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GLOSSARY

bpp bits per pixel.

DCT Discrete Cosine Transform.

DWT Discrete Wavelet Transform.

EZW Embedded Zerotree Wavelet Algorithm.

GMDC Generalized Multiple Description Coding.

HVS Human Visual System.

JPEG Joint Photographic Experts Group.

MDC Multiple Description Coding.

MDCT Multiple Description Correlating Transform.

MDSQ Multiple Description Scalar Quantizer.

MPEG Moving Pictures Expert Group.

OBDWT Object-Based Discrete Wavelet Transform.

PDMD Polyphase Downsampling Multiple Description Coding. 

PSNR Peak Signal to Noise Ratio 

ROI Region of Interest.

SPIHT Set Partitioning In Hierarchical Trees.
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C h a p t e r  1 

INTRODUCTION

1.1 Introduction to MDC

Multiple Description Coding (MDC) is a source coding technique that is robust against 

lossy transmission networks. MDC encodes a media source (video or image) into two 

or more sub-bitstreams (descriptions) that are of equal importance. These descriptions 

can be decoded independently to produce a basic quality of the original source. When 

more descriptions are received, the decoder can reconstruct the source using many 

descriptions and gradually increase the quality.

There are two types of MDC that have led to a flurry of proposed approaches. One is 

Multiple Description Scalar Quantizer (MDSQ) [1, 2, 3] that requires careful index 

assignments. The other is Multiple Description Transform Coding (MDTC)[4, 5] that 

necessitates an additional correlating transform to the conventional decorrelating 

transform. Since these approaches need to design specific quantizers or transforms, 

MDC is achieved at the expense of relatively complicated system design.

In [6], a new method is presented to separate description generation and redundancy 

addition that greatly reduces the implementation complexity specific to systems with 

more than two descriptions. In this method, description generation is accomplished 

using a polyphase transform, and each of the polyphase components is coded 

independently at a source coding rate. Redundancy is then explicitly added to each 

description by coding other descriptions at low redundancy coding rate, using selective 

quantization. Many methods [6, 7, 8, 9,10] are built on this framework.

1
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1.2 Motivation

Although the algorithms in Section 1.1 achieve graceful degradation of image quality in 

the presence of increasing description loss, they improve the overall quality without 

taking into account the contents of an image. In practice, the foreground object often 

attracts more interest than the background does. For example, small important parts of 

medical images may be sufficient for doctors. The object-based coding technique that 

makes visual objects available in the compressed form has been an active research area 

in the past few years. It can not only provide great flexibility for operating arbitrarily 

shaped visual objects in multimedia applications but also potentially improve the 

quality of visual objects at low bit rates. The emerging image and video compression 

standards, such as JPEG-2000, MPEG-4 and MPEG-7 rely on a content-based 

representation of visual objects that code the region of interest (ROI) separately from 

the rest of an image.

In this thesis, my aim is to design and implement an algorithm to protect arbitrarily 

shaped regions of interest in Multiple Description Coding (MDC). The main idea is to 

treat an image as a composition of several layers, and set different layers with different 

priorities. Because many of the visual objects have arbitrary shapes and traditional 

Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) 

algorithms can only be performed on a rectangular region, we need the Object-based 

DWT (OBDWT) to code arbitrarily shaped image objects. In MDC systems, if packet 

losses occur, it is possible to recover them by exploiting redundancy. There is a 

tradeoff between the coding efficiency and the image quality. How to add the 

redundancy in each descripition is the key point of the design of MDC systems. Here, 

we present two different methods capable of adapting to two kinds of network 

conditions.
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The first method proposes a new scheme using the object-based discrete wavelet 

transform [11, 12] and Polyphase Downsampling Multiple Description Coding 

(PDMD) algorithm [13] in order to protect the region of interest. The main idea of 

[13] is that any given pixel can be reasonably predicted from the value of its neighbors. 

Therefore, we can take advantage of this natural correlation and split the image source 

into n descriptions by a polyphase downsampler along rows and columns. Each of the 

descriptions includes a region of interest and one component of the background. This 

method is suitable for error-prone networks.

In the second method, the MDC system is built on the framework proposed by [26]. 

The main idea of [26] is that wavelet coefficients corresponding to the ROI are scaled 

by a larger factor so that the information about ROI is sent in the earlier parts of the 

coding bitstream. Here, we use OBDWT shape mask coding to get wavelet coefficient 

trees belonging to arbitrarily shaped ROI. Using this method, the number of scaled 

wavelet coefficients can be reduced so that the coding efficiency of the Set Partitioning 

in Hierarchical Trees (SPIHT) algorithm will be improved, and the reconstructed 

quality of the ROI and background can also be improved. In the Experiments and 

Results section we show that this method is superior to the original one and it is 

suitable for relatively stable networks.

1.3 Thesis Organization

The thesis is organized as follows. Chapter 2 presents some background information 

on wavelet transform and zerotree coding to assist in understanding the content of this 

thesis.

Chapter 3 gives a description of related works. First, source coding techniques meeting 

the requirement of error-prone networks are introduced. Second, the definition of 

MDC is discussed. Finally, the different kinds of MDC frameworks are presented.

3
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In Chapter 4, we propose the first method to protect arbitrarily shaped Region of 

Interests (ROI) in PDMD framework. Some experiments are designed and the results 

are compared with other papers in literature.

In Chapter 5, we present the second method, based on the MD-SPIHT framework. 

First, this method is compared with paper [26], demonstrating an improved result. 

Then I compare the results using arbitrarily shaped ROI with forevation techniques. 

Finally, I demonstrate the result of the multiple ROIs.

In Chapter 6, experimental results are analyzed and some conclusions are presented.

In Chapter 7, some interesting possible future works are discussed.

4
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C h a p t e r  2

BACKGROUND

This section presents some background information on wavelet transform and 

zerotree coding. This theory is important for understanding the material in other 

chapters in this thesis.

2.1 Wavelet Transform

A natural image can be modeled as piecewise polynomials, and a properly chosen 

polynomial function can lead to frequency domain analysis. Wavelets are functions that 

satisfy certain mathematical requirements and they are used in representing data or 

other functions. Wavelet algorithms process data at different scales or resolutions. The 

multiresolution representation of an image is the most important property of the 

wavelet transform.

2.1.1 Why use Wavelet Transform?

Compression techniques are used to reduce redundant information in image and video 

in order to facilitate data storage and network transmission. Coding of a still image 

under MPEG-4 and JPEG200 is based on the wavelet transform. However, in the 

original JPEG standard, the JPEG committee adopted discrete cosine transform 

(DCT) as the foundation of JPEG. Why should we use wavelet transform?

One reason for doing so is the shortcomings of DCT and other block-based 

transforms. Since the block-based transforms decompose the image into

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



non-overlapping blocks and process them separately, the blocking artifacts are visible 

at the block boundaries; these cause discontinuity in the reconstructed image.

The other factor is the development of methods to code the wavelet coefficients. The 

methods of coding the wavelet transform coefficients are less efficient than those of 

DCT, until the introduction of the Embedded Zerotree Wavelet (EZW) [15]. EZW 

algorithm takes advantage of the multiresolution features of the wavelet transform to 

achieve a high compression performance.

2.1.2 Wavelet Transform vs. Fourier Transform

The Fourier transform is based on frequency domain analysis of the image. In the 

Fourier transform, a signal is broken down into constituent sinusoids of different 

frequencies. These sins and cosines are the basis functions and elements of Fourier 

synthesis. Similarly, the wavelet transform can be viewed as transforming the signal 

from the time domain to the wavelet domain. This new domain contains more flexible 

basis functions called wavelets, mother wavelets or analyzing wavelets.

