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Abstract

In this thesis we consider a heteroscedastic linear model in which observations are
arranged in groups with constant variance. We study the bias of an iterative weighted
least squares estimator when the error distribution is asymmetric. We use asymptotic
approximations and Monte Carlo simulations to investigate how ihe bias is related
to the degree of skewness, the degree of heteroscedasticity, the group size, and the

models for the means and variances.
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Chapter 1

Introduction

We consider a heteroscedastic linear model with responses arranged in k groups and

variances constant within each group:

Yij = xgﬁ-}- e; J=1,..,n, i=1,..,k, (1.1)

where Xx;; are known p x 1 vectors, f# is an unknown p x 1 vector of parameters,
and the errors e;; have mean 0 and unknown variance o?. We assume groups are

determined by replicates, so that x;; = x;. Our main interest is to estimate the

unknown regression parameter 3.

One could ignore the heteroscedasticity and use ordinary least squares (OLS) es-
timators or M- estimators to estimate 8 (Huber 1981), but such methods are not effi-
cient. To improve efficiency, many authors have recommended weighted least squares

(WLS) estimators. We introduce vector notation for (1.1):
yi=1.x] B + e (1.2)
Setting X; = lnix?, we have

yi = Xif+e. (1.3)



An expression for a WLS estimator is

k
B = (ECoXTX)'Y wiXTy.. (1.4)

=1 =1

k
When the errors are normally distributed and the variances o? are known, then the
optimal weigh s are 1; = 1/02Z. When the o? are unknown, we can obtain cstimates
&? of the variances and apply WLS using weights u; = 1/67.

There are two general approaches for estimating the variances. One approach

models the variance as a function of the mean and/or tiie covariates. For example,

the variance may be modeled as
log(a:) = 6o+ 0;log(x! B).

This is called the power of the mean model (Carroll and Ruppert, 1988). Box and
Hill (1974), Jobson and Fuller (1980) and Carroll and Ruppert (1982) modeled the

variance as

o? = H(x;,0), or H(xT3,0), H known.

)

Initial estimates 8, 3 were used to obtain variance estimates c;? = I (x;,0) or II(x:-F_[},
9), which were then used to obtain a WLS estimate of 8. This process can be iterated,
with new estimates #, § at each step. Jobson and Fuller (1980), and Carroll and
Ruppert (1982) showed that, as long as the preliminary estimators for the paramecters
of the variance function are consistent, all estimators of  obtained this way are
asymptotically equivalent to WLS estimators with optimal weights. Carroll (1982)

modeled the variance as

oc? = H(x;), or H(xFB), H unknown but smooth,

and used nonparametric regression to estimate H. He obtained asymptotic results
similar to those for the parametric variance model. We refer to this general approach
to variance estimation as model-based, where “model” refer to a model for the vari-

ances.



A second general approach is to use model-free variance estimates. The simplest

choice for ¢ is the sample variance

ng

st=(ni =17 Y (yi; ~ %), ni2 T (1.5)
i=1

Bement and Williams (1969) assumed normally distributed errors, used sample vari-
ances (1.5), and constructed approximations, as n; — oo, for the exact covariance
matrix of the resulting weighted least squares estimator. They did not discuss asymp-
totic distributions as £ — oo with fixed n;. Carroll and Cline (1988) showed that
weights based on sample variances yield highly inefficient estimates for § when the
number of replicates is small. For example, when n; = 2 the estimates are inconsis-

tent. Better weights are obtained from variance estimators of the form
wi(B) = ni'Y (v —x{B), (1.6)
i=1

where /3 is an estimate of . Fuller and Rao (1978) used the OLS estimator as B in
(1.6). Assuming normally distributed errors and regularity conditions, they showed
that the estimate is consistent and asymptotically normal. Carroll and Cline (1988)
and Shao (1989) showed that these conclusions hold under weaker assumptions. Shao
(1992) considered a modification of 3 that replaces the 9;(f) with empirical Bayes
estimates of the variances.

These two-step estimators perform well when the variances are not too dispersed,
but are less efficient under more severe heteroscedasticity. This is due to the reduced
efliciency of the initial estimator B (usually the OLS estimator) resulting in poorer
variance estimators. Under severe heteroscedasticity, efficiency can be improved by
iterating the procedure: Replace 3 by Bin (1.5) to obtain new weights, then compute
a new WLS estimator B Continuing iteration until ﬁ converges yields the normal
theory maximum likelihood estimator (MLE). Cochran (1937) and Neyman and Scott
(1948) studied the MLE for the common mean problem (p = 1,x; = 1) and derived

the limiting distribution as k — oo for fixed n = n; > 3. Sometimes it is not desirable



to continue iteration until 3 converges. Carroll and Cline (1988) showed that under
mild or moderate heteroscedasticity, Fuller and Rao’s two step estimator is better
than the MLE; under severe heteroscedasticity the MLE is better. As a compromise,
one might consider an estimator based on , say 3 or 4 iterations. Shao and Chen
(1993) derived a consistent estimator for the optimal number of iterations.

