of thzs sect:on 1s to enhance the results we

'“*f;#have ach1eved 1n the prevxous sect:ons by ShOVlﬂg thﬂt the

e ZQ}MMN 1ncludes many of the vell knovn ex1st1n9 compu;er models

: "{as 1ts speclal cases and tﬁat the performance of our

"”iijalgorzthms on all these‘models are very ef£1C1ent.~ﬁ;5;ffenﬁ

© ' Lemma 3.16: The folloving computer models are instances of .. |



’»_~ea;The txne and hardwgre ‘resource
‘gvnatrxx_-ufti‘ 1catxon aI’oritﬁu
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the MM: © ,».«'n. - ;>
. MCN(VLSi) : Mesh connected Networks[CANNGQ DEKE81 ATAL82]
UPSN(VLSI),: Perfect Shuffle Networks[STON71 DEKE81], |
c&ékv;sr)‘; Cube~connected Cycles[PREPBFj
. OTN(VLéIietIOrthogonal Tree Networks[NATHBZ], |
| OTC}VLSI) t Orthogonal Tree Cycleﬁ[NATHBZ] ,“' o |
SIMD cce SIMD Cube-connected Compnters[DEK881], “

,'RRAM B SIMD Shared Memory\model WIth read confl1cts
| ‘ permltted[WYLL79] . '.r,' N
~ WRAM : SIMD Shared Memory Model wlth read and write.
' conf11cts permxtted[SHILBZ KUCE82]
'Proof We show 1n the followlng table that each of these
1models has an ord\nary matr{x multlplzcatlon algorxthm.'For
"other features of the MWM that they ppssess, ve re&er the

'-reader to the references cxted.

= el = time chip area AT’
. MCN t I) ‘®ny O(n‘

. S BE B i
PSN(VLSI) . 0(lg? n)-* ‘/lg n O(n‘-lgh) === [DEKEB1]

- cCC(VLS1) *0(1 2n) . n*/lg*n O(n‘-lg’n) --- [PREP81]
'OTN(VLSI) (lg n) - n*lg®n . O(n*-lg‘n) --- [NATHB81]

.- orc(VLSI) - O(lg*n) . n‘ =+ .0(n*-1g*n) / === [NATHBV} . -

_vesxun—ccc 0(1g=n)_ e -/ R In’/lgnq [DEKEB1]
PRAM - - 0(1g*n) ==

B = _rn"/ign1 [savayjl .
1.WRAM”v“ use the algor1thm for the PRAM : I

'7nlrhe theorem thus follows._h-f S

Before comb1n1ng Lemma 3 16 thh the results obtaxned 3

”'5:rg1n the;prevxogp sectrons to produce the desxred results, we,te<

w';7frfwould like to pOInt out that the txme complexlty Of our

.‘t.ﬁefgalgor1thms are domznated by the all-parr shortest pUth

’"fif;elgorxthm vhzch 13 e'

edfto generate the BES spanning forest._;f:};"
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If for a particular MMM, there exlsts an all-pair sH.{test
path algorlthm Whlch ‘runs iaster than our algorithm
descrlbed‘1h Lemma 3.4, then that all-pair shortest path
valgorithm could'be used in place of ours and the time
‘complexity'of the resulting algorithms is improved. Th{giis

the case for Hhe MCN and WRAM as is shown below.

-

The timd and hardware resource complexities of our :
al orithms on various existing models, , .

model . time "chip area AT? # of processors

- McN(vLS1) O(n)t n? o(n*) -=-[VANS80]
PSN(VLSI) O(lgn*L) n¢/lg:n O(U’*n‘/lgn) ---

CCC(VLSI) ' 0(lgn*L) n*/lg*n O(nexL3?) =~ ---
JOTN(VLSI) - 0(19[7*[_) n*lgin O(n*lg*nsli) =-- . '

oTC(VLSI) 0(lgn*L) n* 0(n*lg?*n*L2) --- -

SIMD-ccC.  O(1gn*L) --- --- n?/1gn

_PRAM 0(1gn*L) --- -~ n*/lgnqy -
o(L)t --- --- me . [KUCEBZ]

- WRAM ¢
note: L = max(lgd lgd'ﬁ+1 , 15d, d"sn for bridge- connect1v1ty
- “augmentation and b1connect1v1ty, ..
v = 1lgd+1, otherwise. \
+ indicates the all-pair shortest path algorithm in the
c1ted reference is used. 1nstead of Lemma 3. 4. v
~0of all the‘above-ment1oned'models, no algdtithms for
~the’ brxdge connect1v1ty augmentatlon problem were known
prevxously. Furthérmore, with the exceptlon of the MCN and
PRAM, no algor1thms for the br1dge-connect1v1ty and
b1connect1v1ty problems were reported For the sake of

’“ycomparason, we llst all the prev1ously known results below'

ggg gxne _and hardware resource cqgglexxtzes gg the W
rev¢ousl ~ known algorithms on variocus existin “models.

_model /\ txne ': T ,ETE nro; — AT?  f of grocessote
(1) The' srs 5 annxng forest S ] - j~
_MCN(VLSI)-O(n) , ~ = p* 0(n*) =-- [ATALB2)
PSN(YLSI) 0(lg*n) ' = .n¢/lgn O(n‘lg n) ----[DEKE81]} .

sxun-ccc 0(lg n) o e e In /lgn1[DEKE81]




T

N 4 92
(ii) The lowest common ancestors - .
PRAM 0(1gn) - e n® [SAVAB1)
. \ v \ » . "
(111) The fundamental cycles : . .
PRAM 0(19 n) re- --- n* [savagt)
c e , 3 . N ' :
(iv) The 2~colotab111ty (Bxpartlte) -
MCN . O(n) 0(n*) --% [aTAL82]
. ' > :
(v) Brxdge-connect:vxty and Biconnectivity - |
MCN(VLSI) O(n) . . n? - 0(n*) ---[ATALB2]
PRAM 0(1g*n) == --- tn*/1gn [SAvVAB1]
L or 0(19 nlgk)i -~ - =-- ]E|n+n’lgn[SAVA81]
or 0(lg?n) --- f*-- n?-lgn [SAVABT]T

Note:t for bridge- connectivity only;

t+ K is the number of biconnected components in - the

graph

The eff1c1ency of our algorlthms should be evident from

the tables.

Flnally, we shall prove a lehma wh1ch would ‘be useful

our algor1thms on the PRAM. and the WRAM

N

P4

B

A

-
in employzng existing rdsults to 1mprove the performance of

‘Lenma 3.17: Convert1ng an'yndirected fSrest 1nto an 1nverted

(or directed) forest takes O(1gn) time w1th n? progessors on

the PRAM. and the WRAM,

) .

Proof “We shall fznd a d1tected spannlng forest for the

.undlrected forest u51ng the all paxr shortest path method

every pa1r of vert1ces in the und;rected forest only 0(1)

A

fprocessors are used Spec1f1ca11y, th1s 1s accomplxshed as

»follows* Assxgn n processors to each pa1r of vert1ces u and

':"v such that each of these n processors 1s attached to a-

,» .

-v”descrxbed in Lemma 3. 6. S1nce thete is a unlque path between
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distinct vertex. Dur“hg the ith 1terat1on of execut1ng the
\)

all- pa1i\\hprtest path algorlthm, the processor attached to
“vertex, say k, will examlne the entr1es/D""""[Jlk] and
4‘ D"“""[k v]. If both of their values are £1nate and
Y o D""""[u k] 2171, then that processor wzll add thezr
| | values and‘store“tge sum 1nto‘D""[u,v].,It,1s eas11yu
o  verified that there isvexactlflone-Such'prodessor;findingr
vathe_ebove,condition satisfied, hence no write'confiicts -
would occur on,the‘PRAM.'lv o A | |

As_the ffrstoppkication-of Lenma 3.17, wve sha}l@show
" that the proceSSor'bound of-ourwe;gorithms on the‘wgﬂg_can 4
| be'improoed toAO(n“).' o SAE

‘. . . ‘ , . . : ¢ \B

. - : N . .
;(2> - Corollary 3.18: All of our algorithms described in this"

. Chapter run in O(Ign) tame u51ng n? processors on the WRAM

- > "y
Proof Construct a m1n1mum spann1ng forest for the g1ven

'.igraph in 0(1gn) ‘time with H‘Z[EI pro\igfons[AWERBBJ . Convert

:-the m1n1mum spannlng forest into a d1rected foresé'u31ng

r

“,Lemma 3 17. It is é?slly ver1£1ed that the remaznlng steps

T 5
‘-7?‘a11 toke no more than D(lgn) time. ‘and’ n’ processors. .
o | IR e
,._,Cf,;dB 11 Conclusxons o _f g .;\e x,:'fi; f* | B

In contrast to sequential computat1on vhere the j{f;f
ﬁ' seguentxal RAM 1s chosen as an unxversally acceptedomodel,

A o
‘V';}ﬁthere 1s no un1versally accepted model 1n parallel

th:ficomputatlon. ﬁp to the present, thg parallel computer model
»-Jiﬁ'whzch has had the greatest degree of popule?1ty is the. PRAM.

’55fi‘ff’il{ffiﬂf"jffﬂf"ﬁf;fifgvﬂ*ﬂ7f'}1rB’”'fff3~}ﬁffffff;f*fjh';?f(ﬂ55;e}f'1fﬁi~ii:d
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Th(b Asedue to its poyerful fan-out capab1l1ty whlch %:‘.

prov1des a means by’ whzch all the phys1cal conFtra1€ts :
>

" 1nherengf1n the 1nte nnect1on network are bypassed The
des1gner can thus concentrate.on uncover1ng the 1hherent ,ﬁ

4 data—dependency of the ngen problem. Th1s makes the task of
9 ‘
ahgor1thm desxgn mudh erxer. As a consequence parallel

algor1thms publxshea in. tbe 11terature ar&.mostly de21gned

for ahe PRAM or 1ts gtronger ver51on, the wRAM

A

Unfortunately, thxs fan—out capab111ty 1s unrea11st1cally |

pdwerful in the sense that it cannot be real1zed wzth
current technology._Its ecceptablllty as a un1versa1 model

18 questzonable.

/

The restr1cted models wh1ch take the technologzcal

/

- . constra1nts under consideratxon are preferahle from the

- pr ctical p01nt of vxégghlnce they are well su;ted for

‘? cur ent YLSI technology. However the constraxnts 1mpoaed by\ ;

| thexr l1m1ted fan in/out capab111ty tend to- obscure the

J R
.~ﬁeslgner s 1nszght and make the desxgn of eff1c1ent S

‘*1//algor1thms more d1ff1cu1t Furthermore, pOftabllltY between .

these models 15 weaker due to the vast varxety of ways of

f’hr,construct1ng the integgonnection network To remedy the

fxrst drawback one may fxrst deslgn an algonthm for ,the

| problem on the PRAM end then map the algor1thm onto the

94 -
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P
problem, we may 51mulate one model on the other. So fa ;
these 51mu1at10ns are done at ;he abstract level [SI 773*/
and [SIEG79] are except1ons.\__' C o

/v,- - .

