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Abstract

This thesis investigates the integrated fault detection, estimation and fault tolerant control

problem for linear systems and Lipschitz nonlinear systems. Faults and disturbances are

taken into consideration in a unified formulation. A H-infinity observer-based fault detection

filter (FDF) is applied to generate residual signals. The FDF is designed to minimize the

influence of disturbances and maximize the sensitivity of faults at the same time. Then a

new online fault estimation scheme is designed by applying H-infinity filtering to residual

signals instead of system outputs. Compared with existing literature, in which system

outputs are commonly adopted for fault estimation, the proposed fault estimation scheme

based on residual signals can achieve more accurate fault estimation results due to the fact

that the influence of disturbances is minimized in the residual signal produced by the H-

infinity FDF. Finally a fault tolerant controller is designed to retain the system stability

and performance by compensating for the faults. The integrated scheme consists of three

essential steps that are centered around the residual signal, namely, generating the residual

signal for fault detection, and filtering the residual signal for fault estimation and fault

compensation. In this framework, fault diagnosis and fault compensation are designed

simultaneously in a closed-loop system. This integrated scheme is considered to be one of

the most important contributions of this thesis. To demonstrate the effectiveness of the

proposed method, two examples are given and simulation results are presented.
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Chapter 1

Introduction

1.1 Historical Development

Due to the increasing demands on system safety and reliability nowadays, fault detection,

estimation and fault tolerant control have attracted great attention from worldwide research

communities. Components of an industrial system have their own special capabilities to

achieve certain functions. Obviously, the system can achieve full-functional performance

only if all the components are healthy and functional. A single small component malfunction

may cause a damaging impact on the overall system. Traditionally, enhancing the quality

and reliability of individual system components can improve the system’s robustness and

dependability. But a fault-free system operation still cannot be guaranteed [5].

To satisfy the increasing requirements of high reliability and survivability of complex

control systems, it is important to handle unexpected faults. Generally speaking, faults

may change the system’s dynamics, in another word, the system may not behave like what

it is supposed to be when a fault occurs.. Most faults occur inside a system, which may

interrupt the power supply, break a signal link in a communication channel, or create a

leakage in a pipe [2]. Usually, unexpected faults cause losses from an economical perspective.

Therefore, fault diagnosis is of vital importance to ensure the system safety and maintain

reliable system operation. Fault detection can prevent the system from further failure by

generating alarms to operators so essential protective actions can be executed.

The Fault Diagnosis problem is also very important in the fault-tolerant control system,

which is designed to retain some portion of its control integrity in the event of possible com-

ponent faults. This is achieved by incorporating an element of automatic reconfiguration,

once a malfunction has been detected [25]. Fault tolerant control takes system faults into

consideration and reduces the negative influence of the internal faults. A dynamic fault

tolerant controller should automatically adjust its control law by analysing the faults to

guarantee the closed-loop system achieves an acceptable performance.

The research of model-based fault diagnosis can be traced back to the beginning of 1970s.

Since then, extensive research has been done and many fault diagnosis frameworks have been

developed. The term “model-based” is used to characterize the application of the powerful
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techniques of mathematical modelling, such as state estimation and system identification

for FDI [25]. Model-based fault diagnosis is based on analytical redundancy generated from

the system model. From 1970s to 1990s, plenty of theoretical results were established in

this area. The objectives of a model-based FDI algorithm has been widely accepted as

monitoring of the plant during its normal working conditions so as to detect the occurrence

of faults (Fault Detection), recognize their location (Fault Isolation) and, if possible, their

time evolution (Fault Identification) [25]. Some mathematical or theoretical models are used

to analyse if faults exist in the system. The model-based FDI techniques include observer-

based approach, parity-space approach, and parameter identification based methods [5]. A

number of methods have been developed to handle this problem. For example, Patton et. al

proposed an application of disturbance principles for robust fault diagnosis [14, 23, 22, 29].

Ding et. al developed a robust fault detection filter to diagnose the faults [5, 10, 31, 39].

Automatic control systems and algorithms are becoming more and more complicated

and sophisticated. Consequently, there is a growing demand for fault tolerance approaches,

which can be achieved not only by improving the individual reliabilities of the functional

units but also by an efficient fault detection, isolation and accommodation concept. A fault

is understood as any kind of malfunction in the actual dynamic system, the plant, that leads

to an unacceptable anomaly in the overall system performance [7]. Generally speaking, fault

tolerant control can be classified into two types: passive fault tolerant control (PFTC) and

active fault tolerant control (AFTC) [38]. There are some important results for PFTC, for

example, the LQ reliable control by Hsieh et.al [15], the reliable control systems possessing

actuator redundancies by Jiang et.al [16], the Reliable control of nonlinear systems by

Liang et.al [17] and the reliable robust flight tracking control by Liao et.al [18] etc. In

the literature, PFTC is also named as reliable control systems or control systems with

integrity. In contrast to PFTC, AFTC reacts to the system component failures actively by

reconfiguring control actions so that the stability and acceptable performance of the entire

system can be maintained [38].

There are several reconfigurable control design methods proposed by researchers, such

as: the linear quadratic [20, 21], the pseudo-inverse [35, 1, 12], the eigenstructure assignment

[36, 37], the H∞ robust control [33, 35, 34] and the linear matrix inequality [4, 8] etc.

1.2 Performance Requirements of System Subject to Faults

Researchers have analysed the faults’ impacts on industrial systems for many years, since

the faults may cause enormous damage and even risk operators’ life. Basically, we de-

fine four notions to assess the properties of the system: safety, reliability, availability and

dependability.

Safety is defined as the absence of danger. A safety system is designed to protect

the current equipments from permanent damage when the faults happen unexpectively.

It can be achieved by reducing or even shutting down the inputs from the controller, for
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example, reducing the voltage or shutting down the power. Thus, the safety system needs

the information to scale the faults and make judgement by system automatically or by

operator manually. A safety system is proposed to shut down the future operation of the

overall system to reduce and avoid potential dangers of the system and its surroundings.

The safety operation mechanism will be triggered if the system performance exceeds the

outlier of degraded performance region. The safety system and fault tolerant controller

work in separate regions of the signal space and satisfy complementary aims [2].

Reliability is used to describe the probability that system can run fully functionally

under normal conditions. Fault diagnosis and fault tolerant control cannot change the

reliability of the plant, but they can enhance the reliability of the overall system [2]. The

reason is that the fault tolerant control can guarantee the system still work functionally

even with some bounded faults.

A fault tolerant control system can reduce the possibilities that faults develop into a

failure. The closed loop system will remain fully functional while the performance might

degrade within the certain acceptable range.

Figure 1.1: Regions of system performance

The system can satisfy its pre-defined performance in the region of required performance.

The system should keep working in this range during its running time. Although the

uncertainties and disturbances exist in the system, the robust controller should keep the

system running in this region all the time. Furthermore, the controller may still maintain

the system performance in this region even with some small faults, but at the same time it

makes the faults harder to diagnose.

The region of degraded performance shows the region where the systems are still al-

lowed to work even not satisfying the required performance. Faults will cause the system

degradation from the required region of performance. Fault tolerant controller should start

activating the recover actions to keep the system away from unacceptable performance

region, and it should try to lead the system back to required performance region.
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The unacceptable performance region is able to be avoided by applying the fault tolerant

control. This region is between the degraded performance region and dangerous performance

region, where the system should never reach.

1.3 Summary of Contributions

In this thesis, we focus on observer-based fault diagnosis and fault tolerant control problem.

Although observer-based techniques have been developed for many years, there still remains

an open problem of simultaneous fault detection and fault tolerant control. By using the

new framework provided in this thesis, we can diagnose system faults and compensate for

the faults at the same time. We develop a new integrated H∞ filtering based fault diagnosis

and fault tolerant control scheme to improve system performance. The main contributions

of this thesis are summarized as follows:

1. A H∞ observer-based fault detection filter is applied to generate residual signals.

Then an online fault estimation scheme is designed by applying H∞ filtering to the

residual signals instead of the system outputs.

2. The fault detector and fault estimator are co-designed while the fault tolerant con-

troller is designed separately. The closed-loop system stability and performance are

analysed.

3. The fault tolerant controller is designed to stabilize the system and compensate for

the fault effects simultaneously.

4. For linear systems, faults and disturbances are taken into consideration in a unified

formulation and the robustness of fault detection and fault estimation is achieved. .

5. The framework is also extended to Lipschitz nonlinear systems.

1.4 Outline of the Thesis

The thesis is organized as follows:

• Chapter 2: In this chapter, we survey the techniques currently used for model-based

fault diagnosis. we introduce the typical observer design method and residual gener-

ation, which leads us to design a new fault diagnosis framework. Then we talk about

the classic H∞ synthesis method, which will be used in the following designs.

• Chapter 3: In this chapter, we consider the problem of simultaneous fault detection

and tolerant control for linear system. Using the observer-based fault detection filter,

we can obtain the purified faults by reducing the impact from system disturbances.

Then we estimate the faults by using H∞ synthesis. Furthermore, we design a fault
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tolerant controller which can take effect in both fault-free case and fault-occurred case.

A quadrotor example is provided to show the effectiveness.

• Chapter 4: In this chapter, we apply the framework to Lipschitz nonlinear problem.

We obtain the residual signals by using the Lipschitz nonlinear observer, which can be

further used to estimate the faults. Then a fault tolerant controller has been designed

for the nonlinear system. A satellite model is simulated to illustrate the framework

design.

• Chapter 5: Conclusions and future work are presented in this chapter.
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Chapter 2

Background and Framework

In this chapter we list the classic methods and techniques which will be used in the following

chapters, including observer-based residual generation fault diagnosis and H∞ synthesis.

The mathematical framework and notation used throughout the thesis are introduced.

2.1 Fault Diagnosis

Engineers enhance the equality and robustness of system components to improve the reliabil-

ity and dependability of a system. These components include actuators, sensors, controllers

and even the supervisor computer. However, faults might still exist in the system and sys-

tem cannot guarantee to be fault free during the operation periods. Therefore, it is vital

important to monitor the process and diagnose the faults. These two methods have become

an essential ingredient in modern control systems.

