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Abstract

We study a channel selection problem in cognitive radio with imperfect

spectrum sensing. In this problem, a secondary (unlicensed) user must select

a subset of M channels out of N channels to sense. The user then accesses up

to K ≤ M channels that were sensed free. The objective is to maximize the

user’s expected throughput. This work is motivated by the surprising fact that

an intuitive solution proposed in the literature is only optimal for K = M . We

perform a worst-case performance analysis of the intuitive solution and show

that its performance can be a factor of Ω(N) (that is a constant factor of N)

worse than that of the optimal solution. We propose polynomial-time optimal

solutions for cases where K = 1, M = O(1), or N − M = O(1). For the

general case, we propose a sub-optimal polynomial-time algorithm, as well as

a polynomial-time algorithm to calculate an upper bound on the maximum

throughput achievable.
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“Those who intend on becoming great should love neither

themselves nor their own things, but only what is just,

whether it happens to be done by themselves or others.”

- - Plato
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Chapter 1

Introduction

1.1 Cognitive Radio Networks

In 1999, Joseph Mitola III and Gerald Q. Maguire, Jr. proposed a new tech-

nology in wireless networks called Cognitive Radio [1]. Their original thought

was using such technology for PDAs (personal digital assistants) and hand-held

devices which was starting to emerge at the time. Cognitive Radio Networks

are different from traditional radio networks as there are no fixed radio fre-

quency or set of channels for transmission. Instead, a device taking advantage

of Cognitive Radio Network technology will intelligently decide on what chan-

nel to use based on the available information. Cognitive Radio Networks are

categorized into two main types:

• Full Cognitive Radio (Mitola radio): The devices takes advantage of

every observable parameter to choose the best radio frequency for trans-

mission. A full cognitive radio system is mostly research based and prob-

ably will not be implemented in the near future.

• Spectrum-Sensing Cognitive Radio: The devices only use the avail-

ability of radio frequencies to make the best decision on using such chan-

nel for radio transmission. Spectrum-Sensing Cognitive Radio systems
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Figure 1.1: A Secondary User (Unlicensed User) will transmit on a free channel
without disrupting its Primary User (Licensed User). As soon as the primary
user starts using such channel, the secondary user will stop transmitting on
that channel and move to a new free channel. In the above figure, grey cells
show primary user activity on the channel and the arrows show secondary user’s
choice of channel for transmission.

are mostly used to improve the efficiency of usage in existing bands.

In cognitive radio networks, the available radio channels are either unli-

censed (e.g. Wi-Fi Frequencies like 2.4 GHz and 5 GHz) or licensed under

some other user. The license holders of these radio channels are called Primary

Users in cognitive radio networks. On the other hand, the user taking advan-

tage of the cognitive radio network technology is called a Secondary User. In

different cognitive radio systems, there can either be a single secondary user

or multiple secondary users, either transmitting independently or in the same

network with each other.

Cognitive radio networks can utilize multiple radio channels by taking ad-

vantage of their free times. In a cognitive radio system, the secondary user will

start transmitting on a free channel, but as soon as it senses activity on such
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channel, it can move to another free channel as shown in Figure 1.1.

There are multiple challenges when it comes to using cognitive radio net-

works. First of all, the radio channel allocations and the regulatory bodies are

based on fixed channel transmission and do not let users use the reserved chan-

nels licenced for other purposes, even if the secondary user creates virtually no

disruption for the primary user. However, in the recent decade, the regulatory

bodies have started to discuss the possibility of regulating the cognitive radio

networks and creating a possibility for secondary users to take advantage of

the licensed bands and channels without disrupting their primary users’ trans-

mission.

Another challenge in using cognitive radio networks is the dependability of

sensing and the importance of not disrupting the licenced user. As we will

explain more in the net section, Sensing a channel for activity does not give us

fully dependable results. A free sensed channel can be actually busy, or a busy

sensed channel can be free. Based on the importance of the licenced user’s

activity and the probability of error, cognitive radios might not be feasible in

some situations.

Cognitive radio networks have many applications. One of the main applica-

tions is utilization of many licenced spectrum which are not assigned efficiently

and are wasted. Since these channels are licenced no one but their assigned

user have been able to use them for transmission. But in most cases, the pri-

mary users are not taking full advantage of the band. Cognitive radio networks

create the opportunity for unlicensed users to take advantage of such channels

without disrupting the primary user.

Another important application is the ability to set-up a wireless network in

any place without any knowledge of the spectrum usage, assignments or doing

field tests. Such systems can easily adopt to any location by choosing the less

frequently used channels automatically and creating an stable transmission

medium for any purpose.
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Cognitive radios have not yet been fully commercialized in large scales. But

some devices are available which take advantage of the technology to deliver

higher bandwidths to the users.

1.1.1 Channel Sensing

Wireless systems need to sense the channel they are going to use for trans-

mission before using it to make sure there is no activity on that channel or

frequency. Most of the time the sensing process is not perfect and the result

might not be reliable. Two main errors might happen when sensing,

1. False Alarm: False alarm happens when a channel is free but due to,

for example, noise the user decides that the frequency is not available.

2. Miss Detection: Miss detection happens when the radio frequency is

being used but the user cannot sense the activity due to, for example,

distance and decides that the frequency is available for transmission.

1.2 A Nontechnical Abstraction

The main problem discussed in this thesis can be abstracted using a simple

game. This abstraction serves two main purposes:

1. It presents a nontechnical view of the problem, making it easy for anyone

with minimum background to understand the concept.

2. It is a more abstracted and general form of the problem, giving it broader

applications in computer science.

Imagine a game where you are presented with N closed boxes. Each box

contains some money and is labelled with the amount of money inside. You

are offered to take the money from K of those boxes. The problem is that,

unfortunately, some of the boxes have been emptied before. You do not know
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the empty boxes, but you have been able to calculate a probability of each box

being empty. Since this is not a favourable situation, we are allowed to open

and take a look at inside of M (K ≤M ≤ N) boxes. Other boxes (those that

are not opened) are discarded. From the boxes that are opened, we can, then,

choose K boxes and collect the money from them.

If you know which M boxes to look inside, the “money-collection” step will

be quite easy. After looking inside the boxes, you will choose the K with the

highest amount of money. The important decision you have to make is which

M boxes to look inside. The case where N = M is trivial. Also, the case where

M = K has been proved to be intuitive: in this case, one must choose the M

boxes with the highest expected reward (Probfull × Reward). The important

remaining question will be which boxes to look inside when N < M < K.