In our oplnlqn, the.MMM model proposed ‘in. this chapter
.prov1des a better solutlpn to the abo;e problems. By g
~reduc1ng~many of the bas1c}operatxons we use into operations
of the form deflped 1n Lemma 3. 1, we have managed to. \\
demonstrate thae)the algorlthms presented in. Chapter 2 for>
the PRAM can bé 1mplemented on many of the exxstxng
restricted models with no degradat1on 1n t1me. Moreover,;tbe.
portabrlzty 5} these algor1thms on various models 1s |
1mmed1ate - no ted1ous simulation is necessary Thus,.the"

MMM'model seems to be avprom151pg tool for de51gn1ng

7p table algorithms.



”_;connect

”[presented 1n [TARJ72] The‘algor1thm also detects all

77dbr1dges and hence the brxdge connected components of thJ_

.o Chapter 4 » L.
IMPLEMENTATION ON THE SEQUENTIAL RAM

o

J v T : ‘ v

. ‘
In Chapter 1, 1t was mentloned that glven a parallel

- using P(n) processors, then the same algbr1thm can run on

.the,sequentlal RAM in T(n): P(n) time. An 1mpl1cat1on of thls

observatlon 1s that each of the algorlthms presented in
"

f;Chapter 2 1mmed1ately 1nduces an O(m) or O(n‘lgn) t1me

algorlthm for the sequent1a1 RAM. Although thls result 1s

optimal for- dense graphs, we shall show that, we can do
X
better for . sparse graphs for some of the problems. In thls

fchapter, we present 2 sequentlal ver51on of Algorlthm

;Blconnect whlch f1nds aIl the blconnected components as %ell

Y

for all graphs Moreover, it does not rely on’ the well known

d .

depth ixrst search spann1ng tree but uses any spannlng tree

&

hot the graph Thus, th1s is another example to show that T

'i.

v1ty propert1es of graphs eff1c1ently (the f1rst

'fiexamplﬁ was gzven by Tarjan 1n [TARJ74] condern1ng fznd1ng

-'ﬁfall brldges), It 1s also shown that thls algorlthm 1s a

4.1 Introduction S e R ,;};, ~

‘as all the separat1on vert1ces of an undlrected graph Th1s :

- algor1thm requ1res 0(n+|E|) t1me and space whlch is optlmal :

R

-jdepth f1rst search gsfnot always necessary for dealxng w1th o

‘algorithm for the»PRAM if the algorlthm runs 1n\Q(n) t1me o

+

SR

7;37fgenera11zat1on of Tarjan s depth f1rst search algorithm R )




97
3 !

graph within the same time_and space bounds.
We also present a general program scheme for the
btidge*connectivity problen. This general pngram scheme
_runs on .the sequential RAM in‘max(O(n+|E|){T(g,¢1,¢z)) time
and max(O(n+[E|);S(g,¢|,¢z)) sphce, and on the PRAM in
max(0(n/K+1g?*n),T(g,d,,¢2)) time with nK(K21)‘processors,
where g,A¢,, @, are parameters of the general program
A
scheme. Clearly, the optimal??y of the program scheme
depends on the complex}ties of T(g,#,,8.) and S(g,@,,@.). We
v'shall show that by substituting several appropriate
functlons for the parameters g, @, and @,, we can derive
most of the eX1st1ng optlmal sequéntlal algorithms as well

as. new optimal parallel algorithms including, Algorithm

Bridges presented in Chapter 2 fo'r_\tinding the bridges.

. 4.2 The Sequential Algorithmifor Biconnectivity

In this section, we present a sequential algorithm for
finding all biconnected conponents and all eeparation
vertices of an undirected graph. As with Chapter 2, since
each biconnected component is completely determined by its

-+

vertex set, it sufiices to finé the vertex sets of all the
blconnected components "

Let G(V E) be an undlrected 'graph. Without loss of
generallty, we~aga1j’assume that G is. connected and
V={1,2,...,n}. We also use the function HLCA(u) defined in

Chapter 2. However, we redefine it here because there is a

slight modification involvedfu
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Definition: Let T(V,E') be a directed spanning-tree of G and
ueV.
HLCA(uy)=LCA(u,v) in T, where.(u,v)eE and

depth(LCA(u,v))sdepth(LCA(u,v')), ¥(u,v')eE.

4.2.1 An Outline of the Algorithm

We give an outline of the algorithm below:

Algorithm Seq-biconﬁgct:

1. Create a spanning tree T' of G;

2. Convert T' to a directed tree T(V,E'); again let the
functions F and depth be such that F(v), depth(v) are the
father and depth of v in T respectively, V¥veV; A

3. Partition T into connected subgraphs, calleg
trimmed—subtrees‘{T.} such that each of them has the %

. following properties:’ ‘ |

(i) Bach T, is a directed tree whose root has exactly one
'son; ‘

(ii)a. let r, be the root of a T,, for any vertex v#r, in

T,, HLCA(v). is a descendant of r.;"

b. for every internal vertéx v#r, in a T,, there exists
a proper descendant d of v for which HLCk(d) is a
proper ancestor of v; |

c. let 1 be a leaf-node of a‘T., then for every proﬁér
descendant d of | in T, HLCA(d) is a descendantlo§>lp

4. Construct a graph G"(V",E"), such that V"={T.} and 4

(T«,Tm)eE™ iff there exists an edge e in E connecting T,
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and T, and the end-vertices of e is neither the roots of
the two T!s. Find all the connected components {{T.};} in
' G", then each U,;{T(V)}, is the vertex set of a

, e
biconnected component in G, and vice versa, wge;e T.,(V)

A

is the verteryset of T,. =

4.2.2 Partifioning the Directed Tree

The input to the algorithm is an.adjacency list of G.
Steps 1 and 2 are trivial and can clearly be done in
O(n+|E|) time and space. Thé-resulting directed spanning
tree T is represénted by an adjacency list which takes 0(n)
space.

To realize the partition {T,} of T in step 3, we will
traverse the directed spanning tree T in preorder and label
every vertex with its preordef number. Henceforth, we will

>- . -
name each vertex by its preorder number, i.e. v=pre(v).

Definition: For veV,
”Iow(v)=min{w|w=HLCA(x)\x is a descendant of v in T}.
) ,
For example, in Figure 4.1(i), Tow(3)=1 and JTow(15)=9.
Due to the ag;pciativity-of min, the above equatibn can be
rewritten aS: |

Jow(v)=min({HLCA(V) JU{Iow(s) |s is a son of v in T})

The complete description of step 3 is as follows.

1. precount:=1; compute F(v), depth(v) VveV; compute.

/
v
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§

HLCA(v),¥veV, using the off-line lowest ébhmon ancestors
algorithm presented in [HARE80].

2. CreateTi(r), where r is the root of T.

procedure CreateTi(v);

begin . . ' ‘

pre(v) :=precount; \
precount :=precount+1;

Push v on stack stackT:

Jow(v) :=HLCA(V) ;

for every son s of v do

begin .

CreateTi(s); .

if low(s)=pre(v) :

then pop stackl until s is popped and then output Vv
else Jow(v):=min(Jow(v),low(s))

end '

epd{of CreateTi};

An example of the result of executing step 3 on the
graph in Figure 4.1(i) is given in Figure 4.1(ii).
Theorem 4.1: Step 3 correctly generates the set of all
trimmed-subtrees {T,}.
 Proof: We want to prove that whenever Jow(s)=v, the vertices
on stackl from s right up to the top plus vertex v
constitute the vertex set of a T,. This is done by:induction
on the number of Tis in T«

If T has oniy one T,, then the prdof is trivial.

7; Assume that the induction hypothesis holds for all T
having m Tis. Consider a T having m+1 T)s. Let CreateTi(s)
be the first call of CreateTi ending with Jow(s)=v. This
~means no vertices have beén~popped from stacklT. Therefore,
the vertices on stackT from S to the top and vertex Vv form/.

'the vertex set of a subtree Tv of T rooted at v. Tv clearly

/
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| Figure 4.1(i)
A directed spanningc:;ee'T(V,E').
The solid lines are thg~t:;q‘odgdi.

The dotted lines are the edges in G-T.
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The partxtion {T,} of T.
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,L‘f pxoof Traver51ng the spannlng tree T and ma1nta1n1ng the
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,possesses propert1es (1) and (11)c. Iow(s) =V 1mp11es that Tv
possesses property (11)a. F1na11y, Tv must possess property
(11)b for otherwise there. is a proper descendant w of s for
.wh1ch Iow(w. =W where w.‘1s a son of w. This contrad1cts the
assumpt1on that CreateTx(s) is the first call end1ng w1th
IOW(S)wv. Thus, Tv is a T. of" T After remov1ng the vert1ces
in Tv from stackT, the«1ndqct1onvhypothesis ensures that
"»‘step‘3 correctly generates the-remaining m'T}s;i" |
RS . , o , | .

~ The dohpleyity of Step 3 is anél&zed as folloés. |
Theorem'4 2:;Step 3 of Kigorithm Seq-bieonnect tahes o,
0(n+|E|) txme and space on the sequent1al RAM, |
i.stack staCkT takes 0(n) time. Comput1ng HLCA(V) VVeV takes
}0(n+|E|& tlme and space[HAREBO].‘Moreover, both the' stack
'stackT and the stack for govern1ng the traversal of T do notv

<

grow. beyond n ‘unit of%space. o yi‘

4.2 3 Comblnxng the Trlmned—subtrees

After step 3 15 fzn1shed, the d1rected spannxng tree T '

“"5'15 part1t1oned 1nto trxmmed-subtrees T}s.-From Lemma

~l2 25(1) (11) and property (11) of T., 1t is eeszly shown -

':~ff?that each T. 13 conta1ned w1th1n a un1que b1connected 1.;'”'

;7ltcomp°°°“t 1n G. It is also ea51ly shown thet every two

-aadjecent T;s intersect et no more than one vertex.alf
- &

'rhowever, two ad)acent T's ere connected by an edge an G—

“lﬁff{wh1ch 1s not 1nc1dent wzth elther of the roots of them, thenﬁf]'* <
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they should be combined together as they are contained
. within tne sae biconnected component (Lemma 2.25(iii)). In
‘the followiﬁ%, we will show tnat when no snch combination
] can be carried out any further, the result is the vertex
*sets of all the bidonnected components in G.