2.1.1 Faults

There are many kinds of malfunction in the automatic control system. Faults, disturbances

and model uncertainties all may change the performance of the system. Actually, they are

three different kinds of malfunctions. Disturbance is a kind of perturbation that cannot

be eliminated, which is always caused by the environment, such as air resistance. Model

uncertainties is mostly caused by the inaccurate parameter realization of the system model,

which can be reduced but cannot be excluded. Model uncertainties can change the model

parameters of the system.

The faults are those elements which should be detected and whose effects should be

removed by remedial actions. Disturbances and model uncertainties are nuisances, but

whose effects on the system performance are handled by appropriate measures like filtering

or robust design [2]. Faults may happen in the plants, actuators and sensors, which are

depicted in the Figure 2.1.

Since the faults of system may lead to substantial damage on the industrial equipments

and even cause risk of people life, the researchers have developed a set of theorems to analyse

and classify the faults as the following three cases:
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Figure 2.1: Schematic description of the systems with faults

1. Actuator faults: The faults happened in the actuators may influence the control

input of the system, such as thrusts and currents. The plant properties will not be

affected, however the controller of the automatic system may be varied or even be

shut down.

2. Plant faults: The system’s dynamic input and output properties can be affected

when faults happen in the plant.

3. Sensor faults: The plant properties will not be affected, however the readings from

sensors will not be accurate and may have a large bias.

There are different methods to detect the faults from different locations and faults can

be categorized by their sizes and temporal behaviours. Abrupt faults occur, for example,

in a breakdown of the power supply whereas steadily increasing faults are brought about

by wear, and intermittent faults by an intermitted electrical contact [2].

2.1.2 Diagnostic Problem

Before implementing the fault tolerant control, the first task is to analyse the faults in the

system. Generally, for a given continuous model-based system, fault diagnosis is always

achieved by fault detection and fault estimation. The diagnostic problem has to be solved

under real-time constraints by exploitation of the information included in a dynamical model

and in the time evolution of the signals [2]. Figure 2.2 illustrates the diagnostic problem:

for a given input u and output y of the system, analyses the fault f by using the designed

diagnostic algorithm. Fault diagnosis is always composed by the following three essential

tasks.

1. Fault detection: Detect the occurrence of faults in the functional units of the pro-

cess, which lead to undesired or intolerable behavior of the whole system [5]. One

main purpose of fault detection is to trigger alarm when faults occur in the system.

2. Fault isolation: Classify the different faults to generate different kinds of alarm

signals to show where and which the faults happened.
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Figure 2.2: Fault diagnosis

3. Fault analysis or identification: Determine the types, magnitudes and causes of

the faults. Give the details and the scales of the faults.

Figure 2.3: Classification of fault diagnosis methods

Fault diagnosis technique is currently receiving more and more attention. Figure 2.3

depicts the basic classification of the fault diagnosis methods.

1. Hardware redundancy schemes: The most essential components in this scheme

is the reconstruction of the process by applying the redundant hardware. Then if the

output of the hardware system is different from the one of its redundant component,

the faults occurred in the process component can be detected. The hardware redun-

dancy based fault diagnosis is highly reliable but costs much more than other schemes,

for example, triple modular redundancy.

2. Plausibility tests: The plausibility test is used to check the simple physical laws

while the system is running. Faults may cause the system losing the plausibility.

Therefore, checking the plausibility will give us a simple way to analyse the faults
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occurred in the system. However, the limitation is that the plausibility test may not

work effectively in some complex systems.

3. Analytical model based schemes: In model-based fault diagnosis techniques, a

process model is adopted to analyse the faults. The process model is often designed as

a software which can run in the supervisor computer. By using the process modelling

technique, we can get the model which can describe the system dynamic behaviours.

So that we can reconstruct the process behaviour online.

4. Signal processing based fault diagnosis: The faults can be diagnosed by a suitable

signal processing scheme, since signals usually carry information of faults, for example,

fault locations and magnitudes. The signal processing based schemes are mainly used

for those processes in the steady state, and their efficiency for the detection of faults

in dynamic systems, which are of a wide operating range due to the possible variation

of input signals, is considerably limited [5].

2.2 Fault Tolerant Control

A safety system interrupts the operation of the overall system to avoid dangers for the

system and its environment. It is invoked if the outer border of the region of unacceptable

performance is exceed [2]. The architecture of fault tolerant control is showed in Figure 2.4.

There are major steps of designing the fault tolerant control for the system.

Figure 2.4: Architecture of fault tolerant control

1. The fault diagnosis part uses the measured input and output from the system and

tests their consistency with the plant model. Its results is a characterisation of the

faults with sufficient accuracy for the controller re-design [2].

2. The fault tolerant controller uses the fault information from fault diagnosis block, and

adjusts the controller to the faulty situation.
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There are two methods often used to design the active fault tolerant controller.

1. Multiple controllers are designed especially for switching based control, which means

the system has multiple controllers: a nominal controller and fault tolerant controllers.

The overall control modes are independent. The system supervisor level will switch

the controller to fault tolerant control mode when faults are detected and switch back

when no fault exists any more, e.g. Markovian jump linear system [19].

2. The other one is the all-in-one controller, which can handle both the nominal case

and faulty case by one controller. Note that in this method fault tolerant control is

always composed of two parts: nominal controller and faulty compensation controller.

Basically, the nominal controller can be any proper controller that can satisfy the

system performance. Then the faulty compensation controller is considered to be an

add-on to the nominal controller, which is designed to handle the faults and guarantee

the system performance under the faulty case.

2.3 The Integrated Framework for Fault Detection, Estima-

tion and Fault Tolerant Control

In this section, we will introduce the classic observer-based fault diagnosis techniques, which

will be used in this thesis to both the robust linear fault diagnosis and Lipschitz nonlinear

fault diagnosis. Generally, The observer-based approach consists of two steps: observer

design and residual generation.

Figure 2.5: Observer-based approach

In this thesis, a fault detection observer and a fault estimation scheme are designed

in a modified H∞ framework, and then a H∞ fault compensation control law is designed.

The proposed schemes realize an active fault tolerant control system, designed in a unified

H∞ problem setting. Unlike several existing fault tolerant control schemes, where only a

fault estimation scheme is designed for fault compensation, an integrated design of fault

detection, estimation and fault compensation control is investigated in this thesis.
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Figure 2.6: The integrated framework

The design methodology presented in this paper is shown in Figure 2.6. It is noted that

the fault tolerant controller only utilizes the information of estimated faults f̂(t) and the

system output y(t). Due to the fact that the residual signals (with disturbances minimized)

are used for fault estimation, the influences of control feedback on fault detection and fault

estimation is further reduced, which makes it possible to design the fault compensation law

and fault estimation law separately. The following 3-step procedure consists of:

• An observer-based robust fault detection filter (FDF) is used to detect faults, and

handle disturbances. The residual signal r(t) from the FDF will be generated by

solving an H∞/H− optimization problem, which will minimize the sensitivity of r(t)

to d(t) and maximum the sensitivity of r(t) to f(t) [25].

• Since the disturbances from residual signal have been filtered, we can estimate the

faults f(t) in a more accurate fashion using directly the residual signal r(t). A simple

solution is proposed by designing a filter Kest(s), to minimize the error f̃(t) between

the estimated faults f̂(t) and the actual faults f(t).

• Finally a fault tolerant control law u(t) is to be designed to stabilize the system and

compensate for the faults simultaneously. A dynamic stabilizing controller and a

compensating controller are designed for this purposed.

2.4 H∞ Synthesis

The H∞ synthesis is a classical method and has been widely used in controller design.

For ease of reference in the following chapters, first we list some necessary lemmas and

theorems in this section. Note that all lemmas and theorems in this section are collected

from Dullerud’s book course in robust control theory: a convex approach [6]. The proofs

have been omitted in this section and can be referred to the book.
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Figure 2.7: Standard setup

Consider the system described by the following block diagram, where the plant G and

K are assumed to be real rational and proper; w is a vector signal including noises, distur-

bances, and reference signals, z is a vector signal including all controlled signals and tracking

errors, u is the control signal, and y is the measurement. It will be assumed that state-space

models of G and K are available and their realizations are assumed to be stabilizable and

detectable [40]. Describe the system G(s) as the following matrix:

G(s) =





A B1 B2

C1 D11 D12

C2 D21 0



 (2.1)

where A ∈ Rn×n. Realize the dynamic controller K(s) as:

K(s) =

[

AK BK

CK DK

]

(2.2)

where AK ∈ RnK×nK . Combine these two state space realizations into one which describes

the map from ω to z [6]. We obtain

S(G,K) =

[

AL BL

CL DL

]

=





A+B2DKC2 B2CK B1 +B2DKD21

BKC2 AK BKD21

C1 +D12DKC2 D12CK D11 +D12DKD21



 (2.3)

Now define a matrix J such that

J =

[

AK BK

CK DK

]

(2.4)

which collects the representation for K(s) into one matrix. We can parametrize the closed-

loop relation in terms of the controller realization as follows [6]. At the very beginning we

can define the following matrices.

Ā =

[

A 0
0 0

]

, B̄ =

[

B1

0

]

, C̄ =
[

C1 0
]

, C =

[

0 I
C2 0

]

B =

[

0 B2

I 0

]

, D12 =
[

0 D12

]

, D21 =

[

0
D21

]
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where all the parameters above can be calculated directly from the information of G(s).

Then we define

AL = Ā+BJC

BL = B̄ +BJD21

CL = C̄ +D12JC

DL = D11 +D21JD21

Now we can design for a controller K(s) such that the closed loop is contractive and inter-

nally stable [6].

Lemma 2.1 [6] Suppose

(a) PXL
, HXL

and Q are matrices and that HXL
is symmetric;

(b) The matrices WP and WQ are full rank matrices satisfying ImWP = kerPXL
and

ImWQ = kerQ, where ImWP and ImWQ are the image spaces of WP and WQ, kerPXL

and kerQ are the kernel spaces of PXL
and Q.

Then there exists a matrix J such that

HXL
+ P T

XL
JTQ+QTJPXL

< 0 (2.5)

if and only if, the inequalities W T
P HXL

WP < 0 and W T
QHXL

WQ < 0 both hold.

Lemma 2.2 [6] Suppose ML(s) = CL(Is−AL)
−1BL+DL. Then the followings are equiv-

alent conditions.