Let’s see the difficulty of the choice using a simple example. You are pre-

sented with N = 3 boxes (B1, B2, and B3). The boxes are labelled $2, $11, and

$100, respectively. Based on your experience and previous observations, you

know that the first box is full (P1 = 100%), the second box has a 10% proba-

bility of being full (P2 = 10%), and the last box has a 1% probability of being

full (P3 = 1%). You can see the inside of two boxes of your choice, and take

money from one of those two boxes. There are three possible options/choices

on what two boxes to open: {(B1, B2), (B1, B3), (B2, B3)}. For each choice, the

expected money that will be collected will be:

Reward(B1,B2) = (0.10× 11) + (1− 0.10)× 1.00× 2 = $2.80

Reward(B1,B3) = (0.01× 100) + (1− 0.01)× 1.00× 2 = $2.98

Reward(B2,B3) = (0.01× 100) + (1− 0.01)× 0.10× 11 = $2.089

The intuitive solution (which is to choose the boxes with the highest ex-

pected reward) gives (B1, B2) which will result in Reward(B1,B2) = $2.80. How-

ever, choosing (B1, B3) will give the expected reward of Reward(B1,B3) = $2.98.
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Figure 1.2: Dark grey areas show the M = 3 channels chosen to be sensed, and
light grey areas show the K = 2 channels used for transmission. A transmission
only happens on channels that were sensed free.

1.3 System Model and Definitions

We use a slightly-generalized model as the one used in [2]. Similar models have

also been used in [3, 4, 5, 6].

In this model, there is a single secondary user (SU), and N independent

primary channels, C1, . . . , CN . The time is divided into slots of length T . As

shown in Figure 1.2, each time slot is further divided into two phases, a sensing

phase of length τ and a transmission phase of length T − τ . In the sensing

phase of every time slot, the secondary user senses M , M ≤ N , channels.

Then, in the transmission phase, it uses K, K ≤ M , channels from the ones

sensed free, to transmit data. If the number of channels sensed free is less

than K, then secondary user uses all the sensed free channels to transmit data.

We assume that the secondary user can transmit B (Ci) bits on a sensed free

channel Ci in one slot. This generalizes the model used in [2], as in that model

B (Ci) = B (Cj) for every 1 ≤ i, j ≤ N , while in our model B (Ci) , 1 ≤ i ≤ N

can be different numbers.

We use θ (Ci), 1 ≤ i ≤ N , to denote the probability that channel Ci is free in
a slot. Miss-detection probability of Ci, defined as the probability of Ci sensed
free when it is busy, is denoted by μ (Ci). Also, false alarm probability of Ci,
defined as the probability of Ci sensed busy when it is free, is denoted by α (Ci).
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The probability of channel Ci being sensed free, φ (Ci), can then be calculated

as

φ (Ci) = θ (Ci) (1− α (Ci)) + (1− θ (Ci))μ (Ci) . (1.1)

We define the conditional reward of a channel Ci (denoted by Rc (Ci)) as the

expected number of bits that can be successfully transmitted on Ci given that

Ci is sensed free. Formally,

Rc (Ci) = θ (Ci) (1− α (Ci))
φ (Ci) B (Ci) . (1.2)

Furthermore, we define the blind reward of a channel Ci (denoted by Rb (Ci))
as

Rb (Ci) = θ (Ci) (1− α (Ci))B (Ci) = φ (Ci)Rc (Ci) , (1.3)

that is the expected number of bits that can be successfully transmitted on Ci
before knowing the result of sensing. Note that the secondary user does not

transmit on a sensed-busy channel. Also, because of miss-detection, a trans-

mission by the secondary user on a sensed-free channel may not be successful.

Without loss of generality, throughout the thesis, we assume that

Rc (C1) ≤ Rc (C2) ≤ . . . ≤ Rc (CN) ,

that is channels C1, . . . , CN , are sorted by their conditional rewards.

1.4 Problem Definition & Objective

The objective is to maximize SU’s gain, defined as the expected number of bits

successfully transmitted by secondary user in a slot. To achieve this, secondary

user first needs to decide on what channels to sense. Then, if the number of

channels sensed free is more than K, secondary user has to decide on what K

channels to access. The second decision is easy to make; As stated in [2], the
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optimum solution is to access the K channels with the K largest conditional

rewards. The first decision, on the other hand, is difficult in general, and is the

target of this work. More formally, the problem is defined as follows. Given

N channels C1, . . . , CN with characteristics θ (Ci) , α (Ci) , μ (Ci), 1 ≤ i ≤ N , let

random variables X1, . . . , XN be

Xi =

⎧⎨
⎩
Rc (Ci) with probability φ (Ci) ;
0 with probability 1− φ (Ci) .

Also for a subset S ⊆ {C1, . . . , CN} let

Ψ(S) =
K−1∑
i=0

X(N−i)

where X(i) is the ith order statistic of X1, . . . , XN .

The problem is to find

argmax
S⊆{C1,...,CN}

|S|=M

Ψ(S).

1.5 Thesis Motivations and Contributions

Strict wireless network regulations has resulted in inefficient radio spectrum

usage. A considerable part of costly radio spectra is under-utilized, while some

part of it is heavily used [7, 8]. One of the most promising approaches in

exploiting the allocated bandwidth more efficiently is cognitive radio in which

an unlicensed (secondary) user can take advantage of the under-utilized radio

channels. To avoid disturbing licensed (primary) users, a channel must always

be sensed free by a secondary user before each transmission. Also, a secondary

user must immediately back-off as soon as a primary user starts using the

spectrum. Implementing these restrictions has been one of the main challenges

in the design of cognitive radio strategies and algorithms.

In practice, there are usually far more channels available than what a single

8



secondary user needs. With the increase in the number of available channels

the search space grows exponentially. This leads to the problem of fast optimal

channel set selection. Suitability of a channel selection strategy depends on

the design objective, which can be optimizing power consumption, finding the

required free channels in a limited time, or minimizing the chance of disturbing

the primary user. Several different models and objectives to this problem exist

in the literature. In some models, the sensing is assumed to be perfect without a

priori knowledge on channel availability and activity, while some other models,

including the one adopted in this work, assume imperfect channel sensing with

a priori knowledge of channel activity. In the model with imperfect channel

sensing, at the beginning of a time slot, the secondary user senses a set of

M channels. When it comes to accessing channels which are sensed free, two

scenarios can be considered. In the first scenario, the secondary user access

all the sensed-free channels. In this scenario, the optimal set of channels to

sense is easily found [2]. We call this approach the intuitive solution, since,

it intuitively selects channels with highest expected “rewards”. In the other

scenario, the secondary user only needs to access a limited number K, K < M ,

of the sensed-free channels. Interestingly, as shown in [2] through an example,

in this scenario, the intuitive solution is not necessarily optimal. Motivated

by this fact, in this thesis we study the gap between the performances of the

intuitive solution and the optimal solution. We also study the optimal solution

when K < M . Some of the contributions of this work are:

• We prove that the performance ratio between optimal solution and the

intuitive solution can grow linearly with the number of channels. We

explain a scenario where such large gaps appear, and use simulations to

verify that.

• We show that there is a single channel that is part of an optimal solution

for any K, M , and N .
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• We propose an optimal polynomial-time solution forK = 1. This is an in-

teresting special case, as simulation results suggest that the performance

gap is maximized when K = 1.

• We propose a polynomial-time algorithm to calculate the maximum through-

put for a given set of channels when N = M . Using this algorithm,

we propose a sub-optimal algorithm for the general case, derive an up-

per bound on the performance of the optimal solution, and show that

polynomial-time optimal solution exist when M is small or when it is

large (that is close to N).

