
University of Alberta

Results on Set Representations of Graphs

by

Jessica Anne Enright

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

c�Jessica Anne Enright
Spring 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or
sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise

made available in digital form, the University of Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein
before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any

material form whatsoever without the author’s prior written permission.

Abstract

A set representation of a graph is an assignment of sets to vertices such that two vertices are adjacent

if and only if their assigned sets have some specified relationship. We give several results related to

set representations of graphs.

We show that recognising the overlap and intersection graphs of subtrees in some types of trees

is NP-hard. The subtree overlap graphs (SOGs) generalise many other graph classes with set rep-

resentation characterisations. The complexity of recognising SOGs is open. The complexities of

recognising many subclasses of SOGs are known. We consider several subclasses of SOGs by re-

stricting the underlying tree. For a fixed integer k ≥ 3, we consider:

• the overlap graphs of subtrees in a tree with k leaves,

• the overlap graphs of subtrees in trees that can be derived from a given input tree by subdivi-

sion and have at least 3 leaves,

• the overlap and intersection graphs of paths in a tree with maximum degree k,

We show that the recognition problems of these classes are NP-complete. We give characterisations

of several subclasses of overlap graphs of subtrees in a tree in terms of filament representations.

List colouring with a fixed colour bound of at least three is NP-complete, even on planar bipartite

graphs. We give a polynomial-time algorithm for solving list colouring with a fixed colour bound

on permutation and interval graphs, two classes with intersection representations.

Finally, we describe a class of impartial combinatorial games on graphs using set representa-

tions. In these games, the players antagonistically build a set representation of a graph. We give

hardness results for determining the winner of a position of these types of games in general, and

give polynomial-time algorithms to solve special cases of these games on trees.

Acknowledgements

This thesis could not have been written without the help of my supervisor, Lorna Stewart. My

supervisory committee has also been helpful throughout the process. Several of the papers here

have been substantially improved thanks to comments from anonymous reviewers.

The entire department has been remarkably welcoming and friendly. I owe a lot to past and

present administrative staff, especially Edith Drummond and Karen Berg. I can’t count the number

of times they made sure that I got paid, had an office, was properly registered, submitted forms on

time, or saved me from my own procrastination in some other way.

Friends both here and abroad have made my time in grad school fun and productive. I certainly

would not have come out of this as sane as I am without great friends. Claps for you all!

My family has been very supportive during what must have seemed like never-ending student-

hood. My parents, aunts, uncles, siblings, cousins have all been very encouraging and proud, espe-

cially my grandmother, Maureen Enright. I’m sorry that I didn’t quite finish this thesis in time to

show her.

The production of this thesis was powered mainly by coffee and CBC Radio 3.

Table of Contents

1 Introduction 1
1.1 Preliminaries . 3
1.2 Related Work on Set Representations . 5

1.2.1 Size of Representations . 5
1.2.2 Graph Classes . 7
1.2.3 Subtree Overlap Graphs . 14

1.3 List Colouring . 16
1.4 Combinatorial Games . 17

1.4.1 Nim and Nimbers . 18
1.4.2 Recursive definitions of games . 19
1.4.3 Kayles . 19
1.4.4 Misere Games . 20

1.5 Contribution . 20
1.5.1 Thesis Format . 21

2 Recognising the overlap graphs of subtrees in restricted trees is hard 28
2.1 Preliminaries and Definitions . 30
2.2 Preliminary Lemmas . 31
2.3 Problem Descriptions . 36
2.4 Reduction Intuition . 38
2.5 Discussion . 38
2.6 Gu

d
-blocking Graphs . 39

2.7 Representing Gu

d
-blocked graphs and colouring 42

2.8 Reductions using nicely represented Gu

d
-blocked graphs 54

2.9 Paths in a Tree of Fixed Maximum Degree . 55
2.10 Conclusion and Future Work . 61

3 Filament characterisations of overlap graphs 64
3.1 Results . 66

4 List colouring permutation and interval graphs with a fixed colour bound 74
4.1 Introduction . 74
4.2 Definitions and Preliminaries . 75
4.3 Layer Configurations . 77
4.4 Conclusion . 82

5 Set representation games 84
5.1 Introduction . 84
5.2 Definitions and Notation . 86
5.3 Set representation games - Selecting from a given set of objects 87

5.3.1 PSPACE Hardness of the Set Representation Game 89
5.3.2 Intervals and Permutation in PSPACE . 95

5.4 Solving some connected representation games . 97
5.4.1 Connected proper interval representation game using a tree 98
5.4.2 Improper Intervals . 99
5.4.3 Connected permutation representation game using a tree 102

5.5 Conclusion . 106
5.6 Further work on set representation games . 108

5.6.1 Coupled Positions . 108
5.7 Subgraph game . 108
5.8 Growing Game . 109

5.9 Dueling Bureaucrat Games . 111
5.9.1 An Informal Description . 112
5.9.2 Dueling Bureaucrats - Formal Version . 113
5.9.3 Confirming Dueling Bureaucrats . 114

5.10 Representation games on long stars . 115
5.10.1 Connected proper interval representation game using long stars 115
5.10.2 Connected permutation game using long stars 116

5.11 Games with more than one definition . 117
5.11.1 Connected proper interval representation game using a tree as a subgraph

game . 118
5.11.2 Connected permutation representation game using a tree as a subgraph game 118

5.12 Single Extension . 122

6 Conclusion 124
6.1 Future work . 124
6.2 Conclusion . 125

List of Figures

1.1 A family of sets (i), and its intersection (ii), containment (iii) and overlap (iv) graphs.
In (i) we show the bijection between vertices and sets. 2

1.2 An illustration of the relationships of a number of graph classes as a hierarchy. If
two graph classes are linked and one is below the other, then the upper one is a
superclass of the lower one. The name of each graph class is given in bold text -
for classes that appear to have two names, those two names indicate the class was
described initially as two different set representation characterizations which were
later shown to be equivalent. Citations indicate a source for the relationship between
the graph classes. 9

1.3 A polygon circle graph and its representation as intersecting polygons inscribed in
a circle. The corners of each polygon are labeled with the name of the vertex that
polygon is associated with. 11

1.4 An interval filament graph below and its representation as intersecting interval fil-
aments above. The line L is shown in thick black line and is embedded in a plane
orthogonal to the page. The filament surface is in the plane of the page above L.
The endpoints of the filaments are labeled with the name of the vertex they are rep-
resenting. The intervals are also shown, and labeled. 14

1.5 Two non-subtree overlap graphs. On the left is a non-subtree overlap graph de-
scribed by Novillo [47], on the right is the cube. 15

2.1 A tree T and two indicated subtrees: t1 and t2. Nodes b and f are the only lastbranch
nodes of T . The nodes b and d are boundary nodes of t1 and nodes e and f are
boundary nodes of t2. The paths consisting of the single vertices a, g, h, as well as
the two vertex path of c and d form the twigs of T 31

2.2 In i) a graph G = (V,E), and in ii) a family T of subtrees of a tree T , with one
subtree corresponding to each of the vertices of G. Note that T is not a represen-
tation of G, but of some other graph that has V as a subset of its vertices. In the
representation on the right vertex sets {a, c, d, e}, {b, c, d, e} are nicely represented
with respect to G. Any vertex set including both a and b is not nicely represented
with respect to the graph on the left, as a and b are adjacent in G but are both on the
same twig of the tree on the right. 36

2.3 In a) the Gu

d
graph - note the presence of d paths of three vertices between vertices

vs and vb, and u paths of three vertices between vb2 and vs2. In b) an example: the
G4

3 graph. 40
2.4 A simplified example of the transformation performed on a graph G = (V,E) in i

to its G3
3-blocked graph G�� in ii. The first step of creating G3

3-blocked graph is to
make graph G� that is the union of six disjoint copies of G. Note that the vertex set
of the G3

3-blocked graph on the right consists of the vertex set of the graph on the
left, the edge set of the graph on the left, an additional vertex for each vertex in V ,
and the vertices of Gu

d
. The vertices within the dotted oval form a clique. The edges

between the dotted oval and vs, vb indicate that all vertices within the dotted circle
are adjacent to both of vs, vb. In this example, in ii), V1 consists of the vertices in
the first column of ii, V2 the vertices in the second, and V3 the vertices in the third. 41

2.5 A generalised overlap representation of the Gu

d
graph on a tree with a node such that

the forest created by removing that node has two connected components: a tree with
d leaves and a node of degree d and a tree with at least u+ 1 leaves. The interior of
tb2 and ts2 are darkened to indicate that the structure of the tree there is somewhat
irrelevant - only the number of boundary nodes is important. In the darkened region
could be a single vertex of degree u + 1 with many leaves, or any other tree with u
attached twigs. There is exactly one node of degree greater than two contained in
ts and that node is contained only in ts and tb, and all other nodes of degree greater
than two are contained in tb2. The representation is on the left, and the Gu

d
graph is

on the right. Vertex labels and corresponding subtrees are colour coded. 49
2.6 In i) a part of a graph, in ii) the corresponding part of that graph in a G3

3-blocked
graph and in iii) a representation of the vertices shown in ii) on a tree as described in
Lemma 17. Note that the subtrees corresponding to vertices in ii) that were vertices
in i) (that is, a, b, c) are represented on the twigs of the tree. The subtree correspond-
ing to an edge (e) and the subtrees corresponding to f(a), f(b), f(c) are indicated
using lines instead of ovals, and all pairwise overlap. 52

2.7 Examples of the trees required if a) k = d = 3 and u = 0 or b) d = 3 and
u = k − d + 2 in the reduction from 3-CON-k-COLOURING to REC-T-k(G),
depending on the value of k. 54

2.8 An example of the construction of graphs G� and G�� from the graph G. G� is simply
the disjoint union of three copies of G. G�� consists of three vertex sets, V1, V2, V3
as outlined in the text. V1 is the vertex set of G�, V2 is the edge set of set of G�, and
V3 is a new set of vertices of the same size as V1. Please note that the vertices inside
the dashed oval should induce a clique - these edges were omitted for legibility. . . 57

2.9 Caterpillar Ri associated with colour class Ci with labeled short paths r1 to r|Ci| . 58
2.10 An illustration of the construction of tree T to represent the k-colourable graph G.

Note that q has degree k, and all other nodes have degree of three or less. 58

3.1 An example of a subtree overlap representation that is minimally-S-covered if S is
the edge that intersects all subtrees indicated by the arrow. The underlying tree is
shown in dots and thin lines, the representing subtrees in thicker lines. The node on
the right of the covering edge is bushy with respect to that edge because all of its
neighbours that are not in S are leaves, whereas the node on the right of the edge is
not, as it has neighbours that are neither in S nor a leaf. 65

3.2 A graph on the bottom and the initial stage of construction of filaments for that graph
on the left. Note that the filaments for c and d do not intersect the filament for a,
so these filaments are not yet an intersection representation for the graph. On the
right, we have drawn up a point of the filament for c to intersect the filament for a.
During the drawing up, we encountered the filament for b, and because c and b are
not adjacent, a point of the filament for b was pushed up. 70

5.1 An example of k separating sets for intervals on the real number line and intersec-
tion. The solid black intervals are the members of the separating sets, the dotted
intervals are examples of sets that are consistent with the functions specified in the
text and the separating sets. 88

5.2 An example of k separating sets of line segments between two lines and the set
relationship intersection. The solid black line segments are the members of the
separating sets, the dotted line segments are examples of sets that are consistent
with the functions specified in the text and the separating sets. 92

5.3 An example of k separating sets of intervals on the real number line with the set re-
lationship containment. The solid black intervals are the members of the separating
sets, the dotted intervals are examples of sets that are consistent with the functions
specified in the text and the separating sets. 93

5.4 An example of k separating sets of intervals on the real number line under the set
relationship overlapping. The solid black intervals are the members of the separating
sets, the dotted intervals are examples of sets that are consistent with the functions
specified in the text and the separating sets. 94

5.5 An illustration of the transformation from a position of the SPAG to the connected
permutation representation game using a tree . If vi is the ith vertex along the
spine of the caterpillar in the SPAG instance, we show the placement of line i to
correspond with vertex vi, as well as lines for vertices vi−2 through vi+2. We also
show in dotted line the placement of a line to intersect only the line for vi to indicate
where a line for a leaf pendant from the spine adjacent only to vertex vi could be
placed. On the left is the line placement if i is odd, on the right if i is even. 120

Chapter 1

Introduction

A set representation of a graph is an assignment of sets to vertices such that the adjacency of the

vertices corresponds to some relationship between the sets.

More precisely, let S be a family of sets and G = (V,E) be a graph.

G is an intersection graph of S if there is a bijection f : V → S such that (vi, vj) ∈ E if and

only if f(vi) and f(vj) intersect.

G is a containment graph of S if there is a bijection f : V → S such that (vi, vj) ∈ E if and

only if f(vi) ⊆ f(vj) or f(vj) ⊆ f(vi).

Two sets overlap if they intersect but neither is contained in the other. G is an overlap graph of

S if there is a bijection f : V → S such that (vi, vj) ∈ E if and only if f(vi) overlaps f(vj).

G is a disjointness graph of S if there is a bijection f : V → S such that (vi, vj) ∈ E if and

only if f(vi) is disjoint from f(vj). See Figure 1.1.

If G is an intersection (containment, overlap, disjointness) graph of a family of sets, we say

those sets are an intersection (containment, overlap, disjointness) representation of G.

Every graph has an intersection [59], overlap and disjointness [59] representation. Not every

graph has a containment representation [29].

When we restrict the type of sets we use to represent a graph, we restrict the type of graph

and therefore define a graph class. The first intersection graphs to be studied were the interval

graphs, the intersection graphs of intervals on a line [27]. Since then, researchers have studied many

classes of intersection, overlap and containment graphs. Given a set representation, we can solve

many otherwise hard problems on intersection and overlap classes, including many problems on the

intersection graphs of intervals on a line and subtrees in a tree [51], and maximum weighted clique

and independent set on subtree filament graphs and interval filament graphs [23]. That intersection

and overlap representations can be used to find solutions to hard problems has been a significant

motivation in the study of set representation classes of graphs.

This thesis deals with graph classes with set representation characterisations. We give a charac-

terisation in terms of several types of set representations for subclasses of overlap graphs of subtrees

in a tree. We show that it is hard to recognise several other subclasses of overlap graphs of sub-

1

{1, 2}, {2, 3}, {3}, {3, 4}, {5, 3}

va vb vc vd ve

i)

ii)

iii)

iv)

va vb

vc ve
vd

va vb

vc ve
vd

va vb

vc ve
vd

Figure 1.1: A family of sets (i), and its intersection (ii), containment (iii) and overlap (iv) graphs. In
(i) we show the bijection between vertices and sets.

2

trees in a tree. Using a vertex ordering arising from their intersection representations, we provide

a polynomial-time algorithm for list colouring with a fixed total number of colours, a problem that

is hard in general on two classes of intersection graphs. We describe a family of games using set

representations of graphs. We show that in general it is hard to determine who will win a position

of these games, but give polynomial-time algorithms to solve cases of these games with particular

intersection representation structure.

We have organised the remainder of this chapter in the same order in which our results are

presented. In Section 1.1, we give general preliminaries on graphs. In Section 1.2 we describe

related work on set representations and classes defined by set representations. In Section 1.3 we

discuss related work on list colouring. In Section 1.4 we introduce combinatorial games.

1.1 Preliminaries

An undirected graph is an ordered pair G = (V,E) where V is the vertex set of G, and E is a set

of subsets of V of size two. We call the members of E edges of G, and by convention denote them

using parentheses rather than braces. For example, if e is an edge in E consisting of the set of size

two containing u, v ∈ V , then we write e = (u, v), and (u, v) ∈ E. In future, if we use the term

graph we mean an undirected graph, unless we state otherwise.

A directed graph is an ordered pair G = (V,E) where V is the vertex set of G, and E is a set of

ordered pairs of elements of V . We call the members of E arcs of G, and by convention denote them

with parenthesis rather than braces, indicating the order of the pair with an arrow. For example, if e

is an edge in E consisting of pair u, v ∈ V , with u being the first member of the pair, then we write

e = (u → v), and (u → v) ∈ E.

When it is clear which graph we are talking about, we denote by n the size of the vertex set, and

m the size of the edge set.

Let G = (V,E) be a graph. If for two vertices vi, vj ∈ V , (vi, vj) ∈ E, we say vi and vj are

adjacent. Otherwise they are nonadjacent. An isolated vertex is adjacent to no other vertices. A

universal vertex is adjacent to all other vertices

Vertices vi and vj are the endpoints of edge e = (vi, vj), and e is incident at both vi and vj .

The graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there exists a bijection f :

V1 → V2 such that for two vertices vi, vj ∈ V1, (vi, vj) ∈ E1 if and only if (f(vi), f(vj)) ∈ E2.

The neighbourhood of a vertex v, denoted N(v), is the set of vertices adjacent to v.

Let G = (V,E) be a graph and V � ⊂ V a vertex subset. We say that V � induces the subgraph

G[V �] = (V �, E�) such that E� = {(vi, vj) where vi, vj ∈ V � and (vi, vj) ∈ E}. A subgraph H of

G is an induced subgraph of G if there exists a vertex set V1 such that H is isomorphic to G[V1].

A nonedge of G is a pair of vertices (vi, vj) ⊂ V such that (vi, vj) �∈ E. The complement

of G = (V,E), denoted G = (V,E), is a graph with the same vertex set as V , and an edge set

composed of the nonedges of G.

3

An orientation of a graph G = (V,E) is a directed graph
−→
G = (V,

−→
E) such that if (vi, vj) ∈ E

then exactly one of (vi → vj) or (vj → vi) is in
−→
E , and the endpoints of every edge in E� are

adjacent in G.

An orientation of a graph G = (V,E) is transitive if for every three vertices vi, vj , vk such that

(vi → vj) ∈
−→
E and (vj → vk) ∈

−→
E it holds that (vi → vk) ∈

−→
E . The in-degree of vertex vi ∈ V

is the number of vertices vj ∈ V such that (vj → vi) ∈
−→
E . The out-degree of vi is the number of

vertices vj ∈ V such that (vi → vj) ∈
−→
E . A vertex is a source if its in-degree is zero. A vertex is a

sink if its out-degree is zero.

A graph G = (V,E) is complete if every pair of vertices are adjacent. Kn is the complete graph

on n vertices. For a graph G = (V,E), a vertex subset Vc ⊆ V is a clique if G[Vc] is a complete

graph. Vc is a maximal clique of G if it is not a proper subset of any other clique of G, and is a

maximum clique of G if there is no larger clique of G. A vertex is simplicial if its neighbourhood is

a clique.

An independent set of a graph is a set of pairwise nonadjacent vertices. An independent set of

graph G is maximal if it is not a proper subset of any other independent set of G and is maximum

if there is no larger independent set of G. The maximum independent set of a graph G is denoted

α(G)

A path is a graph with distinct vertices v1, v2....vk such that for every 1 ≤ i < k, vi is adjacent

to vi+1.

A cycle is a path in which the first and last vertices of the path are also adjacent.

The length of a cycle or path is the number of edges in that cycle or path.

A chord is an edge between two vertices vi, vj in a path such that i �= j +1 and j �= i+1, or an

edge between two vertices vi, vj in a cycle such that i �= j + 1 and j �= i+ 1 and i and j are not the

first and last vertices.

Pn is the chordless path on n vertices. Cn is the chordless cycle of length n. Unless stated

otherwise, when we refer to a path or cycle, we intend it to be chordless.

A clique cover of graph G = (V,E) is a set of cliques of G such that the union of the vertices

of those cliques is equal to V . The clique cover number of G is the size of the smallest clique cover

of G. An edge clique cover of a graph G = (V,E) is a set of cliques of G such that every edge in E

is in a subgraph induced by at least one of the cliques.

A colouring of G is a partition of V into classes C1...Ck such that no two adjacent vertices are in

the same class. The size of a colouring is the number of colour classes in it. The chromatic number

of G is the size of the smallest colouring of G. A graph G is perfect if for every induced subgraph

H of G the chromatic number of H is the same as the size of the largest clique of H .

G = (V,E) is connected if for every two vertices vi, vj ∈ V there is a path in G from vi to vj .

If G is not connected, then we say that G is disconnected.

A tree is a connected graph with no cycles. A leaf is a vertex of a tree with degree one. A star

4

is a tree with only one non-leaf vertex. A caterpillar is a tree for which removing all leaves would

leave a chordless path.

For a class of graphs G, the recognition problem is: for a graph G, is G a member of G?

Let A and B be two sets. A and B intersect, denoted A ∩ B, if they share at least one element.

A and B are disjoint, denoted A|B if they do not intersect. A is contained in B (or B contains A),

denoted A ⊆ B, if every element in A is in B. A is strictly contained in B (or B is strictly contains

A), denoted A ⊂ B, if A is contained in B and there is at least one element of B not in A. A

overlaps B, denoted A � B, if A ∩B but neither A ⊂ B nor B ⊂ A.

Let A,B,A�, B� be four sets. We say that A,B and A�, B� are similarly related, denoted A,B ∼

A�B�, if A|B if and only if A�|B�, A � B if and only if A� � B�, A ⊆ B if and only if A� ⊆ B� and

B ⊆ A if and only if B� ⊆ A�.

Let S be a family of sets. ∪S is the union of all members of S . ∩S is the intersection of all

members of S . S is Helly (or has the Helly property) if, for every subfamily S � of S such that all

members of S � pairwise intersect, ∩S � �= ∅.

A decision problem is in complexity class P if it can be solved in time polynomial in the size of

the input by a deterministic Turing machine. It is in class NP if, for a yes instance, there is a proof

that the answer is ”yes” that can be verified in polynomial time by a deterministic Turing machine.

It is in class PSPACE if it can be solved in polynomial space by a deterministic Turing machine. For

definitions and discussion of complexity classes, completeness, and Turing machines, we refer the

reader to Sipser [56].

1.2 Related Work on Set Representations
1.2.1 Size of Representations

Let family of sets S be a set representation of graph G = (V,E). We call | ∪ S| the size of the

representation.

Erdös et al. [16] showed that every graph on n vertices has an intersection representation of

size at most �n2/4�, and that there exist graphs for which this many elements are required. They

used the relationship between edge clique covers and intersection representations in their proof. The

size of a minimum edge clique cover of a graph G is equal to the size of a minimum intersection

representation of G [16].

Given an edge clique cover U for G = (V,E), one can produce an intersection representation as

follows: for each vi ∈ V , let si = {u where u ∈ U and vi is a vertex of u}.

Given an intersection representation S for graph G = (V,E) a cover can be derived as follows:

for each element wi in ∪S , define a clique ki where a vertex vj ∈ V is in ki if and only if wi ∈ sj .

Erdös et al. [16] showed that the minimum edge clique cover size of a complete bipartite graph

in which the two sides of the bipartition differ in size by at most one vertex is �n2/4�, and that

5

therefore the smallest intersection representation of such a graph has that many elements.

Poljak et al. [49] used a similar edge clique cover approach to investigate the complexity of

finding the minimum size of set representations. They defined a k−set representation as a set repre-

sentation in which the largest set assigned to a vertex is of size k, and a distinct k−set representation

as a k−set representation with no set assigned to more than one vertex. A distinct k−cover is a

k−cover in which, for every pair of vertices, there is a clique in the cover that contains one of them

but not the other.

Poljak et al. [49] showed that the following problems are NP-complete for any fixed integer

k ≥ 3:

• Does there exist a k−cover of G?

• Does there exist a distinct k−cover of G

• Does G have a distinct 3-set representation?

• Does G have a 4-set representation?

• Let h be the smallest integer such that there exists a h−cover of G, and i the smallest integer

such that there exists a distinct i−cover of G. Does h = i?

Poljak et al. also showed that it is NP-complete, given integer k ≥ 3, for a given graph G and

fixed integer k to determine whether there is a simple intersection representation S of G such that

| ∪ S| ≤ k. A simple intersection representation is an intersection representation in which intersect

in at most one element, and no two sets are equal.

This dovetails nicely with the result due to Kou, Stockmeyer and Wong [40] that, given a natural

number k, it is NP-complete for a given graph G to determine if there is an intersection representa-

tion S of G such that | ∪ S| ≤ k.

Rosgen [52] found the sizes of minimum intersection representations for several classes of

graphs, including the complements of graphs composed of disjoint edges. Rosgen also defined

the intersection extension problem: given a graph G = (V,E), an intersection representation S of

G, and a vertex set A ⊆ V , is there is a set s ⊆ ∪S such that s intersects exactly the sets in S

corresponding to vertices in A?

The motivation for this problem is the question: given a graph and a representation, can one add

a new vertex with arbitrary neighborhood to the graph and still represent it by just adding a new set

for the new vertex without changing any of the rest of the representation, or adding new elements to

the universe of the representation? Rosgen showed that the intersection extension problem can be

solved in polynomial time.

Overlap Graphs

There has been less study of these general questions on overlap graphs. Rosgen [52] studied

optimally sized overlap representations. He called the size of an optimally sized overlap represen-

tation the overlap number of a graph. He proved the size of a minimum overlap representation for

6

the paths, cycles, caterpillars, cliques, and complete k−partite graphs. He also described the over-

lap extension problem, similar to the intersection extension problem. Rosgen showed that while the

intersection extension problem can be solved in polynomial time, the overlap extension problem is

NP-complete, even when the new vertex added is universal.

Cranston et al. [11] proved that the overlap number of a tree is the number of vertices in a max-

imum subtree in which every neighbour of a leaf has degree two, and gave a linear-time algorithm

for finding such a representation.

They also gave a number of other bounds on overlap number, showing tightness in some cases.

They showed that the overlap number of a graph with minimum degree two that is not a complete

graph of size three is at most the number of edges minus one. They showed that this is exactly

the overlap number for connected, triangle-free graphs with no star-cutsets. They showed that the

overlap number of a planar graph on n ≥ 5 vertices is at most 2n − 5, and that this is exactly the

overlap number if every face has four vertices and there is no star-cutset. Finally, they showed that

the overlap number for a general graph on n ≥ 14 vertices is at most n2/4 − n/2 − 1, and that

this is exactly the overlap number if the graph can be formed by deleting a perfect matching from a

complete bipartite graph with n/2 vertices in each part of the bipartition.

Containment Graphs

Comparability graphs are undirected graphs that admit a transitive orientation of their edges.

These graphs are well-studied, and have a number of characterizations.

Every containment graph is a comparability graph - see [29] - the proof of this is based on the

transitivity of containment: given three sets a, b, c if a ⊆ b and b ⊆ c, then a ⊆ c.

Every comparability graph is the containment graph of substars of a star [28]. A proof, by

Golumbic and Scheinerman, describes how to produce from a comparability graph G = (V,E) a

family of substars of a star S such that G is the containment graph of S .

Then comparability graphs are exactly containment graphs, and are also exactly containment

graphs of substars of a star.

An important early paper on comparability graphs by Gallai [20] is translated in [50]. This paper

gives a forbidden induced subgraph characterization of the comparability graphs. Gallai [20] also

explored the idea of modular decomposition of comparability graphs.

McConnell and Spinrad gave a linear time algorithm [45] to provide a transitive orientation of a

graph if one exists, using modular decomposition. Currently, the asymptotically fastest approach to

checking whether this orientation is transitive uses matrix multiplication, so overall the complexity

of recognizing a containment graph is O(n2.376) [10, 57].

1.2.2 Graph Classes

Restricting the sets that establish an intersection, overlap, disjointness or containment representation

restricts the graphs that can be represented. We concern ourselves mainly with representations using

7

geometric sets. For an illustration of the relationships between some of the classes we describe here,

ee Figure 1.2.

Scheinerman [54] addressed the question: Given a graph class P , does there exist a class of sets

Σ such that the graphs in P are exactly the intersection graphs of sets of type Σ?

A graph class is monotone if it is closed under edge and vertex removal. Vertex expansion is

an operation that consists of taking one vertex of a graph and replacing it with a clique where each

vertex in the clique has the neighborhood of the original vertex outside of the new clique. Vertex

multiplication is an operation that consists of taking one vertex of a graph and replacing it with

an independent set where each vertex in the independent set has the neighborhood of the original

vertex. A graph class P is hereditary if for every element G of the class, every induced subgraph

of G is also in P . A composition series for a family of graphs P is a countable collection of graphs

G1, G2, G3... such that every Gi is in P and is an induced subgraph of Gi+1, and, for every graph

G in P , G is an induced subgraph of Gk for some k.

Scheinerman [54] showed that a graph class P is exactly the class of the intersection graphs of

some set class Σ if and only if P is monotone, closed under vertex expansion, and has a composition

series. He showed a graph class P is exactly the class of the overlap graphs of some set class Σ if

and only if P is hereditary, closed under vertex multiplication, and has a composition series.

Scheinerman [54] introduced the idea of injective intersection graph classes. In an injective set

representation of graph G = (V,E), each vertex in V is assigned exactly one distinct set - that is,

no two vertices are assigned the same set. This is in contrast to general set representations, in which

two vertices may be represented by the same set.

Scheinerman [54] showed that for a graph class P , there exists a family of sets Σ such that the

graphs in P are exactly the injective intersection graphs of Σ if and only if P is monotone and has a

composition series. Therefore, every intersection graph class is an injective intersection graph class,

but not the other way around. Scheinerman pointed out the line graphs as an illustrative example -

they are an injective intersection class, but not an intersection class.

Golumbic and Scheinerman’s [54, 28] work suggests that a number of graph classes have undis-

covered intersection, containment, and overlap characterizations.

We discuss some graph classes with known set representation characterizations.

Interval Graphs

The first intersection class to be described was interval graphs, the intersection graphs of intervals

on a line. Hajós (see [29]) showed that interval graphs are chordal. Ghouila-Houra (described in

translation in [29]) showed that they are cocomparability. Gilmore and Hoffman [26] showed that

interval graphs are exactly the chordal cocomparability graphs.

While this characterization implies a polynomial time recognition algorithm for interval graphs,

a more efficient algorithm can be derived from another result: interval graphs are exactly graphs for

8

Interval Graphs
Intersection Graphs of Intervals

on a Line

Chordal Graphs
Intersection Graphs of Subtrees

in a Tree

Cocomparability Graphs
Overlap Graphs of Subtrees in
a Tree where all Subtrees have

a Point in Common

Circle Graphs
Intersection Graphs of Chords

on a Circle
Overlap graphs of Intervals on

a Line

Polygon Circle Graphs
Intersection Graphs of
Polygons in a Circle

Subtree Overlap Graphs
Subtree Filament Graphs

Overlap Graphs of Subtrees in
a Tree

Intersection Graphs of Subtree
Filaments

Comparability Graphs
Containment Graphs of

Subtrees in a Tree

Permutation Graphs
Containment Graphs of

Intervals on a Line

complements

Cenek, 1998

Koebe, 1990;
Kostochka and
Kratochvil, 1997

Golumbic, 2004

Pneuli, Even
and Lempel,

1971

Golumbic, 2004

Golumbic and Scheinerman, 1989
Cenek, 1998

Golumbic, 2004

Pneuli, Even
and Lempel,

1971

Caterpillar Overlap Graphs
Interval Filament Graphs

Overlap Graphs of
Subcaterpillars in a Caterpillar
Intersection Graphs of Interval

Filaments

3D Interval Filament Graphs
Intersection Graphs of 3D

Interval Filaments

Gavril, 2007

Circular Arc Graphs
Intersection graphs of Arcs in a

Circle

Cenek, 1998

Pnueli, Even
 and Lempel,

1971

Pnueli, Even
 and Lempel,

1971

Golumbic and Scheinerman, 1989

Figure 1.2: An illustration of the relationships of a number of graph classes as a hierarchy. If two
graph classes are linked and one is below the other, then the upper one is a superclass of the lower
one. The name of each graph class is given in bold text - for classes that appear to have two names,
those two names indicate the class was described initially as two different set representation charac-
terizations which were later shown to be equivalent. Citations indicate a source for the relationship
between the graph classes.

9

which all maximal cliques can be linearly ordered such that the cliques containing each vertex of the

graph occur consecutively [29].

Booth and Lueker [6] gave a linear time algorithm using this maximal clique ordering property:

first, check whether the graph is chordal, and if so enumerate the maximal cliques. Chordal graphs

have a number of maximal cliques bounded by the number of vertices. Booth and Lueker provided

a linear time algorithm to check if these maximal cliques can be ordered in the appropriate way.

Chordal Graphs

Gavril [21] showed that chordal graphs are exactly intersection graphs of subtrees of a tree.

Chordal graphs are well studied independent of this characterization. They are perfect and have a

linearly bounded number of maximal cliques. For any graph G the following are equivalent [29, 22]:

• G is chordal,

• all minimal cutsets of G are cliques,

• G is a subtree intersection graph,

• G has a perfect vertex elimination scheme.

The last of these requires explanation, and is the basis for an efficient chordal graph recognition

algorithm. A perfect vertex elimination scheme is an ordering P = [v1...vn] of the vertices of G

such that every vi for 1 ≤ i ≤ n is simplicial in G[vi...vn]. Lexicographic breadth first search can

be used to find a perfect vertex elimination scheme if one exists in O(n+m) time.

Given that chordal graphs have at most a linear number of maximal cliques [21], it follows that

the maximum clique of a chordal graph can be found in polynomial time. Chordal graphs are perfect,

so the size of the maximum clique is the chromatic number.

Using a perfect elimination scheme, Gavril [21] provided an algorithm for finding an indepen-

dent set and clique cover of the same size, guaranteeing that the independent set is maximum, and

the clique cover is minimum.

Permutation Graphs

Let G = (V,E) be a graph. G is a permutation graph if there exists a numbering from 1 to n

of the vertices in V and a permutation π on integers 1, 2...n such that two vertices vi and vj are

adjacent if and only if i and j are inverted in π.

There are several other characterizations of permutation graphs. Permutation graphs are exactly

the comparability cocomparability graphs [13], and intersection graphs of line segments that connect

two parallel lines [29].

These characterizations lead to polynomial-time recognition algorithms for comparability graphs

and cocomparability graphs.

10

v
a

v
b

v
c

v
d

v
c v

c

v
c

v
c
v
a

v
a

v
d

v
d

v
b

v
b

v
b

Figure 1.3: A polygon circle graph and its representation as intersecting polygons inscribed in a
circle. The corners of each polygon are labeled with the name of the vertex that polygon is associated
with.

An algorithm we present in this thesis uses the layers of a breadth-first search of a permutation

graph rooted at a particular vertex in what we call a multi-chain ordering. This ordering is closely

related to the strong ordering used by Heggernes et al˙ [34] to compute the bandwidth of bipartite

permutation graphs in polynomial time.

Let G = (V,E) be a bipartite permutation graph with bipartition V1, V2. A strong ordering of

G is a pair of orderings, one of V1 and one of V2, such that if a, a� ∈ V1, b, b� ∈ V2 (a, b) ∈ E

and (a�, b�) ∈ E, and a is before a� in the ordering of V1 but b� is before b in the ordering of V2,

then (a, b�) ∈ E and (a�, b) ∈ E. Then the neighbourhood of a vertex a ∈ V1 is contiguous in the

ordering of V2. The multi-chain ordering we used later in this thesis shares this property when we

only consider two adjacent layers of a breadth-first search.

Polygon Circle Graphs

Polygon circle graphs were first described under the name of spider graphs by Koebe [37] as a

generalization of the intersection graphs of chords in a circle.

Koebe described spiders - a generalization of chords with more than two terminals in a circle.

Polygon circle graphs are the intersection graphs of spiders in a circle. They are also the intersection

graphs of polygons in a circle. For an example of a polygon circle graph and its representation, see

Figure 1.3.

Koebe observed that since the colouring problem is hard on circle graphs it is also hard on

polygon circle graphs. However, he showed that for k ≥ 4 and a polygon circle graph of constant

bounded degree d, one can test if the graphs is k colourable in polynomial time. His algorithm

generalizes an earlier one for circle graphs. He also devised an O(s2) time algorithm for finding a

maximum independent set of a polygon circle graph, where s is the number of terminals in an input

representation.

11

Kostochka and Kratochvı́l [39] also studied the chromatic number of polygon circle graphs,

asymptotically bounding the chromatic number of a polygon circle graph as a function of the size of

that graph’s largest clique.

Koebe [38] claimed to have discovered a polynomial time recognition algorithm for polygon cir-

cle graphs. This algorithm was never fully published. Recently, Pergel showed that the recognition

of polygon circle graphs is NP-complete [48] using a reduction from not-all-equal-3-CNF satisfia-

bility. In the same paper, Pergel showed a hardness result on interval filament graphs, a class we will

discuss later.

The girth of a graph is the size of its shortest induced chordless cycle. Kratochvı́l and Pergel [43]

studied the impact of restricted girth on the recognition of polygon circle graphs. They provided a

polynomial-time algorithm to recognize polygon circle graphs with girth greater than four.

Kratochvı́l and Pergel [42] also defined a notion of complexity of a polygon circle representation.

Consider a polygon circle representation for graph G. The complicacy of that representation is the

number of corners of the polygon with the maximum number of corners. The complicacy of G,

denoted cmp(G), is the minimum complicacy of all the polygon circle representations of G. The

complicacy of n, denoted cmp(n), is the maximum complicacy of all polygon circle graphs on n

vertices. Kratochvı́l and Pergel showed that cmp(n) = n− log2n+ o(log2n).

