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Abstract

Real-time optimization (RTO) is an on-line optimization technique that monitors the be-
haviour of the process, looking for significant low frequency changes in the true plant opti-
mum, while adjusting the setpoints of the process controllers to track these changes. The
performance of the optimizer depends on its ability to track these changes effectively and
locate the true plant optimum operating conditions. By incorporating experimental de-
sign techniques, this thesis proposes an improvement to RTO performance by integrating
information generation into the algorithm to reduce uncertainty in the final optimization
results.

Expansion of the command conditioning subsystem evaluates when the predicted result
from the economic optimizer will not generate sufficient amount of information. The ex-
perimental design calculation uses an A-optimal criterion to reduce uncertainty associated
with decision variables by perturbing from the optimal point to another that generates more
information. By sacrificing short-term profit, greater profit can be realized in future RTO

intervals.
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Chapter 1

Introduction

As global competition increases, industries are forced to try and improve their compet-
itive advantage and often resort to improving their process efficiency through economic
optimization. Real-time optimization (RTO) is a steady-state, model-based. on-line opti-
mization technique that monitors the behaviour of the process, looking for significant low
frequency changes in the true plant optimum, while adjusting the setpoints of the process
controllers to track these changes. The plant optimum could vary as a result of changes
in ambient conditions, equipment fouling, and changes in the inputs to the process. The
efficiency of the optimizer is dependent on its ability to track these changes effectively and
locate the true optimum operating conditions for the plant.

The two main causes of the RTO system not converging to the plant optimum are: 1)
plant/model mismatch in the model structure and fixed parameters; and 2) uncertainty
in the adjustable parameter estimates. These factors contribute to the bias cost, which is
defined as the loss of profit as a result of the deviation of the expected value of the predicted
optimum from the true plant optimum (Forbes and Marlin, 1996). Figure 1.1 illustrates the
different contributions to the bias cost. The bias associated with plant/model mismatch
occurs from errors in the model structure and/or fixed parameters, for which the model
updating system may not be able to compensate (Zhang and Forbes, 2000). The bias that
occurs from uncertainty in the adjustable parameters is a result of the optimizer being
unable to converge closer to the true plant optimum because additional optimization moves
are considered statistically insignificant, and are not implemented. It is the uncertainty in
the adjustable parameters, which is forwarded to the optimization calculations, that results
in the new moves being rejected. By reducing this uncertainty, future RTO iterations will
do a better of locating the plant optimum.

The objective of this thesis is to develop a decision criterion that provides insight into
the number of historical steady-steady points that should be used in the model updater
subsystem, and also to expand the role of the command conditioning subsystem in the
RTO loop to: 1) ensure that each implemented result generates information and secondly;
2) provide a diagnostic check to evaluate model adequacy.
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Figure 1.1: Structural mismatch and decision variable uncertainty contribute to the bias
cost.

This chapter provides an overview of process optimization and experimental design.
It also discusses the purpose of the different units in the RTO system. and provides a
motivation for the basis of this thesis. The chapter concludes with a discussion of the

conventions and assumptions used in subsequent chapters.

1.1 Process Optimization

Many advances have been made to improve the efficiency of RTO algorithms, such as includ-
ing first-principles information to better describe a wider range of the process behaviour,
and attempting to compensate for plant/model mismatch. However, little attention has
been provided towards moving in directions that ensure information is generated to allow
future RTO iterations to do a better job of locating the plant optimum.

Steady-state process optimization can be separated into two categories: direct-search
and model-based methods. Direct-search methods use plant experimentation to identify
directions to improve plant performance. Model-based methods typically rely on models
that are developed off-line to describe the process behaviour, and only make use of plant
data to update certain parameters in the model that are unknown or have values that
change frequently during operation.

The act of performing experiments to generate information on how a process can be
improved began receiving attention in the late 1950’s with the development of Evolutionary
Operation (Bacon, 1992). Evolutionary Operation (EVOP), developed by Box (1957), uses
2-level factorial experimental designs to systematically guide changes in operating conditions
to more profitable conditions. The factor effects are identified by making many small
changes in the operating conditions. Once a significant effect is identified, the operation



moves to a new point in the direction of the optimal factor. This is an iterative process
that repeats itself once a new point is selected. The advantages of EVOP include:

e the use of small changes in the factors so there is little upset in process operation,
e continual optimization of the process,

e ability to track changes in the operating conditions.

The drawback of EVOP is that it requires 2-level factorial designs, possibly augmented
with center points, at steady-state conditions. Since 2-level factorial designs without center
points require 2" points (where n is the number of factors), it can take a long time be-
fore an optimum direction can be found, especially for processes with long settling times.
Since EVOP requires a long time to develop any conclusions, it is only useful for testing a
small number of factors for processes with small settling times relative to the frequency of
occurrences of process disturbances.

Response Surface Methodology (RSM), as an optimization tool, is similar to EVOP. It
was originally developed by Box and Wilson (1951) for the purpose of identifying complex
nonlinear processes using simple equations that adequately describe the local behaviour of
the process. It was later applied to optimization problems. This method uses a 2-level fac-
torial, or higher, order design to formulate an empirical model, with a predefined structure,
that describes a response surface within the region of interest (Myers and Montgomery,
1995). The gradient of this equation provides the direction of steepest improvement of the
response variable. The next point is selected by performing a line search along the direction
defined by the gradient. Once the next point is selected, the routine starts over with the
past information discarded and a new experimental design constructed. The same concerns
exist with this algorithm as for EVOP, since the time it takes to perform an experimental
design with many factors may be unreasonable given that the points are steady-state points.

Bamberger and Isermann (1978), Garcia and Morari (1981), and McFarlane and Bacon
(1989) developed optimization algorithms that evolved from EVOP and adaptive control
techniques to extract steady-state information from empirical models, with a predefined
structure, that are identified using an experimental design. The experimental design for
these algorithms consist of on-line perturbations of the manipulated variables. Edwards and
Jutan (1997) combine the ideas of RSM and adaptive optimization algorithms to produce
Dynamic Response Surface Methodology (DRSM). DRSM is a modification of RSM that
tracks dynamic optima.

The drawback of direct search methods is that substantial plant experimentation is
required to make up for the absence of first-principles information. By adding first principle
information the time required for experimentation is reduced. White (1997) states that over
time, more rigorous first-principles models are being used for optimization because of their
ability to accurately cover a wider operating region than the empirical model based methods.



Model-based optimization uses first-principles information but is limited by its inability
to compensate for plant/model mismatch. Figure 1.1 shows how the optimizer may converge
to a point that is not the true plant optimum, because the model is unable to accurately
describe the process behaviour. Many researchers have investigated the problem of improv-
ing the efficiency of the optimization routine by reducing the plant/model mismatch. The
Two-Phase design, studied by Chen and Joseph (1987), creates two subsystems in the RTO
loop where the parameter estimation and optimization problems are solved separately. The
Two-Phase approach is the most widely used design for the model updating and model-
based optimization subsystems in RTO (Zhang and Forbes, 2001). This approach updates
the adjustable parameters in the model; however, it does not compensate for the inevitable
mismatch in the model structure or the fixed parameters. Golden and Ydstie (1989) also
attempted to compensate for plant/model mismatch by expanding the work of Bamberger
and Isermann (1978) to combine the use of theoretical models and an adaptive approach.
Roberts (1979) developed a model-based method that compensated for plant/model mis-
match by adding a term to the original objective function. This work was extended to
produce an iterative technique that solves dynamic optimal control problems (Becerra and
Roberts, 1996).

This thesis is only concerned with steady-state model based optimizers, which account
for almost all commercial implementations of RTO (Darby and White, 1988).

1.2 RTO Design Issues

This section will discuss the role of the individual RTO subsystems, and how errors and
uncertainty enter and propagate through the closed-loop RTO system. A discussion of the
issues addressing the effect parameter and variable uncertainty has on the performance
of the RTO system, and the state of model adequacy tests for optimization purposes is
presented at the end of this section.

A simplified schematic of an RTO system is shown in Figure 1.2. The following is a
description of the different units in the closed-loop RTO system:

Measurements: The measurements of the process are taken from sensors positioned
in the plant. These measurements are used to update the adjustable parameters in the
model updating subsystem, in the process of which the uncertainty in the measurements is
forwarded to the parameter estimates.

Data Validation: The data validation subsystem consists of three subsections: steady-
state detection, gross error detection and data reconciliation. Since steady-state models are
used for most RTO systems it is important to ensure the plant is operating at steady-state
before measurements are collected for model updating purposes (White, 1997). Some tests
for steady-state detection include: comparing the mean values of a given set of measurements
between two time periods, constancy of time series coefficients, small rate of change of a
variable over a period, or measurements remaining within prescribed bounds about a mean



(Marlin and Hrymak, 1996). Gross error detection is responsible for removing data that
are not self-consistent with respect to material and energy balances and therefore should
not be used by the model updater (Reilly and Carponi, 1963; Mah and Tamhane, 1982;
Rosenberg, 1987; Crowe, 1988; Tong and Crowe, 1995). This false information would lead
to biases and reduce the effectiveness of the RTO algorithm. Gross errors could occur from
a series of factors including poor sampling, instrument malfunction, leaks or data from
units off-line (Marlin and Hrymak, 1996). The data reconciliation stage is responsible for
allocating errors, which still exist after removing the gross errors, across the material and
energy material balances to attempt to obtain the best possible estimation of the true plant
operation (Crowe et al., 1983; Crowe, 1986; Crowe, 1996).

Model Updater: Model uncertainty is due to uncertainty in the structural form of the
model or parameter values when compared to the true process. Structural uncertainty exists
because of the approximations made to develop the model, and parameter uncertainty is
present because of changes in the process such as catalyst deactivation, equipment fouling,
reaction kinetics, and so forth. The model updater subsystem attempts to compensate for
model uncertainty by using the processed data from previous subsystems to update the
model parameters. The efficiency of the optimizer is sensitive to the quality of the model as
it determines the rate at which the estimated optimum is reached and the amount of offset
from optimal operation that will exist.

Optimizer: The optimizer performs a steady-state model-based optimization to deter-
mine the point that will provide the most profit within the boundaries specified by the con-
straints. The two most common nonlinear programming algorithms used for optimization
problems are augmented Lagrangian methods or sequential quadratic programs (Marlin and
Hrymak, 1996). The uncertainty in the adjustable parameter estimates transmits through
the optimization subsystem to the predicted results of the optimizer.

Command Conditioning: The command conditioning subsystem acts as a check of
the optimization results before they are transmitted. These checks include: determining if
the plant operation is not currently upset, the optimization variables remain available for
manipulation, and the bounds of the optimization variables remain unchanged (Marlin and
Hrymak, 1996). Another role designated to this section is to determine if the calculated
change in operation is significant. If the result is not significant, the point should not be
implemented. By reducing the amount of unnecessary changes, plant profits have been
shown to increase (Miletic and Marlin, 1998). It is this subsystem that this thesis will
propose to expand to ensure a level of information generation after each optimization move
is implemented.

Plant and Controllers: The control system implements the results from the RTO
calculations. Advanced control systems, such as the model predictive controller (MPC), are
usually layered under the RTO system to ensure the solution can be reliably implemented
(Marlin and Hrymak, 1996).
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Figure 1.2: The closed-loop RTO system.

1.2.1 Decision Variable Uncertainty

There has been some attention directed to the effect parameter uncertainty has on RTO
efficiency. Referring to Figure 1.2, RTO is a closed-loop system; therefore, whatever uncer-
tainty is associated with the parameter estimates obtained from the model updater, will be
forwarded on to become uncertainty in the result obtained from the economic optimizer.
Koninckx (1988) examined how the uncertainty in the decision variables affected the evalu-
ation of the expected gains in profit, and the accuracy of the predicted profit and decision
variables. Krishnan et al. (1992) investigated how uncertainty from the measurements was
forwarded to the adjustable parameter estimates, in order to select which measurements
have the greatest influence on the updated parameters. Forbes and Marlin (1996) devel-
oped an expression that describes the transmission of variability in the plant data from
the measurements to the model parameters and then the propagation of the variability of
the adjustable model parameters to the calculated optimization variables. Fraleigh (1999)
examined how to select the optimal sensor system that will minimize uncertainty in the
decision variables.

It is clear that uncertainty in the adjustable parameters lead to model and optimization
results that also contain significant uncertainties. Pinto (1998) identified some of the costs
that result from parametric uncertainty and was able to assign an economic value to measure
the effect. Zhang et al. (2001) showed that for RTO there is a further cost that might occur
when the size of the confidence region surrounding the optimization calculation inhibits the
progress of the optimizer, by not implementing results that do improve profit. It is possible
that the optimizer could get ‘stuck’ and not converge closer to the true plant optimum
creating a bias cost with respect to profit. Reducing parameter uncertainty means better
precision in the parameter estimates and ultimately, estimates of optimal operation. This



improved precision will enable the optimizer to locate the plant optimum more effectively.

The uncertainty in the decision variables could be reduced by ensuring that the RTO
system will always implement setpoints that work to reduce the magnitude of some scalar
measure (i.e. determinant or trace) of the decision variable covariance matrix.

1.2.2 Diagnostics

The models developed for RTO are usually based on first-principles. While developing
models to describe the behaviour of the process, assumptions and approximations are made
to simplify the system to either reduce the computational load or because some effects are
considered insignificant. However, there may be a time when these assumptions are no
longer reasonable and the model is unable to adequately represent the process behaviour.
The error caused from this plant/model mismatch could result in a bias cost in the RTO
system reducing the amount of profit that could be attained.

For any regression analysis it is important that tests be performed to assess the fit
of the model to the data once the adjustable parameter estimates have been determined
(Bard, 1974; Bates and Watts, 1988). Currently, RTO applications only compensate for
the inevitable mismatch by updating the adjustable parameters at the current steady-state
operating point (Marlin and Hrymak, 1996). Tests may be performed off-line to determine
if the model system is no longer effective, but the RTO system may operate for a long period
of time before acknowledgment of a poor model system is identified. Forbes et al. (1994)
developed a model adequacy check that is performed off-line to investigate the suitability of
a candidate process model for use in an optimization routine. They define model adequacy
as the ability of the process model to have an optimum coinciding with the true plant
optimum by altering the adjustable parameters.

The need for a set of diagnostic checks will become clear in Chapter 3, where the
case study will show that the experimental design performs poorly if there is significant
mismatch between the model and the true process. A set of on-line diagnostic checks to
evaluate model adequacy will inform the optimizer when the model is not able to represent
the process behaviour, indicating the conditions for when an experimental design should
not be performed.

1.3 Experimental Design for Optimization

This section provides a discussion of the past involvements of experimental design in op-
timization and how other design of experiment (DOE) techniques could be used for opti-
mization applications.

The selection of an experimental design depends on the criteria required by the appli-
cation. Featherstone (1997) lists some of the following criteria that may or may not be
relevant when selecting an experimental design technique. For the purpose of this thesis
the first six points will be considered to be of primary importance.



e Provide a satisfactory distribution of information throughout the region of interest.
e ensure a good fit between the model and true process,

¢ allow for a minimum number of experimental runs,

¢ minimize complexity of the DOE calculation,

¢ allow for a model adequacy determination,

e be robust to errors occurring in the settings of the experimental variables,

¢ provide simple data patterns that allow for ready visual appreciation,

¢ use a minimal number of levels of the experimental factors,

e allow for estimation of transforms of both the response and the quantitative experi-
mental factors,

¢ provide replicate data in order to estimate error,
e be robust to outliers,

e provide a diagnostic check on the constancy of variance assumption.

The alphabetic optimal experimental designs are common methods of reducing param-
eter uncertainty through planned experimentation (Shirt et al., 1994; Myers and Mont-
gomery, 1995). The four most common designs are A, D, E, and G optimal designs. The
D-optimal design was the original design whose basis was provided by Wald (1943), and was
later fully developed by Kiefer and Wolfowitz (1959). A, D, and E designs were formulated
to minimize the variance of the parameter estimates by reducing the volume and/or shape
of the parameter estimate’s confidence intervals, while the G-optimal design minimizes the
variance of model predictions. Please note that this thesis will focus on minimizing the
uncertainty in the decision variables instead of the parameter estimates. For the purpose of
this thesis, model prediction is not as important as minimizing the variance of the decision
variables because optimization is only concerned with finding the optimal direction of in-
creasing profit, and less interested in using the model to predict the values of the response
variables. For these same reasons, this thesis is primarily concerned with reducing the vol-
ume of the decision variable confidence region, but also needs to address shape to ensure
that uncertainty in some variables do not remain large at the expense of further volume
reduction. Definitions of the four designs for the purpose of this thesis are provided (Bacon,
1992),

D-Optimal: Minimizes the determinant of the decision variable covariance matrix.

A-Optimal: Minimizes the sum of the variances of the individual decision variables.

E-Optimal: Minimizes the largest eigenvalue of the decision variable covariance matrix.



G-Optimal: Minimizes the maximum variance of the predicted responses.

A significant advantage of the alphabet designs is their ability to accommodate the
addition of any number of extra points to a current data set. Many authors have used
the alphabet criteria as a basis for sequential experimental design purposes, a requirement
for use in a RTO application (Box and Hunter, 1965; Draper and Hunter, 1966; Draper
and Hunter,1967 a and b; Dykstra, 1971; Evans, 1979; Pinto et al., 1990; Myers and
Montgomery, 1995; Featherstone, 1997). Heiberger et al. (1992,1993) proposed a strategy
called U-optimal designs which use a combination of A, D, and E-optimal designs to augment
an experimental set.

A disadvantage of the alphabet designs is that they are developed with the assumption
that the model form is correct. Although this may be a reasonable assumption, there is
always some structural mismatch that cannot be accounted for in the assumed RTO model.
All-bias experimental designs focus on reducing the bias in the current model and ignore the
effect of parameter variation. Therefore, all-bias designs are theoretically optimum when
variance in the parameter estimates or decision variables are not present ( Box and Draper,
1987). However, for the general case when there is variance and bias error present, several
authors have concluded that the all-bias design is a poor choice (Box and Draper. 1959;
Box and Draper, 1963; Galil and Kiefer, 1977). Box and Draper (1987) provide a good
reference for the theoretical framework of all-bias designs.

The ideal experimental design would distribute the experimental effort to reduce both
variance in the decision variables and bias in the RTO model. A few researchers have
developed experimental designs to produce this effect. Draper and Guttman (1992) com-
pensate for bias by adding an extra term to the variance function incorporating bias errors
as random effects instead of fixed effects. Welch (1983) and Steinberg (1985) have also de-
veloped designs that use this assumption. Welch (1983) bases his design on a mean square
criterion, and Steinberg (1985) applies a Bayesian approach. DuMouchel and Jones (1994)
use a Bayesian approach to modify the D-optimal design and reduce its dependence on the
assumed model. It should be noted that these authors examine simple low-order models
that are derived solely through empirical methods, and not models that incorporate first
principle information. The disadvantages of these designs for consideration in RTO are they
require some knowledge of the form of the bias that may be present and most of them are
computationally intensive.

Previously, it was stated that although it is advantageous to reduce bias in the RTO
model, the experimental designs that exist to accomplish this are not well suited for the ap-
plication. However, there are designs that exist that would enable the optimization routine
to discriminate between two rival models in the effort to reduce structural mismatch, al-
though they do not work to reduce bias in the current model (Hunter and Reiner, 1965; Box
and Hill, 1967; Atkinson and Cox, 1974). T-optimal experimental designs were developed
by Atkinson and Fedorov (1975) to provide a design that creates a maximum discrimina-



tion between two models. For sequential designs, the next experimental point is selected
to provide the largest increase in the expected value of the sum of squares of differences
between the responses of the two models (Atkinson and Fedorov, 1975). Hill et al. (1968)
studied the dual problem of model discrimination and parameter estimation as a joint de-
sign criterion. Fraleigh (1999) also studied the dual problem, although not for the purpose
of selecting an experimental point, but to select the optimal sensor system that provides
the smallest level of uncertainty in the calculated setpoints and bias between the nominal
calculated setpoints. The drawback to these designs is the amount of trial and error that
would have to be performed to select one out of a possible set of candidate models for
RTO. These designs will also only compare the prediction ability of the models, when for
an optimization application it is the ability of the model to locate the true plant optimum
that is of priority.

The experimental design required for this thesis will be required to augment the current
data set with one more point that will reduce decision variable uncertainty in a steady-state
multiple response nonlinear model. It will focus solely on reducing variance in the decision
variables, and will ignore the effects of bias in the assumed RTO model.

1.4 Scope and Objectives

This thesis focuses on methods to reduce uncertainty in the decision variables, and the ap-
plication of on-line diagnostic tests to determine the adequacy of the model. As previously
discussed, work has been directed at measuring the level of uncertainty in the optimization
calculations for RTO, but little attention has been focused on its reduction. It is impor-
tant to reduce this uncertainty to allow for tighter convergence to the true plant optimum.
Figure 1.3 illustrates how reducing the uncertainty in the optimization variables, by im-
plementing an experimental design calculation, could reduce the confidence region of the
decision variables and allow for a closer convergence to the true plant optimum. Ideally,
each RTO interval would generate some level of information thus minimizing the confidence
region for each move. Since the purpose of RTO is to improve plant profitability, the cost
associated with reducing the confidence region surrounding the decision variables must be
considered. Therefore an experimental design calculation would only be implemented if the
result from the economic optimizer is not expected to generate information. When a DOE
is needed, the experimental window will consist of a constraint that limits the amount of
potential profit that would be lost.

Chapter 2 investigates the impact of including historical steady-state information in
the model updater subsystem of the RTO system to reduce uncertainty in the parameter
estimates and decision variables. It will also take into account the effects of increased
computational requirements and the weakened ability of the RTO to track changes in the
process behaviour that result from including older information. Chapter 2 will also examine
the ability of an experimental design to reduce the confidence region of the decision variables.
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Figure 1.3: Reducing uncertainty allows for tighter convergence to the plant optimum.

Chapter 3 will focus on expanding the role of the command conditioning subsystem to
ensure that each implemented point generates information that will reduce the confidence
region surrounding the decision variables. In the event that the proposed operating point
does not generate a significant amount of information, the experimental design calculations
developed in Chapter 2 are performed. The experimental window will be defined as a
constraint that will control the amount of potential profit that would be lost.

Chapter 4 will present the Williams-Otto plant case study that investigates how the
information generation approach can be applied to a specific RTO problem.

1.5 Conventions and Assumptions

The following assumptions have been made throughout this thesis:
® Process measurements are taken at steady-state.
e Measurements are corrupted with normally distributed random noise only.
e Sensors are available to measure all the desired variables.
e The control system is able to implement the setpoints specified by the optimizer.

This thesis uses the following terms and conventions.

Process Model: refers to the set of equations that represent mass and energy balances
for each process unit, and physical phenomena. This term does not include operational
constraints.

Process Variables: The decision variables are the independent, or manipulated
variables that are adjusted to optimize the plant profit. The dependent variables are
determined from the process model once the independent variables have been specified.

11



Uncertainty: refers to the level of confidence in the numerical value of the variable.
Specifically, measurement uncertainty is related to the quality of the sensors in terms of
measuring the true value of a variable, and uncertainty in the parameters and decision
variables is a result of how the measurement uncertainty propagates through the RTO
system calculations to the parameter estimates and optimization calculations, respectively.

12



Chapter 2

Decision Variable Uncertainty
Reduction

The role of the command conditioning subsystem, as introduced in the previous chapter,
was expanded by Koninckx (1988) to use estimates of the decision variable covariance
matrix to evaluate the expected economic gains of the RTO system and test for significant
changes in the decision variables. Miletic and Marlin (1998) followed this work to determine
if the predicted operating conditions are significantly different than the current operating
conditions. Practically, it is undesirable to upset the process and change the setpoints to
move to an operating point that may not improve the profitability of the process. Reducing
the uncertainty of the decision variables improves the ability of the optimizer to locate and
converge closer to the true plant optimum.

The purpose of this chapter is to investigate different approaches for reducing uncer-
tainty in the optimization calculations by including historical steady-state information and
applying experimental design techniques to generate information. Section 2.1 examines
the issues surrounding the introduction of historical steady-state information to the model
updater subsystem which includes: reducing uncertainty in the optimization calculations,
increasing computational requirements, and reducing the ability of the model updater to
track changes in the process behaviour. Section 2.2 discusses the selection of the decision
variable covariance matrix approximation. Section 2.3 investigates the selection of the ex-
perimental design criterion for the RTO application. The chapter concludes with a case
study that examines the advantages and disadvantages of including historical steady-state
information and implementing experimental design optimization problems in the RTO al-
gorithm.

2.1 Parameter Estimation Schemes to Reduce Uncertainty

The purpose of the model updater in the closed-loop RTO system is to update the adjustable
parameters in the process model based on steady-state plant measurements received from
sensors located in the plant. The uncertainty in the adjustable parameters can be reduced
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by implementing a planned experimental design or using a more robust parameter estima-
tion scheme. Due to the serial nature of the RTO calculation (see Figure 1.2) reducing
uncertainty in the adjustable parameters will reduce uncertainty in the decision variable
values obtained from the optimization calculations.