The most important difference between these two kinds of transform is that individual 

wavelet functions are localized in space. The basis functions of the Fourier transform 

are very exact in frequency, but are spatially not precise. This means that the signal 

energy is not concentrated at one frequency, but is spread over space. When pixels in 

images have low correlation, such as an edge or object boundaries, it will lead to some 

problems. After the Fourier transform, each coefficient corresponds to a fixed size 

spatial area and a fixed frequency bandwidth. Edge information tends to disperse and 

loses local representation with good fidelity. An advantage of wavelet transforms is 

that the windows can vary . Wavelet analysis allows us to use long time intervals when 

we want more precise low-frequency information, and use short time intervals when 

we want high-frequency information. This localization feature, along with the wavelets’

6
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localization of frequency, makes many functions and operators using wavelets in data 

compression, detecting features in images and de-noising signals [16].

2.2 Object-based Discrete Wavelet Transform (OBDWT)

Object-based coding of images and video allows separate decoding and reconstruction 

of arbitrarily shaped video objects. The object-based coding technique that makes 

visual objects available in the compressed form has been an active research area in the 

past few years. It can provide great flexibility for operating visual objects in multimedia 

applications, and can potentially improve the quality of visual objects for low bit rate 

coding. The Object-Based Discrete Wavelet Transform (OBDWT) scheme can be 

directly applied to the arbitrarily shaped region and transforms the samples in this 

region into the same number of coefficients in the subband domain.

There are different kinds of methods to achieve object-based discrete wavelet 

transform. Generally, the arbitrarily shaped object in the image consists of a shape 

mask and a texture image. The shape mask is usually binary indicating whether a pixel 

belongs to an object. Coding of an arbitrarily shaped object involves coding the binary 

shape mask and the texture image. The shape mask can be coded with a chain-code, 

while coding of the texture image involves arbitrarily shaped object transform, 

quantization, and entropy coding. Figure 1 is an example of OBDWT.
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a) The Brain Image b) The binary shape mask.

c) the arbitrarily shaped object 

Figure 1: An example of OBDWT.

2.3 Embedded Zerotree Wavelet (EZW) algorithm [15]

Shapiro’s embedded image coding using zerotree of wavelet coefficients (EZW) [15], 

made a significant breakthrough in coding of wavelet coefficients. The EZW coder is 

designed for use with wavelet transforms; it exploits multiresolution features of the 

wavelet transform and provides a way to compress the image efficiently.

8
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2.3.1 Zerotree

After wavelet transform, wavelet coefficients in the same orientation subbands have 

strong tree-like father-children dependency. A coefficient in a low subband can have 

four children in the next higher subband. Each father has its own four children, except 

for the root node, which has three. The zerotree structure is shown in Figure 2.

\
\
\

\

Figure 2: EZW’s zerotree.

2.3.2 Coding Principle

The concept of zerotrees takes advantage of the self-similarity among wavelet 

coefficients magnitudes in different scales. The EZW encoder is based on two 

important observations:

1. After wavelet transforms, the energy in the subbands decreases as the scale 

decreases. The wavelet coefficients will be smaller in the higher subbands than in the 

lower ones.

2. All of the coefficients of the same orientation in the same spatial location are smaller 

than the coefficient of their parents.

9
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From these observations, zerotree root is encoded with a special symbol indicating that 

the whole tree is insignificant. It can combine most of trees into zerotrees after the 

quantization step. As a result, zero coefficients are grouped together and the spatial 

position of nonzero coefficients are recorded by fewer side information.

2.3.3 Algorithm

EZW coder is a kind of embedded coder. It can terminate the encoding at any point 

and allow a target rate or target distortion to met exactly [15]. The bit stream generated 

by the embedded coder is sorted in order of importance. The coding method is based 

on first approximating an image with a few most important bits of data, and then 

improving the quality of approximation as more refined information is received.

The algorithm includes following steps:

1. Sorting pass (Significance Map Encoding). The significance map is a binary 

map indicating the positions of the significant coefficients. The coefficients are 

divides into two types: significance that is larger than the threshold and 

insignificance that is smaller that the threshold. The EZW coder takes 

advantage of the self-similarity zerotree structure to reduce the cost of 

encoding the significance map.

2. Refinement pass. This step is to refine the coefficients found significant in the 

sorting passes. It increases the precision of the coarse quantization by sending 

an additional bit.
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2.4 Set Partitioning In Hierarchical Trees (SPIHT) [17]

2.4.1 An extension of the EZW Algorithm

The Set Partitioning in Hierarchical Trees (SPIHT) algorithm [17] is an extension of 

the EZW scheme proposed by A. Said and W. Pearlman in [15]. Both algorithms are 

zerotree based coding techniques that take advantage of self-similarity across different 

scales of an image wavelet transform. However, there are some differences between 

them. One of main differences is that the SPIHT algorithm uses a slightly different 

tree structure and combines parallel zerotrees in order to generate much more zerotree 

symbols. Another one is that the SPIHT algorithm uses a more efficient way to code 

the significance map. It uses a set partitioning sorting rule to partially sort the 

coefficients. Because of these alternative representations of the principles of EZW 

[15], the SPIHT algorithm can provide even better coding performance than the 

original EZW algorithm. The spatial orientation tree structure is shown in Figure 3. In 

this tree structure, the pixels in the highest level of the pyramid are the tree roots and 

are grouped in 2X2 adjacent pixels. One pixel (indicated by the star) in each group has 

no descendants. Compared with Figure 2, we can see that the tree structure in Figure 3 

is a little different from the previous zerotree structure.
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Figure 3: SPIHT’s zerotree.

2.4.2 Data structure and Algorithm

SPIHT uses three lists:

LIP: List of Insignificant Pixels (individual insignificant coefficients);

LIS: List of Insignificant Sets (insignificant coefficient trees and sets);

LSP: List of Significant Pixels (significant coefficients).

Trees are of two types:

Type D - check all descendants for significance;

Type L - check all of the descendants with the exception of the immediate children. 

The main parts of the algorithm [17]:

Set partitioning rules: [17] defines 0(i, j) as a set of coordinates of direct descendants 

of node (i, j) and D(i, j) as a set of all descendants of the node (i, j) and L(i, j) = D(i, j) —

0(i, j).

1. If D(i, j) is significant then it is partitioned into L(i, j) plus the four single 

element set with (k, 1) e  0(i, j).

12
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2. If L(i, j) is significant then it is partitioned into the four sets D(k, 1), with (k, 1) 

6 0(i, j).

Sorting pass:

1. Checks the significance of the LIP and LIS elements, and moves significant 

coefficients to the LSP.

2. When a significant coefficient is a member of a set, the set partitioning rule is 

used to split the set. Because the root node is much more likely to be 

significant then the rest o f the tree, it is checked for significance independently.

Refinement pass: the encoder increases the precision of coefficients from the LSP by 

sending the next bit from the binary representation of their values.

13
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C h a p t e r  3 

RELATED RESEARCH

3.1 Source Coding Techniques

With the increasing demand for network and wireless communication, congestion 

always occurs when packets move from a higher capacity link to a lower one. Because 

of congestion, networks are forced to discard some packets. In order to combat this 

lossy transmission, Forward Error Correction (FEC) and Automatic Repeat Request 

(ARQ) have been proposed as source coding techniques that are robust against 

inevitable transmission errors. In ARQ, the receiver can ask the transmitter to resend 

corrupted data in order to correct errors. However, if the environment does not 

provide a retransmission mechanism or if transmission is delay-constrained, it is 

difficult to achieve some delay sensitive real-time applications, such as interactive 

multimedia (Video on Demand) and video-conferencing. In FEC, the algorithm adds 

extra information along with the data and the receiver can use this extra information to 

check and correct the data. However, FEC needs a significant amount of redundancy 

to recover the original data from bit errors; it is much more suitable for the 

applications in which some parts of the multimedia data stream need considerably 

more protection.