(a) The matrix AL is Hurwitz and ||ML(s)||∞ < γ, where γ > 0;

(b) There exists a symmetric positive definite matrix XL such that




AT
LXL +XLAL XLBL CT

L

∗ −γI DT
L

∗ ∗ −γI



 < 0 (2.6)

Now define the matrices

PXL
= [BT 0 DT

12] (2.7)

Q = [C D21 0] (2.8)

and further

HXL
=





ĀTXL +XLĀ XLB̄ C̄T

∗ −γI DT
11

∗ ∗ −γI



 (2.9)

It follows that the inequality in (2.6) is exactly

HXL
+QTJTPXL

+ PXL
JQ < 0 (2.10)

By using the lemma above, There exists a matrix J if and only if W T
P HXL

WP < 0 and

W T
QHXL

WQ < 0 both hold.
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Lemma 2.3 [6] Suppose X and Y are symmetric, positive definite matrices in Rn×n; and

nK is a positive integer. Then there exists matrices X2, Y2 ∈ Rn×nK
and symmetric matrices

X3, Y3 ∈ RnK×nK , satisfying
[

X X2

XT
2 X3

]

> 0 (2.11)

and
[

X X2

XT
2 X3

]−1

=

[

Y Y2
Y T
2 Y3

]

(2.12)

if and only if
[

X I
I Y

]

≥ 0 and rank

[

X I
I Y

]

≤ n+ nK (2.13)

Theorem 2.1 [6] There exists a K(s) if and only if there exists symmetric matrices X > 0

and Y > 0 such that

(a)

[

NX 0
0 I

]T




ATX +XA XB1 CT
1

∗ −γI DT
11

∗ ∗ γI





[

NX 0
0 I

]

< 0 (2.14)

(b)

[

NY 0
0 I

]T




Y AT +AY Y CT
1 B1

∗ γI D11

∗ ∗ −γI





[

NY 0
0 I

]

< 0 (2.15)

(c)
[

X I
I Y

]

≥ 0, (2.16)

where NX and NY are full-rank matrices whose images satisfy

ImNX = ker[C2 D21] (2.17)

ImNY = ker[BT
2 DT

12] (2.18)

We now outline this procedure. Suppose X and Y have been found satisfying Theorem 2.1.

Note that Y always has its inverse Y −1 since Y is a symmetric matrix. Then by Lemma

2.1 we can construct the matrix XL =

[

X XT
2

X2 I

]

satisfying

X − Y −1 = X2X
T
2 (2.19)

where the order nK should be smaller than n. By Lemma 2.2 we know that there exists a

solution to

HXL
+QTJTPXL

+ PXL
JQ < 0 (2.20)

and that any such J =

[

AK BK

CK DK

]

provides the state space realization for a feasible

controller K(s).
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2.5 Conclusion

The chapter reviews the typical model-based fault diagnosis technique at the beginning, dis-

cusses the different types of faults that might occur in the system; then propose a integrated

H∞ filtering based fault diagnosis framework, which is the most significant contribution in

this thesis. The framework can be used to detect, estimate and compensate for the faults si-

multaneously. At the end of the chapter, we provide a brief review of classical H∞ synthesis,

which will be applied in the following chapters.
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Chapter 3

H∞ Filtering Based Fault

Diagnosis and Fault Tolerant

Control for Linear Systems

In this chapter, we study the H∞ filtering based fault diagnosis problem and fault tolerant

control for linear systems. We introduce a new dynamic framework which can detect,

estimate and compensate for the faults simultaneously. In the linear system model, both

faults and disturbances are included. We can obtain the residual signals after we properly

filter the disturbances with H∞/H− fault detection filter, to generate the “cleaner” residual

signals (i.e. those unwanted disturbances are attenuated in the residual signals). It is

observed that for linear systems subject to additive faults, e.g. actuator and sensor biases,

and oscillatory cases, the residual signals will manifest similar signal profiles as the faults.

This feature can be used to not only detect the faults but also estimate the sizes of the faults.

In this work, instead of using the output, we filter the residual signals for fault estimation.

Then a fault tolerant controller can been designed based on the estimated faults. Finally,

we present a quadrotor control example which shows the effectiveness of the method.

3.1 System Description

Consider the following linear time-invariant system.

Σf :

{

ẋ(t) = Ax(t) +Bu(t) +Bff(t) +Bdd(t)
y(t) = Cx(t) +Dff(t) +Ddd(t)

(3.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rp the control input vector, y(t) ∈ Rq the

output vector, d(t) ∈ Rm the disturbance vector; and f(t) ∈ Rl is an unknown vector

that represents possible faults and will equal to zero when no faults exist in the system.

Without loss of generality, we assume that d(t), f(t) are L2-norm bounded in the paper.

A,B,C,Bd, Bf , Df , Dd are known matrices with appropriated dimensions. Assume that

(A,B) is stabilizable, (A,C) is detectable and (A,Bd) is controllable.
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3.2 H∞/H− Fault Detection Filter Design

In this section, we design an observer-based fault detection filter (FDF). Since (A,C) is

assumed to be detectable, an observer is guaranteed to exist. Given the following Luenberger

observer,

˙̂x(t) =Ax̂(t) +Bu(t) +H(y(t)− ŷ(t))

ŷ(t) =Cx̂(t)

r(t) =y(t)− ŷ(t) (3.2)

where the observer gain H should be chosen to guarantee the stability of the observer.

x̂(t) ∈ Rn and ŷ(t) ∈ Rp represent the state and the output estimation vectors, respectively.

r(t) is the output residual signal generated by the observer. We can define e(t) = x(t)−x̂(t),

then the error dynamics of states can be described as:

ė(t) =(A−HC)e(t) + (Bf −HDf )f(t)

+ (Bd −HDd)d(t)

r(t) =Ce(t) +Dff(t) +Ddd(t) (3.3)

The main objective of this work is to design observer (3.2) such that the following

conditions are satisfied:

1. (A−HC) is Hurwitz;

2. ||Grd(jω)||∞ := σmax(Grd(jω)) < γ

3. ||Grf (jω)||− := σmin(Grf (jω)) > β

where

Grd(s) = C(sI −A+HC)−1(Bd −HDd) +Dd (3.4)

Grf (s) = C(sI −A+HC)−1(Bf −HDf ) +Df (3.5)

Conditions 1) and 2) refer to the general requirements for H∞ estimation, where con-

dition 2) represents the worst-case criterion for the effect of disturbances on the residual

signal r. Condition 3) stands for the worst-case criterion for the sensitivity of r(t) to f(t).

Therefore, these three conditions represent the most important performance of the fault

detection filter [24]. Then the problem can be depicted as: given γ > 0, the observer gain

H can be determined by solving the following optimization problem:

max
H,Y >0,Y1=Y T

1

β subject to (3.6)





Φ Y (Bd −HDd) CT

∗ −γI DT
d

∗ ∗ −γI



 < 0

[

DT
f Df − β2 (Bf −HDf )

TY1 +DT
f C

∗ Γ

]

> 0
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where Φ = (A−HC)TY + Y T (A−HC) and Γ = Y1(A−HC) + (A−HC)TY1 + CTC.

It is important to highlight the work by Wang and Yang [30], in which the H∞/H−

design considerably increasing the design efficiency in comparison with the standard robust

fault detection design approaches given in [5]. The detailed derivations of the above problem

are omitted here.

By solving this optimization problem, we can obtain the available H to ensure the

performance of fault detection filter. Then the so-called residual evaluation function ||r||2,T

is determined by

||r||2,T =

[
∫ t2

t1

rT (t)r(t)dt

]

1

2

, T = t2 − t1 (3.7)

t ∈ (t1, t2] is the finite-time window and the adaptive threshold Jth = sup
t>0

||r(t)|| is calculated

by the method from M.Zhong’s paper [39]. When ||r||2,T > Jth, the system will alarm for

the faults. Since an evaluation of residual signals over the whole time range is impractical,

it is desired that the faults will be detected as early as possible [39].

3.3 H∞ Fault estimation

From (3.4), we can obtain the transfer matrix Grf (s). First we define Ar = A − HC,

Br = Bf − HDf , Cr = C and Dr = Df . Note that all these variables can be calculated

after obtaining H by solving the optimization problem in (3.6) for the fault detection filter.

Then the transfer matrix above can be rewritten as:

Grf (s) = Cr(sI −Ar)
−1Br +Dr (3.8)

=

[

Ar Br

Cr Dr

]

(3.9)

Therefore, the residual signal can be obtained as r(s) = (Cr(sI − Ar)
−1Br +Dr)f(s). To

measure the accuracy of fault estimation, we introduce f̃(t) = f̂(t) − f(t) to evaluate the

estimation quality. Since the residual signal r(t) is generated from the output y(t) and the

observer-filtered output ŷ(t), it contains certain information about faults, which leads us

to design a dynamic estimation law f̂(t) = Kest(s)r(t) to estimate the faults directly by

the residual signal. We call f̂(t) the fault estimate if the estimation error f̃(t) converges to

zero. The formulation of fault estimation is illustrated in the Figure 3.1.

Figure 3.1: Formulation of fault estimation
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The system illustrated by Figure 3.1 can be reformulated into a standard H∞ control

problem as given in Figure 3.2 [24].

Figure 3.2: Standard setup

[

f̃
r

]

= Pest(s)

[

f

f̂

]

(3.10)

The transfer matrix Pest(s) is given as follows.

Pest(s) =

[

I −I
Grf (s) 0

]

=





Ar Br 0

0 I −I
Cr Dr 0



 (3.11)

The transfer matrix for this H∞ estimation problem is described by

T
f̃f
(s) = I −Kest(s)Grf (s) (3.12)

Then the H∞ fault estimation problem is transferred to finding an admissible Kest(s) ∈

RH∞ such that

||T
f̃f
(s)||∞ < γk (3.13)

where γk is a given positive constant. Note that Ar is Hurwitz since we have designed a

proper observer gain H to guarantee Ar = A−HC is Hurwitz. Thus the fault estimation

problem has been reformulated into a general H∞ control problem, which could be solved

by the standard method.