Fraleigh (1999) compared three methods used for parameter estimation: back-substitution,
least squares regression, and error-in-variables estimation (EVM). She concluded that least
squares regression was the best method when considering the combined effects of parameter
error and uncertainty, system reliability and computational requirements. Parameter error
is defined as the difference between the estimates and true values of the parameters, and
parameter uncertainty is the measure of uncertainty in the estimates.

EVM considers that all variables are subject to error and formally recognizes no dis-
tinction between dependent and independent variables (Fraleigh, 1999). Fraleigh (1999)
concluded that although EVM is the most robust of the three techniques studied, it re-
quires a computational load that is too intensive to be considered for most RTO applica-
tions. The algorithm performs simultaneous parameter estimation along with solving for
the true values of the measured variables, resulting in a larger number of variables relative
to the back-substitution or least-squares regression methods. This substantial increase in
the number variables can create an unreasonably large problem for RTO applications that
may involve models that contain thousands of variables. Marlin (1997) presented a model
of the Sunoco Hydrocracker unit that involves 76,000 variables.

Back-substitution is the most common technique used for parameter estimation in RTO
applications because of its simplicity and low computational cost. This method requires
solving a system of nonlinear model equations where the number of equations is equal to
the number of adjustable parameters. Fraleigh (1999) showed that least squares regression
outperformed back-substitution, producing a substantially smaller confidence region for
the parameter estimates for all tests including: nominal operation (all measurements are
unbiased and available), a 10% bias introduced to one of the response variables, and a
complete failure of one of the response variables. Back-substitution actually failed for the
last case where one of the response variables failed.

In summary, Fraleigh (1999) was able to show that although least squares regression
is computationally more expensive than back-substitution, it is able to significantly reduce
parameter error and uncertainty while the computational load is not significantly burden-
some. Based on this conclusion this thesis will use the least squares regression method in

the model updater.

2.1.1 Selecting the Optimal Amount of Historical Information

The need to include historical steady-state information in the model updater becomes nec-
essary if the final goal is to construct an experimental design to calculate the next operating
point that will generate the maximum amount of information. In considering implemen-
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tation of experimental design or regression techniques, it does not make sense to base the
calculations on a single point, from either an experimental design point of view or from the
perspective of the quality of estimates obtained through regression.

The implicit least squares regression problem for the multiple response case, is formu-
lated with a structure similar to that defined by Box (1970),

ming = €’e (2.1)
T (ﬁ(p),zu) f (ﬂ@),zu)
= 17 (89,60,y0) £ (89,60, v1) (2.2)
where:
e u=1,2,...,N represents a collection of measurements at a specific operating point.

o f(83,2,) is a stacked vector of r implicit model equations with respect to the measured
responses, at N steady-state data points and has a length of N x r,

e ¢ is a vector of residuals from the steady-state equations,
e 3 is the vector of p adjustable parameters,

e and z, = €:(4q) |Yz(4”) is the vector of measurements at the u® steady-state operating
point where £ is the vector of observations of the g decision variables, and y is the

vector of v measured dependent variables.

Using historical steady-state information will provide the additional advantage of uti-
lizing more data points to increase the degrees of fireedom to the least squares regression
optimization problem, further reducing the uncertainty in the parameters and decision
variables, providing that the data is linearly independent (Dahlquist and Bjorck, 1974).
However, adding more data will increase the computational requirement to solve the opti-
mization problem and will reduce the ability of the model updater to quickly track changes
in the process behaviour. An expression is needed to determine the optimal number of
historical data points to incorporate in the model updater, by balancing the reduction in
the decision variable covariance matrix with the increased computational load and reduced
ability to track process changes.

A similar situation has been identified in the literature for the model structure problem,
where the trade-off is made between model precision and complexity. The goal is to identify
the transition from relevant model fit to overfit. Expressions have been proposed to penalize
the decrease in the loss function associated with introducing extra terms, with a cost to the
increase in the number of parameters (Soderstrom and Stoica, 1989),

N
Wy =[1+y(N,p)]D_€*(t,0) (2.3)
t=1
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or
N

Wx = Nlog {252 (t,o)} + 19 (N,p) (2.4)
t=1
where 9 (N, p) is a function of the number of data points (N) and the number of parameters
in the model (p). Two popular criteria are Akaike’s Information Criterion and the Final
Prediction Error (Soderstrom and Stoica, 1989).
Akaike’s Information Criterion:

N
AIC = log [252 (t,O)J + %” (2.5)

t=1 -

Final Prediction Error:

N
FPE = [262 (t,O)} if—ﬁ (2.6)
t=1 N

The developments presented in the remainder of this section are meant only as an
introduction to the topic of selecting the amount of historical data to use in the model
updater, and it is not within the scope of thesis to find an analytical solution. The structure
of the equation and penalty functions will be justified through considerations that are
important to this thesis and the small case study of the Williams-Otto reactor, discussed
further in this chapter (Williams and Otto, 1960).

Using an expression similar to Equation (2.3), the optimal number of historical data
points could be determined by minimizing an expression that in some way penalizes the de-
crease in uncertainty of the decision variables (as measured by the volume of the confidence
region: det Qy) that results from increasing the computational load (¥;) and decreasing
the ability of the RTO system to track changes in the process operation ().

Although A-optimality is selected for the experimental design criteria (as discussed later
in this chapter), the determinant of the decision variable covariance matrix is used here to
measure the change in the volume of the confidence region. The determinant of a covariance
matrix is a common method, that has been used by many previous authors, to measure the
volume of the confidence region (Box and Lucas, 1959; Kiefer and Wolfowitz, 1959; Box
and Hunter, 1965; Pinto et al., 1990 and 1991). The inconsistency is justified because the
experimental design for this thesis is focused on the volume and shape of the confidence
interval; however, the application of selecting the number of historical points should only
focus on the volume since it cannot guarantee that N points chosen at random will have an
impact on shape. To ensure the separability of the various effects, the penalty terms were
introduced in an additive form

W = (1 + 9, (N,7,p) + ¥, (N)] [det Qx] (27)

where Qy is the estimated covariance matrix of the decision variables.
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The computational load required for the least squares regression algorithm increases
proportionally to the number of equations used to solve for the parameter estimates.

Comp.Load x N xr (2.8)

This thesis will decrease this penalty as the number of estimated parameters increases.
However, please note that this decision criterion was not used for selecting the number of
adjustable parameters, only N. A larger value for the ratio,

# of Equations
# of Adjustable Parameters

helps reduce the amount of uncertainty transmitted from the measurement noise to the
adjustable parameter estimates. To accommodate for this, the term % will be included in
the penalty function (see Proportionality (2.9)). Note other possible expressions include
N x ror p(N x r), which is a viable choice since more adjustable parameters will increase

the computational load.

Nxr
o< (2.9
(2 ? )
If the proportionality constant is set to one,
N
¥y (N, p) = —— (2.10)

The selection of a linear form for the penalty function, with respect to N, is justified by
examining the results of the Williams-Otto reactor case study of section 2.4. Figure 2.1,
shows that as the number of historical data points is increased, the volume of the confidence
region for the decision variables decreases, as expected, and the computational load increases
linearly over the range of N investigated. To evaluate the computational load required of
the model updater, the number of floating-point operations (FLOPS) was counted using the
flops function in the computer software package MATLAB ver. 5.3.0 (The Math Works,
1997).

The reduction in the ability of the RTO system to track changes in the process behaviour
is solely dependent on the number of historical data points used by the model updater. As
the number of historical data points increases, the model updater is put to ‘sleep’ as its
sensitivity to new points is reduced. This thesis will make the case that points further
in the past should be penalized more heavily than recent information because it becomes
more probable that the operating conditions have changed, and the information provided
is not well-suited to describe the behaviour at the current operating state. A possible
proportionality expression is described by Inequality (2.11). Ensuring that b > 1, will
provide the desired effect of increasing the value of ¥, exponentially as N gets larger. It is
noted that other functions that produce the same result include: b" and eV:

Py ox N* (2.11)
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Measuring the Uncertainty in the Optimization Calculations
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Figure 2.1: The uncertainty in the optimization calculations decreases, and the computa-
tional load increases linearly as the number of historical steady-state points used in the
model updater increases.

If the process behaviour does not change relatively often, then the penalty function described
by Inequality (2.11) should be less restrictive and it would be ideal to use more historical
points. Using the Williams-Otto reactor, values of b = 3 and a proportionality constant
equal to %, provided results where the number of points is reasonable,

N3

by (N) =5 (2.12)

A reasonable range is considered to be two - ten historical points, since exceeding ten would

be unreasonable for an RTO system to track changes in the process behaviour, since the
data would be describing the process behaviour from several days before the calculation is
made.

The calculation to determine the optimal number of historical points may have to be
repeated if the operation of the process changes significantly, or if the set of equations in
the model updater subsystem is changed, particularly if a simplified model structure is used
to describe the local behaviour of the process.

Although a least squares regression method was used for this case study, the consid-
eration of the developments in this section are not specific to this parameter estimation
algorithm.
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2.2 Parameter Covariance Matrix Estimation

This section discusses methods for estimating the adjustable parameter covariance matrix
and to combine it with the sensitivity of the optimization variables to the adjustable pa-
rameters, to produce an estimate of the decision variable covariance matrix. The selected
method will be used in an experimental design to select the next point that is expected to
generate the most information possible within a specified experimental window.

Two methods will be discussed in this section that take different approaches in estimat-
ing the uncertainty for the adjustable parameter estimates. One method was developed for
RTO applications and the other for experimental design purposes. The approach by Forbes
and Marlin (1996) can be extended to estimating the decision variable covariance matrix
(Qz), by using the sensitivity of the optimization variables to the adjustable parameters,
.?1_’2:) , as a weighting matrix to the parameter covariance matrix (Qg). Their method will
be discussed further in this section:

. o\ T
o (35) (8

The use of the estimate of the parameter covariance matrix in the experimental design
literature was originally developed by Box and Lucas (1959). This result was also achieved
by Bard (1974), who took a different approach. The estimate of the parameter covariance
matrix found in the experimental design literature has not been used for any RTO appli-
cations, but has been applied to the development of many sequential experimental designs
(Box and Hunter, 1965; Draper and Hunter, 1966; Draper and Hunter, 1967 a and b; Pinto
et al., 1990). This approach will be discussed in detail later in this section.

Forbes and Marlin (1996) developed their estimate of the decision variable and parameter
covariance matrix using sensitivity analysis to track how the process measurement noise
propagated through the closed-loop RTO system. Their approximation has been used for
the following RTO applications: design cost, results analysis and optimal sensor selection
(Forbes and Marlin, 1996; Miletic and Marlin, 1998; Fraleigh, 1999; Zhang and Forbes,
2000; Zhang et al., 2001). Other optimization researchers have used sensitivity analysis for
their applications as well. Koninckx (1988) investigated how the uncertainty in the decision
variables affects the evaluation of the expected gains in profit and the accuracy of the
predicted profit and decision variables. Krishnan et al. (1992) examined how uncertainty
from the measurements is forwarded to the adjustable parameter estimates, in order to
select which measurements have the greatest influence on the updated parameters. Of
significance to this thesis, Fraleigh (1999) used this estimate with D and T-optimal criteria
to find an optimal sensor system, and Miletic and Marlin (1998) used this result to estimate
the confidence region of the decision variables.

A practical advantage to the approach proposed by Forbes and Marlin (1996) is that
it estimates the parameter covariance matrix from the measurement noise, where the de-
velopment in the experimental design literature uses the residuals of the model equations,
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which are not as accessible. This advantage along with the desired consistency of using
linear sensitivity methods to calculate the entire decision variable covariance matrix and
the documented success of the approximation developed by Forbes and Marlin (1996) for
RTO applications, make it the preferred approach to estimate the covariance matrix of the
adjustable parameters and decision variables for this thesis.

This section will conclude with a detailed discussion of the two approximations men-

tioned.

2.2.1 Covariance Estimates (RTO Approach)

In an RTO application, the variation in the calculated optimization variables and the ad-
justable parameter estimates is due to uncertainty in the process measurements propagating
through the closed-loop RTO system (Forbes and Marlin, 1996). Figure 2.2 shows the sen-
sitivities governing the propagation of uncertainty through the RTO subsystems.

z B .
— Model Updater [ Optimizer > %

A dp/dz Dx,"/dp

Figure 2.2: Tracking the uncertainty through the RTO subsystems.

Forbes and Marlin (1996) showed that a closed-loop RTO system, as shown in Figure
1.2, can be represented by a linear approximation which is written in terms of the devia-
tions in the calculated setpoints from the applied setpoints and the subsystem sensitivities.
However, since this thesis is limited to a discussion about reducing uncertainty in the opti-
mization calculations caused by sensor noise and model uncertainty, it is assumed that only
measurement variance is propagating through the RTO system. Therefore the closed-loop
system can be reduced to an open-loop approximation using a one-step ahead approximation
of the setpoint covariance matrix as shown in Equation (2.14):

Qx = a"” a"" (2.14)

which is rewritten as,

38 9z 08 0z

where U is the covariance matrix of the measurement noise sampled from a Gaussian

distribution and having zero mean.
This assumption has been made previously by other researchers (Miletic and Marlin,

1998; Fraleigh, 1999; Zhang et al., 2001).

Q= 2298y (a""aﬂ) (2.15)
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If only the uncertainty in the adjustable parameters is of interest. then the sensitivity
of the decision variables to the parameter estimates can be removed from Equation (2.15)
to produce the approximation,

Qs _aﬁ (%)T (2.16)

Equation (2.16) describes how the uncertainty in the process measurements propagates
through the model updater subsystem, to contribute to uncertainty in the adjustable pa-
rameters.

Linear sensitivity analysis is used to represent the RTO subsystem sensitivities. It is a
tool that provides an approximation of the variability of the RTO results based on the local
sensitivity of the parameter updater and the economic optimizer. These sensitivities depend
on the definition of the optimization problems (i.e., parameter estimation and model-based
optimization) and the resulting Karush-Kuhn-Tucker conditions (Ganesh and Biegler,1987).
A description of the sensitivities is given in Appendiz A.

2.2.2 Covariance Estimates (Experimental Design Approach)

The estimate of the covariance matrix for the adjustable parameters, originally developed
by Box and Lucas (1959), is based on the posterior distribution of the parameter estimates.
Draper and Hunter (1966) expanded on the original work to account for multiple-response
models. Draper and Hunter (1967 a and b) adapted their estimate to include, when avail-
able, a priori information of the parameters in the form of a multivariable normal distribu-
tion for single-response nonlinear models ( Draper and Hunter, 1967a) and multiple-response
nonlinear models (Draper and Hunter, 1967b).

The expression used to estimate the covariance matrix of the adjustable parameter
estimates in the sequential multiple response experimental designs developed by Draper
and Hunter (1967 b) and Pinto et al. (1990) is,

Qs = Zzavx,x +V;! (2.17)
i=]j=
where
af; (y(v) (q) ' )
t) _ iy *oiu
x;, 30, ) (2.18)
=60
and
a:(l) 3(2) xg)
(1) (2) x(_P)
X; = 12 12 1.2 (2.19)
1 2 ;
f,,Z f,.l 2l
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and X is the incremental design matrix of partial derivatives and V, is the past estimate
of the parameter covariance matrix. Since the result will not be used in this thesis. a full
description of the development of this approximation is presented in Appendiz B.

2.3 Experimental Design Algorithms

This section will discuss the different alphabetic experimental design criteria, and will pro-
vide justification for the selection of the A-optimal criterion for use in this thesis.

The final form of the experimental design is defined by Problem (2.20). The experimental
design is required to select the next point that will minimize the trace of the estimate of
the decision variable covariance matrix, with the vector of decision variables at observation

N +1 as the optimization variables.

rgi)n trace (Qx) (2.20)

N+1

( -~
s.t. f(yl:;l-vfsg)ﬂ’ap) =0
g(e0.60) < o

where the first set of constraints represents the steady-state model equations and the second
set defines the experimental window.

The inequality constraints are present to define the experimental window (or trust re-
gions), which prevent the system from being subjected to drastic process changes. The
solution of the optimization problem will provide a design point, contained within the
experimental window, that will produce high quality steady-state information to reduce
uncertainty in the decision variables.

2.3.1 Variance-Optimal Designs

Although this thesis is not concerned with linear experimental designs, since the models used
for RTO applications are mostly nonlinear in the parameters, an introduction explaining
the different optimal design criteria is best provided with linear models.

The objective for this thesis is to generate a sequential experimental design. Several
design criteria based on the information matrix and their experimental objectives are de-
scribed below (Box and Draper, 1987; Myers and Montgomery, 1995). For clarity purposes,
first consider the model,

Y=XB+¢ (2.21)

where Y=[YT YJ]", X=[XT XI]", ¢ = [eT €]]" and (Y2, Xz) is the new observation.
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D-Optimality: D-optimal designs, originally developed by Kiefer and Wolfowitz (1959),
are the most common and widely studied of the alphabetic optimal designs (Myers and
Montgomery, 1995). Their objective is to minimize the generalized variance of the param-
eter estimates by maximizing the determinant of the information matrix:

max | (XTX)| (2.22)

Geometrically, the volume of the confidence ellipsoid of the parameter estimates is propor-
tional to |XTX|_1/ 2, Therefore the D-optimal design is considered to minimize the volume
of the confidence ellipsoid.

This design is augmented by calculating the next point, within the design region, which
maximizes Equation (2.22).

A-Optimality: A-optimality deals strictly with the individual variances of the pa-
rameter estimates. Whereas the D-optimal design focuses on minimizing the volume of the
confidence region, the A-optimal design focuses on both minimizing the volume and creating
a more symmetrical shape by equalizing the uncertainty in all the parameter estimates:

1

min trace (X7X)"~ (2.23)
or from Myers and Montgomery (1995).
max trace (XTX) (2.24)

To augment the optimal design with an extra point. all that is required is to maximize
the trace of the information matrix of the new observation,

max trace (X]Xp) (2.25)
This concept is derived based on the following property,
trace (XTX) = trace (XTX,) + trace (X]Xz) (2.26)

E-Optimality: The objective of E-optimality is to minimize the variance of the most
poorly estimated coefficient. This design is often called the shape design because of its focus
on equalizing the amount of uncertainty for each parameter,

min [max A {(xTx) -1 }] (2.27)

Heiberger et al. (1993) indicated that once all the eigenvalues are equal, the design is
orthogonal.

This design is augmented by calculating the next point, within the design region, which
maximizes Equation (2.27).

G-optimality: The primary focus of G-optimality is to improve the prediction of the
response, E(y). It operates by minimizing the maximum prediction variance over the design
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region. For the non-sequential application, n experimental conditions are chosen to minimize

the maximum prediction variance,
min [max {x" (X7X) " x}| (2.28)

where X is manipulated and has row dimension n, and x is fixed as the location in the
design space that is being predicted. For experimental design purposes x is the center of
the design space. For sequential designs, the data set used to define X is augmented by the
next experimental point. Dette and Wong (1995) suggest that this design is a good choice
when it is desired to estimate the entire response surface, as it provides global protection
against unreliable estimates at points in the design space.

U-optimal: U-optimal designs were developed by Heiberger et al. (1993) as an im-
provement to the other more traditional A, D, E and G optimal experimental designs.
They have shown through formal definition and proofs that U optimality implies D, A, and
E optimalities (Heiberger et al., 1992).

The authors show the best strategy is to begin augmenting the design, with an approach
similar to E-optimality, with points that increase the smaller eigenvalues of the information
matrix until all the eigenvalues are equal. Once this is the case, the design will be orthogonal
and any further new points should be selected from any other balanced design. However,
U-optimal designs have not received much attention in the literature so their efficiency
compared to other experimental designs is unknown. Since the objective of this thesis is to
only augment the design with one point, this design is essentially reduced to an E-optimal
design.

Although D-optimal designs, and to a lesser extent A and E optimal designs, have
received the most attention in the literature, some authors believe that experimenters do
not make use of the prediction variance used in G-optimality as much they should (Welch,
1983; Myers and Montgomery, 1995). However, as previously discussed, the purpose of
the experimental design for this thesis is to develop a function that is able to measure the
amount of information that will reduce uncertainty in the parameter estimates, and to a
lesser extent to reduce the prediction variance over the entire response surface, therefore
making the G-optimal design less desirable when comparing it to other experimental designs.

The next section will discuss the justification for selecting the A-optimal criterion for

this application.

2.3.2 Comparing the Alphabetic Design Criteria

There have been some comparisons to distinguish which of the alphabet designs is gener-
ally the most efficient. Considering linear models, Wong (1994) examined the robustness
properties of the A, D, E, and G-optimal designs by comparing the efficiencies of each de-
sign under various model assumptions. Wong (1994) stresses the importance of selecting
a design that is deemed adequate for several optimality criteria. Kiefer (1975) shares this
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same opinion in writing that it does not make sense to select a design based on precise
calculations of one particular criterion and not examine how it performs in other respects.

Wong (1994) showed that the experimenter should be cautious when using an E-optimal
design, since a small amount of structural error in the model can result in a severe loss in
efficiency of the design. The A-optimal designs, although not to the same degree, also
showed problems in handling model mismatch. The G and D-optimal designs were able to
provide protection from deviations of the true model.

The alphabet efficiencies are measures of how the results of an experimental design
compare to the theoretical optimal design that would be produced by the criterion specified
by the letter efficiency. Therefore a design created using an E-optimal criterion would have
an E-efficiency of 1. Fedorov (1972) provides the background for the computation of D
and G-efficiencies, while Pukelsheim and Torsney (1991) and Wong (1994) discuss how to
calculate the A and E-efficiencies, respectively. Table 2.1 provides a summary of the results
reached by Wong (1994), where a design is considered very efficient if it has an efficiency
above 0.9, and efficient if its efficiency is between 0.8 and 0.9.

Table 2.1: Comparing Optimal Designs

Optimal | A-Efficiency | D-Efficiency | E-Efficiency | G-Efficiency
Design
A v. efficient v. efficient not efficient
D efficient not efficient v. efficient
E v. efficient efficient not efficient
G not efficient efficient not efficient

Wong’s results showed that G-optimal designs should be used sparingly since they are
only compatible with D-efficiency, although they do posses good protection when there are
departures from the true model. E-optimal results showed the opposite effect in that they
are compatible with all criteria except G-efficiency. but they do not perform well when the
assumed model and the true model are not similar.

In summary, Wong (1994) showed the best designs were A and D-optimal designs. The
A-optimal design showed slightly better results when comparing the efficiencies between
other designs. However, the D-optimal design also performs well and is stated to be slightly
better equipped to handle larger amounts of plant/model mismatch (Wong, 1994).

Pinto et al. (1990,1991) compared A, D, and E-optimal design criteria for experimental
designs where a prior distribution of the model parameters was known and unknown for
multiple response nonlinear models. Pinto et al. (1990,1991) concluded that the A-optimal
design provided the best parameter estimates with the smallest parameter uncertainty in the
examples studied. They noted that using the D-optimal criterion was good for prediction-
orientated problems but was not well-suited for general parameter estimation, which is more
consistent with the objectives of this thesis. They found that the D-optimality criterion
reduced the volume of the confidence region faster, but at the expense of reducing the uncer-
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tainty of one parameter while the uncertainty of the other parameters remained relatively
large (Pinto et al., 1990). As mentioned previously, the volume as well as the shape of the
confidence region is important to this thesis because the primary need of the optimizer is to
have a good estimate of the direction of steepest improvement, and is less concerned with
the prediction abilities of the model.

This thesis will use an A-optimal criterion for the experimental design, because it focuses
on the volume and shape of the confidence region, and previous authors have shown it to
be an effective approach for applications focusing on parameter estimation and uncertainty
problems (Pinto et al., 1990; Pinto et al., 1991; Wong, 1994).

2.4 Williams-Otto Reactor Case Study

This series of case studies will examine the following issues:

e the effect of including historical steady-state information in the model updater of the
RTO system;

e the ability of an experimental design to generate information to reduce uncertainty in

the optimization calculations.

The first case study will show how to select the optimal number of past steady-state
data points to balance the effects of reducing variable uncertainty with increased computa-
tional load and the weakened ability of the model updater to track changes in the process
behaviour. The second case study will show how generating and implementing the result
from an experimental design is able to reduce the decision variable uncertainty further than
implementing the result predicted by the economic optimizer.

2.4.1 Process Description

The Williams-Otto reactor, shown in Figure 2.3, is one unit of the Williams-Otto plant
model, which also contains a heat exchanger, decanter and a distillation column (Williams
and Otto, 1960). The Williams-Otto reactor has been widely used by a number of re-
searchers to test their applications (Roberts, 1979; McFarlane and Bacon, 1989; Forbes et
al., 1994; Forbes and Marlin, 1996; Miletic and Marlin, 1998; Fraleigh, 1999; Zhang and
Forbes, 2000; Zhang et al., 2001).

The reactor is a continuously stirred tank reactor (CSTR), with mass holdup Vg = 4640
b and temperature Tg. The reactor is fed with two pure component reactant streams,
FA and FB. Stream flow rate F'A is held constant at 14,500 lb/hr. There are three
simultaneous reactions that occur involving six components,

A+B - C
B+C —- P+ F
C+P —- G
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A+B =P C
B+C P PpP+E
ce P G

Figure 2.3: Williams-Otto reactor (Williams and Otto, 1960).