Recently, Layered Coding (LC) and Multiple Description Coding (MDC) have received 

considerably more attention. LC and MDC encode a media source into two or more 

sub-bitstreams. For LC, layers split into a base layer and enhancement layers. The 

base-layer bitstream can be decoded to provide a basic quality of original source, while 

the enhancement layer depends on all the data in the lower layer and is used to refine 

the previous reconstruction. This type of multiple representations of original source is

14
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very suitable for a heterogeneous network. The disadvantage of LC, however, is that 

when packet loss happens in lower layers, packets in higher layers become useless. For 

MDC, each multiple representation is of equal importance and can be decoded 

independendy to reconstruct the basic quality of the original source. Each multiple 

representation is called a description and, when more descriptions are received, the 

decoder can gradually increase the reconstruction quality. Compared with MDC, LC 

more often uses hierarchical decomposition.

In [18], the authors compared LC and MDC over a wide range of loss rate. According 

to the simulation results, they drew following conclusions:

1. If no error protection is applied to both LC and MDC, MDC always has better 

performance than LC;

2. If ARQ-based error protection is applied to both LC and MDC, LC is 

preferred if the base-layer data is guaranteed to be received intact using a 

strong error protection method.

3. If FEC-based error protection is applied to both LC and MDC, both methods 

have almost equivalent performance up to 10% loss rates. MDC is preferred at 

higher loss rates.

3.2 Overview of Multiple Description Coding (MDC)

MDC is a source coding technique that is robust against inevitable transmission errors. 

MDC encodes a media source into two or more sub-bitstreams (descriptions) that are 

of equal importance. These descriptions can be decoded independently to produce a 

signal of basic quality. When more descriptions are received, the decoder can gradually 

increase the quality. The cost of this operation is the insertion of a certain amount of 

redundancy in the descriptions among the stream. The redundancy in different 

descriptions is used to estimate the loss description when packet loss happens. Figure 4 

is a basic example of multiple description coding. R1 and R2 are the coding rate of the

15
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two channels respectively. DO is the average distortion of two-channel reconstruction, 

and D1 and D2 are the average distortion of one-channel reconstruction.

Channel 1
Encoder 1

DO
*■ xo

D2R 2

Channel 2

Decoder 0

Decoder 1

Encoder 2

R1=R2 and DO < D1=D2

Figure 4: The architecture of a basic MDC.

The basic principles can be summarized as below:

1. X is encoded into equally important streams

2. Decoding quality using any subset is acceptable

3. Better quality is obtained with more descriptions

There are several techniques for multiple description coding, but basically they can be 

grouped into two kinds of approaches. One is Multiple Description Scalar Quantizer 

(MDSQ) [1, 2, 3], which requires careful index assignments. The other is Multiple 

Description Transform Coding (MDTC) [4, 5], which necessitates a correlating 

transform in addition to the conventional decorrelating transform. In the following 

section, the basic ideas of the MDSQ and MDTC are introduced.

16
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3.3 Multiple Description Scalar Quantizer (MDSQ)

The first paper on MDSQ was proposed by Vaishampayan [1], Based on this method, 

a class of multiple description scalar quantizer is proposed [1, 2, 3]. Consider the case 

when a transmission uses two distinct channels. This paper proposed the design of two 

coarse side quantizers that can generate acceptable reconstruction when just one 

channel can be used. If both channels are used, two coarse quantizers are combined to 

generate a finer central quantizer that can lead to a better reconstruction. The figure 

below depicts the scheme.

X
Channel 1

Channel 2

Figure 5: The architecture of MDSQ.

The architecture of MDSQ is shown in Figure 5. On the transmitter side, two steps are 

required to achieve the multiple descriptions: a quantization step Q and an index 

assignment step a. In the first step, the encoder quantizes the source sample using the 

central quantizer, and generates a central quantizer index, then a labeling (index 

assignment) function a  produces two indices for each quantization output. Each index

17
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should individually give a reasonable decoder output and combined indices should 

identify the output of the regular quantizer.

There are an infinite number of ways to design the index assignment. The objective of 

MDSQ is to find one kind of index assignment that minimizes the average distortion 

of the central decoder and side decoders under constraints. More details about the 

index assignment problem can be found in [1],

3.4 Multiple Description Correlating Transform (MDCT)

The Multiple Description Correlating Transform (MDCT) was introduced by Wang [4, 

5], The idea proposed is to use Pairwise Correlating Transform (PCI) to add statistical 

redundancy into the descriptions. The basic scheme proposed by [4] is shown in Figure 

6. There are two transform procedures to achieve multiple descriptions. The first is a 

conventional decorrelating transform which decorrelates the source into multiple 

descriptions. The second is a Pairwise Correlating Transform (PCT), which 

reintroduces correlation in a controlled manner. Figure 6 below depicts the scheme.

fAl ' ac'
= T ,T =

, 5 . , bd ,

Pairwise MDC transform T in Equation 1 takes two independent input variables, A 

and B, and outputs two transformed variable, C and D. The transform T controls the 

correlation between C and D, which controls the redundancy of the MDC coder. If 

the decoder receives both bitstreams, it uses the inverse PCT to reconstruct the 

original source. If only one description is received, the decoder estimates the missing 

description and then performs inverse PCT reconstruction.

The objective of this method is to achieve a good reconstruction of lost data by using 

less additional redundancy. In order to achieve this goal, two main problems have to
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be solved: 1. How should the input be split and which elements must be paired? 2. 

What does matrix T look like, and which one is optimal?

Ai

B

ip*
Forwan

PCT

TW channel I
■Q ' -----------------

B
\—
p

Channel 2

2 variable MD encoder

C Estimatoi.
for A,B 
from C

Inverse
PCT

D

Estimatot 
for A,B
from D

2 variable MD decoder

Figure 6: Coding and decoding process for a single pair: the basic scheme [4]

3.5 Generalized Multiple Description Coding (GMDC)

MDSQ and MDCT are specific to the two-channel MD problem and there are only 

three cases in which all, half or no descriptions are received by the decoder. However, 

when network communication has more than two channels or more than two packets, 

such as a multicast scenario, we cannot take advantage of the techniques of MDSQ 

and MDCT. This gives a motivation for using the Generalized Multiple Description 

Coding (GMDC) method [6, 7, 8, 9, 10], In GMDC, N descriptions of a source are 

transmitted to a receiver, and less than N descriptions are received because of packet
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losses. The goal of GMDC is to maximize the quality of the reconstruction with 

received descriptions.

3.5.1 GMDC via Polyphase Transform and Selective Quantization

In [6], a new method of GMDC is presented to separate description generation and 

redundancy addition, which greatly reduces the implementation complexity specific to 

systems with more than two descriptions. In this method, description generation is 

accomplished using a polyphase transform, and each of the polyphase components is 

coded independently at a source coding rate. Redundancy is then explicitly added to 

each description by coding other descriptions at a low redundancy coding rate, using 

selective quantization.

ISMll

I'

R -----1— ► Xj

Figure 7: The MDC system proposed in [6],

Figure 7 shows the proposed MDC system. In the first step, the input X is 

decomposed into two components yl and y2, via a polyphase transform. Each 

polyphase component is quantized independently by Q l, and forms the primary part
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of a description. In order to estimate the data from the other channel in case of loss, 

another coarse quantizer, Q2, is then introduced to add redundancy into a description. 

Each of these two polyphase components is thereby quantized independendy by a fine 

quantizer Q1 and a coarse quantizer Q2. The primary bitstream and the redundant 

bitstream are multiplexed together to form a description for transmission.

3.5.2 GMDC via SPIHT

The generalized MDC framework has received considerable attention and many new 

algorithms have been proposed. The method MD-SPIHT was proposed in [8], This 

method is based on the principle provided by [6]. The main idea is to extend SPIHT to 

the generalized MDC framework. Since the SPIHT algorithm is a progressive source 

coder, it sends the globally most important information to the earlier part of the coded 

bitstream. This means that data coded earlier are much more important to image 

quality. Each description contains two parts. One part is the primary information of 

one input tree and the other is the redundancy consisting of repeated zerotrees.