As an example, consider Figure 4.1(ii):again. For

clarity, we denote each tfimme subtree in the figure by

T.(.) where s(i) is the preo der number of the unique son of
the root of the trimmed- subtree. For instance, the
trimmed-subtree conta1n1ng vertices 9, 15, 16, 17, 18, and

=
19 is denoted by T,s. Hence the dlrected tree in F1gure

-

4.1(1) is divided into tr1mmedfsubtrees Ta, Ta, Taos T2,
_ "Ter Torw Toay Thay Tas, T{.. Tzs and T27 in éigute‘4 1(ii,
70 tu ' "Tz and T, are connected by an edge (5,9) in G-T and nexther
5 nor 9 is the root of T, or T,. It can be easily seen tnat
Tz and T7;ere‘1ndeedvconta1ned within the same biconnected
'_Component; Similarly, the edge (5,6) joining T, and T.
'1mplres that Tz and T. are contalned w1th1n the same
S ;blconnected component , Con51der again the edge (5,9); this
- edge also connects T, and T,s. However, 9 being the ‘root of
| " Tis does not imply that T, and T, are 'conteined within the
{°;5”a;_csame blconnected component (in fact, they are not). ‘The same

f:argument applies to the edge (23, 26) 'which connects Tzq and

d;JeT,1, and the edge (12 10) wh1ch connects T]I and T,.

m:;neflnltlon. Let T,, z¢{T } be two tr1mmed-subtrees. T'——Tz

. (1) r.-T,,
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or (ii) there exists an edge e in G-T sueh that ‘e
connects T, and T,, and e is not ineidgnt with
ry or r,, where r, and r, are the roots of T,
and T, respect1vely, o
or (111) T,—T, for some T;e{T } such that Ta——Tz
It can be eas1ly shown that any edge in G-T violating
the.criteri§“§i§en in the above definition is of one of the
types depicted‘in Figure 4.2.
The binary'relation — is an equiValence'telation on
{r, } angd- thus part1tlons {T.} into equ1valence classes_
{{T.},}. Let BC,=U {7, },. The following theorem poznts out:
that the vertex sets of all the'BC,slls exactly th% vertex.
setsvof all the biconnected oomponents infg,

a

Theorem 4.3: v,V' are in B, -for some biconnected component B

- of G, iff V;erBC,(V), for someEj, where BC,(V) stands for

the set of all vertices in BC,. ®
Proofv 1f part. From Lemma 2. 25(111), it is obvious that
each BC, is completely contalned w1th1n a blconnected

component of G.

iOnly 1f patt Th1s 1s proven by contrad1ction W1thout loss
:f;?of generalxty, let  us: assume that BC& and&ﬂcm ase.dxstznct
;Tuand BCk(V)UBCm(V)=B(V) 1t should be clear that BC‘ and BCm

“1ntersect at no more than one vertex wh1ch 1s eumher the R

root of BC. or BCm. W1thout loss of general1ty,°we assume

'they 1ntersect at nk, the root of BCu. ance Pk cannot be a

,]separatlon vertex 1n B there must be an edge 1n B jo1n1ng
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(i)

. rigure 6.2 Non-tree ‘edges violating the — definition

RN
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~ BC«.,and BCn ngt 1nc1dent with ry. ObV1ously, thxs edge is
not 1nc;dent wlth Pe elther,,for otherw1se, P would be in
T. forcing ry=ry wh1ch contrad1cts the fact that the edge is
not 1nc1dent ulth re. This 1mp11es that the two BC, s would
'have the '—' relationship leadlng to a contradzct1on.ho
i : . LY | . . “
Le-a 4.4: The problem of finding the set of all BC,'s in T -
can be - reduced to the problem of f1nd1ng the set of all -
’connected components of an undirected graph... B
Proof: Def1ne a graph G"({T }, E") such that (T.,T )eE" 1ff
thhere exists an edgé e in G-T such that e connects T. and Tm
) and e is not 1nc1dent w1th e1ther of ‘the roots of the two
“T.s. Tt is clear that Te, Tm belong to the same connected
~comp}on_ent-wof Gf iff Tim—Tm.® o |

It should be clear that every BC, is a d1rected .

’

o spannlng tree.of 1ts correspondlng blconnected component. In

fact, {BC }e {B AT} defxned in Sect1on 2 10 3. Consequently,.
whave: A

L;;fTheorem 4.5: Let: aeV a 1s a separat1on vertex of G
1ff a is the root of some BCl if agp,--»~"

or a 1s the root of more than one BC, if a'F-}i o

_rProot See Lemma 2. 29. ?;‘

'-: Each tr1mmed-subtree T. determxned 1n step 3 1s
ol

‘f‘represented bygp l1near 11st contatnxng all the vertxces ofgf'v

' fQ:y.T. except the root r.. The reason for exclud1ng r. should befh:'
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.
obvious as it may belong to other T:,'s at the same t1me
Nevertheless, P can be rel;cated easily as r; -F(sl) where
S 1s the only son of P. inT,. s; is also used as the
representatlve of T. 1n G". The linear lists are:crea;ed
-whlle the vertlces are popped from stackT in procedure
CreateTis Note that s, is''the last vertex popped from the.
stack and is‘therefore easily identified. & vector superV is
also created at the same‘time such that for each jzrtex v in
fG, supePV(v)=s. iff .v is in T, and v#r,;. The purpose of
suﬁerv is to tell to which T, each_vertex v'belongs. The
exciusion of P‘ from the'list ensures that srluationsa
: dep1cted in Flgure 4.2(1),(ii) are always handled correctly.
In other words, "the edges shown would never be mlstaken as
feedges establ1sh1ng the — relatlonshlp between the T and Tm
' shown. As a consequence, the edges which must be taken care
of are those edges in which one end-vertex 1s a Py and the
fother end vertex is in T\ (Flgure 4, 2(111)) |

' To create the Qraph G"(V",E") in st%p 4 an adjacency
list of G" must be. created “We proceed as follovs. The

o

'11near llStS for the Tis are scanned one at a t1me. Suppose

9

",the 11near lxst be1ng exam1ned corresponds to T.; then for L

1‘Jeach vertex stored 1n the l1near llst, the adjacency list
- of v.'in G/}s scanned For each node u encounte ed 1n the ?“
ﬂ'adjacencyvllst, the followlng tests are performed ol |
(1) t%st ifl super'V(u)#.s“ B |
(11) test 1f F(sk)eu, »'~

(111) test if E(super'V(u))tv. RN
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Test (i) is to ensure u,v " do not belong to the same
trimmed-subtree T, while tests (ii) and (iii) are done to
ensure that thé edge (v,u) 'is not antedgexofathe form shown
in Flgure 4.2(iii). Npte that no tree edgeS'pass/the tests.
If the edge passes the tests, then a new node contalnlng the
vertex superV(u) is added to the adjacency list of s« in G",
thereby'establlshlng the '—"' relatlonsh1p between stland
supePV(u) when all the linear llsts are processed, the '
adjacency list of G" is complete. Note that G" may be a
multlgraph (1 e. there may be more than one edge jolnlng tvo
vertlces) However, |E"|<|E| |

The connected components of G" are then determ1ned by
traversrdg the graph_GF, uslng any standardvtraversal
teChnique. For each connected'Component of GV,~all—the.'
linear lists correSponding to;the'T}s in‘the component ar: |
merged together-and the root hj bf smallest'depth.among all.
the roots of these Tis 1s determined. ThlS r and the -
vertlces in the llst resulting from ‘the merge form the S

-

'vertex set of a blconnected component in G Moreover, from
e . -
Theorem 4, 5 the n, is a separat1on vertex of G 1f P,#P To = .\

jdetermlne 1f the root r is a- separatlon vertex of -G,
‘ proceed as follows. A Boolean var1able called once 1s

; 1n1t1al1zed to £alse at the beg1nn1ng. Whenever a component

0

- of G" 1s completely traversed, the correspond1hg vertex P,

.

vmxs examlned If 1t 15 r, the varlable once is. examlned If

vonce has the value false, 1t w1ll be set to true and the F

"-V1s dlscarded OthéEulse,_by Theorem 4, 5 r must be ag
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separation vertex of G.

When finaily all the components of G" are determined,
fhe vertex sets kaéll the biconnected components as well as
the separation vertices of G are also determined. Figure
4.1(iii) illustrates how the trimmed-subtrees depicfed in
Figure 4.16ii) are combined to form the BC;'s. The
correctness of step 4 should be obvious from the above

dicussion. The time complexity of step 4 is analyzed as

 follows.

Theorem 4.6: Step 4 of Algorithm Seg-biconnect takes

O(n+|E|) time and space.

Proof: The construction of the adjacenéy list of G" takes
0(n+|E|):iime. Traversing G" so as to detérmine the vertex
sets of all the biconne%Bed components of G takes O(n+|E])
time and the creation of the vector superV takes 0(n) time.
as for the space complex}ty, superV takes 0(n) space and The
adjacency list of G" is cléary bounded by 0(n+|E|) even if
G" is a multigraph. Hence, step 4 can be done in O(n+|E])
time and space. ®

.
In summary, the Algorithm Seg-biconnect takes O(n+|E])

time and space to generate the verﬁa,ﬂgﬁts of all the
_ h g |
biconnected components and the set of all separation

vertices of G.



4.2.4 Discussion of Other Related Work

Consider what happens if the directed spanning tree T
happens to be a depth-first search spanning tree of G. In |
this case; no cross edges[TARJ?ZI exist. This implies that
the '—' relationship does not exist betweén any two Tis.
Thus step 4 will be omitted. As for step 3, since all the"
edges (v,u) in E-E' are back'edges[TARj72], LCA(v,u)=u or v
depending on which is the ancestor of the other. As a
consequence, the value IOW(Q)/becomes:

Jow(v)emin({F(v)} U {low(s)|s is a son of v} U {w|(v,w)

. is a back edge in G-T}). |

Comparing Jow(v) with JTowpt(v) in'[TARJ72;p;151]‘anda}
procedure CreateTi with procedure BICONNECT 1in
[TaARJ72,p.153], it is obvious that they are basically
equivalent; Hence, the dept?-first search algorithm for
determining the biconnected components[TARJI72] is a special
case of our algorithm. Clearly, our sequential algorithm

could also detect the bridges and hence the bridge-g¢onnected

components of G within the same time and space bounds.