The weight 1/#; blows up as 9; approaches 0. Hooper (1993) sugpgested that the
poor performance of the MLE was caused by a feedback effect resulting in too much
weight being concentrated on a small number of groups. e studied fully iterative

WLS estimators with bounded weights of the form

o o= it (1.7)
0 + YT

where 7; is a model-based variance estimate and 7 is a parameter determining the
amount of heteroscedasticity not accounted for by the 7;. The inverse weight 1/ is a
weighted average of the model-free variance estimate 9; and the model-based variance
estimate 7;. The iterative weighted least squares (IWLS) estimator with weights (1.7)

1s asym ptotically optimal under normally distributed errors and a Bayesian model

for the variances:

1 I,
— ~ —YE. 1.8
o} Ti’YX" (1.8)

Hooper applied the method of moments to log(v;) and derived estimators for 4 and

7; under a log-linear model:
logr; = uly, (1.9)

where 7 is an unknown r x 1 parameter vector and u; is an r X 1 parameter vector
determined by x; and/or x;T'3. The simplest example of (1.8) is the constant-variance
model log(m;) = 7. A second example is the power of the mean model log(7;) =
M + n2 log(xFB). The parameters v and 7; in (1.7) can be estimated by the following

formulas:
oic(d) = minmax{s? — (k- 7)Y (1 — hi)olg(ni), 0k (vus)}s ok (v )11 10)

4



7= (UTU)TNUT(Z + pre(3)le), (1.11)
(1.12)

# = exp(uld),

where 0 < 45 < 94 < 00 are a priori lower and upper bounds on v, Z = (21, -, z&)7,
zi = log(v) = pra(ni), U = (w1, ue)T, H = (hij) = UUTU)WUT, s = (k-
r) 1 ZT(I, — H)Z, uic(a) = E{log g}, o}s(a) = var{logg}, and g ~ 1x2. Hooper
(1993) found in simulation studies that the estimator performs well in a wide variety of
situations, ranging from homoscedasticity to severe heteroscedasticity. The estimator
is consistent provided the error distribution is symmetric.

Sometimes there is no compelling reason to assume symmetry. Even when symme-
try seems a plausible assumption, recognition of the approximate nature of statistical
models leaves us with only an optimistic hope that any departures from this as-
sumption are small enough to be ignored. It is important to consider the effect of
asymmetry on the estimates.

One possible remedy for an asymmetric error distrbution is a transformation. Box
and Cox (1964) proposed choosing a transformation from the power transformatiou
family by the method of maximum likelihood . They applied the transformation to
the response in an attempt to achieve a simple linear model, homoscedastic errors,
and normally distributed errors. If we have a physical model, say y; = f(xi, 3), and
we transform only the response, then we destroy the original relationship between
response and regression function. Carroil and Ruppert (1984) suggested transfor-
mation on both sides (the response and the regression function simultaneously) to
reduce skewness and heteroscedasticity. They showed that the MLE for 8 is consis-
tent and asymptotically normal when o; — 0. Ruppert and Aldershof (1989) used an
M-estimator, rather than the MLE, to obtain a consistent estimator without requir-
ing that o; — 0. Carroll (1979) suggested that, when the error is asymmetric and
an appropriate transformation is hard to find, then a robust M-estimator provides
a reasonable solution. He introduced consistent M-estimators for the common mean

model and the simple linear regression model.

5



Usually assumptions about the error distribution, such as zero mean, normality, or
symmetry, determine the methods required for consistent estimation of parameters.
That is, in order to get a consistent estimate, we have to use diffcrent methods
for different error distributions. Welsh, Carroll and Ruppert (1994) addressed this
problem. They considered two extended models, one assuming additive errors and
the other non-additive errors, which include most of the heteroscedastic regression
models in current use. They developed methods of estimation appropriate for each
type of model and investigated issues of consistency and adaptability (does it matter
asymptotically whether certain nuisance parameters are known or estimated 7).

In this thesis we consider a heteroscedastic linear model (1.3), where each group
has the same number of replicates (n; = n, for all ). We study the performance of
the IWLS estimator with weight function (1.7). We are primarily concerned with the
effect of the group size n and the skewness of the error distribution on the bias of the
IWLS estimator. In chapter 2, we derive approximations for the asymptotic bias and
show that, when 7; is a constant, the slope parameters are estimated consistently. In
general, the bias can be approximated by a product of two terms: a scalar depend-
ing only on n and the distribution of the standardized errors ¢;//7:, and a vector
depending only on the 7; and x;. We calculate values for beth terms under specific:
model assumptions. In chapter 3, we report the results of a Monte Carlo study of the

bias in finite samples.



