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Abstract

Recently, massive MIMO (multiple-input-multiple-output) systems, where the base

station (BS) is equipped with hundreds of small, low-cost, and low-power antennas,

have been proposed as one of the promising technologies for the next generation

cellular systems.

The thesis works on the performance analysis of single-cell multi-user massive

MIMO downlink. Perfect channel state information (CSI) is assumed at the BS and

maximum ratio transmission (MRT) precoding scheme is adopted. We first inves-

tigate the distribution of the interference power and derive its probability density

function (pdf) by central limit theory. After that, analytical results on the outage

probability and the sum-rate are derived. Different to existing work using the law

of large numbers to derive the asymptotic deterministic signal-to-interference-plus-

noise-ratio (SINR), the randomness of the interference in the SINR is kept intact

in our work, which allows the derivation of the outage probability. We further ex-

tend to networks with per-antenna power constraint. A modified MRT precoding

scheme is proposed and the performance of the modified scheme is analyzed. Our

work show that the modified MRT precoding can achieve lower outage probability

and higher sum-rate than MRT precoding, even with more strict power constraint.
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Chapter 1

Introduction

Wireless communications is undoubtedly one of the most important technologies in

the world for the past decades. Its great success is not only attributed to the out-

standing achievements from a scientific point of view, but also to the great impact

on the whole human society. People’s lifestyle has been changed hugely by wireless

communications.

To the history of wireless communications, it can date back to 150 years ago.

In 1865, Maxwell proposed the prediction of the existence of the electromagnetic

waves with the publication of “A Dynamical Theory of the Electromagnetic Field"

[1]. In 1888, Hertz proved Maxwell’s electromagnetic theory via experiments. Then

the basic understandings of the electromagnetic wave transmissions had been estab-

lished. In 1898, Marconi made successful demonstrations of wireless transmission

in public. He is widely known as the inventor of wireless communications and re-

ceived the Nobel Prize for his great contributions of wireless telegraphy in 1909.

Since then, wireless communications drew widespread interests over the world. In

this chapter, a brief introduction of wireless systems is given.

1.1 Fading in Wireless Channel

In wireless communications, the fading effect in wireless channel is always a great

challenge. Fading can be categorized as small-scale fading and large-scale fading.
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Fig. 1.1. Multipath propagation.
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Fig. 1.2. The effect of multipath propagation on received signal.

• Small-Scale Fading

In addition to the direct wireless connection from the transmitter to the receiv-

er, i.e., the line of sight (LOS), signals can also travel by a number of different

propagation paths (Fig. 1.1). Multipath propagation occurs when signals are

reflected and diffracted by obstacles, such as buildings, mountains, windows,

etc.. Since different signal paths have different phase shifts, signal paths can

be combined constructively or destructively at the receiver (Fig. 1.2). The

effect of multipath propagation is called small-scale fading.

The motion of the terminal causes doppler shift. Different signal paths have

different doppler shifts and then the frequencies of the signal waves change

differently. As a result, the overall wireless channel varies in time. The co-

herence time Tc is defined as the maximum time interval over which the chan-
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nel response is invariant. Tc is inversely proportional to the doppler spread

which is the difference between the maximum doppler shift and the mini-

mum doppler shift. A fast fading channel is defined when the coherence time

is much shorter than a symbol transmit duration and a slow fading channel is

defined when the coherence time is much longer.

A wireless channel also varies in frequency due to the time delay of different

paths. The coherence frequency Bc is defined as the range of frequencies over

which two frequency components experience correlated magnitude of fading.

Bc is inversely proportional to the time delay spread which is the propagation

time difference between the longest path and the shortest path. A flat fading

channel is defined when Bc is much larger than the signal bandwidth and a

frequency-selective fading channel is defined when Bc is much smaller than

the signal bandwidth.

Rayleigh fading and Rician fading are two common flat fading channel mod-

els. Rayleigh fading is more appropriate to urban areas where LOS propa-

gation is not available. With Rayleigh fading model, the channel response is

a complex variable with circularly symmetric complex Gaussian distribution

whose mean is 0 and variance is σ2, denoted as CN (0, σ2). Its envelop has a

Rayleigh distribution with the following probability density function (pdf)

p(r) =
r

σ2
exp

(−r2

2σ2

)
.

Rician fading channel model is often used when there is a dominant LOS

signal. Its envelop has a Rician distribution with the following pdf

p(r) =
r

σ2
exp

(
−r2 + A2

2σ2

)
I0

(
Ar

σ2

)
,

where A2 is the power of the LOS component. 2σ2 is the average power of

the non-LOS multipath components and I0 is the modified Bessel function of

the first kind and zero-order.
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• Large-Scale Fading

Another type of fading is large-scale fading resulting from pass loss and shad-

owing [2]. Pass loss is the power decay of a radio signal propagating in the

environment. The effect of shadowing occurs when the receiver is blocked by

tall buildings and then the radio wave is attenuated greatly by going through

or around the obstacles (Fig. 1.3).

Shadowing

Fig. 1.3. Shadowing effect.

To combat channel fading and achieve high performance in wireless communi-

cations, many techniques have been proposed such as diversity techniques and mul-

tiplexing techniques [3], [4]. For diversity techniques, a transmitter sends multiple

copies of same data via different independent channels. Link reliability is improved

by diversity techniques. Multiplexing techniques can improve the data rate of the

system by transmitting different data streams across different independent channels.

1.2 Evolution of Cellular Systems

There are many types of services in wireless communications, such as paging sys-

tems, broadcasting, wireless local area network (WLAN), cellular systems, satellite

communications, etc.. Cellular systems is a very important form of wireless com-

munications. Two-way voice and data communications are supported by cellular

systems with regional, national, or international coverage.
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Fig. 1.4. Cellular systems.

In a cellular system, the coverage area is divided into several regular shaped

non-overlapping cell such as hexagonal. Each cell is assigned with a base station

(BS) which serves the users in the cell (Fig. 1.4). Since the transmit signal power

greatly attenuates over some distance, the same set of frequencies can be reused

in cells which are far from each other. By the frequency reuse, limited frequency

bandwidth is efficiently utilized.

The first generation (1G) cellular systems were introduced in the 1980s which

used analog signal radio for communications. The Advance Mobile Phone Service

(AMPS) was a 1G system mainly used in North America operating in the 50MHz

frequency bands. The spectrum were divided into two parts, one for uplink commu-

nications (from users to the BS) and the other for downlink communications (from

the BS to users). Poor speech quality was experienced due to the lack of error cor-

rection coding in analog communications. The threat of eavesdropping was another

problem in 1G systems since little encryption techniques could be implemented on

the analog signals.

The second generation (2G) cellular systems, moving from analog to digital,

were commercially lunched in the 1990s. Global System for Mobile Communica-

tion (GSM) and Interim Standard 95 (IS-95) were the popular 2G standards devel-

oped by European Telecommunications Standards Institute (ETSI) and Qualcomm

respectively. Especially, GSM [5], [6] operating on the 900MHz or the 1800MHz
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bands , was widely used over 219 countries and territories. Time division multi-

ple access (TDMA) technique was utilized for GSM standard, which allows several

users to communicate with the BS in the same carrier frequency in different time

slots. Evolved 2G systems were also proposed to support data communications oth-

er than the voice services [7]. In 1997, the data transmission technology of General

Packet Radio Service (GPRS) was integrated into GSM systems, which boosted the

date rate up to 114Kbps (kilobit per second). The evolved GSM systems with GPRS

was described as 2.5G systems. In 2003, Enhanced Data Rates for GSM Evolution

(EDGE) technology was introduced to further improve the date rate up to 384Kbps.

And the GSM systems with EDGE was described as 2.75G systems.

As smartphones become widespread and take large worldwide market share of

mobile phones, cellular systems needed to be evolved to satisfy huge client demands

of data rate both in business and entertainment, such as video calls, games, down-

loads, mobile TV, etc. Therefore, the third generation (3G) cellular systems, pro-

viding much higher data rates, were introduced and widely used in the 2000s. All

3G standards were required to meet the International-Mobile-Telecommunication-

2000 (IMT-2000) standard which was established by the International Telecommu-

nication Union (ITU). Universal Mobile Telecommunication System (UMTS) and

Code Division Multiple Access 2000 (CDMA2000) were the common 3G system-

s developed by Third Generation Partnership Project (3GPP) and 3GPP2 (Third

Generation Partnership Project 2) respectively. UMTS was based on the GSM sys-

tem, while CDMA2000 was backward-compatible with 2G IS-95 standard. Most

of the UMTS systems in the world adopted Wideband Code Division Multiple Ac-

cess (W-CDMA) protocols as air interface standard. High Speed Packet Access

(HSPA) was an protocol update to UTMS system. HSPA can provide peak data

rates of 14.4Mbps (megabit per second) in the downlink and 5.76Mbps in the up-

link. The newest evolution of HSPA, Advanced Evolved High Speed Packet Access

(Advanced HSPA+), can reach data rate of 84.4Mbps in the downlink and 22 Mbps

in the uplink.

In 2008, ITU specified the set of requirements for 4G cellular systems called

6



IMT-Advanced standard. According to the specifications of IMT-Advanced, 4G

systems can provide data rates of 100Mbps for users at high mobility (e.g. cars,

trains, etc.) and 1Gbps (gigabit per second) for low mobility communications. T-

wo 4G systems were commercially launched: Mobile Worldwide Interoperability

for Microwave Access (Mobile WiMAX) system [8], [9] and Long Term Evolu-

tion (LTE) system [10]. Although the initial release of these two standards did not

fully comply with IMT-Advanced standard, they were still branded 4G by the ser-

vice providers. The second versions of mobile WiMAX and LTE, mobile WiMAX

Release 2 (also known as 802.16m) and LTE-Advanced respectively, were standard-

ized in 2011, promising the data rate in the order of 1Gbps. Instead of the CDMA

technique used in 3G systems, Orthogonal Frequency-Division Multiple Access

(OFDMA) is utilized for 4G systems. Another important concept introduced in 4G

systems is Multiple-Input Multiple-Output (MIMO) systems, where the BSs and the

terminals are equipped with multiple antennas. Due to the extra spatial resources

provided by MIMO systems, the link reliability can greatly increase as well as the

data rate and power efficiency.

1.3 Next Generation Cellular Systems

A new generation of cellular systems came out about every 10 years since the 1G

cellular systems. As 4G systems were commercially deployed in the early 2010s,

researchers have started exploring the fifth generation (5G) cellular systems. 5G

systems aim to meet the demands of 2020 and beyond.

Requirements for 5G have been discussed by telecommunication companies and

research groups. Among the requirements, demands on the number of connections,

latency and throughput are mostly mentioned.

• Number of connections

Although 4G systems have been able to support thousands of connections

in a cell, it will not satisfy the connection needs predicted for 2020 due to

the huge increase in the popularity of wireless devices, such as smartphones,

7



tablets, wearable devices, etc.. Therefore, a million connections per square

kilometers are expected in 5G. It is envisioned that 5G will provide a fully

mobile and connected society [11].

• Latency

Currently 4G systems have achieved 50ms (millisecond) latency which is a

half compared to 3G systems. However, it will not be low enough for future

remote control applications such as industrial automation, remote surgery,

self-driving car, etc.. Less than 1ms latency is required for 5G to support the

services in need of ultra-low latency.

• Throughput

Lots of new services and new applications rely on high data-rate transmis-

sions, such as 4K video services, virtual reality, cloud storage, etc.. Espe-

cially for virtual reality technologies, the throughput is required to be at least

300Mbps which is ten times higher than high-definition (HD) video services.

Based on current growth trend, researchers have predicted a 1000-fold in-

crease in data-rate demand by 2020. In 5G, a 10Gbps throughput must be

achieved to satisfy such high throughput requirement.