Remark;

Recently, Tarjan has ihdependently achieved a similar
result[TARIB2] by uging another technique which does not
involve compyting ﬁhe LCA values. His algorithm is not a
generalization (in the senﬁe described‘above) of the

depth-first search[TARJ72] algorithm.
14

\
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4.3 A General Program Scheme for Finding Bridges

']
4

4.3.1 The General.Program Scheme

In-this section, we present a general program scheme
for finding the bridges of an undirectea graph G(V;E). We
shall show that by substituting the parameters in the
program scheme with ;arious specific functions, a number of ~__
.optimal algorithms for finding the bridges can be derived. \\\\
Included f% these are the known optimal sequential
algorithms as well as new parallel élgorithms for finding
the briages.

The general prograa scheme is based on the following

lemma which was ‘stated in a different way in Theorem 2.20.

*

1

Lemma 4.7: Let T(V,E') be a directed spanning tree of a
connected, undirected graph G(V,E) and e=<F(a);a>eE'. e is a
bridge in G iff for every descendant v of a, if (v,w)eE-E',

then w is a descendant of a.

i

The General Program Scheme.
Input: The adjacency matrix or list of G(V,E);
Output: The set of all bridges of G(V,E); )

s .
1. Find a directed spanning tree T(V,E') of G(V,E); °

2. Define g:(E-E')UE"—N, @,:V—N, @#::V—oN, where E" is the
set {(v,v)|veV}, N is the set of integers, such that the
following condition is satisfied: : :
for every aeV, let v be any descendant of a, and
(v,w)e(E-E"WU{(v,v)},

then @,(a)sg(v,w)s@,(a) iff w is a descendant of a.



3. For every veV, find
L(v)-mxn{g(v w)| (v, w)e(E-E"U{(v
"H(v)=max{g(v,w)|(v, w)e(E E'Yilv

e we

4. For every aeV, find
mln(a)-mln{L(v) v is a descendant of a, in T};
max(a)=max{H(v)|v is a descendant of a'in T}.

5. For every aeV, '
(F(a),a) is a bridge iff @, (a)smin(a) and max(a)sdg.(a).

Theorem ;.8: The general program scheme correctly finds all
the bridges of G(V,E). N
Proof: From the definitions of min(a) and max(a),
¢1(é)Smin(a)Smax(é)S¢z(a) -
iff @,(a)sSL(v) and H(v)s@,(a) ¥veV, where v is a descendant _
of a . |
iff g, (a)sglv,w)sg.(a), ¥(v,welE-E")U{(v,v)} and v is a
descendant o; a | |
iff for every descendant v of a, 1f (v w)elE-EU{(v, V)1,
then w is a descendant of a (The cond1tlon g1ven in Step
2)

iff (F(a),a) is a bridge in G (Lemma 4.7). ®

-
~ o~

4.3.2 Implementation on the Sequential RAM

Theorem 4.9: The general program scheme takes
max(0(n+|E|),T(g,@,,@:)) time and max(0(n+|E|),S(g,@:,@2))
space to find the set of bridges on the sequential RAM,
‘where T(g,d:,82) and s(g, ¢1,¢2) are the time qﬂd space
needed to compute the functlons g, @, and @;.

Proof: Using the adjacency l1st of G, Steps 1 and 3 can
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clearly be done in O(n+|E|) time and space. Due to the

associativity of min, min(a)=min({min(a,)|a, is a son of
alU{L(a)}). The same arguﬁent applies tg max(a). Therefore
by simply traversing the spanning tree T in preorgder or
postorder, Step 4 can be done in O(n+[E|) time and spage.'
Step 5 takes 0(n) time and spaée. Hence ;he general pfogram
scheme takes max(O(n+|E|),T(g,¢1,¢z)) time and
max(0(n+|E|),S(g,¥,,8,)) space. = ‘ .
. | R

.Based on the above general program scheme, several .
optimal sequeﬁtialﬁalgprithms for finding the bridées of G
can be generated as follows. F
Coroliary 4.10: Let g(v,w)=pre(w) V(v,w)e(E-E')U{(v,v)};

g.(a)=pre(a); '

_ ¢z(a)=pﬁe(a)+nd(a)-1) VaeV, where‘nd(a) is the number

of descéndants of a and pre(a)'is the preorder nuhbér of a.
Then the general program scheme finds the bridges of G(V,E)
in O(n+|E|) time and space. |
Proof: It is easy to show that for every aeV, if v is a
descendant of a and (v,w)e(E-E')U{(v,v)} then'w is a
descendant of a iff pne(a)Spné(w)Spné(a)+n{(a)—1: Therefore |
- the resﬁlting program scheme ébfrebt;yliéenpifies all the |
bridges; Furthermofe, bne(V) YveV can be'computé% in 0(n)
“'time and spécefHO?Q?Q];,nd(v)'VVEV‘can be cbmputgd‘in
O(n+|E]) time and space by using the féct that
‘}ﬁd(v)=2;hd(i)+1 VieV, where V.,is“thé set of all sons of v.

N T
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Hence T(g,@:.@;)=5(g,@:,8:)=0(n+|E|): ® .

It is interesting to note that when T is a depth first’

\

search spanning tree, Corollary 4.10 is equivalent to the

#ﬁdepth first search algorithm for findiné the

bridges[EVEN79,p.67, Ex.3.71.

b

Corollary 4.11: Let g(v w)=post(w) ¥{v.w)e(E-E")U{(v,v)};

3 (a)-post(a) nd(a)+1; .
@, (a)=post(a), VaeV, where post(a) is the postorder
number of a.

Then the general.program scheme finds the bridéés of G(V,E)

in O(n+|E}) time and space.

Proof- It is ea51ly proved that for every aeV if v is a

descendant Qf a and (v,w)e(E-E' )U{(v,v)}

‘then w is a descendant of a iff

| bost(a)-nd(a)+1Spost(w)spost(a).:Mofepver, Sinhce post(v)

- VveV can bé'computed in‘O(nf ﬁimé and space[HORO?S] and

| ancestor of v and w 1n T depth(a) 15 the depth of a 1n T-_‘i*‘

nd(v) VveV can be computed in 0(n+|E|) time and space,

T(g, ¢1,¢=)= S(g,@,,@:)=0(n+|E|). ®

Note that this algorzthm 1s equ1va1ent to that of

Tarjan[TARI74]. o e

C°f°11lry .12: Tet glv, w)édépth(nca(v:w)) |

Vv, w)e(E E')U{(v v)}, where LCA(v,w) is the lowest common;
& (a)fggpth(a) "»‘ . ,1; o ,’» e
¢=(a)=n (note that depth(v)sn VVeV) Vagvij*~ -

[ A
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thenvthe general*ptogram scheme finds all the bridges in
O(n+|E]) time'end space. _; 1 | o o -~
Proof: It is easily proved that for every(gev, if vV is a
descendant of a and (v,w)e(E-E")U{(v,v)} '. .
Lthen w is a descendant of a iff depth(a)Sdepth(LCA(v w))sn
Qomput1ng LCA(V,w) V(v,w)e(E-E")U{(v,v)] takes O(n+|E|) time
and space[HAREBO]‘anq computing depth(v) ¥veV takes o(n)

time and spaee. Hence T(g,@.,8.)=5(g,@,,8.)=0(n+|E|). =

4.3.3 Implementation on the PRAM

Theorem 4.13: The general program scheme takes |
'max(O(n/K+lg 2n),T(g,B:,82)) time with nK(K21) processors to-
find the bridges of G(V,E) on the’ PRAM,‘where T(g,@:,82) 1is
the time taken to compute (define) the'functions g, 9 end
¢2‘§ith nK(K21) p;oeessorsL' - |
‘ Proo£' By Lemma 2. zwat(v) H(v), min(a) and max(a5 Yv,aeV
.'can all be determined in O(n/K+1gK) time with nK(K21)
eprocessors. Step 5 clearly takes constant time and step 1‘
etakes O(n/K+1g3n) time w1th nK(K21) processors(Theorem 2. 5)
Hence, the general program scheme takes

- max{(0(n/K+1g*n) ,T(g,@,%z2)) time with nK(K21) processors. %

_ »:As ﬁith the sequentiel machines optimel parallel
t‘algorlthms can be derxved from the general program scheme by
'-u51ng preorder, postorder and LCA on the PRAM. "

"n-fCorollary 4 143 By def1n1n9 Q: ¢1 and ¢z in. one of the

;t;followzng ways, the general program 5cheme runs in-



0(n/K+lg?n) time with nK(K21) processors on the PRAM7
(1) Let glv,w)=pre(w) ¥(v,w)e(E-E' Wilv,v)};
- @ (a)=pre(a); ‘

¢z(a5=pne(a)+nd(a)-1"Vaev
(ii) Let glv,w)= post(w)bV(v w)e(E ENU{(v,v)];
’ g {a)= =post (a)- nd(a)+1;

@, (a)=post(a) VaeV.
(111) ‘Let g(v W): depth(LCA(v w)) V(V w)e(E-E"U{(v, v)},

@, (a) depth(a):

¢z(a) n.
Proof: For (i) and (11), pre(v) pOsf(v) and ng(v)‘VVeV, can
be computed in 0(n/K+lgn)’time with nK(K21) processo;s(Lemma
2.15). For»(iii), the,reshlting algorithm is Algorithm
BridgéS@preeented in Chapteriz In an§‘of these cases, we
have T(g, @,,8:2) 0(n/K+lgn) Hence the resulting parallel

algorithm takes O(n/K+lg’ n) time w1th nK(K21) processors."l_'

4.4 Conclusions o | |
Recently, Shiloach and Y1shk1n desagned a parallel o

algor1thm for the max-flow problem which runs in 0(n*- *1gn/p)
t1me u51ng p(15p$n) processors on the WRAM[SHILBZb] Thzs
algor1thm can at best achieve the O(n‘lgn) tlme bound w1th n
-.processors.fﬂowever, they managed to der;ve a sequent1al -
'e‘algorlthm from it wh1ch has the o(n? ) time complexlty. They :
| claim that the de51gn of parallel algor1thms could prov1de Ry
1n51ght 1nto the. des1gn of sequent1a1 algor1thms for the,

 same problem.,We share ‘their fee11ng.\ ;; '_ _“;‘A'



Chapter 5
PROBABILISTIC TIME, EXPECTED TIME AND O(1lgn) TIME

COMPLEXITIES

5.1 Introduction

In Chapter 3, it was shown that all of our algorithms
run in O(n) time in the worst case on the MCN.. This time
- bound is easily seen to be optimal as routing itself takes
0(n) time in the worst case on that model. It was also shown
that all ohe algorithms run in O(lgn)‘°vtime in the worst
case on the WRAM. Although Shiloach and Vishkin eonjeciured
that it is difficult to breach this 0(lgn) worst case time
bound us1ng a polynomlal number of processors on the
‘WRAM[SHILBZ], no proof has been given. As for the PRAM and
other more restrictive models, it was shown that the
- algorithms ruh in O(lg?n) time in the worst case. Althoogh
it is likely that this is a lower bound for time, no one has
hyet hmanage to prove it. It is therefore intriguing to ask:
Can the 0(1lgn) worst case time bound:be'breached on the WRAM
~and the‘O(lgin) worst time bound be breached on the PRAM?
~Reoent1y, Reif'showed that iflprobability error in ;he |
solution io allowed ‘then he could solve‘some.of the
ie:problems in 0(lgn) time with a polynomlal number of
v_'processors on the "PRAM and that the probabllzty error could
| 'be eliminated by mtroducing nonuniformfty[REIFBZa] More

) :recently, Rezf and Sp1rakls showed that some of the ex1st1ng

- . . o - o - - o - -

“ >’° L=0(lgn) in the worst case.