Theorem 3.1 [5] There exists a H∞ filtering fault estimator Kest(s) for the system (3.1),

if and only if there exists symmetric matrices X > 0 and Y > 0 such that

[

NX 0
0 I

]T




AT
r X +XAr XBr 0

∗ −γkI I
∗ ∗ −γkI





[

NX 0
0 I

]

< 0 (3.14)

[

NY 0
0 I

]T




ArY + Y Ar 0 Br

∗ −γkI I
∗ ∗ −γkI





[

NY 0
0 I

]

< 0 (3.15)

[

X I
I Y

]

≥ 0 (3.16)
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where NX and NY are full-rank matrices whose images satisfy

ImNX = ker[Cr Dr] (3.17)

ImNY = ker[0 − I] (3.18)

Proof. It can be directly proven by Theorem 2.1.

By Lemma 2.3, define a X2, which is calculated by X − Y −1 = X2X
T
2 . Combine these

two state space realizations into one which describes the mapping from f to f̃ . We obtain

S(Pest(s),Kest(s)) =

[

AL BL

CL DL

]

=





Ar 0 Br

BKCr AK BKDr

DKCr CK −I +DKDr



 (3.19)

Now define the matrix

J =

[

AK BK

CK DK

]

(3.20)

which collects the matrices for Kest(s) into one matrix. We can parametrize the closed-loop

relation in terms of the controller realization as follows. First we provide the following

definitions.

Ā =

[

Ar 0
0 0

]

, B̄ =

[

Br

0

]

, C̄ =
[

0 0
]

, C =

[

0 I
Cr 0

]

B =

[

0 0
I 0

]

, D12 =
[

0 I
]

, D21 =

[

0
Dr

]

which are all given in terms of the state space matrices of Pest(s). Then we have

AL = Ā+BJC

BL = B̄ +BJD21

CL = D12JC

DL = D11 +D21JD21

Now we look for a estimator Kest(s) such that the closed loop is contractive and internally

stable.

Lemma 3.1 [6] Suppose ML(s) = CL(Is−AL)
−1BL+DL. Then the followings are equiv-

alent conditions.

(a) The matrix AL is Hurwitz and ||ML(s)||∞ < γk;

(b) There exists a symmetric positive definite matrix XL such that





AT
LXL +XLAL XLBL CT

L

∗ −γkI DT
L

∗ ∗ −γkI



 < 0 (3.21)

Now we are ready to present the main theorem for the fault estimation design.
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Theorem 3.2 For the system (3.1), Kest(s) =

[

AK BK

CK DK

]

is a H∞ filtering based fault

estimator if there exist symmetric matrices AK , BK , CK and DK such that








Π ArX
T
2 + CrB

T
K +X2AK XBr +X2BrDr −CrD

T
K

∗ AT
K +AK X2Br +BKDr −CT

K

∗ ∗ −γkI I −DrD
T
K

∗ ∗ ∗ −γkI









< 0 (3.22)

where Π = AT
r X +XAr +CrB

T
KX2 +X2BKCr, X and X2 satisfy with X − Y −1 = X2X

T
2 .

Proof. By substituting the parameter in AL, BL, CL and DL, we can obtain:

AL =

[

Ar 0
BKCr AK

]

, BL =

[

Br

BKDr

]

CL =
[

−DKCr −CK

]

, DL =
[

I −DKDr

]

Define the matrices

PXL
= [BT 0 DT

12] (3.23)

Q = [C D21 0] (3.24)

and further

HXL
=





ĀTXL +XLĀ XLB̄ C̄T

∗ −γkI DT
11

∗ ∗ −γkI



 (3.25)

It follows that the inequality in Lemma 3.1 is exactly

HXL
+QTJTPXL

+ PXL
JQ < 0 (3.26)

By using the Lemma 3.1 above, there exists a matrix J satisfying (3.26) if and only if

W T
P HXL

WP < 0 and W T
QHXL

WQ < 0 both hold, where

PXL
=

[

X2 I 0 0
0 0 0 −I

]

(3.27)

Q =

[

0 I 0 0
Cr 0 Dr 0

]

(3.28)

HXL
=









AT
r X +XAr ArX

T
2 XBr 0

∗ 0 X2Br 0
∗ ∗ −γkI I
∗ ∗ ∗ −γkI









(3.29)

Replacing the matrices HXL
, PXL

and Q in the inequality, we can easily proof the

theorem.
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3.4 Output Feedback Fault Tolerant Controller Design

In this section, firstly, a controller Kc(s) is designed for the fault-free model. Then an

control compensation law V is determined, which is to be added to the normal control law

in order to reduce the faults’ effects on the system.

3.4.1 Fault-Free System

The LTI model (3.1) can be rewritten as the following equations when there is no fault

occur in the system.

ẋ(t) = Ax(t) +Bdd(t) +Bu(t)

z(t) = x(t)

y(t) = Cx(t) +Ddd(t) (3.30)

where z(t) is the controlled signal. So that the transfer matrix Pc(s) can be expressed as:

Pc(s) =





A Bd B

I 0 0
C Dd 0



 (3.31)

The following assumptions have been made in the previous section, which are listed below:

(1) (A,B) is stabilizable and (C,A) is detectable.

(2) (A,Bd) is controllable

Define the following two Hamiltonian matrices associated with the model above:

N∞ =

[

A γ−2
N BdB

T
d −BBT

−I −AT

]

, J∞ =

[

AT γ−2
N I − CTC

−BdB
T
d −A

]

(3.32)

where γN > 0 is given.

Theorem 3.3 [40] There exists an admissible controller such that ||Tzw||∞ < γN if and

only if the following three conditions hold:

(i) H∞ ∈ dom(Ric) and X∞ := Ric(H∞) > 0

(ii) J∞ ∈ dom(Ric) and Y∞ := Ric(J∞) > 0

(iii) ρ(X∞Y∞) < γ2N
where dom(∗) is domain of Riccati, Ric(∗) refers to the stabilizing solution of an ARE.

Moreover, when these conditions hold, one such controller is

Kc(s) :=

[

Â∞ (I − γ−2
N Y∞X∞)−1Y∞C

T

−BTX∞ 0

]

(3.33)

where Â∞ := A+ (γ−2
N BdB

T
d −BBT )X∞ + (I − γ−2

N Y∞X∞)−1Y∞C
TC.

Furthermore, the set of all admissible controllers such that ||Tzd||∞ < γN equals the set of

all transfer matrices from y to u in where Q ∈ RH∞, ||Q||∞ < γN .

M∞(s) =





Â∞ (I − γ−2Y∞X∞)−1Y∞C
T (I − γ−2Y∞X∞)−1B

−BTX∞ 0 I
−C I 0



 (3.34)
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Figure 3.3: Standard setup

By using the theorem, we can obtain a controller Kc(s) which can guarantee the sta-

bility of the system with disturbances. Suppose that the minimal state space realization of

dynamic controller Kc(s) is given by (3.35).

ẋk(t) = Akxk(t) +Bky(t)

uN (t) = Ckxk(t) (3.35)

where Ak = Â∞, Bk = (I − γ−2
N Y∞X∞)−1Y∞C

T , Ck = −BTX∞.

3.4.2 Fault Compensation

In this subsection, a fault compensation control law uad(t) will be designed. By adding

uad(t) to the normal control law uN (t) = Kcy(t), we aim to reduce the impact of the faults

on the system, which leads to

u(t) = uN (t) + uad(t) (3.36)

= Kcy(t) + V f̂(t)

The compensation control law, uad(t) = 0 in the normal case and uad(t) 6= 0 in the faulty

cases. Since a robust control law Kc(s) is designed to handle the disturbances of the system,

hereby we focus on compensating for the faults by ignoring d(t) in the following analysis.

Replace the fault estimate f̂(t) by f(t) − f̃(t) and use (3.35), then the closed-loop system

can be written as:

Σcl :







ẋ(t) = Ax(t) +BCKxk(t) + (BV +Bf )f(t)−BV f̃(t)
ẋk(t) = AKxk(t) +BKCx(t) +BKDff(t)
y(t) = Cx(t) +Dff(t)

(3.37)

Define ξ(t) = [x(t) xk(t)]
T and η(t) = [f(t) f̃(t)]T , we can rewrite the augmented state

space model as follows,

ξ̇(t) = Acξ(t) +Bcη(t)

y(t) = Ccξ(t) +Dcη(t) (3.38)
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where,

Ac =

[

A −BCk

BkC Ak

]

Bc =

[

BV +Bf −BV
BkDf 0

]

Cc =
[

C 0
]

, Dc =
[

Df 0
]

It is clear that the fault compensation problem can also be handled in a H∞ control frame-

work, for which the objective is to minimize ||Gyη(s)||∞ to guarantee that faults f(t) and

estimation errors f̃(t) cause minimal negative influence to the system.

Theorem 3.4 Given γc > 0, then ||Gyη(s)||∞ < γc if there exists symmetric matrices

P1 > 0, P2 > 0, and a matrix V , such that the following matrix inequality holds:













AP1 + P1A
T P1C

TBT
k +BCkP2 BV +Bf −BV P1C

T

∗ AkP2 + P2Ak BkDf 0 0
∗ ∗ −γI 0 DT

f

∗ ∗ ∗ −γI 0
∗ ∗ ∗ ∗ −γI













< 0 (3.39)

Proof. By applying the Lemma 3.1 and substituting the parameters AL, BL, CL, DL

by Ac, Bc, Cc, Dc, the theorem is proven.

3.5 Simulation

In this section, we apply the proposed scheme to a quadrotor system example given in [3]

to verify its effectiveness. The quadrotor helicopter platform is driven by four dc-motors

and has three encoders to measure the yaw, pitch and roll angles. Each propeller generates

a lift force to control the pitch and roll axes. The total torque generated by the propellers

causes the body to move around the yaw axis. The voltage signals going to the motors and

the pitch and yaw encoder signals are transmitted to the controller. For this system, several

assumptions are given in order to simplify the modeling process without loss of generality

[3][11].

(1) The structure is supposed to be rigid and strictly symmetrical.

(2) The center of mass and the body fixed frame origin are assumed to coincide.

(3) The moment is proportional to the dc-motor voltage.

(4) The change of attitude angle range is limited to (−10◦, 10◦).