Paths in Trees

There has been extensive study of intersection graphs of paths in trees. Gavril [24] studied the inter-

section graphs of directed paths in directed trees. Monma and Wei [46] investigated the intersection

graphs of many categories of intersection graphs of paths in a tree, including the path graphs, di-

rected path graphs, edge path graphs, directed edge path graphs, rooted directed path graphs, rooted

directed edge path graphs, and Helly edge path graphs.

Monma and Wei [46] presented a unified approach to the recognition of all these classes using

clique cutset decomposition, giving polynomial-time recognition algorithms for the directed path

graphs, Helly edge path graphs, and directed edge path graphs.

Gavril’s [24] recognition algorithm for the directed path graphs uses a different approach. His

algorithm builds a canonical directed tree from a graph and a representation on that tree such that

the graph has a directed path representation if and only if it has one on the canonical tree. He

also showed that directed path graphs are chordal, and that proper directed path graphs are exactly

directed path graphs.

Filament Intersection Graphs

Gavril [23] introduced filaments and G−mixed partitions of graphs.

Let G = (V,E) be a graph and G a graph class. G is G−mixed if there is a partition of its edges

into E1 and E2 such that:

12

• G1 = (V,E1) is a comparability graph and

• G2 = (V,E2) is in G and

• there is a transitive orientation
−→
E1 of E1 such that for every pair of edges (u → w) ∈

−→
E1 and

(v, w) ∈ E2, we have (u, v) ∈ E2.

Filaments are curves in a surface above some geometric object [23].

As an example, consider the interval filament graphs. Let I be a family of intervals on line

L, embedded in plane Q. Let P be a surface orthogonal to Q, above Q, and intersecting Q at

exactly L. For each interval ij ∈ I, let fj be a curve in P connecting the endpoints of ij such

that for two intervals ij , ik, if ij |ik then fj |fk. These curves are called interval filaments, and their

intersection graphs are called interval filament graphs. For an example of an interval filament graph

and an interval filament representation, see Figure 1.4. Gavril showed that the cocomparability and

polygon circle graphs are subclasses of interval filament graphs.

Subtree filaments are curves in a surface above a tree. Let T be a family of subtrees of a tree

T that is embedded in a plane P . The filament surface defined by T is the surface orthogonal to P

that intersects P at exactly T . This surface can be imagined to be formed by drawing T upwards

from P to form a surface. Filaments F = {f1...fn} on the elements of T = {t1...tn} are curves

in the filament surface where each fi, 1 ≤ i ≤ n connects the leaves of ti, and for two filaments

fi, fj ∈ F corresponding to ti, tj ∈ T :

• if ti|tj then fi|fj and

• if ti � tj then fi intersects fj .

Gavril [23] showed that the subtree filament graphs are exactly the complements of cochordal-

mixed graphs, and the interval filament graphs (the intersection graphs of filaments on intervals on

a line) are the complements of cointerval-mixed graphs.

In the same work, Gavril described an algorithm to find a maximum clique in a G−mixed graph

G = (V,E) if the partition of E into E1, E2 is given, and there exists a polynomial-time algorithm to

find maximum weight cliques for graph class G. A similar algorithm was discovered independently

by Čenek and Stewart [9].

Since there exist polynomial-time algorithms for finding maximum weight cliques in chordal

graphs, cochordal graphs and cointerval graphs, circular arc graphs, and subtree cactus graphs, this

approach yields polynomial-time algorithms for finding maximum independent sets in interval fila-

ment, circular arc filament, subtree filament, and subtree on a cactus filament graphs.

In 2007, Gavril further generalized his idea of filament graphs, describing the 3D-interval fila-

ment graphs [25]. This class contains the class of subtree overlap graphs.

Given that the filament framework can describe so many graph classes, and that, given an edge

partition, so many problems can be solved that are otherwise hard, the recognition and place in the

graph hierarchy of filament graphs is interesting.

13

Figure 1.4: An interval filament graph below and its representation as intersecting interval filaments
above. The line L is shown in thick black line and is embedded in a plane orthogonal to the page.
The filament surface is in the plane of the page above L. The endpoints of the filaments are labeled
with the name of the vertex they are representing. The intervals are also shown, and labeled.

Interval filament graphs are a proper superclass of interval overlap graphs. Circular arc filament

graphs are a proper superclass of circular arc overlap graphs.

In contrast, the subtree overlap graphs are exactly subtree filament graphs, as shown by Enright

and Stewart [15]. Given a family of filaments F on the family of subtrees T of tree T , Enright

and Stewart produced a new tree T � and a new family of subtrees T � such that T � is T with some

added leaves, and each subtree in T � is either the same as a subtree in T , or else is a subtree in T

with new leaves added. These leaves are used to ensure that all intersections between elements of F

correspond to overlapping in T �.

The complexities of recognising many of these filament classes are open, including the com-

plexity of recognising subtree filament graphs. Pergel [48] showed that recognising interval filament

graphs, polygon circle graphs, and any graph class that is a superclass of one and a subclass of the

other is NP-hard.

1.2.3 Subtree Overlap Graphs

A graph G is a subtree overlap graph if there exists a family of subtrees T of tree T such that G is

the overlap graph of T .

Novillo [47] showed that not all graphs are subtree overlap graphs. He showed that a graph is

not subtree overlap if it can be partitioned into two parts G1 and G2 such that G1 is an induced cycle

of length at least five, G2 is a connected graph of at least five vertices, and every vertex in G1 is

adjacent to some vertex in G2 that is adjacent to no other vertex in G1 [47]. The smallest known

non-subtree overlap graph is the cube, shown in Figure 1.5.

14

a

b

cd

e
f

g

hi

j

G
1

= G(V
1

) V
1

 = {a, b, c, d, e}

G
2

 = G(V
2

) V
2

 = {f, g, h, i, j}

G =

Figure 1.5: Two non-subtree overlap graphs. On the left is a non-subtree overlap graph described by
Novillo [47], on the right is the cube.

Cocomparability graphs, chordal graphs, circle graphs, circular arc graphs, polygon circle graphs

and interval filament graphs [8, 23], are all strict subclasses of subtree overlap graphs. Subtree

overlap graphs are exactly subtree filament graphs [15].

Čenek [8] showed that every minimal subtree overlap representation of a subtree overlap graph

on n vertices, is of size at most 3n nodes. Čenek and Stewart [9] presented a polynomial time

algorithm to find a maximum clique and maximum independent set given a subtree overlap repre-

sentation.

Enright [14] showed that every graph which has an induced chordal subgraph of size n − 1 is

a subtree overlap graph; and every graph G = (V,E) with a vertex partition V1, V2 such that both

G[V1] and G[V2] are noncocomparability graphs and every vertex in V1 is adjacent to every vertex

in V2 is not a subtree overlap graph.

The complexity of the recognition problem for subtree overlap graphs remains open.

In studying chordal graphs as intersection graphs of subtrees in a tree, the correspondence be-

tween cliques in the graph and nodes in the tree has been used to develop algorithms [22]. We

comment here on the corresponding idea in studying subtree overlap graphs, and its limitations.

Cocomparability subgraphs of subtree overlap graphs

Let subtrees T of tree T be a subtree overlap representation of graph G = (V,E). Let p be a

node of T . If the subtree family Tp is composed of exactly the subtrees in T that contain p, and Vp

is the set of vertices corresponding to subtrees in Tp, then G[Vp] is a cocomparability graph. At first

glance, this property seems to be very useful - analogous to the fact that in a subtree intersection

representation of a chordal graph the set of vertices corresponding to a family of subtrees having a

node in common are a clique.

Sadly, there is a critical difference between cocomparability graphs in subtree overlap graphs

and cliques in chordal graphs, with respect to the subtree representations of those classes. Assuming

15

a minimal subtree intersection representation for the chordal graph and a minimal subtree overlap

representation for the subtree overlap graph, there is a bijection between maximal cliques in the

chordal graph and nodes in its tree, but there is not between the cocomparability subgraphs of the

subtree overlap graph and the nodes of its tree.

1.3 List Colouring

As described, many otherwise-hard problems have polynomial-time algorithms on intersection,

overlap, and containment classes of graphs. In this thesis we will give a polynomial-time algo-

rithm for list colouring with a fixed total number of colours on permutation and interval graphs. We

proceed to introduce the list colouring problem and previous work in the area.

In the vertex colouring problem, we try to assign each vertex in a graph a colour such that no

two adjacent vertices are assigned the same colour using the minimum number of colours.

In the vertex list colouring problem, each vertex has a list of colours, and we try to assign

each vertex a colour from its list such that no two adjacent vertices are assigned the same colour.

Determining if this is possible is NP-complete, as it is a generalization of vertex colouring [36]. List

colouring remains hard even on interval graphs [2], as well as split graphs, cographs, and bipartite

graphs [35]. It is solvable in O(nt+2) time on graphs of constant treewidth t [35].

A tree decomposition of a graph G = (V,E) is a tree T = (VT , ET) and an assignment of

subsets of vertices in V to the vertices in VT such that each vertex in V is assigned to at least one

vertex in VT , vertices that are adjacent in G are both assigned to at least one of the same vertices in

VT , and for every vertex v ∈ V , the vertices of T to which v is assigned induce a connected subtree

of T . The width of a tree decomposition is one less than the largest number of vertices assigned to a

vertex of the tree. The treewidth of a graph is the smallest width over all tree decompositions of that

graph. Intuitively, the treewidth of a graph indicates how tree-like it is.

List colouring is W [1]-hard parameterized by treewidth [18], which means that there is unlikely

to be an algorithm with running time O(f(t) ∗ (n+m)c) where t is the treewidth of the graph, f(t)

is some function of t, and c is a constant depending on none of t, n or m.

List colouring was first described by Vizing [60] and Erdös et al. [17] independently.

Kratochvı̀l and Tuza [44] showed that list colouring is NP-complete even if the size of each

list assigned to a vertex is at most three, each colour appears in at most three lists, each vertex in

the graph has degree at most three, and the graph is planar. However, they gave polynomial-time

algorithms to solve list colouring on a graph if the maximum list size is at most two, or each colour

appears in at most two lists, or each vertex has degree at most two.

List Colouring with Fixed Colour Bound

List colouring with fixed colour bound k, or k-list colouring asks: given a graph and colour lists

assigned to each vertex such that there are at most k colours over all the lists, is there a proper

16

colouring of the graph such that every vertex is assigned a colour from its list and no two adjacent

vertices are assigned the same colour.

List colouring with fixed colour bound k is a generalization of k-vertex colouring, and so is NP-

complete. It remains NP-complete on planar bipartite graphs [41], even with a fixed colour bound

of three. It is solvable in O(n∗kt+2) (linear for fixed k) time on graphs of constant treewidth t [35].

Gravier et al. [30] studied a version of list colouring with fixed colour bound in which we are

given an integer p(j) for each colour j, and want to know if there is a proper colouring in which

every vertex is assigned a colour on its list and each colour j is assigned to exactly p(j) vertices.

Following de Werra [12] they call this list colouring with fixed colour bound and cardinalities.

Gravier et al. [30] gave polynomial-time algorithms for solving this problem when the colour

bound is two, for graphs of fixed treewidth, for chordal graphs, and for treed graphs, where treed

graphs are the closure of forests under substitution. The substitution operation replaces a single

vertex v of a graph with another new graph, adding edges between all neighbours of v and all

vertices in the new graph.

Precolouring Extension and Intersection Graphs

Precolouring extension is a restriction of list colouring in which some of the vertices are preassigned

colours, and we want to know if there is k-colouring of the graph in which the vertices preassigned

colours are assigned those colours. In a k-list colouring framework, this means that each vertex’s

list either contains all the colours, or all but one of the colours.

Precolouring extension is NP-complete on planar bipartite graphs [41] with a fixed colour bound

of three.

Let H be a fixed graph with fixed treewidth t. Recall that a subdivision of H is a graph formed

from H by repeated subdivisions of edges. Biro et al. [2] showed that precolouring extension with

fixed colour bound k can be solved in polynomial time on the intersection graphs of subgraphs of

subdivisions of H .

They used this to show that precolouring extension with fixed colour bound can be solved in

polynomial time on graphs of fixed treewidth because every graph is an intersection graph of a

subdivision of itself.

1.4 Combinatorial Games

A combinatorial game is a two player game with no chance or hidden information. The players

alternate turns. Under the normal play condition the last player to make a legal move wins. We

consider only finite games - games that are guaranteed to end after a finite number of moves. A

game that will continue forever is a draw. A combinatorial game must specify what constitutes a

legal move from every position, and for each player.

17

An impartial combinatorial game is a combinatorial game in which from a given position the

same moves are available to either player. All of the games we describe are impartial.

A game position S� is reachable from game position S if there is a legal sequence of moves from

S that results in S�.

Perfect play is a strategy that will lead to the best possible outcome regardless of the strategy of

the opponent. We generally analyse games assuming that both players are exhibiting perfect play,

and assume so unless stated otherwise.

A winning move is a move that, with perfect play, will lead to a win for the player making that

move. A losing move is a move that, with perfect play, will lead to a loss for the player making the

move. A winning position is a game position from which there is a winning move. A losing position

is a game position from which there is no winning move.

An end position is a game position from which there are no legal moves.

Let S be a position of a game. When we refer to the next player with reference to S we mean

the player whose turn it is at S. That is, the player who sees the position S before he has made his

move. We also use a convention from the literature, and call a winning position a N−position, and

a losing position a P−position.

The outcome class of a game position is who will win with perfect play. That is, the outcome

class of a position is that it is either a N−position or a P−position. When we say that we are solving

a position we mean that we are finding the outcome class of that position.

The idea of the sum of two games is important in combinatorial game theory. If G and H are

two games, by G+H we mean a game in which the players may play on each turn in either G or H .

Under normal play, the last player to make a legal move across both G and H wins G+H . We say

that two games G and G� are equivalent if for every third game H the games G + H and G� + H

are in the same outcome class.

1.4.1 Nim and Nimbers

Impartial combinatorial games can be analysed using Sprague-Grundy theory. We start our discus-

sion of Sprague-Grundy theory with the game of nim.

In the game of nim, a position consists of some number of piles of stones, with some number of

stones in each pile. Two players alternate turns. On his turn, a player can take any number of stones

from any pile. He may not take stones from more than one pile on one turn. Under normal play the

last player to remove a stone wins. Nim is an impartial combinatorial game.

Bouton [7] gave nim its current name, and Sprague [58], Grundy [31] (later Smith and Guy [33])

developed an extensive theory from it Nim is completely solved for all numbers and sizes of piles.

Bouton [7] described the nim-sum, a means of adding together nim piles.

The nimber of each pile of nim stones is the number of stones in that pile.

The nimbers are the class of ordinals, with nim-sum (sometimes called nimber addition) and

18

nimber multiplication. We will not use nimber multiplication in this thesis.

The minimum excluded ordinal of a set of ordinals S (denoted mex(S)) is the smallest ordinal

not in S. The nim-sum of two ordinals a, b is recursively defined as the minimum excluded ordinal

of the set {{a� + b where a� < a} ∪ {a + b� where b� < b}} and a�, b� are ordinals. The nim-sum

of two ordinals is also their bitwise exclusive or value if they are expressed in binary. Nim-sum is

associative and commutative [1]. Bouton [7] showed that:

Theorem 1. A nim position is a win for the next player if and only if the nim-sum of its components

(the number of stones in each of the piles) is greater than zero.

This is helpful for analysing impartial combinatorial games in general because of the Sprague-

Grundy theorem:

Theorem 2. Every impartial combinatorial game position is equivalent to a nim-position.

The nimber of a position in an impartial combinatorial game is the nimber of its equivalent nim-

position. If we can find the nimber of a game position, we know the outcome class. Nimbers also let

us add games together. Given a set of impartial combinatorial game positions and their nimbers, we

can determine the outcome class of the sum of these game positions by taking the nim-sum of their

nimbers.

1.4.2 Recursive definitions of games

Combinatorial game theory uses formal notation for games that we rarely use. A game position G is

defined recursively based on the options for the two players, left and right, such that G = {GL|GR}

where GL is the set of positions the left player could produce from G if it were his turn and GR is

the set of positions the right player could produce from G if it were his turn.

The base of this recursive definition is the empty game: 0 = {|}, in which there are no legal

moves for either player. Because there are no moves for either player, 0 is a P−position. The game

∗ = {0|0} is the game in which the next player can move the game to a 0 game, and so is a N

position. Sometimes the nim-sum of k games of ∗ is abbreviated as k∗. We will occasionally use

this notation.

In an impartial game GL = GR for all positions. We will not use this notation for most of our

games, instead describing a game position as the moves already made with the possible positions

resulting from the next move being implicit.

1.4.3 Kayles

Row-Kayles is a combinatorial version of a game in which players knock over pins in a row. It

was originally called Kayles, but as this name is now commonly used to refer to a generalisation of

Row-Kayles, we will not use it.

19

A Row-Kayles position consists of a row of tokens, representing the pins. A player may remove

one token, or two adjacent tokens. Any game position consisting of a single contiguous row of

tokens with at least one token is a N−position, by a symmetry argument. The next player need

only remove the middle one or two pins, producing two contiguous rows of equal size. He can then

subsequently mirror the moves of the other player in the opposite row. Guy and Smith [32] provided

an algorithm for solving positions composed of more than one contiguous row.

Kayles (sometimes called Node-Kayles) is a generalisation of Row-Kayles played on a graph.

In a game of Kayles, players alternate turns. On a player’s turn, he chooses a vertex of the graph. A

player may not choose a vertex already chosen, or a vertex adjacent to a vertex that has already been

chosen. The last player to make a legal move wins.

While solving an arbitrary Kayles position is PSPACE-complete [53], positions on trees with

only one vertex of degree greater than two [19], graphs with bounded asteroidal number [4], and

cocomparability, permutation, interval, and circular arc graphs [3] can be solved in polynomial time.

The complexity of resolving Kayles positions on trees remains open.

Bodlaender and Kratsch [5] gave an O(1.6052n) time algorithm for resolving Kayles positions

on graphs on n vertices. Their approach works from the naive algorithm for solving Kayles posi-

tions on a graph G = (V,E): recursively checking each induced subgraph of G and determining the

winner of a Kayles game on that subgraph. They define a K−set of a graph G = (V,E) as vertex set

W that induces a connected subgraph of G such that G[V \W] is an independent set plus all neigh-

bours of that independent set. They bound the number of these K−sets in a graph by O(1.6052n).

Because the subgraphs induced by these K−sets are really the only subgraphs one would need to

recursively consider in the trivial algorithm, this gives their O(1.6052n) time algorithm.

1.4.4 Misere Games

Under normal play, the last player to make a legal move wins. Under misere play the last player

to make a legal move loses. Misere play games have proved to be far more resistant to theoretical

analysis than normal play games. For example, Row-Kayles was solved in 1956, misere Row-Kayles

was not solved until 1992 by Sibert and Conway [55].

We briefly consider a misere version of a game in this thesis. We are able to solve it because we

can abstract the game to reduce the total number of possible positions of the game to a polynomial

number.

1.5 Contribution

In this thesis, we present work on several aspects of set representations of graphs.

In Chapter 2 we focus on the complexity of recognising subclasses of subtree overlap graphs.

We show that recognising the intersection and overlap graphs of paths in a tree with fixed maximum

degree at least three is NP-complete. We show that recognising the overlap graphs of subtrees in

20

subdivisions of a fixed host tree with at least three leaves is NP-complete. We show that recognising

the overlap graphs of subtrees in a tree with a fixed number of leaves of at least three is NP-complete.

In Chapter 3 we prove a relationship between filament graphs on specified hosts and subtree

overlap graphs in which specified subgraphs of the underlying host tree are guaranteed to intersect all

representing subtrees. This result implies two previous results: subtree filament graphs are subtree

overlap graphs [15] and caterpillar overlap graphs are interval filament graphs.

In Chapter 4 we give a polynomial-time algorithm for list colouring permutation and interval

graphs with a fixed colour bound. We define and use a vertex ordering that we call a multi-chain

ordering. This ordering is related to the strong ordering of bipartite permutation graphs, and may be

useful for other problems and other graph classes.

In Chapter 5 we define several combinatorial games on graphs, all of which generalise Kayles.

First, we define the set representation game, in which players pick sets from a provided pool to

build a set representation of a given graph. At each step, the set chosen must be consistent with the

set representation already partially built. The last player to make a legal move wins.

We show that the problem of determining which player has a winning strategy from a position

of the set representation game is PSPACE-hard using a reduction from Kayles.

We consider several specific varieties of the set representation game, including playing the game

with intervals on a line. We define a separability condition on the sets used to play the game and

the set relationship corresponding to adjacency in the graph. We show that resolving positions of

the set relationship game on separable sets and set relationships is PSPACE-hard. We also show that

several restricted separable versions of the set representation game are in PSPACE, and are therefore

PSPACE-complete.

We describe a subgraph game, in which players must choose vertices from a given graph such

that the subgraph induced by the chosen vertices remains in some specified graph class. The sub-

graph game in which the specified graph class is the class of independent sets is exactly Kayles.

Finally, we define a set representation growing game similar to the set representation game, but

instead of choosing sets from a given pool, the sets are subgraphs of a graph that we build as the

game proceeds. We show the equivalence of some of our set representation games to these subgraph

and growing games.

While showing that resolving positions of these games is, in general, PSPACE-hard, we give

algorithms for resolving the outcomes of positions of cases of these games in polynomial time.

1.5.1 Thesis Format

This thesis is in a paper-based format. Chapters 2, 3, 4, and 5 consist of papers submitted for

publication. These each include their own introduction, and so some definitions and introduction

will be repeated in each chapter. Each chapter also has its own bibliography. Chapter 5 has a

section of results following the paper and bibliography that contains results on set representation

21

and related games that was removed from the journal submission in the interest of conserving space,

but has been included here for completeness.

22

Bibliography

[1] Michael H Albert, Richard J Nowakowski, and David Wolfe. Lessons in play: An introduction

to the combinatorial theory of games. A K Peters, Ltd, 2007.

[2] Milos Biro, Mihaly Hujter, and Zsolt Tuza. Precoloring extension. i. interval graphs. Discrete

Mathematics, 100(1):267–279, 1992.

[3] Hans L. Bodlaender. Kayles on special classes of graphs - an application of sprague-grundy

theory. In Proceedings of the 18th International Workshop on Graph-Theoretic Concepts in

Computer Science, WG ’92, pages 90–102, London, UK, 1993. Springer-Verlag.

[4] Hans L. Bodlaender and Dieter Kratsch. Kayles and nimbers. J. Algorithms, 43(1):106–119,

2002.

[5] Hans L. Bodlaender and Dieter Kratsch. Exact algorithms for kayles. Technical Report UU-

CS-2011-003, Department of Information and Computing Sciences, Utrecht University, 2011.

[6] Kellogg S. Booth and George S. Lueker. Linear algorithms to recognize interval graphs and

test for the consecutive ones property. In STOC ’75: Proceedings of seventh annual ACM

symposium on Theory of computing, pages 255–265, New York, NY, USA, 1975. ACM Press.

[7] C.L Bouton. Nim, a game with a complete mathematical theory. Annals of Mathematics,

3:35–39, 1901.

[8] Eowyn C̆enek. Subtree overlap graphs and the maximum independent set problem. Master’s

thesis, University of Alberta, Department of Computing Science, 1998.

[9] Eowyn C̆enek and Lorna Stewart. Maximum independent set and maximum clique algorithms

for overlap graphs. Discrete Appl. Math., 131(1):77–91, 2003.

[10] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.

J. Symb. Comput., 9(3):251–280, 1990.

[11] Daniel W. Cranston, Nitish Korula, Timothy D. LeSaulnier, Kevin G. Milans, Christopher J.

Stocker, Jennifer Vandenbussche, and Douglas B. West. Overlap number of graphs. Journal

of Graph Theory, pages n/a–n/a, 2011.

23

[12] Dominique de Werra. Restricted coloring models for timetabling. Discrete Mathematics, 165-

166:161–170, 1997.

[13] B. Dushnik and E.W. Miller. Partially ordered sets. American Journal of Mathematics, 63:600–

610, 1941.

[14] Jessica Enright. Subtree overlap graphs - towards recognition. Master’s thesis, University of

Alberta, Department of Computing Science, 2006.

[15] Jessica Enright and Lorna Stewart. Subtree filament graphs are subtree overlap graphs. Inf.

Process. Lett., 104(6):228–232, 2007.

[16] Paul Erdos, A.W. Goodman, and L. Posa. The representation of a graph by set intersections.

Canadian Journal of Mathematics, 18:106–112, 1966.

[17] Paul Erdos, Avi Rubin, and Herbert Taylor. Choosability in graphs. Proc. West Coast Con-

ference on Combinatorics, Graph Theory and Computing, Arcata, Congressus Numerantium,

22:125–157, 1979.

[18] Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances A. Rosamond, Saket

Saurabh, Stefan Szeider, and Carsten Thomassen. On the complexity of some colorful prob-

lems parameterized by treewidth. Inf. Comput., 209(2):143–153, 2011.

[19] Rudolf Fleischer and Gerhard Trippen. Kayles on the way to the stars. In H. Jaap van den

Herik, Yngvi Björnsson, and Nathan S. Netanyahu, editors, Computers and Games, volume

3846 of Lecture Notes in Computer Science, pages 232–245. Springer, 2004.

[20] Tibor Gallai. Transitiv orientierbare graphen. Acta Mathematica Hungarica, 18:25–66, 1967.

10.1007/BF02020961.

[21] Fanica Gavril. Algorithms for minimum colouring, maximum clique, minimum covering by

cliques, and maximum independent set of a chordal graph. SIAM Journal of Computing,

1(2):180–187, 1972.

[22] Fanica Gavril. Algorithms for a maximum clique and a maximum independent set of a circle

graph. Networks, 3:261–273, 1973.

[23] Fanica Gavril. Maximum weight independent sets and cliques in intersection graphs of fila-

ments. Inf. Process. Lett., 73(5-6):181–188, 2000.

[24] Fănică Gavril. A recognition algorithm for the intersection graphs of directed paths in directed

trees. Discrete Math., 13:237–249, 1975.

[25] Fănică Gavril. 3d-interval-filament graphs. Discrete Applied Mathematics, 155(18):2625–

2636, 2007.

24

[26] P. C. Gilmore and A. J. Hoffman. A characterization of comparability graphs and interval

graphs. Canadian Journal of Mathematics, 16:539–548, 1964.

[27] P.C. Gilmore and A.J. Hoffman. A characterization of comparability graphs and of interval

graphs. Canadian Journal of Mathematics, 16:539 – 548, 1964.

[28] M. C. Golumbic and E. R. Scheinerman. Containment graphs, posets and related classes of

graphs. Annual New York Academy of Science, 55:192–204, 1989.

[29] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete

Mathematics, Vol 57). North-Holland, 2004.

[30] Sylvain Gravier, Daniel Kobler, and Wieslaw Kubiak. Complexity of list coloring problems

with a fixed total number of colors. Discrete Applied Mathematics, 117(1-3):65–79, 2002.

[31] P. M. Grundy. Mathematics and Games. Eureka, 2:6–8, 1939.

[32] R. K. Guy and C. A. B. Smith. The g-values of various games. Proc. Cambridge Philos. Soc,

52:514–526, 1956.

[33] Richard K. Guy and Cedric A.B. Smith. The G-values of various games. Proc. Camb. Philos.

Soc., 52:514–526, 1956.

[34] Pinar Heggernes, Dieter Kratsch, and Daniel Meister. Bandwidth of bipartite permutation

graphs in polynomial time. In Proceedings of the 8th Latin American conference on Theoretical

informatics, LATIN’08, pages 216–227, Berlin, Heidelberg, 2008. Springer-Verlag.

[35] Klaus Jansen and Petra Scheffler. Generalized coloring for tree-like graphs. Discrete Applied

Mathematics, 75(2):135 – 155, 1997.

[36] T. R. Jensen and B. Toft. Graph Coloring Problems. John Wiley & Sons, New York, NY, USA,

1994.

[37] Manfred Koebe. Spider graphs - a new class of intersection graphs. Master’s thesis, Ernst-

Moritz-Arndt-Universitaet, Sektion Mathematik, 1990.

[38] Manfred Koebe. Spider graphs - a new class of intersection graphs. Master’s thesis, Ernst-

Moritz-Arndt-Universitaet, Sektion Mathematik, 1990.

[39] Alexandr Kostochka and Jan Kratochvil. Covering and coloring polygon-circle graphs. Dis-

crete Math., 163(1-3):299–305, 1997.

[40] L. T. Kou, L. J. Stockmeyer, and C. K. Wong. Covering edges by cliques with regard to

keyword conflicts and intersection graphs. Commun. ACM, 21(2):135–139, 1978.

25

[41] Jan Kratochvil. Precoloring extension with fixed color bound. Acta Math. Univ. Comen.,

62:139–153, 1994.

[42] Jan Kratochvı́l and Martin Pergel. Two results on intersection graphs of polygons. In Giuseppe

Liotta, editor, Graph Drawing, volume 2912 of Lecture Notes in Computer Science, pages 59–

70. Springer, 2003.

[43] Jan Kratochvı́l and Martin Pergel. Geometric intersection graphs: Do short cycles help? In

Guohui Lin, editor, COCOON, volume 4598 of Lecture Notes in Computer Science, pages

118–128. Springer, 2007.

[44] Jan Kratochvı́l and Zsolt Tuza. Algorithmic complexity of list colorings. Discrete Applied

Mathematics, 50(3):297–302, 1994.

[45] Ross M. McConnell and Jeremy P. Spinrad. Linear-time modular decomposition and efficient

transitive orientation of comparability graphs. In SODA ’94: Proceedings of the fifth annual

ACM-SIAM symposium on Discrete algorithms, pages 536–545, Philadelphia, PA, USA, 1994.

Society for Industrial and Applied Mathematics.

[46] Clyde L. Monma and Victor K.-W. Wei. Intersection graphs of paths in a tree. J. Comb. Theory,

Ser. B, 41(2):141–181, 1986.

[47] Diego Novillo. Overlap graphs of subtrees in a tree. Project for CMPUT 506, 1994.

[48] Martin Pergel. Recognition of polygon-circle graphs and graphs of interval filaments is NP-

complete. In Andreas Brandstädt, Dieter Kratsch, and Haiko Müller, editors, WG, volume

4769 of Lecture Notes in Computer Science, pages 238–247. Springer, 2007.

[49] Svatopluk Poljak and Vojtech Rödl. On set systems determined by intersections. Discrete

Mathematics, 34(2):173–184, 1981.

[50] J. L. Ramı́rez Alfonsı́n and B. Reed, editors. Perfect graphs. Wiley-Interscience Series in

Discrete Mathematics and Optimization. John Wiley & Sons Ltd., Chichester, 2001.

[51] Donald J. Rose, R. Endre Tarjan, and George S. Leuker. Algorithmic aspects of vertex elimi-

nation on graphs. SIAM Journal of Computing, 5(2):266–283, 1976.

[52] William Rosgen. Set representations of graphs. Master’s thesis, University of Alberta, Depart-

ment of Computing Science, 2005.

[53] Thomas J. Schaefer. On the complexity of some two-person perfect-information games. J.

Comput. Syst. Sci., 16(2):185–225, 1978.

[54] Edward R. Scheinerman. Characterizing intersection classes of graphs. Discrete Mathematics,

55(2):185–193, 1985.

26

[55] W. L. Sibert and J.H. Conway. Mathematical kayles. Int. J. Game Theory, 20:237–246, March

1992.

[56] Michael Sipser. Introduction to the Theory of Computation. International Thomson Publishing,

1st edition, 1996.

[57] Jeremy P. Spinrad. Efficient Graph Representations. AMS, Providence, the fields institute

monographs 19th edition, 2003.

[58] R. P. Sprague. Über mathematische Kampfspiele. Tohoku Mathematical Journal, 41:438–444,

1936.

[59] Edward Szpilrajn-Marczewski. Sur deux proprietes des classes des ensembles. Fundamenta

Mathematicae, 33:303–307, 1945.

[60] Vadim G. Vizing. Coloring the vertices of a graph in prescribed colors. (in russian). Diskret.

Analiz. No. 29, Metody Diskret. Anal. v. Teorii Kodov i Shem 101, 1976.

27

Chapter 2

Recognising the overlap graphs of
subtrees in restricted trees is hard1

Intersection graphs of geometric objects are both theoretically and practically important. Given a set

representation, we can solve some otherwise hard problems on intersection classes, including many

problems on chordal graphs [16], and maximum weighted clique and independent set on subtree

filament graphs and interval filament graphs [8].

A graph G = (V,E) is an intersection graph of a set family S if there exists a function f : V →

S such that two vertices u, v are adjacent if and only if f(u) intersects f(v). Similarly, a graph

G = (V,E) is an overlap graph of a family S if there exists a function f : V → S such that two

vertices u, v are adjacent if and only if f(u) overlaps f(v). Two sets overlap if they intersect but

neither is contained in the other.

When we consider the overlap and intersection graphs of particular types of sets, we define graph

classes.

Part of the theoretical interest in geometric intersection and overlap graphs stems from efficient

algorithms for otherwise NP-hard problems on these graph classes. Often, these algorithms require

as input a set intersection representation of a particular type. Thus we are interested in whether or

not a given graph has a particular type of intersection representation. This is called the recognition

problem.

Probably the oldest intersection-defined graphs are interval graphs, the intersection graphs of

interval on a line [9]. The interval graphs are generalised by intersection graphs of paths in a tree

[4, 14]. Intersection graphs of paths in a tree are in turn generalised by chordal graphs. While

primarily defined as the graphs without induced cycles of length greater than three, chordal graphs

are also exactly the intersection graphs of subtrees in a tree [7]. The leafage of a subtree intersection

representation is the number of leaves in the host tree. The leafage of a chordal graph is the leafage

of a subtree intersection representation of that graph with smallest leafage. The study of leafage of
1This is joint work with Martin Pergel, submitted to the Journal of Discrete Math and Theoretical Computer Science on

September 16, 2011

28

chordal graphs has spanned decades.

The overlap analogue of chordal graphs is the class of subtree overlap graphs, the overlap

graphs of subtrees in a tree. Subtree overlap graphs generalize many set representation characterized

classes, including chordal graphs and therefore interval graphs.

In this paper we consider an overlap extension of leafage. The leafage of a subtree overlap

representation is the number of leaves in the host tree. The leafage of a subtree overlap graph is the

leafage of a subtree overlap representation of that graph with minimum leafage.

Gavril [8] defined interval filament graphs and subtree filament graphs as intersection graphs of

filaments on intervals and filaments on subtrees, respectively. Filaments are curves above some geo-

metric structure (in this case above intervals or subtrees) such that filaments above disjoint structures

must not intersect, while filaments above overlapping structures must intersect.

Interval filament graphs are a subclass of subtree overlap graphs, and subtree filament graphs are

exactly subtree overlap graphs [6, 5].

Recognising interval filament graphs is known to be hard [8, 15]. In contrast, we can recognise

interval graphs and chordal graphs in linear time [3, 16], and intersection graphs of paths in a tree in

O(nm) time, where n is the number of vertices and m the number of edges in the input graph [18].

The complexity of recognising subtree overlap graphs is open.

With this in mind, we define three subclasses of subtree overlap graphs: we define k-SOG to

be the overlap graphs of subtrees in a tree with leafage k, class k-degree-POG to be the overlap

graphs of subpaths in a tree such that the tree has maximum degree at most k, and the class T-SOG

to be the overlap graphs of subtrees of a trees derived from an input tree T by subdivision of edges.

Though we expect the recognition of subtree overlap graphs to be NP-complete, we expected

the recognition of these simplified SOGs to be polynomial time. We were therefore surprised when

we obtained hardness results for the recognition problems of k-SOG and k-degree-POG for fixed

integer k ≥ 3 and for T −SOG provided that T has at least three leaves. We present these hardness

results in this paper.

Our result on the hardness of recognising k-degree-POG also holds for the corresponding class

of intersection graphs. Our reduction also shows that it is NP-complete to recognise intersection

graphs of paths in a tree with a fixed maximum degree greater than two. In contrast, intersection

graphs of paths in a tree can be recognised in polynomial time.

Our result on the hardness of recognising the subtree overlap graph with k leafage for fixed

integer k ≥ 3 provides a counterpoint to work on the intersection leafage of chordal graphs. Stacho

and Habib [20] give a polynomial-time algorithm for determining the leafage of a chordal graph and

constructing a representation that achieves that leafage. In contrast, we show that determining the

overlap leafage of a subtree overlap graph is NP-Hard.

There has been substantial work on the intersection graphs of subtrees or paths in a tree with

parameterisation of the subtrees or the underlying tree.

29

Jamison and Mulder [13] considered the intersection graphs of subtrees of a tree parameterised

by maximum degree of both the underlying tree and the individual subtrees. They showed that

the intersection graphs of subtrees of a tree in which the subtrees and the underlying tree have

bounded maximum degree 3 are exactly chordal graphs, and so can be recognized in linear time.