4 input
t r e e s

A D1 A A A Dt
I k  2A  3A
A A

A D2 A A A 9  *> * * * 2A
A D3 3 / y  y \^ 9 9 9 * « * 3A
Jk D4 4A i ‘ 2 A/  x ^  / A

D4 A A A A
4 d e s c r i p t i o n s  sent 2 descriptions received 4 output

trees

Figure 8: An example of MD-SPIHT [8].
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Figure 8 shows an example of four wavelet coefficient trees (1-4). The primary 

information of one input tree and the redundant copies of other input trees are sent in 

four descriptions (D1-D4) with two sets of copies of the redundant trees. If two 

descriptions are lost (D2 and D3), the second and third trees are partially recovered 

from their copies in the received descriptions.

3.5.3 GMDC via Unequal Loss Protection

In [7], the proposed method uses explicit channel coding in the form of Unequal Loss 

Protection to achieve multiple descriptions. Reed-Solomon (RS) codes are used to 

generate FEC redundancy. These block codes are very effective in recovering erased 

symbols when the locations of the erased symbols are known [19]. Each block has an 

independent (N, k) RS code, where N is the block length and k is the number of 

source symbols. Unequal Loss Protection (ULP) [20] is the core of this method. In 

SPIHT code, data coded earlier are much more important to image quality. ULP is a 

system that assigns unequal amounts of forward error correction to progressive data, in 

order to provide a graceful degradation when packet losses increase.

B ,  1 2 3 F F F
B 2 f 4 c 6 7 F F

| B ,  8

" a ,  1 2

9 10 11 F F
13 14 15 16 F

| B s  1 7 1 8 19 20 21 F
u f i 6  2 2 23 24 25 26 F

B 7 2 7 28 29 30 31 32
1 2 3 4 5

Descriptions
6

Figure 9: An example provided by [7].
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Figure 9 shows an example provided by [7]. Each of N columns is one description, and 

each of the rows is an independent Reed-Solomon code block. This method is 

composed of two steps. First, it uses the progressive SPIHT algorithm to compress the 

source image, and 32 bytes bitstream is formed. Secondly, an ULP assignment 

algorithm of [20] is used to determine how many source symbols are in one block. We 

can see from block 1 in the example that more important information provides far 

more FEC redundancy and gets much better protection.

3.5.4 Polyphase Downsampling Multiple Description Coding

In [13], a very interesting method is proposed. The MD system is based on a 

Polyphase Downsampling algorithm (PDMD) to split an image source into balanced 

descriptions. It is a special kind of GMDC, since it does not need explicit redundancy. 

Coding, psychovisual, and interpixel are three basic data redundancies in digital natural 

images. The method proposed by [13] takes advantage of interpixel redundancy and 

lets the compression algorithm take care of the other two. Since the value of any given 

pixel can be reasonably predicted from the value of its neighbors, the information 

carried by an individual pixel is relatively small. It is possible to exploit this feature to 

create a multiple description of the image. At the encoder side, the source image is split 

into n descriptions by a polyphase downsampler along rows and columns. Each single 

description is then compressed by the progressive SPIHT algorithm with arithmetic 

coding and sent to the receivers. At the decoder side, we can use a simple interpolating 

filter or some other more advanced reconstruction filter to reconstruct the images.
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3.6 Protection of Regions of Interest in GMDC

3.6.1 Overview of ROI in data compression

Regions of interest (ROI) are spatial regions in images that are the most important to 

the end user. The ROI research on data compression may be divided into three types.

Some ROI research concentrates on designing methods for coding ROI separately 

from the rest of the image. The emerging image and video standards, such as 

JPEG-2000, MEEG-4 and MPEG-7 require object-oriented coding and motion 

estimation.

Some ROI research concentrates on the foveated technique. Since the human visual 

system (HVS) is highly space-variant, the spatial resolution of the HVS is the highest 

around the point of fixation and decreases rapidly with increasing eccentricity. The 

concept of prioritizing data based on the distance from a ROI was first introduced in 

[21]. This particular prioritization method employs a foveated image and allows a 

gradual increase in peripheral quality loss during network congestion. In [22] the 

authors use the foveation technique in order to rearrange the packets in the code 

stream to place the regions of interest before the background coefficients. This is fully 

compatible with the JPEG2000 standard, and allows transmission of different regions 

of interest with different priorities.

Others code the ROI at a higher bit rate [9, 14, 23] than the rest of the image. With the 

recent popularity of zerotree based coding, some of these methods have been 

extended to Embedded Zerotree Wavelet (EZW) [15] and the Set Partitioning in 

Hierarchical Trees (SPIHT) [17] compression algorithms. These methods assign the 

ROI a higher bit rate than the rest of the image, by multiplying the wavelet coefficients
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corresponding to ROI by some large factor. This way, the locally important 

information is sent in the earlier parts of the compressed bit stream.

3.6.2 Protection of Regions of Interest in GMDC

Recently, Generalized Multiple Description Coding (GMDC) has received 

considerable attention, and many new algorithms have been proposed. However, only 

a few current ROI coding methods have been applied in the GMDC framework.

The method suggested in [26] is the first to protect ROI in multiple description coding. 

This method is built on the MD-SPIHT framework. The basic idea is that when 

SPIHT is used with ROI coding, we assign the ROI a higher bit rate than the rest of 

the image by multiplying the wavelet coefficients corresponding to the ROI by some 

large factor. Therefore, not only is the globally important information sent in the 

earlier parts of the compressed bitstream, but also is the locally important information 

(ROI). This method requires both the encoder and the decoder to know the ROI 

parameters and the multiplication factor, but does not involve any modifications to the 

original algorithm.

Another method proposed in this paper is built on the MD-ULP framework. Again, 

the wavelet coefficients corresponding to the ROI are scaled by a large factor, and the 

ROI information is sent to the earlier part of the stream. Since much more FEC 

redundancy is added to the earlier part of the compressed bitstream than to the later 

part, the ROI information can receive better protection.
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C h a p t e r  4 

PROTECTION OF ROI IN PDMD FRAMEWORK

4.1 System Overview

Source
Image

DC n

DC 1

OBDWT Region of 
Interest

Description 1

Description 2

Polyphase
Downsample

MDC

Figure 10: N descriptions are generated by obtaining n polyphase downsamples 
from an original image. Each description includes one component of region of 
interest and a compressed polyphase downsample component of the background.

Figure 10 is the block diagram of our proposed method. In this method, we treat the 

source image as two layers: one is the region of interest and the other is the 

background. The OBDWT algorithm [12] is used to code the region of interest and the 

Polyphase downsampling algorithm [13] is used to split the background into several
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components. Each of my descriptions includes the region of interest and one 

component of the background.

The main contribution of this method is to protect any arbitrarily shaped objects in the 

image. In the experiments and results section, we can see that the proposed algorithm 

not only effectively protects arbitrarily shaped ROI in the image, but also gets 

satisfactory results over error-prone networks.

4.2 Proposed Algorithm

4.2.1 ROI Coding

Object-based coding techniques that make visual objects available in the compressed 

form have been an active research area in the past few years. Since it can provide great 

flexibility for operating visual objects in multimedia applications, and potentially 

improve the quality of visual objects at low bit coding, this technique is used in the 

multiple description coding method presented here.

We will treat an image as a composition of several layers. There are many visual objects 

with an arbitrary shape in the image and there are two steps in coding an arbitrarily 

shaped object. The first is to code the shape of the visual object and the second is to 

code the texture of the visual object (pixels inside the object region).