(5) The air resistance can be ignored at low speed.
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Remark 3.1 The above assumptions are made to eliminate the nonlinear factors and sim-

plify the modeling. Generally, the torque for a dc-motor with respect to speed shows quadratic

relationship and there are varieties of quadrotor research work assuming that the torque is

proportional to the square of voltage, such as [13, 32]. But since the change of attitude

angle is limited within a small range, as given in assumption (3) in the above, the torque

is proportional to the dc-motor voltage. We adopt the linear quadrotor model to show the

effectiveness of the proposed fault estimation and fault tolerant control scheme.

Based on the assumptions, the dynamic system of the quadrotor can be described as

ψ̈(t) =
Kf

Jp
l(Vf (t)− Vb(t)) (3.40)

θ̈(t) =
Kf

Jr
l(Vr(t)− Vl(t)) (3.41)

φ̈(t) =
Kfc

Jy
(Vf (t) + Vb(t)) +

Kfn

Jy
(Vr(t) + Vl(t)) (3.42)

where ψ(t), θ(t), φ(t) denote the pitch, roll, and yaw angles, respectively. Kfc, Kfn are

the counter rotation propeller torque-thrust constant and the normal rotation propeller

torque-thrust constant, respectively; Kf is the thrust constant; l is the distance between

the motors and the encoder pivot; Jp is the equivalent moment of inertia about the pitch

axis; Jr is the equivalent moment of inertia about the roll axis; Jy is the equivalent moment

of inertia about the yaw axis; and Vf , Vb, Vr, Vl represent the front, back, right, and left

motor voltages of the helicopter system, respectively [3]. Main parameters associated with

the quadrotor model are given by Table 3.1.

Table 3.1: Values of model parameters
Symbol Value Unit

Kfn 0.0036 N.m/V

Kfc −0.0036 N.m/V

Kf 0.1188 N/V

l 0.197 m

Jy 0.110 kg.m2

Jp 0.0552 kg.m2

Jr 0.0552 kg.m2

System can be rewritten as the state-space model

ẋ(t) = Ax(t) +Bu(t) (3.43)

y(t) = Cx(t)

where x(t) = [ψ, θ, φ, ψ̇, θ̇, φ̇]T ∈ R6 is the state vector, and y(t) = [ψ, θ, φ, ψ̇, θ̇, φ̇]T ∈ R6 is

the output of the system. The control input vector u(t) can be described as [Vf , Vb, Vr, Vl]
T ∈

25



R4. The system matrices of the state space model are:

A =

















0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















B =





















0 0 0 0
0 0 0 0
0 0 0 0

lKf

Jp
−

lKf

Jp
0 0

0 0
lKf

Jr
−

lKf

Jr
Kfc

Jy

Kfc

Jy

Kfn

Jy

Kfn

Jy





















C = I6×6

The angles can be directly measured by encoders. The corresponding angle velocity is

computed by taking the derivative of the position and filtering the result using a second-

order lowpass filter. Clearly, the above model is stabilizable and observable. Then we

suppose faults and disturbances may exist in the system. Define Bf = B, Bd = I6 and

Dd = I6. The main parameters of the system are provided in the Table 3.1. The initial

state x0 = [1, 0, 0, 0, 0, 0]T . Then the state-space model (3.43) can be generalized for the

disturbances and faults as following:

ẋ(t) = Ax(t) +Bu(t) +Bff(t) +Bdd(t) (3.44)

y(t) = Cx(t) +Ddd(t)

3.5.1 Step Faults Case

There are 4 motors in the quadrotor system, hereby we assume that the front motor has a

fault, which is manifested as a step change (e.g. a bias), given as follows,

f1(t) =

{

1, t ≥ 10 (sec)
0, 0 ≤ t < 10 (sec)

f2(t) = f3(t) = f4(t) = 0 (3.45)

By using the above H∞ fault estimation method, we can estimate the faults f̂(t), which

is shown in Figure 3.4. To show the accuracy and effectiveness of the estimation law, we

also provide the Figure 3.5, which represent the estimation error f̃(t) between estimated

faults and actual faults.

One can notice that the estimation error contains only small noise in our simulation

for quadrotor model, and the estimated faults f̂(t) is considered to be accurate. The

performance of the proposed fault estimation law is satisfactory.
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Figure 3.4: Estimation of faults f̂(t) and actual faults f(t)
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Figure 3.5: Error of estimated faults f̃(t)

Figure 3.6 shows the output y(t) of the faulty system. From the figure, we can clearly

see that the fault induced transient response at (t = 10s) decays to zero after a few seconds,

which demonstrates that the fault tolerant controller can guarantee the stability and reduce

the effects of faults.
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Figure 3.6: Output y(t)

3.5.2 Sinusoidal Faults Case

In this subsection, we simulate the sinusoidal faults as:

f1(t) =

{

1 + 0.1cos(πt), t ≥ 10 (sec)
0 0 ≤ t < 10 (sec)

f2(t) = f3(t) = f4(t) = 0 (3.46)

By using the above H∞ fault estimation method, we can estimate the faults f̂(t), which

has been showed in Figure 3.7.

One can notice that the estimated faults f̂(t) are accurate compared to the actual faults

f(t). Figure 3.8 shows the output y(t) of faulty system. From the figure, we can clearly

see that after the transient response for fault occurring (t = 10s), the system responses

are recovered from the faults, which shows that the fault tolerant controller can retain the

stability and reduce the effects of faults. Based on the simulation results, we conclude that

the proposed fault tolerant control law is effective in handling the faults.

3.6 Conclusion

In this chapter, a H∞ fault estimation law is studied based on the residual generation from

fault detection filter. An output feedback fault tolerant controller u(t) is developed based

on the online estimation of faults, where the fault compensation control law is designed to

reduce the fault effects on system.

28



0 2 4 6 8 10 12 14 16 18 20

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

F
a
u
lt
s

f̂1(t)

f̂2(t)
f1(t)
f2(t)

Figure 3.7: Estimation of faults f̂(t) and actual faults f(t)

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

o
u
tp

u
t

ψ

θ

φ

ψ̇

θ̇

φ̇

Figure 3.8: Output y(t)
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Chapter 4

H∞ Filtering Based Fault Diagnosis

and Fault Tolerant Control for

Lipschitz Nonlinear Systems

4.1 The Lipschitz Observer Design

A class of nonlinear systems that has been paid much attention in the literature is the

Lipschitz nonlinear systems of the following form. Many Lyapunov-like design techniques

have been proposed for such systems.

ẋ(t) = Ax(t) +Bu(t) + Φ(x, t) (4.1)

y(t) = Cx(t), A ∈ Rn×n, C ∈ Rp×n

where (A,B) is stabilizable, (A,C) is detectable and the function Φ(x, t) satisfies a uniform

Lipschitz condition globally in x, i.e,

||Φ(x1, t)− Φ(x2, t)|| ≤ α||x1 − x2|| (4.2)

∀u ∈ Rm, t ∈ R and ∀x1(t), x2(t) ∈ Rn. Here α ∈ R+ is referred to as the Lipschitz

constant and is independent of x and t. Lipschitz systems constitute a very important

class. Any nonlinear system ẋ = f(x, u, t) can be expressed in the form of (4.1) if f(x, u, t)

is continuously differentiable with respect to x. Many nonlinear systems are at least locally

Lipschitz, such as trigonometric nonlinearities occuring in robotics, nonlinearities which are

square or cubic in nature, etc. The function Φ(x, t) can also be considered as a perturbation

affecting the system [26].

In existing results on observer design for systems of the form (4.1)-(4.2), the observer

described as the class of Luenberger-like observers as following,

˙̂x(t) = Ax̂(t) +Bu(t) + Φ(x̂, t) +H(y(t)− ŷ(t)) (4.3)

ŷ(t) = Cx̂(t)
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The observer error dynamics are then given by

ė(t) = (A−HC)e(t) + Φ(x, t)− Φ(x̂, t) (4.4)

r(t) = Ce(t)

where e(t) = x(t)− x̂(t).

Lemma 4.1 [25] If a gain H is chosen s.t α < λmin(Q)
2λmax(P ) and it satisfies the Lyapunov

equation (A−HC)TP +P (A−HC) = −Q, the estimation error in (4.4) is asymptotically

stable.

Lemma 4.1 provides a very important sufficient condition for the existence of an observer,

but does not provide insights for the design problem. Raghavan proposed an algorithm

based on the following lemma,

Lemma 4.2 [27] If there exists an ε > 0 such that the Algebraic Riccati Equation (ARE)

in (4.5) has a symmetric positive definite solution P , then the observer gain H = 1
2εPC

T

stabilizes the error dynamics in (4.4) for all Φ(x, t) with a Lipschitz constant α.

AP + PAT + P (α2I −
1

ε
CTC)P + I + εI = 0 (4.5)

Based on this result, Raghavan proposed an iterative binary search procedure over ε,

to obtain the observer gain. However, given a particular system of the form (4.1) with a

specific Lipschitz constant α, this procedure may fail even if the pair of matrices (A,C)

is observable. Moreover, Lemma 4.2 provides no insight into what conditions the matrix

(A−HC) must satisfy to ensure observer stability. The answer to this puzzle was provided

by Rajamani in the following lemma,

Lemma 4.3 [28] The observer gain H stabilizes the error dynamics in (4.4) for all Φ with

a Lipschitz constant α if H is chosen so as to ensure that (A−HC) is stable and such that

min
ω∈R+

σmin(A−HC − jωI) > α (4.6)

The detailed proof can be found in the Rajamani’s paper [28]. Basically, the proof of

this theorem is done in the following three parts, Part 1: If min
ω∈R+

σmin(A−HC−jωI) > α,

then there exists ε > 0 such that the Hamiltonian matrix

H̄ =

[

A−HC α2I
−I − εI −(A−HC)T

]

(4.7)

has no imaginary axis eigenvalues.

Part 2: If the matrix H̄ has no imaginary axis eigenvalues and if (A−HC) is stable, then

there exists a symmetric positive definite solution P = P T to the Riccati equation

(A−HC)TP + P (A−HC) + α2PP + I + εI = 0 (4.8)
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Part 3: The existence of a positive definite matrix P satisfying (4.8) ensures that the

observer (4.3) for the system (4.1) is asymtotically stable.