The kinetics of each reaction are represented by the Arrhenius expression,
k{ = Ai exp(—B,-/TR) (2.29)

where 1 represents the reaction equation, k is the rate of reaction (hr~!), A is the frequency
factor (hr~1), and B is the activation energy (R). The Arrhenius constants for the reactions

are presented in Table 2.2.

Table 2.2: Reaction Constants
Reaction Number | Frequency Factors | Activation Energy
(heh) R)
1 5.9755 x 10° 12,000
2 2.5962 x 104 15,000
3 9.6283 x 10'° 20,000

For this case study, all ten variables are considered measurable (flows, temperatures,
component compositions). The frequency factors (A;) will be the parameters updated on-
line and for the purposes of this case study the activation energy constants (B;) are assumed
to be known. The decision variables for optimization will be the flow of reactant B into the
reactor (FB) and the temperature of the reactor (Tgr).

The steady-state model includes the overall mass balance and the six component mass
balances. For simplicity, the energy balances have not been included.

27



FA+FB-FR = 0 (2.30)

f/_:_%(m)-kl(AR)(BR) -0 (231)
T2 - T2 (BR) - ki (AR) (BR) — k2 (BR)(CR) = 0 (2.32)
R Vr
-% (CR) + 2k, (AR) (BR) — 2k2 (BR) (CR) — k3(CR)(PR) = 0 (2.33)
-va (ER)+ 2k (BR)(CR) = 0 (2.34)
—%(GR)-{-I.Ska (CR)(PR) = 0 (2.35)
FR

Ve (PR) + ko (BR)(CR) —0.5k3(CR)(PR) = 0 (2.36)

where R represents the stream exiting the reactor. This model uses the assumption that
the tank is well mixed so the composition in the exit stream is equal to the composition in

the tank.
The instantaneous profit function is defined in Equation (2.37) and is the same as the
one used by Miletic and Marlin (1998).

P(z,u) = 70000.3(FA + FB) PR + 1586.9 (FA + FB) ER — 4667.0F A — 7000.2F B
(2.37)

The profit response surface and contours are shown in Figures 2.4 and 2.5. The optimal
point occurs at [FB,TR] = [0.3799,0.6531] for a maximum profit of $928 /s.
2.4.2 Method

The problem was scaled to ensure a more reliable solution for the optimization and equation
solving routines. This transformation also helps the statistical estimation of parameters in
the kinetic expression by reducing correlation (Watts, 1994). The kinetic expressions were

manipulated as follows,

ki = Aiexp[-Bi/(Tr - (Tro);)] (2.38)
= Aiexp(Bi/ (Tro);) exp (—Bi/Tr) (2.39)

with the scaled reference temperatures,

(Tro); = 0902 R
(Tro), = 0.7907 R
(Tro); = 07434 R
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Figure 2.4: Surface plot of the Williams-Otto reactor.
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Figure 2.5: Contour plot of the Williams-Otto reactor.
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The frequency factors were scaled by dividing by 1,000, so the true values of the adjustable

parameters become,

A = 10
Ay = 13
A3 = 20

The following variables were further scaled as shown in Table 2.3.

Table 2.3: Variable Scaling for Williams-Otto Reactor

Variable Symbol Scaling Factor
Flows FA, FB | divided by 100,000
Temperatures Tr divided by 1,000
Reactor Volume Vr divided by 100
Arrhenius Exponent | By, Bo, B3 | divided by 1,000

In order to generate the measurement covariance, it is assumed that a priori knowledge
of the covariance structure for the measurements is unavailable. The measurement covari-
ance matrix for the compositions of materials exiting the reactor was found by generating
a set of 1,000 process data points around a nominal value with a white noise distribution
added to each data point for each measurement. Table 2.4 shows the true applied standard
deviations of the measurements, expressed as a percentage of the nominal case. The nomi-
nal point and measurement covariance matrix can be found in Appendiz C. Although this is
not strictly correct for this case, it creates a study of mismatch in the covariance structure.
This thesis allows for future discussion to evaluate the benefits of integrating knowledge of
the covariance structure into the RTO system.

Table 2.4: Standard Deviations of the Measurements
Measurement | Standard Deviation
Flows 1.0 %
Temperatures 0.5 %
Compositions 3.0%

The initial data set, which represented historical operation before the case studies were
initiated, consisted of ten steady-state operating points selected randomly from a uniform
distribution in the range [FB,TR] = {40,000, 42,000] x [640,645]. This data set is found
in Appendiz C.

The first case study investigated the advantages and disadvantages of using information
from past steady-state operating points in the model updater stage. A maximum of ten
historical points were considered, since exceeding ten would be unreasonable for an RTO
system to track changes in the process behaviour, as the data would be describing the
process behaviour from several days before the calculation was made. For each set of
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data, the model updater used a least squares regression routine to calculate the adjustable
parameter estimates. The updated model was used by the economic optimizer to calculate
the new optimal point. The estimated covariance matrices of the adjustable parameters and
the optimization calculations were evaluated using linear sensitivity analysis (see Appendiz
A). The volumes of the confidence regions were compared to determine the transmission
of noise from the measurements to the adjustable parameters and the decision variables.
The criterion used in Equations (2.7), (2.10), and (2.12) was used to determine the optimal
number of historical points that should be used for this case study.

The result from the first case study was used in the second case study to compare the
uncertainty of a result of an economic optimization calculation after the initial data set
has been augmented with a new point from: 1) an economic optimization calculation; and
2) an experimental design optimization calculation. Similar to the first case study, the
determinant of the covariance matrix was used to measure the volume of the confidence
region of the decision variables.

The experimental design problem requires the value of the matrix representing the sen-
sitivity of the decision variables to the adjustable parameters, %, which is only obtained
from the results of an economic optimization calculation. Therefore the matrix, gﬁ, used in
the computation of the experimental design problem is estimated from a previous calcula-
tion. This approximation is adequate, since unless significant changes occur in the process
operation, the matrix % does not need to be recalculated (Miletic and Marlin, 1998).
Therefore the sensitivity of the optimization variables to the adjustable parameters can
be considered as a weighting matrix for the experimental design calculation. For the case
study, an experimental window of [£0.05,+0.020] surrounding the current operating point
was defined. A large experimental window was selected for this case study to effectively
compare the results to the unconstrained economic optimization problem. A more practical
problem with a smaller experimental window is discussed in Chapter 3.

2.4.3 Results and Discussion

This section concludes with the presentation and discussion of the results for the case
studies involving the Williams-Otto reactor. The first case study is performed to determine
the number of historical steady-state points that should be used in the model updater
subsystem. The second case study investigates the use of DOE in the RTO system. Please
see Appendiz C for the results of the optimization routines and the covariance matrices.

Historical Data

The results of the first case study show that, for the criterion used in Equation (2.7), the
optimal number of historical steady-state points that should be used for updating the ad-
justable parameter estimates is three. The structure of the decision criterion is held constant
while the number of historical data points is adjusted. The decision criterion is based on
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Figure 2.6: The optimal number of historical steady-state date points to be used by the
model updater subsystem for the Williams-Otto reactor is three.

the following three considerations: reducing uncertainty in the optimization calculation,
limiting the computational load, and ensuring that the RTO loop is able to effectively track
changes in the process behaviour. Figure 2.1 shows that by using more historical steady-
state information, the uncertainty associated in the optimization calculations is reduced.
Figure 2.1 also shows how the computational load of the model updater increases linearly as
more historical points are used. This result is consistent with the structure of the penalty
function, represented by Equation (2.10), which predicted the computational load as a lin-
ear function of N (number of steady-state points). However, Figure 2.6 illustrates that the
benefit of this further reduction in the decision variable confidence region is minimal as the
influence of the penalty functions become more significant.

Table 2.5 compiles the data illustrated in Figures 2.1 and 2.6, as well as devoting an
extra column to show the changes in the volume of the confidence region of the adjustable
parameters.

There are many methods available to solve the nonlinear economic optimization for this
case study (Edgar and Himmelblau, 1988). The method applied for this thesis was the
Sequential Quadratic Programming (SQP) algorithm in the optimization toolbox for the
computer software package MATLAB ver. 5.3.0 (Branch and Grace, 1996).

DOE Use

The second case study introduces the potential benefits of using experimental design for
RTO applications, by showing that a DOE calculation does reduce uncertainty in future
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Table 2.5: Results Summary for Optimal Historical Point Selection for the Williams-Otto
Reactor

Historical | det(Qg) | det (Q,) | Regression | Decision Criterion
Data Points (Equation 2.7)
(x10-19) | (FLOPS) (x10-9)
1 0.8026 0.9835 27158 0.3278
2 0.1815 0.3922 34917 0.3007
3 0.0632 0.1798 46037 0.2876
4 0.0242 0.1075 57838 0.3261
5 0.0120 0.0716 66032 0.3773
6 0.0073 0.0492 76845 0.4185
7 0.0053 0.0363 86947 0.4693
8 0.0038 0.0312 92669 0.5851
9 0.0027 0.0234 101634 0.6139
10 0.0020 0.0184 112299 0.6537

economic optimization calculations. Two tests were performed using the same initial data
set as the first case study. The first test consisted of performing an economic optimization
calculation and the second completed an experimental design calculation. Each test im-
plemented the result from the first RTO cycle, and the RTO loop was run a second time
with an economic optimization completed in both cases. Table 2.6 shows the volume of the
confidence region of the economic optimization calculation for the second RTO cycle is 29%
smaller in the second test where the result of the experimental design was implemented in
the first RTO cycle. However, Figure 2.7 shows that the result from the experimental design
is farther from the true optimum than the result from the economic optimizer, indicating
that a trade-off needs to be made between information generation and profit realization.

Table 2.6: Results Summary for Benefits of Experimental Design

Economic Optimization Calculation det (Qg) | det(Q,)
(x10719)
First RTO Interval 0.0632 0.1798
Second RTO Interval (after Economic Optimization) | 0.0858 0.2263
Second RTO Interval (after DOE) 0.0560 0.1604

The same SQP algorithm used for the economic optimization problem was applied to
the experimental design optimization problem.

Figure 2.7 also shows that the experimental design does not produce a point that lies
on the border of the experimental window. This occurs because the nonlinearities in the
objective function and the process model produce a local minimum, as shown in Figures
2.8 and 2.9. This is in contrast to the more common linear experimental designs, which will
always push for points to be selected on the boundary of the experimental window.

Since the primary purpose of the RTO system is to maximize profit, it is not prudent
to apply an experimental design without considering the loss in profit that would result.
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Figure 2.9: The contour plot shows there is a local minimum for the experimental design
problem.

Chapter 3 will extend the study initiated in Chapter 2 to develop a more practical usage
for experimental design, that involves a trade-off between information generation and pro-
ducing greater profit. It will consist of expanding the role of the command conditioning
unit to judge whether the result from the economic optimizer exceeds a threshold value of
information generation. If this value is not met, then an experimental design calculation
is performed that consists of an experimental window represented by a constraint in the
optimization algorithm. This constraint will limit the amount of profit that the engineer is
willing to lose for the purpose of improved information generation.
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Chapter 3

Enhanced Command Conditioning

The primary purpose of RTO is to maximize profit generated by efficient process operation.
Chapter 2 showed that experimental design techniques can be used to reduce uncertainty
in the decision variables; however, they can move the process operation into a region of
significantly lower profit.

This chapter will continue to investigate the benefits of experimental design and will
propose methods that enable it to be a practical addition to the RTO system. The command
conditioning (CC) subsystem is expanded to measure the level of potential information that
could be generated if the result predicted by the economic optimizer is implemented. If this
measure is too low, then a constrained experimental design calculation is performed that
limits the size of the experimental window to control the amount of profit that could be
lost if the result is implemented.

This chapter begins with a discussion concerning the current structure of the command
conditioning subsystem and how results analysis is used to evaluate the significance of the
result predicted by the economic optimizer. Section 3.2 discusses the issues involved in
incorporating experimental design into an RTO algorithm. This chapter concludes with a
case study based on the Williams-Otto reactor (Williams and Otto, 1960) that demonstrates
how the concepts presented in Sections 3.2 perform as a part of the RTO system.

3.1 Results Analysis for Low Frequency Disturbances

Miletic and Marlin (1998) developed a method that applies multivariable statistical hy-
pothesis tests based on control charts to distinguish between high frequency disturbances
transmitted through the calculations and significant low frequency changes in the plant
optimization variables. By making this distinction, they were able to show that they could
reduce the number of unnecessary changes in the manipulated variables and improve profits.
From an operating benefit stand point, the process is not subjected to as many setpoint
changes since only significant results are implemented.
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The hypothesis test used has the form,

H, : p,=n, (3.1)
H : p,#up,

where u represents a vector of expected values of the optimal operating conditions, and
p and o represent the model prediction and applied plant values, respectively. If the hy-
pothesis test is not rejected, it is considered that the difference in p’s does not exceed a
significant threshold which accounts for the inherent background statistical variation caused
by measurement noise, therefore the computed change is not significant and the new point
should not be implemented.

The hypothesis test in Problem (3.1) is conducted by comparing the calculated T2
statistic to a control limit value. Wierda (1994) identified several different control limit
values. A single multivariate hypothesis, such as the Hotelling T? statistic, is selected
over a set of individual tests for each decision variable, because of the possible high degree
of interaction among the decision variables in practical applications (Marlin and Hrymak,
1997). If the T? statistic is larger than the control limit, then H, is rejected and the
new point should be implemented. Assuming the distribution of the calculated setpoints
is multinormal, which is true if the distribution of the plant measurements is multinormal
and if the transformations applied to the measurement covariance matrix are linear, the
Hotelling T? statistic has the form (Miletic and Marlin, 1998),

T2 = (xp — %) T Q7! (%p — Xo) (3.2)

where Q. is an approximation of the decision variable covariance matrix, see Equation
(2.15). Please note that the variable values, x, are estimated values of the expected values
p. The control limits for the hypothesis test in Problem (3.1) can be based on the most
recent optimization calculation or on successive averages of the most recent calculations:

p(N+1)(N -1)

UCL, = Fa(®:N D) (3.3)
UCL, £ (mm-f'(;)i"jf;)- ) F, (p,mn - p) (3.4)

where p is the row dimension of x, N is the number of data points used to calculate the
measurement covariance matrix, n is the number of optimization results tested in UCL,,
and m is the number of n-sized groups used to compute the measurement covariance matrix.
Both of the control limits above were used by Miletic and Marlin (1998), and Equation (3.3)
was used by Zhang et al. (2001) for their work.

Zhang et al. (2001) extended these developments to analyze steady-state RTO results
in the presence of inequality constraints that may exist due to operating constraints or
trust-region limits. They expanded the statistical testing to include the dual variables of
the optimization problem, as well as the primal variables.
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3.2 Incorporating DOE into RTO

Chapter 2 concluded by showing that experimental design techniques can be used to gen-
erate information to reduce uncertainty in future optimization calculations. However, the
case study in Section 2.4 illustrated the potential drawback of the experimental design was
selecting an operating point in a region of significant potential profit loss. Of further concern
includes the computational burden that DOE calculations can have on the RTO system.
This section will discuss two approaches to reduce the influence of these concerns.

3.2.1 Command Conditioning Structure

As discussed in Section 3.1, one of the purposes of the CC subsystem is to evaluate whether
the point predicted by the economic optimizer should be implemented if it is not signifi-
cantly different than the current operating point. This thesis builds on the work originally
developed by Miletic and Marlin (1998), by expanding the structure of the CC subsystem
to also determine if the predicted point is expected to generate information. By selecting
instances when the DOE calculation is most needed, the CC subsystem can reduce the com-
putational burden that would be involved in performing an extra optimization calculation
for each RTO cycle. The DOE calculation cannot be performed between RTO intervals, to
alleviate the computational burden, because information is needed at steady-state to com-
plete the necessary calculations. It cannot be performed after the result from the economic
optimizer is implemented either, because this exercise is performed to avoid implementing
results that do not generate information. The modified CC subsystem continues to focus the
RTO loop on maximizing profit by only deviating from the predicted result when necessary.
The proposed structure for the CC subsystem is shown in Figure 3.1, where the expansion
occurs after the first layer to ensure information is generated prior to implementation.

The criterion that measures the potential level of information generation has a form
similar to the criteria used for the experimental design:

trace (Qz)predicted < @ trace (Qz)cyrrent (3.5)

Inequality (3.5) states that the volume and shape of the confidence region for the decision
variable covariance matrix will be improved if the predicted point is implemented. If the
experimenter wants the decision on whether a DOE should be performed to be based solely
on the volume of the confidence interval, without considering shape, then the trace can be
replaced with the determinant function.

The selection of a as a tuning parameter, is dependent on the importance of informa-
tion generation to the application. Setting a to one, states that the experimental design
calculation is performed only if the point predicted by the economic optimizer is expected
to produce a poorer estimate of the confidence region than what currently exists. Values
of a > 1 are not good selections, because it allows for points to be implemented that will
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Proposed Change to Command Conditioning Structure

Statistically Significant
(Zhang et al., 2001)

Adequate
Information

Iﬁ lmplément No
mplement DOE Move Move

Figure 3.1: Proposed adjustment to the command conditioning structure.

potentially increase the uncertainty in the decision variables. However, if a < 1, the cri-
terion will too frequently conclude that an experimental design should be performed when
it is not needed. This is not desirable since the primary goal of RTO is to improve profit.
so deviations from the result predicted by the economic optimizer should be performed
selectively. Therefore, it is recommended to select a value for a close to one or slightly less.

Defining the command conditioning structure in Figure 3.1 identifies when the DOE
should be performed. The next part of this section will discuss how to formulate the DOE
problem so the amount of profit lost by implementing the result from the experimental
design is controlled.

3.2.2 Defining the Experimental Window

The case study in Section 2.4 showed there is a cost associated with performing experimen-
tation. That cost results from moving to an operating point that generates more information
but less profit than the point predicted by the economic optimizer. This problem is reduced
by adding a constraint to the experimental design problem that limits the experimental
window to a region of acceptable profit lcss determined by the engineer.

In defining the CC structure in Figure 3.1, two scenarios are considered for when a
DOE might need to be performed. One scenario occurs when the results from the economic
optimizer are significant, and the other occurs when they are not significant. Therefore,
the formulation of the constraint describing the experimental window should depend on the
conclusions from the results analysis work.

For the case when the result from the economic optimizer is statistically significant, the
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experimental design is centered around the predicted point. Therefore, the experimental
design will select a point that deviates from the predicted result, determined by the economic
optimizer, with an allowable amount of predicted profit loss defined by Inequality (3.6).
Where E [P(x)] is the expected profit produced at the values specified by the decision
variables, and X,, X5, and x;, are the current operating point, the point predicted by the
economic optimizer and the implemented point predicted by the DOE, respectively:

E[P(x;)] 2 E [P (xo)] + i {E[P (x3)] - E[P (xo)]} (3.6)
- EP(x,)] EIP(X,)]

When the result from the economic optimizer is found to be statistically insignificant,
the DOE problem is focused on the region surrounding the current operating point. If
the value of ¢; in Inequality (3.7) is set to one, then the DOE problem is limited to an
experimental window that will potentially only implement a result that is still expected to
produce more profit than the current operating point:

E [P (xm)] 2 2 {E [P (x0)]} 3.7)

_ SN

E[P(xy")) E[P(x,)]

Please note that unlike cs in Inequality (3.7), ¢; is a fraction of the difference in profit
between the result from the economic optimizer and the current operating point. The
constraint is structured in this manner to ensure that the point resulting from the DOE is
expected to at least produce a result that generates more profit than the current operating
point. If Inequality (3.6) was given a structure similar to Inequality (3.7) such as,

E[P(x)] 2 a {E[P ()]} (38)

this statement could not be made. This is important because, if the economic optimizer
found a point that is significant, the implemented result should be at least expected to
generate more profit than the current operating point.

The selection of the tuning parameters c; and ¢; in Inequalities (3.6) and (3.7), respec-
tively, can be dependent on one of three criteria. The first method is to fix the values of
c1 and ¢y, so the size of the experimental window is consistently set to sacrifice a specified
percentage of expected profit every time the DOE is performed.

The second method would base the selection of the tuning parameters on the result of
the significance tests. The result from Inequality (3.5), would dictate the values of ¢; or c;.
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As the difference between the two scalar values widen, the values for the tuning parameters
should get smaller to allow for a larger experimental window, which would provide an
increased level of information generation. Care must be taken when selecting the size of
c) or ¢, since values < 1 will give the DOE too much freedom, resulting in deviations far
from the optimum and significant profit loss, as shown in the Chapter 2 case study.

The third approach would define the values of ¢; and c» as functions of the profit
distribution, assuming it is known. The experimental window would then be restricted to
a size of one or two standard deviations of the profit distribution. The constraints for the
two scenarios would then have a form similar to the following,

Result from economic optimizer is statistically significant:

E[P(x)] 2 (1-a)E [P (x})] (3.9)
Result from economic optimizer is statistically insignificant:
E[P (xp)] 2 (1 = c2) E{P (x,)] (3.10)

This thesis will use the first method, because it is considered important to define the
constraints in terms of the loss in expected profit.

3.3 Williams-Otto Reactor Case Study

Chapter 2 showed that implementing the result from an experimental design will reduce
the uncertainty in future optimization calculations. However, it also showed that the cost
associated with this result is the potential move of the process operation to a region of
significant profit loss.

The purpose of this case study is to identify the benefits and weaknesses of adding a
DOE component to the RTO system.

3.3.1 Method

To add parametric mismatch in one of the case studies, the activation energy constants
were given a 1, 3, 5 or 10% additive bias in the working model, while the original values
remained the same in the true plant model. The fixed values for the activation energies are
shown in Table 3.1.

The same initial data set and measurement covariance matrix used in Section 2.4 will
also apply to the case studies in this section. Please see Appendiz C for their values. The
first case study will examine whether the performance of the RT'O system can be improved
by including an information generation component. Table 3.2 shows the different tests that
will be performed to determine which sets of tuning parameters produce an RTO system
that out-performs the base case. The base case is defined as the RTO system without an
information generation compornent incorporated into the RTO structure (this reduces to the
work developed by Miletic and Marlin (1998)). The tuning parameters are defined as:
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Table 3.1: Assumed Values of Activation Energy Constants for Mismatch Case Study
Activation Energies (R)
Test # | Bias By B> B3
(%) | (R) | (R) (R)
1 | 12,120 | 15,150 { 20,200
3 | 12,360 | 15450 | 20,600
5 | 12,600 | 15,750 | 21,000
10 | 13,200 | 16,500 | 22,000

=W N -

Table 3.2: Case Study Tuning Parameters
Test # | a c c2 Test # | o c1 c2
0.90 | 0.90 | 0.990 19 0.95 | 0.95 | 0.997
0.90 | 0.90 | 0.995 20 0.95 | 0.95 | 0.999
0.90 | 0.90 | 0.997 21 0.95 | 0.98 | 0.990
0.90 | 0.90 | 0.999 22 0.95 | 0.98 | 0.995
0.90 | 0.95 | 0.990 23 0.95 | 0.98 | 0.997
0.90 | 0.95 | 0.995 24 0.95 | 0.98 [ 0.999
0.90 | 0.95 | 0.997 25 1.00 | 0.90 | 0.990
0.90 | 0.95 | 0.999 26 1.00 | 0.90 | 0.995
9 0.90 | 0.98 { 0.990 27 1.00 | 0.90 | 0.997
10 0.90 | 0.98 | 0.995 28 1.00 | 0.90 | 0.999
11 0.90 | 0.98 | 0.997 29 1.00 | 0.95 | 0.990
12 0.90 | 0.98 | 0.999 30 1.00 | 0.95 | 0.995
13 0.95 | 0.90 | 0.990 31 1.00 | 0.95 | 0.997
14 0.95 | 0.90 | 0.995 32 1.00 | 0.95 | 0.999
15 0.95 | 0.90 | 0.997 33 1.00 | 0.98 | 0.990
16 0.95 | 0.90 | 0.999 A 1.00 | 0.98 | 0.995
17 0.95 | 0.95 | 0.990 35 1.00 | 0.98 | 0.997
18 0.95 | 0.95 | 0.995 36 1.00 | 0.98 | 0.999

QO | O O] ] O] =

e a weighs the importance of information generation in Inequality (3.5);

e ¢; represents the maximum amount of expected profit that can be sacrificed when the
result from the economic optimizer is significant (see Inequality (3.6));

® c; represents the maximum amount of expected profit that can be sacrificed when the
result from the economic optimizer is not significant (see Inequality (3.7)).

The second case study will investigate whether the RTO system that generates infor-
mation, continues to perform well if plant/model mismatch is introduced. The structural
mismatch will take the form of bias in the fixed parameters of the activation energies between
the working model and the true plant model of: 1, 3, 5 and 10%. The tuning parameters
that produce the best economic results in the first case study will be used in the second.