119
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graph algorithms do have O(loglgn) expetted time complexit§
on the WRAM and Of(lgn-loglgn) expected time complexity on
the PRAM[REIF82b].

In thlS chapter, ve shall show that the algorithms
presented in the previous chapters could run in 0(1gn) time
using |E|n°lgn processors if probability error is allowed.

We shall also show that most of these algorithms have

* MD(loglgn) expected time complexity on the WRAM and

0(lgn-loglgn) expected time complexity on the PRAM

SIMD-CCC, OTN, OTC, CCC and PSN. Flnally, we shall show that
the recogn1t1on problems of spllt graphs and permutatlon
graphs do have 0(1lgn) (determ1n1st1c) time algor1thms. Reif
only showed that they have 0(1lgn) probab1113t1crt1me
algorithms[REIF82a] and no other loggrithmic time algorithms -

were known before.

5.2 Probabilistic Time Complexity

Recently, Reif considered the possibility of breaching
the 0O(lg?n) time bound for the~connectivity‘problems'and the
planarity testing problem. He showed that if probability.
error is allowed, then the 0(1lg*n) time bound can be
breached, His method is based on Aieliunas Karp, Lipton,
‘Lovasz and Rackoff's result on random walks on connected
| undlrected graphs[ALELJS] and Lewis and. Papad1m1tr1ou s
nondeterm1n1st1c 0(1gn) space algorlthm for the UGAP problem
| (given a connected undirected graph GV,E) and u veV, does

Rhere exist a pabh from utov in G’)[LEWIBZ] Alelzunas et
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al. showed the following:
Given eny connected undirected graph G(V,E), let r
be a random walk in G starting from any vertex veV; r
1s constructed by repeated exteneion, randomly choosing
an edge which is connected to the cur}ent front end of
r and adding it to r. If r is of length 2|E|(|Vl-i),-
thep Prob(r visits ali vertices in G)21/2.
\ Using the result of Aleliunes et al., Reif devieed‘a
probabilistic search technique.to implement Lewis and .
Papadimitriou's UGAP aigorithm in 0(1gn) space.''
-Specifically, he showed that given any probability error e,
0<e<1, the’UGAP problemecan be solved in 0(1gn) space and
h°“’ time within error e. By solving a problem within error
€, he means that givee any problem instance w of UGAP, if
the answer to w is yes, then the probability thaﬁ the
dlgorithm produces the answer'yes-is'greater than or equal
to 1-e. If tﬁe answer to w is no, then the érobability that
fthe algorithm produces the ansver yes is'less-than woo
Observing that deterministic PRAM's can accept,within
polynomlal time exactly the sets that determ1n1st1c Turing
machxnes can accept within polynomlal space[GOLD78, WYLL79]
Reif proceeded to show that given any probab111ty error e,
0<e<1, the UGAP problem can be solved w1th1n error ¢ in
;a(lgn).tlme with ne¢") processors on the PRAM. Using thlS(\\
UGAP algorlthm, Re1f managed to implement Kruskal s greedy

. ———————e P - —— T ————

11 Reif's result is more formal and general. We have
tailored his result here to suit our needs. Readers who are
interested 1n his. work are encouraged to consulted :
[REIFSZa] :

I

L]
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algorithm for the minimum spanping foresf
prohlem[HDWO79,pp.179—183] within error ¢ in 0(lgn) time
with |E|-p processors on the PRAM (p is the number of
processors used by the probabilistic O(lgn) time UGAP

b

o - ! .
algorithm). In [REIF82c], Reif claimed that p=n’lgn, As.a

result, we have: g

Lemﬁa 5.1:[REIF82a) For any probability error e, 0<e<t,
there is a paralled algorithm which f%hds a minimum spanning
forest for an undirected graph within error e in 0(lgh) time
with |E|n*lgn processors on the PRAM,

Using this result, it is easily shown that:

. . > | .
Lemma 5.2: For any probabﬁl@ty error e, 0<e<1, there exists
an O(lgn) time probabilistic parallel algorithm for finding
g frted spanning foyest u51ng |E|n21gn processors on the

o

{

‘VFirst find a m1n1mum spanning forest T for the

?ected graph in O(Ign) time within probability error e,
fl, using |E|n’1gn processors[REIFSZ]. Then convert - T

Uo an 1nverted spannlng forest using Lemma 3. 1] L

f;feotem 5. 3 For any probablllty errg% €, 0<e<1 The'class
v algorlthms descrlbed in Chapter 2 could run 1n 0(lgn) o
'ht;me 1nth1n error e u51ng |E|n’lgn process rs on the PRAM
Proof Flrst note that by Eonsttuctlng an 1nverted spannlngf

.fcrest for an und1rected graph, we . can determzne the ~‘A;
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connected components of the undirected graph in O(lgn) time

as follows: for every vertex v, associated v with the root -

bf‘the tree in which v resides, then u, v belong to the same

connected component iff u and v are associated with the same
root. These roots can be identified easily if we use the

array F*. The whole process clearly takes no more than

O0(1gn) time if nrn/lgny processors are available (Theorem

2.3). As a result, by using Lemma 5.2, we can construct

directed spanning forest or determine the connected

components of an undirected graph in O(lgn) time with
|E|n®1gn processors within erfor e. Furthermore, it is
easily comfirmed that all the other steps in the algorithms -

do not take more than O(lgn) time with npn/lgny processors.

- The theorem thus follows. ®»

In addition to the result on random walks for connected

:undirected graphs, Aleliunas, Karp, Lipton, Lovasz and

‘Rackoff also gave an affirmative answer to a questlon from

Cook concern1ng the ex1stence of short n-universal

sequences An n- un1versal sequence is deflned as folloWs'

‘"Let G be a connected undirected regular graph of degree d.

At each vertex v, let the edges incident wlth v_be glven\the

distinct labels 071;2,;..,d-1. A sequence ¢ in

P

{01, 2;.}.,d-1}‘-ia said to traverse G from v if starting at

v and follow1ng the sequence of edge labels o, one v151ts

all the vert1¢es of G. 0 is. called an n-unlversal sequence‘

'f.lf 1t traverses every n—vertex regular graph G w1th degree d

7fstart1ng from any, vertex v." Alel;unas et al.-showed.that

vy
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¢
there exists an n-universal sequence of length O(n?Ign);

By replacing;thetprobahilistic choice in his
probabilistic search technique with an n-universal sequence,'
Reif showed that the probabilistic error in his algorithm
can be eliminated. However, as each n-universal sequence is
good for oniy a particular n, the resulting algorithm n
becomes nonuniform in the sense that there is a different
program\for each different n. Consequently, we‘have.
Corollary 5.4: The set.of graph theoretic problems
investigated in Chapter 2 can be solved in O(lgn) time u51ng-

|E|n*lgn processors w1th a nonuniform algorithm on the PRAM

5.3 Expected Time Complex;tf

More recently; Reif and Spirakis showed that given a
_ random (dlrected or undlrected) graph the diameter d of G
"has an expected length 0(lgn [REIF82b] Based on this
result, they showed_that some existing parailel graph
‘algorithms, particularly, those for the graph-Canectithy '
and minimum spannlng forest have an O(lgn-lglgh) expected |
tlme complexity on the PRAM: and an O(lglgn) expected time
complexlty on the- WRAM Comblnlng the1r results on the

average length of . dlameters w1th ours stated 1n Chapter 3,

/
13

we 1mmed1ately have.

Lemma 5 5 Wlth the exceptlon of Algorlthm Brconnect and

L Algorlthm Bxconnect all the algorlthms@presented in Chaptev‘

2. v, .
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)

3 have an O(f(n)olglgn) expected time bound with H(n)
hardware resources on the MMM,
Proof: Since d=0(1gn) on the average[REIF82b], therefore
L=0(1glgn). =

Unfortunately, Reif's result on the expeéted length of
diameters cannot be applied to Algorithm Brconnect and
Algorithm Biconnect. This is because the structures of the
graphs Go(Vo,EoUA{) and G"(E',E") depend on the given graph

G(V,E) and are therefdre not random graphs.

5.4 O(lgn) Time Algorithms for Split Graphs and Permutation
Graphs - L
Split gréphs and permutatioéméraphs arise in many
contexts and have received consi%grable attention 1in the
past decade. The former belongs to the class of chordal
graphs (triangulated/graphs) which have important
applications in Guassian elimination, genetic. research, etc.
The latter were shown to be useful in modelling and s}stem

programming like memory reallocation. The previouly known

fastest sequential algorithm for identifying the split

graphs takes O(n+|E|) time[ROSE76,FOLD77] while that for

identifying permutation graphs takes 0(n?) t%méﬁiYEN72]. No
parallel aigorithms exist for problems of this class except
Reif's O(lgn) time probabilistic parallel algorithm and

0(1gn) nonuniform parallel algorithm[REIF82a] for the PRAM.

-

However, his algorithm for split graphs does not generate a

g"split if the result of the identification is positive. In

'
o

LY
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this chapter, we show that there are indeed O(1lgn)
(deterministic) time algorithms for the recognition problems
of these two classes of graphs on the PRAM, Furthermore, the
algorithm for split graphs uses n*/lgny processors. \
Unfortunately, since the splitting property of a graph 1s
not monotone, we do not know whether this processor bound is
optimal. Finally, we show that these algorithms can be
implemented on the MMM taking O(t(n)) time and H(n) .hardware
resources and that the algorithms can be conve;ted 1nto
O(n+|E|) time and space optimal sequential algorithms.
5.5 ldentification of Split Graphs
Lemma 5.6: G(V,E) is A split graph iff G has a split
G.(V,,E,), G,(V,,E,) such that G, is independent and G: is a
cliqgue.
Proof: The "if" part is obvious.
The "only if" part: If G is a split graph, then G has. a
split G,, G:. where Gz is a complete subgraph. If G. is not a
clique, then there exists a vertex veV, such that ({vixVv,;)
is a subset of E.Qméfeover, there does not exist another
ueV, for which ({u}x(v,U{v})) is a subset of E for otherwise
G, cannot be independent. Thus, the subgraphs G} (V.-{v},E.), ,
Gi (VUiV}, EoUCIvixV,)) is a split of G in which G} is a
“clique. ®

Due to Lemma 5.6, wve may, without loss of generality,
assume that whenever we speak of a’'split G,, G: of a split

graph, G, is independent while Gz is a cligue. We will adopt
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this assumption in subsequent discussion.

