
Analysis of Evolutionary Optimization Algorithms in Automated

Test Pattern Generation for Sequential Circuits

By:

Majed Mohammad Alateeq

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

In

Computer Engineering

Department of Electrical and Computer Engineering

University of Alberta

© Majed Mohammad Alateeq, 2016

ii

Abstract

In automated test pattern generation (ATPG), test patterns are automatically generated and tested against

all specific modeled faults, such as stuck-at fault, which is most commonly used in fault modeling.

Testing of sequential circuits can be performed exhaustively, randomly or algorithmically. Exhaustive and

random test pattern generators consume a high percentage of resources which make them impractical

solutions, especially for large sequential circuits. Moreover, the testing time increases rapidly as the

number of inputs, or the circuit’s complexity increases, which means that these types of tests are

ineffective and cannot be fully adapted. Since the test pattern generation is a search process completed

over a large search space, algorithmic test pattern generation is a favorable option because of its ability to

reduce the size of the search space, which leads to lowering the number of test patterns and reducing the

testing time. The objective of this work is to present a complete analytical study of ATPG for sequential

circuits using algorithmic test pattern generators. Three optimization algorithms, namely: genetic

algorithm (GA), particle swarm optimization (PSO) and differential evolution (DE), were analytically

studied for the purpose of generating optimized test sequence sets. Furthermore, this work investigated

the broad use of evolutionary algorithms and swarm intelligence in automated test pattern generation to

expand the analysis of the subject. The obtained experimental results demonstrated the improvement in

terms of testing time, number of test vectors, and fault coverage compared with previous optimization-

based test generators. In addition, the experiments highlight the weakness of each optimization algorithm

in the test pattern generation (TPG) and offer some constructive methods of improvement. We present

several recommendations and guidelines regarding the use of optimization algorithms as test pattern

generators to improve the performance and increase their efficiency. Moreover, the recommendations will

allow for faster convergence toward optimal solution sets when being implemented for similar

applications.

iii

Acknowledgement

Thank you “Allah” for all your blessings. Thank you for helping me to achieve one of my goals.

I would like to dedicate this thesis to my parents, my father “Mohammad” and my mother

“Aljawhara”, who passed away before completing this work. May “Allah” grant them Jannah.

I would like to express my sincere appreciation and gratitude to my supervisor Professor: Witold

Pedrycz, for his guidance during my research. His support and inspiring suggestions have been

precious for the development of this thesis content. I am so fortunate to have Dr. Pedrycz as a

supervisor during my study because of his high-level academic/research experience. I appreciate

all his contributions of time, ideas and support. His endless positive support will be never

forgotten.

I must express my gratitude to my wife for her support and encouragement. She has been

extremely supportive throughout my study. Many thanks to her and to my kids for accepting

being away from them while working on my thesis.

I would like to convey my gratitude to all my brothers and sisters for their best wishes and

positive supports. No words can express my gratitude, but I pray that Allah will bless and reward

them.