The extended design cost criterion, developed by Zhang and Forbes (2000), will be used
to compare the performance of the different RTO designs. They defined extended design
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cost as the total loss of performance relative to perfect optimization within a pre-specified

performance evaluation period.

t
c= | "EP@™) - P, (1) dt (3.11)

Where C is the amount of profit the RTO system is not able to attain, P is the amount of
profit at the true plant optimum (z**) and the values of the implemented decision variables
(), and E is the expected value. The variation around the expected value of the predicted
optimum was also investigated to supplement the performance evaluation, for the base case
and the test that produced the most optimal results. This variation is caused by propagation
of common cause variation around the closed-loop RTO system (Zhang and Forbes, 2000).
It will be assumed that each RTO interval is the same length.

In order to analyze the final results, ten separate runs consisting of 25 RTO intervals
were performed at each set of test conditions, with the means of these results compared.

One-sided hypothesis tests were used to compare the means of the extended design cost
measure for the 36 tests to the base case, and to determine if the standard deviations of the
data sets used to find the sample means have the same population variances. The statistic
used to compare the sample means, is dependent on whether the population variances were
found to be equal. The hypothesis tests were also used to evaluate whether the variation
around the expected value of the predicted optimum improved, from the base case to the
RTO system with DOE. The form of the statistics are shown in Appendiz D. The structure
of the hypothesis tests are:

Testing population variance - standard deviation of test case (0,2) is larger than the base

case(o?):
2
o
H, : a—:,_:=1 (3.12)
2
H; : %>1

Testing population variance - standard deviation of test case is smaller than the base

case:
2
a
H, : %= .
o 5=l (3.13)
2
H : Z<1
g

Testing population mean - sample mean of test case (u,) is larger than the base case
(m):

H, : e —pp =0 (3.14)
Hy @ py—ppy>0
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Testing population mean - sample mean of test case is smaller than the base case:

H, : p—p=0 (3.15)
H : p—-p<0

One-sided hypothesis tests were used because once the sample values are known, the
interval can only be violated on one side. For example, a test that had a sample mean smaller
than the base case, is not susceptible to having the hypothesis test discover that y, — g, > 0,
therefore it is only necessary to investigate the alternate hypothesis of p, — p, < 0.

The following algorithm outlines the steps used in the RTO loop.

1.

Complete the parameter estimation step using a least squares regression optimization
routine, see Problem (2.1), with the optimal number of historical steady-state points
predefined.

. The sensitivity matrix of the parameters to the measurements, %—g, is found using the

optimal number of historical steady-state measured points.

Using the updated model, perform the optimization step using the SQP algorithm
in the optimization toolbox of the computer software package MATLAB ver. 5.3.0
(Branch and Grace, 1996).

. The measured values of the manipulated variables combined with the process model,

are used to solve for the expected values of the response variables based on those
measurements. This result is later used to develop the profit constraints that define
the experimental window.

The results analysis step is performed to determine whether the result from the eco-
nomic optimizer is significant. Please see the hypothesis test represented by Problem
(3.1) (Miletic and Marlin, 1998). The testing is performed for a hypothesis test at a
5% significance level.

. The sensitivity matrix of the optimization variables to the parameters, %—’gﬁ, is found

in this step.

. The command conditioning subsystem determines if the point predicted by the eco-

nomic optimizer is expected to generate information with respect to Inequality (3.5).

If the result from the economic optimizer is expected to generate information, the
result is implemented despite its status of being significant. If it is not expected to
generate information then an experimental design (see Problem (2.20)) is performed
with an added constraint to limit the amount of profit lost. The form of the constraint
is dependent on whether the prediction from the economic optimizer is significant (see
Inequalities (3.6) and (3.7)). The sensitivity matrix, %g, used in the experimental
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design objective function is based on the most recent optimal number of steady-state
data points subtract one, which is replaced by the next design point to augment the
data set. The sensitivity matrix, %"7}, is found from a previous calculation since it
can only be estimated from the result of an economic optimization calculation. If the
experimental design is centered around the predicted optimum, then the result from
step #7 is used. However, if the experimental design is centered around the current
operating point then the result from the previous RTO cycle is used.

9. The actual amount of profit generated is based on the setpoints returned from the
optimizer since it is assumed the controllers are able to implement them.

10. Steps #1-#9 are repeated.

3.3.2 Results and Discussion

This section concludes with the presentation and discussion of the results for the case studies
involving the Williams-Otto reactor. The first case study is performed to show that DOE
can improve the performance of the RTO system. The second case study investigates how
the RTO with DOE performs when parametric mismatch between the model and plant

exist.

RTO with DOE

The results for the first case study are shown in Table 3.2. The data is arranged in ascending
order of the sample means of the extended design cost measure for ten runs calculated over
25 RTO intervals. The column representing the standard deviation, refers to the variation
in the extended design cost data set used to calculate the sample mean.

Using one-sided hypothesis tests (see Equations (3.12) to (3.15)) the sample means of the
extended design costs from the tests shown in Table 3.3, were compared to the sample mean
of the base case, which was comprised of the RTO system running without the information
generation component (this reduces to the results analysis case developed by Miletic and
Marlin (1998)). The tests show, which sets of fixed tuning parameters result in an RTO
system that produces significantly lower or greater profit than the base case. Please see
Appendiz C for the results of the statistical tests. Note that the following tests were found
to have sample variances different from the base case, using a one-sided hypothesis test with
a 5% significance level: 1-5, 7, 9, 10, 13-18, 21, 24, 25, 34, 35

The results of the first case study show that when plant/model mismatch is absent,
incorporating DOE into the RTO system does allow for more profit to be realized. Figure
3.2 compares the profit profile, over 25 RTO intervals, of the first runs for the base case test
and test #36. It illustrates how incorporating DOE can allow the RTO system to converge
closer to the true plant optimum. However, the results also show that the selection of the
tuning parameters is important.
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Table 3.3: Design Cost of RTO Systems

Test | Sample | Standard | Sig. | Test | Sample | Standard | Sig.
# Mean | Deviation | Mean # Mean | Deviation | Mean
(8/s) (8/s) (8/s) (8/s)
36 34.98 11.09 * 26 69.57 16.67
35 40.30 9.26 * 18 70.61 25.19
27 41.82 11.48 * 29 71.67 12..22 *
28 43.71 14.94 * 25 79.00 31.07
32 43.83 12.86 * 4 79.69 25.34 *
31 45.33 15.43 * 15 81.38 20.94 *
20 48.30 17.60 * 10 82.66 23.71 *
12 52.29 12.61 * 33 82.82 17.73 *
24 52.40 6.95 * 17 83.73 21.34 *
34 53.57 19.09 21 83.76 19.19 *
8 55.18 12.21 7 86.12 26.40 *
23 56.22 16.45 9 88.59 17.96 *
11 57.44 15.87 14 90.26 28.26 *
19 58.13 14.91 6 91.53 12.46 *
16 61.18 22.03 13 95.22 32.03 *
Base | 62.45 10.01 ) 99.50 23.01 *
30 62.57 13.58 2 105.14 19.80 *
22 67.32 12.17 1 138.42 30.94 *
3 68.80 20.99

Table 3.3 shows that the RTO system performs better when larger settings for ¢; and ca
are applied. The larger values for these tuning parameters creates a smaller experimental
window for the DOE that lessens the amount of profit that is willing to be traded-off for
improved information generation. This case study shows that deviating from the predicted
optimum to generate information can improve profit, although if the experimental window
is too large the moves will not converge to the plant optimum but instead move in directions
of significant profit loss. Table 3.3 also shows that RTO systems allowing large experimental
windows, produced substantially poorer results than the base case, determined from one-
sided hypothesis tests of 5% significance.

Table 3.3 also illustrates that the RTO system performs more effectively with a tightened
decision criterion (see a in Inequality (3.5)). Tightening the decision criterion reduced the
number of times the DOE is implemented. This indicates that it is beneficial for the
optimizer to deviate from the predicted economic optimum only when there is a significant
need for generating information.

Table 3.4 displays how the variation around the expected value of the predicted optimum
is reduced when DOE (for tuning constants defined by test #36) is added to the RTO
system. The results were found to be significant using a one-sided hypothesis test at a
significance level of 5%. This is attributed to better optimization results, that occur because
the information generation step is present to ensure high quality information is produced
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to improve the predictability of the optimizer.

Table 3.4: Variance of RTO system

Case Study Variance
(8/s)
RTO without DOE 6.95
RTO with DOE 5.21

The reduction in variance is also visualized in Figures 3.2, 3.3 and 3.4, for a comparison
of the first runs from the base case and test #36. Figure 3.2 illustrates how the profit profile
of the RTO system with DOE, was consistently closer to the expected value of the predicted
optimum Figures 3.3 and 3.4 illustrate the moves made by the optimizers with and without
DOE incorporated in the RTO design, respectively. Figure 3.4, shows a more scattered
behaviour because of the greater uncertainty in the decision variables. The RTO system
that used DOE, shown in Figure 3.3, illustrates how the process operation is kept closer to
the plant optimum even though deviations were made from the predicted economic optimum
to perform the experimental design. These figures show that the optimizer consistently
predicts points closer to the true plant optimum when using experimentation, even though
deviations are made from the predicted economic optimum to perform the experimentation.

Figure 3.5 displays a set histograms for eight RTO intervals, that compare the ten runs
performed for each RTO system. The eight selected intervals, out of a possible twenty-
five, were chosen because they provided the most informative observations. The histograms
reinforce the results that showed the RTO system with DOE out-performs the base case.
All eight figures illustrate how the profit distribution shifts to higher profit levels and the
variance, or spread of the distribution, is reduced.

RTO with DOE: Parametric Mismatch

The first case study showed that DOE can improve the performance of the RTO system
based on the extended design cost measure for cases where plant/model mismatch does not
exist. The second case study examines the change in performance of the RTO systems when
parametric mismatch is present by creating a bias in the activation energies, which act as
fixed parameters, according to Table 3.1.

Similar to the first case study, the statistical tests shown in Appendiz D were used to
determine if the RTO system with a DOE component still out-performed the base case, when
plant/model mismatch was present. Table 3.5 presents the sample means of the extended
design cost, and the variances around the expected optimum for the results of the second
case study. The RTO system which incorporates DOE out-performed the base case only for
the 1% bias test, and produced significantly worse results for the 5% and 10% bias tests.
Please see Appendiz C for the results of the hypothesis tests. However, please note that
the variance was reduced until the 10% bias case. Since the objective of DOE is to reduce
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Profit Profile over the RTO Interval
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Figure 3.2: The RTO system performs better with an information generation component
added to the algorithm.

Williams-Otto Plant Reactor — RTO with DOE
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Figure 3.3: DOE can be implemeted in the RTO system without implementing moves far
from the true plant optimum.
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Williams-Otto Plant Reactor — RTO Without DOE
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Figure 3.4: Running the RTO system without DOE causes more significant deviations from
the true plant optimum because of a reduced understanding of the process behaviour.

the variance, the DOE performed well until the mismatch became too large. The failure of
the DOE to effectively reduce variance in the presence of large structural mismatch is due

to the assumption that states the defined process model is expected to represent the true

process, which is also used for least squares regression. Therefore, the DOE is calculating

points that do not generate as much information as expected.

Table 3.5: Design Cost of RTO Systems in the Presence of Structural Mismatch

Bias | DOE | Sample Mean | Variance Means Variances
(%) (8/s) (8/s) Significant | Significant
1 Yes 34.7809 4.4722 Y Y
No 60.6389 6.6205
3 Yes 93.3772 8.8720 N Y
No 87.5840 6.9034
5 Yes 156.0228 14.6544 Y Y
No 130.8010 18.2053
10 Yes 425.9288 78.0358 Y Y
No 348.5020 19.7630

Figure 3.6 shows the profit profiles for the first runs of the two RTO systems for the 5%
bias case. The RTO system using information generation produces lower profit because the

experimentation pushes the operation of the process into regions of significant profit loss, as
shown in Figure 3.7. Figure 3.8 shows the path of operation calculated by the RTO system
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Figure 3.5: The set of histograms provides a visualization of the ten runs for each RTO
system for the Williams-Otto Reactor: a) 2nd Interval; b) 5th Interval; ¢) 6th Interval; d)
10th Interval; e) 12th Interval; f) 16th Interval; g) 21st Interval; h) 24th Interval.
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Profit Profile over the RTO Interval: 5% Bias in Fixed Parameters
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Figure 3.6: The DOE moves operation to regions of significant profit loss because the profit
constraint defining the experimental window is not as well defined when structural mismatch
exists.

without information generation avoids implementing any costly moves.

These poor results occur because the experimental window used in the experimental
design is composed of a set of profit constraints that limit the amount of profit that is
willing to be lost in exchange for improved information generation. The profit constraints
are dependent on the form of the assumed model, so any structural errors that exist will lead
to poor estimates of the behaviour of the process with respect to profit. This will lead to
generation of experimental windows that extend to operating regions where, unexpectedly.
profit loss exceeds the desired amounts.

Figure 3.9 displays a set histograms for eight RTO intervals, that compare the ten runs
performed for each RTO system with a 5% bias added to the activation energies. The
histograms do not show a clear difference in the variances that result from the two systems,
but they do illustrate that the RTO system with DOE consistently operates in regions of
lower profit.

The case study did show that for minimal amounts of bias, adding a DOE component to
the RTO system is beneficial in terms of improving the profitability. To overcome the poor
results identified in the case studies of Chapter 3, the following possible solutions exist:
1) if significant structural mismatch is suspected to exist, adjust the tuning parameters
to restrict the size of the experimental window to prevent the DOE from selecting poor
operating moves and 2) implement a set of on-line diagnostic checks to provide a warning
that the model is not considered able to adequately predict the process behaviour, and a
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Williams-Otto Plant Reactor (5% Bias) - RTO With DOE
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Figure 3.7: Poor move selections lower the profitability of the DOE in the RTO system.

DOE should not be implemented.
Chapter 4 will implement the results developed in Chapter 3 for the full Williams-Otto

plant model (Williams and Otto, 1960). It will also investigate the use of implementing a
series of on-line diagnostic checks that will evaluate model adequacy, and determine if the
DOE should be performed.
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Williams-Otto Plant Reactor (5% Bias) - RTO Without DOE
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Figure 3.8: The RTO system converges to a point that is not the plant optimum, but it
does not implement any points that result in significant profit loss.
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Figure 3.9: The set of histograms provides a visualization of the ten runs for each RTO
system for the Williams-Otto Reactor in the presence of parametric mismatch: a) 3rd
Interval; b) 6th Interval; c) 8th Interval; d) 11th Interval; e) 15th Interval; f) 19th Interval;
g) 22nd Interval; h) 25th Interval.
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Chapter 4

Case Study: Williams-Otto Plant

Chapter 3 introduced the DOE tool for use in RTO to reduce uncertainty in the decision
variables and subsequently improve profit generation. Case studies in Chapter 3 case studies
showed that implementing moves that deviate from the result predicted by the economic
optimum, with the intention of generating information, can improve the profitability of the
RTO system, providing plant/model mismatch is minimal. However, the Williams-Otto
reactor is not a realistic application since the model consists of only one unit, and a small
number of model equations. The objective of this chapter is to show how DOE is applied in
a RTO system for a more realistic application, consisting of a larger model with interacting

units.

4.1 Diagnostic Check for Model Adequacy

Chapter 3 showed how significant amounts of plant/model mismatch can cause the RTO
system with DOE to perform poorly compared to an RTO system without DOE. One
contributing factor is the inability of the constraints that define the experimental window
to prevent the process from moving to areas of profit loss that are more significant than
expected. This occurs because the constraints (see Equations (3.6) to (3.10)) are attempting
to predict the amount of profit generation at the points calculated by the economic optimizer
and DOE problems, with the intention of ensuring that the DOE does not implement a point
located in a region of significant profit loss, relative to the current operating point or the
point predicted by the economic optimizer. If the model developed for optimization is not
able to adequately predict profit generation, then the ability of the constraints to avoid
implementation of poor results is weakened. Performing diagnostic checks to ensure the
model is able to adequately predict profit generation would provide an indication of when
the DOE should not be performed.

The four diagnostic tests, summarized below, are performed after the least squares
regression to investigate model adequacy and determine if the constraints in the DOE will
be effective. If the tests fail, the DOE will not be performed and the decision of whether
to implement the result from the economic optimizer will be dependent on the result of the
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significance tests. Please note that these tests do not guarantee that model prediction at
new points will be good, because the tests are performed based on the current operating
point. It is possible that the model could be considered adequate under the current set of
operating conditions; however, due to the nonlinear nature of the underlying true process
behaviour, the model structure may not be adequate for the extrapolated points.

The four tests to evaluate model adequacy are listed below, where the first two tests are
defined as approximate, because of the nonlinearity in the equations used for least squares
regression.

1. the approximate t ratio;
2. approximate parameter estimate correlation matrix;
3. autocorrelation test;

4. and the cross correlation test.

The approximate ¢ ratio is calculated from the ¢ distribution for the parameter estimates
(Bates and Watts, 1988):

B_:Bo

se—é

t~ (4.1)

The t ratio is considered significant if it exceeds the t statistic of 1.96, for a 5% level
of significance and 999 degrees of freedom, which results from using 1000 data points to
construct the measurement covariance matrix:

parameter estimate
approximate standard error

t ratio = (4.2)

where the approximate standard error is the standard deviation of the parameter estimate,
found using linear sensitivity analysis (see Appendiz A). If the t ratio is not considered
significant, then it is an indication that the respective parameter should be removed and
the assumed model may be incorrect (Bates and Watts, 1988). This approximate ¢ test is
essentially testing the hypothesis test:

H,
H,

(4.3)

0
£0

w) W)

The approximate parameter correlation matrix provides an indication of whether any
of the parameters are highly correlated, which could be a result of the model being over
parameterized. Bates and Watts (1988) discuss that, in general, correlations above 0.99 in
absolute value should be examined.

The autocorrelation test is used to evaluate the presence of serial correlations in the
residuals (€) from the model equations. Although RTO primarily uses steady-state equa-
tions, these tests still provide a tool to use for diagnostic tests. Concerning the model
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updater subsystem, an assumption of least squares regression is that the disturbances are
independent. Therefore if there is significant autocorrelation, then it gives an indication
that plant/model mismatch is present and/or the disturbances have serial correlation which
violates the previously stated assumption. This is true if the sample autocorrelation func-
tion (pe (7)) is not zero, except at 7 = 0 (Ljung, 1987),

pe (7) = :—% (4.4)

where 7 is the lag, and the sample autocovariance function is defined as (Ljung, 1987):

N-r
FE(T)=TV1-Ze(t+T)e(t), (t >0) (4.5)
t=1

where N is the number of data points tested. If the residuals were white noise, then the
distribution exists (Box and Jenkins, 1976),
VNp. () ~ N (0,1) (4.6)
The hypothesis test is defined for |7| > 1:
Ho : pe(1)=0 (4.7)
Hy : p(1)#0
where the Normal test is used to determine if p. () # 0. For a significance level of 5%, a
threshold value of 1.96 is selected (Ljung, 1987),
e if |p. (T)| > 17917? then invalidate the model;

o if pc (7)| < 1791-3 then validate the model.

The cross correlation test evaluates whether there are any lagged dependencies between
the residuals and inputs (u). If there is significant cross correlation, then it is an indication
of the presence of plant/model mismatch. The sample cross correlation function is defined

as (Ljung, 1987),

Teu (T)
Peu(T) = N AOEA0) (4.8)
where the sample cross covariance between one residual and one input is (Ljung, 1987),
1 N -max(r,0)
Feu (1) = Z e(t+T)u(t) (4.9)
N—min(0,7)

If the correlation between the inputs and the residuals were white, then the distribution
exists (Box and Jenkins, 1976),

VNpeu (1) ~ N (0,1) (4.10)
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The hypothesis test is defined as:

Ho (4.11)

H

! Peu(T)=0
! Peu(T)#0

Similarly to the autocorrelation test, the normal test with a significance level of 5%,
yields a threshold value of 1.96 where,

o if [pey (T)] > 17'3—5 then invalidate the model;

o if |pey (T)| < % then validate the model.

4.2 Williams-Otto Plant

The Williams-Otto plant, shown in Figure 4.1, is chosen as the case study for this chapter
(Williams and Otto, 1960). The plant consists of the following four operating units: a
reactor (investigated in Chapters 2 and 3), heat exchanger, decanter and distillation column.
The Williams-Otto plant was developed to provide a realistic model that would allow for
the evaluation of the applicability of proposed process control schemes before they are
implemented in a real plant. Several researchers have also used the Williams-Otto plant to
test the validity of their own developments (Krishnan et al., 1992; Forbes, 1994; Lin et al.,
1994; Fraleigh, 1999).

The stream labels shown in Figure 4.1 conform to those in the original paper (Williams
and Otto, 1960).

The three streams that enter the reactor, of mass holdup Vg = 4640 lb, include the pure
reactant streams F'A and FB, and the recycle stream from the distillation tower (F'L). The
reactor temperature is controlled at T by the cooling water flow rate, FUr. Similar to the
reactor case studies in Chapters 2 and 3, the following three exothermic reactions occur:

A+B - C
B+C — P+F
C+P —- G

The kinetics of the reactions are temperature dependent as described by the Arrhenius
expression in Equation (2.29). The reaction data is presented in Table 4.1.

Table 4.1;
Reaction | Frequency Factors | Activation Energy | Heat of Reaction
Number (hr 1) (R) (BTU/Ib of reactant)
1 5.9755 x 10° 12,000 —125
2 2.5962 x 10'* 15,000 =50
3 9.6283 x 10'° 20, 000 —143
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Figure 4.1: Williams-Otto Plant (Williams and Otto, 1960).

The purpose of the reaction cooler is to lower the temperature of the product stream
from the reactor to 100°F, where material by-product G becomes insoluble in the reaction
mixture. The exit temperature of the reaction mixture is controlled by the cooling water
flow rate, FUz. The decanter is used to remove the by-product, where it is assumed that
all of the material G is removed from the reaction mixture (Williams and Otto, 1960).

Once material G is removed, the remaining mixture is forwarded to a distillation tower
where component P is separated from the remaining components. Product P has a relative
volatility (a) of 2.8 with the remaining liquid in stream FFE, including P trapped in the
azeotrope with material E,

wp = 0.1wg (4.12)

where the components are measured in weight fractions.

The feed enters the column as 100% liquid and is separated using 20 bubble cap trays,
where the enriching and stripping sections contain 15 and 5 trays, respectively. A total
condenser is used to condense the product vapour, and a partial reboiler acts as an extra
equilibrium stage to vapourize the column bottoms. The liquid stream from the reboiler
(FS) is split into two streams, with FD sold for minimal profit and FL recycled back to
the reactor.

The design specifications for the vacious operating units are presented in Table 4.2.
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Table 4.2: Unit Design Specifications

Unit Specification Value
Reactor Cooling Coils | Area 100 (ft°)

Heat Transfer Coefficient | 0.0195 F (Btu/hr/R/ft?)
Heat Exchanger Area 569 (ft°)

Heat Transfer Coefficient | 0.0059 F' (Btu/hr/R/ft?)
Reboiler Area 2770 (ft%)

Heat Transfer Coefficient | 0.0041 F (Btu/hr/R/ft2)
Condenser Area 4960 (ft%)

Heat Transfer Coefficient | 0.0054 F (Btu/hr/R/ft2)

The plant objective function is defined to maximize the percent return on investment
and has the form:

- Cost of Disposal for FG - Utility Costs
- Charges for Sales, Administration, Research and Engineering

Total Investment

Price of Products FP and FD - Cost of Feeds FA and FB )

% Return = 100 x (

(4.13)

with the generated revenues and costs for the process streams entered, the objective function
becomes,

) 2207.52F P + 50.03712F D — 168F A — 252F B — 84FG
% Return = ooz x | ~1.27173F R ~ #0880 (FUr + FUz + FUcond) (4.14)
' —8400 - 1.00-10~3 - FUreboil — 2.76

where FUcond is the cooling water flow through the condenser and FUreboil is the steam
flow through the reboiler.

In this case study the plant is modelled based on the original paper with the following
exceptions (Forbes, 1994; Fraleigh, 1999),

e steady-state simulations were performed;
e a log-mean temperature difference was used to model the heat transfer dynamics;

e all heat transfer coefficients were made flow dependent with their exponents set to
one (Incropera and DeWitt, 1996);

o the distillation tower was modelled using a tray-by-tray equilibrium relationship and
assuming constant molal overflow (King, 1980);

o the relative volatility was set to 2.8 to match the nominal case presented by Williams
and Otto (1960);

e the minimum concentration of P in the product stream (FP) was set at 95 wt%.
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The following operating constraints are implemented,

e the product flow rate must be less than 4,763 lb/hr, because any extra exceeds the

available sales and cannot be sold;

e the concentration of P in the product stream must exceed 95 wt.% to satisfy product

specifications.

Similar to the case studies presented in Chapters 3 and 4, the reactant stream FA is
fixed at 14,500 lb/hr. This leaves five degrees of freedom available for optimization. The
five selected decision variables are:

1. the flow of reactant B into the reactor (FB);
2. reactor temperature (Tg);

3. recycle flow into the reactor (FL);

4. distillate flow from the distillation tower (FP);

5. weight fraction of material P in the distillate flow (PP).