Apparently, if G is a split graph, then just by finding
a cligque G, in it, one should be able to conclude that G 1is
a split graph as the rehaining part G—G; should be
independent. Unfortunately, this is not' the case as is
depicted 1n Figure 5.1.

In Figure 5.1, the graph G has three cliques. Only the
one determined by the vertex set {a,b,d} leads us to the
decision that G is a split graph. It 1s therefore imporggnt
to be able to distinguish between those cliques which would
lead us to the right decision that G is a split graph (if G
is indeed a split graphs and those which would not. The

following lemma sheds some light on this matter.

Lemma 5.7: If G(V,E) is a split graph and G:(V,,E,),
G.(V,,E;) form a split,

then (i) deg(v)<|V.|-1 VveV,;

and (ii) deg(w)2|V.|-1 VweV.,

where deg(v) stands for the degree of v.
Proof: (i) Let veV,. Theh (v,u)fE YueV, because E,=(.
Thefefore, deg(v)ﬁlvzl.'But deg(v)=|Vz| implies that
G.(V,,E,) is not a clique. E}nce,.deg(v)S]V21—1.
(ii) Immediate from the definition of complete graphs. =
Corollary 5.8: Let G(V,E) be a split graph. For anx)dev,,

veV., degl(ul)<sdeg(v).

Proof: Immediate from Lemma 5,7. =
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it

{a,p,cl,{a,b,dl, and {b,d,e} are cliques.

Only {{a,b,dl,{é,e}} induces a split.,
{{a,b,c},{d,el} and {{b,d,e},{a,cl} don't.

/

Figure 5.1
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Corollary 5.8 indicates that if we sort the vertex set
V by degree of vertex in descending order, then those .
"y vertices in V, will precede those in V{ in the sorted
‘sequence with an intermixed region inbetween which contains
the set of all vertites in V, and V, haQing the same degree
|Vz|'1 Therefore to identify the vertex set of the clique
G,, we have to be able to identify those vertices of V. in
the ihtermixed region of the sorted seqguence. ‘Fortunately,

this is not a difficult task due to the following lemma.

Lemma 5.9: Let G,(V,,E,), G;(V2,Ez) be a split of a split
graph G(V,E). Let Cy={ueV,|deg(u)=|V;|-1] and
C,={veV,|deg(v)=|V,|-1}; then for any weC, and any veCz,
Gy (vV,-{ulUiv},E,) and

CGL(V,-{vIUiUY EU{ulx(Vo-{v}))-(V.x{v})) is also a split of
G. |
Pron: Since deg(v)=|V,|-1 and G: is a clique, (u,v)fE.
Furthermore, as deg(u)=|V.|-1, and G, is independent,
Gé(Vz-{v}U{u},EzU({u}x(Vz-{v}))e(sz{v})) must’ be a cliQUet"
Since dég(v)=|V;|-1 and veV:, ~(w,v)¢E, VweV,. This implies

that Gy (V,-{ulUiv},E,) is independent. Hence, Gi, G: is a

L
/r” N

split of G. = | ‘)

The above lemma impﬁies that if we sort the vertex set
of a split graph G by degree of vertex in descending order,
then the flrst k vert1ces and the remaining n-k vertices in
the sorted sequence always constitute the vertex sets of a

split of G vwhere k=max{l|deg(v,)2i-4}. v, is the ith vertex



in the sorted sequence.

Hence we have the following characterization theorem

for split graphs.

Theorem 5.10: Let G(V,E) be an undirected graph and v,, Va,
Vs, ... , V., be the sequence of vertices of G sorted by
degree of vertex in descending order. |

G is a split graph iff {v,, va2, V3, ... , Vi} induce a
elique in G while {vi.1, V.2, .:. y Val induce'an indeqdent
subgraph of G yhere k is defined as above.

Proof: By Lemmas 5.7, 5.9 and the definition.of eplit graph.

’

..
. 7‘,'

Algorxthm : Split ’ B

(# This algorlthm examines 1f an und1rected graph is a spl1t
graph and produces a split if it is. :
deg(v) stands for degree of Vv *) ' /

N

-~ #
1. Compute deg(v) ¥veV. Sort V by degree of vertex 1n

descending order.
2. Find k such that k=max{iideg(v.)2i—1 and deg(v..1)51-1}'

\3. Let V1={Vk011Vk02713-an 2 V2={V1IV21"'IVH}
Check if V, form a clique in G. If not,-then G is not a

split graph.
4. Check if V, 1nduce an independent set in G I1f no, then G

is not a split graph. .
'S5, Declare G is a split graph and G (V,,E ), G,(Vz,Ez) is a

spllt. =

i)

Theorem 5.11: Algorithm Split correctly identifies a split
graph. | _ |
Proof: Given'any}graﬁh G(V,E), 1f G is a split graph,ithen
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by Theorem 5.10, Algorithm Split correctly iaentify G as a
split graph.}lf G is not a split graph, then cither.Step 3
detects thet Gz(Vz,Egz is not a clique or Step 4 detects
that G,(V‘;EQ)‘is not independent. Iﬂ”either case, G is

identified not to be a split graph? .

‘TheOtem‘S:{Zi“Algorithm Split runs in O(n/K+1lgn) time‘with
‘nK(K21gn)‘brocessors on the PRAM.

Proof: Giveﬁ an edjacehcy matrix M of G, Step 1 takes
0(n/K+1gn) time with NK(K>0) processors to compute deg(v)
YveV (ﬁemma.2.2) and 0(lgn) time with nlgn processors to
sort the vertices by degree of vertex[BORO82]. Step 2 takes
0(1) time with n prpcessors Step 3 takes O((k- 1)/K+lgn) |
time w1th nK(K>O) processors. Step 4 takes 0((n-k-1)/x+lgn)

time with nK(K>0) processors. Hence, Algorithm Sp11t runs in

0(n/K+lgn) time with nK(K21lgn) processors. -

Corollary 5.13: Identifying a split graph can be done in

O(lgn) time withrn;n/lgnq processors for pn/lgnq2lgn.

Now, we shall implement Algoritkm Split on the MMM;.To
<é;ée‘the task of explanation, we shall assume ﬁhet the
f degrees ofethe vertices of G(V,E) are all distigcf.
-Generaiizing‘ouf result_to.erbitrary case is
streiéhtferward. |

N . ‘ ‘ v o

Theorem 5.14: Algorithm Split runs‘in O(t(n))etime with H(n)

2y

/”\\\,,;
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hardware resources on the'MMM;

Proof: Let ‘M be tge adjacency matrix. In step 1, deg(v) is

compdtéd by: | |

" deglu,v]:=Li. Mlu,k];
(clearly”deg(u)=ded{u,u]=deg[u,v] V&,veV).

Order the vertices‘b§‘degréé of vertex as follows:
(Broadcasglcolumnwise?) deg'[w v]'=deg[V,v] Vv;WGV{
ranklu, vl:=Li. (deglu, k]Sdeg (u,k]); ,

( note that rank(u)=ranklu,ul=ranklu, v]l, and rank(u) is
‘the position of u in the sorted sequence ).

In step 2, k is determined as follows: )

| ( Erase the rankbpf those U whose rank does not satisfy
tﬁe cohaitibn : deg(u)Zrank(u)‘1.) ‘ ,’ |
ranklu,ul:=if (deg[u,ulzrank[u,u]:1)

then ranklu,u]

elée'Oj ‘ S
greatu,ul:=~(\/\ (ranklu, kl<ranklk,ul));
(‘ﬁote that greatlu,ul=1 iff u is the vertex whose rank
is the K ). | J

In. step 3, the set V is part1t1oned as followS'

(Broadcast columnw1se ) gneat [w,v]:=greatlv, v]
(Broadcast columnwise:) rank’ {w,v]:-nank[v,v],

. Split[u,vl:=(rank[u,vjsrank'[u;VJ)/\gneat'[u,vJ;
‘(Broadcast the nonzero Split rowwise. ﬂqte‘thaﬁ there
is at most one nonzers Split valhé on. each rowwise):
Split[u u]-=22;15plit[u K]; o |
as a result, V,={u|Split[u u] 0} and

L}
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Vo={u|Splitlu,ul=1}.

Steps 4 and 5 can be combined and tested together as below:
(Broadcast rowwise:)/Split[v,w]:=Split[v,v];'
(Broadcast columnwise:) Split'[w,v]:=Splitlv,v];
Flaglu,v]:=(~Spl it[u,vIASp it' [u,v])

\/ (Splitlu,vl/\-Splitlu,v])
\/‘(Split[u,v]/\SbIjt'[u,v]/\M[u,v])
\/ (=Splitlu,vIA=Spl itlu,v 1AMl v])

The above statement should be interpreted as Flaglu,v]=1 iff

ueV, and veV, or ueV, and veV, or (u,v)eE if u,veV, or

(u,vl/E if u,veVy., Hence, G is a split graph iff Flaglu,v]=1

Yu,veVxV. Therefofe, ifter computing:
Flaglu,v]:=/\«(Flaglu,k1/\Flaglk,v1)

twice, Flagl1,1)=1 iff G is a split graph., =

Theoreﬁ‘S.iS: AlgorithmVSplit‘runs on a seqdential compﬁter

in O(n+|E|) time and spacei

Proof: In Stepaﬂ; we use bucket sbft[AH074, Section 3.2] to

sort the vertices in V. This takes linear éime and spaée.'

- Step 2 takes_O(h) time. Steps 3.anq 4 takes 0(n+|€J) time.
MQteoQér, o(n+|E|) sbace is suffici;nt if we use an

adjéeenéy'list to represeht the g;éph.

" From Lemmas 3.1, 3.2 and 3.3, we have the indicated

time and hardware resource complexities. ®
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5.6 Identification of Permutation Graphs
Oyr algorithm is based on the following

characterization theorem due to Even, Pnueli and Lempel.