To enable the applications and meet the specifications mentioned above, novel

and revolutionary wireless technologies are required. Massive MIMO [12], [13]

is one of the most potential technologies for 5G. In massive MIMO systems, the

BS is envisioned to be equipped with a very large number of antennas (e.g., hun-

dreds or thousands), while MIMO in 4G only allows 8 antennas at the BS. Huge

improvements on the throughput, reliability and energy efficiency can be achieved

in massive MIMO systems due to the extra spatial resources provided by the large-

scale antenna array. In Section 1.6, more introduction on massive MIMO will be

provided. Other promising techniques in 5G developments are millimeter wave

(mmWave) technology [14]–[16], device-centric architectures of cellular systems

[17], etc..

8
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Fig. 1.5. A SU-MIMO system with M transmit antennas and N receive antennas.

1.4 SU-MIMO Systems

MIMO technologies, where the transmitter and the receiver are equipped with mul-

tiple antennas, has been applied into 4G. By using the extra spatial resources pro-

vided, MIMO systems can achieve great performance in data rate and link reliability

without additional cost of bandwidth, transmission time, or power [18]–[21].

MIMO systems can be categorized as single-user MIMO (SU-MIMO) and multi-

user MIMO (MU-MIMO). For SU-MIMO systems [22], a single transmitter sends

information to a single receiver, as shown in Fig. 1.5. We assume that there are M

antennas at the transmitter and N antennas at the receiver. The data intended for

the receiver are processed and transformed into the transmit signals to be sent from

M BS antennas, which can be mathematically described as an M × 1 signal vector

s. If the total average transmit signal power is constrained to be a constant Pt, we

have

E[||s||2] = Pt,

where ||·|| is the norm operator. The MIMO channel can be mathematically denoted

as an N ×M matrix H, where its (i, j)-th entry is the complex channel value from

the i-th transmit antenna to the j-th receive antenna. The received signal vector x

9



at the receiver can be expressed as

x = Hs+ n, (1.1)

where n is the N × 1 noise vector at the receiver whose entries are independent and

identically distributed (i.i.d.) CN (0, 1) random variables.

When Rayleigh flat fading channels are assumed and the receiver has the knowl-

edge of channel state information (CSI), it has been shown [20] that the capacity

of SU-MIMO systems scales linearly with the minimum of the number of transmit

antennas and the number of receive antennas, i.e., min(M,N).

Multiple-input single-output (MISO) systems is a special case for SU-MIMO

systems where the receiver is equipped with one single antenna, i.e., N = 1. Then

the vector x and the vector n in (1.1) reduce to complex values (x and n). The

channel matrix H reduces to a 1×M vector h. The received signal at the receiver

in MISO systems can be represented as

x = hs+ n. (1.2)

To measure the performance of the transmission, an important criterion is the signal-

to-noise-ratio (SNR), defined as the signal power divided by the noise variance. In

our model, since the noise variance is normalized, we have

SNR = ||hs||2.

The achievable rate for the SU-MISO system is given by

R = log2(1 + SNR) = log2(1 + ||hs||2).

10



.

.

.

.

.

.

1

2

K

Antenna 1

Antenna 2

Antenna M

User 1

User 2

User K

BS

Fig. 1.6. MU-MIMO downlink with M BS antennas and K users.

1.5 MU-MIMO systems

For MU-MIMO systems [23]–[25], one multiple-antenna BS serves multiple users

simultaneously. As shown in Fig. 1.6, the BS equipped with M antennas serves K

single-antenna users. The K user data signals are processed and transformed into

an M × 1 signal vector s which is to be transmitted from the M BS antennas. s

contains the information for all K users. Define Pt as the average total transmit

power, then we have

E[||s||2] = Pt.

The wireless channels from the BS to the K users can be mathematically described

as a K ×M matrix H, where its (i, j)-th entry is the complex channel value from

the i-th BS antenna to the j-th user.

Denote the received signal at User k by xk and the noise signal at User k by

nk. The channel vector from the BS to User k is defined as hk and then H can be

11



written as

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

h1

h2

...

hK

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The received signal at User k, xk, is given by

xk = hks+ nk. (1.3)

Define x as the K × 1 received signal vector for all K users, then we have

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

...

xK

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Based on (1.3), the K × 1 received signal vector x is given by

x = Hs+ n (1.4)

where n is the noise signal vector and its n-th entry is nk. It was proved in [20]

that the sum capacity of MU-MIMO system grows linearly with the minimum of

the number of BS antennas and the number of users, i.e., min(M,K).

Equation (1.3) shows that the transmission from the BS to User k in MU-MIMO

has a similar structure to the MISO transmission. However, there is a fundamental

difference between the two systems. The signal vector s in MU-MIMO contains

the information for all K users, while the signal vector s in MISO systems is for

a single user. Then in addition to the desired signal and noise, each user in MU-

MIMO systems also receives inter-user interference (i.e., signals intended for other

users) which attenuates the performance of its own communication.

To improve the system performance and reduce user-interference effect, precod-

12
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Fig. 1.7. MU-MIMO downlink with precoding.

ing can be used at the BS for the downlink transmission when the CSI is available

at the transmit side. Precoding is a signal processing technique which utilizes the

CSI to process and transform the data signals (intended for the users) into signals

to be sent by the multiple BS antennas (Fig. 1.7). Precoding can be categorized

as non-linear precoding and linear precoding [26]. Although non-linear precoding,

such as dirty paper coding (DPC), can achieve channel capacity, its high complex-

ity is a great challenge in practical applications. Here we discuss linear precoding

schemes which can achieve reasonable performance with manageable complexity.

Define q as the K × 1 data signal vector, where the k-th entry qk is the signal to

be transmitted to User k. Assume that all entries of q are independent of each other

and normalized to 1, i.e., E[|qk|2] = 1. Linear precoding can be represented by an

M ×K matrix, denoted as W. Via multiplication by W, the input signal vector q

is transformed into the M × 1 precoded signal vector s, shown as

s =
√
pWq, (1.5)

where p is a coefficient for the average transmit power constraint. Let Pt be the

average transmit power, from (1.5) we have

pE[||Wq||2] = Pt. (1.6)
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Since each entry of q is normalized and independent, we have

E[qqH ] = IK

where IK is the K ×K identity matrix. Then the coefficient p can be calculated to

be

p =
Pt

E[||Wq||2] =
Pt

E[tr (WWH)]
(1.7)

The received signal vector x is given by

x =
√
pHWq+ n. (1.8)

The received signal at User k in (1.3) can be rewritten as

xk=
√
phkWq+ nk

=
√
phkwkqk +

√
p

K∑
j=1,j �=k

hkwjqj + nk, (1.9)

where wk is the kth column of the precoding matrix W. The first term in (1.9)

contains the desired signal. The second term shows the inter-user interference con-

taining the information for other users and the third term is the noise.

To measure the performance of the transmission with interference, an important

criterion is the signal-to-interference-plus-noise-ratio (SINR), defined as the desired

signal power divided by the sum of the interference power and the noise variance.

In our model, the SINR at User k can be calculated to be [27]

SINRk =
p|hkwk|2

1 + p
∑K

j=1,j �=k |hkwj|2
.

The achievable rate for User k is given by

Rk = log2(1 + SINRk),

14



and the sum-rate of the MU-MIMO downlink is

Rsum =
K∑
k=1

log2(1 + SINRk).

There are four common linear precoding schemes which are maximum-ratio-

transmit (MRT) precoding, zero-forcing (ZF) precoding, regularized zero-forcing

(RZF) precoding and wiener filter (WF) precoding. In what follows, these linear

precoding schemes are briefly introduced.

• MRT precoding

MRT precoding [26], [28], also called matched-filter (MF) precoding, maxi-

mizes the sum of K users’ SNRs. Each column vector wk (k = 1, 2, · · · , K)

of the MRT precoding matrix W is derived by maximizing the following sum

of the ratios [26], shown as

(w1,MRT,w2,MRT, · · · ,wK,MRT)= argmax
w1,w2,··· ,wK

K∑
k=1

E

[∣∣√pMRThkwkqk
∣∣2]

E[|nk|2]

s.t. E

[∣∣∣∣
∣∣∣∣√pMRT

K∑
k=1

wkqk

∣∣∣∣
∣∣∣∣
2
]
=Pt,

where (·)H denotes the Hermitian matrix. Since the noise power is normal-

ized to 1, i.e., E[|nk|2] = 1, MRT precoding equivalently maximizes the sum

of each user’s desired signal power under the transmit power constraint. Ac-

cording to the Cauchy-Schwarz inequality, the solution is given by

wk,MRT = hH
k

and then MRT precoding matrix W is given by

WMRT =
[
w1,MRT w2,MRT · · · wK,MRT

]
=

[
hH
1 hH

2 · · · hH
K

]
= HH
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From (1.7), the coefficient pMRT can be calculated to be

pMRT =
Pt

E[tr(HHH)]
.

The SINR for User k is

SINRk =
pMRT|hkh

H
k |2

1 + pMRT

∑K
j=1,j �=k

∣∣hkhH
j

∣∣2 .
While MRT precoding maximizes the desired signal power [26], the interfer-

ence elimination is not taken into consideration in the precoding design. As a

result, the performance of MRT precoding is largely limited by the effect of

interference, even for high SNR.

• ZF precoding and RZF precoding

ZF precoding [29] aims to completely remove the user-interference. If the

product of the channel matrix H and the precoding matrix W is an identity

matrix, shown as

HW = IK , (1.10)

the received signal vector x in (1.8) can be rewritten as

x =
√
pq+ n

and the received signal at User k is given by

xk =
√
pqk + nk.

It can be clearly observed that each user contains only the desired signal and

the noise signal while the user-interference is completely removed.
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ZF precoding matrix was derived [26] as

WZF = HH
(
HHH

)−1
, (1.11)

which is the pseudoinverse of the channel matrix H. From (1.7), the coeffi-

cient pZF is given by

pZF =
Pt

E [tr((HHH)−1)]
.

The SNR at User k with ZF precoding is

SNRk = pZF.

Thus the sum-rate with ZF precoding depends on the condition of the channel

inverse (HHH)−1. When H is poorly conditioned, the singular value spread

of H (i,e,. the ratio of the maximum singular value to the minimum singular

value of H) is large [26], [30]. It is shown in [31], [32] that the large singular

value spread leads to poor performance of ZF precoding.

RZF precoding, as a generalization of ZF precoding, is proposed to regularize

ZF precoding matrix. It is given by

WRZF = HH(HHH + cIK)
−1, (1.12)

where c > 0 is a constant.

By adding a scaled version of the identity matrix before inverting, RZF pre-

coding can improve the behavior of the inverse in (1.12) no matter how poor

the condition of H is. However, the interference increases as c increases. So

it is reasonable to use SINR as a metric to determine c. In [31], SINR is

achieved by dividing the average power of the desired signal by the average

power of the interference and the noise. As a result, the SINR at each user

is independent of user index k and c can be determined by maximizing the

17



SINR. [31] shows that the sum-rate of RZF precoding approaches the sum

capacity for low SNR with the assumption of Rayleigh fading channel and

K = M . For high SNR, the sum-rate of RZF precoding approaches the

sum-rate of ZF precoding.

• WF precoding

Mean square error (MSE) measures the difference between the received sig-

nal and the input signal. WF precoding [33], [34], also called minimum-

mean-square-error (MMSE) precoding, is designed by minimizing the MSE

under the transmit power constraint. The precoding design problem can be

represented as

(WWF, β) = argmin
W,β

E[||q− β−1x||2] s.t.: E[||√pWq||2] = Pt

where β is a coefficient of the SNR to be optimized for minimizing the MSE.

The solution is given by

WWF = β

(
HHH+

K

Pt

IM

)−1

HH .

and

β =

√√√√√ Pt

tr

((
HHH+ K

Pt
IM

)−2

HHH

) .

From (1.7), we have

pWF =
Pt

E[tr(WWFWH
WF)]

.