Using this set of decision variables the true plant optimum is located at the point shown
in Table 4.3. It is expected that the optimum should be located at the intersection of the
two operating constraints, since maximizing F P generates the most revenue and minimizing
PP lowers utilities usage. Therefore this case study will focus on setting F'B, Tg and FL
as the decision variables. Fraleigh (1999) used a similar method for her case study of the

Williams-Otto plant.

Table 4.3: Williams-Otto Plant Optimum
Variable | Optimal Value
FB 29,216 Ib/hr

TR 6354 R

FL 63,132 Ib/hr
FP 4,763 lb/hr
PP 0.95

% Return | 64.3372 %

4.3 Experimental Design Problem

Consider a scenario in which the Williams-Otto plant described in section 4.2 has been
operating for an extended period of time with a RTO system supervising the control layer.
A cost estimate has been performed and concluded that a significant increase in profit could
be realized if more precise estimates of the relative volatility and frequency factors in the
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reaction equations could be developed. It is thought that adding an information generation
component to the RTO system will improve parameter estimation and increase profit.
This section will investigate the feasibility of adding a DOE component to a RTO system

operating for a large plant with interacting units.

4.3.1 Method

The problem was scaled to ensure a more reliable solution for the optimization and equation
solving routines. The reaction equations were scaled in a similar format to that discussed
in section 2.4.2, so in general the variable values lie in the range 0.01-10. The following
variables were further scaled as shown in Table 4.4.

Table 4.4: Variable Scaling for Williams-Otto Plant

Variable Notes Scaling Factor

Flows All lows excluding FUreboil divided by 100,000
FUreboil divided by 1,000

Molar Flow Rates liquid and vapour flow in tower | divided by 1,000
Molecular Weights divided by 100
Temperatures divided by 1,000
Arrhenius Exponent (B:. B2, Bj3) divided by 1,000
Reactor Volume (Vr) divided by 100
Heats of Reaction divided by 10
Heat Capacities multiplied by 100
Heat Duties divided by 1,000,000
Heat Transfer Coefficients { All except Reboiler (HTC) multiplied by 100

For this case study the set of adjustable parameters consists of:

e the frequency factors from the reaction equations: A;, A2, Az;

e and the volatility of P relative to the remainder of the feed mixture to the distillation

tower: a.

To update these parameters, a least squares regression optimization routine was applied
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using a steady-state model represented by the following set of equations:

FL FA FR

VRAS + VR- - —V-;AR — k1 (AR)(BR) = 0 (4.1%5)
Flps+EB _FRpp ki (AR)(BR) -k (BR)(CR) = 0 (4.16)
Vr VR Vi

5—:05 - FV—’}:CR + 2k (AR) (BR) - 2ko (BR) (CR) — k3 (CR) (PR) = 0 (4.17)
Flres ERppionBR)(CR) = 0 (4.18)

Vr Vr
-f‘;EGR +15k3(CR)(PR) = 0 (4.19)

R

%PS - %PR +ky (BR) (CR) — 0.5k3(CR)(PR) = 0 (4.20)
(1+(ax—1)-ps)-YR—a-ps = 0 (4.21)

where
FR=FA+FB+ FL

and k; is represented by the Arrhenius expression in Equation (2.38), and YR and ps are
the mole compositions of P in the vapour and liquid phases leaving the reboiler (excluding
P caught in the azeotrope), respectively. Equations (4.15) to (4.20) represent the com-
ponent material balances of the reactor and Equation (4.21) represents the vapour-liquid
equilibrium (VLE) relationship around the reboiler unit. The least squares regression is
formulated as an implicit problem as discussed in Chapter 2. This formulation allows for
the residuals to reflect the lack of satisfaction of the steady-state balance equations.
Equations (4.15) to (4.21) define a reduced model that is used to estimate the param-
eters. The reduced model focuses on the two pieces of equipment (reactor and column re-
boiler) that are directly characterized and affected by the parameters. This is accomplished
by assuming that available measurements are located close to the process equipment :.e.
reaction outlet compositions, and compositions around the reboiler. It should be noted
that the estimates of the parameters might change somewhat if the full model were used;
however, since the selected equations and measurements were strongly linked to the param-
eters, the change would likely be relatively small. The advantage of using a reduced model
is to improve the computational simplicity. The topic of incorporating reduced models for
parameter estimation is left for future research and is not within the scope of this thesis.
Similar to the case studies involving the reactor in Chapters 2 and 3, it was assumed that
a priori knowledge of the covariance structure for the measurements is unavailable. The
measurement covariances of the material compositions for streams FP and FS were found
by generating a set of 1,000 independent process data points around a nominal value with a
white noise distribution added to each data point for each measurement. This nominal value
along with the measurement variances and covariances may be found in Appendiz E. Table

63



2.4 shows the applied standard deviations of the measurements, expressed as a percentage
of the nominal case. The same concerns as discussed in Chapter 2 are also considered for
this case study by stating that although this is not strictly correct for this case, it does
create a study of mismatch in the covariance structure.

The initial data set consisted of ten steady-state operating points selected randomly
from a uniform distribution in the range [FB,TR, FL] = (35,000, 39,000] x [630,635] x
(40, 000, 45,000]. This data set is found in Appendiz E.

Referring to Chapter 2, the first step was to evaluate the optimal number of historical
steady-state data points that should be used in the model updater. Up to ten historical
points were tested using the decision criterion defined in Equation (2.7). The estimated
covariance matrices of the adjustable parameters and the optimization calculations were
evaluated using linear sensitivity analysis (see Appendiz A). The results of the case study
from Chapter 2 (see Appendiz C), showed a minimal difference in the sensitivity matrix of
the decision variables to the parameter estimates between tests; therefore, the matrix was
evaluated once and kept constant for the ten tests. Miletic and Marlin (1998) discuss that
it does not need to be recalculated unless significant changes in measurement accuracy or
process operation occur. The volume of the confidence regions were compared to determine
the extent of transmission of noise from the measurements to the adjustable parameters
and the optimization calculations.

The algorithm used to implement the DOE in the RTO system is listed in the following
numbered list. Similar to the optimal result found in the Chapter 3 case study, the decision
criterion tuning parameter (a) was set to one, and it was assumed that the allowed amount
of sacrificed profit for DOE was defined by Equations (3.6) and (3.7) with,

T = 0.980
¢ = 0.999

In order to compare the performance of the RTO systems with and without DOE, data
from ten runs consisting of 25 RTO intervals was collected for each system. The extended
design cost (EDC) measure, developed by Zhang and Forbes (2000), was used to measure
the performance of the RTO system (see Equation (3.11)).

The case study was repeated to investigate the comparison of the RTO systems when
parametric mismatch exists. Similar to one of the case studies in Chapter 3, a 5% increase
was applied to the assumed values of the activation energies. Referring to Table 3.1, the
assumed values became,

B;=12,600 R
B; =15,750 R
B3 =21,000 R

Similar to the case study in Chapter 3, one-sided hypothesis tests were used to evalu-
ate whether the performance of the RTO system improves with DOE incorporated in the
algorithm.



The following algorithm outlines the steps used in the RTO loop.

1.

Complete the parameter estimation step using an implicit least squares regression
optimization routine, see Problem (2.1), with the optimal number of historical steady-
state points predefined.

Perform the set of diagnostic tests discussed in section 3.1. If any of the tests fail,
the experimental design is not performed (Steps #5, #8 and #9 are ignored). The
structure of the tests are shown at the conclusion of this list.

The sensitivity matrix of the parameters to the measurements, %g, is found using the
optimal number of historical steady-state measured points.

. Using the updated model, perform the optimization step using the SQP algorithm

in the optimization toolbox of the computer software package MATLAB ver. 5.3.0
(Branch and Grace, 1996).

The measured values of the manipulated variables combined with the process model,
are used to solve for the expected values of the response variables based on those
measurements. This result is later used to develop the profit constraints that define

the experimental window.

The results analysis step is performed to determine whether the result from the eco-
nomic optimizer is significant. Please see the hypothesis test represented by Problem
(3.1) (Miletic and Marlin, 1998). The testing is performed for a hypothesis test at a
5% significance level.

. The sensitivity matrix of the optimization variables to the parameters, %’-}, is found

in this step.

The command conditioning subsystem determines if the point predicted by the eco-
nomic optimizer is expected to generate information with respect to Inequality (3.5).

If the result from the economic optimizer is expected to generate information, the
result is implemented despite its status of being significant. If it is not expected to
generate information then an experimental design (see Problem (2.20)) is performed
with an added constraint to limit the amount of profit lost. The form of the constraint
is dependent on whether the prediction from the economic optimizer is significant (see
Inequalities (3.6) and (3.7)). The sensitivity matrix, %-g, used in the experimental
design objective function is based on the most recent optimal number of steady-state
data points subtract one, which is replaced by the next design point to augment the
data set. The sensitivity matrix, %’{f, is found from a previous calculation since it
can only be estimated from the result of an economic optimization calculation. If the
experimental design is centered around the predicted optimum, then the result from

65



step #7 is used. However, if the experimental design is centered around the current
operating point then the result from the previous RTO cycle is used.

10. The actual amount of profit generated is based on the setpoints returned from the
optimizer since it is assumed the controllers are able to implement them.

11. Steps #1-#10 are repeated.

The following displays the structure of the diagnostic tests performed in step #2. If the
test is rejected, then the diagnostic test is failed.
Approximate ¢t Ratio:

if min |t ratio| < 1.96, reject
Approximate Parameter Estimate Correlation Matrix:
if max |vi;j| > 0.99, reject
ii
where v;; represents the ¢ jth coefficient of the approximate parameter estimate correlation

matrix.
Autocorrelation Test:

if max |pe, (7)| > 1.9 reject
€u m’ J

4.3.2 Results and Discussion

This section concludes with the presentation and discussion of the results for the case
studies involving the Williams-Otto plant. The first case study is performed to determine
the number of historical steady-state points that should be used in the model updater
subsystem. The second case study investigates the improvement in profit that can be
realized by incorporating DOE into the RTO system when plant/model mismatch is absent.
The final case study is similar to the second; however, it investigates the performance of
the RTO systems with and without DOE in the presence of parametric mismatch.

Historical Points

The results for this case study are tabulated in Table 4.5, and illustrated in Figure 4.2.
Please see Appendiz E for the results of the model updater and the values of the sensitivity
matrices.
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Table 4.5: Results Summary for Optimal Historical Point Selection for the Williams-Otto
Plant

Historical | det(Qg) | det(Qx) | Decision Criterion
Data Points | (x1073) | (x10~1%) (x10713)
1 15.2524 23.1367 0.7134
2 0.7076 2.6354 0.1889
3 0.1424 0.6550 0.0999
4 0.0595 0.3127 0.0917
5 0.0212 0.1504 0.0773
6 0.0112 0.0957 0.0799
7 0.0066 0.0622 0.0793
8 0.0042 0.0427 0.0793
9 0.0028 0.0337 0.0876
10 0.0019 0.0248 0.0873

Table 4.5 shows, as anticipated, how the volumes of the confidence regions for both
the parameter estimates and the decision variables decrease as more historical points are
used. Figure 4.2 displays that the decision criterion, defined by Equation (2.7), selects five
steady-state points as the optimal amount of historical data. Please note that the horizontal
axis of Figure 4.2 begins at 2, to better illustrate the change in the design criterion as more
historical points are added.

The decision criterion plot for the Williams-Otto plant, unlike the reactor case study
in Chapter 2, is not unimodal because of noise effects. The determinant, similar to any
statistic, has confidence regions that surround its mean value. This uncertainty in its value
could lead to a plot such as Figure 4.2 that does define a clear minimum. The larger amount
of uncertainty in the plant case study compared to the reactor case study is attributed to
a more significant trade-off that results from including more points. It is advantageous to
include more points as more information is obtained; however, the drawback is that more
noise is also introduced. The extra information is limited as the placement of the past
historical points is dictated by earlier considerations, so if the process operation changes
then the criteria defining the DOE will change. In this case, the noise that is introduced
from the measurements is not offset by the information obtained.

4.3.3 RTO Use

This case study assesses performance improvement of the RTO system with the additions
proposed by this thesis, which include adding a DOE component and incorporating historical
data, when structural mismatch does not exist. The original RTO systemn was built to
implement points that were predicted by the optimizer, only if they were found to be
statistically significant (Miletic and Marlin,1998). The second set of simulations involves
the implementation of the RTO with DOE as outlined in Chapter 3.

The results for the Williams-Otto plant case study are shown in Table 4.6. The average
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Calculating the Optimal Number of Historical Data Points

-14
0 x10 _ i . _ .

N

Decision
Criterion .

2 3 4 5 6 7 8 9 10
Number of Historical Steady State Points

Figure 4.2: The optimal number of historical steady-state date points to be used by the
model updater subsystem for the Williams-Otto plant is five.

EDC for the two systems is defined as the average of the EDC measure, developed by Zhang
and Forbes (2000), over ten runs. The variance column refers to the variation around the
expected value of the predicted optimum. Please see Appendiz E for the profit profiles and
the design costs for the individual tests.

Table 4.6: Williams-Otto Plant Case Study Results
Case Study Average EDC | Variance
(% Return) (% Return)
RTO without DOE 90.1605 8.94
RTO with DOE 72.8142 3.55

Both the results for the average EDC and variance were found to improve significantly
based on the results from one-sided hypothesis tests, with a 5% significance level (see
Problems (3.12) to (3.15)). Please see Appendiz E for the results of the hypothesis tests.

It is also noted that the diagnostic tests were passed for all the runs. This result
is expected since structural mismatch did not exist for this case study. To visualize the
results submitted by the diagnostic tests, specific details are shown as an example for the
first interval of the first run for the RTO system with DOE.

The results of the approximate ¢ ratio are shown in Table 4.7. Since min |t ratio| > 1.96,
the test was passed.
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Table 4.7: Approximate t Test

Parameter | t Ratio
A 22.62
As 22.23
As 18.59
a 150.93

With the maximum off-diagonal of the approximate parameter estimate correlation ma-
trix, shown here, less than 0.99 the test was passed.

1 090 089 0
090 1 082 0
089 082 1 0

0 0 0 1

The sample autocorrelation function for the model updating equations, defined as Equa-
tions (4.15) to (4.21), are illustrated in Figures 4.3 a) to g), respectively. The threshold
limit of 17'3-3 was not exceeded by the sample autocorrelation function for any of the model
equations, so the test was passed.

For the sample cross correlation function, the max |pe, (T)| for each set of residuals
belonging to Equations (4.15) to (4.21) is displayed in Table 4.8. To show the entire sample
cross correlation function for each set of residuals and measured variables would present too
much information. The test was passed since the threshold limit of % was not exceeded

by the sample cross correlation function for any of the model equations.

Table 4.8: Cross Covariance Data

Residuals max |pey (7)|
Equation (4.15) 0.0306
Equation (4.16) 0.0380
Equation (4.17) 0.0960
Equation (4.18) 0.0887

)
)
)

Equation (4.19 0.0817
Equation (4.20 0.0571
Equation (4.21 0.0293

Figure 4.4 displays histograms for eight RTO intervals, comparing the ten runs per-
formed for each RTO system. The eight selected intervals, out of a possible twenty-five,
were chosen because they provided the most informative observations. Please note that the
histograms show the % Return and not the EDC measure. Figures 4.4 a), b), c), and g)
show that reducing uncertainty in the decision variables can move the profit distribution
closer to the true plant optimum. Figures 4.4 a), b), d), e), f), and h) illustrate how the RTO
system with an information generation component, is able to avoid implementing points in
regions of significant profit loss. This is attributed to better optimization results, that occur
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Figure 4.3: The sample autocorrelation function was not violated by Equations (4.15) to
(4.21) used for parameter estimation (Data removed from the first interval of the first run
for the RTO system without DOE).

because the information generation step is present, to ensure high quality information is
produced to improve the predictability of the optimizer.

The results of this case study are consistent with those generated from the case study
for Chapter 3 showing that for a more realistic model, incorporating DOE and reducing
uncertainty in the decision variables can improve the performance of the RTO system.

4.3.4 RTO Use with Parametric Mismatch

This case study compares the performance, in the presence of parametric mismatch, of the
two RTO systems tested in the previous case study. The mismatch was created with a 5%
bias in the activation energies, as defined in Table 3.1, for the assumed model.

The results for the Williams-Otto plant case study, with mismatch, are presented in
Table 4.9. Please see Appendir E for the profit profiles and the extended design costs for
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Figure 4.4: The set of histograms provides a visualization of the ten runs for each RTO
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the individual tests.

Table 4.9: Williams-Otto Plant Case Study Results: With Mismatch
Case Study Average EDC | Variance
(% Return) (% Return)
RTO without DOE 147.4623 17.08
RTO with DOE 118.7382 2.03

Both the results for the average EDC and variance were found to improve significantly
based on the results from one-sided hypothesis tests, with a 5% significance level (see
Problems (3.12) to (3.15)). This is in contrast to the case study performed in Chapter
3, where the 5% bias case performed poorly for the RTO with DOE system. Please see
Appendiz E for the results of the hypothesis tests.

The improvement in the mismatch case studies from Chapter 3 to Chapter 4 is credited to
the addition of diagnostic tests to evaluate model adequacy. If the constraints representing
the experimental window in the DOE are not expected to be able to adequately predict
the process behaviour, then DOE is not considered. The RTO system is reduced to the
base case, where predictions from the economic optimizer are implemented only if they are
considered statistically significant.

Figure 4.5 displays histograms showing % Return for eight RTO intervals, comparing
the ten runs performed for each RTO system. The eight selected intervals were chosen
because they provided the most informative observations. Please note that the histograms
show the % Return and not the EDC measure. Figures 4.5 a) to h) show that reducing
uncertainty in the decision variables reduces variation around the expected value of the
predicted optimum at the RTO intervals displayed. This is important to avoid implement-
ing relatively costly results that lie in regions of significant profit loss. However, Figure
4.5 also shows that the RTO system with DOE does not produce as many highly profitable
results as the system without DOE (points on the right side of the histograms). This occurs
because the DOE is implementing results that deviate from the true plant optimum to gen-
erate information. This drawback is considered acceptable, since the improved information
generation reduces the number of poor predictions leading to a better overall RTO system
performance, specifically a significantly lower EDC measure.
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Chapter 5

Summary and Conclusions

With competition increasing as the global market place continues to open, many industries
are moving to become the most efficient producer of their product by operating their facili-
ties as optimal as possible. On-line model-based optimization approaches, such as the type
investigated by this thesis, have garnered significant interest to help achieve these goals.
By integrating experimental design techniques, this thesis has proposed a new approach for
incorporating information generation into the RTO algorithm to reduce uncertainty in the

final optimization results.

5.1 Summary

Currently, most RTO algorithms only use the current operating point to update the ad-
justable parameters in the model used for optimization. The majority of applications do
not even make use of a least squares regression optimization routine, instead selecting a
nonlinear equation solver, or back-substitution. In considering implementation of DOE or
regression techniques, it does not make sense to base the calculations on a single point,
from either an experimental design point of view or from the perspective of the quality of
estimates obtained through regression. Therefore, it becomes necessary to alter the RTO
system to include more than one historical point for calculation in the model updater and
command conditioning subsystems. Chapter 2 introduced the topic of including historical
steady-state information, and identified the trade-offs as: reducing uncertainty in the deci-
sion variables, increasing the computational load, and putting the model updater to ‘sleep’
or reducing the optimizer’s ability to track changes in the process behaviour.

Chapter 2 also investigated the advantages of DOE for the purposes of optimization. It
showed that moving in a different direction through planned experimentation, instead of
the direction specified by the economic optimizer, can reduce uncertainty in the decision
variables for future RTO intervals. However, the result from the DOE can predict points
that lie in regions of significant profit loss. Since the primary purpose of RTO is to increase
profit, a trade-off is required that will sacrifice profit in the short term for improved profit
generation in future RTO intervals.
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Chapter 3 introduced a series of alterations to the command conditioning subsystem
(see Figure 3.1). The adjustments included expanding the results analysis component to
determine whether the point predicted by the optimizer will generate a sufficient amount
of information. If the predicted point was not expected to produce a level of information
above a threshold value, then the DOE was performed with constraints that defined an
experimental window based on acceptable profit loss. When structural mismatch was not
present, the case study showed for tuning parameters that defined a small experimental
window, that the proposed RTO system was able to out-perform the more conventional
RTO system. This indicated that small deviations from the predicted result of the economic
optimum to generate information can improve the performance of the RTO system. If the
deviations are allowed to be too large, then the sacrificed profit at the current RTO interval
is not made up for at future intervals. A second case study in the chapter showed that for
minimal amounts of parametric mismatch, the RTO system with DOE still out-performed
the traditional RTO algorithm. However, as the mismatch became more significant, the
results reversed with respect to the extended design cost measure. This was attributed to
the inability of the constraints, defining the experimental window, to predict the behaviour
of the profit function. The constraints were established to prevent the DOE from predicting
points that lie in regions of significant profit loss; however, if the model was unable to
adequately predict the behaviour of the process, it resulted in points being predicted that
lead to more than expected profit loss. The DOE was able to reduce variance, until the
10% bias case, which was expected since that is the objective of the experimentation. The
additional loss in the extended design cost is associated with bias.

The case study in Chapter 4 demonstrated how the RTO system with DOE performs
for a larger system with interacting operating units. Chapter 4 also introduced the concept
of incorporating a series of diagnostic checks to test model adequacy, with the purposes of
identifying when DOE should not be performed, because of its reliance on the model to
predict process behaviour for the experimental window constraints. The case study results
were positive to this addition, as the new RTO system out-performed the more conventional
system for the same level of mismatch that it performed poorly for in Chapter 3.

5.2 Contributions

This thesis proposed a new approach for incorporating information generation into the
RTO algorithm to reduce uncertainty in the final optimization results. It was shown, for
the scenarios when parametric mismatch is either absent or minimal, that the performance
of the RTO system improved with the proposed adjustments incorporated in the algorithm.
Where performance was measured by the average extended design cost, and also considered
the variance around the expected value of the optimum point. However, the case study
in Chapter 3 also showed that as parametric mismatch was made more significant, the
performance of the proposed RTO system deteriorated relative to the RTO system without

(6]



DOE.

As mentioned earlier, this deteriorating effect was hypothesized to be a result of a
reduced ability in the constraints, defining the experimental windows, to predict the process
behaviour. The mismatch contributed to the experimental windows defining regions of profit
loss more significant than desired, which enabled the DOE to implement poor economical
points. This thesis proposed employing a set of diagnostic tests to track model prediction
inadequacies to determine when the experimental windows might not be able to predict
process behaviour effectively; therefore, identifying instances when the DOE should not be
implemented. The case study in Chapter 4, showed that these adjustments improved the
performance of the proposed RT'O system in the presence of parametric mismatch.

5.3 Future Work

Although the results in this thesis were positive, there are some concerns for implementing
DOE in RTO systems. The primary issue was the effect of plant/model mismatch. The
DOE developed in this thesis was labeled as a variance-optimal design. This means that the
experimental design focuses on minimizing the variance of the decision variables estimated,
assuming that the model structure is correct. Inevitably, every practical RTO application
will contain some degree of plant /model mismatch, and therefore, some amount of bias in the
assumed model. However, the current state of development for experimental designs that
consider reducing bias and variance together, is not at a level that could be considered for
an RTO application for the reasons of heavy computational load, difficulty in implementing
for complicated implicit models, and the requirement to know the structure of the sources
of possible biases.

Chapter 4 introduced the concept of using reduced models for the purpose of model
updating in the RTO loop. The selected equations in the reduced model describe the
process equipment that are directly characterized and affected by the parameters. To use
a reduced model it is beneficial to position the sensors that are used close to the process
equipment. This ensures that the selected equations and measurements are strongly linked
to the parameters to limit the error in the estimates of the parameters compared to the
estimated calculations if the full model was used. The advantage of using a reduced model
is to improve the computational simplicity. It is recommended to address the topic of
using reduced models to evaluate the trade-off between reduced precision in the parameter
estimates and reduced computational work.

This thesis did not incorporate a priori knowledge into the structure of the measurement
covariance matrix that was used for the DOE or the diagnostic tests. It is left for future work
to investigate the incorporation of knowledge into the measurement covariance structure. It
is expected that it will improve the performance of the proposed RTO system, since adding
quality information about the measurement variance will improve the estimates generated
by the DOE further, allowing for further reduction in decision variable uncertainty.

76



An additional point that needs to be reiterated from Chapter 2 is the method used to
determine the number of historical points that should be used is not an analytical solution.
The expression illustrates what issues needs to be considered, and a possible structure to
represent the criteria. It is suggested to focus future work on developing a method that
would provide a better indication of the optimal number of historical steady-state data
points to use in RTO.