iv

Table of Contents
Abstract ... ii

Acknowledgement ... iii

List of Tables ... vi

List of Figures ... vii

List of Abbreviations and Acronyms .. x

Chapter 1: Introduction ... 1

1.1 Motivation ... 3

1.2 Research Objectives .. 4

1.3 Research Originality ... 5

1.4 Thesis Organization .. 5

Chapter 2: Literature Review .. 7

2.1 Introduction ... 7

2.2 Deterministic algorithms ... 8

2.3 Simulation-based Algorithms ... 10

2.3.1 Genetic Algorithm ... 10

2.3.2 Particle Swarm Optimization ... 12

2.3.3 Differential Evolution .. 14

2.4 Hybrid Test Pattern Generator .. 15

2.5 Conclusion .. 17

Chapter 3: Fault Simulation .. 18

3.1 Introduction ... 18

3.2 Stuck-at Fault Model... 18

3.3 Parallel Fault Simulation... 19

3.4 Deductive Fault Simulation .. 20

3.5 Concurrent Fault Simulation ... 20

3.6 Differential Fault Simulation .. 21

3.7 HOPE Fault Simulator .. 22

3.7 Conclusion .. 23

Chapter 4: Optimization Algorithms .. 24

4.1: Introduction .. 24

v

4.2: Genetic Algorithm ... 25

4.2.1: Genetic Operators ... 26

4.3: Differential Evolution .. 30

4.4: Particle Swarm Optimization ... 33

4.5: Conclusion ... 34

Chapter 5: Test Generation - Implementation and Results ... 35

5.1 Circuits Description .. 35

5.2 Random Test Generation .. 36

5.3 Genetic Algorithm .. 39

5.3.1 Parametric Analysis ... 40

5.3.2 Results .. 43

5.4 Particle Swarm Optimization .. 46

5.4.1 Parametric Analysis ... 46

5.4.2 Results .. 48

5.5 Differential Evolution ... 52

5.5.1 Parametric Analysis ... 53

5.5.2 Results .. 54

5.6 Conclusion .. 55

Chapter 6: Conclusions and Future Work ... 58

6.1 Future Work .. 59

Bibliography ... 60

Appendix A ... 67

Random Test Generator .. 67

Appendix B ... 68

GA-based Test Generator ... 68

Appendix C ... 73

PSO-based Test Generator .. 73

Appendix D ... 74

DE-based Test Generator .. 74

vi

List of Tables

Table 2.1: Results of deterministic-based test generators [5]. .. 9

Table 2.2: Results of several GA-based test generators [3], [17-18]. ... 12

Table 2.3: Results of DE algorithm implemented in [24]. .. 15

Table 2.4: Results of several hybrid test generators [3].. 16

Table 5.1: Description of sequential circuits [3]. .. 36

Table 5.2: Population size value [3]. .. 42

Table 5.3: Mutation strategy. .. 53

Table 5.4: Results for all three optimization algorithms... 56

vii

List of Figures

Figure 1.1: Classes of search methods [79]. ... 2

Figure 1.2: Moore’s Law [65]. .. 3

Figure 2.1: Test pattern generation categories. ... 7

Figure 2.2: PSO flowchart for ATPG [21]. ... 13

Figure 3.1: Single stuck-at fault [3]. ... 19

Figure 3.2: Differential fault simulation algorithm [25]. .. 22

Figure 4.1: GA Population. ... 25

Figure 4.2: (A) Pseudo-code for GA. .. 25

Figure 4.3: (B) Pseudo-code for GA ... 26

Figure 4.4: Roulette wheel selection. .. 27

Figure 4.5: One-point crossover [40]. ... 28

Figure 4.6: Two-point crossover [40]. .. 29

Figure 4.7: Uniform crossover [40]. ... 29

Figure 4.8: Single bit inversion. .. 30

Figure 4.9: Differential evolution algorithm. .. 30

Figure 4.10: A simple DE mutation scheme [80]. .. 31

Figure 4.11: Pseudo-code for DE.. 31

Figure 4.12: DDE algorithm [71]. ... 32

Figure 4.13: BDE Algorithm [71]. .. 32

Figure 5.1: Fault coverage for s298 circuit. .. 37

Figure 5.2: Fault coverage for the s35932 circuit. .. 37

Figure 5.3: Fault coverage for the s27 circuit. .. 38

Figure 5.4: Fault coverage for the s400 circuit. .. 38

Figure 5.5: Test sequences. ... 40

Figure 5.6: Initial population algorithm. ... 41

Figure 5.7: Test sequence. .. 41

Figure 5.9: Fault Coverage for s298 circuit, rank selection. ... 44

Figure 5.8: Results of s298 circuit using rank selection (Left) and roulette wheel selection

(Right). Different crossover schemes were used. ... 44

Figure 5.10: Fault coverage for s298 circuit, roulette wheel selection. .. 45

file:///E:/Thesis/ThesisModified%20-%203.docx%23_Toc466064738
file:///E:/Thesis/ThesisModified%20-%203.docx%23_Toc466064739
file:///E:/Thesis/ThesisModified%20-%203.docx%23_Toc466064748
file:///E:/Thesis/ThesisModified%20-%203.docx%23_Toc466064748

viii

Figure 5.11: Mutation effects on several sequential circuits. ... 45

Figure 5.12: A part of the search space for the s298 circuit ... 48

Figure 5.13: Fault coverage of the s298 circuit using the PSO-based test generator, max detected

fault = 272, min detected fault = 257. ... 50

Figure 5.14: Fault coverage of the s35932 circuit using the PSO-based test generator, max

detected fault = 33730, min detected fault = 32178. .. 50

Figure 5.15: Sequence length effects on testing time and fault coverage for the s1196 circuit. .. 51

Figure 5.16: Initial population effects on testing time and fault coverage for the s1196 circuit. . 51

Figure 5.17: Number of iteration effects on testing time and fault coverage for the s1196 circuit.