Theorem 5.16: An undirected graph G(\V,E) is a permutation
graph iff both G*(V,E*) and G (V,E") are transitive, where
G* and G are directed graphs induced from G such that
Ee={<i,j>|i<j and (I,j)¢E} and E-={<i,j>|i>j and
(7,j)erV-(EU{(V,V)IVeV})}. |
Proof: [EVEN72]. ®
Even, Pnueli and Lempel also showed how to detérmine

the permutation of G if G is a permutation graph.
Sbecifically, they.fdrmed G°¥G’UG‘ and showed that G° is a
tycle-free directed graph whose uﬁderlying graph is
complete. Therffpre,_G° must have é_Sink S:, namely, a
vertex which hasnno outgoing edge. They removed s, from G° -
:and shﬁwed thay Ahe resulting graph remains cycle-free ahd'
its ﬁnderiyl g graph is also complete. A sink s, in this
graph therefore exists. By repeating this process, they
ended up with a sequence of sinks 51,5;,...,sn..They showed
that the permutation P such that P(i)=s,, 1<i<n is a
vpermutation of G. To determine P efficiently in pérallel).wé'
restate P-as: |

R?{<i,P(i)>|oUt-degree(P(i))=i*1 in G5,-1sisn}.
Based on there results, we immediately have: |

Theorem S.JJ: Identifying a permutation graﬁh ahd

%
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determining its permutation can be done in 0(n/K+lgn) time
with nix(K21) processors on the PRAM.

Proof: Constructing G* and G~ from G takes O(n/K+1gK) time
with NK(K21) processors(Lemma 2.2). Testing if both G* and
G- are transitive takes O(n/K+lgn) time with n?K(K21)
procesSors(Lemma 2.2). Moreover, if G is a permutation
graph, then determining the permutation P of G takes
0(n/k+ng) time with AK(K21) processors as this is the tihg
and.processbr complexities one needs to compute
out-degree(v), for all v in G°. ®

Corollary 5.18: Identifying a permutation graph and
determining its permutation can be done in 0(lgn) time with

»

n*/lgn processors on the PRAM. .

f ‘ )
8& .

Theorem 5.19: Identifying a permutation graph and
determining its permutation can be done in O(t(n)) time with

H(n) hardware‘resources on the MMM.

Proof: Trivial. =

5.7 Conclusions

, Breachiné the 0(1g?n) time bound for graph theoretic
. problems on the PRAM is one of the méin concern in algorithm
design. Itasegm%’;o-be.a difficult ;ask,~and in fact some”
hqve~Caneqtured‘that it is‘ihpOSSible[KUCE82], '

In this chapter, although we do not manage to develop a

géneral technique to surpass the 0(lg‘n)'time’bound; we do
. v : : :



£

colle.

136

show that most of our algorithms have probabilistic time
complexlty and expected time hound below 0(lg n) and that

tion problems for spllt graphs and permutat1on

‘:lgn) optimal time complexity. (Note that

_{owest common ancestor algorithm has 0(lgn)

_ify, the graphs it deals with are directed trees

Lvuly a subset of -all graphs). We’feel that our

;in fiuding'O(lgn) time algorithms for split graphs

:muration graphs is due to the particular

Fteristic theorems for these graphs. These

:teristic theorems allow us to process the graph

at each vertex without having to perform’a graph

ito collect global information., This is reflected in

thexr }orithms by the fact that no construction of an

1nverted spanning forest is necessary. The process of

"g global 1nformat1on is a-time-consuming process

andff imaln cause of the 0(19 n) time complexlty. As a

resuft’ ve believe that one way to breach theAU(lg’h) time

bound for graph theoretic problems is to develop l

characterlstlc theorems which allow us to get global

1nformat1on without performlng a graph. search However,

d1scover1ng such characterlstlc theorems seems to be very

dlfflcult in general. . - o S
Flnally, as w1th Chaptercz, we remark that the lower

bound for the number of processors used in 1dent1fy1ng split

graphs and permutat1on graphs can be reduced to* nK(K>0)

~ rather than nK(KZI),



- Chapter 6 - _
CONCLUSIONS
We have presented algorithms for the claas of graph
theoretic problems listed in the introduction to fhis \
tﬁesis.@i@ese algorithms achieve the conjectured lower bound
for the worst case time complexity on many of the existing ‘
models. The number of processors they require is optimal’;n///r_\\\\f
most cases for the PRAM. Furthermore, they have good |
expected time complexities and have O(ign) probaoglistic )
time on the PRAM. In most cases, the results obtained
provide new upper bounds for the pfoblems.'Hence, we believe
‘that the goals of 'portability' agd 'efficiency’ have both -
been’achiebed. ‘ ’A
The concept of* 'portability' is not new in the
d15c1p11ne of computer science, and is certalnly an
important one. Surprlslngly, such an 1mportant concept has

A
not recelved much attention in the de51gn of eff1c1ent

‘ algqilthms for%parallel computer models. Although s#he.
portable algorlthms have appeared 1n the literature, their
4portab111ty was made possible bx the 51mp11c1ty of the
problems, and not the design of @he algorlthms. The first
i”wgrk (poss1bly the only work) empha5121ng the concept of
portable algorithms was an unpublished manuscrlpt of‘M1llet:
. and‘sﬁout.for the’graph-connectivity problethILLBZJ‘

' However, the class of c%ﬂpu@ers on wh1ch the1r algorlthm
works eff1c1ently 1; relatlvely small. In our op1n1on, the
. MMM:proposed 1n-thls’the51s serveS»as.a good’model-fof o

Y
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designing efficient portable algorithms. There are several
reasons for this: firstly, it has a great deal of
generality. In this thesis it.has been shown that it
1ncludes most of the welernown ex1st1ng models., Therefore,
‘any algorithm Whlch runs on the MMM w1ll automat1cally run
on all those models. Secondly, it has been shown that many
operations can be cartied out in O(t(n)) time with H(n)
hardware resources on the MMM. Theserinclude the prototype
operations like sorting, labell{ng the vertices,'computing
partial sums, finding the maximum and minimum, etc. We have
seen that t(n) is also the lower time bound for graph
theoretic problems on many of the eristing computer models.
As a result, we may employ any of these prototype operations
freely in designing graph algorithms on the MMM as the time
- they consume ‘is always w1th1n the opwlmal t1me bound |
pother words, we stand a good chance of gettlng optimal graph
)
?%algorlthms on the MMM, Th1rdly,'matr1x multlpllcatlon 1s a
ba51c yet 1mportant operatlon. Its central role in many
sc1ent1f1c appllcatlons is w1dely recognlzed Any computer
model whose des1gn is unsultable for matrix multlpllcat1on~.
will be of 11m1ted usefulness. For thlS reason, it may be
justified to say that,anyogeneral pmrpose.computer modellis
an MMM, Flnally, due to the unlform nature of ordlnary
‘ matrix mult1p11cat1on the MMM should be ea51ly constructed
(note that the processors need not have exp ns1ve;;.
mult1p11cat1on capablflty) The number of prodbssors_'wh
required is alsorreasonable, 51nce,otherw1se 1t«maywnot:be;

Ry

L.



possible to realize matrix multiplication efficiently on

parallel computer models.

We feel that the directed spanning forest problem
deserves more agtention. The importance of this problem
seems to have been overlooked after the search for efficient
(sublinear time) parallel depth-first search algorithm was
unsuccessful. In fact, the importance of this problem is
easy to appreciate as the directed spanning forest provides
a framework upon which global information can be organized
and transferred from vertex to vertéx within the graph. The
success of the depth-first search technique (which creates a
directed spanning forest) in designing optimal algorithms
for the sequential RAM giveé strong support to this view.
The‘fact that the directeq‘spanning forest for fhe PRAM and
the directed BFS spanning forest for the MMM serve as the
backbone of all of our algorithms provides further evidence.
Moreover, in the course of developlng our algorithms, we —
observed that the execution times of our algorithms are
dominated by the directed spanningrforest algorithm. This 1is
because .with the exception of the é%}ps for finding a
directed spanning forest and for de%%%mining the connected
components of an undirected grapﬁ‘G, we have ensured that
all the steps in ouf algorithms run in optimal time. But we
have shown_in Theorem 5.3 that the connected component

pfoblemwtan be reduced to a directed spanning forest

g
problem. Therefore the optimality of our algorithms depends
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on our ability in deveioping an optimal directed spanning .
forest algorithm. In other words, we may reduce the problem
of finding an optimal time algorithm for any of the graph
theoretic problems investigated in this thesis to that of
f1nd1ng a directed spann1ng forest of an undirected graph
This may explain why, in Chapter 5 whenever there is an
improvement in the directed spanning forest algorithm, there
is automatically an improvement in all the other algorithms.
In view of the importance of the directed spanning

forest problem, we summarize our results on this problem and

propose several related open problems below.

1. A directed spanning forest can be found in 0(1g?n) time
with ncn/lg?n, processors. This result is optimal for
dense graphs with respect/to the time-proéessor
product. (Chapter 2)

2. A directed spanning forest can be found in 0(1lgn)
probabilistic time with |E|n®1lgn processors on the
PRAM. (Chapter 5)

3. A directed BFS spénning forest/;agj;e founé in
0(1gn-1glgn) expected time on the PRAM and in O(lglgn)
expected time on the WRAM with n® processors. (Chapter
3) "

directed BFS spanning forest can be found in 0(1gn-1lgd)

>N
>

timé with H(n) hardware resources on the MMM where d is

the diameter of the given graph.
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Besides the direct way of finding a directed spanning
forest, two alternative indirect ways have been used in this
thesis. The first is to find a minimum spanning forest for
the given graph (note that the minimum spanning forest does
not convey global information efficiently) and then convert
it into a directed forest by constructing a digected BFS
spanning forest in it. This technique was de;cribed in Lemma
3.17 and was employed in Chapter 5. The second way is t6 use
the all-pair Ehortest‘patﬁgglgorithm. This technique has
been used in Chapter 3 to produce a directed BFS spanning

forest.

The -following are)open problems:

1. Can a directed‘spanning forest be found in O(lgn) time
with npn/lgny or even |E|/lgny processors on thé PRAM?
Note that solving this problem implies Solving all the
graph theoretic problems investigated 1n this thesis in
optimal time using an optimal number of processors on
the PRAM.

2. Can the ‘number of proéessors used by the 0(lgn) time
probabilysfic algofithms be reduced?

3: Can the expected time complexities be improved or the

number of processors used be reduced?

4. Can the timé complexity be improved on the MMM2

" Since the majority of the problems investigated in this

thesis are related to the connectivity property of graphs,

9
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it is natural to ask 1f the k-connectivity(K23) problems can
be solved efficiently. The best pfeviously known parailel
algorithm for testing'if a graph is k—connected(k23f on the
PRAM takes 0(lg®nlgk) time with O(n*°') processors[GOLD77]
or 0(1gn) probabilistic time with n®¢'’ processors{REIF82a].
No algorithms were known for other parallel computer models.
Using the results obtained in the previbus chapters for the
biconnectivity problem and the following lemma, it is easily
ghown that testing if an undirected graph is

K-connected(k23) can be done in 0(lg?n) time with ’

& .
n*-'rn/lg*ny processors or in O(lgn) probabilistic time with
|E|n*-'1gn processors on the PRAM. The worst case and the

expected time complexities for the MMM can be similarly

derived. )

Lemma 6.1: An undirected graph G is k-connected(k23) iff
V(Vi,VzseueosVie-20€V "%, Glvy,v,,...,vv.2] is biconnected,
where G[v,,vs,...,Vr.2]) is obtained from G by removing the
! k-2 vertices v,, Va2, ..+, Vy.2 and all the edges incidént

- ~

with these vertices from G.