From the design perspective, it can be related to the H∞ theory by rewriting (4.5) as:

||[sI − (A−HC)]−1||∞ <
1

α
(4.9)

where the left side of (4.9) is equivalent to the H∞ norm of the transfer function Tz∆Φ(s)

between z and ∆Φ in the following standard form:

ė(t) = (A−HC)e(t) + ∆Φ (4.10)

z(t) = e(t)

where ∆Φ = Φ(x, t)−Φ(x̂, t). Then if we can find a feasible H to satisfy ||Tz∆Φ(s)||∞ < 1
α
,

the static observer gain H will satisfy the Lemma 4.3. By using the bounded real lemma,

we have the following theorem,

Theorem 4.1 [28] The followings are equivalent conditions.

(a) The matrix A−HC is Hurwitz and ||Tz∆Φ(s)||∞ < 1
α
;

(b) There exists a symmetric positive definite matrix X such that





(A−HC)TX +X(A−HC) X I
∗ − 1

α
I 0

∗ ∗ − 1
α
I



 < 0 (4.11)

The theorem is directly reached by applying bounded real lemma, so the proof is omitted

here. Therefore, we can design a static observer gain H by Theorem 4.1.

4.2 Fault Detection

Consider a nonlinear system with actuator faults as follows:

ẋ(t) = Ax(t) +Bu(t) + Φ(x, t) +Bff(t) (4.12)

y(t) = Cx(t) +Dff(t)

where x(t) ∈ Rn is the state vector; u(t) ∈ Rm and y(t) ∈ Rp are, respectively, the

control input and output vectors; f(t) ∈ Rk is the unknown fault vector; A,B,Bf , C,Df

are constant real matrices of appropriate dimensions; the function Φ(x, t) satisfies a uniform

Lipschitz condition globally in x,

||Φ(x1, t)− Φ(x2, t)|| ≤ α||x1 − x2|| (4.13)

∀u(t) ∈ Rm, t ∈ R and ∀x1(t), x2(t) ∈ Rn. Here α ∈ R+ is referred to as the Lipschitz

constant and is independent of x and t. Note that the proposed approach to fault estimation

could address a control-dependent nonlinearity Φ(x, t), but fault accommodation would be
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much more complex. Finally, although they could be taken into consideration, uncertainties

and unknown inputs are not introduced since they call for robust adaptive techniques.

Faults are described by the vector f(t) ∈ Rq, assumed to be zero prior to the failure

time, non-zero and differentiable after the fault occurrence (note that continuity at the

fault occurrence time is not required). It is assumed that the fault vector and its time

derivative are bounded. This assumption is quite general in the literature. It typically says

that FDI and FTC are designed for situations where the system is not “exploding”, which

is not really a restriction. Note that as a consequence, the Lipschitz condition is indeed

satisfied in the bounded region of the state space that is practically considered. At the

case, general faults are assumed, where no assumptions are made on the time-domain or

frequency-domain properties of the faults.

˙̂x(t) = Ax̂(t) +Bu(t) + Φ(x̂, t) +H(y(t)− ŷ(t)) (4.14)

ŷ(t) = Cx̂(t)

The observer in (4.14) with the residual signal r(t) = y(t)− ŷ(t) is used as the residual

generator, and the object is to develop conditions on the observer gain H that guarantee

robustness of fault detection. To this end, it can be seen that the residual dynamics are

given by:

ė(t) = (A−HC)e(t) + (Bf −HDf )f(t) + Φ(x, t)− Φ(x̂, t) (4.15)

r(t) = Ce(t) +Dff(t)

where e(t) = x(t)− x̂(t).

Definition 4.1 Given the ith fault fi(t) (fi(t) = 0, t < tf , and fi(t) 6= 0, t ≥ tf ) is de-

tectable if there exists a residual generator and t1 > 0, such that the produced residual

signal r(t) satisfies that r(t) = 0, t < tf and r(t) 6= 0, t ≥ tf + t1.

Theorem 4.2 Given the system described in (4.12) and (4.13), the residual generator in

(4.15) achieves fault detectability (according to Definition 4.1) if there exists a symmetric

positive definite matrix X such that





(A−HC)TX +X(A−HC) X I
∗ − 1

α
I 0

∗ ∗ − 1
α
I



 < 0 (4.16)

Proof. Based on the Theorem 4.1, if (4.16) is satisfied, then the observer provides an

accurate estimation of x(t), and ŷ(t) = Cx̂(t) is the accurate estimate of y(t) for fault-free

case. In this case, the residual signal r(t) is approximately zero. In the faulty case, based

on (4.15) the fault vector f(t) has directly reflected in the residual signal r(t). Therefore,

the fault detection according the Definition 4.1 is achievable by this structure.
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Then the residual evaluation function ||r||2,T is determined by

||r||2,T =

[
∫ t2

t1

rT (t)r(t)dt

]

1

2

, T = t2 − t1 (4.17)

where t ∈ (t1, t2] is the finite-time window and the adaptive threshold Jth = sup
t>0

||r(t)|| is

calculated by the method from Zhong’s paper [39]. When ||r||2,T > Jth, the system will

alarm for the faults.

4.3 H∞ Fault Estimation

Define Ar = A − HC, Br = Bf − HDf , Cr = C, Dr = Df . Since we have already got

the observer gain H from Theorem 4.2, Ar and Br are known constant matrix. Then the

residual dynamics can be expressed as:

ė(t) = Are(t) +Brf(t) + ∆Φ (4.18)

r(t) = Cre(t) +Drf(t)

where ∆Φ = Φ(x, t) − Φ(x̂, t). By the Lipschitz nonlinear constraints (4.13), it is easy to

show that ||∆Φ|| ≤ α||e(t)||. Note that f = 0 when no fault exists in the system, where

the residual dynamics will be exactly same with (4.10), for which the stability has been

proved by the Lemma 4.3. By defining the variables: τ = [τ1 τ2]
T = [∆Φ f(t)]T , the error

dynamics can be represented as:

ė(t) = Are(t) + [I Br]τ (4.19)

r(t) = Cre(t) + [0 Dr]τ

To measure the accuracy of fault estimation, we introduce f̃(t) = f(t)− f̂(t) to evaluate the

estimation quality. Since the residual signal r(t) is generated from output y(t) and observer-

filtered output ŷ(t), it should contains certain information about faults, which leads us to

design a dynamical estimation law f̂(t) = Kest(s)r(t) to estimate the faults directly from

residual signal. Since f̃(t) = f(t)− f̂(t), we can say f̂(t) can be a fault estimator if f̃(t) is

bounded within a small range.

This can also be represented by Figure 4.1 where the plant Pest(s) has the state space

representation in (4.20) and where the controller Kest(s) is the dynamic estimator of the

faults.

The transfer matrix Pest(s) can be written as:

Pest(s) =





Ar

[

I Br

]

0

0
[

0 −I
]

I
Cr

[

0 Dr

]

0



 (4.20)

Theorem 4.3 Given system (4.12) and (4.13), the estimated faults f̂(t) achieves fault

estimation if Kest(s) is chosen such that ||T
ff̃
(s)||∞ < γ, where γ > 0 is given.
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Figure 4.1: Standard setup

Proof. It is easily seen that if the H∞ norm of the closed-loop transfer function is bounded

by a given positive constant γ, then estimated error ||f̃(t)|| < γ||f(t)||. Therefore, we say

f̂(t) is an estimated faults since it can estimate the magnitude of the faults f(t).

Define

Ap = Ar, Bp1 =
[

I Br

]

, Bp2 = 0,

Cp1 = 0, Cp2 = Cr, Dp11 =
[

0 −I
]

,

Dp12 = I, Dp21 =
[

0 Dr

]

.

Then the transfer matrix Pest(s) can be rewritten as:

Pest(s) =





Ap Bp1 0

0 Dp11 Dp12

Cp2 Dp21 0



 (4.21)

Then the estimator Kest(s) can be realized as:

Kest(s) =

[

AK BK

CK DK

]

(4.22)

Combine these two state space realizations into one which describes the map from f to f̃ .

We obtain

ML(s) =

[

AL BL

CL DL

]

(4.23)

=





Ap 0 Bp1

BKCp2 AK BKDp21

DKCp2 CK Dp11 +DKDp21





Now define the matrix

J =

[

AK BK

CK DK

]

(4.24)

which collects the representation for Kest(s) into one matrix. We can parametrize the

closed-loop relation in terms of the controller realization as follows. First make the following
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definitions.

Ā =

[

Ap 0
0 0

]

, B̄ =

[

Bp1

0

]

, C̄ = 0, C =

[

0 I
Cp2 0

]

,

B =

[

0 0
I 0

]

, D12 =
[

0 I
]

, D21 =

[

0
Dp21

]

.

which are entirely in terms of the state space matrices for Pest(s). Then we have

AL = Ā+BJC, BL = B̄ +BJD21,

CL = D12JC, DL = Dp11 +D12JD21.

Obviously, we can obtain the following equations by replacing with the AK , BK , CK and

DK .

AL =

[

Ar 0
BKCr AK

]

BL =

[

I Br

0 BKDr

]

CL =
[

DKCr CK

]

DL =
[

0 I +DKDr

]

Now we look for a dynamic estimator Kest(s) such that the closed-loop transfer function

ML(s) is contractive and internally stable.

Lemma 4.4 [6] Suppose

(a) P , Q and H are matrices and that H is symmetric;

(b) The matrices WP and WQ are full rank matrices satisfying ImWP = kerP and ImWQ =

kerQ.

Then there exists a matrix J such that

H + P ∗J∗Q+Q∗JP < 0 (4.25)

if and only if, the inequalities

W ∗
PHWP < 0 and W ∗

QHWQ < 0 (4.26)

both hold.

Theorem 4.4 [6] The matrix AL is Hurwitz and ||ML(s)||∞ < γ if and only if there exists

a symmetric positive definite matrix XL such that





A∗
LXL +XLAL XLBL C∗

L

∗ −γI D∗
L

∗ ∗ −γI



 < 0 (4.27)
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Proof. Theorem 4.4 can be proven readily by using bounded real lemma.