Since

E[tr(WWFW
H
WF)] = E

[
β2tr

((
HHH+

K

Pt

IM

)−2

HHH

)]
= Pt,
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the power constraint coefficient is calculated to be 1, i.e., pWF = 1.

It is observed that when K/Pt → 0, WF precoding converges to ZF precod-

ing. When K/Pt → ∞, WF precoding converges to MRT precoding.

It was shown in [26] that with Rayleigh flat fading channel, ZF precoding performs

better than MRT precoding at high SNR. It is because that the interference limits

the performance of MRT precoding. However, at low SNR, ZF precoding is out-

performed by MRT precoding. By minimizing the MSE, WF precoding makes a

balance between the desired signal power maximization in MRT precoding and the

interference elimination in ZF precoding.

1.6 Massive MIMO Systems

Massive MIMO [12], [13], [35], [36], also known as very large MIMO or large-

scale antenna systems, is one of the most promising technologies for the next gen-

eration cellular systems. It is envisioned [13] that in massive MIMO, the BS is

equipped with hundreds of antennas and serves tens of users at the same time. With

excess spatial resources, massive MIMO can achieve all the merits of MIMO sys-

tems with a much greater scale.

As the number of transmit antennas goes large, there are new phenomenons in

massive MIMO compared to conventional MIMO. Under independent Rayleigh flat

fading channel, the channel vectors from the BS to the individual users approach

orthogonal as the number of transmit antennas goes to infinity [37]. Recall that

the channel vector from the BS to User k is denoted by hk and the number of BS

antennas is denoted by M . We have

1

M
hkh

H
j

a.s.−−→ 0, as M → ∞.

where
a.s.−−→ denotes the almost surely convergence. Due to the asymptotic orthogo-

nality of the channel vectors, MRT precoding is expected to have good performance

in massive MIMO since the interference diminishes when the number of antennas
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approaches infinity and the desired signal power is still maximized. As mentioned

in Section 1.5, the BS needs the knowledge of the downlink CSI for precoding. The

downlink CSI acquisition method in massive MIMO is different to conventional

MIMO [13]. In LTE standard, downlink training is used for the CSI acquisition.

However, this method is not feasible for massive MIMO since the complexity of

downlink training scales with the number of BS antennas. In massive MIMO, time

division duplex (TDD) scheme can be used where the uplink transmission and the

downlink transmission use the same frequency band while they are separated by

different time slots. In TDD scheme, there is a possibility to obtain channel reci-

procity (i.e., the downlink channel matrix equals to the transpose of the uplink chan-

nel matrix). Then the downlink CSI can be achieved by uplink traning in which the

complexity of uplink training scales as the number of users. In massive MIMO, pi-

lot contamination [37]–[39] is a big issue when a multi-cell massive MIMO system

is investigated. Pilot contamination occurs when non-orthogonal pilots are used

during the uplink training. The channel estimate between the BS and the targeted

user is polluted by the channel information of the users who transmit the pilot that

is non-orthogonal to the pilot of the targeted user .

Massive MIMO is a new research field for wireless communications. The way

of analyzing and designing a massive MIMO system is very different to that in a

traditional MIMO system.

1.7 Thesis Contributions and Outline

As a new technology in wireless communications, performance analysis on mas-

sive MIMO is an essential research aspect. Due to the huge demands of data rate in

current and future wireless systems, most work on performance analysis focus on

the sum-rate performance of massive MIMO in different scenarios. By assuming

that both M and K go to infinity with a fixed ratio, existing work use the asymptot-

ic deterministic equivalence to achieve the deterministic SINR expression and then

the sum-rate result. But, in practical scenarios, the number of users K is limited.
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The number of BS antennas is large in massive MIMO, but limited as well. This

motivates us to analyze the sum-rate performance of massive MIMO within mod-

erate number of users and large but limited number of BS antennas. We derive the

sum-rate of massive MIMO by a different method to existing work, via analysis on

the statistical behavior of the SINR.

Moreover, other quality-of-service (QoS) measures, e.g. outage probability, are

also important for wireless systems. For massive MIMO, even though the theo-

retical system sum-rate is shown to increase with more users, if individual users

undergo high outage probabilities, the real throughput of the system can be low.

This motivates us to conduct an outage probability analysis of massive MIMO.

In addition, we also propose a modified MRT precoding scheme that works

when the system has per-antenna power constraint. Antenna transmit power is an

important factor for massive MIMO transceiver designs. For the system downlink,

while several precoding schemes have been widely used, such as MRT, ZF, and WF,

they consider a total average power constraint across all BS antennas. However, in

practical systems, each antenna at the BS is equipped with an individual power

amplifier with its limited effective operation interval. Thus each antenna has its

own power constraint. It is therefore more practical to consider the per-antenna

power constraint in addition to the total transmit power constraint in the precoding

design.

The details of the contributions of the thesis is explained as follows:

• In this thesis, we study the outage probability analysis for massive MIMO

systems. While the sum-rate is a fundamental performance measure for mas-

sive MIMO, other measures such as the outage probability is also importan-

t in evaluating the quality-of-service (QoS) experienced by the users. For

massive MIMO systems, even though the theoretical system sum-rate can in-

crease with more users, an excessively large number of users can result in

very low user SINR, which is undesirable for both carriers and customers.

• Existing work rely on the asymptotic deterministic equivalence to obtain an
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accurate deterministic SINR expression. However, the outage probability can

not be derived this way. In this thesis, we preserve the random nature of the

SINR and derive an analytical expression of outage probability.

• In the analysis, we derive the distribution of the interference power with the

help of central limit theory and existing result on the distribution of sum of

correlated Gamma variables. The pdf of the interference power is first shown

in an infinite summation form, and then simplified into a closed-form for

further analysis. The outage probability and the sum-rate for the massive

MIMO are derived from the interference analysis and observations on the

variances of different terms of the SINR.

• From the simulations, we observe that for a massive MIMO system with a

large but finite number of antennas, the outage probability increases rapidly

to 1 even for moderate number of users (e.g., 15 < K < 20). This shows that

outage probability analysis is necessary for massive MIMO performance.

• We propose a modified MRT precoding under per-antenna power constrain-

t. The outage probability and the sum-rate formulas are derived following

similar method proposed in the former work. From the simulations, it can be

shown that the modified MRT precoding can achieve a better performance in

both outage probability and sum-rate than the conventional MRT precoding,

even with more strict power constraint.

The remainder of the thesis is organized as follows. Chapter 2 analyzes the

outage probability and the sum-rate for massive MIMO downlink with MRT pre-

coding. Chapter 3 extends the work to systems with per-antenna power constraint

and a modified MRT precoding is proposed. Chapter 4 draws the conclusions and

discusses on the possible future work based on this thesis.
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Chapter 2

Performance Analysis of Massive

MIMO Under MRT Precoding

In this chapter, we work on the performance analysis of massive MIMO downlink

under MRT precoding. We first study the distribution of the interference power

of the multi-user communications and achieve its pdf in closed-form. By using

the pdf formula, the outage probability and the sum-rate of the system are both

investigated. Simulations show that for a massive MIMO system with large but

finite number of antennas, while the sum-rate of the system increases as the number

of users increases, the outage probability increases rapidly to 1 even for moderate

number of users. This reflects the importance of the outage probability analysis.

2.1 Background and Related Work

There are many papers on performance analysis of massive MIMO. In [12], the per-

formance is studied for both single-cell and multi-cell massive MIMO. Rayleigh flat

fading channel is assumed in single-cell massive MIMO donwlink while Rayleigh

fading and large-scale fading are both considered in multi-cell massive MIMO

dowlink. It is also assumed that the number of antennas M and the number of

single-antenna users K go to infinity, while the ratio of K/M is fixed. The SINR

with ZF precoding is investigated when perfect CSI is assumed at the BS. Both per-
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fect CSI and imperfect CSI are considered for the SINR with MRT precoding. By

the asymptotic deterministic equivalences, the deterministic SINR expressions are

derived. In [40], asymptotically tight approximations of the downlink achievable

rates with MRT precoding and RZF percoding are derived. A multi-cell system

with imperfect CSI, channels with correlation and path loss is considered. It is as-

sumed that the number of antennas goes to infinity while the number of users is

finite. Assuming that the users know the expectations of channel random variables,

an unique SINR expression based on the techniques developed in [39] is provid-

ed. As the number of antennas goes infinity, the asymptotic deterministic equations

are used to approximate the interference power of the SINR as deterministic and

then the analytical results of SINR and achievable rate are achieved. In [41], the

downlink sum-rate performance of ZF and RZF precoding in a single-cell network

is studied. Imperfect CSI and per-user channel correlation are considered. It is also

assumed that the number of single-antenna users and the number of BS antennas

approach infinity, but with a fixed ratio. In the derivation, a deterministic equivalent

of the empirical Stieltjes transform of large random matrices is used to achieve the

deterministic SINR approximations and the deterministic sum-rate approximations.

By maximizing the sum-rate, the regularization parameter for RZF is derived and

the optimal power allocation schemes for both ZF and RZF are derived. In [42],

a single-cell multi-user massive MIMO system under Rayleigh flat fading channel

is considered. Imperfect CSI at the BS is assumed. Through a Bayesian approach,

capacity lower bounds of MRT precoding and ZF precoding are derived. It is shown

in [42] that ZF precoding outperforms MRT precoding for high spectral-efficiency

and low energy-efficiency, while MRT precoding performs better than ZF precoding

at low spectral-efficiency and high energy-efficiency. In [43], a single-cell two-user

massive MIMO downlink is considered. It is assumed that the channels from the BS

to the users are correlated and the BS has perfect CSI. By the law of large numbers,

the Gram matrix associated with the channel matrix is approximated as determin-

istic. The analytical result of the sum-rate is derived using the deterministic Gram

matrix. The optimal user power allocation scheme is derived by maximizing the
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sum-rate. In [44], a point-to-point massive MIMO is considered. Three scenarios

are discussed as follows: 1) large number of transmit antennas M and moderate

number of receive antenna N ; 2) large N and moderate M ; 3) large M and large N

with fixed ratio of M/N . Rayleigh flat fading is considered. It is assumed that the

transmitter does not have the knowledge of channel information. By using central

limit theory, the distribution of the achievable rate is asymptotically approximated

as Gaussian. Then the outage probability is approximated using the Q-function.

2.2 System Model

We consider a single-cell multi-user massive MIMO system which has a BS and K

single-antenna users (Fig. 2.1). The BS is equipped with M antennas where M is

assumed to be very large (M � 1), e.g., a few hundreds [13], [37]. Rayleigh flat

fading channels are considered. Let H be the K × M channel matrix and hk is

the 1 × M channel vector from the BS antennas to the kth user. Entries of H are

distributed as i.i.d. CN (0, 1). We assume that the BS has perfect downlink CSI.

As mentioned in Section 1.6, this can be achieved when TDD scheme is used and

channel reciprocity holds. If the BS can accurately estimate the uplink channel by

uplink training, the downlink channel can be achieved using channel reciprocity.

...

User 1

User 2

User 3

User 4

User 5

User K

......

...
...
...

Fig. 2.1. Single-cell massive MIMO with Rayleigh fading.
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Let q be the K×1 symbole vector. qk is the symbol for User k and independent

of qj (j = 1, 2, · · · , K, j �= k). The power of each data symbol is normalized to 1,

i.e.,

E
[|qk|2] = 1.

In our work, MRT precoding is considered. Notice that in massive MIMO systems,

ZF precoding and WF precoding have high computational complexity due to the

channel inverse, while MRT precoding has low-complexity and good asymptotic

performance (as mentioned in Chapter 1). With MRT precoding, the transmit signal

vector from the BS to all users is

s =
√
αHHq

=
√
α

K∑
k=1

hH
k qk,

where α is a coefficient used for total average transmit power constraint. Define Pt

as the average total transmit power. We need

E[||s||2] = Pt

Since Rayleigh flat fading is assumed, the coefficient α can be calculated to be

α =
Pt

E[tr(HHH)]
=

Pt

KM
.