Chapter 2

Asymptotic Bias

In this chapter, we study the asymptotic bias for the IWLS estimator 3 defined by
weights (1.7). Under regularity conditions, 3 converges in probability as k¥ — co. We
will denote the limiting vector by B + 6 and will refer to § as the asymptotic bias of
S. In Section 2.1 we derive an equation defining §. In Section 2.2 we use a Taylor
approximation to express the asymptotic bias as a product of a scalar term £ and a
vector term a, and show the asymptotic bias for the slope parameters is zero when
7; is a constant. In Section 2.3 we use Monte Carlo simulation to study the scalar &.

In Section 2.4 we give an example to show how 7; affects the vector a.

2.1 An equation for the Asymptotic Bias

In deriving an equation for the asymptotic bias, we follow Hooper (1993) in assuming
that {(yi, Xi,e;),i = 1,2,-- .} is a sequence of independent and identically distributed
random vectors. This is a convenient device for describing the limiting behavior of
X;. Our results can be applied to applications where the X; are non-random. Our
assumptions primarily involve conditional distributions given X;. In the derivation,
we assume that certain estimators converge in probability. We do not specify the

regularity conditions needed for this convergence.



The IWLS estimator is

k -1
g = (Zu‘).-x?x,-) 3 wiXTy:
=1

=1

k =1 & .
= A+ (Z t‘l‘l.'x;Tx;) Z tb.'xg‘e;. (2.1)
i=1 =1
Put
§ = B-8 (2.2)
- <\ (1% T
= ( gw,-x,' X.) (zé;w.x, e“) . (2-3)
The estimated weight function is
B = X (2.4)
n; + 97

with

:l’-‘

Z:: (vi; —xTA) = %i (e — x74)". (2.5)

i=1
Write #; = 7(x;, B,%). Under regularity conditions, 7 and 4 converge in probability,
say f—pn and 9—,v. As stated previously, we assume ﬁ-—»,,ﬂ + & and hence 3—0,,6.

Put

o= T(Xi,ﬂ+5,77), (26)
S | T8\’
5 = nZ(e,J x76)", (2.7)
w; = —?—tl:, (2.8)
no; + Y7
6 = ( Lw,XTX) ( Zw.X e.). (2.9)
=1 =1

Under regularity conditions, 6—8—,0. Since (;, X, €;) is a sequence of independent,

and identically distributed random vectors, we have

k
% > XXy {:XTX,}, (2.10)
1 k
z Y @i XTei—,E {1 XTe;} . (2.11)



Combining the above, we have
§ = (E{&XTX:})” E{&:1XTer}.
Thus § is a solution of the eéﬁation
E {5, XT(e; - X16)} = 0. (2.12)

Substituting X; = 1,x7 and (2.7) yields

. Tioi(er; —x76) _
(+7)E {‘7‘71 + Xia(er - "H)ZXI =0 (213)

Put

t = 7%, (2.14)

hy = 7 Ve, (2.15)

The asymptotic bias § is a solution of the equation

Sialh =79 ] _
Pl ) — o (216)

2.2 Approximations

In this section we introduce several approximations for the asymptotic bias. A key
assumption throughout is that the distribution of the standardized errors is inde-
pendent of the explanatory variables; that is , setting r; = 7(xi, 8,7), we assume

that

-1/2
7

e; and x; are independent. (2.17)

An interpretation of this assumpiion is that the relationship between the error distri-
bution and the explanatory variables is determined completely by the model 7(x, 8, 7)

for the variance.



We expect that the asymptotic bias will have relatively little effect on the model-
based variance estimates and so approximate #; = 7(x,, 8+ é,7) by 1. = 7(x;, 8, 1) in

our derivation. We therefore consider a solution é of (2.16) with
h; =1, Ve and t =1 x,. (2.18)

This approximation is unnecessary under the constant variance model where, by
definition, we have #; = 7, = 7, constant. Assumptions (2.17) and (2.18) imply
that (hy,---,h,) and t are independent. Note that we do not assume that hy,---, A,
are independent. _

Suppose (2.18) holds and there exists a constant vector ac/?* such that a’t = 1
with probability one. We can then take § = £a with £eR' and (2.16) factors into a

product of two expectations:

Zi(hi — &) }
r - E{t} = 0.
e
We assume that E {t} # 0, which will always be the casc when the model for the

means includes a constant term. The scalar ¢ can then be obtained by solving

2ilhi = §) _
E{’Y+Ej(hj—f)2} = 0. (2.19)

The solution to (2.19) can be approximated by using a first order Taylor approxima-

tion. Put

_ 2i(h; =€)
16 = E{7+2AM—€V}' (2.20)

For ¢ close to zero, we have
f(€) = f(0) + f'(0),

and the solution to (2.19) is approximated by

—f(0)

()

i > S
B -2 (5%) |

10

2.
M (2.21)
2



Thus é is approximated by oa.