This contrasts to our work, which shows that recognizing the intersection graphs of paths in an

underlying tree of bounded maximum degree 3 in NP-hard.

Golumbic and Jamison [11] showed that recognizing the edge-intersection graphs of paths in a

tree is NP-complete, and showed that on a tree with maximum degree three, the edge-intersection

and vertex-intersection graphs are the same classes.

Golumbic et al [12] explore the complexity of recognizing the intersection graphs of paths in a

tree parameterised by both the maximum degree of the underlying tree and the number of vertices

that must be shared between two paths for them to be considered as intersecting. They provide a

complete hierarchy of graph classes using these parameters.

2.1 Preliminaries and Definitions

All graphs discussed here are simple, undirected, loopless and finite. If G = (V,E) is a graph, and

V � ⊂ V a vertex subset, then G[V �] denotes the subgraph of G induced by V �. We generally adhere

to notation used in [10].

Let si and sj be two sets. If si∩sj = ∅ then we write si|sj , pronounced si is disjoint from sj . If

si ∩ sj �= ∅, si �⊆ sj and sj �⊆ si then we write si � sj , pronounced sj overlaps sj . Let G = (V,E)

be the overlap graph of family of sets S . Then for convenience, we refer to the set corresponding to

vertex vi ∈ V as si ∈ S . For example, in a subtree representation vi is a vertex corresponding to a

subtree ti.

Let subtrees T of tree T be a subtree overlap representation. We say that T is the host tree.

Let t be a subtree of tree T = (VT , ET). A boundary node of t is a node of T that is in t, and

either has a neighbour u ∈ VT such that u is not in t, or is a leaf of T .

Observation 1. Let q be a node of subtree t of tree T . Node q is a boundary node of t if and only if

either q is a leaf of T or t does not contain all neighbours of q in T .

SUB(T) is the set of all trees that can be derived from tree T by subdividing the edges of T any

number of times. A twig of tree T is a maximal path of T that includes a leaf of T and no node of T

that has degree greater than two. A lastbranch of T = (VT , ET) is a node p of T of degree at least

three such that the forest formed by T [VT \{p}] has at most one connected component that is not a

path. For an example of lastbranch nodes, boundary nodes and twigs see Figure 2.1.

Unless otherwise noted, if we say that a graph G can be represented on a tree T we mean that

there exists an overlap representation of G with T as the host tree.

30

a
b

c

d

e f

g

h

t1

t2

Figure 2.1: A tree T and two indicated subtrees: t1 and t2. Nodes b and f are the only lastbranch
nodes of T . The nodes b and d are boundary nodes of t1 and nodes e and f are boundary nodes of
t2. The paths consisting of the single vertices a, g, h, as well as the two vertex path of c and d form
the twigs of T .

Let G = (V,E) and G�� = (V ��, E��) be graphs such that there exists a vertex set V � ⊂ V and

V � ⊂ V �� and G�� is the overlap graph of subtrees T �� of tree T ��. Let T � ⊂ T �� be the family of

subtrees corresponding to the members of V �. We say that V � is nicely represented with respect

to G if every member of T � is contained in a twig of T ��, and there are no two members vi, vj of

V � such that (vi, vj) ∈ E and ti and tj are on the same twig of T ��. For an example of nicely

represented vertex sets, see Figure 2.2.

If a vertex set V � is nicely represented with respect to a graph G, then each twig of the nice

representation corresponds to an independent subset of V � in G, and so:

Observation 2. Let G = (V,E) be a graph. If there exists a representation of some graph on tree

T with k twigs in which vertex subset V � ⊂ V is nicely represented with respect to G, then there is

a k-colouring of G[V �].

2.2 Preliminary Lemmas

We prove a number of preliminary lemmas on subtrees and subtree representations that we will refer

to in later proofs.

Definition 1. Let ij , ik be intervals on line I . The interpath of ij , ik is the interval of I that contains

ij , ik, and the portion of I between them.

31

Lemma 1. Let I be a set of disjoint intervals on a line I , such that each i ∈ I is assigned at least

one partner in I - this partnership is symmetric. Then at least one of every three intervals contained

in I is disjoint from the interpath of at least one pair of partners in I.

Proof:

Let I be as described above. Let ij , ik, il be three members of I. One of these three intervals must

be between the other two in I . Without loss of generality, let ik be between ij and il on I . For

convenience, we will arbitrarily say that ij is to the left of ik and il is to the right of ik. Let ih be a

partner of ik. Note that it is possible that ih = ij or ih = il.

If ih is to the right of ik, then the interpath of ih, ik is disjoint from il. If ih is to the left of ik,

then the interpath of ih, ik is disjoint from ij . �

Lemma 2. Let ti ⊆ tj be subtrees of tree T . If ti has k boundary nodes, tj has at least k boundary

nodes.

Proof. Let ti ⊆ tj be trees. Consider the boundary nodes of ti. We show that there is at least

one boundary node of tj for every boundary node of ti. Let p be a boundary node of ti. Either

p is a boundary node of tj or it is not. If it is not, then, as tj is finite, there must be a leaf of tj

that is disconnected from ti by removing p. This leaf is not disconnected from all nodes of ti by

removing any other boundary node of ti, by the fact that there are unique paths between points in a

tree. Therefore there is at least one boundary node of tj for every boundary node of ti. �

Lemma 3. Let T be a family of subtrees of tree T such that G = (V,E) is the overlap graph of T .

Let p be a non-leaf node of T . Let T1 and T2 be two components of T\p. Let Vp ⊆ V be the vertices

represented by subtrees in T that contain p. Let V1 ⊆ V be the vertices represented by subtrees in T

that are contained in T1. Let V2 ⊆ V be the vertices represented by subtrees in T that are contained

in T2. Then removing Vp from G disconnects every member of V1 from every member of V2.

Proof. This follows from the fact that subtrees contained in T1 are disjoint from subtrees contained

in T2. �

Lemma 4. Let ti ⊆ tj be subtrees of tree T such that ti and tj both have k boundary nodes and

every boundary node of tj has degree in tj at most two. Then every node of tj of degree greater than

two is contained in ti.

Proof. Let ti ⊆ tj be subtrees with k boundary nodes. Assume that there is a node p of degree

d > 2 contained in tj that is not contained in ti.

Let q be the node of ti closest in number of edges to p. Let th be the union of p, the path between

p and q, the neighbourhood of p, and ti. By this construction th ⊆ tj . How many boundary nodes

does th have? Every boundary node of ti except for possibly q is a boundary node of th. Every

neighbour of p except the one on the path between p and q is a boundary node of th. Therefore th

32

has at least d+k−2 boundary nodes. Since d > 2, then th has at least k+1 boundary nodes. Since

th ⊆ tj , and tj has k boundary nodes, this is a contradiction to Lemma 2. �

Lemma 5. Let T be a tree with k leaves, and subtrees ti and tj such that ti|tj . If ti has l boundary

nodes and tj has k − l + 2 boundary nodes, then all nodes of T of degree greater than two are in

either ti or tj .

Proof. Let T , ti, tj be as described in the lemma statement.

Let p ∈ ti and q ∈ tj be two nodes that minimise the distance between them. By these conditions

on p and q it holds that p is a boundary node of ti and q a boundary node of tj , and the path between

p and q excluding those vertices is disjoint from both ti and tj . Let th be the subtree that is the union

of ti, tj , and the path between p and q.

How many boundary nodes does th have? Every boundary node of ti except for p is a boundary

node of th. Every boundary node of tj except for q is a boundary node of th. Therefore th has at

least l+ k − l+ 2− 2 = k boundary nodes. Since th ⊆ T and T has k leaves, by Lemma 2 th also

has at most k boundary nodes, and so has exactly k boundary nodes. Therefore a node is a boundary

node of th if and only if it is a boundary node of ti or tj that is not p nor q.

There are therefore no boundary nodes of th contained in the path between p and q. Then no

node in that path has a neighbour outside that path, and so every node in that path is of degree two.

Since that path is the only portion of th that is not is one of ti or tj , every node in th of degree

greater than two is contained in one of ti or tj .

Since th has k boundary nodes by Lemma 4, the subtree th contains all nodes of degree greater

than two in T . Then by our earlier statement that every node in th of degree greater than two is in

one of ti or tj , we have that every node in T of degree greater than two is contained in either ti or

tj .

Lemma 6. Let ti|tj be two disjoint subtrees of tree T where T has k leaves. If ti has l boundary

nodes, then tj has at most k − l + 2 boundary nodes.

Proof. Let T , ti, tj be as described in the lemma statement. Assume that tj has more than k− l+2

boundary nodes, and proceed by contradiction.

Let p ∈ ti and q ∈ tj be two nodes that minimise the distance between them. By these conditions

on p and q it holds that p is a boundary node of ti and q a boundary node of tj , and the path between

p and q excluding those vertices is disjoint from both ti and tj . Let th be the subtree that is the union

of ti, tj , and the path between p and q.

How many boundary nodes does th have? Every boundary node of ti except for p is a boundary

node of th. Every boundary node of tj except for q is a boundary node of th. Therefore th has at

least ((l − 1) + (k − l + 2)) = k + 1 boundary nodes. Since T has k leaves, and th ⊆ T , this is a

contradiction. �

33

Then, as a corollary:

Corollary 1. Let T be a tree with subtrees ti and tj such that ti|tj , ti has k boundary nodes, and

tj has l boundary nodes. Then T has at least k + l − 2 leaves.

Lemma 7. Let T be a tree with k leaves, and p a node of T of degree two that is not adjacent to a

leaf. Then the forest created by removing p from T has two connected components such that the sum

of their numbers of leaves is k + 2.

Proof. Let ti, tj be the subtrees of T in the forest created by removing p from T . Every leaf of T is

a leaf of exactly one of ti or tj . In addition, the neighbours of p in ti, tj are leaves in each of those.

There are no other leaves of ti or tj . Therefore ti, tj have k + 2 leaves between them.

From Rosgen [17] we have the following lemma:

Lemma 8. Let graph G = (V,E) be represented by subtrees T of tree T . Let vi, vj be non-adjacent

vertices in V . If ti ⊆ tj then for every vertex vk such that there exists a path of G from vi to vk that

does not intersect the neighbourhood of vj , it holds that tk ⊆ tj .

We will later need this technical lemma on adjusting overlapping in a subtree overlap represen-

tation:

Lemma 9. Let T be a family of subtrees of tree T . Let T1 be a subfamily of T . If:

• there is a node q of T that is in every subtree in T1, no subtree in T1 contains all neighbours

of q, and there is no subtree t ∈ T \T1 for which q is a boundary node

Then:

• there exists a subtree overlap representation with subtrees T � of tree T � and a bijection f :

T → T � such that for every two trees ti ∈ T \T1 and tj ∈ T the set relationship between

ti and tj is the same as the set relationship between f(ti) and f(tj), for every two subtrees

ti, tj ∈ T1 f(ti) � f(tj), and T � can be derived from T by repeatedly subdividing the edges

between q and its neighbours.

Proof. Let O be an ordering of the subtrees in T1 by non-increasing size. We will denote the position

of subtree t in O by O(t).

Let tree T � be the tree produced from T by subdividing the edges between q and its neighbours

|T1| times, so that there is a path of |T1| nodes, not including q and its neighbour in T , in T � between

q and each of the nodes that were its neighbours in T .

We define each subtree f(ti) for ti ∈ T . If ti ∈ T \T1 and q /∈ ti, then f(ti) is ti. If ti ∈ T \T1

and q ∈ ti, then f(ti) is ti and the new paths between q and each node p that was in ti and was a

neighbour of q in T .

34

If ti ∈ T1 then f(ti) is ti and the new paths between q and each node p that was in ti and was a

neighbour of q in T and all other nodes within distance O(ti) of q.

Since we produced T � by iterated subdivision of T , it remains to prove that for every two trees

ti ∈ T \T1 and tj ∈ T the set relationship between ti and tj is the same as the set relationship

between f(ti) and f(tj) and for every two subtrees ti, tj ∈ T1 f(ti) � f(tj).

Let ti be a subtree in T \T1 and tj a subtree in T . Consider the difference between a subtree

t ∈ T and f(t). By the construction of f(t), we know that for every subtree t ∈ T , it holds that

t ⊆ f(t), and the only nodes in f(t) that might not be in t are nodes that are in T � but not T . That

is, f(t)\t ⊆ T �\T .

We consider cases: ti � tj , ti|tj , ti ⊆ tj , and tj ⊆ ti. If ti � tj then there exists a node a

in both ti and tj , b in ti but not tj and c in tj but not ti. Then because f(tj)\tj ⊆ T �\T and

f(ti)\ti ⊆ T �\T the node a is in both f(ti) and f(tj), b is in f(ti) but not f(tj) and c is in f(tj)

but not f(ti). Therefore f(ti) � f(tj).

If ti|tj then there exist no nodes in both ti and tj . By the construction of each f(t), if q /∈ t,

then f(t) = t. The node q is in at most one of ti or tj . Without loss of generality, let ti not contain

q. Then f(ti) = ti. Since f(tj)\tj ⊆ T �\T the only nodes that could possibly be in f(tj) that are

not in tj , are nodes that are not in T , and therefore not in f(ti). Then no nodes of f(tj) are in f(ti),

and f(ti)|f(tj).

If ti ⊆ tj , we need consider two possibilities: either q ∈ ti or q /∈ ti. If q /∈ ti then f(ti) = ti ⊆

tj ⊆ f(tj). If q ∈ ti then q ∈ tj , and any neighbour of q in ti is also in tj . Since ti is not in T1,

every neighbour of q in T is in ti, and so also in tj . Therefore tj is also not in T1.

Then, by the construction of f(ti) and f(tj), any node that is is f(ti)\ti is also in f(tj). There-

fore f(ti) ⊆ f(tj).

If tj ⊆ ti, then both ti and tj contain q, and ti contains all neighbours of q in T because q

is not a boundary node for any vertex in T \T1. Since f(ti) then contains all nodes in T �\T and

f(tj)\tj ⊆ T �\T we have that f(tj) ⊆ f(ti).

All that remains is to show that for ti, tj ∈ T1, it holds that f(ti) � f(tj). Without loss of

generality, assume that O(ti) < O(tj). By the conditions on T1, there is at least one neighbour p of

q in T that is not contained in ti. By the construction of f(ti), the node p is not contained in f(ti),

but the first O(ti) nodes from q on the path to p are. If p is contained in tj , then it is also contained

in f(tj). If p is not contained in tj , then the first O(tj) (recall that this is greater than O(ti)) nodes

from q on the path to p are. In either case, there is a node contained in f(tj) that is not contained in

f(ti), and therefore f(tj) �⊆ f(ti).

Since O(ti) < O(tj) and we have assumed that no two subtrees are equal, we know that ti �⊆ tj .

Therefore there is some node of ti not in tj . Because f(tj)\tj ⊆ T �\T that node is not in f(tj), but

is in ti ⊆ f(ti), and f(ti) �⊆ f(tj).

Since f(ti) and f(tj) both contain q but neither contains the other they overlap. �

35

a

b

c

d

a b c

d

e

e

i) ii)

Figure 2.2: In i) a graph G = (V,E), and in ii) a family T of subtrees of a tree T , with one subtree
corresponding to each of the vertices of G. Note that T is not a representation of G, but of some
other graph that has V as a subset of its vertices. In the representation on the right vertex sets
{a, c, d, e}, {b, c, d, e} are nicely represented with respect to G. Any vertex set including both a and
b is not nicely represented with respect to the graph on the left, as a and b are adjacent in G but are
both on the same twig of the tree on the right.

2.3 Problem Descriptions

Given an input graph G = (V,E):

Problem 1. The problem REC-PMD-k is the decision problem for a fixed natural number k ≥ 3:

does there exist a tree T with maximum degree k and a family T of paths of T such that G is the

overlap graph of T ?

Problem 2. The problem REC-SUB-T is the decision problem for a fixed tree T with at least three

leaves: does there exist a tree T � ∈ SUB(T) and a family S of subtrees of T � such that G is the

overlap graph of S?

Problem 3. The problem REC-LEAFAGE-k is the decision problem for a fixed natural number

k ≥ 3: does there exist a tree T with k leaves and a family S of subtrees of T such that G is the

overlap graph of S?

Cenek [2] showed that every minimal subtree overlap representation of a graph G is of size

polynomial in the size of G, and can be checked for correctness in polynomial time. This would

serve as a certificate, so we can conclude that REC-SUB-T, REC-LEAFAGE-k, and REC-PMD-k

are in NP.

Problem 4. The problem 3-CON-k-COLOURING is the decision problem for a fixed natural number

k ≥ 3: given a 3-connected graph G, is there a proper vertex colouring of G using k colours?

36

Theorem 3. 3-CON-k-COLOURING is NP-Complete for fixed natural number k ≥ 3.

Proof. This proof is straightforward, but we have provided it here for completeness.

Firstly, the problem is in NP, as it is a decision problem and a colouring serves as a polynomial-

sized certificate.

We now supply a reduction from k−colouring a connected graph. Let G = (V,E) be a con-

nected graph. Let V1, V2, V3 be three vertex sets of the same size as V such that there are bijections

f1, f2, f3 from V1, V2, and V3, respectively, to V .

We now define edge sets:

1. E1 = {(vi, vj) where vi, vj ∈ V1 and (f1(vi), f1(vj)) ∈ E}

2. E2 = {(vi, vj) where vi, vj ∈ V2 and (f2(vi), f2(vj)) ∈ E}

3. E3 = {(vi, vj) where vi, vj ∈ V3 and (f3(vi), f3(vj)) ∈ E}

4. E4 = {(vi, vj), (vi, vk), (vj , vk) where vi ∈ V1, vj ∈ V2, vk ∈ V3 and

f1(vi) = f2(vj) = f3(vk)}

Let V � = V1∪V2∪V3 and E� = E1∪E2∪E3∪E4. Then let G� = (V �, E�). G� is 3-connected.

We now show that G� is k-colourable for k ≥ 3 if and only if G is k−colourable.

First, assume that G� is k-colourable. Since G is isomorphic to an induced subgraph of G�, then

G is k-colourable. Next, assume that G is k-colourable. Let C0...Ck−1 be the colour classes of G.

Then we can colour G� as follows: For each vertex vi ∈ Vh where h ∈ {1, 2, 3}, let Cj be the colour

class of fh(vi). Then we assign vi to colour class C(j+(h−1)) mod k.

It remains to prove that no two adjacent vertices in G� have been assigned the same colour.

We consider two cases: either two adjacent vertices are in the same one of V1, V2, V3, or they

are in different ones. Let h ∈ {1, 2, 3}. Let vi, vj ∈ Vh such that (vi, vj) ∈ Eh. Then let Cg and

Cl be the colour classes of of fh(vi) and fh(vj), respectively. Since (fh(vi), fh(vj)) ∈ E, it holds

that g �= l. We also know that g < k and l < k. From the construction of the colour classes vi is

in colour class C(g+(h−1)) mod k and vj is in colour class C(l+(h−1)) mod k. Given the conditions

on g and l, we know that (g + (h− 1)) mod k �= (l + (h− 1)) mod k. Therefore vi, vj are in

different colour classes.

Now we turn our attention to the case in which two adjacent vertices are in different ones of

V1, V2, V3. Let h, g ∈ {1, 2, 3} but h �= g. Let vi ∈ Vh and vj ∈ Vg . By the edge set construction, if

(vi, vj) ∈ E4, it holds that fh(vi) = fg(vj). Let Cl be the colour class of fh(vi) (and fg(vj)).

Then the colour class of vi is C(l+(h−1)) mod k and the colour class of vj is C(l+(g−1)) mod k.

Since g �= h and g ≤ 3, h ≤ 3 and k ≥ 3, these are different colour classes. �

37

2.4 Reduction Intuition

In this paper, we describe reductions from 3-CON-k-COLOURING to REC-SUB-T, REC-LEAFAGE-

k, and REC-PMD-k.

All of our reductions work on the same intuition. We reduce from an instance of graph colouring

to an instance of a representability problem.

We start with an instance of k-colouring in the form of a 3-connected graph G. We transform

this graph into another graph G��. G�� will be our instance of the representability problem.

In the transformation from G to G��, the vertices and edges of G are used as vertices of G��.

Other gadgets are added to G�� in such a way that for REC-SUB-T and REC-LEAFAGE-k, twigs

in the host tree of the representation correspond to colours used for a k-colouring of graph G. That

is, no two vertices corresponding to adjacent vertices in G are represented on the same twig of the

representation of G��.

Similarly for REC-PMD-k, we start with an instance of k-colouring, G, and transform it to

another graph G�� that will be our instance of REC-PMD-k. G�� includes the vertices and edges of

G in its vertex set. Given a representation of G��, we use subtrees of the host tree that would form

connected components of the forest that would result from removal of a fixed vertex v of degree

k to correspond to colours used for a k-colouring of graph G. No two gadgets corresponding to

adjacent vertices in G are represented on the same branch of the representation of G��. That is, their

representing subtrees cannot contain v. We do this by forcing all vertices of G�� that are edges of G

to contain v, and by using another class of gadget vertices.

The overarching idea is that for each of the reductions to the problems we are considering we

associate sections of the host tree with one of k colours, and force all vertices of G�� that are also

vertices of G to be represented in one of these sections.

To deal with a technical complication, the vertex set of G�� includes several copies of the vertex

set of G as we show that a constant number of vertices may be represented in a bad way. By

adding more copies than the number of possible bad exceptions, at least one copy must fulfill our

requirements, allowing us to derive a colouring of G from a representation of G��.

We more formally describe our reductions in Sections 6 through 8 of this paper.

2.5 Discussion

There are two particularly interesting results here.

Intersection graphs of paths of a tree with maximum degree k (k-degree-PIG) are all overlap

graphs of paths of a tree with maximum degree k (k-degree-POG). We justify this as follows: Let

paths P of tree T with fixed maximum degree k be an intersection representation of graph G =

(V,E). We describe how to change the paths in P and the tree T such that a single path P ∈ P is

not contained in any other path in P , and every pair of paths intersect if and only if they did before

38

our change. Let p be a leaf node of path P ∈ P and q the neighbour of p not in P . We add two

new nodes r, s to T such that s subdivides the edge between p and q and r is adjacent only to s. We

add s to every path in P that contains p and r only to P . Then P is contained in no other path in

P and two paths in P intersect if and only if they did before our change. We can iteratively apply

this change for every path in P that is contained in some other path. This will give an intersection

representation in which the maximum degree of the tree is the same as the original tree, and no path

is contained in any other. This representation is therefore also an overlap representation of the same

graph. Therefore every intersection graph of paths in a tree with fixed maximum degree k is also the

overlap graph of paths in a tree with fixed maximum degree k.

We present a polynomial time and space reduction from an instance of graph k-colouring to a

graph that is in k-degree-PIG if and only if it is in k-degree-POG. Let Z be a graph class between k-

degree-PIG and k-degree-POG. That is, k-degree-PIG ⊆ Z ⊆ k-degree-POG. The graph produced

by our reduction is in Z if and only if it is in k-degree-PIG if and only if it is in k-degree-POG.

Therefore the recognition problem for every such graph class Z is also NP-complete.

We show that recognising the overlap graphs of subtrees of a tree with fixed integer k ≥ 3 leaves

is NP-complete. The overlap graphs of subtrees of a tree with fixed integer k < 3 leaves are circle

graphs [10].

We show that recognising the overlap and intersection graphs of paths of a tree with maximum

degree k ≥ 3 is NP-complete. The overlap and intersection graphs of paths of a tree with maximum

degree k < 3 leaves are exactly circle graphs and interval graphs, respectively. Spinrad [19] gives

a linear-time recognition algorithm for circle graphs, and Booth and Lueker [1] gives a linear-time

recognition algorithm for interval graphs.

We therefore have a dichotomy. For k ≥ 3, the recognition problems for overlap graphs of

subtrees of a tree with k leaves, and overlap and intersection graphs of paths in a tree with maximum

degree k are NP-complete. For k < 3, we have polynomial-time solutions to these problems.

2.6 Gu
d-blocking Graphs

Let d ≥ 3 and u where either u �= 1 be two natural numbers. We use these as parameters in building a

graph we call the Gu

d
graph. The Gu

d
graph consists of four named vertices, vs, vb, vs2, vb2 connected

by a number of paths of length three specified by the integers d and u.

Definition 2. Gu

d
is the graph shown in Figure 2.3a.

Having defined the Gu

d
graph, we will now describe the production, given an input graph G,

of a new graph called the Gu

d
-blocked graph of G. We will use these Gu

d
-blocked graphs in our

NP-completeness proofs as instances of REC-LEAFAGE-k , REC-SUB-T, and REC-PMD-k.

Let G = (V,E) be a 3-connected graph. Let G� be the disjoint union of six copies of G. For later

convenience, we refer to the vertices of the six isomorphic connected components of G� = (V �, E�)

39

vs

vb

vs2

vb2

1

2

u

...

1 2 d...

vs

vb

vs2

vb2

1

2

3

1 2 3

4

a)
b)

Figure 2.3: In a) the Gu

d
graph - note the presence of d paths of three vertices between vertices vs

and vb, and u paths of three vertices between vb2 and vs2. In b) an example: the G4
3 graph.

as Va, Vb, Vc, Vd, Ve, Vf , or collectively as Va...Vf .

We describe the production of a graph G�� from G�. Given two natural natural numbers d ≥ 3

and u �= 1, we define four vertex sets:

1. V1 = V �

2. V2 = E�

3. V3 = a set of size |V �| disjoint from V1 ∪ V2 ∪ V4

4. V4 = the vertices of Gu

d
(Figure 2.3)

Then let V �� = V1 ∪ V2 ∪ V3 ∪ V4. Let f be a bijection from V1 to V3. Then let E�� = E1 ∪ E2 ∪

E3 ∪ E4 ∪ E5 ∪ E6 where:

1. E1 = {(vi, vj)|vj ∈ E� and there exists vk such that vj = (vi, vk)}

2. E2 = {(vi, vj)|vi, vj ∈ V3 ∪ V2}

3. E3 = {(vi, vj)|vj = f(vi)}

4. E4 = {(vi, vs)|vi ∈ (V3 ∪ V2)} and vs is as labelled in Figure 2.3

5. E5 = {(vi, vb)|vi ∈ (V3 ∪ V2)} and vb is as labelled in Figure 2.3

6. E6 = the edges of Gu

d

Let G�� = (V ��, E��). Due to symmetry in the graph, we can label vs, vb, vs2 and vb2 in V4 as

in Figure 2.3. We call G�� the Gu

d
-blocked graph of G, and Gu

d
the blocker of G��. For a simple

example of this production, see Figure 2.4.

In our NP-completeness reductions, we will take an instance of 3-CON-k-COLOURING in the

form of a graph G, and produce its Gu

d
-blocked graph G��. We will then use G�� as an instance

of REC-LEAFAGE-k(G), REC-SUB-T(G), or REC-PMD-k(G). We will investigate a number of

properties of overlap representations of G��.

40

v1
e

g

i)

vs

vb

vs2vb2

v1

v2

v3

e

g

f(a)

f(b)

f(c)

ii)

v2

v3
v1

v2

v3

e

g

f(a)

f(b)

f(c)

v1

v2

v3

e

g

f(a)

f(b)

f(c)

v1

v2

v3

e

g

f(a)

f(b)

f(c)

v1

v2

v3

e

g

f(a)

f(b)

f(c)

v1

v2

v3

e

g

f(a)

f(b)

f(c)

Clique within
dotted oval

All possible edges
between vertices in
dotted oval and vs

All possible edges
between vertices in
dotted oval and vb

Figure 2.4: A simplified example of the transformation performed on a graph G = (V,E) in i to its
G3

3-blocked graph G�� in ii. The first step of creating G3
3-blocked graph is to make graph G� that is

the union of six disjoint copies of G. Note that the vertex set of the G3
3-blocked graph on the right

consists of the vertex set of the graph on the left, the edge set of the graph on the left, an additional
vertex for each vertex in V , and the vertices of Gu

d
. The vertices within the dotted oval form a clique.

The edges between the dotted oval and vs, vb indicate that all vertices within the dotted circle are
adjacent to both of vs, vb. In this example, in ii), V1 consists of the vertices in the first column of ii,
V2 the vertices in the second, and V3 the vertices in the third.

41

2.7 Representing Gu
d-blocked graphs and colouring

Enright [5] showed that in any subtree overlap representation of G0
d

where d ≥ 3 either ts ⊂ tb or

tb ⊂ ts. Because of the symmetry of Gu

d
, we will always assume that ts ⊂ tb.

Then in every subtree overlap representation of Gu

d
where d ≥ 3, either ts ⊂ tb or tb ⊂ ts, and

in every subtree overlap representation of Gu

d
in which u ≥ 3 either ts2 ⊂ tb2 or tb2 ⊂ ts2. If u = 0,

then we can effectively disregard ts2 as it will be an isolated vertex and can be represented by any

subtree containing a single vertex.

Observation 3. In every subtree overlap representation of Gu

d
where d ≥ 3 and u ≥ 3, either

ts ⊂ tb and ts2 ⊂ tb2 ⊂ tb, and ts2|ts and tb2|ts, or tb ⊂ ts and ts2 ⊂ tb2 ⊂ ts and ts2|tb and

tb2|tb.

Lemma 10. In every subtree overlap representation T of Gu

d
, where d ≥ 3, ts and tb have at least

d boundary nodes and if u ≥ 3 then ts2 and tb2 have at least u boundary nodes.

Proof. Let subtrees T of tree T be a subtree overlap representation of graph Gu

d
. We know that

either ts ⊂ tb or tb ⊂ ts by Statement 3. Without loss of generality, let ts ⊂ tb.

Vertex vs has d neighbours which induce an independent set in Gu

d
. We show by contradiction

that the subtrees corresponding to these neighbours are disjoint. Assume that vi, vj are in the neigh-

bourhood of vs, and ti ⊂ tj . Then, by Lemma 8, tb ⊂ tj , and therefore ts ⊂ tj - a contradiction.

Hence all subtrees corresponding to neighbours of vs are disjoint in T .

Observe that if two subtrees overlap, then each contains a boundary node of the other. Then

each subtree overlapping ts must contain a boundary node of ts. There are d neighbours of vs, and

therefore at least k subtrees that must overlap ts, all of which are pairwise disjoint. Then by the

pigeonhole principle, ts has at least d boundary nodes.

The same argument gives us that ts2 has at least u boundary nodes.

�

It follows that:

Corollary 2. In every subtree overlap representation of Gu
3 where u ≥ both ts and tb contain a

node of degree at least three in T .

Lemma 11. In every subtree overlap representation of graph Gu

d
where d ≥ 3 as subtrees T of tree

T , T has at least d leaves.

Proof. Let subtrees T of tree T be a subtree overlap representation of graph Gu

d
. By Lemma 10, ts

and tb have at least d boundary nodes. As both ts and tb are contained in T , then by Lemma 2, T

has at least d boundary nodes. As all boundary nodes of T are leaves, T has at least d leaves. �

Then by Observation 3, Lemma 10 and Corollary 1 we have:

42

Lemma 12. In every subtree overlap representation of Gu

d
as subtrees T of tree T in which ts ⊂ tb

if d ≥ 3 and u ≥ 3 then ts ⊂ tb has at least d boundary nodes, ts2 and tb2 have at least u boundary

nodes, and T has at least u+ d− 2 leaves.

We now use the preliminary lemmas on representations of the Gu

d
graph to prove lemmas on the

colourability of G given representability of G��.

Definition 3. Let G = (V,E) be a graph and G�� the Gu

d
-blocked graph of G. Let subtrees T of

tree T be an overlap representation of G��. Let vi, vj ∈ V1 be such that (vi, vj) ∈ E�. Vertices vi, vj

are an illegal pair if ti, tj are contained in the same twig of T .

Definition 4. An illegal subtree is a subtree corresponding to a vertex in an illegal pair.

Definition 5. A legal neighbour of an illegal subtree tj is a subtree ti such that ti and tj are on

different twigs of T ��, and (vi, vj) ∈ E�.

Lemma 13. Let G�� = (V ��, E��) be the Gu

d
-blocked graph of 3-connected graph G = (V,E) with

G�, Va, Vb, Vc, Vd, Ve, Vf , Gu

d
, vs, vb as defined previously. Let subtrees T �� of tree T �� be a subtree

overlap representation of G��. Then at most one of Va, Vb, Vc, Vd, Ve, Vf has an illegal pair, and

there is at most one illegal pair in each of Va, Vb, Vc, Vd, Ve, Vf .

Proof. Let vx, vy be an illegal pair in V1, and vw, vz another. Assume that the pair tx, ty are on a

different twig than tw, tz are. Let exy = (vx, vy) ∈ E� and ewz = (vw, vz) ∈ E�. Then txy is

contained in one twig and twz another - they are therefore disjoint, a contradiction. Therefore all

illegal pairs must be on the same twig.

Because all illegal subtrees are on the same twig, they are paths contained in a path of T ��. In

any three separate members of illegal pairs, at least one is disjoint from the interpath of some other

illegal pair by Lemma 1. Let ti be an illegal subtree with a legal neighbour such that ti is disjoint

from the interpath of an illegal pair tj , tk. Let th be a legal neighbour of ti. Consider the vertex

vl = (vj , vk) ∈ E� and the vertex vm = (vi, vh) ∈ E��. Then subtree tl must be contained in

the interpath of tj , tk. If that path is disjoint from ti, then tm is either disjoint from or contains tl,

a contradiction with the construction of G��, where V3 ∪ V4 induce a clique. Any illegal subtree

disjoint from the interpath of any illegal pair cannot have a legal neighbour. Because one of every

three illegal subtrees is disjoint from the interpath of at least one illegal pair, at most two illegal

subtrees can have legal neighbours.

Let tx, ty, tz be illegal subtrees corresponding to vertices in the same one of Va, Vb, Vc, Vd, Ve, Vf .

By the previous argument, at most two of them have legal neighbours. Then in G� consider a vertex

partition into the vertices that correspond to illegal subtrees in T ��, and all other vertices. If only two

of the vertices with illegal subtrees have legal neighbours, then those two constitute a two-vertex

cutset in G� - a contradiction to the components of G� being 3-connected within each component.

If there are at least three illegal vertices in the same one of Va, Vb, Vc, Vd, Ve, Vf , then at least three

43

illegal subtrees have legal neighbours, a contradiction to the previous argument. Therefore there is

at most one illegal pair in each of Va, Vb, Vc, Vd, Ve, Vf .

Assume that two of Va, Vb, Vc, Vd, Ve, Vf contain illegal pairs. Since each of Va, Vb, Vc, Vd, Ve, Vf

has at least 4 vertices, and there is no vertex of degree one in G�, then every illegal subtree has a

legal neighbour, but we know this cannot be the case because at most two illegal subtrees have legal

neighbours. Therefore at most one Va, Vb, Vc, Vd, Ve, Vf has an illegal pair. �

Lemma 14. Let G = (V,E) be a 3-connected graph. Let G�� be the G0
d
-blocked graph of G. If

G�� is the overlap graph of subtrees T of a tree T with k = d leaves and a single vertex of degree

greater than two, then G is k-colourable.

Proof. Let G = (V,E), G�� = (V ��, E��), T , T , d and k be as described in the lemma statement.

The main idea of our proof is that in any representation by subtrees T of tree T at least one of

Va...Vf is nicely represented with respect to G�. Since T has k twigs and each of G�[Va]...G�[Vf] is

isomorphic to G, by Observation 2, if any of Va...Vf are nicely represented with respect to G�, then

G is k-colourable. If a vertex set Vi is not nicely represented with respect to G� then by definition,

there is either a pair of illegal vertices in Vi, or a vertex in Vi that corresponds to a subtree not

contained in a twig of T .

We prove a number of properties of any representation of G��, and then derive a colouring of G

from this representation.

T has a single node p of degree greater than two - that node has degree d. Let T1, T2, T3, T4 be

the families of subtrees representing vertices in V1, V2, V3, and V4, respectively.

By Lemma 12, subtree ts must have at least d boundary nodes. Since d ≥ 3 this means that ts

must contain p. Since ts ⊂ tb node p also contained in tb. Every subtree ti ∈ T that contains p

must intersect both ts and tb. Since vi is adjacent to neither vs nor vb in G��, ti must contain or be

contained in each of ts and tb. Assume that neither ti ⊂ ts nor ti ⊃ tb. Then ti ⊃ ts and ti ⊂ tb.

However, by Lemma 8 if ti ⊃ ts then ti ⊃ tb, a contradiction. Therefore every subtree ti ∈ T1 that

contains node p is either contained in both ts and tb, or contains both ts and tb. We show that at

most one subtree in T1 contains tb and at most one is contained in ts.

Assume there are two vertices vx, vy ∈ V1 such that tx ⊃ tb and ty ⊃ tb. Without loss of

generality assume tx ⊂ ty . Consider the subtree tyh corresponding to the vertex vyh = f(vy).

Since tyh must overlap tb and ty , it overlaps tx, a contradiction.

Assume there are two vertices vx, vy ∈ V1 such that tx ⊂ ts, ty ⊂ ts, and both tx and ty

contain node p. Without loss of generality assume tx ⊂ ty . Consider the subtree txh corresponding

to the vertex vkh = f(tx). Since txh must overlap ts and tx, it therefore overlaps ty as well, a

contradiction. Then, because at most one subtree in T1 contains tb and at most one is contained in

ts and we know that every subtree that contains p is either contained in ts or contains tb, there are

at most two subtrees in T1 that contain p, and at most two subtrees in T1 that are not contained in a

44

twig of T ��.