Here, the OBDWT proposed by [12] is used to transform arbitrarily shaped visual 

objects. OBDWT utilizes the signal extension method proposed in [24, 25], and makes 

conventional DWT easy to apply to arbitrarily shaped regions. Any arbitrarily shaped 

region can be decomposed using OBDWT, and perfectly reconstructed using inverse 

OBDWT, without processing more pixels than what is contained in the original visual 

object. This means that the number of coefficients after OBDWT is identical to the 

number of pixels in the original arbitrarily shaped visual object.
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Outline of proposed approach:

Stepl. Creating the mask of the arbitrarily shaped object to change the source image 

into two layers: Region of Interest and background.

In my implementation, the tools in Photoshop are used to generate a shape mask 

according to the ROI. The shape mask is usually binary indicating whether a pixel 

belongs to an object. Figure 11 is an example to create the masks and the black area is 

the region of interest.

Figure 11: There are two kinds of masks of the little girl image: one is an 
arbitrarily shaped mask and the other is a rectangular mask.

Step 2. Using the OBDWT to code the region of interest.

Shape mask is a key factor in the OBDWT, and the decomposition and reconstruction 

procedures are supervised by the mask information. There are two kinds of 

information that need to be compressed: one is the binary shape mask that can be 

coded with a chain-code; the other is the ROI object. In the first, OBDWT 

decomposes the shape mask to determine whether a coefficient needs to be coded. 

The decomposition of the shape mask after OBDWT is shown in Figure 12. The 

coefficients belonging to the decomposition of the shape mask are coded by the
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P-SPIHT algorithm [12], which is built on SPIHT. The only difference is that 

P-SPIHT codes the coefficients belonging to the decomposed shape mask. The result 

of the OBDWT coding is shown in Figure 12.

Figure 12: Decomposition of the shape mask and the result o f OBDWT coding.

4.4.2 Background Coding

1. Generating components through a polyphase downsampling algorithm (PDMD 

framework) to split the background into n components.

In the polyphase downsampling algorithm, the source image is split into n components 

along the rows and columns. Figure 13 is an example illustrating the algorithm. It is 

assumed that the source image has a size of 4x4 and is split into four components. We 

can consider the source image to be composed of four blocks. The pixels in each 

sub-image are grouped according to the same spatial location in each block.

2. Coding each component of background.

Each component holds the main feature of the source image because of the interpixel 

redundancy in images. Figure 14 is an example of one component. We can see that the
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component contains the information of the ROI and background. In order to improve 

the coding efficiency the binary shape mask is inverted and used to generate a new 

shape mask for each component. OBDWT and P-SPIHT can be used again to code 

the pixels in the background in every component. The coding result of one 

component of the background is represented in Figure 14.

XI X3
X9 X ll

XI X2 X3 X4
X5 X6 X7 X8

X9 X10 X ll X12
X13 X14 X15 X16

X2 X4
X10 X12

Original Image

( X5 X7
X13 X15

X6 X8
X14 X16

Sub-images

Figure 13: The method of polyphase downsampling.
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Figure 14: The downsampling result and the result of one component of 
background.

4.2.3 Decoder

At the encoder part, each description consists of the ROI and one component of the 

background, and has the same importance for the reconstruction of the original image. 

Since any pixel in an image can be estimated from its neighbors the original image can 

be reconstructed from just one description, if more descriptions reach the decoder, a 

better reconstruction is possible.

The reconstruction procedure allows us to oversample the description and interpolate 

the missing pixels. A simple linear interpolation filter is used to reconstruct the images. 

The results can be seen in the experimental results section.

4.3 Experimental results & comparison with other work

The experiments are mainly conducted with “Lena” and “the little girl” grey-level 

images of size 512x512. The MDC system block diagram for this simulation is shown 

in Figure 10. Each description contains the Region of Interest (ROI) and one
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polyphase component, corresponding to different components. The experiments can 

be divided into three parts.

4.3.1 Comparison of our method with the method proposed by [8].

The method provided by [26] is the best method to protect the ROI in literature. The 

algorithm in [26] follows the framework provided by [8]. In [8], the MDC is simulated 

using the standard 512x512 gray-scale Lena image without protection of the Region of 

Interest. We use the same image, and compare the whole image quality of our method 

with that of [8]. The total bit rate is fixed at 1.25 bpp.

(b) image 27.0393dB, ROI: 44.6072(a) image 26.6059dB, ROI: 44.6072

(c) image 27.7306dB, ROI: 44.6072 (d) image 29.6182, ROI: 44.6072
Figure 15: The results of our method.
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From Figure 15, images a, b, c and d show 1, 2, 3, 4 descriptions received out of 8. In 

[8], we can read the PSNR from Figure 5 in [8]. When 1, 2, and 3 descriptions are 

received the PSNR equals 19.15dB, 24.43dB and 26.5dB respectively. In our method, 

the whole image quality is better when 1, 2 and 3 descriptions out of 8 are received, 

and part of the ROI achieves much higher quality than that of the whole image.

4.3.2 Comparison of our method with the method proposed in [26].

Our results are demonstrated ona512x512 gray scale image of a little girl, where the 

girl’s face is an 80x80 region of interest. The same image is used with the same region 

of interest. The number of descriptions is 8 and the total bit rate is 1.0 bpp.

(a) Image: 20.93 dB. ROI: 28.25 dB (b) Image: 24.38 dB, ROI: 34.79 dB

(c) Image: 26.36 dB, ROI: 38.54 dB (d) Image: 27.57 dB, ROI: 40.47 dB

Figure 16: Results from [26],
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(a) Image: 26.4490, ROI: 43.3705 (b) Image: 26.8211, ROI: 43.3705

(c) Image: 27.1208, ROI: 43.3705 (d) Image: 27.7693, ROI: 43.3705
Figure 17: The results of our method, with rectangular region of interest.

I then change the rectangular region of interest into the arbitrarily shaped region of 
interest:

(a) Image: 27.5607, ROI: 46.9951 (b) Image: 28.3007, ROI: 46.9951
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(c) Image: 30.2452, ROI: 46.9951 (d) Image: 31.1221, ROI: 46.995
Figure 18: The results of our method, with the arbitrarily shaped region of 
interest.

Figures 17 and 18 show the quality of the little girl images as 1, 2, 3, and 4 out of 8

region of interest and the arbitrarily shaped region of interest are better than that of 

[26]. Furthermore, the results of the arbitrarily shaped ROI are better than that of the 

rectangular ROI. These results can be explained with the aid of mathematical analysis.

Let us assume that the coding rates of the ROI and background are R1 and R2, the 

size of ROI is X pixels, and the total bit rate of the image is 1.0 bpp. In this case, the 

total number of pixels in the image is 512x512 and 8 descriptions will be generated. 

Since each description includes 32768 bits, we get:

descriptions are received. We see that the results of our method with the rectangular

32768 - R 1 * X  
t i l  = --------------------

3 2 768- V0 * X

In this experiment, R1 is equal to 0.4, (i?l •  X  ) < 32768 and X<262144.
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The relationship betw een the size of ROI and the bit rate R2

\

0.8

0.7

2 0-6

H 0.5

j£ 0.4

0.3

0.2

0.1

X represents the size of ROI x 104

Figure 19: The horizontal axis represents X, the size of the ROI, and the 
vertical axis represents R2, the coding rate of the background.

Figure 19 shows us that when the size of ROI increases the coding rate of background 

R2 will decrease. This special case can be extended into a general model.

Let us assume the size of the image is I, the total bit rate of the image is B, and n 

descriptions are generated. The bit rate of R2 is represented in Equation (2).

I • B - n » R l * X
R 2 -

I - X
(2)

Then we differentiate this function with respect to X. 

d R 2 _  ( I - X ) » n » R l  + ( I » B - n » R U X )
dX ( i - x y <0 (3)

Since the function is decreasing, the differential of the function (3) is always negative. 

Therefore, when the size of ROI increases, the coding rate of the background, R2 will
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decrease and the quality of the background will be reduced. This explains why some 

results of the arbitrarily shaped ROI are better than those of the rectangle ROI.