There are several adjustments to the DOE that should be explored. One approach is
to perform the economic optimization with an embedded information generation constraint
in the optimization problem. Genceli and Nikolaou (1996) proposed a similar method by
adding an excitation constraint to the model predictive control algorithm for the purpose of
improving model identification. Another formulation consists of performing a vector opti-
mization for the competing objectives of profit and information generation. The drawback
to this method is the computational demand that is required. Finally, it may be benefi-
cial to direct some of the experimental effort to evaluate where the plant/model mismatch
exists, and attempt to improve the model, thus reducing bias.
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Appendix A

Linear Sensitivity Analysis

Linear sensitivity analysis is a tool that provides an approximation of the variability of
the RTO results based on the local sensitivity of the parameter updater and the economic
optimizer. These sensitivities depend on the definition of the optimization problems and
the resulting Karush-Kuhn-Tucker conditions (Ganesh and Biegler, 1987).

Following the development of Ganesh and Biegler (1987), the sensitivity of the economic
optimizer, %, may be found. Consider the optimization problem,

min P (x,u,3)

st. h(x,u,8) = 0
g(x,u,8) < 0

where x is the vector of decision variables and u is the vector of dependent variables. The

Lagrangian of the optimization problem is written as,

L(x,u,8,v) = P(x,u,B8)+v'h(x,u,8) + phga (x,u,8) (A.1)
h(x,u,8) = 0
gA (x7 u, ﬁ) =0

where g4 is the set of active inequality constraints, and v and p are the vectors of La-

grangian multipliers. Let x, = [x, u].
At the optimal solution, the Karush-Kuhn-Tucker conditions are satisfied ( Edgar and

Himmelblau, 1988),

quL (xm ﬂa V) = quP (xm ﬂ) + vTvxuh (x'vs ﬁ) = 0 (A2)
h(x,,8) = 0 (A.3)
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The sensitivity of the economic optimizer can be formed by evaluating the full differential
of Equations (A.2) to (A.4).

_ (ViDL (xe,B8,v)dx, +VE L(xy,8,v)dB ) _
d[Vx,L(xy,8,V)] = ( VvaL(x., B,v)dv )—0 (A.5)

dlh(xy,8)] = Vxh(xy,8)dx, + Vgh(x,,B)dB8 =0 (A.6)
d[ga(x0,8)] = Vx,84(%v.B)dxy + Vaga (xy,8)dB =0 (A7)

Realizing V‘,?Z;"L (%y,8,v) = Vx,h(xy,8) + Vx,84 (xv,3), and reducing Equations (A.5)
to (A.7) yields the following,

|: Vﬂxv x"qu(x,,,B,v) +V ﬂL (xv ﬂa ) = 0 (A 8)
T h(xy,8)- Vav + VY g4 (xv, B)-Vapy ’

Vx,h(xv,8) - Vaxy +Vgh(xy,8) = 0 (A.9)

Vx84 (Xv,8) - Vgxy + Vgga (x0,8) = 0 (A.10)

Combining Equations (A.8) to (A.10) yields the following system of linear equations,

VaxL Vaxl Vyul Vxgi VihT Vax

Voul | _ | VuxL Vuul Vugi VuhT Vsu (A1)
Vsga Vxga Vuga O 0 Vapa '
Vsh V<sh Vyh 0 0 Vav

To calculate the sensitivity, %g, consider the least squares regression parameter estima-

tion problem. The objective function is,

¢ = ele (A.12)
= f7 (B, z(")) f (B, z("))

where f(3,z) is the vector containing all the model equations at the nth RTO interval, 8
is the vector of p parameters to be evaluated and z is the vector of process measurements
at the nth RTO interval. Although the structure of the equations are the same over the
different RTO intervals the operating conditions are different. At the optimum,

@ T (g.4m)
Vo = o> = of (ﬁ, )aﬁ 0 (A.13)
Define,
of T
m\ _ |¢T | _
F(8,2™) = [f (8.2 )ag] =0 (A.14)
Using the Implicit Function Theorem (Grossman, 1986),
dF OF
5ﬁaﬁ+maz =0 (A.15)
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Solving Equation (A.15) yields,

3B oF|~! oF
Ez— = - [EE] m (A16)
The estimate of the covariance matrix of the optimization variables becomes,
_ 908, (9x508\"
Qx = EY azU 38 oz (A.17)
Substituting values for %%;' and -‘?g into Equation (A.17) yields,
ax[ oF]~' oF . [ oF \T [ [oF]"\" (ox;\T
Q=7 |- U ——= — = (A.18)
B | 8] az" \az™ B B
T
Consider using n historical steady-state points, the term az%%U (aaf,—'ﬂ) becomes,
v o .- 0
OF oF \T [ oF dF o U® ... 0 OF oF 1T
9z™ ~ \gz™ | ~ |§z@® "'|az<n) S 9z(D ""az(n)
0 o -.- U
(A.19)
assuming that U remains constant over the different RTO intervals,
oF OF\T oF 9FT oF OFT OF OF T
o™ (62‘”) - Bz(l)Uaz“) - az<2>Uaz<2) oo 6z(")Uaz(") (4.20)

For large problems, a numerical approximation may be more appropriate.
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Appendix B

Multiple Response Nonlinear
Experimental Design

The models used to present the results of estimating the uncertainty in the estimates of
the adjustable parameters presented by both Bard (1974) and Draper and Hunter (1967b),
were written explicitly with respect to the measured response variables. However, for the
models involved in most RTO applications, the models will be written with the measured
response variables implicitly imbedded in the model equations. This thesis will alter the
results from the previous authors to compensate for this by considering the errors to be the
response variables. Consider the model that consists of ¢ = 1,2...r nonlinear equations and

u = 1,2...m sets of observations,
e =1i (,60.6,) =0 (B.1)

where y is the vector of v measured dependent variables, £ is the vector of observations
of the q dependent variables, @ is the vector of p unknown variables, and ¢; ~ N (0, a?)
is the random error associated with the model equation i. When the final experimental
design optimization problem is defined the values of the future measured response variables
will be restricted to values defined by the model equations as constraints. Therefore the
manipulated variables will still be the only decision variables in the optimization problem.

If the vector €, = (€1y,€2,... ,€ru) is defined to represent the vector of errors for
each of the r model equations at the uth observation, the covariance matrix of € is
(Draper and Hunter, 1967a),

g1y O12 -+ Oir
o1 O -+ O2

{oij} = . _—_— : =A (B.2)
Orl 02 -+ Opr

The values of €, at different observations are considered uncorrelated.
The purpose of experimental design, for this application, is to assume that a set of N

observations from the process are available and that the next design point, ES\‘QH, should be
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selected to generate the most information possible to improve parameter estimation, while
satisfying all the constraints (i.e., u = 1,2,... ,N+1). To determine the level of uncertainty
of the adjustable parameters only consider the first N points (i.e., u = 1,2,... ,N).

The following equation is the sum of squares and sums of products of the deviations

from zero of the appropriate model equations.

=Y {ew}{eu} (B.3)

u=l1

Considering N sets of observations, the likelihood function of the equation errors is
(Draper and Hunter, 1966),

p(€16,07) = (2m)#"" | Az exp {—-Zzalvq} (B.4)

i=1j=1

and assuming that prior information is available before N runs are performed, the multi-
normal distribution for the parameters is (Draper and Hunter, 1967b),

(21)"2P [V,|” 2exp{——}(0 8,/ V1 (0 - 8,) (B.5)

where 8, = (010,802, - .. ,0p0) is a vector of preliminary estimates and V, is a prp parameter
covariance matrix, all specified.

Applying Bayes’ theorem and combining the prior distribution, Equation (B.3), with
the likelihood function, Equation (B.4), provides the posterior distribution for @ after N
runs (Draper and Hunter, 1967a).

PN (OIe,aij,Vo) Cn (E)exp{——zzo v,J}exp{—— @—-8,)V;1(0-0 )}

=17 =1
(B.6)

where Cy (€) is the appropriate normalizing factor.

Bard (1974) and Draper and Hunter (1966, 1967a and b) made the approximation that
for a region in the 6 space sufficiently close to the maximum likelihood estimates 8. the
following expansion is valid,

P
e = (u.62,05) = £i (52 SZ’,0)+Z(0,—0¢) 2 (B7)
=1
where
o A (”), SQ),O
25 = [ AC ';,,f" )] (B8)
6=
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Define the following,

= fi (42.69.8,) = du (B9)
and
2D L@ . W
(1) (2) )
xi= 12 12 12 (B.IO)
1 2 |
f,,Z f,,i ez
Then write

. { - ¥ (0.-8) 2553} x
o, . — i t=1 )
;gﬂ JUU g;d ]Z { = té:l (0: 5) ( )} (B 11)

35 e+ 3 (0-8) frxix;) (0-8)

i=lj=1 u=l i=1j=1

The cross product terms vanish because the likelihood function is maximized by 8 if and
only if for g=1,2,...,p (Draper and Hunter, 1966),

ZZ"UZ {dm 7@ +d,u:c(")} 0 (B.12)
i=1j=

If Equation (B.11) is inserted into Equation (B.6) the posterior distribution is approxi-
mately (Draper and Hunter, 1967 a),

r r ~\ ! .

. -3 0-0) {7X'X;} (0-6

pw (816,07, Vo) = Cly (€) exp { 122 (6-2) ,{ XX} (6-) (B.13)

—3(0-6,)' V71 (8 -6,)

This result provides a posterior distribution that can be used to approximate the probability

distribution of the parameter estimates. Bard (1974) came to a similar result but took

a different approach. Equation (B.13) can be reduced further for implementation in an
experimental design.

Draper and Hunter (1967b) developed the other experimental design based on the result
of Equation (B.13). Expanding the analysis to include the observation at N+1, the posterior
distribution is equal to,

r

PN+1 (ale,aij’ vo) = ;\’f+n (E) exp —%g::ljz::l (0—0N+l) {a"'J'XQXJ-} (0_0N+1) }
-1(0-6,)V;1(0-0,)

(B.14)



where, because of the combination of two multinormal densities, (C ., (§ ))2 is proportional
to (Draper and Hunter, 1967 a),

(B.15)

ZZa‘Jx,x +V;!

i=1j=1

The goal of the experimental design is to maximize Equation (B.14) with respect to 8
and £y, ,. However, the maximum with respect to @ occurs at a value which depends on
both 5~+1 and 0, and cannot be determined before the N + 1th observation is available.
Inconsequential of the value for 8, the exponent now vanishes. For D-optimal criterion, the
optimization problem now reduces to,

i:iaij XIX;+V;! (B.16)

i=1j=1

max det

(v) ( ) =
s.t. ft(y;t;v-w :q12r+1v09) =0

69 -] <

Bard (1974) reached the same result for experimental design of parameter estimates,
but took a different approach. Pinto (1990) uses this development as the basis for his own
experimental design but uses an A-optimal criterion.

i=1j=1

max  trace [ZZUUX:-XJ- +V; 1J (B.17)

st fi (U1 €% Bp) = 0
|69 -8t < a

This result is expanded to develop an experimental design optimization problem that fo-
cuses on reducing the uncertainty in the optimization variables by augmenting the designs
specified by Problems (B.16) and (B.17) with the sensitivity of the optimization variables
to the adjustable parameter estimates.

max  trace [( ) (chrvx,x, +v-1) (%)T] (B.18)

=1 j=1

s.t. f(y:(t;\)r+1’€11v+v ) =0
|60 60| < a
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By applying the optimization problems specified by Equations (B.16), (B.17) or (B.18) a
difficulty that is realized is that the objective functions use values at the N +1 observation.
Some of the observations will not be known at the Nth stage. The values for 0 can be
obtained from the nonlinear regression problem after the Nth stage, and the values of the
measured response variables (yg’_)‘,l) will be controlled by the equality constraints defined
by the process model. The solution of the optimization problem will provide a design point,
contained within the trust region, that will produce high quality information to reduce
decision variable uncertainty.



Appendix C
Case Study Data

C.1 Williams-Otto Reactor Case Study (Section 2.4)

The nominal operating point in the case study for Section 2.4 is given in Table C.1.

Table C.1: Williams-Otto Reactor Nominal Operating Point

Variable | Operating Point
FA 0.4000
Tgr 0.6400
AR 0.1020
BR 0.4395
CR 0.0202
ER 0.2606
PR 0.1066
GR 0.0711

The measurement covariance matrix was found by generating a set of 1,000 process data
points around the nominal value, shown in Table C.1, subject to a white noise distribution
on the true plant values. Table 2.4 shows the applied standard deviations of the measure-
ments, expressed as a percentage of the nominal case. The flow of reactant B and reactor
temperature are considered to be in dependent of the compositions and have the following

variances,

o%tp = 0.1666 x 107*
0%, = 00956 x 1074

The covariance matrix for the compositions of the materials in the mixture exiting the
reactor are shown below, with the columns and rows corresponding to the variables in the
following order,

[ AR BR CR ER PR GR|
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U=10"%x

-

0984
.0020
0011
—.0046
-.0061
-.0012

.0020
1.6959
—.0027
—.0565
-.0011
.0054

.0011
-.0027
.0036
—-.0016
0007
.0003

—.0046
—.0565
—.0016
5983
—-.0075
0015

—.0061
—.0011
.0007
—-.0075
.1079
.0056

-.0012
.0054
.0003
.0015
0056
0491

The initial measured data set used in the case study is shown in Table C.2.

Table

Point

FA

Tr

AR

C.2: Initia] Measured Data
BR CR ER

Set

PR

GR

SOOI D AW

0.4141
0.4138
0.4056
0.4111
0.4175
0.4005
0.4249
0.4108
0.4025
0.3997

0.6450
0.6448
0.6475
0.6385
0.6438
0.6421
0.6433
0.6421
0.6419
0.6456

0.0914
0.0938
0.0935
0.0985
0.0924
0.1006
0.1009
0.1028
0.0965
0.0967

0.4488
0.4286
0.4033
0.4478
0.4426
0.4282
0.4467
0.4478
0.4227
0.4493

0.0174
0.0180
0.0183
0.0194
0.0174
0.0202
0.0183
0.0176
0.0189

0.0186

0.2620
0.2763
0.2702
0.2769
0.2658
0.2565
0.2624
0.2526
0.2516
0.2829

0.0997
0.1045
0.1029
0.1042
0.1122
0.1085
0.1076
0.1078
0.1091
0.1019

0.0776
0.0795
0.0755
0.0749
0.0780
0.0720
0.0675
0.0748
0.0713
0.0804

C.1.1 Selecting Optimal Number of Historical Points

Table C.3 presents the parameter estimates and optimization results for tests #1 through

#10.

Table C.3: Optimization Results for Selecting the Optimal Number of Historical Points

Historical
Data Points

Adjustable
Parameter Estimates

A

A

A3

Optimal Point
Calculation

FB

Tr

SO U RN -

8.8603
9.6412
9.4510
9.4199
9.5157
9.6346
9.7821
9.8612
9.9219
9.9092

13.3545
14.3841
14.7401
14.8713
14.7680
14.9456
15.1795
15.1337
15.1935

15.1288

19.1436
19.4688
19.9013
19.5095
19.1659
19.3312
19.8104
19.4999
19.6767
19.9091

0.3762
0.3824
0.3819
0.3841
0.3851
0.3853
0.3844
0.3855
0.3851
0.3839

0.6554
0.6548
0.6551
0.6560
0.6561
0.6558
0.6550
0.6552
0.6549
0.6545

For tests #1 through #10 the following matrices were found,
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Test #1:

0.9373 1.4328 2.4333
1.4328 2.6816 4.5483

o
|

Q: =10"°x [

.

5

9x
B

0.0016
-0.0022

0.7997
—0.1057

Test #2:
0.5921 0.8992

0.8992 1.6638
1.3950 2.5599

0.0010

38 — | —0.0021

Test #3:

0.3723 0.5933
0.5933 1.1707
0.9290 1.8190

o

5

EY]
Q:=10"°%x [

.

2

0.0011
-0.0021

—-0.0045
0.0005

0.4175
—0.0287

Test #4:
0.2747 0.4430

0.4430 0.8815
0.6806 1.3412

0.0009
-0.0022

—0.0046

a8 0.0005
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2.4333 4.5483 9.4568

—0.0047
0.0005

—0.0046
0.0005

|

0.0020
-0.0008

|

|

-0.1057
1.2437

|

0.0023
—0.0008

|

1.3950
2.5599
4.9673

|

-0.0193
0.6459

|

0.0022
-0.0007

|

0.9290
1.8190
3.5809

|

—-0.0287
0.4326

|

0.0024
-0.0007

0.6806
1.3412
2.5697

|



_ 105, [ 03306 —0.0214
== —-0.0214  0.3265

Test #5:
0.2239 0.3540 0.5395
Qs = | 0.3540 0.6896 1.0432
0.5395 1.0432 1.9917
dx _[ 00008 —0.0047  0.0025
58 ~ | -0.0021 0.0005 —0.0008
s 0.2744 —0.0187
Q: =107 [ —0.0187  0.2624
Test #6:
0.1915 0.3020 0.4583
Qs = | 0.3020 0.5876 0.8855
0.4583 0.8855 1.6776
9x _[ 00008 —0.0046  0.0025
4B | -0.0021 0.0005 -0.0007
_ o5 [ 02274 —0.0143
Q: =107 [ ~0.0143  0.2174
Test #T7:
0.1710 0.2741 0.4143
Qs =| 02700 0.5239 0.7995
04174 0.8047 15549
dx _ [ 00008 —0.0045 0.0024
88 ~ | -0.0021 0.0004 -0.0007
_ s [ 01932 —0.0175
Q- =107 [ ~0.0175  0.1894
Test #8:

0.2360 0.4534 0.7161

0.1514 0.2455 0.3766
Qs =
0.3594 0.6892 1.3421

gx [ 0.0008 —0.0046 0.0024
48 ~ | -0.0021 0.0004 -0.0007
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s [ 01893 —0.0189
Q=107 x [ ~0.0189 0.1666]

Test #9:
0.1359 02112 0.3232
Qs = | 02112 04045 0.6179
0.3232 0.6179 1.2028
dx _[ 00008 -0.0045 0.0023
38~ | -0.0020 0.0004 —0.0007
_ -5 [ 01613 —0.0158
Q- =107 [ ~0.0158  0.1468
Test #10:

0.1883 0.3600 0.5338

0.1215 0.1761 0.2732
Qs =
0.2927 0.5575 1.1080

ox _ 0.0009 -0.0045 0.0023
88 ~ | —-0.0020 0.0004 -0.0007

_ 105 [ 01422 00136
T -0.0156  0.1315
C.1.2 Benefits of Experimental Design

For the second case study of Section 2.4, the results for the optimization problems of the
first RTO cycle, using the initial data set (see Table C.2) are,

Table C.4: First RTO Cycle
Optimization Optimal Point

Scheme Calculation

FA TR
Economic 0.3819 | 0.6551
Experimental Design | 0.4242 | 0.6482

These points were implemented and provided the following measurements,

Table C.5: Implemented Optimization Result
FA TR AR BR CR ER PR GR
Econ. | 0.3812 | 0.6563 | 0.0787 | 0.3918 | 0.0143 | 0.2781 | 0.1080 | 0.1109
DOE | 0.4422 | 0.6497 | 0.0807 | 0.4588 | 0.0155 | 0.2495 | 0.1082 | 0.0796
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Table C.6: Economic Optimization Results - Second RTO Cycle

First Optimization Adjustable Optimal Point
Routine Parameter Estimates Calculation
A A, Aj FA TR
Economic 9.8181 | 14.2520 | 19.3681 | 0.3809 | 0.6530
Experimental Design | 9.7146 | 14.2424 | 19.3931 | 0.3822 | 0.6546

Table C.6 presents the economic optimization results for the second RTO cycle with the
augmented data sets,

For the final economic optimization problem the following matrices were found.

Test #1: Data set augmented with an economic optimization result.

0.5862 1.0707 1.6779

0.4022 0.5862 0.9028
Qs =
0.9028 1.6779 3.6172

ox _ 0.0009 -0.0046  0.0022
o8 | —0.0020 0.0005 —0.0008

s [ 05296 —0.0659
Q: =107 x [ ~0.0659  0.4354

Test #2: Data set augmented with an experimental design optimization result.

0.5819 1.0693 0.5338

0.3959 0.1761 0.2732
Qs =
0.9184 1.6835 3.3109

[ C.0014 -0.0048  0.0023
o8 ~ | —0.0019 0.0004 —0.0008

_as o [ 03822 —0.0299
Qs =107 x [ ~0.0209  0.4220

C.2 Williams-Otto Reactor Case Study (Section 3.3)

Two case studies were performed in Section 3.3. The first examined if the RTO system
can be improved by adding an information generation component to reduce uncertainty in
the decision variables. The second case study investigated if the improvement can also be
applied to a situation where plant/model mismatch is present

The design cost criterion developed by Forbes and Marlin (1996), defined in Equation
(3.11), is used to evaluate the performance of the RTO designs over 25 RTO intervals.
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C.2.1 Tuning Parameter Selection

The data presented in this section is used to determine if the RTO system incorporating
information generation could improve the performance of the RTO system when structural
plant/model mismatch is not present. This section will also determine which set of tuning
parameters produces the best results.

Raw Data

The following summarizes the results of the ten runs performed for each of the test conditions
as outlined in Table 3.2.
Test #1: a =0.90,c; = 0.90, c2 = 0.990

Run # Design Cost Run # Design Cost

1 168.9739 6 138.7053
2 108.9626 7 144.7672
3 161.0817 8 122.9528
4 199.4699 9 122.1651
5 119.6551 10 97.4428

Test #2: a =0.90,c; = 0.90, c; = 0.995
Run # Design Cost Run # Design Cost

1 87.5640 6 111.9854
2 129.0496 7 79.9772
3 106.1350 8 89.8739
4 98.9029 9 86.5970
5 135.5707 10 125.7413

Test #3: a =0.90,¢; = 0.90, c2 = 0.997
Run # Design Cost Run # Design Cost

1 64.3635 6 42.1058
2 59.3382 7 48.1035
3 58.5313 8 99.7822
4 51.8252 9 100.3348
5 85.5607 10 78.1025

Test #4: a =0.90,¢; = 0.90,c2 = 0.999
Run # Design Cost Run # Design Cost

1 49.4408 6 104.9123
2 36.1893 7 79.2948
3 83.5946 8 65.5477
4 102.4943 9 109.8425
5 101.0841 10 64.4793
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Test #5:

Test #6:

Test #7:

Test #8:

Test #9:

a = 0.90,c; =0.95,c2 = 0.990

Run # Design Cost

1 84.7164

2 83.3318

3 102.6479

4 106.8161

5 69.6106
a = 0.90,c; = 0.95,c2 = 0.995
Run # Design Cost

1 96.5524

2 99.9522

3 71.1664

4 105.5905

5 81.7921
a = 0.90,c; = 0.95,c2 = 0.997
Run # Design Cost

1 76.8567

2 84.0154

3 73.4299

4 51.2654

5 85.3139
a=0.90,c; = 0.95,c; = 0.999
Run # Design Cost

1 47.4791

2 81.1773

3 60.9576

4 44.7973

5 43.9572
a=10.90,c; = 0.98,c2 = 0.990
Run # Design Cost

1 62.1334

2 69.9219

3 113.6927

4 84.6803

5 88.2086

Test #10: a = 0.90,¢; = 0.98, ¢c3 = 0.995

Run # Design Cost

1 62.2818

2 119.7443

3 88.1447

4 67.7189

5 75.5310

Run #
6
7
8
9
10

Run #
6
7
8
9
10

Run #
6
7
8
9
10

Run #
6
7
8
9
10

98

Design Cost
76.5408
125.9892
129.0275
131.3550
84.9149

Design Cost
73.3786
106.5585
91.8085
97.6200
90.8741

Design Cost
140.9674
83.3168
109.6220
101.7906
54.6005

Design Cost
51.2276
45.0073
69.3417
56.7401
51.0764

Design Cost
74.5592
97.8965
82.9108
93.9651
117.9644

Design Cost
77.9029
110.6427
69.3734
108.7104
46.5410



Test #11: a =0.90,¢; = 0.98,c2 = 0.997
Run # Design Cost Run # Design Cost

1 41.1222 6 50.3953
2 31.1025 7 73.5192
3 62.4170 8 58.2678
4 51.9452 9 82.5846
5 73.3096 10 49.7328

Test #12: a =0.90,c; = 0.98, c2 = 0.999
Run # Design Cost Run # Design Cost

1 36.9032 6 54.8662
2 64.5065 7 38.6966
3 40.3181 8 74.4314
4 48.2629 9 44.0546
5 59.1141 10 61.7208

Test #13: a = 0.95,¢; = 0.90,c2 = 0.990
Run # Design Cost Run # Design Cost

1 132.2776 6 76.1489
2 119.0740 7 103.2282
3 74.2833 8 135.4752
4 78.1025 9 90.9129
5 112.2124 10 30.4390

Test #14: a =0.95,¢; = 0.90,cp = 0.995
Run # Design Cost Run # Design Cost

1 34.4847 6 73.5946
2 72.1879 7 126.4227
3 78.7290 8 100.1029
4 112.6247 9 87.5974
5 88.8239 10 127.9877

Test #15: a =0.95,¢; = 0.90,c2 = 0.997
Run # Design Cost Run # Design Cost

1 107.3330 6 99.4819
2 67.9797 7 68.3998
3 84.7118 8 64.6729
4 103.8840 9 64.0724
) 103.6230 10 49.6661