... 51

Figure 5.18: Binary DE algorithm (BDE)... 52

Figure 5.19: Fault coverage of the s298 circuit using the DE-based test generator. Maximum

faults detected = 271 (87.987%), minimum faults detected = 255 (82.792%). 55

Figure 5.20: Fault detection as a function of time. ... 56

Figure 5.21: Comparison between several circuits of optimization algorithms performance. 57

Figure A.1: Fault coverage (Average) for several sequential circuits. (a) Min = 39.5%, Max =

98.5%. (b) Min = 50%, Max = 98%. (c) Min = 6.3%, Max = 42.1%. (d) Min = 40.2%, Max =

100%. (e) Min = 37%, Max = 86.9%. (f) Min = 35.6%, Max = 82.3%. (g) Min = 23.7%, Max =

99.1%. (h) Min = 10%, Max = 99.8%. .. 67

Figure B.1: Fault coverage for several sequential circuits using GA-based test generator – rank

selection with different crossover methods... 68

Figure B.2: Fault coverage for s35932 using GA-based test generator – Rank Selection with

different crossover methods. ... 69

Figure B.3: Fault coverage for several sequential circuits using GA-based test generator –

roulette wheel selection with different crossover methods. .. 69

Figure B.4: Fault coverage for several sequential circuits using GA-based test generator –

roulette wheel selection with different crossover methods. .. 70

Figure B.5: Comparison between three crossover methods with rank selection (Results are in

ascending order). ... 71

Figure B.6: Comparison between three crossover methods with roulette wheel selection (Results

are in ascending order). ... 72

file:///E:/Thesis/ThesisModified%20-%203.docx%23_Toc466064761
file:///E:/Thesis/ThesisModified%20-%203.docx%23_Toc466064761
file:///E:/Thesis/ThesisModified%20-%203.docx%23_Toc466064761
file:///E:/Thesis/ThesisModified%20-%203.docx%23_Toc466064761
file:///E:/Thesis/ThesisModified%20-%203.docx%23_Toc466064762
file:///E:/Thesis/ThesisModified%20-%203.docx%23_Toc466064762
file:///E:/Thesis/ThesisModified%20-%203.docx%23_Toc466064763
file:///E:/Thesis/ThesisModified%20-%203.docx%23_Toc466064763
file:///E:/Thesis/ThesisModified%20-%203.docx%23_Toc466064764
file:///E:/Thesis/ThesisModified%20-%203.docx%23_Toc466064764
file:///E:/Thesis/ThesisModified%20-%203.docx%23_Toc466064765
file:///E:/Thesis/ThesisModified%20-%203.docx%23_Toc466064765
file:///E:/Thesis/ThesisModified%20-%203.docx%23_Toc466064766
file:///E:/Thesis/ThesisModified%20-%203.docx%23_Toc466064766
file:///E:/Thesis/ThesisModified%20-%203.docx%23_Toc466064767
file:///E:/Thesis/ThesisModified%20-%203.docx%23_Toc466064767

ix

Figure C.1: Fault coverage of several sequential circuits using PSO-based test generator. 73

Figure D.1: Fault coverage of several sequential circuits using DE-based test generator. 74

x

List of Abbreviations and Acronyms

ATPG: Automated Test Pattern Generation.

BED: Binary Differential Evolution.

CPU: Central Processing Unit.

CUT: Circuit Under Test.

DE: Differential Evolution.

DDE: Discretized Differential Evolution.

EC: Evolutionary Computing.

EA: Evolutionary Algorithm.

GA: Genetic Algorithm.

IC: Integrated Circuit.

NP: Population Size in BDE and DDE.

PR: Permutation Rate in BDE and DDE.

PM: Mutation Rate in BDE and DDE.

PSO: Particle Swarm Optimization.