We show another image example to demonstrate this result.

(a) The original image brain

(b) rectangular ROI (c) arbitrarily shaped ROI
Figure 20: Two types of shape masks of the brain image.

Our results are demonstrated on a 256x256 Magnetic Resonance Image (MRI) of a 

brain, shown in Figure 20(a) using my method. Figure 20(b) is a rectangular ROI mask 

and comprises 22755 pixels —  about 34% of the total image. Figure 20(c) is an 

arbitrarily shaped ROI mask and it comprises 11138 pixels —  about 16% of the total 

image. The number of descriptions is set to four, and the total bit rate is 1.0 bpp. The

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



results in Figures 21 and 22 show the quality of the brain image as 1, 2, 3, and 4, of 4 

descriptions that are received.

The results o f  the rectangular R O I

■ wMEM
■ H ■ H

>' I

(a) Image: 20.3370, ROI: 35.3683 (b) Image: 20.6035, ROI: 35.3683

(c) Image: 20.7908, ROI: 35.3683 (d) Image: 21.0274, ROI: 35.3683
Figure 21: The results of the rectangular ROI.
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The results o f  the arbitrarily shaped R O I

(a) Image: 20.5302, ROI: 38.1812 (b) Image: 21.3617, ROI: 38.1812

(c) Image: 21.8069, ROI: 38.1812 (d) Image: 22.2684, ROI: 38.1812
Figure 22: The results of an arbitrarily shaped ROI.

Comparing the results of the rectangular ROI in Figure 21 and the arbitrarily shaped 

ROI in Figure 22, we see that using the arbitrarily shaped coding technique can save 

half of the bits in the region of interest coding, and the saved bits can increase the 

quality of background, thus increasing the quality of the whole image.
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4.3.3 Decomposition of additional descriptions

R esult o f  decom position o f  16 descriptions

(a) Image: 25.6759, ROI: 46.9951 (b) Image: 26.9556, ROI: 46.9951

(c) Image: 27.1271, ROI: 46.9951 (d) Image: 27.7747, ROI: 46.9951
Figure 23: a, b, c and d represent the quality of the little girl image as 1, 2, 3 and 4 
out of 16 descriptions are received.
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Results o f  decom position o f  32 descriptions

(a) Image: 22.3545, ROI: 46.9951 (b) Image: 24.1528, ROI: 46.9951

(c) Image: 24.6228, ROI: 46.9951 (d) Image: 25.0006, ROI: 46.9951
Figure 24: a, b, c and d represent the quality of the litde girl image as 1, 2, 3 and 4 
out of 32 descriptions are received.

From Figure 23 and 24, we find that when the original image is decomposed into a 

greater number of descriptions with the same total bit rate, the results are still 

acceptable. We take advantage of the interpixel feature, and use a simple linear 

interpolating filter to reconstruct the background of the image. Although the quality of
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the background is still not satisfactory, when applications pay more attentions to the 

ROI, the quality of the ROI and the whole image are still acceptable.
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C h a p t e r  5 

PROTECTION OF ROI IN MD-SPIHT FRAMEWORK

5.1 System Overview
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Figure 25: System architecture
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The human visual system (HVS) is highly space-variant. The spatial resolution of the 

HVS is highest around the point of fixation and decrease with increasing distance. The 

concept of prioritizing data based on the distance from a ROI was first introduced in

[21]. This particular prioritization method employs a foveated image and allows a 

gradual increase in peripheral quality loss during network congestion. According to the 

human eye’s perception, if the network cannot transmit all the data, we can discard 

some less important information in peripheral areas.

Figure 25 is the block diagram of the method we present here. I will propose a method 

combining the foveation technique with the zerotree ROI coding scheme to 

implement Multiple Description Coding in a Generalized Multiple Description 

Framework [8]. Two kinds of scaled strategies are used. In the first, only the 

coefficients in the face of the image are scaled. I choose 16 as the ROI scaling factor. 

In the second, the nose of the girl is chosen as the foveation point. In the LL 

sub-band, the roots of the zerotrees receive an importance level inversely proportional 

to their distance measured from the center of the ROI. According to the importance 

levels, the coefficients of different wavelet zerotrees will be scaled by different scale 

factors. Scale factors from 1 to 16 are used here.

5.2 Proposed Algorithm

5.2.1 Object-based Discrete Wavelet Transform

We use the same method described in Section 4.2.1. Since the spatial correlation, 

locality properties of wavelet transforms, and self-similarity across the subbands are 

well preserved in the OBDWT, we can take advantage of these features to implement 

our method of MDC and protect the ROI in each description. In this case only 

OBDWT is performed to obtain the matrix of the decomposition of the shape mask. 

Figure 26 is an example of the OBDWT mask coding. And Figure 27 is an example of 

multiple ROIs mask coding.
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(a) The original shape masks (b) The matrix after 5 level OBDWT
Figure 27: The example of multiple ROIs mask coding.
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5.2.2 Scale Factor Calculation

LL3 LH3
LH2

LH1

HL3 HNS

HL2 HH2

HL1 HH1

(a) (b)

Figure 28: (a) DWT decomposition structure; (b) spatial orientation tree.

The typical DWT structure is shown in Figure 28(a). The wavelet coefficients have 

structural similarity across the wavelet sub-bands in the same spatial orientation. The 

zerotree structure in EZW and the spatial orientation tree structure in SPIHT capture 

this structural similarity very effectively. Figure 28(b) shows the spatial orientation tree 

used by SPIHT. In the SPIHT algorithm, the globally important information is 

allocated in the earlier parts of the compressed bit stream. We take advantage of the 

feature of SPIHT that allows for easy determination of the data importance for the 

overall quality of the image. Using the method proposed by Atsumi and Farvardin [23], 

the wavelet coefficients corresponding to the ROI are scaled by a larger factor. So the 

weighted coefficients will be considerably more important than the rest of the 

coefficients. As a result, these coefficients will be compressed in the earlier part of the 

bit stream.

In our implementation, after OBDWT, we obtain a matrix of a decomposed shape 

mask. According to the result of the shape mask coding, the coefficients related to the
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ROI can easily be scaled with the scale factor, thus providing considerably more 

protection to the ROI.

5.2.3 Wavelet Coefficient Trees Partitioning

A B A B A A
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Group 1

Group 2

Group 3

Group 4

Figure 29: The procedure of wavelet coefficient trees partitioning.

After wavelet transform, the original image can generate M wavelet coefficient trees:

M
X * Y

r s 2 L
, where X and Y denote rows and columns of the image, respectively, and

L denotes the wavelet transform level. These wavelet coefficient trees are fed into the
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same encoder, since the correlation of coefficients between different scales is exploited. 

We use polyphase transform to set the different wavelet coefficient trees into different 

groups, and then SPIHT is used to compress these groups to form multiple 

descriptions. In order to make every description with equal importance, N trees along 

the rows and the columns are sampled with a downsampling ratio. Downsampling 

procedure occurs in the lowest frequency subband (LL), since the roots of the trees are 

in this area. Each parent has four children nodes, except for the root node that has 

three. This means that the set of coordinates of all offspring of node (i, j) equals {(2i, 

2j), (2i, 2j+l), (2i+l, 2j), (2i+l, 2j+l)}.

Figure 29 graphically illustrates the procedure of the wavelet coefficient partitioning. 

After 3-scale wavelet transform of an 8x8 image, four wavelet coefficient trees are 

generated. In the figure, every coefficients with the same letter are grouped together 

and processed by the same encoder. We note that spatially dispersed wavelet 

coefficient trees are grouped together and the zerotree structure in each group is 

preserved so we can obtain a good compression performance by using SPIHT 

algorithm.