The received signal vector x is

x =

√
Pt

KM
HHHq+ n (2.1)

where n is the noise vector whose entries are distributed as CN (0, 1). Equation
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(2.1) can be rewritten as

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

...

xk

⎤
⎥⎥⎥⎥⎥⎥⎦
=

√
Pt

KM

⎡
⎢⎢⎢⎢⎢⎢⎣

h1h
H
1 h1h

H
2 · · · h1h

H
K

h2h
H
1 h2h

H
2 · · · h2h

H
K

...
...

. . .
...

hKh
H
1 hKh

H
2 · · · hKh

H
K

⎤
⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎣

q1

q2
...

qk

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎣

n1

n2

...

nk

⎤
⎥⎥⎥⎥⎥⎥⎦

where nk is the kth entry of n. Then the received signal at the kth user is given by

xk =

√
Pt

KM

K∑
i=1

hkh
H
i qi + nk

=

√
Pt

KM
hkh

H
k qk +

√
Pt

KM

K∑
j=1,j �=k

hkh
H
j qj + nk. (2.2)

The first term in (2.2) represents the desired signal component for User k, and the

second term is the user-interference. The SINR of User k can be calculated to be

SINRk =

∣∣∣√ Pt

KM
hkh

H
k qk

∣∣∣2
Var(nk) +

∣∣∣√ Pt

KM

∑K
j=1,j �=k hkhH

j qj

∣∣∣2
=

Pt

KM

∣∣hkh
H
k qk

∣∣2
1+ Pt

KM

K∑
j=1,j �=k

|hkhH
j qj|2+ Pt

KM

K∑
m=1,m �=k

K∑
n=1,n �=k,n �=m

|hkhH
mqmq

H
n hnhH

k |
.

Recall that the data signal {qk}Kk=1 is distributed as i.i.d. CN (0, 1), we have

E
[|qk|2] = 1, k = 1, 2, · · · , K.

E
[∣∣qkqHj ∣∣] = 0, k �= j.

Then the SINR of User k is given by (averaged over q)

SINRk =
Pt

KM
|hkh

H
k |2

1 + Pt

KM

∑K
j=1,j �=k

∣∣hkhH
j

∣∣2 . (2.3)

To understand the performance of the massive MIMO system, we analyze the
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statistical properties of SINRk. Especially, the statistical properties of the interfer-

ence term in the denominator of (2.3) are crucial.

2.3 Analysis on Interference Power

In this section, we analyze the user-interference. Instead of using asymptotic results

by deterministic equivalence to find the average interference power, we study its

random behaviour and derive a closed-form approximation of its pdf. Discussions

on the properties of the pdf are also provided.

To help the presentation, we use Yk to denote the power of the interference

experienced by User k, i.e.,

Yk �
1

M

K∑
j=1,j �=k

|hkh
H
j |2.

The following proposition is proved.

Proposition 1. Define

η =
K − 1√

M +K − 2
. (2.4)

When M � 1, the pdf of Yk has the following approximation:

fYk
(y) ≈ f̃Yk

(y) = (1− η)
∞∑
i=0

ηiφ

(
y;K + i− 1, 1− 1√

M

)
, (2.5)

where φ(y;α, β) = yα−1e−y/β

βα(α−1)!
, y > 0 is the pdf of Gamma distribution with shape

parameter α and scale β.

Proof. When M → ∞, from the Lindeberg-Lévy central limit theorem, we have

1√
M

hkh
H
j

d→ CN (0, 1) k �= j,

where
d→ means convergence in distribution. Then 1

M
|hkh

H
j |2 converges to Gamma

distribution φ(y; 1, 1). Next we calculate the correlation coefficient ρjl of 1
M
|hkh

H
j |2
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and 1
M
|hkh

H
l |2 for j �= l, defined as

ρjl =
cov

(
1
M
|hkh

H
j |2, 1

M
|hkh

H
l |2

)
√

Var
{

1
M
|hkhH

j |2
}
Var

{
1
M
|hkhH

l |2
} . (2.6)

The numerator (the covariance) is calculated as

cov

(
1

M
|hkh

H
j |2,

1

M
|hkh

H
l |2

)

= E

[
1

M
|hkh

H
j |2

1

M
|hkh

H
l |2

]
− E

[
1

M
|hkh

H
j |2

]
E

[
1

M
|hkh

H
l |2

]

= E

[
1

M2
hkh

H
j hjh

H
k hkh

H
l hlh

H
k

]
− 1

Since the channel vectors hi for i = 1, 2, · · · , K are independent from each oth-

er, we can first calculate the average of hH
j hj and hH

l hl in the first term. Re-

call that Rayleigh flat fading channel is assumed and then E[hH
i hi] = IM for

i = 1, 2, · · · , K. So we have

cov

(
1

M
|hkh

H
j |2,

1

M
|hkh

H
l |2

)
=

1

M2
E[|hkh

H
k |2]− 1

Let

Xk �
1

M
|hkh

H
k |.

Since entries of hk are i.i.d. following CN (0, 1), Xk has the pdf of Gamma distri-

bution φ(y;M, 1/M) and

E[X2
k ] = E

2[Xk] + Var[X]

= 1 +
1

M

The covariance is thus

cov

(
1

M
|hkh

H
j |2,

1

M
|hkh

H
l |2

)
=

1

M
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For the denominator of ρjl, recall that 1
M
|hkh

H
j |2 is approximately distributed as

φ(y; 1, 1). Then Var
[

1
M

∣∣hkh
H
j

∣∣2 ] equals to 1. From (2.6), the correlation coeffi-

cient is therefore given by

ρjl =
1

M
.

So 1
M

∑K
j=1,k �=j |hkh

H
j |2 is a sum of K−1 correlated Gamma random variables

with the same shape parameter of 1 and the same scale parameter of 1. And the

correlation coefficient of any two of the Gamma variables is 1/M . From Corollary

1 of [45], the pdf of 1
M

∑K
j=2 |h1h

H
j |2 is

fYk
(y) =

K−1∏
i=1

(σ1

σi

) ∞∑
j=0

δjy
K+j−2e−y/σ1

σK+j−1
1 Γ(K + j − 1)

, (2.7)

where Γ(·) is the Gamma function. σ1 ≤ σ2 ≤ · · · ≤ σK−1 are the ordered eigen-

values of the (K − 1) × (K − 1) matrix A, whose diagonal entries are 1 and

off-diagonal entries are 1/
√
M , and δj’s are defined iteratively as

δ0 = 1

δj+1 =
1

j + 1

j+1∑
m=1

[
K−1∑
n=1

(
1− σ1

σn

)m]
δj+1−m. (2.8)

As A is a circulant matrix whose off-diagonal entries are the same, its eigenval-

ues can be calculated to be

σ1 = · · · = σK−2 = 1− 1√
M

, σK−1= 1 +
K − 2√

M
. (2.9)

Then we have

fYk
(y) ≈ f̃Yk

(y) =
σ1

σK−1

∞∑
j=0

δjy
K+j−2e−y/σ1

σK+j−1
1 Γ(K + j − 1)

, (2.10)
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Using (2.8) and (2.9), we have

δ0 = 1

δ1 = 1− σ1

σK−1

δ2 =

(
1− σ1

σK−1

)2

...

δj =

(
1− σ1

σK−1

)j

(2.11)

Substituting (2.9) and (2.11) into (2.10), we conclude the proof.

Next, we discuss the properties of the pdf of the interference power. It can be

seen from (2.5) that the interference power has a mixture distribution of infinite

Gamma random variables with the same scale parameter 1 − 1/
√
M but different

shape parameters. Also, the distribution is independent of the user index k.

The interference power pdf in (2.5) is in an infinite summation form. In reality,

we can only evaluate it with finite terms. An approximation with the first L terms

is as follows:

fYk,L(y) =
1− η

1− ηL

L−1∑
i=0

ηiφ

(
y;K+ i−1, 1− 1√

M

)
. (2.12)

The coefficient
(
1− ηL

)−1
is to guarantee

∫∞
0

fYk,Ldy = 1. When L = 1, we get

fYk,1(y) = φ

(
y;K − 1, 1− 1√

M

)
. (2.13)

This L = 1 approximation can also be obtained by assuming that the K − 1 terms

in Yk are independent to each other.

But notice that with the same scale parameter, Gamma distribution with a larger

shape parameter has a larger tail. With the approximations in (2.12) and (2.13), the

terms with the largest tails are ignored. They can cause loose approximation on the

distribution tail. The loose tail in the pdf of the interference power also leads to the
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inaccuracy of the derivation on outage probability. It is because that outage occurs

when the interference power is large, so the SINR is less than the threshold. In

another word, the outage probability behaviour is dominated by the tail part in the

pdf of the interference power. In what follows, we derived an closed-form formula

of the pdf, which gives accurate description on the pdf tail and then enables us to

analyze the outage probability accurately.

Corollary 2.1. The pdf of Yk can be rewritten into the following closed-form:

fYk
(y)=

√
M√

M+K−2
η−(K−2)

[
e
−

√
M√

M+K−2y−e
−

√
M√

M−1y
K−3∑
n=0

( √
M√

M−1
η

)n
yn

n!

]
.(2.14)

Proof. Notice that

∞∑
i=0

ηiφ

(
y;K + i− 1, 1− 1√

M

)

=

√
M√

M − 1
η−(K−2)e

−
√
M√

M−1
y

( ∞∑
n=0

−
K−3∑
n=0

)( √
M√

M − 1
η

)n
yn

n!
.

It can be observed that ∞∑
n=0

( √
M√

M − 1
η

)n
yn

n!

is the Taylor series for exponential function:

e

√
Mη√
M−1

y
=

∞∑
n=0

( √
M√

M − 1
η

)n
yn

n!
.

Then we can obtain (2.14).

From (2.14), it can be shown that for very large y, the first term becomes domi-

nant since its exponent is large. However for general value of y and practical ranges

of M and K (e.g., M = 200, K = 10), both terms have non-negligible contribu-

tion to the pdf. As K increases, the first term becomes more significant. As M

increases, the first term is less significant. If only the limit case of M→∞ is con-

sidered, the effect of K will be eliminated from the pdf, leading to useless results.
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Furthermore, the formula shows that the ratio of M and K does not dominate the

interference behaviour. The complicated interaction of
√
M and K is important for

the performance.

2.4 Performance Analysis

In this section, we start with the outage probability analysis based on the pdf of the

interference power Yk (2.14). An analytical result of the outage probability of the

massive MIMO system is derived. We then use the pdf of the interference power to

derive the average sum-rate.

2.4.1 Outage Probability Analysis

From (2.3), the SINR of User k can be written as

SINRk =
PtM

K
· X2

k

(1 + Pt

K
Yk)

.

We first study the variances of X2
k and 1 + Pt

K
Yk. The variance of X2

k can be ex-

pressed as

Var(X2
k) = E[X4

k ]− E
2[X2

k ]

Since Xk has the pdf of gamma distribution φ(y;M, 1/M), E[X4
k ] can be calculated

by the moment generating function (MGF) Mx(t) of gamma distribution, given by

Mx(t) = (1− αt)−β

Recall that α and β are the shape parameter and the scale parameter of Gamma

distribution. Then we have

E[X4
k ] = M (4)

x (0)

=
1

M4
(M + 3)(M + 2)(M + 1)M
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where M
(4)
x (0) represents the fourth derivative of Mx(t) at t = 0. Since E[X2

k ] can

be achieved by

E[X2
k ] = Var[Xk] + E

2[Xk]

= 1 +
1

M
,

the variance of X2
k is then

Var[X2
k ] =

4

M
+

10

M2
+

6

M3

=
4

M
+ o

(
1

M

)
. (2.15)

o(·) is the Landau symbol. Define

f(M) =
10

M2
+

6

M3
,

and

g(M) =
1

M
.