Test #16: a = 0.95,¢; = 0.90, c2 = 0.999
Run # Design Cost Run # Design Cost

1 85.2506 6 80.6371
2 74.3260 7 42.0248
3 33.7690 8 40.4515
4 52.8478 9 58.2586
5 98.3108 10 45.9694
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Test #17: a = 0.95,¢; = 0.95,cp; = 0.990
Run # Design Cost Run # Design Cost

1 88.3308 6 79.2440
2 94.8196 7 91.8431
3 107.4474 8 80.0029
4 54.3981 9 75.9166
5 48.2388 10 117.0343

Test #18: a =0.95,¢; = 0.95,co = 0.995
Run # Design Cost Run # Design Cost

1 58.6462 6 37.8554
2 35.9932 7 50.2430
3 72.4180 8 107.0450
4 64.8992 9 96.1476
5 90.6438 10 92.1749

Test #19: a = 0.95,¢; =0.95,¢c2 = 0.997
Run # Design Cost Run # Design Cost

1 49.2729 6 70.9381
2 60.0744 7 82.7769
3 60.2586 8 55.3565
4 38.4515 9 66.4915
5 32.9305 10 64.7392

Test #20: a = 0.95,¢; = 0.95,c2 = 0.999
Run # Design Cost Run # Design Cost

1 55.9796 6 30.9996
2 49.6339 7 29.9424
3 53.0745 8 29.6597
4 86.9884 9 38.0886
5 49.5277 10 59.1456

Test #21: a =0.95,c; = 0.98,co = 0.990
Run # Design Cost Run # Design Cost

1 108.7272 6 76.1016
2 114.3510 7 83.0410
3 72.0505 8 97.8824
4 62.2935 9 69.2071
) 94.1982 10 59.7491

Test #22: a = 0.95,¢; = 0.98, ¢y = 0.995
Run # Design Cost Run # Design Cost

1 58.0631 6 56.9751
2 63.6741 7 90.7860
3 65.7920 8 81.5819
4 65.3398 9 63.6108
5 50.9128 10 76.4298
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Test #23: a = 0.95,c; = 0.98,c, = 0.997
Run # Design Cost Run # Design Cost

1 49.7182 6 43.5084
2 71.2392 7 71.3139
3 27.5545 8 65.2105
4 54.0717 9 61.5667
) 38.6724 10 79.3463

Test #24: a =0.95,c; =0.98,c0 = 0.999
Run # Design Cost Run # Design Cost

1 40.5651 5 47.1045
2 58.6305 7 48.9982
3 56.3008 8 59.9520
4 48.8264 9 46.4230
5 61.6517 10 55.5608

Test #25: a =1.00,c; =0.90,co = 0.990
Run # Design Cost Run # Design Cost

1 69.5440 6 52.0883
2 67.7424 7 131.5164
3 116.1176 8 57.7948
4 73.1151 9 31.0817
5 107.4577 10 83.5324

Test #26: a = 1.00,¢; = 0.90,c2 = 0.995
Run # Design Cost Run # Design Cost

1 91.7534 6 101.6411
2 59.3221 7 60.7266
3 51.7479 8 68.5976
4 81.7442 9 66.2866
5 57.1239 10 56.7718

Test #27: a =1.00,c; = 0.90,c0 = 0.997
Run # Design Cost Run # Design Cost

1 23.8771 6 26.6952
2 49.6608 7 52.7168
3 44.3460 8 42.1973
4 33.4714 9 35.6005
5 53.9971 10 35.6704

Test #28: a = 1.00,¢; = 0.90, ¢ = 0.999
Run # Design Cost Run # Design Cost

1 34.5701 6 31.2399
2 62.1698 7 59.0538
3 27.2904 8 52.0581
4 27.7631 9 29.2634
5 51.1363 10 62.2634
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Test #29: a = 1.00,¢; = 0.95,c2 = 0.990
Run # Design Cost Run # Design Cost

1 56.1095 6 72.0398
2 75.7058 7 94.8073
3 66.3432 8 76.2360
4 54.7580 9 63.4637
5 83.6947 10 73.5897

Test #30: a = 1.00,c; = 0.95,c2 = 0.995
Run # Design Cost Run # Design Cost

1 51.1804 6 38.0492
2 66.6875 7 55.9263
3 60.6956 8 79.8668
4 67.6280 9 85.4986
5 60.4899 10 59.6848

Test #31: a =1.00,¢; = 0.95,c2 = 0.997
Run # Design Cost Run # Design Cost

1 40.7527 6 70.6195
2 40.0294 7 45.2501
3 50.5438 8 25.9621
4 28.8752 9 31.3566
5 68.8668 10 51.0000

Test #32: a =1.00,¢; = 0.95,c2 = 0.999
Run # Design Cost Run # Design Cost

1 34.1643 6 38.2833
2 57.4373 7 56.1119
3 50.6741 8 42.9426
4 57.7549 9 16.8579
5 47.1314 10 36.9385

Test #33: a =1.00,c; = 0.98, c2 = 0.990
Run # Design Cost Run # Design Cost

1 66.7232 6 102.3196
2 107.8724 7 88.6620
3 90.5158 8 82.7894
4 60.3525 9 69.0183
) 99.4410 10 60.5312

Test #34: a =1.00,c; = 0.98,c2 = 0.995
Run # Design Cost Run # Design Cost

1 38.2605 6 33.6000
2 32.5347 7 70.6053
3 71.6893 8 33.3607
4 65.5382 9 65.3857
5 81.5723 10 43.1265
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Test #35: a =1.00,c; =0.98, co = 0.997
Run # Design Cost Run # Design Cost

1 21.0812 6 38.3519
2 36.0147 7 40.5558
3 32.8397 8 49.5153
4 37.4645 9 49.2175
5 49.9815 10 47.9357

Test #36: a =1.00,c; = 0.98,c; = 0.999
Run # Design Cost Run # Design Cost

1 39.5367 6 32.0875
2 36.3081 7 44.6890
3 34.8633 8 38.8428
4 24.7737 9 20.3499
5 21.6485 10 56.6957

The results for the RTO design that did not incorporate an information generation
section in the command conditioning subsystem are:

Base Case:
Run # Design Cost Run # Design Cost
1 59.5374 6 51.5857
2 86.1428 7 55.6214
3 54.7361 8 69.0702
4 64.9741 9 64.5537
5 55.1566 10 63.0957

Hypothesis Tests

The rest of this section will illustrate the results of the calculations performed to determine
if the RTO systems with DOE are significantly different from the base case RTO system.
Please see Appendiz D for a description of the statistical calculations. The following statis-
tics were used,

Fi_¢.0s,240,240 = 0.8083
Fo.0s.2402¢0 = 1.2371
Fi_g0599 = 0.3146
Foos99 = 3.1789
toos20 = 1.725
toos,18 = 1.734
to.os,5 = 1.753
toos,14a = 1.761
toos13 = 1.771
to.os,12 = 1.782
to.os,11 = 1.796

Table C.7 shows the results of the one-sided hypothesis tests, to determine whether the
data used to find the sample mean for each test, may have the same variance as the data set
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produced by the base case. If the lower statistic is greater than 1, or if the upper statistic
is less than 1, then it can be stated, with a significance level of 5%, that the variances are
different.

Table C.7: Identifying Different Sample Variances Among RTO Systems

Test # | Standard | Lower | Upper || Test # | Standard | Lower | Upper
Deviation | Stat, Stat. Deviation | Stat. Stat.

36 11.09 0.39 26 16.67 0.87
35 9.26 0.98 18 25.19 1.99
27 11.48 0.41 29 12.22 0.47
28 14.94 0.70 25 31.07 3.03
32 12.86 0.52 4 25.34 2.01
31 15.43 0.75 15 20.94 1.38
20 17.60 0.97 10 23.71 1.76
12 12.61 0.50 33 17.73 0.99
24 6.95 0.55 17 21.34 1.43
34 19.09 1.14 21 19.19 1.15
8 12.21 0.47 7 26.40 2.19
23 16.45 0.85 9 17.96 1.01
11 15.87 0.79 14 28.26 2.50
19 14.91 0.70 6 12.46 0.49
16 22.03 1.52 13 32.03 3.22

Base 10.01 5 23.01 1.66
30 13.58 0.58 2 19.80 1.23
22 12.17 0.46 1 30.94 3.00
3 20.99 1.38

For the tests where the variances were determined not to be equal, the following lists
the estimates of the degrees of freedom found from solving Equation (D.10).

v  Test #
11  1,13,25
12 4,7,14,18
13 5,10,16
14 2,3,15,17
15 9,21,34
18 24

20 35

Table C.8 shows the results of the one-sided hypothesis test to determine which sets of
tuning parameters produce a RTO system that may have a different sample mean from the
base case. If the lower statistic is greater than 0, or if the upper statistic is less than 0,
then it can be stated, with a 5% significance level, that the RTO system that incorporates
information generation is different than the system that does not.

Table C.9 lists the sample variances and pooled variance of the profit around the ex-
pected optimum for the RTO systems described by the base case and test #36. It is assumed
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Table C.8: Confidence Intervals to Identify Different RTO Systems

Test | Sample | Lower | Upper || Test | Sample | Lower | Upper
# Mean | Stat. | Stat. # Mean | Stat. | Stat.
36 34.9795 -19.27 26 | 69.5715 | -3.54
35 40.2960 -14.71 18 70.6066 | -7.12
27 | 41.8233 -12.27 29 | 71.6748 | 0.56
28 43.7139 -8.87 25 78.9990 | -1.99
32 43.8296 -9.68 4 79.6880 | 1.89
31 45.3256 -7.03 15 | 813832 | 6.01
20 48.3040 -3.04 10 | 82.6591 | 5.80
12 52.2874 -1.33 33 | 82.8225 | 9.21
24 52.4013 -3.36 17 | 83.7276 | 8.15
34 53.5673 3.19 21 83.7602 | 9.32

8 55.1762 1.39 7 86.1179 | 7.76
23 56.2202 4.33 9 88.5933 | 14.75
11 57.4396 5.28 14 | 90.2553 | 10.91
19 58.1290 5.53 6 91.5293 | 20.32
16 61.1846 12.29 13 | 95.2154 | 13.72

Base | 62.4474 5 99.4950 | 22.99
30 62.5707 | -9.13 2 105.1397 | 30.34
22 67.3165 | -3.77 1 138.4176 | 57.50

3 68.8048 | -6.60

that the population variance among the ten runs for each RTO system are equal and can
be pooled together according the following more general form of Equation (D.5),

N
> (ni—1)s?
=5 (C.1)

s [E

where N represents the number of runs, and n; and s? are the number of RTO intervals

and sample variance for run <.

Since s? < s? the one-sided hypothesis test defined in Problem (3.13), with a significance
of 5%, was used to test the possible equality of the population variances. The computed
value of the statistic is,

s
=3 F0.05,240,240 = 0.93

53
Since this value is less than 1, the null hypothesis is rejected and it can be stated that the
variance is reduced with a DOE component added to the RTO system.
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Table C.9: Variance Around Expected Optimum

Run Variance
RTO with DOE | RTO without DOE

(8/s) (8/s)

1 4.37 5.16
2 2.68 11.39
3 3.79 11.28
4 2.52 10.27
5 3.67 2.09
6 3.04 7.26
7 17.39 4.20
8 7.36 5.45
9 0.87 5.71
10 6.39 6.67
Pooled 5.21 6.95

C.2.2 Comparing RTO Systems When Plant/Model Mismatch is Present

Using the tuning parameters from Test #36,

a= 1.00
C = 098
co = 0.999

the performance of a RTO system which incorporates information generation was compared
to one that does not for different levels of structural mismatch in the activation energy
constants, which act as fixed parameters for this case study.

Similar to the first case study, the extended design cost criterion developed by Zhang
and Forbes (2000), defined in Equation (3.11), is used to evaluate the performance of the
RTO designs over 25 RTO intervals.

Raw Data
The following summarizes the results of the ten runs performed for each of the test condi-
tions.
1% Bias in the Fixed Parameters
RTO with DOE:
Run # Design Cost Run # Design Cost
1 40.5389 6 47.6782
2 30.0034 7 25.6798
3 31.6938 8 22.6565
4 42.5339 9 44.7728
5 31.6473 10 30.6044
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RTO without DOE:
Run # Design Cost Run # Design Cost

1 48.2840 6 40.2087
2 85.7633 7 49.1671
3 67.7771 8 53.9273
4 74.6062 9 49.6604
5 66.5513 10 70.4433
3% Bias in the Fixed Parameters
RTO with DOE:
Run # Design Cost Run # Design Cost
1 89.8435 6 77.1870
2 76.7003 7 140.8297
3 99.5141 8 71.8534
4 88.6214 9 101.1337
5 86.0016 10 101.8449

RTO without DOE:
Run # Design Cost Run # Design Cost

1 66.1463 6 100.8710
2 111.4954 7 109.4646
3 74.4643 8 38.9687
4 94.2750 9 85.7252
5 93.5043 10 79.4874
5% Bias in the Fixed Parameters
RTO with DOE:
Run # Design Cost Run # Design Cost
1 162.6213 6 113.2262
2 135.7014 7 211.8640
3 184.7249 8 139.2375
4 148.5583 9 163.9797
5 151.8552 10 148.4595

RTO without DOE:
Run # Design Cost Run # Design Cost

1 108.7392 6 100.2991
2 198.2947 7 107.0362
3 117.0234 8 180.2862
4 121.6399 9 137.3925
5 83.7631 10 153.5356

10% Bias in the Fixed Parameters
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RTO with DOE:
Run # Design Cost Run # Design Cost

1 456.7278 6 432.8457
2 419.7843 7 516.9571
3 396.5679 8 3999.6508
4 359.5052 9 402.6954
5 429.2966 10 445.2575
RTO without DOE:
Run # Design Cost Run # Design Cost
1 300.2334 6 283.2105
2 415.9282 7 339.5513
3 336.8884 8 409.1073
4 376.0584 9 338.2261
S 307.8003 10 378.0159

Hypothesis Tests

The rest of this section will illustrate the results of the calculations performed to determine
if the RTO system using DOE still performs effectively in the presence of plant/model
mismatch. Please see Appendiz D for a description of the statistical calculations. The
following statistics were used,

F1_0.05,240240 = 0.8083
Fp.05,240240 = 1.2371
Fi_00s599 = 0.3146
Foos99 = 3.1789
to.0508 = 1.734

Table C.10 shows the results of one-sided hypothesis tests, at a 5% significance level,
to determine if incorporating DOE into the RTO system produces a significant economic
benefit, if plant/model mismatch is present. The column labelled standard deviation refers
to the variation in the data set used to evaluate the sample standard deviation of the
extended design cost measures for a specific RTO system.

The results show that the sample means of the two RTO systems were found to be
different for all tests, except the 3% bias case. However, the RTO system that incorporates
information generation is only able to realize more profit for the test where there is a 1%
bias in the fixed parameters.

Table C.11 lists the pooled variances of the profit around the expected optimum for each
of the bias case studies, and the statistics used to determine their significance. One-sided
hypothesis tests, at a significance level of 5% (see Problems (3.12)and (3.13)), were used to
determine the significance of the variances. Similar to the previous set of case studies, it is
assumed that the population variance among the ten runs for each RTO system are equal
and can be pooled together according to Equation (D.5).
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Table C.10: Effects of Bias on RTO Performance
Bias | DOE | Sample | Lower | Upper | Standard | Lower | Upper
(%) Mean | Stat. | Stat. | Deviation | Stat. | Stat.
1 Yes | 34.7809 -16.67 8.49 1.10
No | 60.6389 14.44
3 Yes | 93.3772 | -1047 19.76 2.54
No | 87.5840 22.11
5 Yes | 156.0228 | 0.20 27.30 1.77
No | 130.8010 36.56
10 Yes | 425.9288 | 43.41 42.44 2.80
No | 348.5020 45.24

Table C.11: Hypothesis Tests for Variance Results: Mismatch Case Study

Bias | DOE | Variance | Lower | Upper
(%) (8/s) Stat. | Stat.
1 Yes 4.472 0.836
No 6.620
3 Yes 8.872 1.039
No 6.903
5 Yes 14.654 0.996
No 18.205
10 Yes 78.036 3.192
No 19.763

Table C.11 shows the variances of the RTO systems are significantly different for all
cases, with the DOE improving the RTO performance for the 1% and 5% bias tests.
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Appendix D

Statistical Significance Tests

The statistical tests used to determine if the sample means of the different RTO systems
are significant are cited from Montgomery and Runger (1994).

When presented with two sets of randomly sampled data, the first step is to determine
if the sample variances may be equal. The statistic used in the two-sided hypothesis test,
defined in Problems (3.12) and (3.13), has the following form,

i af _ &
—=Fe o 1ni—1 <5< =5F_-24 _1n,- D.1
3% 2m2 ln—-1 = 0‘% = 8% 1-3,n2 1n;1-1 ( )

where g; =1if 03 =02, and s? and s2 are the sample variances of the random samples of
sizes n; and ng, respectively, from the two independent normal populations with unknown
variances 0% and a3. F%,nz_l‘m_l and F1_g n,—1n,-1 are the upper and lower § percentage
points of the F distribution with ng — 1 and n; — 1 degrees of freedom. If either statistic
includes the number 1 in its range, it cannot be claimed that the standard deviations of the

two processes are different with a a% significance level. Please note that,

1

Fl—%,ng—l,nl—l = F%'nz_l'm_l (D.2)
For one-sided hypothesis tests,
For Problem (3.12):
o  s?
_; S _;Fl-a,ng—l.nl-l (D3)
$2
For Problem (3.13):
2 2
51 o1
gFa,nz-l.m—l S ?‘? (D.4)

If the statistic in Inequality (3.12) is greater than one, or less than one in Inequality (3.13),
than the population variances of the two data sets are considered different with an a%
significance level. One-sided hypothesis tests are useful if the experimenter is only concerned
with one side of the distribution.
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If the sample variances are considered equal with an a% level of confidence, than the
difference in the sample means can be found using the following formulation. For small
sample means (i.e., n; and ny; do not exceed 30), the assumption is made that the data
populations are normally distributed, and the statistics used in the hypothesis tests can be
based on the t distribution (Montgomery and Runger, 1994).

Since the sample variances are estimates of the common variance, a pooled estimator
for 02 can be determined,

2 _ (m—1)s}+(ny —1) s
% = ny +ng—2 (D-5)

The statistic for the two-sided hypothesis test has the form,

- - 1 1 o 1 1
1= 22 = g ny4np-2%) e SM RSB - Tt g nn 28 -+ - (D.6)

where u; — puy = 0 if 02 = 03, and Z, and Z; are the means of the random samples from
two independent normal populations with unknown but equal variances and means u; and
Mo, respectively. If either statistic includes zero in its range, then it cannot be claimed that
the means of the two processes are different with an a% level of confidence.

For one-sided hypothesis tests,

For Problem (3.14):

_ /1 1
I — X2 — ta,n1+n2—23p n_l + Tl—2 < K1 — Ho (D.?)

For Problem (3.15):

- - 1 1
i~ Hy S 3= Ta laming-29p) [ - + - (D.8)

If the statistic in Inequality (3.14) is less than zero, or greater than zero in Inequality (3.13),
than the population means of the two data sets are considered different with an a% level

of confidence.
If the sample variances are not considered equal then the statistic has the form,

sf 83 st | s
Ty —To —ta = 4 =< - <F - ta —_ 4 == D.9
1= R tge o o, SM TSR Bt tg . o+ 0 (D.9)

where the degrees of freedom are found from the following,

v=—0 T — 2 (D.10)
n+1 + na2+1
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Appendix E
Case Study Data For Chapter 4

This case study presents the data from the Williams-Otto plant (Williams and Otto, 1960)

case study in Chapter 4.
The nominal operating point for this case study is given in Table E.1.

Table E.1: Williams-Otto Plant Nominal Operating Point

Variable | Operating Point
FA 0.350
TR 0.630
FL 0.400

Table E.2 displays the variances for the independent variables, and is followed by the
covariance matrices for the compositions in streams FR and FS, respectively.

Table E.2: Independent Variable Variances

Variable | Variance
FB 1269 x 1074
TR .1040 x 10~4
FL .1593 x 10~4
YR 5692 x 10~7
ps .7601 x 108

The covariance matrix for compositions in stream FR, corresponding to the following

order,
[ AR BR CR ER PR GR]
[ .1547 0085 —.0006 .0084 —.0014 .0004 T
.0085 1.6248 -.0002 -.0424 .0085 .0036
Upg = 10~ x -.0006 -.0002 .0073 .0013 .0013 0

0084 -.0424 .0013 .7432 0038 —.0004
-0014 0085 .0013 .0038 0592  .0004
| 0004 0036 0 —.0004 .0004 .0073 |
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The covariance matrix for compositions in stream F'S, corresponding to the following

order,

[AS BS CS ES PS]

1867 .0302 -.0002 .0G606 .0010
0302 18462 -.0018 —-.0035 -—.0052
Ups=10"*x | —.0002 -.0018 .0085 —.0034 .0001
0006 -.0035 —.0034 .9189 —.0039
0010 -.0052 .0001 —.0039 .0107

The initial measured data set used in the case study is shown in Table E.3.

Table E.3: Williams-Otto Plant Initial Measured Data Set
Point | FA TR FL AR | BR CR | ER | PR

3624 | .6335 | .4319 | .1243 | .4278 | .0275 | .3142 | .0827
3737 | .6266 | .4299 | .1257 | .4313 | .0279 | .2694 | .0813
3751 | .6291 | .3978 | .1303 | .4544 | .0291 | .2888 | .0834
3613 | .6328 | .4147 | .1317 | .4350 | .0281 | .3097 | .0771
3782 | .6281 | .4060 | .1202 | .4530 | .0273 | .2672 | .0849
3721 | .6349 | .4074 | .1190 | .4801 | .0259 | .3087 } .0818
.3483 | .6332 | .4266 | .1291 | .4038 | .0286 | .3085 | .0783
.3550 | .6357 | .4287 | .1318 | .4255 | .0274 | .3072 | .0824
3783 | .6389 | .4023 | .1269 | .4443 | .0259 | .2944 | .0826
3661 | .6301 | .4187 | .1174 | .4595 | .0277 | .2940 | .0840

]

Point | GR | AS | BS | CS | ES PS | YR | ps

.0288 | .1336 | .4674 | .0303 | .3317 | .0377 | .0131 | .0048
.0276 | .1335 | .4890 | .0255 | .3171 | .0384 | .0198 | .0072
0272 | .1417 | .4753 | .0317 | .3239 | .0374 | .0138 | .0048
0273 | .1376 | .4876 | .0298 | .3286 | .0342 | .0127 | .0045
.0273 | .1325 | .5177 | .0299 | .3142 | .0346 | .0163 | .0060
.0296 | .1344 | .4503 | .0288 | .3164 | .0383 | .0198 | .0071
0288 | .1392 | .4747 | .0302 | .3499 | .0342 | .0114 | .0041
.0303 | .1323 | .4780 | .0308 | .3210 { .0389 | .0140 | .0049
.0290 | .1300 | .4785 | .0277 | .3088 | .0400 | .0223 | .0078
.0293 | .1367 | .4586 | .0298 | .3163 | .0395 | .0179 | .0064

S5© 0o un o=

o

W00 2O U b W
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o

E.1 Selecting Optimal Number of Historical Points

Table E.4 presents the parameter estimates and optimization results for tests #1 through

#10.
For tests #1 through #10 the following matrices were found,

. -0.6399 -0.9962 0.7509 —0.0082
= 102 x | —-0.0415 -0.1233 -0.0064 —0.0009
1.5103 1.0833 -1.1542 0.0201
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Table E.4: Optimization Results for Selecting the Optimal Number of Historical Points

Historical
Data Points

A A

Adjustable
Parameter Estimates
Az a

10.2992
8.6029
8.8597
9.3040
8.9696
9.1380
9.1975
9.3030
9.4870
9.6158

14.4715
13.3954
13.4044
13.9659
13.4312
13.5956
13.8733
13.8765
14.3288
14.4449

WO Ooo 3O OV N =

=
(=]

19.9861
19.9807
19.9480
20.0010
19.9710
19.9772
20.0066
19.9900
19.9998
19.9985

2.8475
2.8790
2.8865
2.8731
2.8685
2.8407
2.8303
2.8514
2.8348
2.8309

Test #1:

1.8462 2.5709 4.5548

2.5709 4.4456 7.1882

4.5548 7.1882 15.2178
0 0 0

Qs =

0.1895
0.0088
—0.2783

0.0088
0.0111

Qz = 10_3 X
—0.0048

Test #2:

0.6704 1.0422 2.2504

1.0422 1.9996 4.1504

2.2504 4.1504 10.9319
0 0 0

Qs =

0.1380 -—-0.0083
—0.0083 0.0050

Qz = 10_3 X
—0.2206 0.0177

Test #3:

0.4634 0.6921 1.4524

0.6921 1.2698 2.5329

1.4524 2.5329 6.4168
0 0 0

Qs =

0.0765 —0.0037
—0.0037 0.0032

Q:=10"3x
—0.1207 0.0086
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0.0030

-0.0048

—-0.2783
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0.0012

0.0177

—0.2206
0.3614
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0.0010

0.0086
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Test #4:

0.3874 0.5792 1.1237

0.5792 1.0608 1.9464

Qs=| 1937 1.94614 4.5%1
0 0 0
0.0510 —0.0010
Q:=10"3x | -0.0010 0.0027
~0.0789  0.0039
Test #5:
0.2858 0.4210 0.8664
Q= 0.4210 0.7641 1.4828
A= 108664 1.4828 3.7196
0 0 0
0.0458 —0.0017
Q. =10"%x | -0.0017 0.0019
-0.0716  0.0043
Test #6:
0.2505 0.3668 0.7414
Qs = 0.3668 0.6622 1.2575
A= 1 0.7414 1.2575 3.0943
0 0 0
0.0378 —0.0011
:=10"3 x | —0.0011 0.0017
—-0.0587 0.0032
Test #T:
0.2148 0.3222 0.6335
Qs = 0.3222 0.5948 1.1013
8= 1 0.6335 1.1013 2.6399
0 0 0
0.0321 —0.0007
Q:=10"3x | -0.0007 0.0015
—-0.0497 0.0025
Test #s8:

Q=

0.1937 0.2847 0.5586

0.2847 0.5176 0.9500

0.5586 0.9500 2.2637
0 0 0
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0
0
0

0.0006
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0.0005
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0.0940

0
0
0
0.00

-0.0497
0.0025
0.0795
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0.0274 —0.0005 —0.0422
Q:=10"%x| —0.0005 0.0013 0.0019
—-0.0422 0.0019 0.0672

Test #9:

0.1819 0.2760 0.5146 O

Qs = 0.2760 0.5133 0.8973 0

A= | 05146 0.8973 2.0277 0
0 0 0  0.0004
0.0242 0.0001 —0.0369
Q:=10"3x | 00001 0.0013 0.0012
—0.0369 0.0012 0.0583

Test #10:

0.1677 0.2527 0.4646 0
_ | 0.2527 0.4661 0.8026 0

Q5= 04646 08026 1.7875 0
0 0 0  0.0004

0.0214 0.0002 —0.0324
Q:=10"3x | 0.0002 0.0012 0.0008
—-0.0324 0.0008 0.0510

E.2 Structural Mismatch Absent

This section displays the results for the case study comparing the performance of two RTO
systems with no structural mismatch, implemented for the Williams-Otto plant.