1.6 Thesis Outline

This thesis is organized as follows. In Chapter 1, we describe an abstracted

game presentation of the problem. We also explain the model in details, and

formally define the problem. Chapter 2 covers some related works, and explains

some necessary background to the thesis material. In Chapter 3, we present

the main contribution. This chapter is further divided into the following sec-

tions. In Section 3.1, we prove that there is a linear gap between the optimal

and intuitive solution. Section 3.2 provides a recursive equation to calculate

the optimal solution, and show that there is a channel which is part of any

optimal solution. In Section 3.3, using dynamic programming, we propose an

optimal polynomial-time solution for the case K = 1. Using a similar dynamic

programming, we derive an upper bound on SU’s gain for the general case of

K ≤ M in Section 3.4. We also provide a sub-optimal solution in Section 3.5.

In Chapter 4 we use simulation to verify some of the analytical results. Finally,

Chapter 5 discusses some future directions and concludes the thesis.
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Chapter 2

Background & Related Work

2.1 Asymptotic Notations

Asymptotic Notations are used to compare growth rates of mathematical func-

tions. There are two main notations used more often than the others: i) O(.)
notation, and ii) Ω(.) notation. These two notations show the upper and lower

bound on the asymptotic growth rate of a function, and are related with each

other according to the following formula

f(x) = Ω(g(x)) ⇐⇒ g(x) = O(f(x)) (2.1)

The O(.) and Ω(.) notations are also defined as sets of all the functions with

the given characteristics, so we can also write the equation as

f(x)∈Ω(g(x)) ⇐⇒ g(x)∈O(f(x))

1. Big-O Notation:

TheO(.) Notation shows an upper bound on the growth rate of a function.

11
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Figure 2.1: f(x) = O(g(x)) as there exist a real number c (for example, c = 1),
such that for all numbers larger than x0 = 4 we have f(x) ≤ cg(x). Using
Eq. [2.1], we also have g(x) = Ω(f(x)).
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Formally speaking

f(x) = O(g(x)) ⇐⇒ ∀x≥x0 |f(x)| ≤ c|g(x)|,

for some positive real number c, and some real number x0. As shown

in Figure 2.1, f(x) = O(g(x)), which roughly means g(x) asymptotically

faster than f(x).

2. Big-Omega Notation:

The Ω(.) notation shows a lower bound on the growth rate of a function.

As shown in Figure 2.1, g(x) = Ω(f(x)), which again roughly means f(x)

grows asymptotically slower than g(x). A very widespread definition of

Ω(.) is based on the definition of O(.) which was presented in Eq. [2.1].

Example:

Let

f(x) = x5 − x3 + 2x2 + 3.

Then O(.) and Ω(.) will contain

O(f(x)) = {x5, x5 − x4 − 7, 100x2, log x, · · · },
Ω(f(x)) = {x5, x5 − x4 − 7, x7, 2x, · · · }.

If a function is in both O(.) and Ω(.) sets, it is called to be a member of Θ(.).

So, based on the example we have

Θ(f(x)) = {2x5, x5 − x4 − 7, · · · }.

2.1.1 Time/Space Complexity of Algorithms

The run time of an algorithm is a function of the length of the string repre-

senting the input. The time complexity of an algorithm quantifies this, and is
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commonly expressed using asymptotic notations such as those discussed earlier.

For example, let n denote the input size. We say that time complexity of an

algorithm is O(n4), if the function representing the run time of the algorithm

is O(n4). Similarly, the space complexity of an algorithm is defined. Roughly

speaking, the time and space complexity of an algorithm give us a feeling about

the run time and the space requirement of the algorithm for large inputs.

Five common complexity classes are: 1)constant, 2)Logarithmic, 3)Linear, 4)Poly-

nomial, and 5)Exponential.

1. Constant: An algorithm has constant time complexity if its run time is

always less than t units of time, for some real number t. In other words,

the function representing the run time is Θ(1).

An example of an algorithm with constant run time is finding the mini-

mum of a sorted list. The algorithm just needs to check the first member

of the list, independent of how long the list is.

2. Logarithmic: An algorithm has logarithmic time complexity if its run

time grows logarithmically with the input size. We say such algorithms

have Θ(log(n)) time complexity.

A well-known example of an algorithm with logarithmic run time is Bi-

nary Search. Binary search is used to find or validate the existence of a

member in a sorted list. The algorithm works by turning the list into a

virtual tree. In each step, the algorithm checks the middle member of the

list, which will be the root of the tree. If that member is smaller than the

desired value, then the desired value must be on the right side, which the

node’s right sub tree. If the it is greater than the desired value, then the

search must continue on the left sub tree. This process will be repeated

on the targeted sub tree until either there are no more sub trees or the

desired member is found. Since the size of the list is divided by two in

each step, there can be at most log(N) operations on a list of size N ,
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hence, a logarithmic run time.

3. Linear: An algorithm has linear time complexity if its run time function

is Θ(n).

A simple example of an algorithm with linear run time is finding the

maximum member of an unsorted list. The algorithm just goes through

the list from the beginning of the list to the end and compares each

member with the maximum member up to there. Since the algorithm

just makes a comparison on each member it will run in linear time.

4. Polynomial: An algorithm has polynomial time complexity if its run

time function is Θ(nm) for some integer m.

An example of an algorithm with polynomial run time is Bubble Sort.

Bubble sort goes through a list and compares each neighbouring pair,

swapping them if they are not in the correct order. As a result each time

the algorithm goes through the list the last member will definitely be in

the correct place. As a result, each time the algorithm can ignore the

new last member and repeats the process on the reminder of the list.

After N rounds on a list of length N the list will be sorted. Each of

these rounds goes through the list and performs O(N) calculations. As a

result, the algorithm performs O(N2) calculations, hence, a polynomial

time algorithm.

5. Exponential: An algorithm has exponential time complexity if its run

time function is Θ(mn) for some real number m > 1. Algorithms with

exponential time complexities are considered impractical.

Algorithm 1 a simple algorithm that calculates the Nth member of the

Fibonacci sequence, and has exponential run time time. To calculate

the Nth member of the Fibonacci sequence, Algorithm 1 calculates the

(N − 1)th and (N − 2)th members, which also are recursively dependent
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Fib(1) Fib(0)

Fib(1)

Figure 2.2: The Fibonacci Tree

on other values. This will create a binary tree shown in Figure 2.2 with

maximum height N which will have O(2N) nodes, hence, an exponential

run time.

Algorithm 1 The recursive algorithm written in C programming language.
This code is simple but computationally inefficient, the run time of the code is
O(2n) and the space requirement is O(n) (The recursive function call needs to
keep the information in stack).

int Fibonacc i ( int n)
{

i f (n==0 | | n==1)
return 1 ;

return Fibonacc i (n−1)+Fibonacc i (n−2);
}

2.2 Dynamic Programming

Many computationally intensive problems are made up of smaller sub problems.