Then f(M) = o (g(M)) represents that f(M) has a higher order of smallness with

respect to g(M) as M converges to infinity, defined as

lim
M→∞

f(M)

g(M)
= 0

So the first term 4/M in (2.15) becomes dominant when M is large.

The variance of the interference power is expressed as

Var(Yk) = E[Y 2
k ]− E

2[Yk].

By (2.10), the mean of Yk is given by

E[Yk]=

∫ ∞

0

y · σ1

σK−1

∞∑
j=0

δjy
K+j−2e−y/σ1

σK+j−1
1 Γ(K + j − 1)

dy

34



=
σ2
1

σK−1

∞∑
j=0

(
1− σ1

σK−1

)j

(K + j − 1)

To calculate the summation term

S =
∞∑
j=0

(
1− σ1

σK−1

)j

(K + j − 1),

we expand the summation as

S = (K−1)+
(
1− σ1

σK−1

)
K+

(
1− σ1

σK−1

)2

(K+1)+· · ·

+

(
1− σ1

σK−1

)n

(K+n− 1) + · · ·

Multiplying
(
1− σ1

σK−1

)
on both side of the equation, we have

(
1− σ1

σK−1

)
S =

(
1− σ1

σK−1

)
(K − 1) +

(
1− σ1

σK−1

)2

K

+ · · ·+
(
1− σ1

σK−1

)n

(K + n− 2) + · · ·

Then S −
(
1− σ1

σK−1

)
S is

σ1

σK−1

S = (K − 1) +
∞∑
i=1

(
1− σ1

σK−1

)i

and

E[Yk] =
σ2
1

σK−1

S

= (K − 2)σ1 + σK−1 (2.16)

= K − 1

Next, we calculate the variance of Y 2
k . It can be shown that

E[Y 2
k ] =

σ1

σK−1

∞∑
j=0

δj
σ2
1

Γ(K + j − 1)

∫ ∞

0

yK+je−ydy
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=
σ3
1

σK−1

∞∑
j=0

(
1− σ1

σK−1

)j (
(K + j − 1) + (K + j − 1)2

)

The first term has been solved as above. For the second term

T1 =
∞∑
j=0

(
1− σ1

σK−1

)j

(K + j − 1)2,

we follow the similar method and achieve that

σ1

σK−1

T1 = (K − 1)2 +
∞∑
n=1

(
1− σ1

σK−1

)n

(2K + 2n− 3). (2.17)

Then for the summation

T2 =
∞∑
n=1

(
1− σ1

σK−1

)n

(2K + 2n− 3),

we have

σ1

σK−1

T2 =

(
1− σ1

σK−1

)
(2K − 1) + 2

σK−1

σ1

(
1− σ1

σK−1

)2

. (2.18)

Substituting (2.17) and (2.18) into (2.16), the variance of Yk is given by

Var[Yk] = (K − 2)σ2
1 + σ2

K−1 (2.19)

= K − 1 + (K − 1)(K − 2)/M.

Thus, the variance of 1 + Pt

K
Yk is given by

Var

(
1+

Pt

K
Yk

)
=

P 2
t (K − 1)

K2

(
1 +

K−2

M

)
>

P 2
t (K − 1)

K2
.

When M → ∞, it can be shown in (2.15) that the variance of the desired sig-

nal power X2
k decreases to 0, meaning that the signal power becomes deterministic.

However, this is not the case for the interference power, whose variance is not neg-

ligible for reasonable K and Pt. When M is large, the variance of the interference

36



power is significantly larger than the variance of the signal power when

P 2
t (K − 1)

K2
� 1

M

which can be approximated as P 2
t M � K. Thus for tractable analysis, we treat

X2
k as deterministic and approximate it by its average. This is the same as using

asymptotic deterministic equivalence method for M → ∞. But different to existing

work, we keep Yk as a random variable in the outage probability analysis below.

Let γth be the SINR threshold. Define that outage occurs when the SINR is less

than the threshold. The outage probability of User k can thus be approximated as

follows.

Pout = P

(
PuM

X2
k

1 + Pt

K
Yk

< γth

)

≈ P

(
Pt

K
M

1 + 1
M

1 + Pt

K
Yk

< γth

)

=

⎧⎨
⎩ 1 if γth ≥ M Pt

K

P

(
Yk >

M+1
γth

− K
Pt

)
otherwise

.

When γth ≤ MPu, from (2.14), we have the outage probability results as shown in

(2.20), where Γ(s, x) �
∫∞
x

ts−1e−tdt is the upper incomplete gamma function.

Pout ≈
√
M√

M +K − 2
η−(K−2)

[∫ ∞

M+1
γth

− K
Pt

e
−√

M√
M+K−2

y
dy

−
K−3∑
n=0

ηn

( √
M√

M − 1

)n ∫ ∞

M+1
γth

− K
Pt

yn

n!
e
−

√
M√

M−1
y
dy

]

= η−(K−2)e
−

√
M√

M+K−2

(
M+1
γth

− K
Pt

)

− (1− η)
K−3∑
n=0

1

n!
ηn−K+2Γ

(
n+1,

√
M√

M−1

(
M+1

γth
−K

Pt

))
. (2.20)

(2.20) shows that the outage probability does not converge to 0 even if the total

transmit power goes large. This is due to the MRT precoding which cannot fully

eliminate the user-interference. When M goes to infinity, it is possible to simplify
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(2.20) using the asymptotic behavior of incomplete gamma function. With this

asymptotic approximation, the first term becomes dominant as M → ∞. However,

as the approximation needs very large M (e.g., several thousands) to be tight, the

simplification is not appropriate for practical scenarios. The result in (2.20) can help

the design of massive MIMO systems for the desired outage level. For example, we

can decide how many users can be served simultaneously by the massive BS for a

given γth value.

From the derivations given above, it is seen that the outage probability can be

derived and analyzed since the random property of SINR is investigated and the pdf

of the interference power is derived. In existing work, since the random property of

SINR was not considered and only the asymptotic deterministic equivalence of the

SINR was derived, the outage probability cannot be obtained.

2.4.2 Sum-Rate Analysis

Recall that the SINR at User k is given by

SINRk =
PtM

K
· X2

k

1 + Pt

K
Yk

.

Then we have the achievable rate written as

Rk = log2

(
1 +

PtM

K
· X2

k

1 + Pt

K
Yk

)
.

As discussed above, the variations of the signal power random variable X2
k is rela-

tively little to that of the interference power Yk. So for the derivation of the sum-

rate, we still replace X2
k with its average and only keep Yk random. In this case, the

average achievable rate can be given by

E[Rk] = E

[
log2

(
1 +

Pt

K
M · 1 + 1

M

1 + Pt

K
Yk

)]

= log2

(
1+

Pt

K
M

)
+E

[
log2

(
1+

Pt

K+PtM
Yk

)]
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−E

[
log2

(
1+

Pt

K
Yk

)]
. (2.21)

Since the pdf of Yk is provided in Section 2.3, the average achievable rate can be

derived by integral calculations with the following integral formula [46]

∫ ∞

0

log2(1 + rx)xbe−
x
2adx =

(2a)b+1

ln 2
b!e

1
2ra

b∑
i=0

Ei+1

(
1

2ra

)
, (2.22)

where En(x) is the exponential integral, given by

En(x) =

∫ ∞

1

e−xt

tn
dt.

The average achievable rate can be calculated to be

E[Rk]= log2

(
1+

Pt

K
M

)
+
η−(K−2)

ln2
e

√
MK

(
√
M+K−2)Pt

[
e

√
MMPt

(
√
M+K−2)Pt E1

(√
M(PtM+K)

(
√
M+K−2)Pt

)

−E1

(
K
√
M

(
√
M +K − 2)Pt

)]
− 1−η

ln2
η−(K−2)e

K
√
M

(
√
M−1)Pt

[
e

√
MMPt

(
√
M−1)Pt

K−3∑
n=0

ηn

·
n∑

i=0

Ei+1

(√
M(K+PtM)

(
√
M−1)Pt

)
−

K−3∑
n=0

ηn
n∑

i=0

Ei+1

(
K
√
M

(
√
M−1)Pt

)]
(2.23)

and the average sum-rate is

Rsum = K · E[Rk].

When M → ∞, the interference power converges to its average by the law of

large numbers. Then the asymptotic deterministic equivalence of the SINR can be

shown as

SINRk,asym =
M

K

Pt(1 +
1
M
)

1 + Pt
K−1
K

. (2.24)

When K,M → ∞ but with fixed ratio, we have

SINRk,asym → M

K

Pt

1 + Pt

, (2.25)
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which is the same as the SINR result derived in [12]. The asymptotic sum-rate is

given by

Rasym = K log2(1 + SINRk,asym). (2.26)

Although (2.23) is complicate, it has a better match to the Monte-Carlo simulation

than the asymptotic result of sum-rate in [12]. Moreover, the result in (2.24) has

a tighter match to the Monte-Carlo simulation of SINR than (2.25), especially for

small K and finite M .

When a user is in outage, its communication is unsuccessful. To measure the

system performance of effective communications, outage capacity is defined to cal-

culate the sum of the achievable rates for the users not in outage. With the results

of the outage probability and the sum-rate, the analytical outage capacity can be

written as

Rout = (1− Pout) ·Rsum (2.27)

2.5 Simulation Results

In this section, we provide simulation results to verify the accuracy of the approxi-

mate pdf of the interference power. Besides, we draw the figures for the results of

outage probability and the sum-rate.

In Fig. 2.2, for a system with M = 100 and K = 10, 30, the simulated pdf

(via Monte-Carlo simulation) of the interference power is shown. We compare

the Monte-Carlo simulations with the approximate pdf in (2.12) for L = 10, the

approximation in (2.13), and the closed-form pdf in (2.14). This figure shows that

(2.14) matches tightly with the simulation for all y range and both K values. Since

the L = 1 approximation in (2.13) only keep the first term in an infinite summation

series and ignore a number of large tail terms, it has significant offset to the left

which leads to a much loose tail compared to the Monte-Carlo simulation. The

L = 10 approximation has a better match than (2.13) at K = 10 and it is close to

the result in (2.14). But for K = 30, it also has noticeable offset and underestimates
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Fig. 2.2. Comparison of the pdfs of the term 1
M

∑K
j=1,k �=j |hkh

H
j |2 for M = 100 and K = 10, 30.

the tail of the distribution as we have discussed in Section 2.3.

Fig. 2.3 shows the outage probability for different number of users. Our analyt-

ical result in (2.20) has a tight match to the Monte-Carlo simulation for all range

of K. When M = 100, Pt = 10dB, γth = 10dB, the outage probability is more

than 10% when there are 7 users or more. When the number of antennas increases

from 100 to 200, the outage probability for 7 users is below 0.1%. So massive MI-

MO can improve the performance of outage probability due to the large number of

antennas. Fig. 2.4 shows the outage probability for different number of antennas.

The BS serves 10 users simultaneously and the outage threshold is 10dB. It can be

seen that the analytical result is accurate even for small M . When Pt is 20dB, 130

antennas are needed to achieve 10% outage probability. When Pt decrease to 10dB,

only 10 more antennas are required to keep the same outage probability. It is shown

that the outage probability of massive MIMO does not have a considerable differ-

ence with the change of the transmit power in massive MIMO. Fig. 2.5 shows the

outage probability for different transmit power. The number of users is 10 and the
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Fig. 2.3. Outage probability v.s. K. Pt = 10dB. γth = 10dB.
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42



0 5 10 15

Transmit power (dB)
10-2

10-1

100

O
ut

ag
e 

pr
ob

ab
ili

ty

Monte-Carlo simulation
Analytical result in (2.20)

M=100

M=150

Fig. 2.5. Outage probability v.s. Pt. K = 10, γth = 10dB.

outage threshold is 10dB. Even when Pt increases, the outage probability does not

decrease to zero. This is due to the MRT precoding which can not fully eliminates

the use-interference. When the number of antennas is 100, the outage probability is

above 0.3 for Pt = 15dB. As the number of antennas increases to 150, the outage

probability is below 0.1 for Pt = 7dB. It is clearly shown that the large number

of antennas can improve the outage performance more significantly than the high

transmit power .