The approximation above can be applied under the constant variance model: 7; =
71 constant for all i. We assume that the model for the means includes a constant
term. More precisely, suppose z;, = 1 for all ¢; i.e., 8, is the intercept parameter
and fB,---,f, are slope parameters. We may then take a = ({/71,0,---,0). This
confirms a result in Hooper (1993) that estimates of slope parameters are consistent
under the constant variance model. A corresponding result for M-estimators (n = 1)
is described by Carroll and Welsh (1988). We note that this is an exact result, not a
approximation,-since 7; = 7; in this situation. The asymptotic bias for the intercept
can be approximated by &o/71.

When the variance model is not constant, so 7; varies from group to group, it is not
possible in general to find a constant vector acRP so that aTt = 1. It is, however, still
possible to use a linear expansion to approximate the asymptotic bias as a product

of two expectations. Define f: R? — RF by

- (ks —t76)
For & close to zero, we have
f(8) = £(0) + f(0)é

Now

f(0) = E{%Lﬁf} E {t},

fl(O) = —FE n _2( ZJhJ )2 E{ttT}
T+Z5h T\ + XA '

Thus é can be approximated by

—[fO7f(0) = &oa,
where £ is given by (2.21) and
a = [E{etT}] " E{t}. (2.23)

11



We note that a in (2.23) agrees with our previous result a = (/71,0,---,0)7 under

the constant-variance model. In this case t = (t;,---,t,)7 with ¢, = 1//71 constant.
Now
VT
T 0
E{t"}| = E{t}.
b 0 -

When 7; varies from group to group, slope parameters are not necessarily consis-
tent. Our results show that the asymptotic bias can be approximated by a product of
two terms: & depending on the group size n and the standardized error distribution
e;/\/T, and a depending on the explanatory variables x; and the variance model 7;.

We give some numerical results on £ in the next section and on a in Scction 2.4.

2.3 Evaluation of &

In this section we evaluate & under a particular model for the standardized error
distribution. Let g;,- - -, gn be independent Gamma(a, 1) random variables with shape

parameter a and scale parameter 1; i.e., g; has density
{T(«)} " g*'exp(~g),9 > 0.

Note that g; has mean « and variance a. Let u be a Gamma(%, %) random variable;
i.e., u ~ (1/7)x%. We assume that u and g;,:-,gn are independent. We model the

standardized errors h; = ey;/,/71 by

g — @

Va/u'

In terms of our original model (1.2), the variance o} is given by

h;

af = 7n/u,

12



and hence

The weights (1.7) are asymptotically optimal under this Bayesian model for the vari-
ances. The parameter « reflects the degree of heteroscedasticity in the a? that is not
accounted for by the variance model. In this sense, ¥ can be viewed as an overdis-
persion parameter. Smaller values of 4 correspond to more severe heteroscedasticity.

The Gamma shape parameter o controls the degree of skewness in the error
distribution, with smaller o determining greater skewness to the right. We have
(g — @) /@ —q4 N(0,1), as a — oo.

We used Monte Carlo simulation, with 10,000 replicates of (ky,:--,hy), to ap-
proximate the expectations defining & in (2.21). Recall that & is based on a linear
approximation to either a scalar-valued function f in (2.20) or a vector-valued func-
tion f in (2.22). To examine the validity of this approximation, we plotted the
scalar-valued f for several values of a and 4. The plots in Figure 2.1 suggest that f
is almost linear near zero. Notice that the intercept is further from zero when v and
a are small.

Values for & are given in Table 2.1 to Table 2.6 for various values of a, 7, and
n. Monte Carlo standard errors for £ are given in parentheses. The results are
summarized in Figure 2.2 by plots of & versus In(an) for different values of 4. The
plots show that |£] is a decreasing function of a, v, and n. The analysis of variance in
Table 2.7 shows that, as a, 4, and n vary, most of the variation in ¢, can be expressed
as a function of 4 and na . We do not have a complete explanation for this empirical

observation but we expect this is related to the fact that .7, g; ~ Gamma(na, 1).