By Lemma 13 at most one of Va, Vb, Vc, Vd, Ve, Vf contains an illegal pair, and there is a most

one illegal pair in each of Va, Vb, Vc, Vd, Ve, Vf . Then there is at most one illegal pair in V1. We

showed that at most two of Va, Vb, Vc, Vd, Ve, Vf contain vertices that correspond to subtrees that are

not contained in twigs of T . Therefore at least three of Va...Vf are nicely represented with respect

to G�.

Combining this with Observation 2, and the fact that T �� has k leaves, we have that at least

three of G�[Va], G�[Vb], G�[Vc], G�[Vd], G�[Ve], G�[Vf] are k-colourable. Since all of G�[Va], G�[Vb],

G�[Vc], G�[Vd], G�[Ve], G�[Vf] are isomorphic to G, it holds that G is k−colourable. �

By a proof similar to that for Lemma 14, but somewhat more technically complicated, we have:

Lemma 15. Let G be a 3-connected graph and d, u ≥ 3 two natural numbers. If the Gu

d
-blocked

graph of G is the overlap graph of subtrees of a tree with k = d + u − 2 leaves and no lastbranch

node of degree greater than two but less than d, then G is k−colourable.

Proof. Let T be a tree with k = (d+ u− 2) leaves and no lastbranch node of T with degree greater

than two but less than d, such that G�� is the overlap graph of a family of subtrees T of T . Because

of the symmetric nature of Gu

d
-blocked graphs, we will assume that ts ⊂ tb.

For convenience let T1 be the subtrees representing vertices in V1, T2 be the subtrees representing

vertices in V2, T3 be the subtrees representing vertices in V3, and T4 be the subtrees representing

vertices in V4, where V1, V2, V3, V4 are as defined in the construction of Gu

d
-blocked graphs.

We claim that one node of T of degree d is contained in ts, all other nodes of degree greater than

two are contained in ts2 (which is contained in tb2 by Observation 3) and therefore by Observation 3

all nodes of T of degree greater than two are contained in tb. First, we show that one node of degree

d is contained in ts, and that all other nodes of degree greater than two are contained in ts2.

From Lemma 10 we have that ts must have at least d boundary nodes. Since d > 2 this means

that ts must contain at least one node of degree greater than two. Since there are no lastbranch nodes

of T of degree greater than two but less than d, ts contains a node of at least degree d.

By Lemma 6 and Observation 3 if ts has more than d boundary nodes, tb2 has at most u − 1

boundary nodes, a contradiction to the construction of Gu

d
and Lemma 12. Therefore ts has exactly

d boundary nodes.

We claim that ts must contain a lastbranch node of T . We justify this by contradiction: assume

that ts does not contain a lastbranch node. Since ts|tb2, by the definition of lastbranch, there must

be a lastbranch node x such that the path from x to the closest node of ts does not intersect tb2.

Then consider the subtree tx formed by the union of ts and that path including x. By the definition

of lastnode, tx has at least one more boundary node than ts. That is tx has at least d + 1 boundary

nodes. Since tb2 has u boundary nodes (Lemma 12), and tb2|tx, then by Corollary 1, T must have

at least (u) + (d+ 1)− 2 = k + 1 leaves, a contradiction. Then ts contains a lastbranch node.

45

Since there are no lastbranch nodes of degree greater than two but less than d, it holds that ts

contains exactly one lastbranch node of degree d. If ts contains any other node of degree greater

than two, then it must have at least d + 1 boundary nodes. However, by ts|tb2, and the fact that tb2

has u boundary nodes then T must have at least d+u+1− 1 = d+u leaves, a contradiction to the

assumed number of leaves of T .

Then, since tb2 has u = k − d + 2 boundary nodes (Lemma 12), by Lemma 5, all nodes of

degree greater than two that are not in ts are in tb2. Since ts ⊂ tb and tb2 ⊂ tb, all nodes of degree

greater than two are contained in tb. Let ti ∈ T1 such that ti contains a node of degree greater than

two. Assume that ti ⊂ tb2. Consider the subtree tj ∈ T3 such that vj = f(vi). tj � ti and tj � ts.

Since ts|tb2 and ti ⊂ tb2 then tj � tb2, a contradiction to the fact that (vb2, vi) /∈ E��. Therefore no

subtree in T1 is contained in tb2.

We have established that there is one node of degree d ≥ 3 in ts, and all others are in ts2 ⊂ tb2.

Because ti �⊂ tb2, ti|tb2, so it must be that ti contains the node of degree d in ts. Therefore ti

intersects both ts and tb. Since vi is adjacent to neither vs nor vb in G��, ti must contain or be

contained in each of ts and tb.

Assume that neither ti ⊂ ts nor ti ⊃ tb. Then ti ⊃ ts and ti ⊂ tb. However, by Lemma 8 if

ti ⊃ ts then ti ⊃ tb, a contradiction. Then for every subtree ti ∈ T1, if ti contains a node of T of

degree greater than two, either ti ⊂ ts or ti ⊃ tb.

Let Vz ⊂ V1 be the set of vertices in V1 such that their subtrees in T are not contained in a

twig of T and do not contain a node of degree greater than two in T . Let Tz ⊂ T1 be the subtrees

corresponding to these vertices.

Any subtree in T1 that is not contained in a twig of T and does contain a node of degree greater

than two in T is either contained in ts or contains tb. We will show that at most one such subtree

contains tb and at most one is contained in ts.

Assume there are two vertices vx, vy ∈ V1 such that tx ⊃ tb and ty ⊃ tb. Without loss of

generality assume tx ⊂ ty .

Then consider the subtree tyh corresponding to the vertex vyh = f(vy). Since tyh must overlap

tb and ty , it therefore overlaps tx, a contradiction.

Assume that there are two vertices vx, vy ∈ V1 such that tx ⊂ ts, ty ⊂ ts, and both tx and ty

contain the node p of degree greater than two in ts. Without loss of generality assume tx ⊂ ty .

Then consider the subtree txh corresponding to the vertex vxh = f(tx). Since txh must overlap

ts and tx, it therefore overlaps ty as well, a contradiction.

By Lemma 13 at most one of Va, Vb, Vc, Vd, Ve, Vf has an illegal pair, and there is at most one il-

legal pair in each of Va, Vb, Vc, Vd, Ve, Vf . At most three of Va\Vz, Vb\Vz, Vc\Vz , Vd\Vz, Ve\Vz, Vf\Vz

contain vertices that correspond to subtrees that are not contained in twigs of T . That is, at most

four of Va\Vz , Vb\Vz , Vc\Vz , Vd\Vz , Ve\Vz , Vf\Vz are not nicely represented with respect to G�.

Therefore at least two of Va\Vz, Vb\Vz, Vc\Vz, Vd\Vz, Ve\Vz, Vf\Vz are nicely represented

46

with respect to G�. Combining this with Observation 2, and the fact that T �� has k leaves, we

have that at least two of G�[Va\Vz], G�[Vb\Vz], G�[Vc\Vz], G�[Vd\Vz], G�[Ve\Vz], G�[Vf\Vz] are

k−colourable. Let Vx, Vy where x, y ∈ {a, b, c, d, e, f} be the two vertex sets such that G�[Vx\Vz], G�[Vy\Vz]

are k−colourable. Let C1...Ck be the colour classes of (Vx∪Vy)\Vz as described in Observation 2 -

recall that each colour class corresponds to a twig of T ��. Since there are no edges in G� between Vx

and Vy we can apply these colour classes to both Vx\Vz and Vy\Vz and still have a correct colouring

in G�[(Vx ∪ Vy)\Vz].

Now we turn our attention to Vz . Let the union of the d− 1 twigs of T �� attached to the node of

degree d in ts be designated Qg . Let the union of the other twigs be designated Qo. Let Vg ⊂ V1

be the subset of vertices corresponding to subtrees contained in Qg . Let Vo ⊂ V1 be the subset of

vertices corresponding to subtrees contained in Qo.

Let Tz be the subtrees corresponding to vertices in Vz . Recall that all members of T1, including

those in Tz are not contained in tb2. Because no member of Tz contains a node of degree greater

than two, no member of Tz contains tb2. Therefore all members of Tz are are disjoint from tb2.

Since all nodes that are not on twigs of T �� are contained in tb, and vb is adjacent to no member

of Vz in G��, it holds that every member of Tz is contained in tb. To be not contained in a twig of

T ��, and not containing a node of degree greater than two, all members of Tz must be contained in a

path between two nodes of degree greater than two. Recall that all nodes of T of degree d ≥ 3 are

contained in ts ⊂ tb or in tb2. Since all members of Tz are disjoint from tb2 and all but one node

of degree greater than two is contained in tb2, the only possible such path is between the node of

degree d contained in ts and a node in tb2. Let the segment of this path between the node of degree

d and the first node of tb2 be called P .

First, we claim that no node of P is contained only in tb, and not in any other member of T4. We

justify this by contradiction: since tb2 and ts are disjoint, but each intersects opposite ends of P , if

there were a node of P contained only in tb and no other member of T4, then tb would be a cutset

separating ts and tb2 in G��[V4] (Lemma 3). This is not the case, hence contradiction.

Therefore every node of P is contained in at least one subtree in T4 other than tb. Let ti ∈ Tz

be such that ti �⊂ ts. Since vi is nonadjacent in G�� to every member of V4, ti does not overlap any

subtree in T4.

The subtree ti does not contain any member of T4 by Lemma 8, and the fact that ti ⊂ tb.

Therefore ti is either disjoint from or contained in every member of T4. Since we have assumed that

ti �⊂ ts, it must be that ti|ts. Then, since ti ⊂ P and every node of P is contained in a member

of T4 that is not tb, there exists tk ∈ T4 such that tk �= ts, tk �= tb and ti ⊂ tk. Now consider the

subtree tj such that vj = f(vi). Since (vj , vb) ∈ E�� and (vj , vs) ∈ E��, tj must overlap both ts and

tb.

tj � ti and ti ⊂ tk, but tj does not overlap tk so it must be that tj ⊂ tk. Since tj must overlap

both ts and tb, then tk must also overlap ts and tb. However, there is no vertex in V4 that is adjacent

47

in G�� to both vs and vb, a contradiction. Therefore all members of Tz are contained in ts.

We claim that G�[Vz] is an independent set. We proceed by contradiction. Let vi, vj ∈ Vz be

adjacent in G�. Then consider subtree tk ∈ T2 such that vk = (vi, vj) ∈ V2.

Since ti, tj and the path between them contain no nodes of degree greater than two in T �� (be-

cause they are contained in P), tk is a path with its leaves in ti and tj . Since ti ⊂ ts and tj ⊂ ts,

then tk ⊂ ts. This is a contradiction to (vs, vk) ∈ E��. Therefore G�[Vz] is an independent set.

We claim that at most one member of Vz has neighbours in both Vg and Vo. Let ti and tj be two

subtrees in Tz .

Note that ti|tj for reasons of representing f(vi) and f(vj) correctly and because they are non-

adjacent in G��.

We now show by contradiction that at most one of vi, vj has neighbours in G� in both Vg and Vo.

Assume that both vi and vj have neighbours in G� in both Vg and Vo. Let :

• vg be a neighbour of vi in Vg

• vh be a neighbour of vi in Vo

• vk be a neighbour of vj in Vg

• vl be a neighbour of vj in Vo

Then we consider further the vertices in V2:

• vg,i = (vg, vi) ∈ E�

• vh,l = (vh, vi) ∈ E�

• vk,j = (vk, vj) ∈ E�

• vl,j = (vl, vj) ∈ E�

Note that vg,i, vh,l, vk,j , vl,j induce a clique in G��, as all are members of V2. This means that by

the Helly property tg,i, th,l, tk,j , tl,j must have a node in common. Let us assume that node is not in

ti. If that node is between ti and the node of degree d contained in ts, then th,l ⊃ ti, a contradiction.

If that node is between ti and a node of tb2 then tg,i ⊃ ti, a contradiction. Therefore that node must

be in ti. However, symmetrically, it must also be in tj , a contradiction to ti|tj . At most one of vi, vj

has neighbours in G� in both of Vg, Vo. Since vi, vj were arbitrary members of Vz , we have that at

most one member of Vz has neighbours in both Vg and Vo.

Then, given the derivation of the colour classes C1...Ck from the twigs of T ��, at most one

member of Vz is adjacent in G� to members of every colour class. All other members of Vz are

non-adjacent in G� to all members of at least one colour class. We can then simply extend the colour

classes C1...Ck to colour all but at most one member of Vz , maintaining a correct colouring in G�.

Since that one member can be in either Vx or Vy but not both, it holds that C1...Ck contains all

members of at least one of Vx or Vy .

Therefore at least one of G�[Vx], G�[Vy] is k−colourable. Since all of G�[Va], G�[Vb], G�[Vc],

G�[Vd], G�[Ve], G�[Vf] are isomorphic to G, it holds that G is k−colourable. �

48

tb

tsts2
tb2

2

d

2

u

...

...

Figure 2.5: A generalised overlap representation of the Gu

d
graph on a tree with a node such that the

forest created by removing that node has two connected components: a tree with d leaves and a node
of degree d and a tree with at least u+ 1 leaves. The interior of tb2 and ts2 are darkened to indicate
that the structure of the tree there is somewhat irrelevant - only the number of boundary nodes is
important. In the darkened region could be a single vertex of degree u+ 1 with many leaves, or any
other tree with u attached twigs. There is exactly one node of degree greater than two contained in
ts and that node is contained only in ts and tb, and all other nodes of degree greater than two are
contained in tb2. The representation is on the left, and the Gu

d
graph is on the right. Vertex labels

and corresponding subtrees are colour coded.

We now move on to showing that a k-colouring of a graph G implies the existence of a repre-

sentation for the Gu

d
-blocked graph of G.

Definition 6. Let k, d, u be natural number such that either u = 0 and k = d ≥ 3 or d, u ≥ 3 and

k = d + u − 2. Let subtrees T of tree T be a subtree overlap representation of Gu

d
. We say that T

is a convenient representation of Gu

d
if:

• T has k leaves

• There is a node q with degree d in ts and tb

• There are no other nodes of degree greater than two in ts

• Node q is not in any subtrees other than ts and tb

• All other nodes of degree greater than two are in ts2 and tb2

• ts|tb2

• The forest created by removing q from T has at most one non-path component

Lemma 16. Let T be a tree and k, d, u be natural numbers such that either u = 0 and k = d ≥ 3

or d, u ≥ 3 and k = d+ u− 2.

• If u = 0, k = d ≥ 3 and T has a single node with degree greater than two and has k leaves,

then there is a convenient representation of Gu

d
on a host tree in SUB(T).

49

• If d, u ≥ 3 and k = d + u − 2 and there is a lastbranch node of T of degree d and T has k

leaves, then there is a convenient representation of Gu

d
on a host tree in SUB(T).

Proof. We will proceed in two cases. In the first, let u = 0, k = d ≥ 3 and T have a single node q

with degree greater than two and k leaves. Then let T � be the tree in SUB(T) with a single node q

of degree d and no other nodes of degree greater than two, and let there be d paths of minimum five

vertices pendant from q.

Then let ts contain exactly q and all vertices adjacent to q. Let tb contain exactly q and all vertices

within edge-distance three of q. Associate each of the d paths pendant from q with one of the d paths

between ts and tb. For each of the d paths between ts and tb let the first vertex (adjacent to ts) be

assigned a subtree consisting of the first two vertices (from q) on the associated path pendant from q.

Let the second vertex on the path be assigned a subtree consisting of the second and third vertex on

the associated path. Let the third vertex (the one adjacent to tb) be assigned a subtree consisting of

the third and fourth vertices on the associated path. These subtrees are a convenient representation

of Gu

d
.

We proceed to the second case. Let d, u ≥ 3 and k = d + u − 2 and let q be a lastbranch node

of T degree d and let T have k leaves. Let T be a subdivision of T .

Because paths can be lengthened by subdivision, we assume that every path in T � is as long as

we require.

Let ts contain q and all its neighbours. Let ts2 contain all other nodes of degree greater than two

and all their neighbours. Then let all the rest of the subtrees be as in Figure 2.5.

This representation satisfies the requirements, and is convenient.

Lemma 17. Let G be a 3-connected graph, k, d, u be natural numbers such that k ≥ d + u, and

G�� = (V ��, E��) the Gu

d
-blocked graph of G. Let T be a tree with k ≥ 3 leaves.

• If G is k-colourable and Gu

d
can be represented on a tree T � in SUB(T) such that the repre-

sentation is convenient,

• then G�� can be represented on a tree in SUB(T) such that there is exactly one node of degree

greater than two contained in ts and that node is contained only in ts and tb, and all other

nodes of degree greater than two are contained in tb2.

Proof. Let G, G��, T be as described in the lemma statement, and let C1...Ck be a k-colouring of G.

Let subtrees T4 of tree T � ∈ SUB(T) be a convenient representation of Gu

d
.

We define several sets of nodes of T �. By Definition 6 there is a vertex q of T � such that at most

one connected component of the forest T �\{q} is not a path. Let N1 be the set of nodes of that

non-path component - this will include all nodes of T2. If all components are paths, then let N1 be

50

an arbitrary component of T �\{q}. Let N2...Nd be the nodes of the other components. We will also

refer to the nodes of N1 as the organ nodes of T � and the subtree they induce as the organ subtree.

We will create a tree T �� from tree T � by adding paths to the leaves of T �. Let the leaves of T �

be labeled l1...lk

Let W be a set of k paths. Let each Wi ∈ W be length 2(|Ci|) − 1, and the nodes of Wi be

labeled as ri1...ri2(|Ci|).

We then create T �� by adding an edge between ri2(|Ci|) of path Wi to leaf li.

Having described tree T ��, we now construct the family of subtrees T �� such that G�� is the

overlap graph of T ��.

We will construct T �� in four parts: T1 will represent V1, T2 will represent V2, T3 will represent

V3, and T4 will represent V4, where V1, V2, V3, V4 are as described in the section on constructing the

Gu

d
−blocked graph of G. The subtrees in T4 are already given.

Let vi ∈ V1 be the ith vertex in colour class Cj . Then ti is the subpath of Wj induced by

nodes rj2i−1, r
j

2i of W . For later convenience, we refer to rj2i−1 as Up(ti) and rj2i as Down(ti). Let

subtree family T1 be the subtrees defined this way for all vertices in V1. Note that all subtrees in T1

are pairwise disjoint.

We now turn to the construction of T2 ∪ T3. We do this in two parts: first we describe an

intermediate form of the subtrees in these subtree families, and then we alter the subtrees to their

final form to ensure that they all pairwise overlap.

Let vi be a vertex in V2. There are two vertices vh, vj in V1 such that vi = (vh, vj). If the path

between Down(th) and Down(tj) contains an organ node of T ��, let ti be the union of that path and

the organ subtree of T ��. If the path between Down(th) and Down(tj) does not contain an organ

node of T , let ti be that path. Let subtree family T2 be the subtrees defined this way for all vertices

in V2.

Let vi be a vertex in V3. There is exactly one subtree vj ∈ V1 such that vi = f(vj). If the path

between Down(tj) and q contains an organ node of T �, let ti be the union of that path and the organ

subtree of T �. If the path between Down(tj) and q does not contain an organ node of T �, let ti be

that path. Let subtree family T3 be the subtrees defined this way for all vertices in V3. Observe that

each subtree in T2 ∪ T3 contains at most two neighbours of p.

For this to be a valid representation, we need all subtrees in T2 ∪ T3 to pairwise overlap. This

is a problem, as they may not at the moment. However, because each subtree in T2 ∪ T3 contains

at most two neighbours of p, and no subtree in T \T2 ∪ T3 has p as a boundary node, we can apply

Lemma 9.

Then there exists a subtree overlap representation on a tree that can be derived from T by sub-

division of edges such that all there is a one-to-one correspondence between subtrees in this new

representation and the subtrees in T and two subtrees in the new representation have the same re-

lationship as their corresponding subtrees in T unless they are both in T2 ∪ T3, in which case they

51

a

b

c

e

vs

vb

vs2vb2

a

b

c

e
f(a)

f(b)

f(c)

i) ii)

tsts2
tb2

tb

2

d

2

u

...

...

a

b

c

e ef(a)
f(b)

f(c)

e
f(a)

iii)

Figure 2.6: In i) a part of a graph, in ii) the corresponding part of that graph in a G3
3-blocked graph

and in iii) a representation of the vertices shown in ii) on a tree as described in Lemma 17. Note that
the subtrees corresponding to vertices in ii) that were vertices in i) (that is, a, b, c) are represented
on the twigs of the tree. The subtree corresponding to an edge (e) and the subtrees corresponding to
f(a), f(b), f(c) are indicated using lines instead of ovals, and all pairwise overlap.

overlap.

Therefore, without loss of generality, we will assume that all subtrees in T2∪T3 pairwise overlap.

Let T be T1 ∪ T2 ∪ T3 ∪ T4. For a quite intuition on the placement of these subtrees, see Figure

2.6, which shows a very small example.

It remains to show that G�� is the overlap graph of T .

We will show this by proving that for every two vertices vi, vj ∈ V �� it holds that ti � tj if and

only if vi is adjacent to vj .

Assume that ti � tj . Because all subtrees in T1 are disjoint from each other and from the subtrees

of T4 we have the following cases:

1. vi, vj ∈ V2 ∪ V3

2. vi, vj ∈ V4

3. vi ∈ V1, vj ∈ V2

52

4. vi ∈ V1, vj ∈ V3

5. vi ∈ V2 ∪ V3, vj ∈ V4

Case 1: Let vi, vj ∈ V2 ∪ V3. Then (vi, vj) ∈ E4 ⊂ E��.

Case 2: Let vi, vj ∈ V4. These are correct by the assumption that Gu

d
is the overlap graph of T �.

Case 3: Let vi ∈ V1, vj ∈ V2. Since ti is a path, and none of its nodes have degree greater

than two, it holds that if ti � tj , then a leaf of ti must be contained in ti. By the construction

of T2, then there exists a vertex vk ∈ V1 such that vj = (vi, vk). Since such a vk exists, then

(vi, vj) ∈ E2 ⊂ E��.

Case 4: Let vi ∈ V1, vj ∈ V3. Since ti is a path, and none of its vertices have degree greater

than two, it holds that if ti � tj , then a leaf of ti must be contained in tj . By the construction of T3,

vj = f(vi). Then (vi, vj) ∈ E3 ⊂ E��.

Case 5: vi ∈ (V2 ∪ V3), vj ∈ V4. Here we need to consider two subcases: either vj is vs or vb or

it is not. In the former case (vi, vj) /∈ E��, in the latter case, (vi, vj) ∈ E��. If vj is in V4 and is not

one of vs, vb, then tj is a subtree of exactly one of N1...Nd. If vj is one of vs or vb, then tj contains

nodes of at least three of N1...Nd. Because ti contains all nodes of exactly two of N1...Nd and no

nodes of any others, ti therefore overlaps tj if and only if tj is one of vs, vb.

This proves that if two subtrees overlap, their corresponding vertices are adjacent. We now prove

the converse.

Assume that vi is adjacent to vj . By the construction of G�� we know that at least one of vi, vj is

not in V1. We then have the following cases:

1. vi, vj ∈ V2 ∪ V3

2. vi, vj ∈ V4

3. vi ∈ V1, vj ∈ V2

4. vi ∈ V1, vj ∈ V3

5. vi ∈ V2 ∪ V3, vj ∈ {vs, vb} ⊂ V4

Case 1: Let vi, vj ∈ V2 ∪ V3. We earlier observed that ti � tj .

Case 2: Let vi, vj ∈ V4. These are correct by the assumption that Gu

d
is the overlap graph of T �.

Case 3: Let vi ∈ V1, vj ∈ V2. Then there exists a vertex vk ∈ V � such that vj = (vi, vk). Then

by the construction of the subtrees ti � tj .

Case 4: Let vi ∈ V1, vj ∈ V3. Then vj = f(vi) (and so (vi, vj) ∈ E��), by the construction

Down(ti) is a leaf of tj . Therefore ti � tj .

Case 5: vi ∈ (V2∪V3), vj ∈ V4. We know that ti contains a node also in a subtree corresponding

to a member of V1, and therefore that node is outside both tb and ts. Since ti also contains nodes

inside both ts and tb, ti � tb, and ti � ts. Therefore ti � tj .

53

.

.

.

1

2

u

pq r

a) b)

Figure 2.7: Examples of the trees required if a) k = d = 3 and u = 0 or b) d = 3 and u = k− d+2
in the reduction from 3-CON-k-COLOURING to REC-T-k(G), depending on the value of k.

This concludes the proof that G�� is the overlap graph of T ��, and therefore that G is k-colourable

and Gu

d
can be represented on a tree T � in SUB(T) such that the representation is convenient then

G�� can be represented on a tree in SUB(T). �

2.8 Reductions using nicely represented Gu
d-blocked graphs

We can now show that both REC-LEAFAGE-k and REC-SUB-T are NP-complete.

We start with REC-LEAFAGE-k , proving a reduction from an arbitrary instance of 3-CON-k-

COLOURING with at least four vertices to an instance of REC-LEAFAGE-k.

Let G be a 3-connected graph with at least 4 vertices, and k ≥ 3 a fixed natural number. Let

d = 3, and if k = 3 then u = 0, otherwise u = k − d + 2. Note that d ≥ 3 and either u = 0 or

u ≥ 3. Let G�� be the Gu

d
-blocked graph of G. We show that the answer to 3-CON-k-COLOURING

on G is exactly the answer to REC-LEAFAGE-k on G��.

Let T be a tree with k leaves. The form of T depends on u: if u = 0 then let T have a single

node of degree three, and no other nodes of degree greater than two, as shown in Figure 2.7a. If

u ≥ 3 then let T have exactly two nodes with degree greater than two: the node p with degree 3,

and the node q with degree u as shown in Figure 2.7b. This tree has a node r (Figure 2.7) such that

the forest created by removing r from T has two connected components: a tree with d leaves and a

node of degree d, and a tree with u leaves. Then by Lemma 17 if G is k-colourable, then the graph

G�� can be represented on a tree in SUB(T). Since all trees in SUB(T) have k leaves:

Statement 1. If G is k-colourable, G�� can be represented on a tree with k leaves.

Recall that d = 3 and u equals either 0 (only if d = k = 3) or k − d+ 2. Since there is no node

with degree greater than two but less than three, we have from Lemma 15 that:

Statement 2. If G�� can be represented on a tree with k leaves, then G is k-colourable.

54

Combining Statements 1 and 2, and the facts that k-colouring a 3-connected graph is NP-

complete and REC-LEAFAGE-k is in NP:

Theorem 4. REC-LEAFAGE-k is NP-complete.

We now move on to REC-SUB-T, proving a reduction from an arbitrary instance of 3-CON-k-

COLOURING with at least four vertices to an instance of REC-SUB-T for an arbitrary tree T with

more than two leaves.

Let T be a fixed tree with k ≥ 3 leaves and G be a 3-connected graph with at least four vertices.

Let q be a lastbranch of T with smallest degree d.

If d = k, then let the integer u = 0, otherwise let u = k − d + 2. Note that either u = 0 or

u ≥ 3. Let G�� be the Gu

d
-blocked graph of G.

By Lemma 16, in either case there is a convenient representation of Gu

d
on a subdivision of T .

Then by Lemma 17:

Statement 3. If G is k-colourable, G�� can be represented on a tree in SUB(T).

By the computation of d, T has no lastbranch node of degree greater than two but less than d.

Any tree that can be derived from T by subdivision also has no node of degree greater than two but

less than d, and still has k leaves. Then by Lemma 15 if G�� is the overlap graph of any family of

subtrees of any tree in SUB(T), it holds that G is k-colourable, and therefore:

Statement 4. If G�� can be represented on a tree in SUB(T), then G is k-colourable.

Combining Statements 3 and 4, and the facts that k-colouring a 3-connected graph is NP-

complete and REC-SUB-T is in NP, we have:

Theorem 5. REC-SUB-T is NP-complete.

2.9 Paths in a Tree of Fixed Maximum Degree

We now turn to the complexity of REC-PMD-k.

First consider a polynomial size certificate - a family of paths of a polynomially-sized tree with

maximum degree k. Čenek [2] showed that if there is such a representation, there is one that is

polynomial-sized in the size of the graph. Since there are n subtrees, we can check to see if G is the

overlap graph of T in polynomial time. Hence the problem is in NP.

We now proceed to show hardness. We describe a reduction from 3-CON-k-COLOURING.

Let G = (V,E) be a 3-connected graph with at least four vertices, and let k ≥ 3 be a fixed

integer. We will produce a graph G�� = (V ��, E��) such that G�� is the overlap graph of paths in a

tree with maximum degree k if and only if G is k-colourable.

First, we produce the graph G� = (V �, E�) such that G� is the disjoint union of three copies of G.

For later convenience, we will refer to the vertices of the three connected components of G� (each

of which is isomorphic to G) as Va, Vb, Vc.

55

We now define vertex sets:

• V1 = V �

• V2 = E�

• V3 = a set of vertices of size |V1| such that there exists a bijection f from V1 to V3

Let V �� = V1 ∪ V2 ∪ V3.

We now define edge sets:

• E1 = (vi, vj) where vi ∈ V1, vj ∈ V2 and there exists vk ∈ V1 such that vj = (vi, vk) ∈ E�

• E2 = (vi, vj) where vi ∈ V1 and vj ∈ V3 and vj = f(vi)

• E3 = (vi, vj) where vi, vj ∈ (V2 ∪ V3)

Let E�� = E1 ∪ E2 ∪ E3. Let G�� = (V ��, E��).

For an example of this construction, see Figure 2.8.

Lemma 18. If G is k-colourable, then G�� is the overlap graph of subpaths of a tree with maximum

degree k such that no subpath contains any other.

Proof. Assume G is k-colourable. Then G� is k-colourable. We construct subpaths T of tree T with

maximum degree k such that G�� is the overlap graph of T .

Let C1...Ck be the colour classes of a k-colouring of G, and therefore of G�. We will define a

tree Ri of maximum degree 3 for each colour class Ci, and then compose these together to produce

a tree of maximum degree k.

Consider a colour class Ci. Let Ri be a long path of length |Ci| − 1 with a path of 3 nodes for

each node p of that long path such that one of the leaves of the 3-node path is adjacent to p. Let the

3-vertex shorter paths be labelled r1...r|Ci| for convenience. Figure 2.9 provides an illustration.

Then let q be a node adjacent to one end node of the long path in each Ri. Figure 2.10 provides

an illustration. Let this constructed tree be T . Note that T has maximum degree k.

We then define several classes of subpaths, representing the vertex sets V1, V2, V3. First we

define T1 to represent the vertices in V1.

Note that each vertex in V1 is in one of the colour classes C1...Ck. Let Ci ∈ {C1...Ck} be in

some arbitrary order, such that we can refer to the vertices within it as v1...v|Ci|. Then for vertex

vj ∈ Ci, we define the subtree tj as the three-vertex path rj in Ri. For each path tj , we also label its

nodes tj1 , tj2 , tj3 from leaf of T to non-leaf of T . Let T1 be these subpaths corresponding to vertices

in V1.

We now turn our attention to producing subpaths T2 that correspond to the vertices in V2. Let

vi ∈ V2. Then there exist vj , vk ∈ V1 such that vi = (vj , vk) ∈ E�. Then we define subtree ti as

56

u v

w

G

u1 v1

w1

u2 v2

w2

u3 v3

w3

G'

u1

v1

w1

u2

v2

w2

u3

v3

w3

V1 V2
V3

f(u1)

f(v1)
f(w1)

f(u2)

f(v2)
f(w2)

f(u3)

f(v3)
f(w3)

G''

Figure 2.8: An example of the construction of graphs G� and G�� from the graph G. G� is simply
the disjoint union of three copies of G. G�� consists of three vertex sets, V1, V2, V3 as outlined in the
text. V1 is the vertex set of G�, V2 is the edge set of set of G�, and V3 is a new set of vertices of the
same size as V1. Please note that the vertices inside the dashed oval should induce a clique - these
edges were omitted for legibility.

57

. . .

r1

r3

r3

r|Ci|

Ri =

Figure 2.9: Caterpillar Ri associated with colour class Ci with labeled short paths r1 to r|Ci|

. . .

. . .

. . .

R1 = R2 = Rk =

. . .

q

Figure 2.10: An illustration of the construction of tree T to represent the k-colourable graph G. Note
that q has degree k, and all other nodes have degree of three or less.

58

the path in T with endpoints tj3 and tk3 . Let T2 be the family of these subpaths corresponding to

vertices in V2.

Finally, we produce the subpaths T3 corresponding to the vertices in V3. Let vi ∈ V3. Then there

exists vj ∈ V1 such that vi = f(vj). Then we define subpath ti as the path of T connecting the

nodes tj2 and q, inclusive. Let T3 be the family of these subpaths corresponding to vertices in V3.

Observation 4. Observe that by this construction, for every pair of subtrees ti, tj such that ti ∈ T1

and tj ∈ T2 ∪ T3, either ti � tj or ti|tj - that is, neither contains the other.

Let T = T1 ∪ T2 ∪ T3.

Having defined T and T , it remains to prove that G�� is the overlap graph of T . By the con-

struction, we have a subpath corresponding to each vertex in V ��. We show that for two vertices

vi, vj ∈ V ��, ti � tj if and only if (ti, tj) ∈ E��.

First, assume that ti � tj . Then we consider cases on vi, vj . Observe that it is not the case that

vi, vj ∈ V1, as by the construction all subtrees in T1 are pairwise disjoint. Then we are left with the

cases:

1. Case 1: vi ∈ V1, vj ∈ V2. Then let Ck be the colour class that vi is in. Then ti is on Rk, and

in particular let rh be the three-vertex path of Rk that ti is contained in. Then tj must contain

some nodes of rh. By the construction of T2, it must be that tj is an edge in E� such that vi is

one of its endpoints. Hence (vi, vj) ∈ E��

2. Case 2: vi ∈ V1, vj ∈ V3. Then let Ck be the colour class that vi is in. Then ti is on Rk,

and in particular let rh be the three-vertex path of Rk that ti is contained in. Then tj must

contain some nodes of rh. By the construction of T3, it must be that vj = f(vi), and therefore

(vi, vj) ∈ E��.

3. Case 3: vi, vj ∈ (V2 ∪ V3). Then (vi, vj) ∈ E��.

Now, assume that (vi, vj) ∈ E��. We consider cases on vi, vi to show that ti � tj .

1. Case 1: vi ∈ V1, vj ∈ V2. By the construction of E��, it must be that vj is an edge in E� such

that vi is one of its endpoints. Then by the construction of T , ti � tj .

2. Case 2: vi ∈ V1, vj ∈ V3. By the construction of E��, it must be that vj = f(vi). Then by the

construction of T , ti � tj .

3. Case 3: vi, vj ∈ (V2 ∪ V3). First, observe that all members of T2 ∪ T3 contain q. Therefore

it remains to show that neither ti ⊂ tj not tj ⊂ ti. If vi, vj are both in V2, then, as their

endpoints in E� cannot be the same, they each overlap members of T1 from which the other is

disjoint (Observation 4), therefore they overlap.

Similarly, if they are both from V3, as it cannot be that there exists vk ∈ V1 such that both

vi = f(vk) and vj = f(vk) (because f is one-to-one), then they each overlap members of T1

59

from which the other is disjoint (Observation 4), and therefore overlap. If one is from V2 and

one is from V3, and it is not the case that there exists vk ∈ V1 such that both vi = f(vk), and

vk is an endpoint of vj in E�, then they each overlap members of T1 from which the other is

disjoint (Observation 4), and therefore overlap.

If one is from V2 and one is from V3, and there exists vk ∈ V1 such that both vi = f(vk),

and vk is an endpoint of vj in E�, then by the construction of T tk2 is contained in vi but not

vj , and tj overlaps some member of T1 from which ti is disjoint (Observation 4), therefore

ti � tj .

This concludes the proof that G�� is the overlap graph of T ��, and therefore that if G is k−colourable,

then G�� is the overlap graph of subpaths of a tree with maximum degree k.

Let subpaths T of tree T with maximum degree k be an overlap representation of G��. Since

V2∪V3 induce a clique, by the Helly property there is a node q that is in every subpath corresponding

to a member of V2 ∪ V3.

Node q has at most degree k. Consider the connected components C1....Ch of T created by

removing q from T . Certainly h ≤ k.

Lemma 19. Let Vz ⊂ V1. Let Tz ⊂ T be the subpaths representing the vertices in Vz . If no subtree

in Tz contains q, then G�[Vz] is k-colourable.

Proof. If no member of Tz contains q, then every member of Tz is contained in exactly one of

C1....Ch. If there are no two subpaths corresponding to adjacent vertices that are contained in the

same one of C1...Ch, then C1...Ch can be used as colour classes.

We show by contradiction that if ti, tj ∈ Tz and (vi, vj) ∈ E�, then ti, tj are not contained in

the same one of C1....Ch.