BPSO: Binary Particle Swarm Optimization.

Pbest: Personal Best. In PSO, it is the best solution found by the ith particle.

Gbest: Global Best. In PSO, it is the best value that is obtained by any particle in a population.

CR: user-defined crossover constant.

SAF: Stuck at Fault.

S-A-1: Stuck at One.

S-A-0: Stuck at Zero.

SI: Swarm Intelligence.

TPG: Test Pattern Generation.

PI: Primary Input.

PO: Primary Output

PPI: Pseudo-primary Input.

PPO: Pseudo-primary Output.

VLSI: Very Large Scale Integration.

1

 Chapter 1: Introduction

As the development of integrated circuits is rapidly increasing, due to the growth of technology

needs, testing and validating chip functionality has become more challenging. An integrated

circuit (IC) can be tested by applying a series of test vectors that can detect any defect that might

occur in the manufacturing process. The fully automated process of generating the test vectors is

crucial to gain the minimum number of test vectors possible in the shortest time period. The

problem of automated test generation belongs to the class of NP-complete problems and it is

becoming progressively more difficult as the complexity of very large scale integration (VLSI)

circuits increase. Recently, automated test pattern generation has given full fault coverage on

almost all combinational circuits. However, none of the algorithmic test pattern generations can

fully handle the real-world sequential circuits due to either the occurrences of untestable faults,

or the complexity of the sequential circuit itself which requires more dedicated efforts to solve

the problem.

Algorithmic testing approaches for sequential circuits can be categorized into three categories:

deterministic algorithms, simulation-based algorithms, and hybrid test algorithms. In the

simulation-based test generator, where processing occurs in the forward direction only, complex

sequential circuits are easily tested. A simpler type of simulation-based automated test pattern

generation (ATPG) is the random test generation, which has several drawbacks that limit its

capability in terms of testing time and fault coverage. Other advanced simulation-based

algorithms could significantly reduce central processor unit (CPU) time and improve the fault

coverage. However, hard-to-detect faults remain a major problem in all the simulation-based

algorithms. Deterministic algorithms and hybrid algorithms are necessary for most cases of hard-

to-detect faults because of their advanced capabilities of fault testing. However, complexity and

testing time of those algorithms are very high, which leads to increased overall testing costs.

Optimization algorithms such as genetic algorithms and particle swarm algorithms belong to

simulation-based algorithms and are categorized as evolutionary optimization algorithms under

guided random search methods, as shown in Figure 1.1. Optimization algorithms can generate

and optimize efficient test vectors for combinational and sequential digital circuits. The basic

concept behind the evolutionary optimization algorithms is as follows: they start with an initial

population of individuals (strings of bits), each bit is mapped to a primary input and an

2

individual is evaluated with a fitness function. Better individuals will evolve through several

generations until a stopping criteria is reached. Several genetic algorithm (GA)-based test

generators have been presented in the field and the results are promising. Optimization

algorithms have been used in combination with some other ATPG techniques to detect more

faults and reduce CPU resources.

Figure 1.1: Classes of search methods [79].

Economically, many challenges in the manufacturing process had to be solved to achieve high

performance systems. One of the steps in this process, namely testing, poses the most significant

challenge to contemporary and future integrated circuit manufacturing. This is a continuing trend

due to decreasing silicon cost and increasing complexity of integrated circuits, testing constitutes

a significant portion of the IC manufacturing cost. (IC) testing for quality assurance is

approaching 50% of the manufacturing costs for some complex circuits [1]. Testing might

diminish final profits if it consumes long periods of time and does not produce high fault

coverage. Low fault coverage will increase the rejection rate of chips, while long testing times

will increase production cost. This relationship shows how significant the cost of VLSI testing is.

Shortening testing time while increasing fault coverage will lead to higher circuit design quality,

profit and a low rejection rate. As complexity of sequential circuits grows rapidly, the testing

time must be short. This implies that, the testing time should not be affected by any other factors.

Fault simulators are an essential part in the testing process. The primary role of fault simulators

is to determine which faults are detected by a specific test vector in a circuit under test (CUT).