13
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Table 2.1: & when v =1

a
n 0.5 1 2 3 5 10 100
1 -.491 -.405 | -.297 | -.228 | -.183 | -.133 | -.032
(.013) | (.014) | (.015) | (.014) | (.014) | (.014) | (.014)
2 -.391 -.304 | -.219 | -.183 | -.155 | -.106 ~.024—
(.010) | (.010) | (.010) | (.010) | (.009) | (.009) | (.009)
3 -.334 -.250 | -.188 | -.152 | -.123 | -.086 | -.040
(.008) | (.008) | (.008) | (.007) | (.007) | (.007) | (.007)
5 -.269 | -.207 | -.147 | -.114 | -.084 | -.063 | -.017
(.007) | (.006) | (.006) | (.005) | (.005) | (.005) | (.005)
10| -.172 -.119 | -.089 | -.067 | -.050 | -.044 | -.014
(.004) | (.004) | (.004) | (.004) | (.003) | (.004) | (.003)
Table 2.2: £, when v =2
o
n 0.5 1 2 3 5 10 100
! -.363 | -.306 | -.243 | -.206 | -.158 -.092 -.018
(.010) | (011) | (.012) | (.012) | (.013) | (.013) | (.013)
2 | -.338 | -.263 | -.201 | -.163 | -.144 -.081 -.034
(.008) | (.008) | (.009) | (.009) | (.009) | (.009) | (.009)
3§ -292 ) -.234 | -.167 | -.144 | -.114 -.078 -.025
(.007) | (.007) | (.007) | (.007) | (.007) | (.007) | (.007)
5 | -.236 | -.190 | -.132 | -.115 | -.090 -.063 -.027
(.005) | (.005) | (.005) | (.005) | (.005) | ( .005) | (.005)
10} -.164 | -.120 | -.084 | -.072 | -.060 -.038 -.010
(.004) | (.004) | (.004) { (.004) | (.004) | (.003) | (.003)

16




Table 2.3: &, when v =3

o

n 0.5 1 2 3 5 10 100
1 -.307 | -.286 | -.197 | -.178 | -.114 | -.108 | -.030
(.009) | 010) | (.012) | (012) | (012) | (.012) | (.012)

27 -.269 | -.228 | -.187 | -.149 | -.121 | -.071 | -.036
(.007) | (.008) | (.008) | (.008) | (.008) | (.008) | (.008)

3 -.262 | -.207 | -.162 | -.129 | -.103 | -.077 | -.022
(.006) | (.006) | (.007) | (.007) | (.007) | (.007) | (.007)

5 | -213 | -.166 | -.125 | -.103 | -.090 | -.058 | -.020
(.005) | (.005) | (.007) | (.005) | (.005) | (.005) | (.005)

10| -.159 | -.121 | -.083 | -.063 | -.058 | -.041 | -.009
(.004) | (.004) | (.003) | (.003) | (.003) | (.003) | (.003)

Table 2.4: &, when v =5
[ 4

n 0.5 1 2 3 5 10 100
1 -.212 | -.186 | -.148 | -.133 | -.119 § -.067 | -.019
(.008) | (.o10) | (.010) | (011) | o1y | (Lo11) | (.012)

2 | -.208 | -.164 | -.143 | -.113 | -.091 | -.055 | -.020
(.006) | (.007) | (.008) | (.008) | (.008) | (.008) | (.008)

3 1-197 | -.169 | -.121 | -.101 | -.080 | -.062 | -.035
(.005) | (.006) | (.006) | (.006) | (.006) | (.006) | (.006)

5 | -.168 | -.147 | -.104 | -.082 | -.067 | -.056 | -.016
(.004) | (.005) | (.005) | (.005) | (.005) | (.005) | (.005)

10| -.136 | -.099 | -.072 | -.061 | -.047 | -.033 | -.008
(.003) | (.003) | (.003) | (.003) | (.003) | (.003) | (.003)
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Table 2.5: & when v =10

[44
n 0.5 1 2 3 5 10 100
1 -.140 -.131 -.097 | -.081 -.067 -.047 -.012
(.008) | (.009) | (.010) | (.010) | (.010) | (.011) | (.011)
2 -.131 -112 | -.082 | -.084 | -.074 | -.048 | -.003
(.006) | (.006) | (.007) | (.007) | (.008) | (.007) | (.008)
3 -.127 | -.105 | -.085 | -.064 | -.063 | -.039 | -.015
(.005) | (.005) | (.006) | (.006) | (.006) | (.006) | (.006)
5 -.119 | -.096 | -.078 | -.059 | -.049 | -.036 | -.003
(.004) | (.004) | (.005) | (.005) | (.005) | (.005) | (.005)
10 { -.102 -.081 -.059 -.046 -.036 -.031 -.010
(.003) | (.003) | (.003) | (.003) | (.003) | (.003) | (.003)
Table 2.6: & when 4 = 100
o
n 0.5 1 2 3 5 10 100
1 -.0156 | -.018 .000 .007 -.014 | -.022 | -.011
(.009) | (.010) | (.010) | (.010) | (.010) | (.010) | (.010)
2 -.016 | -.015 | -.006 | -.013 | -.010 | -.009 -.010
(.007) | (.007) | (.007) | (.007) | (.007) | (.007) | (.007)
3 -.023 | -.022 | -011 | -.008 | -.013 | -.007 | -.007
(.005) | (.006) | (.006) | (.006) | (.006) | (.006) { (.006)
5 -.024 | -.016 | -.014 | -.016 | -.009 | -.002 | -.002
(.004) | (.004) | (.004) | (.004) | (.005) | (.004) | (.004)
10 | -.023 -.018 | -.016 | -.013 | -.008 | -.012 | -.006
(.003) | (.003) | (.003) | (.003) | (.003) | (.003) [ (.003)