Assume that ti, tj ∈ Tz and (vi, vj) ∈ E�, and ti, tj are both contained in component Cl ∈

{C1....Ch}. Since (vi, vj) ∈ E�, there exists a vertex vk = (vi, vj) ∈ V2.

By the definition of q, the subtree tk contains q. Since vk is adjacent in G�� to both vi and vj , the

subtree tk overlaps both ti and tj . Recall that tk is a path.

Without loss of generality assume that the distance along tk between q and ti is greater than the

distance along tk between q and tj .

Because tk � tj , every path that intersects both ti and q overlaps tj .

Then consider the subtree th corresponding to the vertex f(vi). Since it overlaps ti and contains

q, it must also overlap tj - a contradiction to the fact that f(vi) is not adjacent to vj in G��. �

If one of Va, Vb, or Vc is k-colourable in G�, that implies a k-colouring of the vertices of G.

Therefore it suffices to show that at least one of Va, Vb, Vc is represented by a set of subpaths in T

60

such that none of those subpaths contains q. From the previous Lemma, this implies a k-colouring

of that member of {Va, Vb, Vc}.

Lemma 20. At least one of Va, Vb, Vc, is represented by a set of subpaths in T such that none of

those subpaths contains q.

Proof. Assume that every one of Va, Vb, Vc contains a vertex for which the subpath contains q. Then

there are are vertices vi, vj , vk such that ti, tj , tk all contain q. Since vi, vj , vk are an independent

set in G��, all are in pairwise containment relationships. Without loss of generality, let ti ⊂ tj ⊂ tk.

Consider the vertex v�
i
∈ V3 such that v�

i
= f(vi). Since t�

i
� ti, but t�

i
must not overlap tj , it holds

that t�
i
⊂ tj .

Consider v�
k
∈ V3 such that v�

k
= f(vk). Then, since t�

k
contains q, and overlaps t�

i
, but does not

overlap tj , it holds that t�
k
⊂ tj , and then t�

k
⊂ tk - a contradiction with the fact that (vk, v�k) ∈ E��.

Then, since G�[Va], G�[Vb], G�[Vc] are isomorphic to G, by Lemma 19:

Lemma 21. If G�� is the overlap graph of subpaths of a tree with maximum degree k, then G is

k-colourable.

Finally, as we have shown that REC-PMD-k(G) is in NP, and that for k ≥ 3, G is k-colourable

if and only if the answer to REC-PMD-k(G��) is yes, then we have:

Theorem 6. REC-PMD-k(G) is NP-complete.

Observe that the proof of Lemma 21 is based on the Helly property of subtree -in fact, the proof

works equally well if for every occurrence of the word ”overlap” we substitute the word ”intersect”.

Then, because the representation guaranteed by Lemma 18 has no containment, and is therefore also

an intersection representation of G��, we have that:

Theorem 7. Recognising the intersection graphs of paths in a tree with maximum degree k ≥ 3 is

NP-complete.

2.10 Conclusion and Future Work

We have shown that recognising a number of subclasses of subtree overlap graphs is NP-complete.

This is surprising because of the enforced simplicity of the representations. Our ultimate goal con-

tinues to be resolving complexity of the recognition problem for subtree overlap graphs in general.

This is currently an open problem.

Other related open problems include tighter bounds on the leafage of subtree overlap graphs, as

well as investigation of other geometric overlap and intersection classes.

61

Bibliography

[1] Kellogg S. Booth and George S. Lueker. Linear algorithms to recognize interval graphs and

test for the consecutive ones property. In STOC ’75: Proceedings of seventh annual ACM

symposium on Theory of computing, pages 255–265, New York, NY, USA, 1975. ACM Press.

[2] Eowyn C̆enek. Subtree overlap graphs and the maximum independent set problem. Master’s

thesis, University of Alberta, Department of Computing Science, 1998.

[3] Derek G. Corneil, Stephan Olariu, and Lorna Stewart. Lbfs orderings and cocomparability

graphs. In SODA ’99: Proceedings of the tenth annual ACM-SIAM symposium on Discrete

algorithms, pages 883–884, Philadelphia, PA, USA, 1999. Society for Industrial and Applied

Mathematics.

[4] Cornelia Dangelmayr and Stefan Felsner. Chordal graphs as intersection graphs of pseudoseg-

ments. In Michael Kaufmann and Dorothea Wagner, editors, Graph Drawing, volume 4372 of

Lecture notes in Computer Science, pages 208–219. Springer, 2007.

[5] Jessica Enright. Subtree overlap graphs - towards recognition. Master’s thesis, University of

Alberta, Department of Computing Science, 2006.

[6] Jessica Enright and Lorna Stewart. Subtree filament graphs are subtree overlap graphs. Inf.

Process. Lett., 104(6):228–232, 2007.

[7] Fanica Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.

Journal of Combinatorial Theory (B), 16:47–56, 1974.

[8] Fanica Gavril. Maximum weight independent sets and cliques in intersection graphs of fila-

ments. Inf. Process. Lett., 73(5-6):181–188, 2000.

[9] P.C. Gilmore and A.J. Hoffman. A characterization of comparability graphs and of interval

graphs. Canadian Journal of Mathematics, 16:539 – 548, 1964.

[10] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete

Mathematics, Vol 57). North-Holland, 2004.

[11] Martin Charles Golumbic and Robert E. Jamison. Edge and vertex intersection of paths in a

tree. Discrete Mathematics, 55(2):151–159, 1985.

62

[12] Martin Charles Golumbic, Marina Lipshteyn, and Michal Stern. Equivalences and the com-

plete hierarchy of intersection graphs of paths in a tree. Discrete Applied Mathematics,

156(17):3203–3215, 2008.

[13] Robert E. Jamison and Henry Martyn Mulder. Constant tolerance intersection graphs of sub-

trees of a tree. Discrete Mathematics, 290(1):27–46, 2005.

[14] Clyde L. Monma and Victor K.-W. Wei. Intersection graphs of paths in a tree. J. Comb. Theory,

Ser. B, 41(2):141–181, 1986.

[15] Martin Pergel. Recognition of polygon-circle graphs and graphs of interval filaments is NP-

complete. In Andreas Brandstädt, Dieter Kratsch, and Haiko Müller, editors, WG, volume

4769 of Lecture Notes in Computer Science, pages 238–247. Springer, 2007.

[16] Donald J. Rose, R. Endre Tarjan, and George S. Leuker. Algorithmic aspects of vertex elimi-

nation on graphs. SIAM Journal of Computing, 5(2):266–283, 1976.

[17] William Rosgen. Set representations of graphs. Master’s thesis, University of Alberta, Depart-

ment of Computing Science, 2005.

[18] Alejandro A. Schäffer. A faster algorithm to recognize undirected path graphs. Discrete Appl.

Math., 43(3):261–295, 1993.

[19] Jeremy Spinrad. Recognition of circle graphs. Journal of Algorithms, 16:264–282, 1994.

[20] Juraj Stacho and Michel Habib. Polynomial-time algorithm for the leafage of chordal graphs.

17th Annual European Symposium on Algorithms, 2009.

63

Chapter 3

Filament characterisations of overlap
graphs

Introduction

Subtree overlap graphs are the overlap graphs of subtrees in a tree. Given a subtree overlap represen-

tation for a graph, we can solve maximum independent set and maximum clique on that graph [1].

Subtree filament graphs and interval filament graphs were introduced by Gavril in [3]. Pergel [4]

showed that recognising interval filament graphs is NP-complete. Enright and Stewart [2] showed

that subtree overlap graphs are exactly subtree filament graphs. We present a generalisation of that

result that also implies that caterpillar overlap graphs are exactly interval filament graphs, and that

therefore recognising caterpillar overlap graphs is NP-complete.

Overlap graphs are not nearly as well studied as intersection graphs. Resolving the complexity

of recognising overlap graphs has proven to be more difficult than for intersection graphs. The

complexity of recognising subtree overlap graphs remains open. The characterisation in this paper

provides an alternate way of looking at some overlap graphs as intersection graphs. This may lead

to new insights into these classes.

We consider only graphs that are finite, simple and loopless. Let A and B be two sets. A and

B are disjoint, denoted A|B if they do not intersect. A overlaps B, denoted A � B if A ∩ B but

neither A ⊆ B nor B ⊆ A.

Let A,B,A�, B� be four sets. We say that A,B and A�, B� are similarly related, denoted A,B ∼

A�B� if A|B if and only if A�|B�, A � B if and only if A� � B�, A ⊆ B if and only if A� ⊆ B� and

B ⊆ A if and only if B� ⊆ A�.

Let G = (V,E) be a graph. A family of sets S is an intersection (overlap, disjointness) repre-

sentation of G if there is a bijection between the vertices in V and the sets in S such that two vertices

are adjacent if and only if their corresponding sets intersect (overlap, are disjoint).

Subtrees T of tree T are a subtree overlap representation of graph G = (V,E) if there is a

bijection between the vertices in V and the subtrees in T such that two vertices are adjacent if and

64

Intersects
 all subtrees

is not bushy

Figure 3.1: An example of a subtree overlap representation that is minimally-S-covered if S is the
edge that intersects all subtrees indicated by the arrow. The underlying tree is shown in dots and thin
lines, the representing subtrees in thicker lines. The node on the right of the covering edge is bushy
with respect to that edge because all of its neighbours that are not in S are leaves, whereas the node
on the right of the edge is not, as it has neighbours that are neither in S nor a leaf.

only if their corresponding subtrees overlap. For convenience, we will use the notation that vertex

vi ∈ V corresponds to subtree si ∈ S . We call the subtrees corresponding to vertices representing

subtrees.

A subdivision of an edge (u, v) in a graph G is an operation in which we remove the edge

between u and v, and add a new vertex adjacent to exactly u and v. We say graph H is a subdivision

of graph G if H can be produced from G by a single or repeated edge subdivisions, or is isomorphic

to such a graph.

Let subtrees T of tree T be a subtree overlap representation for graph G = (V,E). Let S be

a tree. We say that this representation is S-covered if there is a subtree R of T isomorphic to a

subdivision of S that intersects all subtrees in T . We say that the representation is minimally-S-

covered by subtree R of T if R is isomorphic to a subdivision of S that intersects all subtrees in T ,

and there is no subtree of R isomorphic to a subdivision of S that intersects all subtrees in T . We say

that the representation is minimally-S-covered if there exists a subtree R of T that is a subdivision

of S and the representation is minimally-S-covered by R.

We say a graph G = (V,E) is S-covered if there exists a S-covered representation of G.

Let S be a tree, G = (V,E) a graph, and subtrees T of tree T a minimally-S-covered repre-

sentation of G with R being the covering subtree of T that is a subdivision of S. A node p of R

is bushy with respect to R if every neighbour of p not in R is a leaf. The representation of G is

minimally-S-bushy if there is a subtree R of T that is a subdivision of S that intersects all subtrees

in T , and there is no subtree of R that is a subdivision of S and intersects all subtrees in T , and

every node in R is bushy with respect to R.

For examples of bushy and non-bushy nodes, and a minimally-S-covered representation, see

Figure 3.1.

Let G = (V,E) be a graph and G a graph class. G is G-mixed if there is a partition of its edges

into E1 and E2 such that:

• G1 = (V,E1) is a comparability graph and

65

• G2 = (V,E2) is in G and

• there is a transitive orientation
−→
E1 of E1 such that for every pair of edges (u → w) ∈

−→
E1 and

(v, w) ∈ E2, we have (u, v) ∈ E2.

Filaments are curves in a surface above some geometric object, as defined by Gavril [3]. Subtree

filaments are curves in a surface above a tree. Let T be a family of subtrees of a tree T that is

embedded in a plane P . The filament surface defined by T is the surface orthogonal to P that

intersects P at exactly T . This surface can be imagined to be formed by drawing T upwards from

P to form a surface. Filaments F = {f1...fn} on the elements of T = {t1...tn} are then curves

in the filament surface where each fi, 1 ≤ i ≤ n connects the leaves of ti, and for two filaments

fi, fj ∈ F corresponding to ti, tj ∈ T :

• if ti|tj then fi|fj and

• if ti � tj then fi intersects fj .

Gavril [3] showed that the subtree filament graphs are exactly the complements of cochordal-

mixed graphs, and the interval filament graphs (the intersection graphs of filaments on intervals on

a line) are the complements of cointerval-mixed graphs.

Let T be a tree. If there is a subtree filament representation of graph G such that the host tree

embedded in the plane is isomorphic to a subdivision of T , then we say that G is a T -filament graph.

Similarly, if G is a class of trees, and there is a subtree filament representation of graph G such

that the host tree embedded in the plane is a subdivision of a tree in G, then we say that G is a

G-filament graph. By this notation, the interval filament graphs are path-filament graphs, as well as

the P2-filament graphs.

Let disjointness of T graphs be the graphs that have disjointness representations with a subdivi-

sion of tree T as the host tree. Similarly, if G is a class of trees, let the disjointness of G graphs be

the graphs that have disjointness representations with a subdivision of a tree in G as the host tree.

3.1 Results

We now give several lemmas that allow us to transform a subtree overlap representations of graphs

into representations with convenient properties. We will use these lemmas in our eventual theorem

on the relationship between T -filament graphs and T -covered graphs.

Lemma 22. Let subtrees T of tree T be a minimally-S-covered by R subtree overlap representation

of graph G = (V,E). There exists a minimally-S-bushy representation of G.

Proof. Starting with a minimally-S-covered representation T , T , we show how to create a repre-

sentation of G that is minimally-S-covered and has at least one fewer non-bushy node with respect

to R than T , T . Applied inductively, this gives us a representation of G that is minimally-S-bushy.

66

Let p be a node of R that is not bushy with respect to R. Let Tp ⊆ T be the set of subtrees that

contain p, and let Vp be the corresponding vertices of G. Let q1...qh be the h neighbours of p in T\R.

Because R hits all subtrees in T , there is no subtree in T such that removing any (p, qi), 1 ≤ i ≤ h

edge would disconnect that subtree from p. That is, every subtree that contains a vertex that is

reachable from p only through one of q1...qh also contains p.

Let T � be a tree that consists of the component of T\{q1...qh} that contains p, with |Vp| extra

leaves added, each adjacent to only p. We call these leaves l1...l|Tp|, and associate each leaf with a

member of Tp.

Let subtree t�
i
, 1 ≤ i ≤ |T | of T � be defined as follows:

• if ti ∈ T does not contain p, then t�
i
= ti

• if ti ∈ T does contain p, then let Lti be the set of leaves in l1...l|Tp| that are associated with

either ti or a member of Tp that is contained in ti. Then t�
i
= (ti ∩ T �) ∪ Lti .

Let T � be composed of all these t�
i
.

We claim that for every 1 ≤ i, j ≤ |V | the subtrees ti, ti ∼ t�
i
, t�

j
, and therefore T � is a repre-

sentation for G. Subtree t�
i

only differs from ti if ti contains p. Therefore if ti|tj , then at most one

of t�
i
, t�

j
differs from its original version and t�

i
|t�
j
. If subtree ti ⊆ tj than every node in t�

i
that is not

in ti is also in t�
j
, therefore t�

i
⊆ t�

j
. If ti � tj , then ti intersects tj , and because this representation is

in a tree and they both intersect R, they must intersect at a node in R. No nodes in R were removed

from subtrees, so t�
i

and t�
j

intersect. We now proceed by contradiction: without loss of generality

assume that t�
i
⊆ t�

j
. If ti �∈ P then ti = t�

i
does not contain p, and the vertex z ∈ ti\tj must be

in T ∩ T �, and therefore is not in t�
j
, a contradiction. If ti is in Tp, we know that there is a leaf in

l1...l|Tp| that is in only t�
i
, and not t�

j
because ti �⊆ tj , a contradiction.

The vertex p is now bushy with respect to R, and every other node in T � that is not bushy

with respect to R is also not bushy with respect to R in T . R intersects every member of T , and is

minimal by its previous minimality in T . We have described a representation of G that is minimally-

S-covered, and that has at least one fewer non-bushy node than T , T .

A boundary node of a subtree t of tree T is a node of t that is either a leaf of both t and T , or

has a neighour in T that is not in t.

We have showed how to produce a bushier representation. It simplifies our later proof to use a

representation in which no two representing subtrees share a boundary node, and no boundary node

of a representing subtree is of high degree in the underlying tree. We therefore show how to produce

a representation with these convenient properties.

Lemma 23. If there exists a minimally-S-covered subtree overlap representation of graph G, then

there exists a minimally-S-covered subtree overlap representation of G in which there are no bound-

ary nodes of degree greater than two in the underlying tree, and no vertex is a boundary node of

more than one representing subtree.

67

Proof. Let subtrees T of tree T be a minimally-S-covered by R representation of graph G = (V,E).

We describe iterative methods for decreasing the number of boundary nodes of degree greater

than two and the number of boundary nodes shared between subtrees while preserving all the prop-

erties we require.

Let p ∈ ti ∈ T be a boundary node of subtree ti with degree greater than two. Let No(p) =

{r1...r|No(p)|} be the neighbourhood of p outside of ti in T . Then let tree T � be T with each edge

between p and rj ∈ No(p) subdivided with a new vertex qj . Then for each tj ∈ T , let t�
j

be defined

as follows: if p /∈ tj , then t�
j
= tj , if p ∈ tj , then t�

j
= tj ∪ {q1...q|No(p)|}.

We claim that for every pair of subtrees ti, tj ∈ T , ti, tj ∼ t�
i
, t�

j
, that there are fewer boundary

nodes of degree greater than two in T �, T � than in T , T , and that T �, T � is minimally-S-covered

such that a subdivision of R intersects all subtrees in T �.

Recall that T �, T � is minimally-S-covered if there is a minimal subtree R of T that is a subdivi-

sion of S and intersects all subtrees in T . Because for every subtree ti ∈ T , we have ti∩R = t�
i
∩R

and the new nodes either subdivide R, or R is a connected subtree of T �, the subtrees in T �, T � are

minimally-S-covered. Node p is no longer a boundary node, no new nodes of degree greater than

two have been introduced, and every node in T � ∩ T that is not a boundary node of any subtree in

T is not a boundary node of any subtree in T . Therefore there are fewer boundary nodes of degree

greater than two in T �, T � than in T , T .

A subtree t�
i
∈ T � contains the new nodes if and only if ti contains p. It follows that every pair

of subtrees satisfies t�
i
, t�

j
∼ ti, tj .

Applied iteratively, this gives us a method for producing a minimally-S-covered subtree overlap

representation with no boundary nodes of degree greater than two. Then let subtrees T2 of tree T2

be a minimally-S-covered subtree overlap representation of G with no boundary nodes of degree

greater than two.

We now describe a method of decreasing the number of shared boundary nodes between two

subtrees in a representation that, if used on a minimally-S-covered representation with no boundary

nodes of degree greater than two (such as T2, T2), produces a minimally-S-covered representation

with no boundary nodes of degree greater than two with fewer shared boundary nodes.

Let R2 be a subdivision of S that is a subtree of T2 and intersects all members of T2. Let p be a

node in T2 that is the boundary node of more than one subtree in T2. If p is not a leaf, then let q and

r be the neighbours of p in T2 - recall that there are no boundary nodes in T2, T2 of degree greater

than two. If p is a leaf, let q be its neighbour. Let Tq ⊂ T2 be the family of subtrees for which p

is a leaf that also contain q, and Tr ⊂ T2 be the family of subtrees for which p is a leaf that also

contain r. If p is a leaf, let Tr be the empty set. Let both Tq and Tr be sorted by increasing size. Let

nq = |Tq| and nr = |Tr|.

Let T3 be the tree T2 with the edge between p and q subdivided by a path of new vertices

sq1...s
q
nq

such that sq1 is adjacent to p, sqnq
adjacent to q, and the edge between p and r (if p is not a

68

leaf) subdivided by a path of new vertices sr1...srnr
such that sr1 is adjacent to p, srnr

adjacent to r.

For each subtree ti ∈ T2, let subtree t�
i

be defined as follows:

• If ti ∈ Tq then t�
i
= ti ∪ {sq

j
where j is less than the position of ti in Tq}.

• If ti ∈ Tr then t�
i
= ti ∪ {sr

j
where j is less than the position of ti in Tr}.

• If q ∈ ti and r ∈ ti, then t�
i
= ti ∪ {sq1...s

q
nq
} ∪ {sr1...s

r
nr
}.

• If p /∈ ti then t�
i
= ti.

Note that, if p is a leaf, the above subtree constructions do not include any vertices in the nonexistent

subdividing path sr1...s
r
nr

.

Let T3 be all such t�
i
.

We claim that for every pair of subtrees ti, tj ∈ T2, ti, tj ∼ t�
i
, t�

j
, that there are fewer boundary

nodes in T3, T �
3 that are boundary nodes for more than one subtree than there are in T2, T2, that

T3, T3 is minimally-S-covered, and that T3, T3 has no boundary nodes of degree greater than two.

Every subtree t�
i
∈ T3 has the same intersection with R2 that ti does, and the new nodes either

subdivide R2, or R2 is a subtree of T3, therefore T3, T3 is minimally-S-covered. Because T2, T2 has

no boundary nodes of degree greater than two, we have not added any nodes of degree greater than

two, and every node in T3 that was not a boundary node in T2, T2 is not a boundary node in T3, T3,

representation T3, T3 has no boundary nodes of degree greater than two.

It remains to show that for every pair of subtrees ti, tj ∈ T2, ti, tj ∼ t�
i
, t�

j
. A subtree t�

i
∈ T3

contains nodes not in ti if and only if ti contains p. Therefore ti|tj implies t�
i
|t�
j
. Because only new

nodes on the subdividing paths were added to subtrees, and no nodes were removed, ti � tj implies

t�
i
� t�

j
. If ti ⊆ tj , then any node in t�

i
\ti is also in t�

j
\tj , therefore t�

i
⊆ t�

j
.

Applied iteratively, this gives us a method for producing from T2, T2 a subtree overlap represen-

tation with no boundary nodes of degree greater than two that is minimally-S-covered and has no

nodes that are boundary nodes of more than one representing subtree.

Theorem 8. Let G = (V,E) be a graph and S a nontrivial tree. The following statements are

equivalent:

1. G is minimally-S-covered.

2. There is an overlap representation of G which is minimally-S-bushy

3. G is a S-filament graph

4. G is the complement of a (disjointness of S)-mixed graph.

Proof. From 1 to 2: By Lemma 22

From 2 to 3:

By Lemma 23 there is a minimally-S-covered subtree overlap representation of G = (V,E) with

no shared boundary nodes and no boundary nodes of degree greater than two. Let subtrees T of

69

a
b c

a b
c

a
b c

a

b
c

ab c

drawn up point

pushed up point

Figure 3.2: A graph on the bottom and the initial stage of construction of filaments for that graph on
the left. Note that the filaments for c and d do not intersect the filament for a, so these filaments are
not yet an intersection representation for the graph. On the right, we have drawn up a point of the
filament for c to intersect the filament for a. During the drawing up, we encountered the filament for
b, and because c and b are not adjacent, a point of the filament for b was pushed up.

tree T be such a representation, with R being a minimal subtree of T that is a subdivision of S and

intersects all subtrees in T .Because there are no shared boundary nodes, no two subtrees in T are

equal.

First, we embed R in the plane P . Let QL be the filament surface above R. Now we index all

members of T = {t1..tn} by nondecreasing size.

First, starting at t1 and proceeding to tn, we construct a filament fi for each subtree ti ∈ T such

that every point of fi is above some point of ti, fi joins the endpoints of ti, fi is above every point

of every fj where j < i and tj ⊂ ti, and fi is a function. Let F be all such filaments.

For every two subtrees in T that are disjoint in T , their corresponding filaments in F do not

intersect. For every two subtrees ti, tj in T such that ti ⊂ tj , and therefore ti ∩ R ⊆ tj ∩ R, their

filaments do not intersect.

However, consider two overlapping subtrees in T . Their corresponding filaments may or may not

intersect. We therefore modify the filaments in F such that filaments corresponding to overlapping

subtrees do intersect.

Let ti, tj ∈ T be two subtrees that overlap, but fi, fj do not intersect. First, notice that ti ∩ R

intersects tj∩R, and because we are assuming that no two subtrees share a boundary node, ti∩tj∩R

contains at least an edge. Let (p, q) be that edge. Assume without loss of generality that i < j, and

therefore fi is entirely below fj . We take a point of fi above (p, q) and draw it upwards until fi

intersects fj , stretching fi so that it remains a function. If, in drawing up fi, we encounter another

filament fk such that tk � ti, we cross fk with fi. However, if we encounter a filament fk such that

ti ⊂ tk, then we draw up the point of fk that we encounter with fi such that fi does not intersect

fk. We say that fk modified in this manner has been pushed up. For an example of drawn up and

pushed up points, see Figure 3.2

We perform this drawing up operation for every pair of filaments that do not intersect but corre-

70

spond to subtrees that overlap in T , T .

We claim that now two filaments in F intersect if and only if their corresponding subtrees in T

overlap, and therefore these filaments form an intersection representation for G.

Certainly filaments corresponding to overlapping subtrees now intersect, and filaments corre-

sponding to disjoint subtrees do not intersect.

It remains to show that filaments fi, fj ∈ F such that ti ⊂ tj do not intersect. If fi was neither

drawn up nor pushed up, this is the case as in the original set of filaments.

If fi was drawn up then, if fj was encountered during the drawing up, it was pushed up, so fj

remains entirely above fi.

If fi was pushed up, let fk be the filament that was being drawn up when fj was pushed. tk ⊂ ti,

and therefore by transitivity of containment tk ⊂ tj . Therefore tj was pushed up as well, and tj

remains entirely above ti.

From 3 to 4:

This proof closely follows ones given in [3]. Let filaments F on subtrees S of tree S be a subtree

filament representation of G. We describe a partition of the nonedges of G to show that G is the

complement of a (disjointness-of-S)-mixed graph. Let (vi, vj) be an edge in E. We know that fi, fj

do not intersect. Let si, sj be the subtrees of S induced by the endpoints of ti, tj . If si|sj we place

(vi, vj) in E1. If si ⊂ sj then we place (vi → vj) in
−→
E2. If si = sj , then without loss of generality

assume that fi is entirely below fj . Then we place (vi → vj) in
−→
E2. If sj ⊂ si then we place

(vj → vi) in
−→
E2. We claim that E1,

−→
E2 is a (disjointness of S)-mixed partition of the edges of G.

First, G1 = (V,E1) is a disjointness-of-S graph because two vertices vi, vj are adjacent if and

only if si, sj are disjoint. Therefore S is a disjointness representation of G1.

Secondly, G2 = (V,E2) is a transitive orientation of a comparability graph, by the transitivity

of containment.

It remains to show that for every three vertices vi, vj , vk ∈ V , if (vi → vj) ∈ E2 and (vj , vk) ∈

E1, then (vi, vk) ∈ E1. If (vi → vj) ∈ E2 then si ⊂ sj , and if (vj , vk) ∈ E1 then sj |sk. Geometry

then forces si to be disjoint from sk, and therefore (si, sk) ∈ E1.

From 4 to 1:

This proof closely follows ones given in [3]. Let E1, E2 be a (disjointness-of-S)-mixed partition of

the edges in E. Let subtrees S of tree S be a disjointness representation of G1 = (V,E1).

Let vi → vj be in E2. Is it the case that si ⊂ sj? Assume it is not. Because si, sj are

nondisjoint, either si � sj or sj ⊂ si. Consider a third subtree s�
j

such that s�
j
= sj ∪ si. We

claim that s�
j

is a valid representing subtree for vj . Assume that it is not - then s�
j

must intersect

some subtree sk such that (vj , vk) ∈ E1. Because sj |sk, it must be that si intersects sk. Then we

have that (vi → vj) ∈ E2, (vj , vk) ∈ E1, but (vi, vk) �∈ E1, a contradiction. Then s�
j

is a valid

representing subtree for vj , we could use it instead of sj . We therefore assume that for every pair of

vertices vi, vj such that (vi → vj) ∈ E1, si ⊂ sj .

71

Let vi, vj be two vertices adjacent in G = (V,E). Their corresponding subtrees are not disjoint

in S, S. Without loss of generality either si ⊂ sj or si � sj . Assume that si ⊂ sj . We show how to

produce subtrees S � of tree S� such that s�
i
� s�

j
, and all other pairs of subtrees are similarly related.

Let p be a vertex of S that is contained in both si and sj . Let tree S� be the tree S with two new

leaves q, r adjacent to p.

Let s�
i

be si ∪ q and s�
j

be sj ∪ r. For every other subtree sk ∈ S , we define s�
k

as:

• If sk does not contain p, then s�
k
= sk

• If sk contains p, then s�
k
= sk ∪ q (if si ⊂ sk) ∪r (if sj ⊂ sk)

Let S � be all such subtrees.

Then s�
i
� s�

j
, and for every other pair sk, sl ∈ S , sk, sl ∼ s�

k
, s�

l
. Observe that S ⊂ S�

intersects all subtrees in S �. Then by iterated application, we can get a minimally-S-covered overlap

representation of G.

The caterpillar overlap graphs are overlap graphs of subcaterpillars in a caterpillar. It follows

from Theorem 8:

Corollary 3. Caterpillar overlap graphs are exactly interval filament graphs and path-covered sub-

tree overlap graphs.

Because Pergel [4] showed that recognising the interval filament graphs is NP-complete, recog-

nising the caterpillar overlap graphs is also NP-complete.

72

Bibliography

[1] Eowyn C̆enek and Lorna Stewart. Maximum independent set and maximum clique algorithms

for overlap graphs. Discrete Appl. Math., 131(1):77–91, 2003.

[2] Jessica Enright and Lorna Stewart. Subtree filament graphs are subtree overlap graphs. Inf.

Process. Lett., 104(6):228–232, 2007.

[3] Fanica Gavril. Maximum weight independent sets and cliques in intersection graphs of fila-

ments. Inf. Process. Lett., 73(5-6):181–188, 2000.

[4] Martin Pergel. Recognition of polygon-circle graphs and graphs of interval filaments is NP-

complete. In Andreas Brandstädt, Dieter Kratsch, and Haiko Müller, editors, WG, volume 4769

of Lecture Notes in Computer Science, pages 238–247. Springer, 2007.

73

Chapter 4

List colouring permutation and
interval graphs with a fixed colour
bound1

4.1 Introduction

In the vertex colouring problem, we try to assign each vertex in a graph a colour such that no two

adjacent vertices are assigned the same colour using the minimum number of colours.

In the vertex list colouring problem, each vertex has a list of colours, and we try to assign

each vertex a colour from its list such that no two adjacent vertices are assigned the same colour.

Determining if this is possible is a decision problem and is NP-complete, as it is a generalization of

vertex colouring [5]. List colouring remains hard even on interval graphs [1], as well as split graphs,

cographs, and bipartite graphs [4]. It is solvable in polynomial time on trees [4].

List colouring with fixed colour bound of natural number k ≥ 3 is a generalization of k-vertex

colouring, and so is NP-complete. It remains NP-complete on planar bipartite graphs [6], but is

solvable in polynomial time on graphs of fixed treewidth [3]. We give a polynomial-time algorithm

for solving list colouring with fixed colour bound k on a class of graphs that does not have fixed

treewidth.

2-list colouring a graph is solvable in polynomial time. Let G = (V,E) be the graph we wish to

2-list colour and P be the list mapping for vertices in V . Let C1, C2 be the two colours that occur

in lists in P . We need only check to see if there is a bipartition of the graph in which all vertices

with only C1 in their lists are on one side of the bipartition and all vertices with only C2 in their lists

are on the other. Graph G with list mapping P is 2-list colourable if and only if there exists such a

bipartition.

Permutation graphs are exactly comparability cocomparability graphs - the graphs that admit

transitive orientations of both their edges and their nonedges. In this paper we give a polynomial

algorithm for list colouring with a fixed colour bound of k ≥ 3 on permutation graphs.
1This is joint work with Lorna Stewart and Gabor Tardos.

74

Our algorithm uses the layers of a breadth-first search rooted at a particular vertex in what we

call a multi-chain ordering. This ordering is closely related to the ordering used by Heggernes et

al. [2] to compute the bandwidth of bipartite permutation graphs in polynomial time. Our ordering,

which applies to the larger class of permutation graphs, is expressed in terms of the layers of a

breadth first search. This sort of ordering gives insight into the structure of permutation graphs, and

may lead to algorithms for other problems on permutation graphs.

4.2 Definitions and Preliminaries

A graph G = (V,E) is a pair of vertex set V and edge set E composed of subsets of V of size two.

All graphs that we consider are connected, finite, simple, and loopless. A directed graph G = (V,E)

is a pair of vertex set V and edge set E composed of ordered pairs of V .

A transitive orientation of the edges of a graph is an orientation such that the presence of edges

(u → v) and (v → w) implies edge (u → w). A comparability graph is a graph that admits

a transitive orientation of its edges. A cocomparability graph is a graph that admits a transitive

orientation of its nonedges.

Let G = (V,E) be a graph. A list mapping of G is a mapping that assigns a list of colours

to each vertex in G. A colouring of G obeys a list mapping P of G if every vertex is assigned a

colour that is in that vertex’s list in P . A proper colouring of a graph is a colouring in which no two

adjacent vertices are assigned the same colour. A k-list colouring is a proper colouring that obeys a

list mapping in which at most k distinct colours occur in the lists assigned to vertices, and at most k

colours are therefore used in the colouring.

We might sometimes say that a list mapping precolours a vertex. By this we mean that the list

mapping assigns a list with only a single colour to that vertex.

Let G = (V,E) be a graph and L = [L0...Lz] be the layers of a breadth-first traversal of G with

vertex v0 as the starting point. We call L a multi-chain ordering of G if for every two vertices u, v in

layer Li, 0 ≤ i ≤ z the neighbourhood of u in Li−1 (if i− 1 ≥ 0) is a subset of the neighbourhood

of v in Li−1 (or vice versa) and the neighbourhood of u in Li+1 (if i + 1 ≤ z) is a subset of the

neighbourhood of v in Li+1 (or vice versa).

Lemma 24. Let
−→
G = (V,

−→
E) be a transitive orientation of a comparability graph G = (V,E)

in which v0 is a source or a sink, and [L0...Lz] be the layers of a breadth first search traversal of

G starting at v0. For every two consecutive layers Li, Li+1 for 0 ≤ i < z, either all edges in
−→
E

between vertices of Li and Li+1 are directed toward Li or all edges in
−→
E between vertices of Li

and Li+1 in are directed toward Li+1.

Proof. This follows from the fact that v0 is a source or sink in
−→
G , and the observation that there are

no edges between nonconsecutive layers of a breadth first search.

75

Lemma 25. Let
−→
G = (V,

−→
E) be a transitive orientation of the complement of a comparability

graph G = (V,E) in which v0 is a sink and L = [L0...Lz] are the layers of a breadth-first search

traversal of G starting at v0. Then for every pair of layers Li, Lj where 0 ≤ i < j ≤ z all nonedges

between Li and Lj are directed toward Li.

Proof. We proceed by induction. First, consider the level L0. Because the only vertex on L0 is a

sink in G, all nonedges of G between another level and the vertex on level L0 are directed toward

L0.

Assume that for every layer Lh such that h ≤ i, all nonedges between Lh and a layer of index

greater than h are directed toward Lh. Then consider Li+1.

Now we continue by contradiction. Assume that there is a nonedge between vertex vi+1 in Li+1

and vertex vj in some layer Lj where j > i + 1 that is directed toward Lj . Let vi be a neighbour

of vi+1 in layer Li. Because the layers are produced by a breadth first traversal, there is a nonedge

between vj and vi, and by the inductive assumption, it is directed toward vi. Then we have in

G a nonedge directed from vi+1 to vj and from vj to vi, but no nonedge between vi and vi+1, a

contradiction.

Lemma 26. Let G = (V,E) be a permutation graph and let
−→
G be a transitive orientation of G in

which v0 is a source or a sink, and
−→
G a transitive orientation of the complement of G in which v0 is

a sink. Let L = [L0...Lz] be the layers of a breadth-first search traversal of G rooted at v0. Then L

is a multi-chain ordering.

Proof. Let u, v be two vertices on Li. We consider two cases: if u, v are adjacent, and if they are

not adjacent.

We proceed by contradiction. Assume that u, v are adjacent and that there are vertices x, y in

Li+1 such that x is adjacent to u but not v and y is adjacent to v but not u. By Lemma 24, the edges

between u and x and between v and y are either both directed toward Li, or both directed toward

Li+1. In either case there is no transitive orientation of the edge between u and v, a contradiction.

Similarly, if x, y are in Li−1 by Lemma 24, the edges are either both directed toward Li, or both

directed toward Li+1. In either case there is no transitive orientation of the edge between u and v, a

contradiction.

Now assume that u, v are not adjacent and that there are vertices x, y in Li+1 such that x is

adjacent to u but not v and y is adjacent to v but not u. By Lemma 25, these nonedges are directed

as (x → v) and (y → u). Then there is no transitive orientation of the nonedge between u and v,

a contradiction. Similarly, if x, y are in Li−1 then by Lemma 25, these nonedges are directed as

(v → x) and (u → y). Then there is no transitive orientation of the nonedge between u and v, a

contradiction.