Now define the matrices

PXL
=

[

B∗XL 0 D∗
12

]

Q =
[

C D21 0
]

HXL
=





Ā∗XL +XLĀ XLB̄ C̄∗

∗ −γI D∗
L

∗ ∗ −γI





It follows that ineuqality in (4.27) is exactly

HXL
+Q∗J∗PXL

+Q∗
XL
JQ < 0 (4.28)

Lemma 4.5 [6] Suppose X and Y are symmetric positive definite matrices in Rn×n; and

nK is a positive integer. Then there exist matrices X2, Y2 ∈ Rn×n and symmetric matrices

X3, Y3 ∈ RnK×nK , satisfying

[

X X2

X∗
2 X3

]

> 0 and

[

X X2

X∗
2 X3

]−1

=

[

Y Y2
Y ∗
2 Y3

]

if and only if
[

X I
I Y

]

≥ 0 and rank

[

X I
I Y

]

≤ n+ nK

Theorem 4.5 There exists a H∞ filtering based fault estimator Kest(s) for the system

(4.12), if and only if there exists symmetric matrices X > 0 and Y > 0 such that

(a)

[

NX 0
0 I

]∗









A∗
rX +XAr 0 XBr 0

∗ −γI 0 0
∗ ∗ −γI D∗

r

∗ ∗ ∗ −γI









[

NX 0
0 I

]

< 0 (4.29)

(b)

[

NY 0
0 I

]∗









A∗Y + Y A 0 I Br

∗ −γI 0 −I
∗ ∗ −γI 0
∗ ∗ ∗ γI









[

NY 0
0 I

]

< 0 (4.30)

(c)

[

X I
I Y

]

≥ 0, (4.31)

where NX and NY are full-rank matrices whose images satisfy

ImNX = ker[Cr 0 Dr] (4.32)

ImNY = ker[0 I] (4.33)
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Suppose X and Y have been found satisfying Theorem 4.5, we can find a matrix X2 ∈ Rn×n

such that X − Y −1 = X2X
∗
2 by Lemma 4.5. Then

XL =

[

X X∗
2

X2 I

]

(4.34)

has the properties desired above. As seen before, the order nK need to be no larger than

n, and in general can be chosen to be the rank of X − Y −1. Next by Lemma 4.4 we know

that there exists a solution to

HXL
+Q∗J∗PXL

+ P ∗
XL
JQ < 0 (4.35)

and that any such solution J provides the state space realization for a feasible estimator

Kest.

4.4 Fault Tolerant Controller Design

In this section, firstly, a controller KN is designed for the fault-free model. Then a control

compensation law V is determined, which is to be added to the normal control law in order

to reduce the faults’ effects on the system.

4.4.1 Fault-Free Case

Now we design the fault-free part of control at first. For the fault-free system, f(t) should

always be zero. That is to say the system (4.12) can be rewritten as:

ẋ(t) = Ax(t) +BuN (t) + Φ(x, t) (4.36)

y(t) = Cx(t)

Furthermore, the error dynamic of the fault-free system can be derived directly from

(4.15), such that

ė(t) = (A−HC)e(t) + Φ(x, t)− Φ(x̂, t) (4.37)

Assuming that a Moore-Penrose pseudo-inverse exists, the observer-based state feedback

controller can be proposed as:

uN (t) = KN x̂(t)−B†Φ(x̂, t) (4.38)

where B† is the pseudo-inverse of B, KN is the control gain to be determined for the

fault-free case. Then (4.36) can be rewritten as:

ẋ(t) = (A+BKN )x̂(t) + Φ(x, t)− Φ(x̂, t) (4.39)
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By augmenting the state x(t) and the dynamic error e(t) in a vector η(t), we can reach

the following equations.

η̇(t) =

[

A+BKN −BKN

0 A−HC

]

η(t) +

[

I
I

]

∆Φ (4.40)

y(t) =
[

C 0
]

η(t)

where η(t) = [x(t) e(t)]T and ∆Φ = Φ(x, t) − Φ(x̂, t). Then it is easy to see that KN in

the above equations can be calculated by the classic H∞ techniques.

Theorem 4.6 Given γ > 0, then ||Gy∆Φ(s)||∞ < γ if there exists symmetric matrices

P1 > 0, P2 > 0 and a matrix Y such that the following matrix inequality holds:









AP1 + P1A
T + Y + Y T −Y P1 CT

∗ P2(A−HC) + (A−HC)TP2 P2 0
∗ ∗ −γI 0
∗ ∗ ∗ −γI









< 0 (4.41)

where Y = P1BKN .

Proof. Define symmetric matrices P1 and P2 such that P = diag(P1, P2) is also sym-

metric. By using the Lemma 2.2, we can easily know that ||Gy∆Φ(s)||∞ < γ is equivalent

to the following inequity.









P1(A+BKN ) + (A+BKN )TP1 −P1BKN P1 CT

∗ P2(A−HC) + (A−HC)TP2 P2 0
∗ ∗ −γI 0
∗ ∗ ∗ −γI









< 0

(4.42)

However, the (4.42) is not a solvable LMI. Luckily we can use some standard notations to

transfer the inequality to a solvable one. By left and right multiplying with the symmetric

matrix diag(P1, P2), the inequality (4.42) can be rewritten as (4.41), which can be directly

solved by LMI technique.

4.4.2 Fault Compensation

In this subsection, a fault compensation control law uad(t) will be designed. By adding

uad(t) to the normal control law uN (t), we can reduce the impact of the faults on the

system, which leads to

u(t) = uN (t) + uad(t) (4.43)

= Kc(s)x̂(t)−B†Φ(x̂, t) + V f̂(t)
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The compensation control law uad(t) = 0 in the normal case and uad(t) 6= 0 in the faulty

cases.

ẋ(t) = Ax(t) +Bu(t) + Φ(x, t) +Bff(t) (4.44)

y(t) = Cx(t) +Dff(t)

By replacing estimation f̂(t) by f(t)− f̃(t), the system can be rewritten as:

ẋ(t) = Ax(t) +BKN x̂(t) + ∆Φ+Bff(t) +BV f̂(t) (4.45)

ė(t) = Are(t) +Brf(t) + ∆Φ

where ∆Φ = Φ(x, t)−Φ(x̂, t). By augmenting the state x and the error dynamics e, we can

reach the following equations.

[

ẋ(t)
ė(t)

]

=

[

A+BKN −BKN

0 Ar

] [

x(t)
e(t)

]

+

[

Bf +BV −BV I
Br 0 I

]





f(t)

f̃(t)
∆Φ



 (4.46)

y(t) =
[

C 0
]

[

x(t)
e(t)

]

+
[

Df 0 0
]





f(t)

f̃(t)
∆Φ





Then we define η(t) = [f(t) f̃(t) ∆Φ]T to make the expression simple.

Theorem 4.7 Given γ > 0, then ||Gyη(s)||∞ < γ if there exists symmetric matrices

Pa > 0, Pb > 0 and a matrix V such that the following matrix inequality holds:

















(A+BKN )Pa + Pa(A+BKN )T −BKN Bf +BV −BV I PaC
T

∗ ArPb + PbA
T
r Br 0 I 0

∗ ∗ −γI 0 0 DT
f

∗ ∗ ∗ −γI 0 0
∗ ∗ ∗ ∗ −γI 0
∗ ∗ ∗ ∗ ∗ −γI

















< 0

(4.47)

Proof. Define symmetric matrices Pa and Pb such that P = diag(Pa, Pb) is also sym-

metric. We know that ||Gyη(s)||∞ < γ is equivalent to the following inequity (4.48) by

applying the Lemma 2.2.

















Γ −PaBKN Pa(Bf +BV ) −PaBV Pa CT

∗ PbAr +AT
r Pb PbBr 0 Pb 0

∗ ∗ −γI 0 0 DT
f

∗ ∗ ∗ −γI 0 0
∗ ∗ ∗ ∗ −γI 0
∗ ∗ ∗ ∗ ∗ −γI

















< 0 (4.48)
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where Γ = Pa(A+BKN ) + (A+BKN )TPa. But we have to use some notations to transfer

the inequality (4.48) to a solvable one. The inequality (4.48) can be rewritten as (4.47)

in the Theorem 4.7 by left and right multiplying with the symmetric matrix diag(Pa, Pb).

Note that the parameters KN , Ar and Br can all be calculated by the previous lemmas or

theorems. That’s to say, we only need to solve Pa, Pb and V from this inequality. Then the

inequality can be solved by LMI technique.

4.5 Simulation

In this section, a system model for a rigid body satellite in a circular orbit is adopted [9].

The three coordinate frames for the dynamics of the satellite are shown in Figure 4.5.

Figure 4.2: Rigid body satellite in a circular orbit

The local vertical and local horizontal reference frame A with its origin at the center of

mass of the satellite, and a set unit vectors ~a1, ~a2, ~a3; a body-fixed reference frame B with

basis vectors ~b1, ~b2, ~b3; and a Newtonian inertial reference frame N with a set unit vectors

~n1, ~n2, ~n3. The dynamics of a rigid-body satellite in a circular orbit is displayed with the

well-known Euler’s moment equation. The nonlinear motion equation is represented as:

Jω̇ + ω × Jω = 3ω2
0ξ × Jξ + u+ Td (4.49)

where ω = [ωx ωy ωz]
T is the angular velocity of the satellite in a body-fixed reference frame;

J = diag{J1, J2, J3} is the symmetric inertia matrix of the rigid satellite, and Ji(i = 1, 2, 3)
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are the principle axis moments of inertia of the satellite; ω0 is the constant orbit rate;

u = [u1 u2 u3]
T is the control torque vector and Td represents the external disturbance

torques. The nonlinear term ξ is

ξ =
[

−sinθ sinφ cosθ cosφ cosθ
]T

(4.50)

The notation a× for a vector a = [a1 a2 a3]
T is used to represent the skew-symmetric matrix

a× =





0 −a3 a2
a3 0 −a1
−a2 a1 0





To describe the orientation of the body-fixed reference frame B with respect to A, in terms

of three Euler angles ψ, θ and ψ, which are roll, pitch and yaw attitude angles respectively,

a particular sequence of three successive body-axis rotations is symbolically denoted by

ψ ~a3 → θ ~a′2 → φ ~a′′1

in which ψ ~a3 represents a rotation about the ~a3-axis of the frame ~a1, ~a2, ~a3 with an angle