Dynamic Programming takes advantage of these smaller sub problems and tries

to build the main solution from bottom up. Since many of these smaller sub

problems repeat themselves in the process, solving each of these sub problems

once and using the solution in future occurrences of the problem can boost the
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Index Fib(0) Fib(1) Fib(2) Fib(3) Fib(4) Fib(5) · · ·
Values 1 1 2 3 5 8 · · ·

Figure 2.3: The Fibonacci Table

performance of overall solution significantly.

Example:

One of the most famous examples of a problem with repetitive sub problems

is finding the Nth member of the Fibonacci sequence. Each Fibonacci number

is calculated based on the value of the two previous numbers. As it is shown in

Figure 2.2 the number of nodes in the tree grows exponentially as the Fibonacci

number grows (Finding Fibonacci(40) using Algorithm 1 will be impossible in

plausible time). However, most of the values in the tree are redundant and

are not necessary to recalculate. As a result, by breaking the problem into sub

problems and changing our approach to Figure 2.3 and Algorithm 2, we can find

the Nth Fibonacci number in O(n) (which allows us to calculate Fibonacci(220)

almost instantly).

Algorithm 2 The use of dynamic programming on the Fibonacci algorithm
reduces the run time to O(n). The space requirement is still O(n) for keeping
the table shown in Figure 2.3.

int Fibonacc i ( int n)
{

int DP[N ] ;
DP[0 ]=DP[1 ]=1 ;
for ( int i =2; i<=n ; i++)
DP[ i ]=DP[ i−1]+DP[ i −2] ;

return DP[ n ] ;
}

Algorithm 2 space consumption is O(n) which can be reduced by not keep-

ing the result of unnecessary sub problems when there is no more use for them.

Algorithm 3 shows this enhancement by replacing the table shown in Figure 2.3

with a small, constant size table of size three.
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Algorithm 3 Sometimes, in dynamic programming algorithms, keeping the
result of old calculations is not necessary. This allows us to reduce the space
complexity of the algorithm significantly. For example, the code below reduces
the space complexity of Algorithm 2 to O(1) without affecting the time com-
plexity.

int Fibonacc i ( int n)
{

int DP[ 3 ] ;
DP[0 ]=DP[1 ]=1 ;
for ( int i =2; i<=n ; i++)
DP[ i%3]=DP[ ( i%3)−1]+DP[ ( i %3)−2];

return DP[ n%3];
}

2.2.1 Two-Dimensional Dynamic Programming

A two-dimensional dynamic programming is very similar to a one-dimensional

dynamic programming with the difference that it deals with two input variables

instead of one. For these kind of problems we can use a matrix (2D array) to

store the calculated outputs.

Example:

A famous problem taking advantage of two-dimensional dynamic program-

ing is finding the number of paths between two points (a source and a desti-

nation) on a grid with the minimum Manhattan distance (the distance when

only allowed to move horizontally or vertically). As seen in Figure 2.4, there

are some blocked cells between the source and destination. In order to find

all different paths, we can start from the destination and count the number of

paths based on neighbouring cells. If we assume that there is one path from the

destination to itself, then the number of paths from each cell to the destination

will be the sum of its upper and right neighbour paths to the destination, with

the exception that the blocked cells will have no path to the destination.
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5 1 1 1 1 1

4 1 B 3 2 1

3 7 6 6 3 1

2 13 6 B B 1

1 20 7 1 1 1

A B C D E

Figure 2.4: The figure shows the process of finding the number of different
paths from the cell A1 to cell E5 with the minimum Manhattan distance (the
distance when only allowed to move horizontally or vertically). As it can be
seen, the number of paths for each cell is the sum of its top and right neighbour,
with the exception of blocked cells (shown by the character B) which cannot
have a path go through them. Using this method and starting to fill the table
from the destination and continuing by filling each cell’s neighbours, the result
can be seen in cell A1.
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2.2.2 Higher Dimensional Dynamic Programming and

Special cases

For higher dimensions of dynamic programming, the logic stays the same and

the only factor changing is the number of input variables which our answer

depend on. For each variable, we need to add another dimension to our array.

In some special cases, we can use other data structures other than an array

to save space. For example, in some cases, the dependency is not on all values

and our multidimensional matrix will be sparse. In these cases, it might be

useful to take advantage of a dependency graph, a tree, or many other methods

used for saving space in sparse matrices.

2.3 Related Work

Our work is mainly based on the paper published by Zhou Zhang et al. about

choice of channels in cognitive radios with imperfect sensing [2]. In their work,

they analyze some special cases and present the optimal solution for them:

• With homogeneous sensing: In this category, they consider the case

where all channels have the same miss detection probability, that is

∀C∈S μ (C) = μ,

where μ is a constant, and they all have the same false alarm probability,

i.e.

∀C∈S α (C) = α,

where α is a constant. In this case, they show that intuitively sorting

the channels by their probability of being free θ (C) and choosing the M

largest will give the optimal solution.

• With common detection probability: This category, also assumes
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all the channels to have the same false alarm probability

∀C∈S α (C) = α,

but the channels can have different miss detections. In this case, they

show that if sorting the channels by their probability of being free θ (C)
gives the same order as sorting them by their blind reward Rb (C), then
the solution again will be choosing the M channels with the largest prob-

ability of being free (θ (C)).

• General case: In the general case Zhou Zhang et al. show that if sorting

the channels by their probability of being sensed free φ (C) will also sort

the channels by their Conditional Reward Rc (C), then the optimal set of

channels to sense to create the optimal reward will be the M channels

with the largest Conditional Reward Rc (C) which is also the same as the

M channels with the largest probability of being sensed free φ (C).

One of the main generalization we made to this work is using a general

bandwidth B (C), in contrast to Zhou Zhang et al. who set the bandwidth

value B (C) = 1 (the same as Γ = 1 in our notations) to simplify the formulas.

The other existing related works can be categorized by either the adopted

model or their objective. Some models assume no prior knowledge of the sys-

tem. In particular, these models assume no prior information about channel

availability and their distribution. A model based on the above assumption is

the one used by Xi Fang et al. [9]. In their model, they assume perfect sensing,

and that any sensed-free channel can be accessed.

On the other hand, some models assume a priori knowledge of the system,

either the probability of the channels availability or a distribution of the chan-

nels usage. For example, in the model used by Zhou Zhang et al. in [2], it

is assumed that the probability of channels availability is known. We use the

same assumption in our model.
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Another criteria that can distinguish different models is whether the channel

sensing is perfect or faulty. Models like the one used by Zhou Zhang et al.

assume imperfect sensing [10]. In these models, a free channel can be sensed

busy, and a busy channel can be sensed free. Our model uses this assumption

as this is the case in practice.

The existing work can also be categorized by their objectives. Some existing

work try to optimize the total amount of data transmitted [9], while some

other try to optimize the energy consumption. For example, [11] focuses on

energy consumption and optimizing the length and power of the sensing and

transmission periods.

Hiteshi Sharma et al. models a system with imperfect sensing where the sec-

ondary user can only sense one channel at a time. They use Optimal Stopping

Problem to decide whether a sensed free channel should be used for trans-

mission or the secondary user should ignore it due to its quality and continue

sensing other channels [12].