E.2.1 Raw Data

The optimization data concerning the case study for the Williams-Otto plant without struc-
tural mismatch, is provided in Tables E.5, E.6 and E.7. Table E.5 lists the extended design
cost measures for both systems, and Tables E.6 and E.7 display the profit profiles of the
ten runs for the RTO systems with and without DOE, respectively. Note that the italic
terms in Table E.7 indicate the first term in that run, which was assumed to have reached
the region around the expected optimum. This value was selected by viewing a plot of the
profit profile and estimating the expected optimum.

E.2.2 Hypothesis Tests

This section will discuss the results of the calculations performed to determine if the RTO
system using DOE out-performs the original RTO system for the Williams-Otto plant.
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Table E.5: Extended Design Costs for RTO - No Mismatch

Extended Design Cost
Run # | RTO without DOE | RTO with DOE
(% Return) (% Return)
1 105.0888 67.8204
2 88.6466 79.3848
3 84.8074 74.6597
4 62.9347 71.0308
5 56.3707 65.7256
6 94.6863 61.9127
7 90.6579 87.9312
8 83.2549 69.8291
9 99.482 73.0171
10 135.6754 76.8301
Table E.6: Profit Profiles for RTO With DOE - No Mismatch
RTO % Return for Run #
Intervals 1 2 3 4 5 6 7 8 9 10
1 62.25 | 62.40 | 62.11 | 62.11 | 62.40 | 62.11 | 57.46 | 62.11 | 62.11 | 62.11

2 62.41 | 60.05 | 61.33 | 63.06 | 63.17 | 62.88 | 60.80 | 63.17 | 63.14 | 62.98
3 63.25 | 61.93 | 60.23 | 57.33 | 63.35 | 63.02 | 61.73 | 53.79 | 58.79 | 61.21
4 62.83 | 62.60 | 61.56 | 63.48 | 64.19 | 63.39 | 62.53 | 62.80 | 64.33 | 62.20
5 60.69 | 61.35 | 63.28 | 63.78 | 59.61 | 63.36 | 63.43 | 62.79 | 63.85 | 63.85
6 60.22 | 62.81 | 62.12 | 63.17 | 58.98 | 59.80 | 60.91 | 60.09 | 60.95 | 63.26
7 63.67 | 62.32 | 62.71 | 63.52 | 62.20 | 61.18 | 59.80 | 63.87 | 59.40 | 62.79
8 64.11 | 63.56 | 61.76 | 60.14 | 59.31 | 62.56 | 59.52 | 63.55 | 59.42 | 62.28
9 59.48 | 61.62 | 63.58 | 61.16 | 59.50 | 62.30 | 59.49 | 59.59 | 59.57 | 60.15
10 59.98 | 59.81 | 63.60 | 60.65 | 63.42 | 63.81 | 59.30 | 59.75 | 59.91 | 58.66
11 61.51 | 58.97 | 62.19 { 60.92 | 63.42 | 62.33 | 62.82 | 59.72 | 63.36 | 60.49
12 59.70 | 58.98 | 59.34 | 63.51 | 63.73 | 61.16 | 58.20 | 60.71 | 64.24 | 59.71
13 60.35 | 59.92 | 59.32 | 62.58 | 64.07 | 63.27 | 61.64 | 59.55 | 59.80 | 58.90
14 59.88 | 63.06 | 64.30 | 64.22 | 59.74 | 63.34 | 59.93 | 59.98 | 59.90 | 60.83
15 60.35 | 59.66 | 62.13 | 60.09 | 59.74 | 60.17 | 61.48 | 63.82 | 59.87 | 59.58
16 62.81 | 60.16 | 59.78 | 60.02 | 61.17 | 60.03 | 58.15 | 62.62 | 59.71 | 59.59
17 62.72 | 60.18 | 58.99 | 64.30 | 59.67 | 59.77 | 57.63 | 62.63 | 59.62 | 62.93
18 63.49 | 59.85 | 58.77 | 64.02 | 59.71 | 63.59 | 61.39 { 62.98 | 59.90 | 61.90
19 63.53 | 63.80 | 59.43 | 60.18 | 60.11 | 63.52 | 61.96 | 63.39 | 63.86 | 61.65
20 60.20 | 63.97 | 55.35 | 63.03 | 63.54 | 62.83 | 60.99 | 63.34 | 61.93 | 63.80
21 59.38 | 63.43 | 61.96 | 57.61 | 61.98 | 63.19 | 62.80 | 59.37 | 63.61 | 63.94
22 59.50 | 59.86 | 62.18 | 61.16 | 60.99 | 59.84 | 61.96 | 59.54 | 63.56 | 59.41
23 63.96 | 59.49 | 61.84 | 60.48 | 62.90 | 59.78 | 63.52 | 62.16 | 63.31 | 59.89
24 60.10 | 59.65 | 63.00 | 56.69 | 63.07 | 59.76 | 62.96 | 63.93 | 61.88 | 59.86
25 64.20 | 59.61 | 62.92 | 60.19 | 62.74 | 59.50 | 60.10 | 63.36 | 59.41 | 59.64

Please see Appendiz D for a description of the statistical calculations. The following statis-
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T: it - ismatch

RTO % Return for Run #

Intvl. 1 2 3 4 5 6 7 8 9 10
1 53.69 | 53.69 | 53.69 | 53.69 | 53.69 | 53.69 | 53.69 | 53.69 | 53.69 | 53.69
2 53.69 | 56.47 | 53.69 | 62.69 | 57.42 | 53.04 | 58.83 | 61.27 | 57.55 | 53.69
3 53.69 | 60.35 | 60.82 | 62.69 | 60.40 | 53.04 | 58.83 | 61.27 | 62.02 | 53.69
4 59.82 | 61.83 | 59.54 | 62.69 | 60.40 | 53.04 | 64.32 | 61.27 | 62.02 | 53.69
5 63.00 | 61.83 | 59.54 | 62.69 | 64.09 | 53.04 | 63.13 | 60.79 | 60.47 | 61.92
6 61.28 | 61.83 | 64.34 | 6433 | 63.71 | 61.15 | 63.13 | 60.25 | 61.33 | 62.24
7 61.28 | 61.83 | 64.34 | 64.33 | 63.71 | 63.05 | 60.43 | 63.80 | 61.33 | 62.24
8 61.28 | 61.83 | 64.33 | 64.33 | 63.71 | 63.05 | 60.43 | 63.80 | 61.33 | 58.13
9 61.73 | 61.83 | 64.33 | 64.33 | 62.30 | 63.05 | 44.25 | 63.80 | 62.37 | 58.13
10 61.73 | 61.93 | 59.79 | 62.82 | 63.87 | 63.05 | 59.66 | 58.94 | 62.37 | 61.34
11 61.73 | 60.69 | 59.79 | 62.66 | 62.42 | 63.05 | 59.66 | 58.94 | 62.79 | 61.34
12 61.73 | 60.69 | 64.19 | 62.66 | 62.42 | 63.05 | 62.29 | 61.89 | 44.68 | 61.34
13 61.73 | 63.34 | 61.47 | 62.66 | 62.42 | 63.05 | 62.29 | 60.89 | 44.68 | 61.76
14 61.73 | 63.34 | 61.47 | 62.66 | 56.87 | 63.05 | 62.24 | 60.89 | 56.95 | 61.76
15 62.16 | 59.19 | 61.47 | 63.23 | 62.84 | 64.00 | 64.24 | 60.72 | 56.95 | 61.76
16 62.16 | 63.48 | 62.06 | 59.43 | 62.84 | 64.00 | 64.24 | 58.06 | 61.57 | 50.87
17 59.73 | 63.48 | 62.06 | 57.99 | 64.14 | 57.57 | 64.24 | 63.49 | 64.31 | 57.94
18 59.73 | 62.70 | 59.81 | 57.99 | 64.14 | 57.57 | 62.70 | 63.49 | 64.31 | 56.92
19 59.73 | 62.32 | 59.81 | 57.99 | 64.14 | 62.81 | 63.83 | 63.49 | 64.31 | 60.22
20 59.73 | 62.01 | 59.81 | 63.90 | 64.14 | 62.81 | 62.42 | 63.49 | 64.31 | 60.22
21 59.72 | 56.43 | 59.81 | 63.90 | 60.30 | 62.81 | 62.42 | 61.57 | 64.31 | 60.22
22 59.72 | 59.68 | 64.32 | 63.90 | 60.35 | 62.81 | 62.49 | 58.38 | 64.31 | 58.25
23 64.27 | 59.68 | 62.90 | 60.65 | 63.92 | 62.81 | 57.84 | 58.38 | 63.67 | 60.46
24 58.84 | 58.02 { 62.90 | 60.65 | 63.92 | 63.26 | 60.71 | 61.32 | 63.67 | 60.46
25 59.44 | 61.28 | 62.90 | 60.65 | 63.92 | 61.88 | 57.46 | 61.32 | 63.67 | 60.46

tics were used,
F1_0.05,240220 = 0.8040
Foos,240200 = 1.2438
F; 1-0.059,9 = 0.3146
Foose9 = 3.1789
to.os,1 = 1.7959

Table E.8 lists the sample variances of the % Return around the expected optimum
for all the runs performed, and the pooled variance of the set of ten runs for each RTO
system. Similar to the case study in Chapter 3, it is assumed that the population variance
among the ten runs for each RTO system are equal and can be pooled together according
to Equation (D.5).

Since s? < s? the one-sided hypothesis test defined in Problem (3.13), with a significance
of 5%, was used to test the possible equality of the population variances. The computed
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Table E.8: Variance Around Expected Optimum

Run Variance
RTO with DOE | RTO without DOE
(% Return) (% Return)

1 2.97 1.86

2 2.79 3.25

3 4.05 3.28

4 4.81 4.64

5 3.20 3.34

6 2.44 10.36

7 3.24 18.53

8 5.39 3.77

9 3.73 31.39

10 2.83 8.24
Pooled 3.55 8.94

value of the statistic is,

2
s

s—%Fo.os,z‘to,zzo =049
2

Since this value is less than 1, the null hypothesis is rejected and it can be stated that the
variance is reduced with a DOE component added to the RTO system.

The next set of tests evaluates whether the RTO system with DOE, produces a signif-
icantly lower extended design cost measure. It must first be determined if the variance of
the two data sets may be considered equal to determine the statistic that should be used
to compare the means. Table E.5 lists the extended design costs (EDC) over ten runs for
each RTO system. Table E.9 presents the results of the one-sided hypothesis test with 5%

significance.

Table E.9: Sample Standard Deviation of EDC

Standard Deviation | Upper Stat.
of EDC
RTO with DOE 7.43 0.3623
RTO without DOE 22.02

Since the upper statistic is less than one, it can be stated using a one-sided hypothesis
test of 5% significance, that the variances of the two EDC data sets are different. Therefore
the statistic defined in Inequality (D.9) must be used to evaluate the means of the data

sets.
With the variances of the two data sets considered not equal, Equation (D.10) is used

to solve for the degrees of freedom to be used in the hypothesis test,

v=11.48
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Since T; < T, the one-sided hypothesis test defined in Problem (3.15), with a significance
of 5%, was used to test the possible equality of the population means. The computed value

5%
jl’i2+ta'v —_ 4+ —==-41
ni ng

Since this value is less than 0, the null hypothesis is rejected and it can be stated that the
extended design cost is reduced with a DOE component added to the RTO system.

of the statistic is,

E.3 Parametric Mismatch

This section displays the results for the case study comparing the performance of two RTO
systems when parametric mismatch exists in the activation energy constants, implemented
for the Williams-Otto plant.

E.3.1 Raw Data

The optimization data concerning the case study for the Williams-Otto plant with para-
metric mismatch, is provided in Tables E.10, E.11 and E.12. Table E.10 lists the extended
design cost measures for both systems, and Tables E.11 and E.12 display the profit profiles
of the ten runs for the RTO systems with and without DOE, respectively. Please note that
it is assumed that the RTO system has approached the expected value of the optimum by
the first interval, in all the recorded runs.

Table E.10: Extended Design Costs for RTO: Mismatch Case Study

Extended Design Cost
Run # | RTO without DOE | RTO with DOE
(% Return) (% Return)
1 167.2492 117.5420
2 147.5965 123.9808
3 184.0046 121.4065
4 154.2578 131.2441
5 119.3818 106.8801
6 154.5645 114.8462
7 106.6910 114.7603
8 137.3302 126.7799
9 174.4018 109.6003
10 129.1460 120.3422

E.3.2 Hypothesis Tests

This section will discuss the results of the calculations performed to compare the perfor-
mances of two RTO systems for the Williams-Otto plant, when parametric mismatch exists.
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Table E.11: Profit Profiles for RTO With DOE: Mismatch Case Study
RTO % Return for Run #
Intervals 1 2 3 4 5 6 7 8 9 10
1 59.18 | 59.18 | 59.18 | 59.18 | 59.18 | 59.08 | 59.08 | 59.18 | 59.18 { 59.18
2 56.16 | 60.93 | 60.50 | 59.78 | 60.75 | 60.32 | 60.83 | 59.93 | 59.76 | 56.77
3 58.70 | 59.15 | 56.92 | 59.34 | 61.22 | 59.32 | 58.58 | 52.97 | 59.54 | 56.23
4 52.25 | 60.33 | 58.48 | 58.18 | 59.86 | 59.54 | 60.14 | 57.39 | 59.86 | 58.39
5 57.16 | 57.82 | 59.66 | 61.19 | 60.47 | 58.06 | 62.07 | 60.35 | 60.11 | 59.90
6
7
8
9

59.75 | 59.20 | 60.31 | 60.80 | 59.82 | 58.88 | 60.92 | 58.95 | 59.76 | 57.95
61.28 | 59.40 | 60.79 | 61.77 | 61.80 | 63.50 | 60.11 | 59.94 | 62.91 | 60.23
61.46 | 60.16 | 57.48 | 57.66 | 61.79 | 59.54 | 59.43 | 60.03 | 59.67 | 59.96
60.06 | 59.31 | 58.94 | 59.13 | 60.84 | 58.87 | 60.04 | 60.79 | 60.80 | 61.60
10 59.36 | 58.11 | 59.46 | 59.17 | 60.38 | 59.90 | 58.72 | 59.51 | 57.31 | 60.73
11 60.30 | 59.56 | 59.57 | 61.23 | 61.28 | 60.32 | 58.88 | 59.64 | 59.05 | 60.22
12 59.47 | 59.32 | 59.21 | 60.06 | 59.91 | 60.32 | 58.89 | 58.99 | 59.01 | 60.67
13 58.99 | 58.08 | 58.61 | 61.08 | 60.29 | 60.32 | 59.05 | 59.17 | 58.98 | 61.09
14 60.12 | 58.08 | 60.55 | 59.62 | 59.14 | 60.50 | 59.80 | 59.06 | 60.55 | 60.77
15 59.77 | 59.04 | 61.08 | 58.89 | 59.77 | 59.55 | 61.12 | 58.91 | 63.29 | 59.47
16 61.05 | 58.90 | 60.66 | 59.39 | 60.47 | 59.11 | 57.91 [ 59.31 | 61.19 | 60.23
17 61.05 | 59.06 | 59.96 | 59.58 | 60.38 | 59.16 { 59.37 | 62.07 | 61.31 | 59.70
18 60.50 | 58.91 | 60.06 | 59.87 | 59.89 | 60.19 | 58.23 | 59.71 | 61.50 | 61.20
19 58.53 | 58.08 | 60.90 | 60.72 | 59.42 | 59.12 | 59.10 | 58.68 | 59.71 | 58.75
20 58.88 | 59.10 | 59.16 | 59.77 | 60.96 | 59.68 | 59.59 | 58.49 | 60.26 | 58.70
21 61.25 | 63.43 | 58.21 | 58.62 | 58.86 | 60.00 | 59.96 | 60.42 | 58.59 | 59.61
22 61.24 | 61.59 | 58.21 | 57.77 | 58.61 | 60.15 | 60.39 | 59.99 | 58.88 | 59.58
23 60.41 | 59.95 | 58.82 | 55.33 | 58.61 | 60.85 | 59.45 | 59.89 | 59.81 | 58.58
24 60.41 | 58.81 | 61.36 | 55.07 | 58.80 | 58.38 | 61.67 | 59.13 | 58.97 | 59.22
25 63.10 | 58.96 | 58.95 | 53.98 | 59.04 | 58.91 | 61.33 | 59.17 | 58.82 | 59.34

Please see Appendiz D for a description of the statistical calculations. The following statis-

tics were used,

Fi_005,.240,2¢40 = 0.8083
Fo.05.240,240 = 1.2371
Fi_g0s99 = 0.3146
Fops99 = 3.1789
to.05,11 = 1.7959

Table E.13 lists the sample variances of the % Return around the expected optimum for
all the runs performed, and the pooled variance of the set of ten runs for each RTO system.
Similar to the previous case study, it is assumed that the population variance among the
ten runs for each RTO system are equal and can be pooled together according to Equation
(?7).

Since s? < s? the one-sided hypothesis test defined in Problem (3.13), with a significance
of 5%, was used to test the possible equality of the population variances. The computed
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Table E.12: Profit Profiles for RTO Without DOE: Mismatch Case Study

RTO % Return for Run #
Intervals 1 2 3 4 5 6 7 8 9 10

1 62.65 | 62.65 | 62.65 | 62.65 | 62.65 | 62.65 | 62.65 | 62.65 | 62.65 | 62.65
2 53.72 | 58.61 | 49.90 | 62.65 | 62.65 | 62.65 | 62.65 | 62.65 | 62.65 | 62.65
3 59.54 | 57.52 | 61.00 | 52.18 | 62.23 | 56.67 | 62.65 | 62.65 | 62.65 | 62.65
4 58.11 | 57.52 | 62.42 | 61.83 | 60.17 | 49.79 | 62.65 | 62.65 | 49.90 | 62.65
5 59.44 | 57.52 | 62.42 | 58.85 | 60.17 | 53.42 | 57.17 | 62.65 | 61.00 | 52.18
6 59.44 | 62.87 | 61.06 | 58.85 | 63.15 | 53.42 | 62.17 } 62.65 | 62.42 | 61.83
7 59.44 | 62.87 | 49.03 | 63.29 | 63.15 | 53.42 | 62.17 | 60.24 | 62.42 | 58.85
8 59.44 | 59.73 | 49.03 | 63.29 | 63.15 | 53.42 | 60.44 | 56.41 | 61.06 | 58.85
9 59.44 | 53.34 | 49.03 | 63.29 | 61.06 | 62.22 | 60.44 | 56.41 | 49.03 | 63.29
10 59.44 | 53.34 | 51.39 | 62.41 | 59.85 | 58.51 | 60.44 | 56.41 | 49.03 | 63.29
11 59.44 | 60.39 | 51.39 | 59.50 | 59.85 | 53.59 | 60.44 | 56.41 | 49.03 | 63.29
12 57.83 | 60.39 | 51.39 | 59.50 | 55.25 | 62.63 | 59.41 | 56.41 | 51.39 | 62.41
13 63.55 | 60.39 | 61.82 | 47.73 | 55.25 | 57.90 | 57.38 | 62.13 | 51.39 | 59.50
14 63.55 | 60.39 | 59.31 | 59.67 | 55.25 | 53.23 | 60.20 | 62.13 | 51.39 | 59.50
15 52.19 | 60.39 | 63.01 | 45.96 | 62.41 | 55.99 | 60.20 | 62.13 | 61.82 | 47.73
16 52.19 | 60.39 | 56.37 | 60.08 | 59.77 | 63.69 | 60.20 | 62.13 | 59.31 | 59.67
17 52.19 | 60.39 | 57.02 | 60.08 | 57.10 | 63.69 | 60.20 { 59.81 | 63.01 | 45.96
18 55.69 | 58.49 | 58.98 | 60.08 | 57.10 | 63.69 | 56.37 | 59.81 | 56.37 | 60.08
19 55.69 | 52.74 | 58.98 | 60.08 | 57.10 | 63.69 | 57.79 | 59.81 | 57.02 | 60.08
20 52.41 | 57.62 | 58.98 | 60.08 | 57.10 | 63.69 | 58.46 | 60.64 | 58.98 | 60.08
21 62.26 | 55.20 | 57.85 | 55.04 | 59.19 | 52.13 | 58.46 | 52.86 | 58.98 | 60.08
22 62.26 | 51.31 | 57.85 | 55.04 | 61.31 | 59.51 | 57.83 | 52.86 | 58.98 | 60.08
23 52.65 | 56.41 | 57.85 | 61.86 | 61.31 | 59.51 | 63.08 | 52.86 | 57.85 | 55.04
24 52.65 | 60.18 | 57.85 | 46.10 | 56.36 | 63.63 | 58.88 | 52.86 | 57.85 | 55.04
25 55.98 | 60.18 | 57.85 | 54.09 | 56.43 | 51.13 | 58.88 | 52.86 | 57.85 | 61.86

Table E.13: Variance Around Expected Optimum: Mismatch Case Study

Run Variance
RTO with DOE | RTO without DOE
(% Return) (% Return)

1 4.49 14.84

2 1.50 10.18

3 1.32 22.45

4 3.76 27.69

5 0.91 7.60

6 1.10 23.38

7 1.25 3.76

8 2.50 14.44

9 1.78 24.92

10 1.68 21.55
Pooled 2.03 17.08
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value of the statistic is,

2

5

3—2F0.05,24o.240 =0.15
2

Since this value is less than 1, the null hypothesis is rejected and it can be stated that the
variance is reduced with a DOE component added to the RTO system.

The next group of tests compares the mean of the extended design cost measure for the
two RTO systems. Similar to the last case study, it must first be determined if the variance
of the two data sets may be considered equal to determine the statistic that should be used
to compare the means. Table E.10 lists the EDC over ten runs for each RTO system. Table
E.14 presents the results of the one-sided hypothesis test with 5% significance.

Table E.14: Sample Standard Deviation of EDC: Mismatch Case Study

Standard Deviation | Upper Stat.
of EDC
RTO with DOE 7.56 0.30
RTO without DOE 24.58

Since the upper statistic is less than one, it can be stated using a one-sided hypothesis
test of 5% significance, that the variances of the two EDC data sets are different. Therefore
the statistic defined in Inequality (D.9) must be used to evaluate the means of the data
sets.

With the variances of the two data sets considered not equal, Equation (D.10) is used
to solve for the degrees of freedom to be used in the hypothesis test,

v=11.06

Since T, < Tp the one-sided hypothesis test defined in Problem (3.15), with a significance
of 5%, was used to test the possible equality of the population means. The computed value
of the statistic is,

s2 st
F) - Tp +tauy =+ =2 =-14.1
n na
Since this value is less than 0, the null hypothesis is rejected and it can be stated that the

extended design cost is reduced with a DOE component added to the RTO system.

123