Note: Standard errors are in the parentheses
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Table 2.7: Analysis of Variance for &

Source df | Sum of Squares | Mean Square | F-ratio | Prob
log(na) | 22 0.858 0.041 241.51 | < .0001
- 5 0.532 0.106 628.73 | < .0001
v x log(na) | 105 0.310 0.0029 17437 | £.0001
Error 78 0. 9 0.000169
Total 209 1.7325

2.4 Evaluation of a

In this section we give an example of how the variance model 7 can affect the asymp-

totic bias . We consider a simple linear regression model
Yi; = Po+ Pz + eij,
so X; = (1,2;)7 and 8 = (Bo, /1)¥. We adopt a power-of-mean model for the variance
log(n:) = no + mlog(Be + Arzi),

and fix 7o = 0, 5, = 2, and Bp = 1. Recall that the asymptotic bias is approximated

by éva, where
a = [E{ttT}] E{t},

with

1 1
- 1 +ﬂ1$1 I |

We used Monte Carlo simulation, with 10,000 replication of z,;, to evalulate a for

several values of 3, when z; ~ Uniform(0,1). The results, given in Table 2.8, suggest
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Table 2.8: Values for the vector a

| 6o | By a?

+ 1 | o [1.000 | 0.000
1| 1 {0.999 | 0.000
1] 2 0916027
1| 3 |o0.659 | 1.486
1| 5 [0.670 ] 2480
1 |10 ] 0.578 | 5.562

that (i) the asymptotic bias for the intercept B, decreases as A3, increascs; (ii) the
asymptotic bias for the slope f3; is zero when f; = 0 and increases with 8;. This is
reasonable in view of the fact that the variance 7; is constant when 8, = 0 and 7;

becomes increasingly variable as f; increases.
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Chapter 3

Bias for Finite Samples

In this chapter we prove that, when 7 is constant, the IWLS estimator Bis equivariant
and hence its bias is the same for all . We then describe several Monte Carlo studies

for the common mean model and the simple linear regression model for finite samples.

3.1 Equivariance of B8 when 7 is constant

Consider the model
yi = Xif+e, i=1,--:,k,

and the IWLS estimator

k
g = (Ew,-x?x,-) 3 wiXTy;,
i=1

i=1

where
B = nty (3.1)
Ily: — X:Bl12 + 47
with 7; = 7 the same for all ¢t = 1,---, k. We assume that 4 and 7 are functions of

the residuals y; — X;ﬁ. Now put
¢ = B+6,
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and consider estimation of ¢ based on data
S’i = X€C+ei=y|’+x65, 1= 1,"',k.

We claim that the IWLS estimator { satisfies

To prove this, first consider the estimator
. k -1k
¢ = (Z zb;X'-TX.') 3 Xy,
1 =1

where 10; is given by (3.1). We then have

and so
vi-XiB = yi—Xil.

It follows that the 1, are also the weights defining the IWLS estimator f; je., (= é

Thus we have
(-¢ = B-8

Taking expectations shows that the bias E{,@} — B is the same for all fchi".

3.2 The Common Mean Model

Consider the model
Yi; = ﬂ"l’eij, j=1,"-,n,i=1,---,k_

The observations are assumed to have the same mean f but different variances in

different groups. We assume that the errors are given by

o = Wiz a)VT
15 - \/—-‘a \/—"u‘ )
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where the gi; and u; are all independent with g;; ~ Gamma(a, 1) and u; ~ Gamma (-}, %) .
In this model we have 1; = 7 = exp{n}, the same for all groups.
We describe a Monte Carlo study to investigate how the bias of the IWLS estimator
B varies with n, v, and a. Without loss generality (see Section 3.1) we fix § = 0 and
n = 0. Wr also fix the total number of observations nk = 24. We obtained bias

estimates for all combinations of the following values of n, 4, and a:
o ne€{1,2,3,4,6,8},
o v€{1,2,3,5,10,100},
e o € {0.5,1,2,3,5,10,100}.

Each bias estimate was based on 10,000 replicates. For each replicate, the IWLS
estimate 3 was obtained by applying Algorithm 1 in Hooper (1993). We used the
OLS estimator as the preliminary estimator B, then calculated 4, #, i, and B by
(1.9)-(1.11), (1.7) and (1.4), then replaced 3 by 3, and repeated the steps until B

converged.