ψ to the frame ~a1
′, ~a2

′, ~a3
′,θ ~a2

′ a rotation about the ~a2
′-axis of the frame ~a1

′, ~a2
′, ~a3

′ with

an angle θ to the frame ~a1
′′, ~a2

′′, ~a3
′′ with an angle φ to the frame ~b1, ~b2, ~b3. The kinematic

differential equation of an orbiting rigid body can be described as





φ̇

θ̇

ψ̇



 =
1

cosθ





cosθ sinφsinθ cosφsinθ
0 cosφ −sinφcosθ
0 sinφ cosφ









ωx

ωy

ωz



+
ω0

cosθ





sinψ
cosθcosψ
sinθcosψ



 (4.51)

For small attitude angles, the dynamic equation becomes

J1ω̇x − (J2 − J3)ωyωz + 3ω2
0(J2 − J3)ψ = u1 + Td1

J2ω̇y − (J3 − J1)ωzωx + 3ω2
0(J1 − J3)θ = u2 + Td2

J3ω̇z − (J1 − J2)ωxωy = u3 + Td3

and the kinematic equation can be linearized as

φ̇ = ωx + ω0ψ

θ̇ = ωy + ω0

ψ̇ = ωz − ω0φ

choose state variable x as

x(t) =
[

φ(t) θ(t) ψ(t) ωx(t) ωy(t) ωz(t)
]T

the satellite attitude control system model with actuator faults can be obtained as follows:

ẋ(t) = Ax(t) +Bu(t) + Φ(x, t) +Bff(t) (4.52)

y(t) = Cx(t) +Dff(t)
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where

A =

















0 0 ω0 1 0 0
0 0 0 0 1 0

−ω0 0 0 0 0 1

−3ω2
0J

−1
1 (J2 − J3) 0 0 0 0 0

0 −3ω2
0J

−1
2 (J1 − J3) 0 0 0 0

0 0 0 0 0 0

















Φ(x, t) =
[

0 ω0 0 J−1
1 (J2 − J3)ωyωz J−1

2 (J3 − J1)ωzωx J−1
3 (J1 − J2)ωxωy

]T

B =





0 0 0 J−1
1 0 0

0 0 0 0 J−1
2 0

0 0 0 0 0 J−1
3



 , C = 0.2× I6×6

Bf = Df =





0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





T

The satellite is assumed to be operating in a small angle range with small angular velocity,

therefore the nonlinear function Φ(x, t) is locally Lipschitz with a Lipschitz constant α.

||Φ(x, t)− Φ(x̂, t)|| ≤ α||x(t)− x̂(t)||

Note that α can be obtained by calculating the upper bound of the changing rate of the

function Φ(x, t) with respect to the angular velocity in the operation range.

The inertia matrix is assumed as J = diag{18, 21, 24}. The satellite is equipped with

three actuators dispatched at each principle axis, and each actuator is with limited control

torque umax = 2N · m. The orbital angular velocity ω0 = 0.0012 rad/s. The Lipschitz

constant is calculated as α = 0.33. By applying the Theorem 4.2, the static observer gain

H can be designed as

H =

















14.4371 0 −0.0021 −18.8657 0 0.0062
0 14.4371 0 0 −3.9193 0

0.0021 0 14.4371 0.0052 0 −15.2908
23.8657 0 −0.0052 14.4371 0 0

0 8.9193 0 0 14.4371 0
−0.0062 0 20.2908 0 0 14.4371

















Furthermore, by using the Theorem 4.3 and Theorem 4.4, the dynamic fault estimator
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Kest(s) =

[

AK BK

CK DK

]

can be obtained as:

AK =

















−202.5410 0 0.0020 1.0000 0 0
0 −202.5140 0 0 1.0000 0

−0.0020 0 −202.5300 0 0 1.0000
−501.7960 0 0.0050 −0.3000 0 0

0 −500.2330 0 0 −0.3000 0
−0.0030 0 −501.2850 0 0 −0.3000

















,

BK =

















3165.444 0 0 59.83 0 −0.02
0 3165.027 0 0 12.436 0
0 0 3165.27 −0.017 0 48.494

7880.153 0 −0.061 −41.015 0 0
0 7902.777 0 0 −41.021 0

0.071 0 7883.388 0 0 −41.017

















,

CK =





0 0 0 −0.063 0 0
0 0 0 0 −0.063 0
0 0 0 0 0 −0.063



 ,

DK =





0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





Then we go further to design the fault tolerant controller, which can be calculated by

the H∞ synthesis technique. We obtain the normal controller gain KN as following:

KN =





−12 0 −0.0048 −26 0 0
0 −14 0 0 −30.3333 0

0.0064 0 −16 0 0 −34.6667





After that, we design the fault compensator by applying the Theorem 4.7, then obtain

the gain of V .

V =





−6.0477 0.0000 0.0004
−0.0000 −6.1211 −0.0000
−0.0014 0.0000 −8.1326





4.5.1 Oscillated Faults Case

In this case, it is assumed that the system has a biased attenuated oscillated fault happened

in the first channel of faults which is given as follows,

f1(t) =

{

1 + 0.1cos(πt)e−0.1t, t ≥ 10 (sec)
0 0 ≤ t < 10 (sec)

(4.53)

The Figure 4.3 shows the residual signal r(t) generated from the observer. Obviously,

the residual signal jumps a big step during the faults happen (t ≥ 10), which means the

fault detection has be achieved.
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Figure 4.3: Residual generation

The relationship between real faults f(t) and estimated faults f̂(t) (dotted-line) is illus-

trated in Figure 4.4.
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Figure 4.4: Estimation of faults

One can notice that the estimated faults f̂(t) are accurate compared to the actual faults

f(t). Figure 4.5 shows the state x(t) of faulty system. From the figure, we can clearly

see that after the transient response for faults’ occurrence (t = 10s), the system responses

are recovered from the faults, which shows that the fault tolerant controller can retain the

stability and reduce the effects of faults.
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Figure 4.5: System state under faults occurrence

4.5.2 Multiple Faults Case

In the second case, we assume that the system has three different kinds of biased attenuated

oscillated faults happened in all these three fault channels in different time, which can be

described by equations (4.54).

f1(t) =

{

1 + cos(πt)e−0.1t, t ≥ 10 (sec)
0 0 ≤ t < 10 (sec)

f2(t) =

{

0.8 + 1.5cos(πt)e−0.15t, t ≥ 20 (sec)
0 0 ≤ t < 20 (sec)

(4.54)

f3(t) =

{

0.5 + cos(πt)e−0.12t, t ≥ 30 (sec)
0 0 ≤ t < 30 (sec)

The Figure 4.6 shows the residual signal r(t) generated from the observer. The residual

signals vary at three occasions: 10s, 20s and 30s, which are exactly the faults’ occurrence

time. That’s to say the system can detect all these three faults together.

The relationship between real faults f(t) and estimated faults f̂(t) (dotted-line) is de-

scribed in Figure 4.7. One can notice that the estimated faults f̂(t) are accurate compared

to the actual faults f(t).
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Figure 4.6: Residual generation
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Figure 4.7: Estimation of faults

4.5.3 Piecewise Step Faults Case

In the third case, we simulate that the system has a piecewise step fault happened in the

first fault channel as equations (4.55).

f1(t) =

{

0.5, 10 ≤ t < 30 (sec)
0

(4.55)

The Figure 4.8 shows the residual signal r(t) generated from the observer. It is seen

that the residual jumps a big step during the faults happen at t ≥ 10 and drops back to
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the original states when the faults disappear at t ≥ 30. Then the faults can be detected by

this method.
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Figure 4.8: Residual generation

The relationship between real faults f(t) and estimated faults f̂(t) (dotted-line) is illus-

trated in Figure 4.9.
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Figure 4.9: Estimation of faults

One can notice that the estimated faults f̂(t) are accurate compared to the actual faults

f(t). Figure 4.10 shows the state x(t) of faulty system. From the figure, we can clearly

see that after the transient response for faults’ occurrence (t = 10s), the system responses
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Figure 4.10: System state under faults occurrence

are recovered from the faults, which shows that the fault tolerant controller can retain the

stability and reduce the effects of faults. After the faults disappear at t = 30s, the system

will be back on origin state by the effects of the fault tolerant controller.

4.6 Conclusion

This chapter gives an idea of extending the H∞ filtering based fault diagnosis framework

from linear system to Lipschitz nonlinear system. Based on the simulation results, we

conclude that the proposed fault tolerant control law is effective in handling the faults.
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Chapter 5

Conclusion and Future Work

In this thesis, we focus on the model-based fault diagnosis problem. Although observer-

based techniques have been developed for many years, there still remains an open problem

of conducting fault detection and fault tolerant control simultaneously. By using the new

framework proposed in this paper, we can diagnose the faults and compensate the faults at

the same time.

We give a brief review of the previous techniques about model-based fault diagnosis and

develop a new H∞ filtering based fault diagnosis framework at the beginning of the thesis.

We use the H∞ filtering observer design technique to obtain the filtered residual signals and

separate the useful information of the residual signals from disturbances. Then we apply the

classic H∞ synthesis method to both the linear system and the Lipschitz nonlinear system.

For the linear system, we use the integrated framework to detect the faults and apply

the fault tolerant control simultaneously. We obtain the purified faults information by

filtering the residual signals generated from the observer. Then we estimate the faults by

using H∞ synthesis. After that, we design a fault tolerant controller which can handle both

fault-free case and fault-occurred case. At the end of the discussion, a quadrotor example

is illustrated to show the effectiveness of the framework.

For the Lipschitz nonlinear system, we obtain the residual signals by using a classic

Lipschitz nonlinear observer. Then the faults can be detected and estimated by the H∞

filtering based fault diagnosis framework. Then a fault tolerant controller has been designed

for the Lipschitz nonlinear system. Finally, we introduce a satellite model to validate the

framework.

In the future work, we may take uncertainties into consideration for the linear system.

Also, we can apply the scheme to the more realistic quadrotor control problem, for example,

how to maintain the stability if one of the motors has lost its control efficiency. Then for

the Lipschitz nonlinear system, external disturbances could be an interesting topic to be

discussed in the future work. Besides, the nominal controller uN in Lipschitz nonlinear

system is just a simplification, which can be improved in the continuing research.
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