They also determine the quality of each sequence being applied to a circuit. The response is

3

observed and evaluated by comparing it to an expected response of a known good circuit. A fault

is said to be detected by a test vector if there is a difference between the output of a good circuit

and the output of the faulty circuit. There are other several tasks realized by fault simulators such

as:

 Good circuit simulation,

 Fault list generation,

 Circuit structure modification (Gate Injection),

 Faulty Circuit Simulation (Fault propagation and detection).

Fault simulation methods play a major role in reducing testing time and attain high testing

efficiency. Flexibility, efficiency and versatility are three aspects that differentiate between

different fault simulation methods. For example, the advantages of the concurrent fault

simulator, which is one of the oldest fault simulation methods, lay in its flexibility and versatility

and it can easily adopt several delay and functional models.

1.1 Motivation

Complexity of testing is proportional to complexity of sequential circuits, and they both follow

Moore’s law which states that the number of transistors on a chip increases at a rate of roughly

one, and doubles every 18 to 24 months [2]. This is clearly explained in Figure 1.2, which shows

the incremental increase of transistors on chips every year.

Figure 1.2: Moore’s Law [65].

The incremental complexity of VLSI due to a gradual increase in the number of transistors per

chip places great emphasis on the importance of finding close-to-perfection algorithms to test

sequential circuits. Exhaustive testing for sequential circuits, which means using all possible

binary combinations for testing, may take years as indicated in the following:

4

 ,

where n is the number of inputs and m is the number of flip-flops.

As an example, the sequential circuit s35932 [50] has 35 primary inputs (PI’s) and 1728 flip-

flops. Therefore, the circuit needs years to be fully tested at a testing rate of one

million test vectors per second. Consequently, testing of this circuit implies that the need for

another technique one that can reduce the testing time to several seconds is extremely urgent.

Any algorithm must be able to detect faults at the manufacturing level at the earliest point

possible. If the faulty components find their way into higher levels of integration, the cost of

production will increase dramatically. It is cheaper to find and fix an IC than to find and fix a

board in a system. Understanding the reasons for the costs associated with testing is another

essential aspect to realize the necessity for a perfect algorithmic test generation strategy. It is in

the chip manufacturer’s best interest to minimize the number of bad devices shipped to the

customer. A bad device is an IC that fails to meet one or more specifications at any point in the

manufacturing process. Poorly designed tests, or parts that are not designed for testability, can

result in bad devices appearing as good parts, or good devices failing tests and appearing as bad.

The shipment of bad devices leads to incurred replacement costs, loss of reputation, and possible

loss of market share. The other side of this problem is not much better. When good parts are

represented as bad, it reduces the chip yield, and correspondingly, it reduces the earnings of the

chip manufacturer [1]. Finally, effective and efficient testing for all types of IC’s is a must and

the testing must be performed in a very short time period otherwise the produced IC will be out

of date and will lose its targeted market share.

1.2 Research Objectives

The overall objective when dealing with ATPG is to find the minimum number of test sequences

that detect all testable faults in the shortest test time possible. There are several objectives for

this specific research. These objectives are as follows:

 Analyze genetic algorithm (GA), differential evolution (DE), and particle swarm

optimization (PSO) algorithms in ATPG for synchronous sequential circuits.

 Compare the GA, DE and PSO algorithms in terms of their performance and

effectiveness.

5

 Determine the optimum parameter values for each of the optimization algorithms.

 Introduce improved versions of currently implemented algorithmic test pattern

generators.

 Show the effectiveness of using optimization algorithms as stand-alone algorithms to

solve the problem of ATPG for sequential circuits.

 Determine which optimization algorithm would perform better among all other

optimization algorithms.

1.3 Research Originality

This research provides a different viewpoint than other previously implemented algorithms by

focusing on optimizing the search space and analyzing the searching process of the optimization

algorithms in test pattern generation. Since none of the optimization-based test generators

presented in the literature could fully optimize the three criteria, namely, testing time, number of

test vectors and fault coverage all together; hence, we use an analytical approach to reshape the

use of optimization algorithms in generating test sequences by studying all the parameters in

details to understand the type of interactions that exist between them. The results of the

comparison are more accurate than the presented results in the literature because we use the same

fitness function and fault simulator for all three optimization algorithms. By achieving the

research objectives, we could reach the following key contributions:

 Identified optimal parameter values for each optimization algorithm by analyzing them

individually to see their effects on the search process for a solution.