Fig. 2.6 shows the sum-rate for different number of users ranging from 5 to

40. The number of antennas is 100 and the total power transmit is 10dB. As the

number of users increases, the sum-rate has a nearly linear increase. Also, our

analytical result (2.23) tightly match the Monte-Carlo simulations for all range of

K while the asymptotic result in [12] has a noticeable gap from the Monte-Carlo

simulation. Fig. 2.7 shows the sum-rate for different number of antennas ranging

from 50 to 200. The number of users is 10 and the total transmit power is 10dB.

When the number of antennas increases, the sum-rate increases. It is also shown

that our analytical result (2.23) is more accurate than the asymptotic result in [12].
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Fig. 2.6. Sum-rate vs. the number of users K. M = 100, Pt = 10dB.

Fig. 2.8 depicts the sum-rate for different total transmit power Pt ranging from 5dB

to 15dB. It can be clearly observed that as Pt increases, the sum-rate increases with

a slow rate. Fig. 2.9 shows the outage capacity for different number of users. The

number of antennas is 100 and the total transmit power is 10dB. When γth = 7dB,

the outage capacity overlaps with the curve with γth = 5dB for the small number of

users. However, when the number of users is larger than 10, outage occurs among

the users and the outage capacity increases at a decreasing rate. When the number

of users reaches 15, the outage capacity starts decreasing. When the number of

users grows to 35, the outage capacity decreases to 0 and all the users are at outage.

The figure shows the importance of outage probability analysis. As K increases,

even though the theoretical sum-rate increases, more users can be in outage and the

actual system throughput can be low.
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Fig. 2.7. Sum-rate vs. the number of antennas M . K = 10, Pt = 10dB.
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Fig. 2.9. Outage capacity vs. K. M = 100, Pt = 10dB.

2.6 Conclusion

In Chapter 2, a single-cell multiuser massive MIMO is investigated under MRT pre-

coding. The number of antennas is assume to be large but finite, and the number of

users is assumed to be moderate. We analyze the random property of the interfer-

ence power with large-scale antenna array by central limit theory. The approximate

pdf of the interference power is derived. By comparing between the variances of

the signal power and the interference plus the noise power, we treat the interference

power as random and replace the signal power random variable with its average.

The analytical results of the outage probability and the average sum-rate in massive

MIMO are derived. The simulation results show that the system sum-rate increases

with the growing number of users while outage probability and outage capacity are

poor when there are too many users.

46



Chapter 3

Modified MRT Precoding Under

Per-Antenna Power Constraint in

Massive MIMO and Performance

Analysis

In this chapter, we consider per-antenna power constraint in a single-cell multi-user

massive MIMO system. A modified MRT precoding is proposed to meet the power

constraint at each antenna. Rayleigh flat fading channel model is used and perfect

CSI at the BS is assumed. The analysis of the outage probability and the sum-rate is

provided after deriving the distribution of the interference power. Simulation results

show that the proposed modified MRT precoding can improve the performance of

massive MIMO even with a strict power constraint.

3.1 Background and Related Work

Antenna transmit power is an important factor for massive MIMO transceiver de-

signs. For the system downlink, while several precoding schemes have been widely

used, such as MRT, ZF, and WF precoding, they consider a total transmit power

constraint. However, in practical systems, each antenna at the BS is equipped with
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an individual power amplifier (PA). To obtain linear power amplification without

distortion, a PA needs to operate within its effective output power interval. When

high power output is required which is beyond a PA’s effective operation interval,

non-linear distortion can occur to the signal. To avoid the distortion, each antenna

needs to have its own power constraint depending on its own PA. Thus, it is more

practical to consider the per-antenna power constraint than the total transmit power

constraint in the precoding design.

There have been some papers [47]–[49] for MU-MIMO systems or multi-user

massive MIMO systems with per-antenna power constraint. In [47], for single-cell

MU-MIMO downlink with perfect CSI, two optimal precoding schemes are pro-

vided under per-antenna transmit power constraint. One scheme is to minimize the

per-antenna transmit power, and the other scheme is to achieve the channel capacity.

The downlink optimization problems are solved by transforming them into a dual

uplink problem with an uncertain noise. In [48], single-cell MU-MIMO downlink

with perfect CSI is considered. An optimum ZF precoding is designed by maximiz-

ing the minimum rate in the system under per-antenna power constraint. It is shown

that conventional ZF precoding is suboptimal when per-antenna power constraint

is considered and the proposed optimum ZF precoding greatly increase the achiev-

able rate when the number of BS antennas is large. In [49], a multi-user massive

MIMO downlink with frequency-selective channel is considered. It is assumed that

the BS has the knowledge of downlink CSI. A low complexity precoding is pro-

posed by which the per-antenna transmit signals has constant-envelop (CE). The

proposed precoding is achieved by minimizing the inter-user interference under the

constraint of the per-antenna transmit signal envelop. The optimization problem is

solved by a low complexity iterative algorithm. The per-antenna CE constraint is

more strict than the one in [47], [48]. It is shown that for a fixed desired sum-rate,

the required total transmit power for the proposed per-antenna CE precoding is less

than the precoding schemes with total transmit power constraint.
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3.2 System Model and Modified MRT Precoding

To clearly explain the new precoding scheme, we rewrite the downlink channel

matrix as

H =
[
h1 h2 · · · hM

]
,

where hj (the jth column of H) is the K×1 channel vector from the jth BS antenna

to K users. Let

q =

⎡
⎢⎢⎢⎢⎢⎢⎣

q1

q2
...

qK

⎤
⎥⎥⎥⎥⎥⎥⎦

be the K × 1 symbol vector intended for K users. All entries of q are independent

of each other. The power of each data symbol is normalized to 1, i.e., E[|qk|2] = 1.

In the downlink, the BS first precodes the K × 1 information vector into an M × 1

coded vector s via an M ×K precoding matrix W as follows:

s = αWq = α

⎡
⎢⎢⎢⎢⎢⎢⎣

w1q

w2q
...

wMq

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.1)

α is a coefficient used for power scaling and wj is the jth row of W.

As mentioned in Chapter 1, MRT, ZF, and MMSE precoding schemes are used

widely in massive MIMO. Especially, MRT precoding has attracted a lot of interests

due to its desirable balance between computational complexity and performance in

massive MIMO [37]. In MRT precoding, with the average total power constraint

Pt, we have

αMRT =

√
Pt

KM
and WMRT = HH . (3.2)

49



In real systems, each antenna is equipped with an individual PA which limits

the operation region of the power for the corresponding antenna. Thus per-antenna

power constraint is more practical in the study of massive MIMO donwlink than

total power constraint. From (3.1), the transmit power at the jth antenna (averaged

over the symbol vector q) can be calculated as

E
[|αwjq|2

]
= α2|wj|2.

Then for MRT precoding, the transmit power of the jth antenna is Pt

KM
|hj|2. So the

transmit power of each antenna varies with different channel realizations. And for

a given general channel realization, the transmit powers at different BS antennas

are different. Thus standard MRT precoding does not apply for massive MIMO

systems under per-antenna power constraint.

We consider the precoding design for massive MIMO systems with per-antenna

power constraint Pa. For the optimal precoding design, one method is to formu-

late an optimization problem with respect to the precoding matrix and search for

numerical solutions via optimization theory. However, such solutions usually have

high computational complexity and performance analysis is not available. Instead,

we modify the standard MRT precoding to incorporate the per-antenna power con-

straint. The proposed precoding matrix is as follows:

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
K

||h1||h
H
1

√
K

||h2||h
H
2

...

√
K

||hM ||h
H
M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

First, with this design, the transmit power of the ith BS antennas (averaged over
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q) can be calculated by

α2|wi|2 =
Pa

K
· K||hi||2

||hi||2
= Pa,

which is independent of the channel realization and is the same for all BS antennas.

Since the transmit power of each antenna is fixed as Pa, the total transmit power is

fixed as MPa. Define the total transmit power by Pt, then we have

Pt = MPa.

Second, compared to standard MRT precoding in (3.2), we have

W = DWMRT, (3.3)

where D = diag
( √

K
||h1|| ,

√
K

||h2|| , · · · ,
√
K

||hM ||

)
. Thus, the modified MRT precoding can

be seen as the combination of the MRT precoding and a diagonal antenna power

scaling matrix. The proposed modified MRT precoding still holds the idea of the

standard MRT percoding scheme to maximize the desired signal power. Also, the

proposed low-complexity precoding design is in closed-form and allows theoretical

performance analysis.

To the best of our knowledge, in the literature, only column-normalization has

been used on the MRT precoding matrix [50], [51]. Compared to our proposed

precoding scheme in (3.3), the column-normalized MRT precoding is the same as

right multiplying WMRT by a K × K diagonal matrix. But under this precoding,

the transmit power for each antenna still varies with the channel realization. Thus

it does not guarantee per-antenna power constraint. Recall that Rayleigh fading

channel is assumed, as M goes to infinity, the norm of each column-vector of HH

divided by M converges to 1. Thus, the column-normalization scheme reduces to

the standard MRT precoding.

With (3.3), the received signal vector x with the modified MRT precoding can
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be written as

x =

√
Pa

K
HDHHq+ n, (3.4)

where n is the noise vector whose entries are distributed as i.i.d. CN (0, 1). It

can be shown that the channel gains are added coherently for the diagonal entries of

HDHH , similar to HHH in the standard MRT precoding scheme but with different

power scaling. The received signal at User k with the modified MRT precoding is

xk =

√
Pa

K

M∑
j=1

√
K

||hj|| |hkj|2qk

+

√
Pa

K

K∑
i=1,i �=k

M∑
j=1

√
K

||hj||hkjhijqi + nk, (3.5)

where hkj is the kth element of hj and hij is the complex conjugate of hij . nk is the

kth entry of n. From (3.5), the received SINR at User k can be calculated to be

SINRk =

Pa

K

∣∣∣∑M
j=1

√
K

||hj || |hkj|2qk
∣∣∣2

Var[nk] +
Pa

K

∣∣∣∑K
i=1,i �=k

∑M
j=1

√
K

||hj ||hkjhijqi

∣∣∣2

=
PaM

2

K

∣∣∣ 1
M

∑M
j=1

√
K

||hj || |hkj|2qk
∣∣∣2

1 + PaM
K

∣∣∣∑K
i=1,i �=k

∑M
j=1

1
M

√
K

||hj ||hkjhijqi

∣∣∣2 ,

Since {qk}Kk=1 is distributed as i.i.d. CN (0, 1), the received SINR at User k averaged

over {qk}Kk=1 can be derived as

SINRk =
PaM

2

K

∣∣∣ 1
M

∑M
j=1

√
K

||hj || |hkj|2
∣∣∣2

1 + PaM
K

∑K
i=1,i �=k

1
M

∣∣∣∑M
j=1

√
K

||hj ||hkjhij

∣∣∣2 ,

Denote

Xk �
1

M

M∑
j=1

√
K

||hj|| |hkj|2. (3.6)
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Then X2
k is the received signal power component. Also denote

Yk �
K∑

i=1,i �=k

1

M

∣∣∣∣∣
M∑
j=1

√
K

||hj||hkjhij

∣∣∣∣∣
2

, (3.7)

which is the interference power experienced by User k. Then the SINR at User k

can be written as

SINRk =
PaM

2

K

X2
k

1 + PaM
K

Yk

. (3.8)

3.3 Analysis on Signal and Interference Power

Recall that the desired signal component for User k is Xk, which is defined in (3.6).

The following lemma is proved to help the analysis on Xk.

Lemma 3.1. Define

Z �
√
M

(
Xk −

√
K

(
K − 1

2

)
!

K!

)
.