The results are shown in Table 3.1 - Table 3.6. Monte Carlo standard errors are
in parentheses. The results are summarized by plots of bias versus log(na) for each ¥
in Figure 3.1. The analysis of variance in Table 3.7 shows that, as a, v, and n vary,
most of the variation can be expressed as a function of 4 and na. The results are
similar to those for the asymptotic bias & described in Section 2.3, except that the
plots reveal less variation in the bias as 4 varies from 1 to 100. This is because we

set bounds 1 € 4 € 10 in the algorithm.
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Table 3.1: The bias for the common mean model when v =1

n| 0.5 1 2 3 5 10 | 100
1| -408 | -.343 | -.264 | -.222 | -.176 | -.124 | -.039
(.001) | (.001) | (.002) | (.001) | (.001) | (.002) | (.002)
9| -339 | -281 | -.211 | -.177 | -.140 | -.099 | -.034
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
3| -201 | -236 | -.179 | -.146 | -.115 | -.084 | -.026
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
4| -25¢ | -201 | -.150 | -.124 | -.098 | -.071 | -.020
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
6| -206 | -.162 | -.117 | -.100 | -.076 | -.054 | -.017
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
8| -173 | -.133 | -.098 | -.077 | -.063 | -.045 | -.015
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
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Table 3.2: The bias for the common mean model when v = 2

n| 05 1 2 3 5 10 | 100
-.346 | -.284 | -.215 | -.179 | -.142 | -.101 | -.033
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
2| -.327 | -.259 | -.191 | -.161 | -.130 | -.091 | -.028
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
3| -290 | -.226 | -.167 | -.140 | -.108 | -.080 | -.023
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
4| -.258 | -.199 | -.147 | -.120 | -.094 | -.067 | -.021
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
6|-211|-163 | -.117 | -.096 | -.075 | -.054 | -.017
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
8| -178 | -.133 | -.099 | -.080 | -.061 | -.045 | -.014
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)

25



Table 3.3: The bias for the common mean model when 4 =3

n| 05 1 2 3 5 10 | 100
1{-285 | -233 | -.177 { -.150 | -.120 | -.084 | -.027
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
21 -.303 | -.230 | -.169 | -.139 | -.110 | -.080 | -.027
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
31-279 | -213 | -.152 | -.123 | -.098 | -.068 | -.022
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
4| -252 | -.189 | -.137 | -.111 | -.089 | -.061 | -.021
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
6| -.208 | -.156 | -.112 | -.091 | -.073 | -.050 | -.017
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
8| -177 | -.132 | -.093 | -.076 | -.061 | -.041 | -.015
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
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Table 3.4: The bias for the common mean model when v = &

n| 0.5 1 2 3 5 10 | 100
276 | -192 | -.148 | -128 | -.099 | -.073 | -.024
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
2| -264 | -.104 | -.143 | -.114 | -.089 | -.066 | -.020
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
3| -262{-101 | -.131 | -.107 | -.083 | -.057 | -.017
(.001) | (.001) { (.001) | (.001) | (.001) | (.001) | (.001)
4| -243 | -174 | -.119 | -.067 | -.076 | -.050 | -.016
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
6| -205 | -.146 | -.104 | -.083 | -.063 | -.043 | -.013
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
8| -170 | -.127 | -.089 | -.068 | -.054 | -.038 | -.011
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
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Table 3.5: The bias for the common mean model when v = 10

n| 05 1 2 3 5 10 | 100
1] -195 | -.162 | -.130 | -.108 | -.087 | -.062 | -.020
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
9| -226 | -.164 | -.117 | -.098 | -.075 | -.052 | -.016
(.001) | (.001) | (.001) | (-001) | (.001) | (.001) | (.001)
3| -230 | -.163 | -.112 | -.087 | -.068 | -.047 | -.018
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
4| -227 | -156 | -.104 | -.083 | -.063 | -.045 | -.012
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
6| -.194 | -.134 | -.090 | -.072 | -.055 | -.037 | -.010
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
8| -166 | -.118 | -.077 | -.063 | -.050 | -.034 | -.010
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
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Table 3.6: The bias for the common mean model when v = 100