5.2.4 Generated MDC framework

The method proposed by [8] is that each description has primary information of one 

group and a variable number (m) of partially coded redundant trees of other groups. In 

Figure 30, after wavelet coefficient tree partitioning, there are N zerotree groups. We 

use the generalized MDC framework provided by [4], and each description carries the 

information of the shape mask (SM), the primary copy of one group, e.g., XI in DC1, 

as well as redundant copies (X2 and Xm-1 in DC1) of some of other groups. RO, Rl, 

and Rm are the bit rates of different copies. In this method, information about one 

zerotree is included in different descriptions and when some descriptions are erased 

the main information about these descriptions can be recovered by the copies located 

in other received descriptions.
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Figure 30: N groups are generated by wavelet coefficient trees partitioning. We 
use the method proposed by [8] to generate the N descriptions.
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Figure 31: Coding example from [8].
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In Figure 31 is an example of four groups (1-4) after the partitioning process. The 

primary copy of one group and the redundant copies of some of other groups are sent 

in four descriptions (D1-D4) , with two sets of redundant copies. If two descriptions 

are lost (D2 and D3), the second and third trees are partially recovered from their 

copies in the received descriptions.

5.2.5 Optimal Bit Allocation

If packet losses occur it is possible to recover them by exploiting the redundancy. As 

can be expected, if high redundancy is chosen, the performance will be good under 

severe error conditions. However the performance with high redundancy in an error 

free environment will be significantly worse than that of a non-redundant coder at the 

same rate [10]. It is therefore useful to adjust the amount of redundancy to adapt to 

different network conditions in our MDC system. We use the result of [10] to allocate 

the redundant bits in MDC.

In [10], an optimal bit allocation algorithm is introduced that allows us to select the 

amount of redundancy to best match a given target packet loss rate. The algorithm is 

based on rate-distortion tradeoff and uses statistical analysis tools to obtain the 

formula:

R  . . .  M -1  
Rt = ^ + 2(*----— )*og 2(P)

In this formula, R is the total bit rate budget of the compression, M is the number of 

copies of each description, S is the number of descriptions, i is the tag of the copy, and 

P is the probability that a description is considered lost. The value obtained from the 

formula may be such that some of the i?( s are negative. This means that the copies 

from R t to R *M_j are not: needed, and we can choose M=i.
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5.3 Experiments and Results

5.3.1 The size of the scaled area

From Figure 25, on the encoder side, wavelet coefficients in ROI are scaled and the 

scaled wavelet coefficients cause it to be coded in the earlier part of the bitstream. This 

way, the locally important information is protected. There is a trade off between the 

quality of ROI and the background for different ROI scaled factors. In [26], the 

authors analyzed this problem and obtained the results that “for every 5 dB increase in 

ROI quality, the overall image PSNR drops only by about 0.5 dB.” In our case, we pay 

more attentions on the relation between the size of the scaled area and the 

reconstructed quality of the overall image. Before the simulation of MDC, we do an 

experiment to investigate this relation.

In this experiment we use a 512x512 gray image, “Litde Girl.” We use a 5-level DWT 

decomposition to obtain a total of 256 wavelet coefficient trees and the scale factor is 

set to 16. The result of the scaled number of trees and PSNR is presented in Figure 32.

We can see that, at the beginning, when the scaled number of wavelet coefficient trees 

increases, the PSNR of the image decreases; after the scaled number reaches half of all 

the trees the PSNR of the image begins to increase. The reason is that when the 

weighted coefficient trees increase, the weighted coefficients have a much larger 

dynamic range. When we use the SPIHT algorithm, it costs many more scan times and 

many more sign bits are increased. Since the coding efficiency is not good, the quality 

of the reconstructed image decreases. However, after the weighted trees reach half of 

the total trees, the range of the coefficients will become smaller. If all the coefficients 

are scaled by the same factor, the range is the same as the range of the original. The 

reconstructed image is nearly identical to the one reconstructed without scale. We 

can see that the PSNRs at 0 and 256 are nearly the same.
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Figure 32: PSNR results for different number of scaled wavelet coefficient trees.

5.3.2 Protection of Arbitrarily Shaped ROI vs Rectangular ROI

First, we compare our method with the method proposed by [26], In [26], the authors 

scale the coefficients corresponding to the ROI. They use the rectangular ROI that is 

about 5% of the whole image. In our method we use the arbitrarily shaped ROI that 

is 3% of the whole image.

In our method only the trees corresponding to the arbitrarily shape ROI are scaled. 

Certainly, the ROI is less than half of the image. The total bit rate is 1.0 bpp and we 

add 35% redundancy. The results are shown in Figure 33. Images show 4, 5, 6, 7, 8 

descriptions received out of 8. In [26], when 5 out 8 descriptions are received, the 

quality of image is 30.18 db and the quality of the ROI is 42.67 dB. We can see that
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our reconstructed quality of the ROI and the whole image are much better than those 

of [26] (more details are given in Conclusion Chapter). The reason for improvement of 

the whole image has already been explained in Figure 32. The reason for improvement 

of the ROI is that since the number of the weighted trees is small, the trees belonging 

to the ROI can obtain better protection than many more weighted trees.

c. Image: 33.7790, ROI: 55.9216 d. Image: 35.5769, ROI: 57.4708
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e. Image: 36.6720, ROI: 57.6274
Figure 33: The results using the arbitrarily shaped ROI.

Secondly, we test our results again by using another 256x256 Magnetic Resonance 

Image (MRI). The MRI brain image is shown in Figure 20(a). Figure 20(b) is a 

rectangle ROI mask and comprises 22755 pixels —  about 34% of the total image and 

Figure 20(c) is an arbitrarily shaped ROI mask and it comprises 11138 pixels —  about 

16% of the total image. The number of descriptions are set to four, and the total bit 

rate is l.Obpp. The descriptions are coded with SPIHT with 35% redundancy. In this 

experiment we do not use the optimal bit allocation method provided by [10] because 

we only want to compare the influences at the different sizes of the scaled area. The 

results show the quality of the brain image as 1, 2, 3, and 4, of 4 descriptions are 

received.
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Rectangular ROI Arbitrarily Shaped ROI

a. Image: 20.7092, ROI: 29.6400 e. Image: 22.7861, ROI: 34.7645

b. Image: 21.9290, ROI: 31.1149 f. Image: 23.6876, ROI: 36.5357

c. Image: 23.8372, ROI: 32.9510 g. Image: 25.7311, ROI: 39.0251

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



d. Image: 26.4624, ROI: 37.0381 h. Image: 28.4556, ROI: 43.0381
Figure 34: Comparison between the rectangular ROI and the Arbitrarily Shaped
ROI.

In the left side of Figure 34, a, b, c, and d is represented as 1,2, 3, and 4 out of 4 

descriptions received in the MDC system that protects the rectangular ROI. The right 

side of the figure are results of the MDC system that protects the arbitrarily shaped 

ROI. From the comparison, we can obtain the same results as the previous one. Our 

method to protect ROI is demonstrated to be better than the method proposed in

[26].

5.3.3 Foveation Technique

In foveated images, the spatial resolution is the highest around the foveation point and 

decreases with the increasing distance from it. Many methods are used to exploit the 

foveation feature to improve image and video coding algorithms. In [22], the authors 

use the foveation technique to rearrange the packets in the code stream to place the 

regions of interest before the background coefficients. It is fully compatible with 

JPEG2000 standard and allows transmission of different regions of interest with 

different priorities. Motivated by this method, we want to combine the foveation 

technique with the zerotree ROI coding scheme to implement Multiple Description 

Coding in a Generalized Multiple Description Framework [8].
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0.16bpp

m

(a). Method 1. (b). Method 2.
Figure 35: The comparison between the two methods.
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In Figure 35, results are demonstrated on a 512x512 gray image, “Litde Girl.” I use a 

5-level DWT decomposition to obtain a number of 256 wavelet coefficient trees. The 

Region O f Interest is the face of the little girl and the number of descriptions is set to 

4. We compressed the image at 0.04bpp, 0.08bpp, 0.12bpp and 0.16bpp. We assume 

that all the descriptions are received. In Method 1, I only scale the coefficients in the 

face of the image. I choose 16 as the ROI scaling factor. In the Method 2 ,1 choose the 

nose of the girl as the foveation point. In the LL sub-band, the roots of the zerotrees 

receive the important level inversely proportional to their distance measured from the 

center of the ROI. According to the importance levels the coefficients of different 

wavelet zerotrees will be scaled by different scale factor. I use the scale factors from 1 

to 16.