76

We have shown that whether or not two vertices u, v on layer Li are adjacent, the neighbourhood

of one in Li−1 is a subset of the neighbourhood of the other in Li−1, and the neighbourhood of one

in Li+1 is a subset of the neighbourhood of the other in Li+1.

Theorem 9. Every permutation graph has a multi-chain ordering.

Proof. This follows from the comparability cocomparability orderings of permutation graphs (as

described in [8]) and the previous three lemmas.

But also observe that:

Observation 5. Not every graph with a multi-chain ordering is a permutation graph.

By similar reasoning to that for permutation graphs, we can also show that interval graphs have

multi-chain orderings.

What does this neighbourhood containment mean for our list colouring? In each layer there is

a vertex with a maximal neighbourhood in the previous layer, and a vertex with a maximal neigh-

bourhood in the following layer. Because each vertex in a layer has at least one neighbour in the

previous layer, this means that there is a vertex in each layer adjacent to all vertices in the next layer.

Therefore:

Observation 6. No single layer in a multi-chain ordering can have vertices of more than k − 1

colours in it in a valid k-list-colouring.

We can generate the layers of a breadth-first search in O(n + m) time. We can then sort the

vertices on each layer by neighbourhood above, and in a separate ordering by neighbourhood below

using bucket sort in O(n) time. Once these are sorted, we can check for the neighbourhood nesting

required for a multi-chain ordering in O(n + m) time. We can therefore generate a breadth-first

search and check to see if it gives us a multi-chain ordering in O(n+m) time.

As naive algorithm to check if a graph has a multi-chain ordering, and generate it if it does,

we can start a breadth-first search from each vertex, and check to see if that search has given us

a multi-chain ordering in O(n(n + m)) time overall. In some classes, for example permutation

graphs, this can be done more quickly. In the case of permutation graphs, we can use the output of

the recognition algorithm provided by McConnell and Spinrad [7] to identify a vertex that is both a

source or a sink in some transitive orientation of the graph and a sink in a transitive orientation of

the complement of the graph. We can then generate a multi-chain ordering in O(n + m) time by

virtue of Lemma 26.

4.3 Layer Configurations

We use the layers of a multi-chain ordering to devise a polynomial-time algorithm for fixed colour

bound list colouring for graph classes in which all induced subgraphs have multi-chain orderings.

77

A configuration Bi for a layer Li in a multi-chain ordering is an ordered k-tuple [B1
i
...Bk

i
] such

that every entry is a natural number between 0 and |Li|. When we use these configurations, entry

Bj

i
will indicate the number of vertices on layer Li+1 that are adjacent to a vertex of colour Cj on

layer Li, or equivalently the maximum size of the neighbourhood on Li+1 of a vertex of colour Cj

on Li.

We say a colouring C1...Ck of a graph with multi-chain ordering [L0...Lz] admits a configuration

Bi of layer Li if for 1 ≤ j ≤ k there are exactly Bj

i
vertices in Li+1 adjacent to vertex in layer Li

of colour Cj .

Let Bi be a configuration for layer Li of a multi-chain ordering of graph G = (V,E) with list

mapping P . Bi is good if there is a list colouring of the vertices in [L0...Li] that obeys P and admits

Bi.

Let Bi be a configuration for layer Li and Bi+1 be a configuration for layer Li+1 of a multi-

chain ordering of graph G = (V,E) with list mapping P . Bi+1 is consistent with Bi if, if there is a

list colouring of the vertices in L0...Li that obeys P and admits Bi, then there is a list colouring of

the vertices in L0...Li+1 that obeys P and admits Bi and Bi+1.

Let L0...Lz be a multi-chain ordering of graph G = (V,E). Let C1...Ck be a proper colouring

of the vertices in L0...Li that obeys colour list mapping P and admits configuration Bi for Li.

Consider the vertices on Li, and what their colours might be in a colouring admitting Bi.

Observation 7. At least one vertex with a neighbourhood in Li+1 of size equal to entry Bj

i
must be

coloured with Cj in any proper colouring of vertices in L0...Li that admits Bi and obeys P .

Proof. This follows from the neighbourhood nesting in a multi-chain ordering.

Observation 8. Any vertex with a neighbourhood in Li+1 of size larger than Bj

i
must not be

coloured with Cj in any proper colouring of vertices in L0...Li that admits Bi and obeys P

Proof. Let v ∈ Li be a vertex in Li with d neighbours in Li+1. If v were coloured with Cj , then

there would be d vertices in Li+1 adjacent to a vertex of colour Cj in Bi, a contradiction.

Lemma 27. Let [L0...Lz] be a multi-chain ordering of graph G = (V,E). Let C1...Ck be a proper

colouring of the vertices in L0...Li+1 that obeys colour list mapping P and admits configuration Bi

for Li and Bi+1 for Li+1. Any vertex v that occurs hth in a nonincreasing sort of the vertices of

Li+1 by size of neighbourhood in Li must not be coloured Cj where Bj

i
> h.

Proof. Because the neighbourhoods in Li of vertices in Li+1 are nested, if there is a vertex on layer

Li of colour Cj adjacent to at least h vertices on Li+1, it must be adjacent to v. In any proper

colouring admitting Bi there is a vertex of colour Cj on Li adjacent to Bj

i
> h vertices on Li+1,

and therefore adjacent to v.

78

Assume that we had a list of all good configurations for a layer Li of a multi-chain ordering of

graph G = (V,E) with list mapping P . How could we produce all good configurations for layer

Li+1? We will produce and check all configurations consistent with each known good configuration

for Li.

Let Bi be a good configuration for Li. Let Bi+1 be a configuration for Li+1. We will check

whether Bi+1 is a good configuration consistent with Bi.

For each entry Bj

i+1 in Bi+1, consider the set of vertices in Li+1 that have Bj

i+1 neighbours

in Li+2. By Observations 8 and 7 at least one of these must be coloured Cj , and no vertex with a

neighbourhood larger than Bj

i+1 in Li+2 can be coloured Cj .

Let V 1
i+1...V

k
i+1 be sets of vertices such that for 1 ≤ j ≤ k the vertex set V j

i+1 contains all

vertices on Li+1 that have Bj

i+1 neighbours on Li+2. Let x be the number of combinations of

vertices such that one is chosen from each V j

i+1, and let vertex sets W1...Wx be these combinations.

The natural number x is O(nk). For each Wl where 1 ≤ l ≤ x, we create a list mapping P �
l

that

assigns lists only to the vertices in Li+1 such that every vertex not in Wl has the same list as it does

in P , but for each vertex v ∈ Wl, P �
l

assigns v colour Cj where v ∈ V j

i+1.

We now modify these colour mappings further. For every vertex v in Li+1, let it be in position h

in a sorting of the vertices of Li+1 by nonincreasing neighbourhood in Li. For vertex v, we remove

from v�s list in P �
l
, 1 ≤ l ≤ x every colour j such that h > Bj

i
.

These modified lists in P �
1...P

�
x contain at most k − 1 colours in the lists for vertices on Li+1.

We know this because there is at least one entry Bj

i
∈ Bi that is equal to |Li+1|. Then Cj does not

occur in any list in any of P �
1...P

�
x.

There is a valid k − 1 list colouring of the vertices on Li+1 that obeys at least one of the list

mappings in P �
1...P

�
x, if and only if Bi+1 is a good configuration for Li+1 and is consistent with Bi.

We prove this in the next two lemmas.

Lemma 28. If there is a valid k − 1 list colouring of the vertices on Li+1 that obeys at least one

one of the list mappings in P �
1...P

�
x, then Bi+1 is a good configuration for Li+1 and is consistent

with Bi.

Proof. Assume that Bi is a good configuration for Li, and there is a k − 1 colouring of the vertices

on Li+1 that obeys list mapping P �
l
. Without loss of generality, assume that it is the kth colour that

is not used in the k − 1 colouring of Li+1 - that is, that Bk
i
= |Li+1|. Let D1...Dk−1 be the colour

classes of the k − 1 colouring of vertices on Li+1.

There is a colouring of the vertices in L0...Li that obeys P and admits Bi. Let C1...Ck be the

colour classes of this colouring.

We will extend C1...Ck to give a proper colouring of L0...Lk+1 that obeys P and admits Bi+1.

For 1 ≤ h < k, let C �
h
= Ch ∪Dh, and let C �

k
= Ck.

We claim that C �
1...C

�
k

is a proper colouring of the vertices in L0...Li+1 that obeys P and admits

both Bi and Bi+1.

79

We proceed by contradiction. Assume that C �
1...C

�
k

is not a proper colouring. Then there must

be two adjacent vertices in the same colour class. Because C1...Ck and D1...Dk−1 are proper

colourings, one of these vertices must be in Li and one in Li+1. Let u ∈ Li and v ∈ Li+1 be these

adjacent vertices, and C �
h

their shared colour class.

Let q be the position of v in a sort of the vertices in Li+1 by nonincreasing neighbourhood in

Li. Because C1...Ck admits Bi, we know that Bh
i
< q. If Bh

i
were at least q, than C �

h
= Ch would

have been removed from the list of colours possible for v when creating P �
l
.

However, the neighbourhood of u in Li+1 contains at least q vertices, and therefore we know

that in every colouring of L0...Li that admits Bi, u is not coloured Ch, a contradiction.

Lemma 29. If Bi+1 is a good configuration for Li+1 and is consistent with Bi, then there is is

a valid k − 1 list colouring of the vertices on Li+1 that obeys at least one of the list mappings in

P �
1...P

�
x.

Proof. This is a consequence of trying all configurations for Li+1, and all of the list mappings

generated.

Let Bi+1 be a good configuration that is consistent with Bi and assume that there is no k− 1 list

colouring of the vertices in Li+1 with any colour mapping in P �
1...P

�
x.

There must be a colouring C1...Ck of the vertices in L0...Li+1 that obeys P and admits Bi+1

and Bi because Bi+1 is good and consistent with Bi.

Let Wl ∈ W1...Wx be any vertex set such that every vertex v in that Wl is assigned Cj by

C1...Ck where v ∈ V j

i+1. Existence of Wl is guaranteed by Observation 8. Then for every vertex

v ∈ Wl, P �
l
(v) consists of only the colour assigned to v by C1...Ck.

C1...Ck gives a k − 1 colouring of the vertices on Li+1. It must be that at least one vertex on

Li+1 is assigned a colour by C1...Ck that is not in its list in P �
l
. Let v be this vertex and Cy the

colour.

Why is Cy in P(v) but not in P �
l
(v)? It must have been removed because: h < By

i
where h is

the position of v in a nonincreasing sort of the vertices of Li+1 by size of neighbourhood in Li (a

contradiction to Observation 7), or the size d of v’s neighbourhood in Li+2 is larger than By

i+1 (a

contradiction to Lemma 27) or v ∈ Wl and d is equal to some entry in Bi+1 other than Bj

i+1. In

this last case we have a contradiction to the fact that every vertex v ∈ Wl, P �
l
(v) consists of only the

colour assigned to v by C1...Ck.

We then have a polynomial time method, given all good configurations for a layer Li of a multi-

chain ordering of graph G = (V,E) with list mapping P , to generate all good configurations for

layer Li+1, provided there is a fixed bound k on the number of colours, and every induced subgraph

of G has a multi-chain ordering. Applied recursively, this gives us an algorithm for determining

whether such a graph, with its list mapping, is k-list colourable, as given in Algorithm 1.

80

Algorithm 1 listColouring(Graph G = (V,E), list mapping P , natural number k)
if k = 2 then

check for a bipartition of G such that all vertices with only one colour in their lists are on one
side of the bipartition and all vertices with only the other are on the other side.
if there is such a bipartition then

return true
else

return false
end if

end if
Find a multi-chain ordering L0...Lz

Make z + 1 empty lists: Configurations0...Configurationsz
Let v be the single vertex in L0

for each colour Ci in P(v) do
add a configuration to Configurations0 that contains a 0 in every entry except the ith one,
which is |L1|

end for
for layers Li where 0 ≤ i < z do

for each possible configuration Bi+1 for Li+1 do
for each configuration Bi in Configurationsi do

let V 1
i+1...V

k
i+1 be the sets of vertices such that V h

i+1 contains all vertices on Li+1 that have
Bh

i+1 neighbours in Li+2

Let W1...Wx be all possible combinations of vertices with one chosen from each of
V 1
j
...V k

j

for Wl ∈ W1...Wx do
make list mapping P �

l
for vertices in Li+1 such that all entries in P �

l
are the same as in

P except for the vertices in Wl

for vertex v ∈ Wl where v is in V j

i+1 do
set v’s list in P �

l
to the single colour Cj

end for
end for
for each list mapping P �

l
in P �

0...P
�
x do

for each vertex v in Li+1 do
Let h be the position of v in a sort of vertices on Li+1 by nonincreasing neighbour-
hood in Li

remove from v’s list in P �
l

all colours Cj such that h > Bj

i

end for
end for
for list mapping P �

l
in P �

0...P
�
x do

boolean hasAColouring ← listColouring(G[Li+1], P �
l
, k − 1)

if hasAColouring then
add Bi+1 to the list Configurationsi+1

exit the for loop
end if

end for
end for

end for
if Configurationsi+1 is empty then

return false
end if

end for
return true

81

Roughly, the recursive algorithm works as follows: first, if the input is a 2-list colouring instance,

we solve it. We return true if there is a valid colouring, false if not. Otherwise, we produce a multi-

chain ordering. We produce configurations for the first layer, as it consists of only a single vertex. For

each layer, we then produce all good configurations given the good configurations for the previous

layer, as outlined in the text. This is where the recursive call is made.

The recursion tree of this algorithm is of depth at most k. Overall, there will be O(nk) recursive

calls. How much work is done in each call? We generate a multi-chain ordering in O(n(n + m))

time. Then for each layer we generate all possible configurations - there are O(nk) of these for

each layer, and it takes constant time to generate each. For each possible configuration, we generate

O(nk) list mappings. Therefore the overall complexity of the algorithm is O(n3k)

4.4 Conclusion

We have given a polynomial-time algorithm for determining whether a graph G = (V,E) with

list mapping P has a colouring that admits P , if every induced subgraph of G has a multi-chain

ordering and there is a fixed colour bound of k. Every induced subgraph of a permutation graph has

a multi-chain ordering, so this algorithm will work for permutation graphs. Similarly, every induced

subgraph of a interval graph has a multi-chain ordering, so this algorithm will also work for interval

graphs.

The multi-chain ordering may be useful finding future polynomial-time algorithms for these

classes.

82

Bibliography

[1] Milos Biro, Mihaly Hujter, and Zsolt Tuza. Precoloring extension. i. interval graphs. Discrete

Mathematics, 100(1):267–279, 1992.

[2] Pinar Heggernes, Dieter Kratsch, and Daniel Meister. Bandwidth of bipartite permutation graphs

in polynomial time. In Proceedings of the 8th Latin American conference on Theoretical infor-

matics, LATIN’08, pages 216–227, Berlin, Heidelberg, 2008. Springer-Verlag.

[3] Mihaly Hujter and Zsolt Tuza. Precoloring extension 3: Classes of perfect graphs. Combina-

torics, Probability & Computing, pages 35–56, 1996.

[4] Klaus Jansen and Petra Scheffler. Generalized coloring for tree-like graphs. Discrete Applied

Mathematics, 75(2):135 – 155, 1997.

[5] T. R. Jensen and B. Toft. Graph Coloring Problems. John Wiley & Sons, New York, NY, USA,

1994.

[6] Jan Kratochvil. Precoloring extension with fixed color bound. Acta Math. Univ. Comen.,

62:139–153, 1994.

[7] Ross M. McConnell and Jeremy P. Spinrad. Modular decomposition and transitive orientation.

Discrete Mathematics, 201(1-3):189 – 241, 1999.

[8] Amir Pnueli, Abraham Lempel, and Shimon Even. Transitive orientation of graphs and identi-

fication of permutation graphs. Canadian Journal of Mathematics, 23:160–175, 1971.

83

Chapter 5

Set representation games1

5.1 Introduction

Combinatorial games played on graphs provide an area of active and exciting research. Node-

Kayles, which we will refer to as Kayles, is an extensively-studied game played on a graph [3, 6, 10]

and is a generalization of a game in which players knock over pins in a row. In a game of Kayles,

players alternate turns, choosing vertices of the graph. A player may not choose a vertex already

chosen, or a vertex adjacent to a vertex that has already been chosen. The last player to make a legal

move wins (the normal play condition).

While solving an arbitrary Kayles position is PSPACE-complete [10], positions on trees with

only one vertex of degree greater than two [6], graphs with bounded asteroidal number [3], and

cocomparability, permutation, interval, and circular arc graphs [2] can be solved in polynomial time.

The complexity of resolving Kayles positions on trees remains open.

In this paper, we describe games using set representations of graphs. These games generalise

Kayles.

Sets have relationships with each other. Sets may intersect, overlap, contain each other, or they

may be disjoint. One way to capture these interactions is with a graph. We can create one vertex

for each set, and make two vertices adjacent if their corresponding sets have a relationship that we

specify. We call the sets a set representation of this graph.

Many graph classes have characterizations based on particular types of set representations, in-

cluding permutation graphs [11], interval graphs [9], chordal graphs [7], and filament graphs [8].

A combinatorial game is a two player game with no chance or hidden information.

In this work, we deal with impartial combinatorial games - games in which from a given position

the same moves are available to either player.

We will use the terms game and position through this work. It is common in the literature to use

the term game both to mean a set of rules and the underlying structure used to play, as in the case of

chess or hex being a game, as well as to mean a particular position of a game. We will use it only
1This is joint work with Lorna Stewart, submitted to the Integers Journal on August 31, 2011

84

in the first sense. We will not explicitly use the formal definition of a game as a recursive set of all

games reachable from that game in one move.

A game position S� is reachable from game position S if there is a legal sequence of moves from

S that results in S�.

A winning move is a move that, with perfect play, will lead to a win for the player making that

move. A losing move is a move that, with perfect play, will lead to a loss for the player making the

move. A winning position or N -position, is a game position from which there is a winning move.

A losing position or P-position is a game position from which there is no winning move.

A end position is a game position from which there are no legal moves. The outcome class of a

game position is who will win with perfect play. An instance of a game is a position of that game,

along with the question: ”Is there a winning move for the next player from this position”.

There are a couple of special games that we will use. The game 0 = {|} is the game in which

there are no legal moves for either player, and so is a P-position and an end position. The game

∗ = {0|0} is the game in which the next player can move the game to a 0 game, and so is a N

position.

Nim is a classic combinatorial game in which players take turns removing any number of stones

from any one of a number of piles of stones. The last player to make a legal move (that is, take a

stone) wins. Nim has been very important to the analysis of impartial combinatorial games.

We will use the notions of game addition and nim-sum as described by Sprague-Grundy theory

and Bouton [4], in particular the following two theorems:

Theorem 10. A nim position is a win for the previous player (and a loss for the next player) if and

only if the nim-sum of its components (the number of stones in each of the piles) is zero.

Two games F and G are equivalent if for every other game H , the outcome class of F +H is

the same as the outcome class of G+H .

Theorem 11. Every impartial combinatorial game position is equivalent to a nim position.

The number of stones in the single-pile nim position that is equivalent to a position G is called

the nimber or nim-value of G. So, for example, the 0 position has a nimber of 0, and the position ∗

has nimber 1.

The minimum excluded value of a set of nimbers is the smallest nimber not in that set. Sprague-

Grundy theory tells us that the nimber of a position is the minimum excluded value of the nimbers

of its successor positions. For example, consider a game G in which the only move takes us to ∗.

The nimber of ∗ is 1, and the minimum excluded value of the set {1} is 0. Therefore the nimber of

the G is 0.

For each position of a game, the nimber can be calculated in time linear in the number of suc-

cessor positions. Then, given a game tree completely enumerating all positions of a game, we can

85

calculate the nimber of the initial position. Sometimes the nim-sum of k positions of ∗ is abbreviated

as k∗.

In this paper we describe several combinatorial games on graphs, all of which generalise Kayles.

We define the set representation game, in which players pick sets from a provided pool to build

a set representation of a given graph. At each step, the set chosen must be consistent with the set

representation already partially built. The last player to make a legal move wins.

While showing that resolving positions of these games is, in general, PSPACE-hard, we give

algorithms for resolving the outcomes of positions of cases of these games in polynomial time.

5.2 Definitions and Notation

A graph G is a pair (V,E) such that V is a set and is called the vertex set of G, and E is a set of

subsets of size two of V and is called the edge set of G.

Let S be a set of sets. We say that a set family S is a subfamily of S if every element of S is

an element of S. Note that this is not quite the same as a subset because S may contain the same

element more than once.

Let G = (V,E) be a graph. A set representation of G is a tuple (S,S, f,Φ) where:

• S is a set of sets

• S is a subfamily of S

• f is a bijection from V to S

• Φ is a set relationship

• for every pair of vertices vi, vj ∈ V , vi is adjacent to vj if and only if f(vi)Φf(vj)

For convenience, when we are only talking about a particular type of set relationship, we may

drop the full notation and not explicitly refer to f . For example, we may call a subfamily of S and

S itself an intersection representation of a graph without referring to (S,S, f,∩). We call S the host

of the representation.

Let G = (V,E) be a graph. A graph representation of G is a tuple (H,H, f,Φ) where:

• H is a graph

• H is a family of subgraphs of H

• f is a bijection from V to H

• Φ is a graph relationship (for example, subtree intersection)

• for every pair of vertices vi, vj ∈ V , vi is adjacent to vj if and only if f(vi)Φf(vj)

For convenience, when we are only talking about a particular type of graph relationship, we may

drop the full notation and not explicitly refer to f . That is, we may call a family of subgraphs of H

and H itself an intersection representation of a graph without referfing to (H,H, f,∩). We call H

the host of the representation.

86

5.3 Set representation games - Selecting from a given set of ob-
jects

Let S be a set of sets, Φ a set relationship that is a symmetric binary relation on S, and G = (V,E)

a graph.

We define a game based on these. Informally: on his turn a player selects a vertex v of G and

a set s in S and assigns that set to v such that for every already-selected vertex u assigned set su,

sΦsu if and only if v and u are adjacent in G. The last player with a legal move wins.

A position of this set representation game comprises a set representation (S,S, f,Φ) of a sub-

graph of G. An instance of the game is a position of the game along with the question: is this an

N -position?

More precisely, a game position of the S-set representation game using graph G = (V,E) with

set relationship Φ is a tuple (Q, V �, f) where:

• Q is a subfamily of S

• V � is a subset of V

• and f is a bijection from V � to Q such that (S,Q, f,Φ) is a set representation of G[V �]

A legal move of the S-set representation game using G = (V,E) with set relationship Φ is the

production of a position S2 = (Q2, V �
2 , f2) from position S1 = (Q1, V �

1 , f1) such that there is a

single vertex v in V �
2\V

�
1 , a single set s in Q2\Q1, f2(v) = s, and:

• V �
2 = V �

1 ∪ {v}

• Q2 = Q1 ∪ {s}

• f2 = f1 ∪ {(v, s)}

When we restrict the set S and the set relationship Φ, we may redefine the game positions slightly

for compactness. Also, we will often omit Φ in the name of set representation games. Unless stated

otherwise, assume that we are playing the games with intersection.

Separability

Let S be a set and Q a subset of S, Φ a set relationship, and d a function from the elements of Q to

{true, false}. A set s ∈ S is consistent with Q, d if s is related by Φ to exactly the sets in Q for

which d yields true.

Let S be a set, Φ a set relationship. We say that S, Φ are separable if for every natural number

k we can identify in time polynomial in k: k disjoint subsets S1...Sk of S and a function di : Si→

{true, false} for each i such that for each set Si where 1 ≤ i ≤ k there is at least one set in S that

is consistent with Si, di and for every i, j where 1 ≤ i < j ≤ k no set in S consistent with Si, di is

Φ with any set in S that is consistent with Sj , dj . S1...Sk are said to be separating for S and Φ.

87

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 6(
k-

1)
 +

 1

6(
k-

1)
 +

 6

S
1

S
2

S
3

S
k

...

Figure 5.1: An example of k separating sets for intervals on the real number line and intersection.
The solid black intervals are the members of the separating sets, the dotted intervals are examples of
sets that are consistent with the functions specified in the text and the separating sets.

We now present an example of a separable family of sets and set relationship. Let the family of

sets S be intervals on a real number line, and the set relationship Φ be intersection.

We show how to produce, in time polynomial in k, k separating sets with functions as required,

for any natural number k. Let the set Si for 1 ≤ i ≤ k be the set of three intervals t1
i
, t2

i
, t3

i
defined

by:

• t1
i

spans 6(i− 1) + 1 to 6(i− 1) + 2

• t2
i

spans 6(i− 1) + 3 to 6(i− 1) + 4

• t3
i

spans 6(i− 1) + 5 to 6(i− 1) + 6

Let the function di : Si → {true, false} yield :

• di(t1i) = false

• di(t2i) = true

• di(t3i) = false

We claim that: for each i where 1 ≤ i ≤ k there is at least one set in S that is consistent with Si, di,

and for every two i, j where 1 ≤ i < j ≤ k no set in S consistent with Si, di that intersects any set

in S that is consistent with Sj , dj .

For each set Si where 1 ≤ i ≤ k, the interval in S that contains only 6(i − 1) + 3 is consistent

with Si, di, as it intersects only the set t2
i
, and no other set in (∪Sj for 1 ≤ j ≤ k). For an example

of this set construction, see Figure 5.1.

Let si be an interval that is consistent with Si, di, and sj an interval that is consistent with Sj , dj .

We claim that si|sj . We proceed by contradiction. Without loss of generality assume that i < j.

Then, because si|t3i and si intersects t2
i
, the highest point in si strictly lower than 6(i− 1) + 5.

Because sj |t1j and sj intersects t2
j
, the lowest point in sj is at least 6(j−1)+2. Since 6(i−1)+5 <

6(j − 1) + 2, we have that si does not intersect sj .

Therefore:

Lemma 30. The family of intervals on the real line and the set relationship intersection are separa-

ble.

88

Note that the construction of intervals above could easily be slightly modified so as to only use

proper intervals. Then we also have that:

Lemma 31. The family of proper intervals on the real line and the set relationship intersection are

separable.

5.3.1 PSPACE Hardness of the Set Representation Game

We provide a reduction from an arbitrary instance of Kayles to an instance of the set representation

game on a S,Φ pair that are separable.

Let G = (V,E) be a graph used in an instance of Kayles, and U ⊂ V the set of vertices already

selected.

For any separable family of sets S and set relationship Φ, we describe the production of a graph

G� = (V �, E�) that, along with an assignment f of some sets in S to some vertices in V � produces

an instance of the set representation game that is next-player win if and only if G,U is a next-player

win instance of Kayles.

First, because S,Φ are separable, we know that we can produce an arbitrary number of separating

subsets of S. Let S1....Sn be n = |V | separating subsets, with the functions di as specified in the

definition of separable associated with each. We associate one of these subsets with each vertex

v1, ..., vn in V , with subset Si associated with vertex vi. We now construct the graph G� and a set

representation for part of it.

Let V � be the union of V and new vertices created for each vertex v ∈ V .

Let Si = {t1
i
...tp

i
} be the subset associated with vertex vi, and p = |Si| the size of Si. Then we

create p new vertices v1
i
...vp

i
in V �. Let f(vj

i
) be tj

i
.

If vi ∈ U , then let f(vi) be any set consistent with Si, di, the existence of which is guaranteed

by the definition of separating. If vi is not in U , we add no entry for f(vi).

Let edge set Fi contain exactly the edges between vi and each one of the new p vertices for

which di yields true.

Let s be any set in S that is consistent with di, Si. Let edge set Di contain exactly edges between

vi and each vertex vh corresponding to a set sh in ∪Sj where 1 ≤ j ≤ k, j �= i and shΦs.

Let edge set C contain an edge between every pair of vertices vi, vj ∈ V � that are assigned sets

by f such that f(vi)Φf(vj). Let edge set E� be the union of C, E, and the edge sets Di, Fi created

for each vertex vi ∈ V .

Then G� = (V �, E�), S, Φ and f form an instance of the set representation game. Note that, by

the construction of the instance, any vertex of V � that is not assigned a set is an element of V .

Given this reduction, we have the following:

Lemma 32. A vertex v ∈ V ⊂ V � can be picked and assigned a set by the next player in the set

representation game using G� = (V �, E�), in position (S, V �\V, f) if and only if v can be picked by

the next player in the Kayles game G,U .

89

Proof. We proceed by contradiction. Assume that there is a legal set assignment si to vertex vi,

even though one of its neighbours vj has already been selected and assigned a set sj from S.

Then siΦsj . However, si is consistent with Si, di and sj is consistent with Sj , dj . This is a

contradiction because S1...Sn are separating.

Assume that no neighbours in V of vertex vi have been previously selected, but there is no set

in S that can be assigned to vi legally. This is a contradiction, because as part of the definition of

separating, we required that there exists a set in S\(∪Sj for 1 ≤ j ≤ k) that is consistent with

Si, di.

This holds not only in the set representation game position that we produce from a Kayles posi-

tion, but also at any subsequent set representation game position produced by legal play. �

Notice that this is exactly the same constraint that would apply in a game of Kayles on G =

(V,E). That is, a vertex can be selected if and only if none of its neighbours have been previously

selected.

It remains to show that there is a next-player win strategy for the constructed set representation

instance if and only if there is a next-player win strategy for the source Kayles instance.

Let S0 = (S0,W0, f0) be an end position of a game tree of the set representation game using G�

started at (S,W, f). Then by Lemma 32 the Kayles position G,W0 is also an end position of that

game.

Assume the outcome class of every position Sk = (Sk,Wk, fk) of the game tree started at

(S,W, f), that is of distance at most k from every leaf of the game tree below it, is the same as the

outcome class of G,Wk as a position of Kayles. Then consider a position Sk+1 = (Sk+1,Wk+1, fk+1)

in the game tree started at (S,W, f) that is at most distance k + 1 from every leaf below it in the

tree.

We claim that Sk+1 is an N -position if and only if G,Wk+1 is an N -position in Kayles. If

Sk+1 is an N -position, then there is at least one child position of Sk+1 that is a P-position. By the

inductive assumption, there is then at least one child position of G,Wk+1 that is a P-position, and

so G,Wk+1 is an N -position. If Sk+1 is a P-position, then all child positions are N -positions. By

the inductive assumption, all child positions of G,Wk+1 are N -positions and therefore G,Wk+1 is

a P-position.

Therefore there is a next-player win strategy for the constructed set representation instance if

and only if there is a next-player win strategy for the source Kayles instance.

Then we have:

Theorem 12. Resolving arbitrary positions of the set representation game using separable sets is

PSPACE-hard.

We present a specific case of the above reduction: a reduction from Kayles to the set representa-

tion game on intervals on the real line and the set relationship intersection.

90

Let G = (V,E) be a graph, and U ⊂ V,G an instance of Kayles on G, with U being the set of

vertices already selected.

Let family of sets S be the intervals on the real line. We describe a graph G� = (V �, E�), a family

of sets S , and a bijection f from a subset of V to S that form an N -postion of the set representation

game that is next-player win if and only if G,U is an N -position of Kayles.

Let S1....Sn be n = |V | separating subsets of S. Let S1 be the union of all these Si, 1 ≤ i ≤ n.

Let Si = {t1
i
, t2

i
, t3

i
} be the subset associated with vertex vi. Then we create three new vertices

v1
i
, v2

i
, v3

i
in V �. Let f(vj

i
) be tj

i
. If vi ∈ U , then let f(vi) be the interval containing only the point

6(i−1)+3. As in Section 5.3, this interval is consistent with Si, di. Let S2 be all these intervals.Let

edge set Fi contain exactly edges between vi and each vertex vj
i

for which di(f(v
j

i
)) = true.

Let V � be the union of V and the three new vertices created for each vertex v ∈ V . Let edge set

E� be the union of E and each edge set Fi. Then let G� = (V �, E�) be our graph, S = S1 ∪ S2 our

family of sets. (S, (V �\V) ∪ U, f) is a position of the set representation game on intervals.

As in the proof of Theorem 12, our position of the set representation game on intervals is an

N -position if and only if our Kayles position is.

Given Lemma 31, we have as a corollary to Theorem 12:

Corollary 4. Resolving arbitrary positions of the set representation game on intervals on the real

line with the set relationship intersection is PSPACE-hard.

Permutation Graph Game

Permutation graphs are a well-studied intersection class. They are comparability cocomparability

graphs [9]. They are also intersection graphs of line segments between two parallel lines and con-

tainment graphs of intervals on a line.

Given the amount of study on permutation representations, we consider the set representation

game on a permutation representation.

Let the set S be all line segments between two infinite parallel lines I1, I2 indexed with the reals,

and the set relationship Φ be intersection. We claim that S,Φ are separable.

Given a natural number k, we can produce in time polynomial in k, S1...Sk disjoint subsets of

S and a function di : Si → {true, false} for each i, 1 ≤ i ≤ k, such that the required conditions

for separability hold.

Let the set Si for 1 ≤ i ≤ k be the set of three line segments t1
i
, t2

i
, t3

i
defined by:

• t1
i

connects 6i on I1 to 6i on I2

• t2
i

connects 6i+ 2 on I1 to 6i+ 2 on I2

• t3
i

connects 6i+ 4 on I1 to 6i+ 4 on I2

Let the function di : Si → {true, false} yield:

• fi(t1i) = false

91

I
1

I
2

0 2 4 6 8 10

6
k

6
k
+
2

6
k
+
4

6
k

6
k
+
2

6
k
+
4

S1
S
2

Sk

0 2 4 6 8 10
. . .

. . .

Figure 5.2: An example of k separating sets of line segments between two lines and the set relation-
ship intersection. The solid black line segments are the members of the separating sets, the dotted
line segments are examples of sets that are consistent with the functions specified in the text and the
separating sets.

• fi(t2i) = true

• fi(t3i) = false

For each set Si where 1 ≤ i ≤ k there is at least one set in S that is consistent with Si, di: the line

segment that connects 6i+ 1 on I1 to 6i+ 3 on I2.

For an example of this set construction, see Figure 5.2. Let si be a line segment that is consistent

with Si, di, and sj a line segment that is consistent with Sj , dj such that i < j.

Because si|t3i and si intersects t2
i
, the highest endpoint of si on either of I1, I2 is at most 6i+4.

Because sj |t1j and sj intersects t2
j
, the lowest endpoint si on either of I1, I2 is at least 6j. Since

6i+ 4 < 6j, si does not intersect sj .

Therefore:

Lemma 33. The family of line segments between two infinite lines and the set relationship intersec-

tion are separable.

Then as a corollary to Theorem 12:

Corollary 5. Resolving arbitrary positions of the set representation game on line segments between

two infinite lines with the set relationship intersection is PSPACE-hard.

Containment and Overlap Games

So far, we have played the set representation game only using intersection as the set relationship. In

this section we consider playing the game with the set relationships containment and overlapping.

Lemma 34. Set S and the set relationship containment are separating if there are in S an arbitrary

number of pairs of sets such that:

• one of each pair is contained in the other,

• each set in a pair is disjoint from all sets in other pairs

92

30 1 2 4 5 2(
k-

1)

2(
k-

1)
 +

1

S
1

S
2

S
3

S
k

...

Figure 5.3: An example of k separating sets of intervals on the real number line with the set rela-
tionship containment. The solid black intervals are the members of the separating sets, the dotted
intervals are examples of sets that are consistent with the functions specified in the text and the
separating sets.

• and for each pair Pi = (p1
i
, p2

i
) there is a set in S that is not in any pair and is contained in

only the maximal one of p1
i
, p2

i
.

Proof. Let P1...Pk be an arbitrary number of disjoint pairs. We denote the two elements of Pi, 1 ≤

i ≤ k as (p1
i
, p2

i
). For convenience, let p1

i
⊂ p2

i
. We will use P1...Pk as our disjoint subsets of S.

For pair Pi, let di(p1i) = false, di(p2i) = true.

For every pair Pi there is at least one set that is consistent with Pi, di. This follows from the

requirement that for each pair (p1
i
, p2

i
) there is a set s in S that is not in any pair and is contained in

only the maximal one of p1
i
, p2

i
.

We also claim that for every two pairs Pi, Pj , every set si consistent with Pi, di is disjoint from

every set sj consistent with Pj , dj .

Set si must either contain or be contained in p2
i
, but must not contain p1

i
, as it is consistent

with di. Then si must be contained in p2
i
, as p1

i
⊂ p2

i
. Following the same reasoning, sj must be

contained in p2
j
. Because p2

i
is disjoint from p2

j
, set si is disjoint from set sj . No set consistent with

Pi, di contains or is contained in any set consistent with Pj , dj .

We have shown that P1...Pk, and our collection of di are separating for S and the set relationship

overlapping. �

The set of intervals on the line and containment satisfy this lemma. We can produce the required

pairs of intervals as follows: Let the pair Pi be composed of p1
i

and p2
i

where p1
i

is the interval

spanning only 2(i − 1), and p2
i

is the interval spanning 2(i − 1) to 2(i − 1) + 1. Observe that

p1
i
⊂ p2

i
, and for every two Pi, Pj the sets in Pi are disjoint from the sets in Pj . Let P1...Pk be k of

these pairs. Let the function di(p1i) = false and di(p2i) = true.