 Optimized overall results such as fault coverage/testing time to their higher/lower values.

 Identified and classified optimization algorithms based on their effectiveness in solving

ATPG for sequential circuits.

1.4 Thesis Organization

The thesis chapters are organized as follows:

Chapter 2 presents a focused literature review of the three ATPG categories: deterministic-

based algorithms, simulation-based algorithms and hybrid algorithms. Optimization algorithms

used in automated test pattern generation were also covered in this chapter, specifically GA, DE

and PSO.

6

Chapter 3 introduces the commonly used fault simulation algorithms. The HOPE fault

simulator is presented since it is adopted in this research. The stuck-at fault model is explained in

detail.

 Chapter 4 introduces the three optimization algorithms used to generate test vectors. Binary

versions of DE and PSO are also presented, where we try to investigate each optimization’s

parameters.

Chapter 5 presents the implementation of GA, BDE and BPSO to generate test vectors/test

sequences. Parameters, search space and results are presented and analyzed. The performance of

each implemented algorithm is presented by observing the testing time and number of test

sequences which reflects the quality of each algorithm. Results are assembled at the end for

comparison purposes.

Chapter 6 presents the summary and conclusions of the thesis. Several directions and

recommendations are suggested for future work.

7

 Chapter 2: Literature Review

In this chapter, we comprehensively reviewed different test pattern generation techniques for

sequential circuits that have been presented in the past but with more concentration on

optimization-based testing algorithms as they are a pivotal part of this work while other

categories are out of scope for this research. The test generation techniques have been classified

in the literature into three categories and several sub-categories, as illustrated in Figure 2.1. The

classification is principally based on fault excitation, propagation and state justification, which

determines the advantages and drawbacks of an algorithm.

Figure 2.1: Test pattern generation categories.

2.1 Introduction

Testing IC’s is an essential step when dealing with designing and engineering an IC product. Due

to increasing size and complexity of real-world sequential circuits, testing is automatically fully

generated and implemented. Because of the automated process, several factors must be taken

into consideration, such as testing time and resource consumption. An intensive research effort

has been proposed in the literature to solve for ATPG with varying degrees of success. Starting

with very basic TPG algorithms such as the random test pattern generation [12], to more

complex TPG algorithms such as the hybrid test pattern generation, significant progress has been

made towards solving the problem of sequential circuit test generation, and yet the problem

remained unresolved. The ATPG algorithms for sequential circuits can be classified into three

categories: deterministic algorithms [4-6], [8-11], simulation-based algorithms [3], [12-20], and

hybrid test generators [54-58]. Each approach has its own merits in terms of fault coverage and

8

rate of convergence. Moreover, each approach has several weaknesses which leaves the topic

open for further studies.

2.2 Deterministic algorithms

Deterministic algorithms used to solve the problem of test generation for sequential circuits are

complex and time consuming. However, fault coverage in deterministic algorithms is relatively

high. The need for improved techniques arises to reduce the execution time and improve the fault

coverage while keeping the complexity low. This is where simulation-based algorithms become

good candidates to solve automated test pattern generation for sequential circuits. In

deterministic fault-oriented algorithms, each targeted fault must be excited and the fault effects

need to be propagated to a primary output (PO). Fault effects may propagate directly to a PO in

the same time frame, in which the time frame is excited or through flip-flops to the PO’s in

subsequent time frames. The required state must then be justified through reverse time

processing. Values required at the flip-flops are backtracked time-frame by time-frame until a

time-frame is reached in which all flip-flops have do-not-care (Xs) values. The development of a

deterministic test generator is very time consuming and the test sets can be large [3].

The full-scan method is often used for converting sequential circuits to combinational circuits.

Hence, a test generator for combinational circuits can be used to fully test a sequential circuit.

Full-scan works as follows: all flip-flops are arranged in a scan chain and the flip-flops are

scanned in to read current values, then the flip-flops are scanned out after each test vector is

applied. This method is not attractive due to the additional area and performance overhead.

Hence, the partial-scan is more desirable since it requires less overhead and only a subset of the

flip-flops is scanned.