——

a
n| 05 1 2 3 5 10 100
1] -.169 | -.143 | -.111 | -.097 | -.077 | -.055 | -.017
(.001) { (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
2] -192 { -.137 | -.099 | -.083 | -.064 | -.046 | -.015
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
3| -211|-136 | -.094 | -.074 | -.061 | -.040 | -.013
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
41| -.208 | -.133 | -.088 | -.069 | -.052 | -.036 | -.012
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
6| -.187 | -.119 | -.074 | -.059 | -.047 | -.032 | -.009
(.001) | (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
8| -.158 | -.103 | -.065 | -.053 | -.042 | -.029 | -.010
(.001) { (.001) | (.001) | (.001) | (.001) | (.001) | (.001)
Table 3.7: Analysis of Variance for the Bias
Source df | Sum of Squares | Mean Square | F-ratio | Prob
log(na) 26 1.335 0.051 87.653 | < .0001
~ 5 0.084 0.017 28.689 | < .0001
~ x log(na) | 130 0.069 0.000531 0.90584 | 0.6992
Error 90 0.053 0.000586
Total 251 1.581
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3.3 The Simple Linear Regression Model

Consider the simple linear regression model
Yij = ﬂ0+ﬂlzi+eijs J= 1)"'1"’9 1= 1)"'ak-

We first prove that when 7; = 7 is constant and {z;} is symmetric, in the sense that

{zi—z:i=1,---,k} ={—(zi— &) :i=1,---,k}, then the distribution of the IWLS

estimator for the slope parameter is symmetric about 8,. By reparameterizing, we

may assume without loss of generality that £ = 0. The IWLS estimator is

(3) - o ()] (e ()

The bias is given by E{(60,4,)T}, where

& (e N (e (1
(5) = = n)] (=)

_ (=i, T iz B 3 wie;.
|\ Swiwi, T S i 7

30 = (E ‘lf),- Z‘(D,':l:? - (Z lbg:tg)z)—l (Z 1.7);&:?,—-212):‘23{) ( . _-.‘. ) ’ (33)

(3.2)

Thus

o= (Do et — (D)) (= 3 i, ) ( o ) . (34

W;€; T;
where
B o= —IT (3.5)
nv; + 97
n
. - A a2
% = ntYy (e,-j — 6o — 6,:1:.-) . (3.6)
=

We assume that 4 and 7 are functions of {(%;,z;) : ¢ = 1,---,k}. Now the mapping

(zi, &) — (—=xi,€.),t = 1,---, k, produces the following effects: 50 — 6},, 51 — —6;,
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5 — 4, ¥; = ¥;, w; — W;. The mapping does not affect the distribution of 8;. Thus
we have é, ~ —b;.

When 7; is not constant the bias of the ﬁl is dependent on the value of 8,. We
describe Monte Carlo studies for 8; = 1 and B8; = 2. We adopt the same modrl for

the errors as in Section 3.2, except the 7; are now assumed to follow the model

log(r;) = 5o+ mlog(fo + Przi).

We fix 50 = 0, 7, = 2, fo = 1 and the total number of cbservations nk = 24. We
choose the z; to be spread evenly across [0, 1]; i.e., {z1,- -+, T4} divides [0,1] into k+1
subintervals of equal length. For all combinations of n, a and vy in Section 3.2, we
estimated the bias based on 1,000 replicates using the Algorithm 1 in Hooper (1993).
The results are summarized in Figure 3.2 and Figure 3.3. These plots show that the
absolute bias tends to decrease as na increases, and increases as 3, increascs. This
is as expected. A result that was not expected is that the bias was not related to
~, except for greater variation in bias estimates when v is small. An examination
of the estimates 4 reveals that v is severely underestimated in most cases. This
may be due to the fact that we are attempting to estimate too many parameters
(Bo, Br, Mo, M, 7) with too few data points. It may also be due in part to a technique
used to deal with negative values of ﬁo + ﬁlx; when fitting the log-linear model for
1;: we replaced Bo + Bz by its absolute value. In retrospect, we think a different
technique would produce better results; e.g., replace Eu + ﬁlz; by max{c,[;o + ﬂ‘lz;}
for some positive constant e. We plan to investigate this possibility by carrying out

additional simulations.
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Chapter 4

Conclusion

For the heteroscedastic linear model with the same number of replications in each
group, we studied the performance of an IWLS estimator when the error distribution
is asymmetric. The weights defining the IWLS estimator were derived by Hooper
(1993) assuming normal errors and a Bayesian model for the variances.

We derived an approximation for the asymptotic bias of the IWLS estimator as
a product of two terms: a scalar term depending on group size and the standardized
error distribution, and a vector term depending on the model for the means and the
model for the variances. Under the constant-varian ce model, the slope parameters
are cstimated consistently. The approximation was evaluated assuming a particular
family of skewed distribution. The results suggest that the magnitude of the asymp-
totic bias increases with the degree of skewness and heteroscedasticity, and decreases
with the group size.

We also carried out a Monto Carlo study to evaluate the finite sample performance
of the IWLS estimator in several examples. The results were in rough agreement with
the asymptotic approximations. depends on the explanatory variables and 7;. When
7; is constant, we have shown that the IWLS estimator for the slope parameters
are estimated consistently. The simulation study showed the absolute value for the

asymptotic bias decreases as skewness
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