Hossein Shokri-Ghadikolaei et al. focuses on ensuring a minimum Quality of

Service for the primary user while the secondary user uses a randomly selected

order of channels to roam between them in order to avoid overlapping with the

primary user. They use Markov chain analysis to find the average throughput

for both the primary and secondary user [13].

In this thesis, we use a simple but practical definition of the problem used

in [2]. Our model assumes imperfect sensing. It also assumes that, in each time

slot, the secondary user can sense a limited number of channels, which can be

more than the number channels needed for transmission. These characteristic

are simplified into some probabilistic values explained in Section 1.3. As in [2]

our objective is to maximize the average number of bits transmitted.
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Chapter 3

Channel Sensing in Cognitive

Radio Networks

3.1 Optimal Solution vs. Intuitive Solution

As mentioned earlier, the intuitive solution is optimal when K = M . However,

as shown in [2] through an example, the gain offered by the optimal solution

can be higher than that achieved by the intuitive solution when K < M . One

might wonder if the gap between the gains achieved by the two solutions can

grow arbitrarily large as the number of channels increases. In this section, we

show that this is indeed the case, in the worst case. That is, we can select

channels’ parameters in a way that the gain achieved by the optimal solution

is arbitrary higher than the gain achieved by the intuitive solution.

Proposition 1. Assume B (Ci) = B (Cj) for 1 ≤ i, j ≤ N , K = 1 and N ≥
2M . Let S1, S2, and S3 be three disjoint subsets of channels with |S1| = M ,

|S2| = M , and |S3| = N − 2M . Suppose

∀C ∈ S1 θ (C) = θ1 =
1

M
+ ε,
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for some arbitrary small positive real number ε, and

∀C ∈ S2 θ (C) = θ2 =
1

M
,

∀C ∈ S3 θ (C) = 0,

∀C ∈ Si, i = {1, 2, 3} α (C) = αi = 0,

∀C ∈ Si, i = {2, 3} μ (C) = μi = 0,

∀C ∈ S1 μ (C) = μ1,

for some constant number μ1.

Then, the gain achieved by the optimal solution is a factor of Ω (M) larger

than the gain achieved by the intuitive solution.

Proof. We have

∀C ∈ Si, i = {1, 2, 3} θ (C) = θi, α (C) = αi

and, μ (C) = μi,

therefore

∀C ∈ Si, i = {1, 2, 3} φ (C) = φi and Rb (C) = Rb
i ,

for some real numbers φi and Rb
i . Thus, by the definition of Rb, we get

Rb
2 = Rb

1 − ε′ > Rb
3,

where ε′ → 0 as ε→ 0.

The intuitive solution chooses theM channels with the largestRb (C), which
in this case will be channels in S1. Now, consider another solution that chooses

the set of channels S2. Let’s call this the “Non-intuitive solution”. The ratio
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of the gains of the solutions will be

Rb
2 + (1− φ2)Rb

2 + · · ·+ (1− φ2)
M−1Rb

2

Rb
1 + (1− φ1)Rb

1 + · · ·+ (1− φ1)
M−1Rb

1

.

As ε approaches zero, the above ratio approaches

1 + (1− φ2) + (1− φ2)
2 + · · ·+ (1− φ2)

M−1

1 + (1− φ1) + (1− φ1)
2 + · · ·+ (1− φ1)

M−1

which can be simplified to

ζ =

1− (1− φ2)
M

1− (1− φ2)

1− (1− φ1)
M

1− (1− φ1)

=

1− (1− φ2)
M

φ2

1− (1− φ1)
M

φ1

=
φ1

φ2

· 1− (1− φ2)
M

1− (1− φ1)
M
.

(3.1)

Since α1 = α2 = 0 and μ2 = 0

φ1 =
1

M
(1− α1) +

(
1− 1

M

)
μ1 =

1

M
+

(
1− 1

M

)
μ1 (3.2)

and

φ2 =
1

M
(1− α2) +

(
1− 1

M

)
μ2 =

1

M
.

Replacing φ2 with 1
M

in (3.1), we get

ζ =
φ1

φ2

· 1− (1− φ2)
M

1− (1− φ1)
M

=
φ1

1

M

·
1−

(
1− 1

M

)M

1− (1− φ1)
M

≥ φ1

1

M

· 1− (
e−1

)
1− (1− φ1)

M
≥ φ1

1

M

· 0.63

1− (1− φ1)
M

=0.63M

(
φ1

1− (1− φ1)
M

)
≥ 0.63M

(
μ1

1− (1− μ1)
M

)
,
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where the last inequality holds because φ1

1−(1−φ1)
M is an increasing function of

φ1, and φ1 > μ1 by (3.2). Finally, note that μ1

1−(1−μ1)
M > μ1, therefore when

μ1 is a constant, we get ζ = Ω(M). For example, setting μ1 = 10% (a typical

maximum value for μ1), we get ζ ≥ 0.063M .

The result of Proposition 1 is verified by simulation in Chapter 4 (see Fig-

ure 4.1)

3.2 A Recursive Equation

For a set of channels S ⊆ {C1, . . . , Cn}, and a non-negative integer k, let GS
k

denote the maximum gain that can be achieved if all channels in S are sensed

first, and then up to k sensed-free channels are accessed. We define Gn,m,k as

Gn,m,k =

⎧⎪⎪⎨
⎪⎪⎩

max
S⊆{C1,...,Cn}

|S|=m

GS
k n ≥ m;

0 otherwise.

(3.3)

In other words, Gn,m,k is the maximum achievable gain over the set of channels

{C1, . . . , Cn}, if only m channels can be sensed, and up to k sensed-free channels

can be accessed.

Note that the conditional reward of channel Ci is greater or equal to that

of Cj, for i > j. Therefore, when it comes to choosing between Ci and Cj for

access, channel Ci should be chosen if both channels Ci and Cj are sensed free.

As a consequence, when channel sensing is done (i.e., at the beginning of the

transmission phase), a way to maximize gain is to iterate through channels

from Cn to C1, and select a channel C for access if i) C was sensed free; ii)

the number of channels that were selected so far is at most k − 1 (that is,

we stop selecting channels for access if we reach k, the maximum number

of channels that needs to be accessed). We call this selection approach the

order-based selection process. Note that, when there are channels with identical
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conditional rewards, the above process may not be the only optimal way to

select channels for access. However, without loss of generality, we assume

that, for selecting channels to access, the above process is used, since it always

achieves the maximum gain. The following proposition provides a recursive

equation to calculate the maximum gain. This proposition is the base of our

proposed dynamic programming algorithms, as well as the upper bound derived

in Section 3.4.

Proposition 2. We have

Gn,m,k = max{Gn−1,m,k,Rb (Cn) +Hn−1,m−1,k}, (3.4)

where

Hn−1,m−1,k = max
S⊆{C1,...,Cn−1}

|S|=m−1

{φ (Cn)GS
k−1 + (1− φ (Cn))GS

k}. (3.5)

Proof. To calculate Gn,m,k, we consider two cases. In the first case, Cn is not

selected to be sensed. In this case, Gn,m,k is clearly equal to Gn−1,m,k. In the

second case, Cn is selected to be sensed. In this case, if Cn is sensed free, it will

be selected for access based on the order-based selection process. Therefore, in

this case, the maximum gain will be

max
S⊆{C1,...,Cn−1}

|S|=m−1

(
φ (Cn)GS

k−1 + (1− φ (Cn))GS
k

)

+φ (Cn)Rc (Cn) = Rb (Cn) +Hn−1,m−1,k,

which completes the proof.