For every Pi, every interval that is consistent with Pi, di is contained in p2
i
, and there is at least

one interval that is consistent with Pi, di - the interval spanning only 2(i− 1) + 1.

Because p2
i

is disjoint from every set in every pair Pj for j �= i, every set consistent with Pi, di

is disjoint from every (and therefore not contained in any) set consistent with Pj , dj for i �= j.

For an example of this construction, see Figure 5.3.

Then as a corollary to Theorem 12:

93

0 1 2 3 4 5 6 7 8 9 3(
k-

1)
 +

 1

3(
k-

1)
 +

 3

S
1 S

k

...

S
2

S
3

Figure 5.4: An example of k separating sets of intervals on the real number line under the set
relationship overlapping. The solid black intervals are the members of the separating sets, the dotted
intervals are examples of sets that are consistent with the functions specified in the text and the
separating sets.

Corollary 6. Resolving arbitrary positions of the set representation game on intervals on the real

line with the set relationship containment is PSPACE-hard.

Lemma 35. Set family S and the set relationship overlapping are separable if there are in S an

arbitrary number of disjoint pairs of sets such that:

• one of each pair is contained in the other,

• each set in a pair is disjoint from all sets in other pairs

• and for each pair Pi = (p1
i
, p2

i
) there is a set in S that overlaps the minimal one of p1

i
, p2

i
, and

is contained in the maximal one of p1
i
, p2

i
.

Proof. Let P1...Pk be the arbitrary number of disjoint pairs. We will denote the two elements of Pi

as (p1
i
, p2

i
). For convenience, let p1

i
⊂ p2

i
. We will use P1...Pk as our disjoint subsets of S.

For pair Pi, let di(p1i) = true, di(p2i) = false.

For every pair Pi there is at least one set that is consistent with Pi, di. This follows from the

requirement that for each pair (p1
i
, p2

i
) there is a set s in S that overlaps the minimal one of p1

i
, p2

i
,

and is contained in the maximal one of p1
i
, p2

i
, and the fact that sets in different pairs are disjoint.

We also claim that for every two pairs Pi, Pj , i �= j, every set si consistent with Pi, di is disjoint

from every set sj consistent with Pj , dj . Set si overlaps p1
i
, but not p2

i
, as si is consistent with di.

Because p1
i
⊂ p2

i
, then si ⊆ p2

i
. By the same reasoning, sj must be contained in p2

j
. Then, because

p2
i

is disjoint from p2
j
, set si is disjoint from set sj . No set consistent with Pi, di overlaps any set

consistent with Pi, di.

P1...Pk are separating, therefore S and the set relationship containment are separable. �

Figure 5.4 provides a graphical example of this overlapping lemma as applied to the intervals on

the real line.

As shown in Figure 5.4 intervals on the real number line combined with the set relationship

overlapping are separable. Then as a corollary to Theorem 12:

Corollary 7. Resolving arbitrary positions of the set representation game on intervals on the real

line with the set relationship overlapping is PSPACE-hard.

94

5.3.2 Intervals and Permutation in PSPACE

In this section, we prove that resolving the interval and permutation games are in PSPACE, and are

therefore PSPACE-complete.

We first observe that if A is a game of size k such that from any legal position of A the number

of possible moves is polynomial in k, from any position of A the game is guaranteed to end after a

number of moves polynomial in k, and every game position can be represented in space polynomial

in k, then solving an arbitrary position of A is in PSPACE. We can justify this by considering a

backtracking search for this game. Each position is polynomial in size to store, and each recursion

branch is at most of polynomial depth. Therefore an arbitrary game position can be solved in space

polynomial in k.

Lemma 36. The set representation game played on intervals on the real line with any one of the set

relationships intersection, disjointness, overlapping, containment is in PSPACE.

Proof. We provide a polynomial-space reduction from the set representation game on intervals with

the relationship intersection to an endpoint-ordering game that we show is in PSPACE.

SEP = (L, V �, fl, fr) is a position of the endpoint-ordering game using graph G = (V,E) with

Φ where:

• L is an ordered set of endpoints

• V � ⊂ V

• fl and fr are functions from V � to the elements of L such that

– the ranges of fl andfr partition the set of all elements of L and

– for every vertex v ∈ V � fl(v) occurs before fr(v) in L

– for every two vertices u, v ∈ V � the order of fl(v), fr(v), fl(u), fr(u) in L is such that

if they were placed in that order on the real line, the interval described by [fl(v), fr(v)]

would be Φ with the interval described by [fl(u), fr(u)].

In this game the players alternate turns, and on a player’s turn, he choses an unselected vertex vi

in V and adds two entries to L setting fl(vi) to one of them and fr(vi) to the other.

Let G = (V,E) be a graph, S the set of all finite intervals on the real line, Φ one of the set

relationships intersection, disjointness, overlapping, containment, and f an assignment of members

of S to some members of V . Let S be the subfamily of S containing the intervals assigned to vertices

in V . G,Φ,S are an instance of the set representation game on intervals on the real line. We give a

reduction from this instance to an instance of the endpoint-ordering game.

Let L be a list. For each vertex vi in V already assigned an interval by f , we add v1
i

and v2
i

to L

where v1
i

is the left endpoint of the interval assigned to vi and v2
i

is the right endpoint of the interval

95

assigned to vi. We then sort L and amend fl and fr such that fl(vi) = v1
i

and fr(vi) = v2
i

for all

vi. Note that the order of the members of L will be the same as their order on the real line.

Lemma 37. Let SA = (QA, V �, fA) be a position of the interval representation game, and SEP =

(L, V �, fl, fr) its corresponding transformed position of the endpoint ordering game. Then SA is an

N−position if and only if SEP is.

Proof. Let TA = VA, EA be the directed acyclic graph that gives the game tree for the interval

representation game played from SA. We proceed by induction on the maximum distance of a

position from a leaf of TA.

Let SA be a leaf position of TA. Then there are no legal moves in the interval representation

game from SA, or from the endpoint-ordering transformation of it.

Assume that for every position SA that is at most k moves from a leaf in TA, SA is an N−position

if and only if its endpoint-ordering transformed version SEP is.

Now let SA = (QA, V �, fA) be a position at most k + 1 moves from a leaf of TA, and let

SEP = (L, V �, fl, fr) be the transformation of SA into the endpoint-ordering game.

Assume that SA is an N -position. Then there is a winning move from SA to position SB . But

then note that the endpoint-ordering game transformation of SB is a child position of SEP , and by

the inductive assumption is a P-position. Therefore SEP is an N -position.

Assume that SEP is an N -position. Then there is a child position of SEP that is a P-position.

Let SEP2 = (L2, V �
2 , fl2, fr2) be this position. Let v be the single vertex in V �

2\V
�. Then L2 differs

from L only by the inclusion of v1, v2. Then there is a child position of SA with v represented

such that the endpoint-ordering transformation of that position is SEP2. That child position is a

P-position, and therefore SA is an N -position.

Let SA = (QA, V �, fA) and SB = (QB , V �, fB) be two positions of the interval representation

game. We say that SA and SB are endpoint-equivalent if they have the same transformed endpoint-

ordering game position.

Corollary 8. Let SA = (QA, V �, fA) and SB = (QB , V �, fB) be two endpoint-equivalent positions

of the interval representation game. Then SA is an N−position if and only if SB is.

Recall that the endpoint ordering game with set relationship intersection, disjointness, overlap-

ping, or containment is in PSPACE, because it can be solved with recursive game search.

Then, the set representation game played on intervals on the real line with any one of the the set

relationships intersection, disjointness, overlapping, containment is in PSPACE.

Consider a restriction of the interval containment game in which we specify a point z on the line

and require that all intervals must include z. We call this game the interval containment game with

96

an equator, and call z the equator. This game is also in PSPACE because the interval containment

game is.

Lemma 38. The set representation game played on line segments between two parallel infinite lines

with the set relationship intersection is in PSPACE.

Proof. We prove a polynomial-space reduction from the set representation game on line segments

between parallel lines with the relationship intersection to the interval overlap game with an equa-

tor. Permutation graphs are exactly overlap graphs of intervals on a line with an equator as shown

by Dushnik and Miller [5], so this reduction is not surprising.

Let G = (V,E) be a graph, S the set of all line segments between two parallel lines I1 and I2,

S a subfamily of S, and f a bijection from V � ⊂ V to S . (S, V �, f) is a position of the permutation

set representation game.

We give a reduction from this position to a position of the interval overlap set representation

game. Let vertex v ∈ V � and let f(v) be a line with endpoints at xv
1 on I1 and xv

2 on I2 by f .

Let xmax1 be the largest-valued endpoint of a line on l1 corresponding to a vertex. Let xmax2 be

the largest-valued endpoint of a line on l2 corresponding to a vertex. Without loss of generality,

assume that no endpoint on l2 is placed at 0. Then let function fintervals assign v the interval from

[xv
1, xmax1 + (xmax2 − xv

2) + 1] on line I . Let Sinterval be all these intervals, and Sinterval be the

set of all intervals on I .

(Sinterval, V �, finterval) with equator xmax1 form an position of the interval overlap set repre-

sentation game with an equator.

Suppose that the next player has a winning strategy for the permutation set representation in-

stance. If the permutation player would choose vertex vi and assign it endpoints x on I1 and y on

I2, then in the interval overlap game they choose vi and assign it interval [x, xmax + y] on line I .

Applied inductively, this gives a strategy. A similar argument applies if there is a previous-player

winning strategy on the permutation set representation instance.

Because solving the interval overlap game with an equator is in PSPACE, solving the permuta-

tion set representation game is. �

Combining the previous two Lemmas with Corollaries 4, 5, 6 and 7, we have:

Theorem 13. The set representation game played on line segments between two parallel lines with

intersection, as well as on intervals on the real line with any of intersection, containment, disjoint-

ness, overlapping is PSPACE-complete.

5.4 Solving some connected representation games

We have given hardness results for the new types of games we’ve defined. When can we solve an

initial position of these games? We give some special cases with algorithms for solving positions

97

in polynomial time. Our results are for the connected set representation game, and are all for when

the game is played using trees. In this section, we will make use of nimbers to solve some of these

games and their unions. As mentioned before, every impartial combinatorial game has a nimber,

and is an N -position if and only if that nimber is positive.

We will also use the idea of a fixed starting vertex for a game. What if we played the connected

proper interval representation game using a tree T = (V,E) but specified the first vertex u chosen,

and specified that throughout play no interval may have any endpoint to the left of the left endpoint

of the interval representing u? In this case we call u a mandatory head. We use a similar idea for

the connected permutation game.

5.4.1 Connected proper interval representation game using a tree

Let T = (VT , ET) be a tree, and u ∈ VT a mandatory head. Can we calculate the nimber of a game

starting at u?

What do we know about the end positions of games that started with u as a mandatory head?

First, we know that the vertices represented at the end of any game induce a path, because every

proper interval graph that is a tree is a path. What about the endpoints of this path? If the end of the

path that isn’t u is not a leaf, then there are remaining moves, and the game is not over. Therefore

one end of the path will be u, and the other will be a leaf of T .

Using these observations, we can calculate the nimber of a game starting at u. First we root

T at u. Every game will end with a move that places a leaf of this rooted tree - no further moves

are possible from a position with a leaf represented, and if there is no leaf represented then further

moves are possible. Given a vertex v in T , we know exactly all moves previous to v given that u is

the mandatory head, as there are unique paths in trees.

Recall that the minimum excluded ordinal of a set is the smallest ordinal that is not in that set.

Then for each v the nimber of the game in which v has just been placed is the minimum excluded

value of the nimbers of the games in which each of the children of v have been placed, by these

positions being all the possible succesor positions, and the Sprague-Grundy theorem [1].

The nimber of the game after a leaf has been played is 0. Then a single leaf is the ∗ game and

has nimber 1.

Given T and u we can then compute the nimber of the game position for each v in a bottom-up

fashion using a postorder traversal of T .

Then, given a set of trees with a specified mandatory head in each, we can sum the nimbers to

determine the overall nimber and therefore the winner of the union of these games.

We can use this to help us find the nimber of a game using a tree without a mandatory head.

Let v be a vertex in tree T = (VT , ET). Imagine if v were played as a first move in the connected

proper interval representation game using a tree . If v is removed from T , we are left with a forest

{T1...Tk} of subtrees of T . Because the eventual representation is a proper interval representation,

98

we know that vertices from two of T1...Tk will be represented. We also know that for each Ti the

vertex ui of Ti that is adjacent to v, if it is represented, will be represented with one endpoint strictly

to the left or strictly to the right of all other intervals corresponding to vertices in Ti, and will be the

first vertex of Ti to be represented. Then if ui is played, we can treat it as a mandatory head with

respect to Ti.

Then, vertex v is a winning first move for the first player if for every Ti ∈ {T1...Tk} there is a

Tj �= Ti ∈ {T1...Tk} such that the sum of the nimbers of ui and uj is zero.

We can use a method almost exactly the same as our method to solve normal play in the con-

nected proper interval representation game using a tree when the first move is at a mandatory head

to solve the misere version of the same game.

5.4.2 Improper Intervals

We now consider the set representation game with a mandatory head played using trees on intervals

on a line.

A caterpillar is a tree such that if all leaves are removed we are left with a path. The spine of a

caterpillar is that path.

Lemma 39. In every position of every connected intervals using a tree game the represented vertices

induce a caterpillar.

Proof. This follows from the fact that all trees that are interval graphs are caterpillars.

In an interval representation, let the line have an arbitrary left-right orientation. The leftmost

interval is the one with an endpoint to the left of every other interval. The rightmost interval is the

one with an endpoint to the right of every other interval. The leftmost and rightmost vertices are the

vertices corresponding to these intervals.

Let u be the leftmost represented vertex in an interval representation of tree G� = (V �, E�)

and w the rightmost. G� is a caterpillar. We claim that the path between u and v is a spine of G�.

First, observe that the interval from the leftmost point of u to the rightmost point of w contains all

intervals in the representation. Now, observe that the union of the intervals representing vertices on

the path from u to w, inclusive, contains that entire interval. Every vertex not on this path therefore

is adjacent to at least one vertex on the path. Because G� is a tree, all vertices not on the path are

therefore adjacent to exactly one vertex on that path, and not to any other vertices. Therefore the

path is a spine of G�.

Definition 7. The placed-spine of G is the path between the leftmost and rightmost represented

vertices in V �, inclusive.

Lemma 40. Let V � ⊂ V be a represented subset in the connected intervals using a tree game that

induces a caterpillar. Then, in the representation, an interval can be added to represent any vertex

that is adjacent to a single vertex on that placed-spine.

99

Proof. Let vi be a vertex on the placed-spine of a caterpillar, corresponding to interval li. Because

G is a tree, and because there is a mandatory head and therefore li is not contained in any other

interval, there is a portion of li not contained in any other interval.

Then we can produce an interval small enough to fit in that portion that intersects only li, and so

can add an interval to represent a leaf.

Lemma 41. A specification of the placed-spine of the caterpillar represented at the end of a con-

nected intervals using a tree game is sufficient to allow us to calculate the winner of the game.

Proof. By Lemma 40, at the end of the game all leaves attached to the specified spine will be

represented. No other vertex can be added.Then the winner of the game is determined by the parity

of the number of vertices in the spine plus the leaves.

Let S be a game position of the connected interval representation game using a tree T =

(VT , ET) with mandatory head u. A represented vertex v is in the spine-so-far position if its in-

terval is the rightmost interval (assuming that u is the leftmost).

Definition 8. Let S be a game position of the interval game with mandatory head u and vertex v

in the spine-so-far position. An unrepresented leaf is a leaf pendant from the path between u and v

that is not yet represented in S.

Let S be a game position of the connected interval representation game using a tree T =

(VT , ET) with mandatory head u and vertex v in the spine-so-far position. If a player chooses

an unrepresented neighbour of v and represents it with a interval contained in the one assigned to v,

we say that player has made a foldunder move. We add the restriction of forbidding foldunders in

our game.

In the interval game, what information is actually important in a game position?

Let S1 and S2 be two positions of the interval game with the same mandatory head, the same

spine-so-far vertex, and the same number of represented vertices. We claim that S1 and S2 are

equivalent.

That is, it is only how many vertices are represented and not how they are represented or which

vertices they are that is relevant to solving the game, with the exception of the mandatory head and

spine-so-far vertices.

This follows from the fact that, by Lemma 40 at the end of the game all of the pendant leaves

are represented. Each pendant leaf is effectively a ∗ in the game, as each can be played at any time,

it doesn’t matter how they are played, and they will all be played by the end of the game.

Then:

Lemma 42. S1 and S2 have the same nimber.

100

Game Graph for a Mandatory Head

An abstracted game position Q of the interval graph game using tree T with mandatory head u

consists of a vertex v that is in the spine-so-far position and a number k indicating the number of

unrepresented pendant leaves.

For a pair of vertices x, y let leaves(x, y) give the number of leaves pendant from a path with

endpoints x, y, excluding x and y even if they are leaves, but including the neighbours of x and y.

We use a graph, given a tree T = (V,E) and mandatory head u ∈ V to describe the entire game

position space of abstracted positions. This graph is polynomial in size with respect to the size of T

and can be produced in time polynomial in the size of T .

For each vertex v ∈ V let Wv be a set of abstracted game positions w = {v, i} for 0 ≤ i ≤

leaves(u, v). Abstract position {v, i} represents a game position in which v is in the spine-so-far

position, and i leaves pendant on the u to v path are unrepresented. Then let vertex set W consist of

the union of Wv over all v ∈ V .

We define a directed edge set F as follows: directed edge {v1, h} → {v2, k} is in F if:

• v1 = v2 and k = h− 1, or

• v1 and v2 are adjacent in T , but v2 is not on the path between v1 and u and k = leaves(u, v2)−

(leaves(u, v1)− h)

Then let
−→
G = (W,F).

These edges correspond to the transitions between abstract positions that we can make by playing

moves in the game. A move either changes the vertex in the spine-so-far position or it doesn’t. If

it does not, then it represents another pendant leaf, decreasing the number of unrepresented pendant

leaves.

We claim that
−→
G is a directed acyclic graph. Assume there is a cycle. Let {v1, i} be a position

in the cycle such that v1 is closest to u and, if there is more than one position in the cycle with the

vertex at the same minimum distance to u, that i is largest of those. Then let {v2, j} be the position

in the cycle such that there is an edge from {v2, j} to {v1, i}. If v1 = v2, then by the construction of

F , i = j − 1, a contradiction to the maximality of i. If v1 �= v2, then v1 is adjacent to v2 but is not

on the path from u to v2, a contradiction to v1 being closest to u. Therefore there is no such cycle.

We can, using this graph as a game tree (note that game trees are generally directed acyclic

graphs, and not actually trees), calculate nimbers for the abstract game positions in a backtrack order

- the reverse of a breadth-first search order started at {u, |N(u)|}. We start by assigning a nimber

of 0 to every sink position {v, 0}, and then proceed to backtrack from there. We then calculate the

nimber for each position by taking the minimum excluded value of the nimbers of its children. This

will give us a nimber for the initial position of just the mandatory head being played, telling us the

winner of the game, assuming no foldunders. We can use this nimber to determine the winner of

unions of these games if we explicitly forbid foldunders.

101

5.4.3 Connected permutation representation game using a tree

Consider two infinite parallel lines running up and down. Let L be the set of all line segments

between these two lines.

Consider a connected permutation game on graph G = (V,E), with set V � containing the ver-

tices already represented. As we will always play this game using the set relationship intersection,

we omit that from the game position, so a position of this game played using tree T = (V,E) will

be expressed as: (L, V �, f) where:

• L is a subfamily of L

• V � ⊂ V

• and f is a function from V � to L such that (L,L, f,∩) is an intersection representation of

T [V �].

Definition 9. Let (L, V �, f) be a position of the permutation game using tree T = (V,E). The

lowest vertices in V � are the vertices corresponding to lines that at some point have no other line

below them in the representation.

Definition 10. Let (L, V �, f) be a position of the permutation game using tree T = (V,E). The

far-lowest vertex in V � is the vertex assigned the line such that the endpoints of that line are geo-

metrically below the endpoints of all lines that do not intersect that line, and only one neighbour

of that line is represented. The far-highest vertex in V � is the vertex assigned the line such that the

endpoints of that line are geometrically above the endpoints of all lines that do not intersect that

line, and only one neighbour of that line is represented.

These are unique in connected representations of trees with more than two vertices represented:

assume that there are two far-lowest vertices in a representation. They must be adjacent, as their

lines must intersect. At least one of them must have another neighbour, as the representation is

connected. Then that one with another neighbour is not far-lowest. A similar argument shows

that the far-highest vertex in a connected representation with more than two vertices represented is

unique.

Say we are going to play the connected permutation representation game using a tree with the

restriction that no line will have both endpoints above the endpoints of the first line placed, or,

symmetrically, no line will have both endpoints below the endpoints of the first line placed. We then

call that first vertex the mandatory head, and will also refer to its assigned set as the mandatory

head.

We say that the vertex corresponding to the line that is far-lowest (if the mandatory head is

far-highest) or far-highest (if the mandatory head is far-lowest) is in the spine-so-far position.

Lemma 43. At every position of every connected permutation representation game using a tree, the

represented vertices induce a caterpillar.

102

Proof. This follows from the fact that all trees that are permutation graphs are caterpillars.

Let (L, V �, f) be a position of the connected permutation game using tree T = (V,E). Let u

be the far-highest vertex and w the far-lowest. We claim that the path from u to w, inclusive, is a

spine of T [V �]. Because u is the far-highest and w is the far-lowest vertex, we know that no line has

both endpoints above f(u) or below f(w). Then every other line in L intersects the line of at least

one of the vertices on the path between u and w. Then, because T is a tree, each vertex not on the

path between u and w is adjacent to exactly one vertex on that path, and not to any other vertices in

T [V �]. Therefore that path is a spine of T [V �].

Definition 11. The placed-spine of G is the path between the far-highest and far-lowest vertices in

V �, inclusive.

Lemma 44. Let V � ⊂ V be a represented subset in the connected permutation game that induces a

caterpillar. Then leaves can be added to anywhere on the placed spine in subsequent game positions.

Proof. Let vi be a vertex on the placed-spine of a caterpillar, corresponding to line li. Assume that

we cannot place a line lj that intersects only li. If there is already a represented leaf adjacent to

vi, then that line intersects only vi, and we can produce another such line by joining left and right

endpoints an arbitrarily small distance below the endpoints of that line.

Then assume that there are no such represented leaves. If vi has two neighbours on the spine,

then the only neighbours of vi that are represented are its two neighbours on the spine, vi−1, vi+1.

Because these two vertices are not adjacent, we know that their lines, li−1 and li+1, do not intersect.

Without loss of generality, assume that li−1 is above li+1, and that the left endpoints of li−1, li+1.

are above the left endpoint of li and the right endpoints of li−1, li+1 below the right endpoint of li.

We claim that a line between endpoints just above the left endpoint of li+1 and just below the

right endpoint of li−1 will intersect only li. Assume it does not. Then there is a line lx with an

endpoint above the right endpoint of ll−1 and below the left endpoint of li+1. Such a line must

intersect both li−1 and li+1, a contradiction.

If vi has only on neighbour on the placed spine, then a line with endpoints just below or above

endpoints of the line of that neighbour will intersect only li.

Lemma 45. A specification of the placed-spine of the caterpillar represented at the end of a con-

nected permutation game is sufficient to allow us to calculate the winner of the game.

Proof. By Lemma 44, at the end of the game all leaves attached to the specified spine will be

represented. No other vertex can be added, provided the spine is maximal (that is, its endpoints are

leaves). Then the winner of the game is determined by the parity of the number of vertices in the

spine plus the leaves.

103

We will need an observation and a lemma about a player’s ability to force certain vertices to be

on the spine of the caterpillar:

Observation 9. Let T = (V,E) be a tree. Let S be a position of a connected permutation game

using T with V � the represented vertices and P their assigned lines on the permutation diagram,

with mandatory head u. Let v be a vertex in the spine-so-far position in S such that all neighbours

of its neighbour in T [V �] are already represented in S, and are therefore all in V �. Then in every

position S� reachable from S, vertex v is on the placed-spine.

We will now diverge somewhat from our previous notation. We will be solving positions of the

connected permutation game with respect to the first or second player, and not the next or previous

player. This is a technical necessity: the next lemma cannot be directly reformed to use next and

previous players. It can, however, be later adapted to give an answer in terms of the next or previous

player given the parity of the number of previously represented vertices.

Lemma 46. Let T = (V,E) be a tree. Let S be a position of a connected permutation game using

T with V � the represented vertices and P their assigned lines on the permutation diagram, with

mandatory head u.

Let vertex v be in the spine-so-far position, and the path between u and v be of length at least

two. Let Np be the neighbours of v that are not already represented.

Then we claim that:

• We can partition Np into Nf
p and Ns

p such that all games reachable from S that have a vertex

from Nf
p in the spine are first-player wins, and all games reachable from S that have a vertex

from Ns
p in the spine are second-player wins. We call Nf

p the win-set for the first player, and

Ns
p the win-set for the second player.

• If |Nf
p | > |Ns

p | there is a strategy for the first player to win from S,

• if |Nf
p | < |Ns

p | there is a strategy for the second player to win from S, and

• if |Nf
p | = |Ns

p | there is a strategy for the first player to win from S if and only if the parity of

the number of vertices of the spine represented thus far and all leaves attached to that spine

(represented and unrepresented) is odd.

Proof. Root T at u. We will call a vertex not yet represented unrepresented. Let d be the distance

to the furthest vertex from u in T . We proceed by induction on the distance from u. Consider nodes

at distance d from u. They must be leaves. We can determine the winner of a game with u and

a given leaf on the spine by calculating the parity of the maximal caterpillar with that spine. As

these nodes have no children, we can vacuously partition all their children into Ns
p and Nf

p . Since

|Ns
p | = |Nf

p | = 0, the lemma is proven in this case.

104

Assume that for every node w at distance k from u, we can partition its children that are not

on the path between w and u as above, and the given rules hold for determining whether there is a

winning strategy for the first or second player if w is on the spine.

Now consider a node v at distance k − 1 from u. All children of v are at distance k from u, and

therefore the rules given will determine whether there is a winning strategy for the first or second

player if each of them is on the spine. So then if Np are the neighbours of v that are not on the path

from v to u, we can partition Np into Nf
p and Ns

p such that all games reachable from S that have a

vertex from Nf
p in the spine are first-player wins, and all games reachable from S that have a vertex

from Ns
p in the spine are second-player wins.

We show how the player with the larger win-set can produce a game position in which a vertex

in their win-set is in the spine-so-far position when all neighbours of v are represented, and therefore

arrive at a game position that is a win for that player.

We argue the case in which the first player has the larger win-set, that is |Nf
p | > |Ns

p |. The

opposite case requires a symmetric argument.

On the first player’s next turn after v is placed in the spine-so-far position, he chooses any one of

the vertices in Nf
p and places it in the spine-so-far position. On every subsequent turn, first player

takes one of two actions until either all vertices in Np are represented, or all vertices in Ns
p are

represented and a vertex from Nf
p is in the spine-so-far position:

• If there is a member of Ns
p in the spine-so-far position (the second player must have put it

there on his turn immediately previous), then the first player places a member of Nf
p in the

spine-so-far position.

• Otherwise, the first player places a member of Ns
p anywhere except the spine-so-far position.

Inductively, and because |Nf
p | > |Ns

p |, we know that once all vertices of Np are represented,

one of the vertices in Nf
p will be in the spine-so-far position, and will by Observation 9 be in the

spine in every game reachable from that position.

The case in which |Nf
p | = |Ns

p | is only marginally trickier than the case in which Nf
p and Ns

p

are different sizes. Here we provide a winning strategy for the player who places the second member

of Np. We call this player Bob, the other player Jim, and their win sets NBob
p and NJim

p .

Once Jim has placed a member of Np, then for every subsequent turn until either all vertices

in Np are represented, or all vertices in NJim
p are represented and a vertex from NBob

p is in the

spine-so-far position, Bob will play a member of Np as follows:

• If there is a member of NJim
p in the spine-so-far position (Jim must have put it there on his

turn immediately previous), then Bob places a member of NBob
p in the spine-so-far position.

• Otherwise, Bob places a member of NJim
p anywhere except the spine-so-far position.

105

If Bob uses this strategy, then when all of Np are played, a member of NBob
p will be in the

spine-so-far position, and will by Observation 9 be in the spine in every game reachable from that

position.

Because placing the first member of Np is a losing move if |Ns
p | = |Nf

p |, neither player will

make that move unless there is no other choice.

Therefore, the position described with only one neighbour of v represented is a first player win

if and only if the parity of the number of vertices of the spine represented thus far and all leaves

attached to that spine (represented and unrepresented) is odd.

Using the results from Lemma 46, we define an algorithm to determine whether the first or

second player will win a connected permutation representation game using a tree given a tree and a

mandatory head move.

Our algorithm determines, given a mandatory head move u for each other vertex v in the tree

whether a game in which both u and v are in the spine of the caterpillar at the end of the game is a

win for the first player, or for the second player.

We give an informal description of our algorithm: first, observe that for every leaf li that is not

u, we can determine the winner of a game that includes both li and u in the spine of the represented

caterpillar just by calculating the parity of the number of vertices on the path between u and li and

all vertices adjacent to that path (leaves in the represented caterpillar). Labeling the leaves of the

tree in this way as first or second player wins will be the first step of our algorithm.

Next, consider a vertex v such that all of its children (if the tree we are playing on were rooted

at u) are correctly labeled as first or second player wins if they were on the spine. Then, we can

determine the first or second player win value of that vertex by Lemma 46. Our algorithm iterates

through the vertices of the tree rooted at the mandatory head in postorder, calculating this value at

each vertex.

5.5 Conclusion

We have described a new class of games on graphs based on set representations. In general, solving

positions of these games is PSPACE-hard, and in the case of the permutation and interval games is

PSPACE-complete. However, we have given algorithms to solve, in polynomial-time, positions of

the connected permutation and interval games when playing using a tree with a specified first-move

restriction.

106

Bibliography

[1] Michael H Albert, Richard J Nowakowski, and David Wolfe. Lessons in play: An introduction

to the combinatorial theory of games. A K Peters, Ltd, 2007.

[2] Hans L. Bodlaender. Kayles on special classes of graphs - an application of sprague-grundy

theory. In Proceedings of the 18th International Workshop on Graph-Theoretic Concepts in

Computer Science, WG ’92, pages 90–102, London, UK, 1993. Springer-Verlag.

[3] Hans L. Bodlaender and Dieter Kratsch. Kayles and nimbers. J. Algorithms, 43(1):106–119,

2002.

[4] C.L Bouton. Nim, a game with a complete mathematical theory. Annals of Mathematics,

3:35–39, 1901.

[5] B. Dushnik and E.W. Miller. Partially ordered sets. American Journal of Mathematics, 63:600–

610, 1941.

[6] Rudolf Fleischer and Gerhard Trippen. Kayles on the way to the stars. In H. Jaap van den

Herik, Yngvi Björnsson, and Nathan S. Netanyahu, editors, Computers and Games, volume

3846 of Lecture Notes in Computer Science, pages 232–245. Springer, 2004.

[7] Fanica Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.

Journal of Combinatorial Theory (B), 16:47–56, 1974.

[8] Fanica Gavril. Maximum weight independent sets and cliques in intersection graphs of fila-

ments. Inf. Process. Lett., 73(5-6):181–188, 2000.

[9] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete

Mathematics, Vol 57). North-Holland, 2004.

[10] Thomas J. Schaefer. On the complexity of some two-person perfect-information games. J.

Comput. Syst. Sci., 16(2):185–225, 1978.

[11] Jeremy Spinrad. On comparability and permutation graphs. SIAM Journal of Computing,

14:658–670, 1985.

107

5.6 Further work on set representation games

Here we include further work on games that was not included in the previous paper. We describe

several new types of games using graphs, and show that some set representation games can be

considered as these new types of games. We give algorithms for resolving states of some connected

set representation games using long stars.

5.6.1 Coupled Positions

We describe a characteristic of two games that we use later to show relationships between games.

Definition 12. Let firstgame and secondgame be two games. We say that firstgame and sec-

ondgame have the coupled positions property if there exist polynomial-time transformations trans-

From1To2 and transFrom2To1 such that for every position S of firstgame, for every child position

S2 of S, there is guaranteed to be a child position of transFrom1To2(S) that has the same outcome

class as transFrom1To2(S2), and for every position SB of secondgame, for every child position

SB2 of SB , there is guaranteed to be a child position of transFrom2To1(SB) that has the same out-

come class as transFrom2To1(SB2). Note that transFrom1To2(S2) may not be a child position of

transFrom1To2(S), and transFrom2To1(SB2) may not be a child position of transFrom2To1(SB).

Observation 10. Let firstgame, secondgame be two games with the coupled positions property with

transformations transFrom1To2 and transFrom2To1. Then a position in firstgame has the same

outcome class as its transformation into secondgame, and a position in secondgame has the same

outcome class as its transformation into firstgame.

Lemma 47. Let firstgame and secondgame be two games with the coupled positions property. Then

there is a polynomial-time algorithm for solving positions of firstgame if and only if there is a

polynomial-time algorithm for solving positions of secondgame .

Proof. Follows from Observation 10

5.7 Subgraph game

Let G = (V,E) be a graph and H a graph class. We define a game using these: on a player’s turn,

he selects a vertex of G such that all selected vertices induce a graph in H. A player cannot select

a previously selected vertex. The last player to make a selection wins. We call this the maximal H

subgraph game.

More precisely, a game position of the maximal H subgraph game using graph G = (V,E) is

a pair (V �,H) where V � is a subset of V such that G[V �] ∈ H. A move in this game is a change

from a game position S1 = (V �
1 ,H) to a position S2 = (V �

2 ,H) such that V �
1 ⊂ V �

2 , V �
2\V

�
1 contains

a single vertex v, and G[V �
2] ∈ H.

108

Theorem 14. Computing the winner of an instance of the maximal H subgraph game is PSPACE-

complete even when H is the class of cliques or of independent sets.

Proof. First, because a recursive minimax search can solve an instance of the maximal connected H

subgraph game in exponential time and polynomial space, the problem of solving an instance of the

maximal connected H subgraph game is in PSPACE.

Let H be the class of cliques. Then resolving the winner of the maximal connected H subgraph

game on a given graph is equivalent to resolving the winner of a Kayles game on the complement of

that graph.

Let H be the class of independent sets. Then resolving the winner of the maximal H subgraph

game on a given graph is equivalent to resolving the winner of a Kayles game on that graph.

5.8 Growing Game

Let G = (V,E) be a graph, and H a graph class. In the connected H proper representation game

using G, which we will call the growing game, two players alternate turns.

A game position of the growing game using graph G = (V,E) is a tuple

(V � ⊂ V, J,J , f,∩,H) where (J,J , f,∩) is a graph representation of G[V �] and J ∈ H.

To define a legal move, we must describe two operations on a graph representation (J,J , f,∩).

• Host subdivision

• Host vertex addition

Let e = (u,w) be an edge in J . A host subdivision of e in the representation (J = (VJ , EJ),J , f,∩),

produces a new representation (J �,J �, f �,∩) such that :

• J � = (VJ ∪ {v}, (EJ ∪ {(u, v), (v, w)})\{e}) where v is a new vertex not in VJ

• For every subgraph si ∈ J

– If e is not in si then s�
i
= si

– If e is in si = (Vsi , Esi) then s�
i
= (Vsi ∪ {ve}, (Esi ∪ {(u, v), (v, w)})\{e})

• Then J � ← the set of each s�
i

produced from si ∈ J as described above.

• For each vertex v ∈ V , the bijection f �(v) yields s�
i

if and only if f(v) = si

A host vertex addition with new neighbourhood VB ⊂ V in the representation (J = (VJ , EJ),J , f,∩),

produces a new representation (J �,J �, f �,∩) such that :

• J � = (VJ ∪ {v}, EJ ∪ { edges between v and each vertex in VB }) where v is a new vertex

not in VJ

• J � ← J

109

• f � ← f

Definition 13. Let G� = (V �, E�) be the graph produced by adding vertex v with neighbourhood

VB to graph G. A VB−extension of graph representation (J = (VJ , EJ),J , f,∩) of G = (V,E)

is a representation (J �,J �, f �,∩) of graph G� that can be produced by a series of host subdivisions

and host vertex additions, and then the addition of a subgraph s of J � to J � such that s contains all

vertices in J � that are not in J (it may contain others as well), and f � maps v to s but is otherwise

the same as f .

Then a move in the growing game from position (G = (V,E), V �, J = (VJ , EJ),J , f,∩,H)

is:

• a selection of a vertex v ∈ V that is not yet represented and therefore not yet in V �

• set V �� ← V � ∪ {v}

• the production of a (Nv∩V �)-extension (J �,J �, f �,∩) of (J = (VJ , EJ),J , f,∩), (J �,J �, f �,∩)

such that (J �,J �, f �,∩) is a representation of G[V ��] and J � is in H.

After this move, the position of the game is (V ��, J �,J �, f �,∩,H).

Theorem 15. Resolving the outcome class of a position of the growing game is PSPACE-hard.