The HITEC algorithm [4] is a state-of-the-art algorithm when discussing deterministic

algorithms. This technique was used in later research with simulation-based algorithms to reach

optimum results. The test generation mechanism is divided into two phases. The first phase

involves a fault being activated and propagated to a PO in the forward direction only. The second

phase occurs in reverse time processing to justify the initial state determined in the first phase.

Despite the long testing time, fault coverage was promising when it was presented and it opened

the door for further improvements in ATPG.

9

ATOMS [5], which is an improved version of a deterministic ATPG system for combination

circuits called ATOM [6], is a structure-based technique to speed up the test vector generation

for sequential circuits. It uses the PODEM algorithm [7] for time frame processing. This

algorithm proposed a new method to discover unjustifiable states. Starting from a specific state,

several states are visited during traversing the state transition graph of the sequential circuit in

the backward direction. This algorithm uses the technique of reducing the size of the search

space that needs to be explored by eliminating the 0/1 and 1/0 logic value assignment for any

flip-flop in the excitation time frame. This algorithm significantly reduced the testing time and

could increase the fault coverage in comparison with other deterministic algorithms described in

[8] – [10].

In [11], state justification in backward time processing is listed as cube structures which make it

possible to directly backtrack to the point where a decision related to a flip-flop assignment was

made and a smaller number of flip-flops can be used to find a set of cubes. The results show

some improvements when compared with some other deterministic algorithms.

Table 2.1 shows results obtained for two deterministic algorithms in terms of the number of

vectors and fault coverage. ATOMS could obtain relatively high fault coverage in most of

circuits but the number of vectors is considerably high. Moreover, the algorithms require a large

testing time because of the backtracking mechanism, which is required by all deterministic

algorithms. Lowering the test vectors will surely lower the testing time which the deterministic

algorithms have failed to achieve.

Table 2.1: Results of deterministic-based test generators [5].

10

2.3 Simulation-based Algorithms

Random test pattern generation is the simplest type of simulation-based ATPG. Generating test

vectors randomly is a preferred technique for only small-scale circuits with easy-to-detect faults.

However, hard-to-detect faults and untestable faults will not be detected when using only the

random test generator. Random test vectors can cover a significant number of faults but the fault

coverage is uncertain even with a very large test set [12]. Several simulation-based algorithms

have been proposed over the years. The first simulation-based test generator was proposed by

Seshu and Freeman in [13]. This method uses randomly generated test patterns and any vector

that increases the fault coverage is added to the test set. While this method was successful for

combinational circuits, it cannot process hard to test circuits or sequential circuits. Remarkable

progress in the development of simulation-based algorithms has been made since then. The basic

idea behind simulation-based TPG for sequential circuits is as follows: one starts with trial test

sequences. Fault simulation will be performed for those sequences and a cost function will

determine how close the sequence is from being a good solution.

One of the best earlier simulation-based algorithms is the CONcurrent TEST (CONTEST)

algorithm [14]. The test sequences generation process starts by initializing all flip-flops and

concurrently simulating a list of faults. It ends by targeting a single fault at a time until it reaches

adequate fault coverage. The fitness function uses a testability measure by estimating the number

of PI’s of the current vector that must be changed.

This algorithm basically uses the mutation process, one-bit change heuristic, by mutating a single

bit from the previously accepted test vector. A new mutated test vector is generated for each

generation. Consequently, CONTEST generates more test vectors which leads to incremental

increases in the testing time. This strategy is considered evolutionary because of the evolving test

sequence, per a specific fitness function. The improvement that evolutionary algorithms have

brought to ATPG is very noticeable in terms of CPU time, test sequence length and fault

coverage. Some of the well-known evolutionary and optimization algorithms are addressed in

detail in the following sections.

2.3.1 Genetic Algorithm

The genetic algorithm (GA) was first used in automated test generation for sequential circuits by

Saab et al, and the strategy is called CRIS [15]. This strategy takes advantage of the fitness

function used in phase 2 of CONTEST, which is based on the distance of the fault effects to the

11

PO. The second fitness function selects test sequences that increase the signal activity in a

circuit. The results were not encouraging. The fault coverage was low and the test sequences

were long because of the insufficient fitness functions used. Another version of CRIS [16]

improves the fault coverage by using a fault simulator instead of a logic simulator to evaluate

candidate test vectors. The results were better in terms of fault coverage, but the execution time

was longer.