An interesting result following Proposition 3 is as follows. Let C∗ be a

channel with the largest blind reward1. Then C∗ is always part of an optimal

1There may be more than one channel with the largest blind reward.
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Channels θ (C) α (C) μ (C) Rc (C)

C1 0.1 0.1 0.0 1.0

C2 0.5 0.0 0.1 0.909

C3 0.9 0.1 0.1 0.987

Table 3.1: In the case (N = 3,M = 2, K = 1), C1 has the greatest conditional
reward, but the best gain is achieved using S = {C2, C3} where GS

1 = 0.899.

solution for any n, m, and k > 0. A channel(s) with the largest conditional

reward does not have this property. A simple example to show this is presented

in Table 3.1 where C1 has the greatest conditional reward but the best choice

is sensing C2, C3.

Proposition 3. The channel C∗ is always part of an optimal solution2.

Proof. Suppose

S = {C ′1, C ′2, . . . , C ′m−1, C ′m} ⊆ {C1, . . . , Cn}

is an optimal set of channels to be sensed. Without loss of generality, assume

that the conditional reward of C ′i is at least equal to that of C ′j if i ≥ j. Suppose

that C∗ /∈ S. We show that the maximum achievable gain does not reduce if

we replace C ′1 with C∗.
By the order-based selection process, if the number of channels in S \ {C ′1}

that are sensed free is at least k, then C ′1 is not accessed (even if it is sensed free).

Clearly, in this case, replacing C ′1 with C∗ does not affect the gain. However, in
the second case, where the number of channels in S \ {C ′1} that are sensed free

is less than k, C ′1 will be accessed if it is sensed free. In this case, replacing C ′1
with C∗ does not reduce the gain as the blind reward of C∗ is not less that that

2If there is only one channel with the largest blind reward, then that channel will be part
of any optimal solution, for any N , M , and K > 0.
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Figure 3.1: Each cell can be calculated using upper and upper left cells, as
a result the total complexity would be O(NM). A binary matrix is used to
record if the value of a cell comes from the upper cell or the upper left cell, this
matrix can be traversed at the end to create the set of M channels.

of C ′1.

3.3 Optimal Solution: K = 1

In this special case, secondary user senses m channels, and needs to access

only one sensed-free channel for data transmission. We use Gn,m, to represent

Gn,m,1 to differentiate the general case formula from the special case formula.

The following corollary directly follows from Proposition 2.

Corollary 1. We have

Gn,m, = max{Gn−1,m, ,Rb (Cn) + (1− φ (Cn))Gn−1,m−1, }. (3.6)
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Proof. We have

Hn−1,m−1,1 = max
S⊆{C1,...,Cn−1}

|S|=m−1

(
φ (Cn)GS

0 + (1− φ (Cn))GS
1

)

= max
S⊆{C1,...,Cn−1}

|S|=m−1

(1− φ (Cn))GS
1

= (1− φ (Cn)) max
S⊆{C1,...,Cn−1}

|S|=m−1

GS
1

= (1− φ (Cn))Gn−1,m−1,1.

By replacing the above formula in Eq. [3.4], we get

Gn,m,1 = max{Gn−1,m,1,Rb (Cn) + (1− φ (Cn))Gn−1,m−1,1}.

Figure 3.1 illustrates how Corollary 1 can be used to compute GN,M, , which

is the maximum gain achievable by SU given the set of all N channels. As

depicted in Figure 3.1, value of every cell can be computed using values of its

top and top-left neighbouring cells. Also, Gn,0, and G0,m, are zeros for every

0 ≤ n ≤ N , and 0 ≤ m ≤ M . Therefore, values of all cells can be computed

by scanning the table row by row starting from top left.

Using the above dynamic programming, we can not only compute the max-

imum gain, but also find a set of channels that achieve that maximum gain.

To do so, a separate binary matrix can be used to keep track of which neigh-

bour has been used in calculating each cell; if the value comes from Gn−1,m,

then it means that channel Cn is not part of the solution, and if it comes from

Gn−1,m−1, it implies that channel Cn is a part of the solution. At the end, by

traversing back the choices cell by cell from GN,M, , the list of M channels can

be created.

Proposition 4. The running time and space complexity of the proposed dy-
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namic programming is O(NM).

Proof. As the recursive Eq. [3.6] has two arguments 1 ≤ n ≤ N and 1 ≤ m ≤
M , then there would be at most N ×M possible values for Gn,m, . Since every

value can be calculated in O(1) using the dynamic programming approach

explained above, then we need O(NM) operations to calculate the final result.

The space complexity is also O(NM) as we are using only two tables of size

N ×M (one to keep track of chosen channels and the other to calculate the

gains).

Proposition 5. Using a tree instead of the matrix, the space complexity can

be reduced to O(M2) without affecting the time complexity.

Proof. Since each value of Gn,m, is only dependent on the previous row in the

dynamic programming approach explain above, then we need to keep only the

previous row. As a result the space needed to calculate the optimal gain will

be of O(M). Furthermore, to keep track of the actual set of answers, the tree

explained above can be pruned by removing the choices of using a channel in

the solution. As a result, the necessary data structure will become a tree with

height of at most M , and with at most M nodes in each level of the tree. Such

a tree has at most M×M nodes and can be stored in a matrix of the same size.

As a result the total space complexity of the problem will become O(M2).

3.4 An upper bound for the general case

Inspired by Eq. [3.4], we define Ĝn,m,k recursively as:

Ĝn,m,k = max{Ĝn−1,m,k,Rb (Cn) + (1− φ (Cn))Ĝn−1,m−1,k

+ φ (Cn) Ĝn−1,m−1,k−1}
(3.7)

for n,m, k ≥ 1, with Ĝn,m,k = 0 if n = 0, m = 0, or k = 0. The following

proposition shows that Ĝn,m,k is an upper bound on the maximum gain that

31



Ĝn,m,k

Cn ignored

Ĝn−1,m,k

...
...

Cn sensed

Cn sensed busy

Ĝn−1,m−1,k

...
...

Cn sensed free

Ĝn−1,m−1,k−1

...
...

Figure 3.2: In the optimal solution, the two right branches cannot be opti-
mized independently, as a result by relaxing the problem and optimizing them
independently, an upper bound is derived.

can be achieved (i.e. Gn,m,k).

Proposition 6. For every positive integers k ≤ m ≤ n, we have

Gn,m,k ≤ Ĝn,m,k.

Proof. The proof is by induction on n. For induction basis, we have

∀m≥k≥0 G0,m,k = Ĝ0,m,k = 0,

thus

∀m≥k≥0 G0,m,k ≤ Ĝ0,m,k.