The PSNR(dB) results are shown in the below table.

Coding Rate
Method 1 Method 2

Whole Image ROI Whole Image ROI

0.04bpp 24.1988 46.4483 24.2528 43.1822

0.08bpp 26.2570 49.8950 25.8949 45.1948

0.12bpp 27.5071 51.4774 26.0891 46.0891

0.16bpp 28.8624 52.7456 27.5618 48.2879

From the comparison data in the table, we can see that the results of reconstructed 

quality of Method 1 are much better those of Method 2. Following are some reasons 

for this:

1. In Method 1, there are only two scale factors 1 and 16 so the ROI can be encoded 

with more bits. This means that the face of the little girl gets much more protections 

compared to the background of the image. However, in Method 2, there are 16 

different kinds of scale factors. The area of the face will not get as much protection as 

it gets in Method 1 because the face area is not as relatively important as in Method 1.
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2. Since there are 16 different kinds of scale factors in Method 2 the weighted 

coefficients have much larger dynamic range compared with that of Method 1. It will 

cost much more scan times and increase more sign bits. So the coding efficiency of 

Method 2 is less than the Method 1.

3. Most image quality measurement methods, such as PSNR, are designed for uniform 

resolution images. These methods are not always good indices for foveated images. We 

need to develop a new image quality metric considering the factors of the Human 

Visual System.

5.3.4 Multiple ROIs

This section shows the results of coding multiple ROIs using the proposed method. 

The wavelet coefficients belonging to the ROIs are scaled so the ROIs may be 

encoded in the earlier parts of the bitstreams. Figure 36(a) is the original couple image, 

and Figure 36(b) is the result of multiple ROI coding.

(a). Original image (b). Muldple ROIs (two faces)
Figure 36: The result of the multiple ROI Coding.
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I demonstrate my results of multiple ROIs on a 512x512 gray image “Couple.” I use 

a 5-level DWT decomposition to obtain a number of 256 wavelet coefficient trees. I 

set the number of descriptions to 4 and the total bit rate to 0.15 bpp. I assume that all 

the descriptions are received. I only scale the coefficients in the two faces of the image. 

I choose 16 as the ROI scaling factor. We can see that the two faces of the couple can 

get better protection compared with the background of the image.
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C h a p t e r  6

ANALYSIS AND CONCLUSIONS

6.1 Analysis of Results

The objective of this thesis is to design methods to protect arbitrarily shaped objects in 

generalized multiple description image coding. We propose two methods: one is based 

on the PDMD framework [13] and the other is based on the MD-SPIHT framework

[8]. We call them ROI_PDMD and ROI_MD_SPIHT serperately. In our research, we 

investigated and improved the Multiple Description Coding technique to deal with 

network congestion. The main problem we faced in MDC is how to trade off between 

robustness and coding efficiency. If we add high redundancy in each description, we 

can exploit the redundancy to estimate the loss description, and achieve robust 

transmission. If we add low redundancy in each description, we may improve the 

coding efficiency but we cannot achieve system robustness.

In order to protect the ROI in Multiple Description Coding, there is a tradeoff 

between the quality of the ROI and the background. If more redundancy is added to 

protect the ROI, the quality of the ROI may be improved but it leads to the 

degradation of the whole image. In our first method, we code the ROI separately from 

the rest of the image. We take advantage of the features of the natural image and do 

not need to add explicit redundancy into each description. In our second method, we 

add more redundancy to the ROI and scale the wavelet coefficient trees belonging to 

the ROI. Both of these methods are designed to exploit the redundancy reasonably 

and effectively. Therefore, we not only can improve the quality of the ROI, but also 

improve the quality of the whole image.
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The results are demonstrated on a 512x512 gray scale image of a little girl where the 

girl’s face is a region of interest. The number of descriptions is 8, and the total bit rate 

is 1.0 bpp. Both of my methods are compared with Miguel’method proposed by [26]. 

The results are shown in Figure 37 and 38.

8  d e s c r ip t io n s , 1 .0  b p p  to ta l bit r a te

M e th o d  b y  M iguel
ROI P l 5SM  •

R O I_ M D _ S P lH T
55
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Figure 37: PSNR curve for ROI.

8 descrip tions, 1.0 bpp  to tal bit ra te
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Figure 38: PSNR curve for the whole image quality.
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We see that, although ROI_PDMD described in Charpter 4 yields comparable results 

at high losses it is somewhat worse at a loss of 4 packets or less. The downsampling 

method can take advantage of interpixel redundancy in the image to estimate values of 

neighbors, but it loses some compression efficiency with SPIHT. The reason is that 

the SPIHT algorithm also wants to exploit the interpixel feature of natural images to 

achieve good performance. Therefore, when we compress the downsampling image 

with SPIHT, if we increase the total bit rate of the image, the PSNR of the whole 

image increases relatively slowly, compared with compressing the original image with 

SPIHT.

We see that ROI_MD_SPIHT described in Chapter 5 is not as satisfactory as the first 

one for the quality of RO I and the whole image when packet losses are very high. In 

the second method, we achieve the MDC by adding explicit redundancy in the 

MD-SPIHT framework. When packet losses are very high, we need to add more 

redundancy to estimate the lost descriptions. So the coding efficiency is impaired and 

the quality of the ROI and the whole image will be degraded. When the packet losses 

are at a low level, we can achieve the MDC and protect the ROI with less redundancy, 

indicating that the second method can get better results at low packet losses.

6. 2 Conclusion

From the experiments and results discussed in Chapter 4 and Chapter 5, we can see 

that the methods presented here obtain better results than other systems described in 

the literature, under different network conditions. ROI_PDMD can achieve very good 

performance when the channel condition is poor. Under this scenario, our method 

obtains better results, since it has strong error-resilience capability hidden in the 

polyphase downsampling algorithm. ROI_MD_SPIHT is preferred compared with the 

former one when network transmission is at low-to-medium loss rates. In networks 

with higher loss rates, if we use the MD-SPIHT framework, we need to add much
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more redundancy in case most descriptions are lost. This means we need to add more 

copies of other descriptions in one description. Under this scenario, the coding 

efficiency is degraded.

From Figures 37 and 38, we also find that the latter method can give considerably 

better results than the method proposed in [26] from ROI and the whole image 

aspects. Since we reduce the size of the ROI area, we can obtain better reconstructed 

quality in both the ROI and the whole image.
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C h a p t e  r 7

FUTURE WORK

The work presented here should be seen as a first step towards investigating and 

developing Multiple Description Coding techniques for ROI processing. In our MDC 

approaches, some redundancy is preserved in the source coding. If packet losses occur, 

it is possible to recover them by exploiting the redundancy.

One interesting possible feature work is to do some research on the bit allocation in 

our MDC algorithm. The goal is to determine the optimal selection of the number of 

copies of a component, and the proportion of bits to assign to each copy (a copy is a 

compressed version of a polyphase component), given a known packet loss rate.

Another interesting possible future work is to use MDC in a Peer-to-Peer network. 

The basic idea is to design multiple trees to provide redundancy in network paths and 

also in the data. This means we can achieve robust network communication by 

introducing the redundancy on both the paths and the data. In [29], Microsoft provides 

a framework to combine MDC with the CoopNet system to achieve resilient 

Peer-to-Peer streaming. There is still considerable research to be done on the design of 

MDC in Peer-to-Peer systems.
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