When M → ∞, Z converges in distribution to a real Gaussian random variable

whose mean is zero and whose variance is 2K
K+1

−K

(
(K− 1

2)!
K!

)2

, i.e.,

Z
d→ N

⎛
⎝0,

2K

K + 1
−K

[(
K − 1

2

)
!

K!

]2⎞⎠ . (3.9)

Proof. To approximate the distribution of Xk by central limit theory, we need find

the mean and the variance of
|hkj |2
|hj | .

Denote Akj � |hkj|2. Since hkj is distributed as CN (0, 1), Akj has an exponen-

tial distribution with the rate parameter of 1. Denote

Bkj �
K∑

i=1,i �=k

|hij|2.

Since Bkj is the sum of K − 1 exponential random variables with same rate param-
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eter of 1, it is distributed as Erlang(K − 1, 1) where

Erlang(s, t) =
ts

(s− 1)!
xs−1e−tx.

The mean of
|hkj |2
||hj || is given by

E

[ |hkj|2
||hj||

]
=E

[
Akj√

Akj + Bkj

]

=
2

(K − 2)!

∫ ∞

0

xK−2

∫ ∞

√
x

(y2 − x)e−y2dydx

Define

I =

∫ ∞

√
x

y2e−y2dy − x

∫ ∞

√
x

e−y2dy.

In [52], we have ∫ ∞

μ

xme−βxn

dx =
Γ(ν, βμn)

nβν
(3.10)

where ν = m+1
n

. Thus, we can rewrite I as

I =
1

2

(
Γ

(
3

2
, x

)
− Γ

(
1

2
, x

))

and then

E

[ |hkj|2
||hj||

]
=

1

(K − 2)!

[∫ ∞

0

xK−2Γ

(
3

2
, x

)
dx−

∫ ∞

0

xK−1Γ

(
1

2
, x

)
dx

]
(3.11)

Note that

1

K − 1

∫ ∞

0

Γ

(
3

2
, x

)
dxK−1 =

1

K − 1

(
K − 1

2

)
!,

and

1

K

∫ ∞

0

Γ

(
1

2
, x

)
dxK =

1

K

(
K − 1

2

)
!.
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Substitute them into (3.11), the mean of
|hkj |2
||hj || is given by

E

[ |hkj|2
||hj||

]
=

(
K − 1

2

)
!

(K − 2)!

[
1

K − 1
− 1

K

]

=
(K − 1

2
)!

K!

Next, we calculate the variance of
|hkj |2
|hj | , expressed as

Var

[ |hkj|2
|hj|

]
=E

[
A2

kj

Akj + Bkj

]
−
(
E

[
Akj√

Akj + Bkj

])2

Notice that the second term has been solved before. Next, we calculate the first

term .

E

[
A2

kj

Akj + Bkj

]
=

1

(K − 2)!

∫ ∞

0+

∫ ∞

0+

x2

x+ y
e−(x+y)yK−2dxdy

=
1

(K − 2)!

∫ ∞

0+
yK−2

∫ ∞

y

(z − y)2

z
e−zdzdy.

Since

∫ ∞

y

(z − y)2

z
e−zdz =

∫ ∞

y

ze−zdz − 2y

∫ ∞

y

e−zdz + y2
∫ ∞

y

z−1e−zdz,

using (3.10), we have

E

[
A2

kj

Akj + Bkj

]
=

2

K + 1
.

Thus the variance of
|hkj |2
||hj || is calculated as

Var

[ |hkj|2
||hj||

]
=

2

K + 1
−
((

K − 1
2

)
!

K!

)2

With E

[
|hkj |2
||hj ||

]
and Var

[
|hkj |2
||hj ||

]
, (3.9) can be obtained using central limit theory.
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Based on Lemma 3.1, when M � 1, the distribution of Xk can be approximated

as follows:

Xk ∼ N
⎛
⎝√

K

(
K − 1

2

)
!

K!
,

2K

M(K + 1)
− K

M

((
K − 1

2

)
!

K!

)2
⎞
⎠ .

By this approximation, the mean of X2
k can be calculated by

μX2
k
=Var[Xk] + E

2[Xk]

=
M − 1

M

(
(K − 1

2
)!

K!

)2

K +
2K

(K + 1)M

The variance of X2
k can be expressed as

Var[X2
k ] = E[X4

k ]− E
2[X2

k ].

To calculate the mean of X4
k , we use the MGF of Gaussian distribution

Mx(t) = exp

(
μt+

1

2
σ2t2

)
,

where μ and σ2 are the mean and the variance. Then the expectation of X4
k are

E[X4
k ] =M (4)

x (0)

= 3σ4 + 6μ2σ2 + μ4.

So the variance of X4
k is given by

Var[X4
k ] = 2σ4 + 4σ2μ2

=

[
8K2

K + 1

(
(K − 1

2
)!

K!

)2

− 4K2

(
(K − 1

2
)!

K!

)4
]

1

M
+ o

(
1

M

)

We can see that the variance of the received signal power is very small for large

M and converges to 0 as M → ∞. By the law of large numbers, the signal power

converges to its average as the number of antennas increases.
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Next, we investigate the distribution of the interference power component Yk

defined in (3.7). The following proposition is obtained.

Proposition 2. When M � 1, the pdf of Yk has the following approximation:

fYk
(y)=

r

λ (1− r)K−2

[
e−

y
λ
r−e−

y
λ

K−3∑
n=0

(
1− r

λ

)n
yn

n!

]
, (3.12)

where

ρ =
1

M

K2 + 7K

(K − 1)(K − 2)
, (3.13)

λ =
K

K + 1
−√

ρ, (3.14)

r =
K − (K + 1)

√
ρ

K+(K+1)(K−2)
√
ρ
. (3.15)

Proof. Recall that

Yk �
K∑

i=1,i �=k

1

M

∣∣∣∣∣
M∑
j=1

√
K

||hj||hkjhij

∣∣∣∣∣
2

.

In order to find the distribution of Yk, we first investigate the distribution of
√
K

||hj ||hkjhij .

Denote hnj = xnj + iynj where xnj and ynj are the real and imaginary part of hnj

respectively, both following i.i.d. N (0, 1/2). Then hkjhij and ||hj|| can be written

by

hkjhij =(xkjxij + ykjyij)− i(xkjyij + xijykj),

||hj||=
√

x2
kj + y2kj + x2

ij + y2ij + z,

where z =
∑K

t=1,t �=k,i |htj|2 is distributed as Erlang(K − 2, 1) and the pdf of z is

fz(z) =
zK−3

(K−3)!
e−z. Then the mean of

√
K

||hj ||hkjhij is given by

E

[ √
K

||hj ||hkjhij
]
= E

⎡
⎣ xkjxij + ykjyij√

x2kj+y
2
kj+x

2
ij+y

2
ij+z

⎤
⎦+ iE

⎡
⎣ xkjyij + xijykj√

x2kj+y
2
kj+x

2
ij+y

2
ij+z

⎤
⎦ .
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Since the integral of an odd function over a symmetric interval is 0, the real part

and the imaginary part both equal to 0. So we have

E

[ √
K

||hj||hkjhij

]
= 0.

Since the average of
√
K

||hj ||hkjhij is 0, the variance of
√
K

||hj ||hkjhij is given by

Var

[ √
K

||hj||hkjhij

]
= K · E

[
|hkj|2|hij|2

|hkj|2 + |hij|2 +
∑K

t=1,t �=k,i |htj|2

]
(3.16)

Recall that |hnj|2 follows an exponential distribution with the rate parameter of 1

and
∑K

t=1,t �=k,i |htj|2 ∼ Erlang(K − 2, 1). With integral calculations, the variance

of
√
K

||hj ||hkjhij is given by

Var

[ √
K

||hj||hkjhij

]
=

K

K + 1
.

By central limit theory, the distribution of

1√
M

M∑
j=1

√
K

||hj||hkjhij

can be approximated as CN (0, K/(K + 1)) for M � 1. Then the ith term of Yk,

which is

Yk,i �
∣∣∣∣∣ 1√

M

M∑
j=1

√
K

||hj||hkjhij

∣∣∣∣∣
2

for i �= k

is distributed as Gamma (1, K/(K + 1)).

Next we calculate the correlation coefficient ρi,m of Yk,i and Yk,m for i �= m,

defined as

ρi,m =
Cov(Yk,iYk,m)√
Var[Yk,i]Var[Yk,m]

.
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Since Yk,i ∼ Gamma (1, K/(K + 1)), we have

E[Yk,i] =
K

K + 1
, Var[Yk,i] =

K2

(K + 1)2
.

The covariance of Cov[Yk,iYk,m] is

Cov[Yk,iYk,m] =E[Yk,iYk,m]− E[Yk,i]E[Yk,m]

=E[Yk,iYk,m]− K2

(K + 1)2
,

where

E(Yk,iYk,m) =
K2

M2
E

⎡
⎣
∣∣∣∣∣

M∑
j=1

hkjhij

||hj||

∣∣∣∣∣
2 ∣∣∣∣∣

M∑
j=1

hkjhmj

||hj||

∣∣∣∣∣
2
⎤
⎦

=
K2

M2
E

[
M∑
j=1

|hkj|4|hij|2|hmj|2
||hj||4 +

M∑
j=1

M∑
l=1,l �=j

|hkj|2|hij|2
||hj||2

|hkl|2|hml|2
||hl||2

]

=
K2

M2

M∑
j=1

E

[ |hkj|4|hij|2|hmj|2
||hj||4

]
+
K2

M2

M∑
j=1

M∑
l=1,l �=j

E

[ |hkj|2|hij|2
||hj||2

]
E

[ |hkl|2|hml|2
||hl||2

]
.

From (3.16), we can calculate E

[
|hkj |2|hij |2

||hj ||2
]

as

E

[ |hkj|2|hij|2
||hj||2

]
=

1

K + 1
,

and

E(Yk,iYk,m) =
K2

M2

M∑
j=1

E

[ |hkj|4|hij|2|hmj|2
||hj||4

]
+

M − 1

M

K2

(K + 1)2
.

Notice that hnj (n = 1, · · · , K) is one of the entries in the vector hj . Thus |hnj|2

and ||hj||4 are correlated. But for large or moderate K, e.g., a few tens, their de-

pendence is small. For tractable analysis, we treat ||hj||4 as an independent random
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variable to |hnj|2. So the average of
|hkj |4|hij |2|hmj |2

||hj ||4 is approximated as

E

[ |hkj|4|hij|2|hmj|2
||hj||4

]
≈ E

[|hkj|4
] · E [|hij|2

] · E [|hmj|2
] · E [

1

||hj||4
]

Recall that |hkj|2 has exponential distribution with rate parameter of 1, then we have

E
[|hkj|4

]
= 2, E

[|hij|2
]
= E

[|hmj|2
]
= 1.

Since ||hj||2 is the sum of K exponential random variable {hkj}Kk=1, it follows the

distribution of Earlang(K, 1). Then the average of 1
||hj ||4 is calculated as

E

[
1

||hj||4
]
=

∫ ∞

0

xK−3e−x

(K − 1)!
dx

=
1

(K − 1)(K − 2)
.

Then we have

E(Yk,iYk,m) =
2K2

M(K − 1)(K − 2)
+

M − 1

M

K2

(K + 1)2
.

So the correlation coefficient can be calculated as

ρi,m =
(K + 1)2

K2

(
E(Yk,iYk,m)− K2

(K + 1)2

)

=
K2 + 7K

M(K − 1)(K − 2)
.