Now suppose that Gn,m,k ≤ Ĝn,m,k for every m ≥ k ≥ 0, and n = N − 1, for

some positive integer N . We show that Gn,m,k ≤ Ĝn,m,k for every m ≥ k ≥ 0,

and n = N .
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By Eq. [3.5] we have

HN−1,m−1,k = max
S⊆{C1,...,CN−1}

|S|=m−1(
(1− φ (CN))GS

k + φ (CN)GS
k−1

)
≤ max

S⊆{C1,...,CN−1}
|S|=m−1

(
(1− φ (CN))GS

k

)
+

max
S⊆{C1,...,CN−1}

|S|=m−1

(
φ (CN)GS

k−1

)

=(1− φ (CN)) max
S⊆{C1,...,CN−1}

|S|=m−1

GS
k+

φ (CN) max
S⊆{C1,...,CN−1}

|S|=m−1

GS
k−1

=(1− φ (CN))GN−1,m−1,k+

φ (CN)GN−1,m−1,k−1.

Adding the term Rb (CN) to both sides of the above inequality, we get

Rb (CN) +HN−1,m−1,k ≤Rb (CN)+
(1− φ (CN))GN−1,m−1,k+

φ (CN)GN−1,m−1,k−1.

Therefore, we must have

max{GN−1,m,k,Rb (CN) +HN−1,m−1,k}
≤ max{GN−1,m,k,Rb (CN) + (1− φ (CN))GN−1,m−1,k+

φ (CN)GN−1,m−1,k−1}.
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By induction hypothesis

GN−1,m,k ≤ ĜN−1,m,k

GN−1,m−1,k ≤ ĜN−1,m−1,k

GN−1,m−1,k−1 ≤ ĜN−1,m−1,k−1.

Thus

max{GN−1,m,k,Rb (CN) +HN−1,m−1,k}
≤ max{ĜN−1,m,k,Rb (CN)+

(1− φ (CN))ĜN−1,m−1,k+

φ (CN) ĜN−1,m−1,k−1},

which, by Definitions 3.4 and 3.7, implies

GN,m,k ≤ ĜN,m,k,

which completes the proof.

As shown in Figure 3.2, calculating Ĝn,m,k needs the calculation of 3 other

values. Since Ĝ0,m,k, Ĝn,0,k and Ĝn,m,0 are all zeroes, a three dimensional dy-

namic programming in which each cell is calculated using three of its neighbours

can be used to calculate the desired value.

Proposition 7. The running time complexity of the proposed dynamic pro-

gramming is O(NMK) and the space complexity is O(MK).

Proof. As the recursive Eq. [3.7] has three arguments 1 ≤ n ≤ N , 1 ≤ m ≤M

and 1 ≤ k ≤ K, there would be at most N ×M ×K possible values for Ĝn,m,k.

Since every value can be calculated in O(1) using a dynamic programming

approach explained above, then we need O(NMK) time to calculate the final

result. The space complexity is O(MK) as we are using only a table of size
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M ×K × 2 (As we only need the previous level of the N − 1 to calculate the

level of the N and keeping the previous ones is not necessary).

An interesting, perhaps non-trivial, observation from Figure 3.2 is that the

upper bound Ĝn,m,k is achievable in a “sequential sensing” scenario, where m

channels are to be sensed sequentially. It is because in “sequential sensing”,

the result of sensing channel Cn is known prior to deciding on what channel

to sense next. Note that, in this setting, to achieve Ĝn,m,k, instead of a set

of fixed m channels, a dynamic programming using recursive Eq. [3.7] would

suggest a decision tree, with m channels to be sensed on each path from the

root to a leaf.

3.5 A Heuristic Algorithm

We call a set of M channels locally-optimal, if the gain achieved by those

channels cannot be improved by replacing a channel from the set by one outside

of the set. As will be explained shortly, the gain of a fixed set of M channels

can be calculated in polynomial-time. Therefore, whether a set of channels is

locally-optimal can be tested in polynomial-time. Also, a locally-optimal set

can be calculated by starting with an arbitrary set (e.g., the set of channels with

M largest blind rewards), and improving it through iterative replacements. We

use this procedure to find a locally-optimal set, hence a lower bound on the

maximum gain achievable. It is worth mentioning that, in general, the gain of

a locally-optimal set can be strictly less than the maximum gain.

3.5.1 Gain Calculation for a Set of M Channels

Suppose that the channels to be sensed are C ′1, . . . , C ′m. LetG ,m,k denoteGm,m,k

to differentiate the general case formula from the special case formula, that is

the gain achieved by the set of channels {C ′1, . . . , C ′m} when n = m.
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Corollary 2. We have

G ,m,k =Rb (Cm) + (1− φ (Cm))G ,m−1,k+

φ (Cm)G ,m−1,k−1,
(3.8)

for m, k ≥ 1, where G ,m,k = 0 when m = 0 or k = 0.

Proof. Setting n = m = M in Eq. [3.5], we get

HM−1,M−1,k = max
S⊆{C1,...,CM−1}

|S|=M−1

{φ (CM)GS
k−1+

(1− φ (CM))GS
k}.

Since {C1, . . . , CM−1} has only one subset of size M − 1, we have

HM−1,M−1,k = φ (CM)GS
k−1 + (1− φ (CM))GS

k ,

S = {C1, . . . , CM−1}.

Also, setting n = m = M − 1 in Eq. [3.3] , we get

GM−1,M−1,k = max
S⊆{C1,...,CM−1}

|S|=M−1

GS
k ,

which can be simplified to

GM−1,M−1,k = GS
k ,

S = {C1, . . . , CM−1}.

This will give us

HM−1,M−1,k =φ (CM)GM−1,M−1,k−1+

(1− φ (CM))GM−1,M−1,k.
(3.9)
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By Eq. [3.4], we have

GM,M,k = max{GM−1,M,k,Rb (CM) +HM−1,M−1,k}.

Therefore, using 3.9, we get

GM,M,k = max{GM−1,M,k,Rb (CM)+

(1− φ (CM))GM−1,M−1,k+

φ (CM)GM−1,M−1,k−1}.

Thus

GM,M,k =Rb (CM) + (1− φ (CM))GM−1,M−1,k+

φ (CM)GM−1,M−1,k−1,

because GM−1,M,k = 0 by Eq. [3.3], hence

G ,m,k = Rb (Cm) + (1− φ (Cm))G ,m−1,k + φ (Cm)G ,m−1,k−1.

Using the recursive Eq. [3.8], and a dynamic approach similar to the one

explained in Section 3.3, the gain G ,m,k can be calculated in polynomial time.

The space complexity of this dynamic programming will be lower than that of

Section 3.3, since here we only need to calculate the gain.

Proposition 8. The running time complexity of the proposed dynamic pro-

gramming is O(MK) and the space complexity is O(K).

Proof. As the recursive Eq. [3.8] has two arguments 1 ≤ m ≤ M and 1 ≤ k ≤
K, then there would be at most M×K possible combinations for G ,m,k. Since

every combination can be calculated in O(1) using a dynamic programming

approach explained above, we need O(MK) time to calculate the final result.
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The space complexity is O(K) as we are only using the values at level m−1 to

calculate values at level m and it is unnecessary to keep the other levels.