Proof. We have already seen that resolving the outcome class of a position of the proper interval

game is PSPACE-complete (Theorem 13). We will give a reduction from a position of that game to

a position of the growing game.

In fact, we will show that the proper interval game and the growing game played using paths

have the coupled states property.

Let S = (Q, V �, f) be a position of the proper interval game using graph G = (V,E). We give

a transformation into a state of the growing game played using paths. Let J = (VJ , EJ) be a path

on 2|V �| vertices with vertices numbered v1...v2|V �|. Let H be the class of all paths.

Let P be a list of the endpoints of intervals in Q sorted by position on the real line. There will

be two endpoints for each interval. We will denote the left endpoint of interval z as zl and the right

endpoint as zr. Let P (zl) be the position of zl in P .

Then for each vertex wi ∈ V � we create a subpath pi of J that contains exactly the vertices

on the path between vP (f(wi)l) and vP (f(wi)r). We place all of these subpaths in J . We add to a

bijection g the value [vi, pi]. Then the endpoints of the subpaths on J corresponding to vertices in

V � are in the same order as the endpoints of the intervals on the real line corresponding to those

same vertices. Therefore two paths g(vi), g(vj) intersect if and only if the intervals f(vi), f(vj)

intersect, so we have that (J,J , g,∩) is a graph representation of G. Since J is a path, we also have

that (J,J , g,∩,H) is a position of the growing game using paths.

110

Let (J,J , g,∩,H) be a position of the growing game using paths, where H is the class of paths.

Number the vertices of J with v1...vk. For vertex ui ∈ V � let the subpath g(ui) span vertices vh...vj

of J . Then for each vertex ui ∈ V �, let interval bi be the interval on the real line spanning h, k. Let

f(ui) = bi, and let L contain all such bi. Then S = (L, V �, f) is a position of the proper interval

game.

We claim that with these transformations the proper interval game and the growing game using

paths have the coupled states property.

Let SGROW = (J,J , g,∩,H) be a position of the growing game where H is the class of paths,

and SINT = (Q, V �, f) be its transformed version in the interval representation game. Consider a

child position of SGROW and its transformation S2
INT

into the interval representation game. We can

produce a child position of SINT that is endpoint-equivalent to S2
INT

, and therefore has the same

outcome class: the endpoints of the intervals assigned to vertices in V � in the representation in S2
INT

are in the same order as they are in the representation in SINT , by the transformation. Let v be the

vertex represented in S2
INT

but not in SINT , and s its assigned interval. Where are the endpoints of

s in the representation in S2
INT

? Let Leftleft be the set of endpoints in S2
INT

to the left of the left

endpoint of s, Leftright the set of endpoints in S2
INT

to the right of the left endpoint of s, Rightleft

be the set of endpoints in S2
INT

to the left of the right endpoint of s, Rightright the set of endpoints

in S2
INT

to the right of the right endpoint of s. Because the part of the representation of S2
INT

that

represents vertices in V ’ is endpoint equivalent to the representation in SINT , there is a point x in

the representation of SINT that is to the right of exactly Leftright and the left of Leftright, and

another point y that is to the right of exactly Rightright and the left of Rightright. The child state

of SINT that consists of a representation that is the representation in SINT with an added interval

from x to y assigned to v is endpoint equivalent to S2
INT

.

Let SINT = (Q, V �, f) be a position of the interval representation game, and SGROW =

(J,J , g,∩,H) its transformed equivalent in the growing game. Let S2
INT

be a child position of

SINT and S2
GROW

the transformation of S2
INT

into the growing game. By the transformations,

S2
GROW

can be reached in a move from SGROW by two host subdivisions and a path assignment.

Because the interval representation game and the growing game with paths have the coupled

states property, a position of one has the same outcome class as its transformation in the other game,

and resolving the outcome of a growing game position is as hard as resolving the outcome of an

interval representation game state.

5.9 Dueling Bureaucrat Games

We describe a game with an appealing story that we came across while working on set representation

games. We will use this game later in a result on solving a set representation game on long stars.

This game differs from the other games we discuss - it is a partizan game, that is, it is not impartial.

111

The moves available to the two players are not identical, and their goals are not the same.

5.9.1 An Informal Description

There are two bureaucrats, Bob and Jim, in charge of appointing two cochairs of a committee. Bob

is very lazy and wants to do as little work as possible. Jim is naive and wants to get as much done as

possible. There are two pools of candidates: Democrats and Republicans. Bob and Jim both know

that if one of the chairs is a Republican and the other is a Democrat, the committee will do nothing,

as the chairs will just fight all the time. Therefore, Bob wants one chair from each party. Jim doesn’t

care which party the chairs belong to, so long as they both belong to the same one.

In the usual way of bureaucrats, Jim and Bob have come up with a bizarre way of appointing

chairs. They will take turns. On a player’s turn, he may either assign a candidate to one of the chair-

ships (replacing and discarding the person previously assigned that chairship), or he may discard a

candidate from either pool. He may only discard a candidate if both chairships currently have some-

one assigned to them, and he may not discard a candidate currently assigned a chairship without

replacing him with someone else from the pool. Once a candidate is discarded, he is completely out

of the running.

Observation 11. One candidate is discarded every turn.

So who will get his way? Is it better to choose first, or second?

We consider only the case in which the initial Republican and Democrat pools are of equal size.

Here is a strategy that Bob can use to win if Jim has the first move:

• If Jim has just assigned a chairship to a candidate, then Bob should assign a candidate of the

other party to the other chairship.

• If Jim has just discarded a candidate of one party, then Bob should discard a candidate of the

other party.

How do we know that Bob will win with this strategy? If Jim has the first move, then Bob must

have the last move. It’s therefore sufficient to show that after every move of Bob’s the two chairs are

of different parties.

On Jim’s first move he must place a candidate in a chairship. On Bob’s first move, he’ll place a

candidate in the other chairship so that the two chairs are of different parties, so we know that after

Bob’s first move the two chairs are of different parties.

Certainly Bob is never going to assign a candidate to a chairship such that both candidates are

from the same party. So if the two chairships are ever assigned candidates from the same party, Jim

must have done it. As soon as Jim does this, Bob’s strategy dictates that he’ll immediately assign a

candidate of the other party to a chairship.

How do we know a candidate from that other party is available for Bob to choose? Notice

that whichever party Jim picks a candidate from, Bob always then picks one from the other. This

112

means that after every turn Bob takes the number of candidates from each party will be equal. This

guarantees that after every choice Jim makes, there is always a candidate from the other party for

Bob to choose.

Then we can conclude that after every move of Bob’s the two chairs are of different parties.

Since Bob has the last move, this means he will have his way in the end.

Here’s a strategy that Jim can use. If the pools are of equal size and Bob has the first move, then

Jim has the last move. If Jim is presented with two candidates of the same party currently in the

chairship slots, then he need only discard the last candidate from the pool to win. If Jim is presented

with two candidates of different parties currently in the chairship slots, then, no matter which party

the only remaining candidate in the pool is a member of, Jim can assign him to one of the chairships

such that both chairs are members of the same party.

Therefore if Bob has the first move, then Jim will have his way in the end.

Overall, we can conclude that:

Statement 5. Regardless of who has the first turn, the second player will win if the pools are of

equal size.

5.9.2 Dueling Bureaucrats - Formal Version

Let A and B be disjoint sets. We describe a game using A and B. In this game there are two players:

the same-player and the diff-player. On a player’s turn he may either discard a member of A or B,

or he may choose a member of A or B and place it in a third set C, removing it from A or B. The

set C may never have more than two elements: if a player adds an element to C that would increase

the number of elements in C to three, he must discard a member of C. At the beginning of the game

C is empty. If C has fewer than two elements, then the player may not discard an element of A or

B but must instead place an element of A or B in C.

The same-player wins the game if at the end of the game both elements of C come from the

same one of A or B. The diff-player wins the game if at the end of the game one element of C is

from A, and one is from B.

We consider the case in which |A| = |B|.

Same-player is the first player

We describe a diff-player winning strategy in this case.

• If same-player has just assigned a member of A to C, then diff-player should replace the other

member of C with a member of B.

• If same-player has just assigned a member of B to C, then diff-player should replace the other

member of C with a member of A.

• If same-player has just discarded a member of A, diff-player should discard a member of B.

113

• If same-player has just discarded a member of B, diff-player should discard a member of A.

Notice that every time same-player removes a member of A diff-player removes a member of

B and every time same-player removes a member of B diff-player removes a member of A. Then,

by the equal initial sizes of A and B, after every turn of diff-player |A| = |B|. Therefore on every

diff-player turn, there is a member in the one of A or B that same-player did not remove an item

from.

Notice also that after every diff-player turn, the two members of C will not be from the same one

of A or B. Then, inductively, after diff-player’s last turn the two members of C will not be from the

same one of A or B. Because the total size of A ∪ B was even at the start of the game, diff-player

will have the last move. Therefore diff-player wins.

Diff-player is the first player

Because |A| = |B| same-player will have the last turn. Consider the contents of C before same-

player’s last turn. If both members of C are from the same one of A or B, then same-player wins by

discarding the last remaining element of whichever one of A or B is not empty. If one member of

C is from A and the other from B, then if A has one remaining element a ∈ A, same-player wins

by replacing the member of C originally from B with a. If B has one remaining element b ∈ B,

same-player wins by replacing the member of C originally from A with b.

We can conclude that:

Theorem 16. In a dueling bureaucrats game for which the two sets A,B are of the same initial size

the second player will win regardless of whether he is the diff-player or the same-player.

5.9.3 Confirming Dueling Bureaucrats

Jim and Bob are cranky, and both think that there’s not enough paperwork involved in this chair

selection process. They’ve decided to add another possible move action. In addition to appointing

and discarding candidates, they now add in a confirm option. If a candidate is currently assigned a

chairship, Jim or Bob also now have the option of confirming that chair. They take a few minutes,

fill out some forms in triplicate, and send them off. Once these forms are sent they cannot be gotten

back, so once a chair is confirmed, he or she cannot be removed from that chairship. If there are

no unassigned candidates left, the candidates assigned chairships are automatically confirmed. The

game ends when there are two confirmed chairs.

What does this new rule add to the chairship game? Who will win? Once again, we’ll only look

at the case in which the number of Republican candidates is the same as the number of Democrat

candidates.

If Jim plays second in the confirming dueling bureaucrats game and Bob never confirms a chair-

ship, Jim has a winning strategy as in the game without confirming.

114

Jim can prevent Bob from ever confirming using the following strategy: at the end of Jim’s

turn, there must always be two candidates of the same party in the chairship positions. If Bob ever

confirms a chair, then Jim can simply confirm the other and win. Therefore, Bob will never confirm

a chair if the two chairships are assigned to two candidates of the same party.

By preventing Bob from confirming in this way, Jim can use his winning strategy on his last turn

from the version of the game without confirming, and therefore Jim has a winning strategy as the

second player in confirming dueling bureaucrats

The outcome if Bob plays second remains open.

5.10 Representation games on long stars

We have presented solutions for some connected set representation games with mandatory head for

trees in general. Here, we present additional solutions on the long stars.

5.10.1 Connected proper interval representation game using long stars

First, we will consider playing the connected proper interval representation game using long stars.

A long star is a tree with only one vertex of degree greater than two (the central vertex), such

that the central vertex has no leaf neighbours. The rays of a long star are the maximal paths that

exclude the central vertex.

In the notation of the set representation game, the universe of sets we are choosing from is the

family of all proper intervals on the real line, and the set relationship is intersection.

Recall that: If S = (L, V �, f) is an end position of a connected proper interval representation

game using a tree T , with V � the represented vertices, then G[V �] is a path.

The represented vertices at the end of every possible connected proper interval representation

game using a tree T will induce a path, and will include two leaves of T . Then the represented

vertices at the end of a game must consist of the central vertex, and all of the vertices on exactly two

rays. We characterise which long stars are first player win, and which are second player win.

The parity of a ray is the parity of the number of vertices on that ray.

Statement 6. If every ray of a long star is of even parity, or every ray is of odd parity, then the

connected game using that long star is first player win.

Proof. The parity of the number of vertices represented will be odd in every game end state. There-

fore the first player will have won.

Statement 7. If there are at least two odd-parity rays on a long star, then the connected game using

that long star is first player win.

Proof. We describe a first player strategy in this case. On the first turn, first player can choose the

leaf of one of the odd rays. The players will alternate vertices down the length of that odd ray.

115

Because of the odd parity of the ray, the second player will be forced to select the central vertex.

Then the first player can choose the neighbour of the central vertex that is on another odd ray.

Because only vertices from two rays can be represented, this guarantees that the game will end with

exactly the two odd rays and the central vertex represented. Since that is an odd number of vertices,

this is a first player win.

Statement 8. If there is exactly one odd parity ray on a long star, then the game on that long star is

a second player win.

Proof. Observe that by the parity of the number of vertices, any game that includes vertices from

the single odd ray will be a second player win.

If the first player plays on the odd parity ray, then we have a second player win. If the first player

plays on an even ray, the first player will be forced to play the central vertex, at which point the

second player can select a vertex on the odd ray. If the first player plays the central vertex as his first

move, the second player can immediately select a vertex on the odd ray.

Then we have overall that:

Lemma 48. In the connected proper interval on a line representation game using a long star, the

game is a second player win if and only if there is exactly one odd parity ray in the long star.

5.10.2 Connected permutation game using long stars

We now consider winning strategies for the connected permutation game using long stars based on

the parity of the rays of that long star. At the end of every game, the represented graph will consist of

two rays, the central vertex, and all neighbours of the central vertex, as this is a maximal caterpillar.

If all rays are of the same parity, then the winner is determined entirely by the parity of the number

of rays: if there are an even number of rays then any game on that long star will be a first player win,

if odd a second player win.

We then need consider the case in which there is at least one ray of each parity.

Consider the case with an odd number of rays. In this case, the first player wins if the two rays

that are represented are of different parity. Then the first player has a winning strategy as follows:

the first player chooses for his first move a leaf of a ray that is in the minority parity. Then, when the

central vertex is played, there will be more unrepresented neighbours of the central vertex on rays

of the original majority parity than of the original minority parity. The first player will win if one of

the neighbours on a majority parity ray is on the spine at the end of the game, and the second player

will win if one of the neighbours on a minority parity ray is on the spine at the end of the game. To

use the notation of Lemma 46, the neighbours on majority parity rays are in Nf
p and the neighbours

on minorty parity rays are in Ns
p . Because |Nf

p | > |Ns
p |, the first player will be able to force the

choice of a ray of the majority parity, by Lemma 46.

116

Consider the case with an even number of rays. In this case, the first player wins if the two rays

that are represented are of the same parity. If the number of rays with odd parity and the number of

rays with even parity differ by at least one, then the first player has a winning strategy as follows:

the first player chooses for his first move a leaf of a ray that is in the majority parity. Then, when the

central vertex is played, the first player will be able to force the choice of a ray of that same parity,

by Lemma 46.

We are left with the case in which there are an even number of rays, and the number of rays of

even parity is the same as the number of rays of odd parity. Recall that the first player will win if the

rays represented are of the same parity. We describe a winning strategy for the first player: the first

player chooses the central vertex as his first move.

Notice that the first player wins if two rays of the same parity are on the spine, and the second

player wins otherwise.

We will cast this situation as a game of the Confirming Dueling Bureaucrats game: consider

the chairships as the spine-so-far positions, the rays of even parity as Republicans, the rays of odd

parity as Democrats. The first player in the permutation game is Jim, and the second is Bob. When

a player wants to assign a candidate as a chair, he places the first vertex on the corresponding ray in

one of the two spine-so-far positions. When he wants to confirm a chair, he represents the second

vertex along that ray. When he wants to discard a candidate, he represents the first vertex on that

corresponding ray in any position except one of the spine-so-far position.

If the first player selects the central vertex as his first move, then the second player (Bob in the

bureaucrat game) will have the first move in this corresponding Confirming Dueling Bureaucrats

game. As we have shown, Jim then has a winning strategy. Then Jim will be able to force two

candidates of the same party to be in the two chairships, and the first player of the permutation game

will be able to force two rays of the same parity to be on the spine in the permutation game.

We conclude that:

Theorem 17. In every connected permutation representation game using a long star

• if all rays are of the same parity and there are an even number of rays then there is a first

player winning strategy.

• if all rays are of the same parity and there are an odd number of rays then there is a second

player winning strategy.

• if not all rays are of the same parity then there is a first player winning strategy.

5.11 Games with more than one definition

We have described several types of games: connected representation games, representation grow-

ing games, and subgraph games. Can some of our games be described in more than one of these

117

frameworks?

5.11.1 Connected proper interval representation game using a tree as a sub-
graph game

We claim that we can recast the connected proper interval representation game using a tree game as

a subgraph game as well as a growing game. Consider the subgraph game played with graph class

H being the class of paths using trees. We claim that such a game has the coupled positions property

with the connected proper interval representation game using a tree.

We describe the required transformations. Let S = (Q, V �, f) be a position of the connected

proper interval representation game using a tree T = (V,E). We give a transformation into a

position of the subgraph game on paths using T : the tuple (V �, paths) is a valid position of the

subgraph game, as G[V �] must be a path as it is a tree that is a proper interval graph.

We now give a transformation from a position of the subgraph game (V �, paths) using T to a

legal position of the connected proper interval representation game using a tree T . Let the vertices

in V � be ordered as v1...vk along the path that they induce in T . Then for vertex vi let interval li

be the interval on the real line spanning i − 1/2 to i + 1/2. Let Q be composed of these intervals

for every vertex in V �. Let bijection f contain [vi, li] for each such vertex and interval. Notice that

li ∩ lj �= if and only if either i = j + 1 or i = j − 1. Then S = (Q, V �, f) is a position of the

connected proper interval representation game using a tree T = (V,E).

Let S1
INT

= (Q1, V �1, f1) be a position of the connected proper interval representation game

using a tree T = (V,E), S2
INT

= (Q2, V �2, f2) a child position of S1
INT

, and S1
SG

= (V �1, paths)

the transformation of S1
INT

into the subgraph game on paths. Let S2
SG

= (V �2, paths) be the

transformation of S2
INT

into the subgraph game on paths. S2
SG

is reachable in a single move from

S1
SG

. Therefore there is a child of S1
SG

that has the same outcome class as S2
SG

.

Let S1
SG

= (V �1, paths) be a position of the subgraph game on paths, S2
SG

= (V �2, paths) a

child position of S1
SG

, S1
INT

= (Q1, V �1, f1) the transformation of S1
SG

into the connected proper

interval representation game using a tree T , and S2
INT

= (Q2, V �2, f2) the transformation of S2
SG

into the connected proper interval representation game using a tree T . There is a child of S1
INT

that

is endpoint equivalent to S2
INT

and therefore has the same outcome class.

Then the connected proper interval representation game using a tree T has the coupled posi-

tions property with the subgraph game on paths using T , and so by Lemma 47 a polynomial-time

algorithm to solve one of these games also provides a polynomial-time algorithm for solving the

other.

5.11.2 Connected permutation representation game using a tree as a sub-
graph game

If we are allowed to add a few extra rules about selecting new vertices, we can recast the connected

permutation representation game using a tree with mandatory head as a subgraph game.

118

Let T = (V,E) be a tree with mandatory head u ∈ V . We define the subgraph permutation

analog game (SPAG) as follows: A game position consists of a subset of vertices V � ⊂ V that

induces a caterpillar with u at one end of the spine, and two vertices labeled a, b ∈ V � such that b is

a leaf adjacent only to a, and a is the end of the spine farthest from u. If |V |� = 1 then there is no b.

We express a game position S as a tuple S = (u, a, b, V �).

A move consists of going from one position S1 = (u, a1, b1, V �
1) to S2 = (u, a2, b2, V �

2) where

V �
1 ⊂ V �

2 , v is the only vertex in V �
2 but not V �

1 and either:

• a1 = a2, b1 = b2 and v is a neighbour of a vertex on the path between b1 and u or

• a2 = b1 and b2 = v and v is a neighbour of b1 or

• a2 = a1 and b2 = v and v is a neighbour of a1

We say that two positions of the connected permutation representation game using a tree with

mandatory head are endpoint equivalent if the ordering of the endpoints of the lines segments cor-

responding to vertices down the sides of the two infinite lines in the representation are the same.

Observe that two positions that are endpoint equivalent and have the same mandatory head and are

being played using the same tree have the same outcome class.

We now define transformations for changing a position of the SPAG using a tree into a position

of the connected permutation representation game using a tree , and vice versa.

Let SSPAG = (u, a, b, V �) be a position of the SPAG using a tree. We produce a position of the

connected permutation representation game using a tree with mandatory head u. Let P = [v0 =

u...vk = b] be the path between u and b in V �. For vi ∈ P , if i is even, we assign vi a line connecting

i+1 on the left parallel line to i− 1 on the right. If i is odd, we assign vi a line connecting i− 1 on

the left parallel line to i+ 1 on the right. Observe that the line for vi so far intersects only the lines

for vi−1 and vi+1, if they exist.

The vertices in V �\P induce an independent set, and each is adjacent to exactly one vertex on

P . We now add in the lines for these vertices. For a vertex w that is adjacent to vi ∈ P we assign it

a line that connects i+1− � on the left and i− 1+ � on the right if i is odd, and a line that connects

i − � on the left and i + � on the right if i is even. If another member of V �\P has already been

assigned that line, we assign w another line just slightly below that one. Note that a line for a vertex

v in V �\P intersects exactly the single line for the member of P that v is adjacent to in T .

Because two lines intersect if and only if their corresponding vertices are adjacent in T [V �],

these lines constitute a representation of T [V �], and we have a position of the connected permutation

representation game using a tree with mandatory head u. For an example of the placement of a line

at position i in P and some of the lines around it, see Figure 5.5.

Let SPERM = (u, V �,L, f) be a position of the connected permutation representation game

using a tree with mandatory head u. We produce a position of the SPAG using T with mandatory

119

. . .

. . .

. . .

. . .

i

i -1

i + 1

i - 2

i + 2

i - 3

i + 3

i - 4

i + 4

i - 5

i + 5

i

i -1

i + 1

i - 2

i + 2

i - 3

i + 3

i - 4

i + 4

i - 5

i + 5

i

i -1

i + 1

i - 2

i + 2

i - 3

. . .

. . .

. . .

. . .

i

i -1

i + 1

i - 2

i + 2

i - 3

i + 3

i - 4

i + 4

i - 5

i + 5

i

i -1

i + 1

i - 2

i + 2

i - 3

i + 3

i - 4

i + 4

i - 5

i + 5

i

i -1

i + 1

i - 2

i + 2

Figure 5.5: An illustration of the transformation from a position of the SPAG to the connected
permutation representation game using a tree . If vi is the ith vertex along the spine of the caterpillar
in the SPAG instance, we show the placement of line i to correspond with vertex vi, as well as lines
for vertices vi−2 through vi+2. We also show in dotted line the placement of a line to intersect only
the line for vi to indicate where a line for a leaf pendant from the spine adjacent only to vertex vi
could be placed. On the left is the line placement if i is odd, on the right if i is even.

head u. Let a and b be the two vertices with the two lowest lines in L, with a being the one closer to

u, and therefore on the path from b to u.

Then SSPAG = (u, a, b, V �) is a position of the SPAG using T with mandatory head u.

Let S2
SPAG

= (u, a2, b2, V �
2), S1

SPAG
= (u, a1, b1, V �

1) be legal positions of the SPAG on tree

T = (V,E), and S2
PERM

= (u,L2, V �
2 , f2), S1

PERM
= (u,L1, V �

1 , f1) their transformed versions

in the connected permutation representation game using a tree .

We claim that if position S2
SPAG

= (u, a2, b2, V �
2) is reachable by a legal move from position

S1
SPAG

= (u, a1, b1, V �
1) in the SPAG, then a game position endpoint equivalent to S2

PERM
is

reachable by a legal move from position S1
PERM

in the connected permutation representation game

using a tree T .

Assume that S2
SPAG

= (u, a2, b2, V �
2) is reachable by a legal move from position S1

SPAG
=

(u, a1, b1, V �
1) in the SPAG.

We consider three cases. Either:

1. a = a1, b = b1 and v is a neighbour of a vertex on the path between b and u or

2. a1 = b and b1 = v and v is a neighbour of b or

3. a1 = a and b1 = v and v is a neighbour of a

Observe that in any case the part of the representation in S2
PERM

that represents vertices that are

120

not v is endpoint equivalent to the representation in S1
PERM

, by the nature of the transformation.

In the first case, a = a1, b = b1 and v is a neighbour of a vertex on the path between b and u.

Then the placement of the line for v can be achieved in a single turn.

In the second case a1 = b and b1 = v and v is a neighbour of b. Then we can reach a position

endpoint equivalent to S2
PERM

from S1
PERM

by making L2 be L1 plus a line that is below all lines

it does not intersect and that intersects only f(b), making f � be f plus an assignment of v to the new

line, and making V �
2 be V � plus v.

In the third case a1 = a and b1 = v and v is a neighbour of a. Then we can reach a position

endpoint equivalent to S2
PERM

from S1
PERM

by making L2 be L1 plus a line that is below all lines

it does not intersect and that intersects only f(a), making f � be f plus an assignment of v to the new

line, and making V �
2 be V � plus v.

Now let S1
PERM

= (u,L1, V �
1 , f1). S2

PERM
= (u,L2, V �

2 , f2) be legal positions in the con-

nected permutation representation game using a tree T , and let S2
SPAG

= (u, a2, b2, V �
2), S1

SPAG
=

(u, a1, b1, V �
1) be their transformed versions in the SPAG.

We claim that if position S2
PERM

is reachable by a legal move from S1
PERM

in the connected

permutation representation game using a tree, then S2
SPAG

is reachable by a legal move from S1
SPAG

in the SPAG.

Let v be the vertex in V �
2\V

�
1 . There are two possibilities for f2(v). It is either a lowest line in

the representation, or it is not. If it is not, then the two bottom lines in L1 and L2 correspond to the

same two vertices, and so a1 = a2 and b1 = b2, and S2
SPAG

= (u, a1, b1, V �
1 ∪ {v}), a position

reachable in a legal move from S1
SPAG

.

If f2(v) is a lowest line in the representation, then the other lowest line is either the line cor-

responding to a1 or b1. If the other lowest line corresponds to a1, then a1 = a2 and S2
SPAG

=

(u, a1, b2, V �
1 ∪ {v}) where b2 is a neighbour of a1, a position reachable in a legal move from

S1
SPAG

. If the other lowest line corresponds to b1, then a2 = b1 and S2
SPAG

= (u, b1, b2, V �
1 ∪ {v})

where b2 is a neighbour of b1, a position reachable in a legal move from S1
SPAG

.

Then overall we can say that:

Lemma 49. • Let S2
PERM

= (u,L2, V �
2 , f2) be a position in the connected permutation repre-

sentation game using a tree reachable by a legal move from position S1
PERM

= (u,L1, V �
1 , f1).

Then if S2
SPAG

= (u, a2, b2, V �
2), S1

SPAG
= (u, a1, b1, V �

1) are the transformed versions of

those positions in the SPAG, S2
SPAG

is reachable by a legal move from S1
SPAG

in the SPAG.

• Let S2
SPAG

= (u, a2, b2, V �
2) be a position in the SPAG reachable by a legal move from posi-

tion S1
SPAG

= (u, a1, b1, V �
1). Then if S2

PERM
= (u,L2, V �

2 , f2), S1
PERM

= (u,L1, V �
1 , f1)

are the transformed versions of those positions in the connected permutation representation

game using a tree , then a position endpoint equivalent to S2
PERM

is reachable by a legal

move from S1
PERM

in the connected permutation representation game using a tree .

121

It follows that the SPAG and the connected permutation representation game using a tree with

the same mandatory heads played using the same tree have the coupled positions property, and

therefore a polynomial time algorithm to solve one would suffice, with the transformations, to solve

the other.

5.12 Single Extension

Sometimes, the growing game ends with all vertices represented, regardless of play. We describe

a property of the graph provided and the type of representation that tells us exactly when this will

happen.

Recall that if G� = (V �, E�) is the graph produced by adding vertex v with neighbourhood VB

to graph G. A VB−extension of graph representation (J = (VJ , EJ),J , f,∩) of G = (V,E) is

a representation (J �,J �, f �,∩) of graph G� that can be produced by a series of host subdivisions

and host vertex additions, and then the addition of a subgraph s of J � to J � such that s contains all

vertices in J � but not in J , and f � maps v to s but is otherwise the same as f .

Then we define the single extension property as:

Definition 14. Let H and K be graph classes. We say that the ordered pair (H,K) has the single

extension property if for every graph G = (V,E) ∈ H with proper subgraph intersection represen-

tation (J = (VJ , EJ),J , f,∩) such that J is in K for every graph G� ∈ H that is G plus one extra

vertex v with arbitrary neighbourhood Vn, there is a Vn-extension of (J = (VJ , EJ),J , f,∩) such

that the host graph of the Vn-extension is in K.

Lemma 50. The ordered pair (trees, trees) has the single extension property.

Proof. Let T = (VT , ET) be a tree with proper subgraph intersection representation (J = (VJ , EJ),J , f,∩)

such that J is a tree. Then because there are no cliques of size three in T , and because the represen-

tation is proper, in each subgraph in J there is at least an edge e that is only in that subgraph and

not in any other.

Let T � be a tree that can be created by adding a single vertex, v�, to T . Let u be the neighbour of

v� in T �.

Let (J � = (V �
J
, E�

J
),J �, f �,∩) be a representation created by first performing a host subdivision

on edge e, and then a host vertex addition of a vertex adjacent to only the subdividing vertex, and

then adding to J a subtree consisting of only those two new vertices with f � mapping that new

subtree to v.

The representation (J � = (V �
J
, E�

J
),J �, f �,∩) is a {u}-extension of (J = (VJ , EJ),J , f,∩),

and is a representation of T �.

Lemma 51. The ordered pair (paths, paths) has the single extension property.

122

Proof. Let P = (VP , EP) be a path with proper subgraph intersection representation (J = (VJ , EJ),J , f,∩)

such that J is a path. Because the intersection representation is proper, the two vertices on the ends

of P must be assigned subgraphs that each contain a vertex contained only in that subgraph and not

in any other member of J .

Let P � be a path that can be created by adding a single vertex, v, to P . Vertex v� must be adjacent

to one of the end vertices in P . We call this vertex u.

Let (J � = (V �
J
, E�

J
),J �, f �,∩) be a representation created by performing a host vertex addition

of a vertex adjacent to only the end vertex of J contained only in f(u), and then adding to J a

subpath consisting of only the new vertex and its neighbour with f � mapping that new subpath to v.

The representation (J � = (V �
J
, E�

J
),J �, f �,∩) is a {u}-extension of (J = (VJ , EJ),J , f,∩),

and is a representation of P �.

Lemma 52. Let G = (V,E) be a graph, H a graph class, and A a graph class consisting of exactly

G and its induced subgraphs. The ordered pair (A,H) has the single extension property if and

only if every connected H representation game using G ends with all vertices of G represented,

regardless of play.

Proof. Assume that (A,H) has the single extension property. Now assume that there is an end state

of the game in which not all vertices are represented. However, by the fact that (A,H) has the single

extension property, that end state cannot be an end state, a contradiction.

Assume that every connected H representation game using G ends with all vertices of G repre-

sented, regardless of play. Then the class of graphs composed of exactly G and all of its induced

subgraphs must have the single extension property with H .

123

Chapter 6

Conclusion

6.1 Future work

The work presented in this thesis suggests many areas for future research. While we show the

hardness of recognising several subclasses of subtree overlap graphs, parameterised by leafage of the

underlying tree and maximum degree in the underlying tree, the complexity of recognising subtree

overlap graphs in general is open.

Our work on relating S-covered subtree overlap graphs to the S-filament graphs showed that

overlap graphs of caterpillars are exactly interval filament graphs. It was previously known to be

NP-complete to recognise interval filament graphs, and so now we know that it is NP-complete to

recognise caterpillar overlap graphs. Might this filament approach to overlap graphs give insight

into some other subclasses of subtree overlap graphs? What other covering subtrees are interesting?

We suggest perhaps the caterpillar-covered subtree overlap graphs for future study, as they are a

relatively simple class of trees that contain paths.

Our result holds only for filaments on subtrees of a tree. Gavril defines many other types of

filaments. Is there an analagous covering theorem for other filaments, for example the circular arc

filaments, that would characterise these classes in terms of overlap representations? Gavril has

already shown that they have G-mixed partitions, an important part of our work.

The multi-chain ordering we used to list colour permutation and interval graphs also suggests

future research. Our algorithm will work for any graph for which every induced subgraph has a

multi-chain ordering. We currently don’t know much about these graphs - do they have some other

characterisation? Can they be recognised efficiently, and can multi-chain orderings be generated

in linear time? At the moment the only algorithm for generating multi-chain orderings in general

graphs requires constructing a breadth-first search tree from each vertex.

We also think that the multi-chain ordering may be useful in devising algorithms for other prob-

lems. A similar ordering was used by Heggernes et al. [1] to compute bandwidth on bipartite

permutation graphs. Can the multi-chain ordering be used to compute bandwidth on a larger class

of graphs? As outlined by Heggernes et al. [1], bandwidth is a notoriously difficult problem. Very

124

few graph classes are known to have polynomial time algorithms for bandwidth. Heggernes et al.

[1] identify determining the complexity of bandwidth on permutation graphs as an important open

question.

We’ve only just begun to describe our newly defined set representation, subgraph, and growing

games. We solved some cases of some games with mandatory heads, and we provided solutions

when the games were played using trees. The complexity of solving these games without a manda-

tory head, using graphs other than trees, and using other types of set representations is open.

6.2 Conclusion

We have explored research areas related to set representations of graphs. In particular, much of

our work has dealt with graph classes with set representation characterisations. As outlined in the

introduction, this has been a popular area of research, with many classes defined and algorithms

described.

First, we focused on recognising and characterising graph classes with set representation charac-

terisations. We considered various subclasses of subtree overlap graphs. We showed that recognising

the overlap graphs of subtrees in a tree with a fixed number of leaves in the underlying host tree is

NP-complete. We showed that recognising the overlap graphs of subtrees of subdivisions of a partic-

ular tree is NP-complete, provided that specified tree is not a path. We showed that recognising the

overlap and intersection graphs of paths in a tree with fixed maximum degree is NP-complete. We

found all of these results somewhat surprising, but particularly the hardness result on the intersec-

tion class. There exist polynomial time algorithms for recognising the intersection graphs of paths in

trees - in this instance adding the mixed maximum degree constraint made the recognition problem

harder rather than easier. The complexity of recognising subtree overlap graphs remains open. As

with the intersection graphs of paths in a tree with fixed maximum degree, fixing parameters of the

representation may have made our subtree overlap recognition problems harder - perhaps subtree

overlap graphs can be recognised in polynomial time.

We then moved on to characterisations of subclasses of subtree overlap graphs in terms of their

filament representations. Showing that graphs that have one type of representation are exactly graphs

that have some other type of representation gives us more ways of looking at these classes of graphs.

In particular, this work showed equivalence between some intersection and overlap classes, includ-

ing the interval filaments and caterpillar overlap graphs. Previously, the complexity of recognising

caterpillar overlap graphs was open, but because recognition is hard for interval filament graphs, we

now know it to be hard.

Next we described a polynomial-time algorithm that uses set representation characteristics for

an otherwise-hard problem. We gave a polynomial-time algorithm for list colouring graphs with

a multi-chain vertex ordering if all of their induced subgraphs have multi-chain orderings and the

total number of colours is fixed. We showed that two classes defined by their set representations,

125

permutation and interval graphs, have these properties. This vertex ordering may apply to larger

classes of graphs, and may lead to more polynomial-time algorithms for hard problems.

Finally, we defined a family of games using set representations of graphs. In the set represen-

tation game, players select sets from a given pool to build a set representation of a graph. The last

player to make a legal move wins. We show this family of games in general, and some subclasses of

this game in particular, are generalisations of Kayles, and therefore it is NP-hard to determine, with

perfect play, which player will win a position.

These games are impartial, so we can use the well-developed Sprague-Grundy theory to analyse

them and their sums. We showed that our set representation games are equivalent to another type of

game we define: the subgraph games. In these games, players must choose vertices from a graph

such that the subgraph induced by the chosen vertices is always in some specified graph class. The

subgraph games are a generalisation of Kayles. Kayles is a subgraph game played with independent

sets as the specified type of graphs that the chosen vertices must induce.

We’ve done work on three areas at the core of research on graph classes defined by their set

representations: recognition complexity, characterisations, and polynomial-time algorithms using

the set representation characterisation of the class. We also moved ideas on set representations of

graphs into combinatorial game theory, defining a number of games, and giving complexity results

and polynomial-time algorithms to solve some games. Set representations of graphs in these, and

other, areas will continue to be active areas of research.

126

Bibliography

[1] Pinar Heggernes, Dieter Kratsch, and Daniel Meister. Bandwidth of bipartite permutation graphs

in polynomial time. In Proceedings of the 8th Latin American conference on Theoretical infor-

matics, LATIN’08, pages 216–227, Berlin, Heidelberg, 2008. Springer-Verlag.

127