It can be observed that Yk =
∑K

i �=k Yk,i is the sum of K − 1 correlated gamma

variables, and the correlation coefficient of any two variables is

ρ =
K2 + 7K

M(K − 1)(K − 2)
.
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From Corollary 1 of [45], the pdf of Yk is given by

fYk
(y) =

K−1∏
n=1

σ1

σn

∞∑
t=0

δty
K+t−2e−y/σ1

σK+t−1
1 Γ(K + t− 1)

, (3.17)

where σ1 ≤ σ2 ≤ · · · ≤ σK−1 are the ordered eigenvalues of the (K − 1) × (K −
1) matrix G whose diagonal entries are K/(K + 1) and off-diagonal entries are

√
ρK/(K + 1), and δt’s are defined iteratively as

δ0 = 1,

δt+1 =
1

t+ 1

t+1∑
m=1

[
K−1∑
n=1

(
1− σ1

σn

)m]
δt+1−m. (3.18)

The eigenvalues of G can be calculated to be

σ1= · · · =σK−2=
K

K + 1
−√

ρ

σK−1=
K

K + 1
+ (K − 2)

√
ρ. (3.19)

Using (3.18)-(3.19), we have

δt =

(
1− σ1

σK−1

)t

. (3.20)

Then the pdf of Yk can be rewritten by the Taylor Series expansion of exponential

functions as

fYk
(y)=

σ1

σK−1

∞∑
n=K−2

(1− σ1

σK−1
)n−K+2yne−y/σ1

σn+1
1 Γ(n+ 1)

=
1

σK−1

(
1− σ1

σK−1

)−(K−2)
[
e−y/σK−1 − e−y/σ1

K−3∑
n=0

(
1

σ1

− 1

σK−1

)n
yn

n!

]

By denoting r = σ1/σK−1, we obtain (3.12).

The mean and the variance of Yk can be calculated by using the results derived
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in Equation (2.16) and Equation (2.19). We have

μYk
= E[Yk] = (K − 2)σ1 + σK−1 =

K(K − 1)

K + 1
,

Var[Yk] = (K − 2)σ2
1 + σ2

K−1 = (K − 1)

(
K

K + 1

)2

+
K(K + 7)

M
.,

We can see that for any fixed K, the variance of Yk does not diminish to 0 as M

increases. Thus it cannot be seen as deterministic even for large M .

3.4 Performance Analysis

Similar with Chapter 2, since the variations of the signal power component X2
k is

relatively small to the variations of the interference power Yk, we treat the signal

power random variable as a constant and keep the interference power Yk as random.

Then, we derive the analytical results of the outage probability and the system sum-

rate by using the pdf of the interference power.

3.4.1 Outage Probability Analysis

Recall that γth is the SINR threshold. By replacing X2
k with its mean value μX2

k
, the

outage probability can be approximated as follows

Pout ≈P

(
PtM

K

μX2
k

1 + Pt

K
Yk

< γth

)

=

⎧⎨
⎩1 if γth ≥ PtM

K
μX2

k

P

(
Yk >

M
γth

μX2
k
− K

Pt

)
otherwise

.

When γth < PtM
K

μX2
k
, based on (3.12), we can calculate the outage probability of

the modified MRT as

Pout ≈ (1− r)−(K−2) e
− r

λ

(
M
γth

μ
X2

k
− K

Pt

)
− (1− r)−(K−2)

×
K−3∑
n=0

r

n!
(1− r)n Γ

(
n+ 1,

1

λ

(
M

γth
μX2

k
− K

Pt

))
. (3.21)
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The parameters are defined in (3.13)-(3.15).

The analytical outage probability with MRT precoding in (2.20) can also be

represented by formula (3.21) but with different parameter values:

ρMRT =
1

M
, rMRT =

1−√
ρMRT

1 + (K − 2)
√
ρMRT

,

λMRT = 1−√
ρMRT, μX2

k ,MRT ≈ 1.

When K,M → ∞ but with a fixed ratio of M/K, the parameters of the modified

MRT precoding converge to the parameters of the MRT precoding. Then the outage

probability formulas of the two schemes are the same. This can be explained from

the modified MRT precoding formula in (3.3). As K → ∞, the random variable

|hj|2/K converges to 1 using the law of large numbers. Thus the diagonal matrix

D converges to an identity matrix and the modified MRT precoding converges to

the MRT precoding. When K is finite and small compared to M , the outage prob-

abilities of the two precodings are different. In practice, massive MIMO systems

have finite M (usually no more than a few hundreds) due to the hardware and com-

putation limitations. Also the number of served users K is usually moderate (no

more than a few tens) due to the desired quality-of-service. Under such practice

scenario, simulation in Section 3.5 shows that modified MRT precoding has lower

outage probability.

3.4.2 Sum-Rate Analysis

In Section 3.4, we approximate the SINR at User k as

SINRk =
PtM

K

μX2
k

1 + Pt

K
Yk

.

Using this approximation, the average achievable rate at User k can be written as

E[Rk] =E

[
log2

(
1 +

PtM

K

μX2
k

1 + Pt

K
Yk

)]
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= log2

(
1 +

Pt

K
MμX2

k

)
+ E

[
log2

(
1 +

Pt

K + PtMμX2
k

Yk

)]

−E

[
log2

(
1 +

Pt

K
Yk

)]
.

With the pdf of Yk in (3.12) and the integral formula in (2.22), the average sum-rate

with modified MRT precoding is given by

E[Rsum]=K ·
{
log2

(
1+

Pt

K
MμX2

k

)
+
(1−r)−(K−2)

ln 2
e

Kr
λPt

[
exp(

rMμX2
k

λ
)

·E1

(
r(K+PtMμX2

k
)

λPt

)
− E1

(
Kr

λPt

)]
− r(1− r)−(K−2)

ln 2
e

K
λPt

·
[
e

Mμ
X2

k
λ

K−3∑
n=0

(1− r)n
n∑

i=0

Ei+1

(
K + PtMμX2

k

λPt

)
−

K−3∑
n=0

(1− rn)

·
K−3∑
n=0

(1− r)n
n∑

i=0

Ei+1

(
K

λPt

)]}
(3.22)

and the outage capacity can be written as

Rout = (1− Pout) ·Rsum. (3.23)

3.5 Simulation Results

In this section, we verify our analytical results and compare the performance of the

MRT precoding with the performance of the modified MRT precoding.

In Fig. 3.1, the pdf of the interference power is drawn. The number of antennas

is 100, and the number of users is assumed to be 10 and 30. Since (3.12) is the

closed-form of the infinite summation series, the large tail terms are remained and

(3.12) has a tight match to the Monte-Carlo simulation.

Fig. 3.2 shows the outage probability for different number of users ranging from

10 to 30. The number of antennas at the BS is 100. The total transmit power and

the SINR threshold are 10dB and 7dB respectively. It can be observed that the

outage probability increases rapidly as the number of users increases. In the proof

of Proposition 2, we treat the random variables |hnj|2 and |hj|4 as independent to
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simplify the derivation. However, the assumption relies on a large K. So the gap

between the analytical result and the Monte-Carlo simulation is noticeable when K

is 10. However, as K increases to 12, our result still tightly match to the simulation.

From the figure, it can be seen that the modified MRT precoding performs better

than the MRT precoding for all range of K.

In Fig. 3.3, the outage probability with different total transmit power is given.

The SINR threshold is 7dB. The number of users and the number of antennas are

15 and 100 respectively. The figure shows that the outage probability does not

decrease to 0 as the total transmit power increases. Similar with MRT precoding,

the modified precoding is interference limited. It is also shown that the modified

MRT precoding has a lower outage probability than MRT precoding.

Fig. 3.4 shows the system sum-rate for different number of users ranging from

2 to 20. The total transmit power is assumed as 10dB. As K increases, the sum-rate

with the modified precoding has a nearly linear growth. Also, it is also shown that

the sum-rate of the modified MRT precoding is greater than the sum-rate of MRT

precoding for all range of K.

Fig. 3.5 shows the sum-rate for different number of antennas ranging from 50

to 290. The total transmit power is 10dB. As the number of antennas M increases,

the system sum-rate with modified MRT precoding increases and is higher than the

sum-rate of MRT precoding for all range of M .

Fig. 3.6 shows the outage capacity for different number of users ranging from

5 to 30. The number of antennas is assumed as 100. The total transmit power

Pt is 10dB and the SINR threshold is 5dB. It is shown that the outage capacity

still increases as K increases from 5 to 20. When K is larger than 20, the outage

capacity starts decreasing due to high outage probability. The outage capcity of

the modified MRT precoding is greater than the outage capacity of MRT precoding,

because the modified MRT precoding performs better than MRT precoding both for

the outage probability and the sum-rate.
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3.6 Conclusion

In this chapter, we propose a modified MRT precoding under per-antenna transmit

power constraint, while MRT precoding only considers the total transmit power

constraint. By investigating the random properties of the received signal power

and interference power, an approximate pdf of the interference power is derived. In

addition, the analytical results of the outage probability and the sum-rate are derived

for the large but finite number of antennas and the moderate number of users. Also,

we compare our results with MRT precoding. The simulation results show that the

modified MRT precoding performs better than MRT precoding on both the outage

probability and the sum-rate.
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Chapter 4

Conclusion and Future Work

Massive MIMO is one of the most promising technologies for next generation cellu-

lar systems. Compared to conventional MIMO, due to the excess spatial resources,

massive MIMO can provide significantly higher throughput, link reliability, energy

efficiency. There are a lot of existing work on the sum-rate performance analy-

sis of massive MIMO. However, there are very little investigations on the outage

probability. Since the outage probability analysis requires the knowledge of the

random properties of the SINR, the asymptotically deterministic SINR results and

the method in existing work are not applicable for the outage probability analysis.

In our work, we preserve the random nature of the interference power and investi-

gate its distribution. This new approach allows the outage probability calculation.

Moreover, the practical per-antenna power constraint is considered for the multi-

user massive MIMO system. To accommodate the per-antenna power constraint,

we design a modified MRT precoding and derive its performance.

Chapter 2 is on the multi-user massive MIMO with MRT precoding. Assuming

a single-cell network with perfect CSI, the pdf of the interference power term in

SINR is derived with the help of central limit theory. Based on the pdf result, the

analytical results of the outage probability and the sum-rate are calculated by inte-

grals. The simulation results show that the sum-rate increases with the increasing

number of users, while the outage probability decreases on the contrary.

Chapter 3 extends the research to the per-antenna power constraint scenario
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which is more practical for the BS in cellular systems. A modified MRT precoding

is proposed under per-antenna transmit power constraint. By following the methods

of the first work, the pdf of the interference power are derived. Then the outage

probability and the sum-rate of the new precoding scheme are investigated. The

simulation results show that the modified MRT precoding can achieve lower outage

probability even with the more strict power constraint.

In the future work, more practical system models can be considered. Some

possible extensions are discussed in what follows.

• Channel errors

In real scenarios, channel errors exist when the BS estimates the CSI by up-

link training. Then the BS will have imperfect CSI instead of perfect CSI. It is

important to analyze the performance of the precoding schemes for massive

MIMO with imperfect CSI to understand the effect of CSI error.

• Correlated channels

With the large number of BS antennas in massive MIMO, antenna spacing is

limited when the BS is designed with a moderate size and then channel cor-

relation is inevitable. The performance analysis of massive MIMO systems

with correlated channels can be helpful in deciding the antenna spacing in

antenna arrays and the size of BSs.

• Pilot contamination

As mentioned in Section 1.6, when the number of transmit antennas goes

to infinity, the channels from the BS to the individual users becomes close-

to-orthogonal from each other. Thus the effects of small-fading and user-

interference diminish. On the contrary, pilot contamination caused by pilot

sharing becomes a more prominent challenge in massive MIMO systems.

One future direction is to extend our work to multi-cell massive MIMO sys-

tem with pilot contribution.

• Millimeter wave (mmWave)
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The use of mmWave is another potential direction for the next generation

cellular systems. Millimeter wave refers to extremely high frequency signals

ranging from 30GHz to 300 GHz (gigahertz). Due to the huge bandwidth of

mmWave, high data rate transmission can be provided. However, there are

a few challenges such as high propagation loss and sensitivity to blockage.

Performance analysis of massive MIMO using mmWave is a fast growing

research topic.
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