A case where we can find the optimal solution using the Gain Calculation is

when m is very small or close to n, the total number of channel choices becomes

small. Since the reward of a set of m channels can be calculated in polynomial

time in these cases, the optimal solution becomes computationally plausible.

3.5.2 Local optimal

Algorithm 4 shows a pseudo-code of finding a lower bound on the maximum

gain. Initially, the set of M channels with largest blind rewards are selected

as the starting set. In each iteration, the algorithm checks all possible replace-

ment, and selects the one making the highest gain improvement. If there is no

replacement that improves the gain, then the set is returned as a local optimal.

Algorithm 4 The algorithm is a heuristic solution to the general case of the
problem, as well as a lower bound on the optimal solution.

1: S ← set of M channels with largest Rb

2: T ← the rest of channels
3: while not at local optimal do
4: MaximumGain← Gain(S)
5: for all s ∈ S do
6: for all t ∈ T do
7: if Gain((S \ s) ∪ {t}) > MaximumGain then
8: in← t
9: out← s
10: end if
11: end for
12: end for
13: S ← (S \ out) ∪ {in}
14: end while

The replacement selection in each iteration can be done in polynomial-time

using the gain calculation method explained earlier. Simulations show that the

number of iterations needed to get to the local optimal is typically very small

(Less than 8 for N = 32).
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Chapter 4

Simulations

All simulations use uniformly random numbers in the ranges specified, cre-

ated using C++ random library’s default random engine. Each data point was

obtained by averaging the results of over one million simulation runs.

4.1 Effects of K

The first simulation, whose results are shown in Figure 4.1, tests and confirms

Proposition 1. The simulation’s parameters are given in Table 4.1. In Table 4.1,

the parameter Γ is

Γ = max
1≤i,j≤N

B (Ci)
B (Cj) .

Therefore, Γ = 1 implies that B (Ci) = B (Cj), for every 1 ≤ i, j ≤ N . As

shown in Figure 4.1, the ratio of the gain of the non-intuitive algorithm over

the gain of the intuitive algorithm increases at least linearly as M increases.

This ratio for a given M is maximized for the case K = 1. Fortunately, for this

case we proposed an optimal polynomial time solution. For larger values of K,

we can use the proposed heuristic algorithm. The simulation results show that,

our heuristic algorithm performance matches that of the non-intuitive solution

for the scenario parametrized by Table 4.1.
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Figure 4.1 Figure 4.2

Set S1 Set S2 Set S1 Set S2

θ 1
M

1
M

1
M.B

μ 0.1 0 0.1 0

Γ 1 1 {1, 2, 3, · · · , 6}
K {1, 2, 3, · · · , 6} 1

M {1, 2, 3, · · · , 99}
α 0

Table 4.1: In the simulations, we suppose |S1| = |S2| = M . The Intuitive
algorithm will always choose the channels in set S1, while the non-intuitive
algorithm will always choose the channels in set S2.
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Figure 4.1: The maximum improvement in the optimal solution over the intu-
itive solution for different values of K over 1 ≤ M ≤ 99 and channels of equal
bandwidth (Γ = 1). For large values of M , the ratio is almost linear.
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Figure 4.2: The maximum improvement in the optimal solution over the intu-
itive solution for different values of Γ over 1 ≤ M ≤ 99 and K = 1. For large
values of M , the ratio is almost linear.

4.2 Effects of Γ

In the second simulation, we test the effect of having channels with different

values of B (C) (i.e., larger values of Γ) on the gap between the performance

of the intuitive and the non-intuitive algorithms. The parameters used in this

simulation are given in Table 4.1. As shown in Figure 4.2, for the given K = 1,

M , and N , the performance gap ratio increases with Γ.

4.3 The Heuristic Algorithm

Finally, in our third simulation, in an average case scenario, we compare the

performance of our proposed heuristic algorithm (Algorithm 4) to the upper
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·10−2Ratio(%)

Figure 4.3: The average improvement in the ratio of upper bound ĜN,M,K over
the heuristic algorithm for N = 32 and 1 ≤M,K ≤ 32.
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bound given in Section 3.4. In this simulation, for every pair 1 ≤ M,K ≤ 32,

we set Γ = 1, andN = 32, and choose α (C) and μ (C) uniformly at random from

[0, 0.1], and θ (C) uniformly at random from [0, 1]. As shown in the heat map

presented in Figure 4.3, the gain of the heuristic algorithm is at most 0.01%

lower than the upper bound. Hence, for the average case scenario considered in

the third simulation, the heuristic algorithm virtually is as good as the optimal

solution.

4.4 Previous Works

In our last simulation, we use the test case presented by Zhou Zhang et al. in

their work [2] to validate our solution for the special case K = 1. Table 4.2 has

the values they used for their example. Figure 4.4 shows the gain achieved for

all possible choices in the example. The intuitive solution presented by them

produces the optimal solution only for the Homogeneous input. However as

it is shown in the figure, our solution creates an optimal answer for all three

examples.
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Figure 4.4: This graph is taken from the work of Zhou Zhang et al. [2] analyzing
the three cases Homogeneous, Common Detection Probability (C.D.P.), and
General. The graph shows the achieved gain for selecting each pair of channels
from the data presented in Table 4.2 and (N = 4, M = 2, K = 1). We use
this graph to validate the results of our solution for the case of K = 1. The
Intuitive Result, Our Result and the Optimal Result have been labelled with
I, S, and O respectively. As it can be seen in the graph, in all three cases
our solution produces the optimal solution, however, the intuitive solution only
produces an optimal solution for the “Homogeneous” case.
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Channels Homogeneous C.D.P. General

C1

θ (C1) 0.650

α (C1) 0.3 0.1

μ (C1) 0.3 0.2

C2

θ (C2) 0.727

α (C2) 0.3 0.28

μ (C2) 0.3 0.2

C3

θ (C3) 0.852

α (C3) 0.3 0.39

μ (C3) 0.3 0.2

C4

θ (C4) 0.918

α (C4) 0.3 0.43

μ (C4) 0.3 0.05

Table 4.2: The values of the example used by Zhou Zhang et al. [2] for the three
cases Homogeneous, Common Detection Probability (C.D.P.), and General.
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Chapter 5

Conclusion & Future Works

We showed that the intuitive solution can perform much worse than the optimal

solution, in the worst case scenario. The performance gap between the two

algorithms is maximized when K = 1, that is when only one channel is needed

for access. For this case, we proposed an optimal polynomial-time algorithm.

In addition, for larger values of K, we proposed a heuristic polynomial time

algorithm. The simulation results show that the performance of our proposed

heuristic algorithm matches that of the non-intuitive algorithm in the worst

case scenario considered. Also, its performance is virtually the same as the

that of the optimal solution in the average case scenario considered.

An interesting extension to this work is to show whether or not there is

a polynomial-time optimal algorithm for K > 1. Another extension is to

consider a multiple secondary user scenario, where users compete over accessing

channels.
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