Proof: Trivial. = .

)
-

Finding the k-connected components for k24 is of no
practicéi interest.LHoﬁever, for k=3, the problem”is closely
related to the planar graph problem which has application in
electrical engineering. The_previous best algorithm for the
3-connected components takes 0(1lg?n) time with n* processors

on the PRAM[JAJAB82]. No algorithhs for other parallel
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computer models were known . Using Lemma 6.1, it 1is easily
shown that we can improve Ja'Ja' and Simon's 3-connected
components algorithm by reducing the qumber of processors
used by a factor of 1lg?n.

Despite thé fact that our results obtained here for
k-connectivity problem (k23) are 1mprovements over the
previous results, we do not regard them as.aéhievements
because ;he‘method proposed by Lemgf 6.1 is essentially a
brute force method, let alone the fact that the ;esults are
not optimal (In fact, all the pre&ious results stated above
are to a great extent, brute force methods).

At this poiﬁt, it 1s intergé£ing to review thé results
for these problems obtained on the sequential RAM. The
sequential algorithms for finding the conneéted components;
the biconnected components and the triconnected combbnents
all rely on the depth-first search technigue and run 1n
optimal time and space[TARJ72,HOPC73]. Since we Rave
developed an optimal (w.r.t. time-processor product)
directed spanning forest algorithm in Chapter 2, based on
which an optimal biconnected component algorithm was
developdﬁn and we have shown in Chépter 4 that the
.
gaconnected component algorithm gives rise to an optimél
sequential algorithm which is a generalization of the
previous optimal sequential algorithm. It is therefore
intriguing to ask: Using the optimal directed spanning
forest algorithm, can we develop an optimal parallel

algorithm for the4triconnected component problem which~givés
4 \
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rise to an optimal sequential algorithm which is a
generalization of the existing optimal sequential algom thm

on the PRAM? We leave this as an open problem.

O
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APPENDIX : Some Detailed Implementations
Algorithm DSF

(*To find an inverted spanning forest in an undirected graph
x)

stage 1

{ Variable declarations }

Mo arrayl1..n,1..n] of 0..1;

FR* : array[1..2n-1,0..n-1] of 1..nlgn;
depth : array[1..2n-1) of 0..n-1;

‘PTR : array[1..nlgn] of 1..2n-1;

Dv : array[0..1gn,t..n] of 1..n;

rootv : array[1..2n-1) of 1..n;
B : array{1..2,1..n,1..n} of 1..n;
flag : array[1..n] of 0..1;

D,C : arrayli..n] of 1..n;
phase : 1..lgn; startpt : 1..2n-1;

step 1: { initlalization }
for all j:1<j<n pardo
' pvi(o,il:=Dli):=i; flag [i]:=0
. dopar;
for all j:1<i<nlgn pardo PTR[i}]:=0 dopar;
for all j:1sj<2n-1 pardo
FR*[i,0):=FR"[i,1]:=0;
rootv[i]:=0
dopar;
for all i, j:1<i,jsn pardo
B(1,i,jl:=i; Bl2,1,]):=]
dopar; '
phase:=0; -startpt:=0;

repeat

step 2(a):
{ Pack all defined rows in each segment together)]
S:={i|flagli]:=0 };
{Set pointers in array PTR. second is a function
extracting the second portion of a variable formed
by the function concatenation in the preceeding
step.} £ '
temp:=second(sort({ concat( flagli],i)|1=sisn 1));
PTR[phase*n+1..(phase+1)*n] := second(sort({concat(
templil,startpt+i) |1<i<|S|}U
{concat(templil,0)| |S|<is<n}));
startpt:=startpt+n/2*xphase;

step 2(b):
" for all jeS pardo
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jor=min{j|MLi, Jjl=1, j€S}
if none then jo:=1;
Clili=jo;
FR-[PTR[phase*n+i) ,0]:=phase*n+1;
FR-[PTR[phasetn+i] ,1]:=phase*n+jo
dopar;

step 3(a):
{Check to see if the set S can be reduced any further;

if not, then terminate execution}
if (for all jeS, Cl[il=i) then exit;

step 3(b):
for allieS pardo if C[i]=i then flagli):=1 dopar;

step 4:
for all ieS pardo D[i]:=C[i];dopar;

step 5: *
for j:=1 step 1 until lgn do
for all jeS pardo C[i]:=C[C[i]] dopar;

Y

step 6(a): :
for all feS pardo D[i):=min{C[i),DEC[i]] } dopar;
&
step 6(b):

for all i: 1<i<n pardo D[il :=D[D[i]] dopQ{;

step 6(c): {Record the array D[i], 1<i<n }
for all j:1<i<n pardo
. 1f JeS

then DViphase+1,il:= D[]
elseqy[phase+1,i] :=D[{DViphase, i]]

dopar;

step 6(d):{ Convert the edge from the smallest-numbered
vertex of each I-tree-loop to a self-loop !}
for all i:D[i]=i ’
pardo
FR* [PTR[phase*n+i], 1]:=FR* [PTR[phasesn+i},0]
dopar; ’ ' ;

step 7(a): _
for all ieS pardo
for all jeS : j=D[j] pardo
Choose any JjoeS such that D[jo]=j and Mli,Jjol=1
if none then jo:=j;-
MLi,j):=MLi,jol:
B(1,i,j):=Bl1,i,Jo):
B[Zr ilj]:=B[2I irjO]
dopar
dopar; Y,

step 7(b):



for alljeS : J=D[J] pardo
for all jeS : i=D[i] pardo

Choose any iceS such that D[io] =i and M[io,jl="
if none then Jo:=1;

MUi, f):e=MUio, g )5

8[1,f,j]:=8[},f0,]]: ;
Bl2,i,J):=Bl2,i0,J] \

dopar '
dopar;
step 7(c):

for all jeS pardo M(i,i]:=0 dopar;

step 8: ‘ .
for all ieS pardo if D[il#i then flagli]:=1 dopar;

phase:=phase+t;

until (phasezlgn);

stage 2

step !': { Evaluate the array FR" }
Compute FR™ and depth[i] for 1sis2n-1.

‘step 2:
phase:=phase-1;
{ Note that at this point, each vertex Kk left in S 1is
the root of a in-tree recorddd in the 'last’' segment}
for all K:keS pardo
rootv[PTR[phase*n+k]] :=k
dopar;
repeat :
for. all i: (phasesn+1<i< (phase+1)#*n
and PTR[i]#0
and FR-[PTRLil,(n-1)-depthli ]
2 FR* [PTRLi),(n-1)-depth{i]+1
self-loop} .
pardo { Output all the edges except the one
emitting from the new root first}
{Denoting FR*[PTR[i], (n-1)-depth(i]l]lmod n
and FR*[PTR[i]),(n-1)-depth{ i}+1] mod n by
volil] and v,[i] respectively }
if rootv[PTR[i]]=0 then
begin

]
]) {not

TU1.BL1,velil,vi[i]] J:=BL1,voli),vi[il);
T12,801,volil, v [il) 1:=Bl2,voli],v.[il];
end; i

{Define / the roots for the next segment};

if phase >0

then rootv[PTRIDVIphase-1,Bl1, volil, v [i]]]l+
(pha$e-1)tn]]:=8[1,vo[i],‘v1[i]]; T .

1
L

J



{ Reverse the edges if necessary |}
if rootvI[PTR[i]]#0 ,
then for all j:((n-1)-depth{i] sj<(n-1))
pardo{Denoting FR*[ PTR[il,jlmod n and FR"[
PTR{i],j+1Imod n by vol[Jj] and v,[]J]
respectively} .
T[‘,B[Z:Vo[j],V1[j]] ]:=B[2,Vo[j],V1[j]]:
T12,B02,veljl,v (1] 1:=Bl1,volJjl,v.[Jj1):
{ Redefine the roots as well };
if phase >0 then
begin _
rootvI[PTR[DV[phase-1, Bl1,voljl,v,[j]]]
+(phase-1)*n]]):=0; ~
rootv[PTRIDV[phase-1, Bl2,voljl,v.[j]]]
+(phase-1)*n)]:=8[2,volj], vv[Jjl]
end
dopar
dopar;

{Pass the roots defined in the current and previous
segments to the next segment]}
for all j:(phasesnti<i<(phase+1)=*n
and PTR(i] and rootv[PTR[il1#0)
pardo .
rootvI[PTRIDV [ phase-1, rootv[PTRLi]]l+(phase
-1)*nl}):=rootv{PTR[i]]
dopar;

phase:=phase-1;

until (phase<0);

~
Algorithm Bridges(M,bridge);
Input : The adjacency matrix M of a connected, undirected
graph G(V,E);
Output: A nxn matrix bridgel1..n, 1..n] such that
bridgeli,jl=1 iff (i,j) is a bridge in G;
Step 1: Call inverted-spanning-forest(M,T);
Step 2: Find HLCA[i])(using the method presented in Section
8) and depthli],VieV, then computed QHLCA[/],VieV;
step 3: for all i,j: (i,j)eVxV -
pardo bridgeli,j)l :=bridgelj,i1:=0 dopar;
for all e:e=(a,b)eE' { e is in T }
pardo for-all j:ieV
pardo
if Foli,(n-1)-depthlal]l =a {a is an
ancestor of i} and AHLCA[i] < depthla]
then Bla, ]:=0
else Bla,il:=1
dopar



bridgela,bl = bridgelb,al:= /\{ Bla,il]ieV}
dopar; A

Algorithm LCA(T ,LCA" , depth);

Input : the vector, T{1..n], for a directed tree T such that
Tli)l=j iff j is the father of % in T. :

Output: The ordered pair (LCA",F");

Step 1: Compute F~;
Step 2: { Find the lowest common ancestor for (a,b) where
(a,b)eV'xV' based ‘on F° and binary search}
for all (a,b)eV'xV’
pardo
ptr:=tn/24; £:=0 u:=n-1;
for t:=1 step ! until lgny+1 do
begin ' ‘
if F-[a,ptr)=F [b,ptr]
then {move left} u:=ptr
else {move right} f:=ptr+1;
- ptr:=Lt(u+1)/24; :
end;
Lca - [a,bl:=ptr
dopar;