GATTO [17] is another GA-based test generator. A group of 64 faults is chosen when they

propagate furthest in the circuit. If a test sequence can propagate the fault effect to the PO, the

test sequence will be added to a test set. The fitness function aims to maximize the circuit

activity. The fault coverage is higher than the fault coverage of CRIS in some cases, but it is

lower in other cases. The implementation of GATTO required the reset state to set all flip-flops

to a known state before test generation. GATTO+ [18] has made several improvements on

GATTO by modifying the evaluation function and mutation operator to reduce the test length.

Moreover, the crossover operator was modified to work in a vertical manner.

Results in terms of number of vectors were improved significantly in GATEST, developed by

Rudnick [3][19-20]. GATEST can be considered as a reference, or state-of-the-art, when dealing

with GA-based ATPG. The overall performance was satisfactory with all data-dominant circuits.

CPU time was reduced in comparison with deterministic algorithms. The number of test vectors

was well optimized and the fault coverage was high. This strategy starts with randomly

generated individuals. The process of evaluating and generating new test vectors/sequences go

through four phases: (1) Flip-flop’s are initialized, (2) Test vectors are generated to detect as

many faults as possible, (3) The vectors that create high activity levels in the good and faulty

circuits are selected, and (4) Similar to phase 2, test sequences are generated to detect as many

faults as possible.

Table 2.2 shows the results for different GA-based test generators which have been presented in

the literature in previous years. GATEST has superior results over other GA-based generators in

terms of the number of test vectors. However, the algorithms show poor performance in fault

coverage and testing time because it requires multiple visits to the flip-flips in several steps.

Moreover, the technique moves between generating test vectors and test sequences which adds

computation overhead and leads to increased testing time. The results indicate GATEST

consumed a large amount of time to reach a reasonable fault coverage for the s35932 circuit, as

12

well as other large sequential circuits. Since testing time correlates greatly with the size of a

circuit, the testing time for the s35932 circuit is the largest among all GA-based test generation

algorithms.

Table 2.2: Results of several GA-based test generators [3], [17-18].

Each algorithm in Table 2.2 has optimized the test sets differently. While GATEST reduced the

number of vectors, CRIS and GATTO+ reduced the testing time, and GATTO+ attained higher

fault coverage in more sequential circuits than other algorithms. The optimal solution has never

been obtained by any of the previous GA-based test generator since none of the algorithms could

concurrently optimize the testing time, number of test vectors and fault coverage.

2.3.2 Particle Swarm Optimization

The PSO shares several similarities with other evolutionary algorithms. However, fewer

parameters must be adjusted and analyzed, besides PSO is simpler and easier to implement.

Recently, researchers’ eyes have turned to PSO to find solutions for ATPG due to its promising

results in other applications. PSO adjusts the path of particles based on information gained about

each particle’s best performance of its neighbors. PSO was first used in ATPG in [21]. The main

concept is similar to GA-based ATPG. However, initializing all flip-flops, selecting targeted

faults and generating test vectors are all performed by PSO. The technique uses two binary coded

discrete PSO’s [22] because inputs, outputs and all other signals are discrete values that may be

zero or one. This technique starts with initializing all flip-flops logically by simulating the circuit

13

with the 3-valued logic simulator that can correctly compute the known state. It ends with a test

set compaction phase which is important to reduce the number of test vectors, which will lead to

reduction in the cost of testing. Generating test sequences is well explained in Figure 2.2. The

results of this strategy were slightly improved compared to GA-based test generation algorithms,

in terms of CPU time and fault coverage.

Figure 2.2: PSO flowchart for ATPG [21].

A similar strategy was used in [23] which shows a faster convergence rate than that for the GA-

based ATPG. The implementation covers several steps starting from setting the initial position

and velocity until it finds the best optimal solution. This method suggests one should consider

using PSO in testing small-scale sequential circuits. However, this method is expected to be one

of the best candidates to solve ATPG for all sequential circuits since it fully uses the circuit

structure information. Moreover, there are less parameters, compared with GA, to manage when

using PSO which gives PSO a higher preference over other evolutionary algorithms. Lastly,

properly setting up PSO will result in faster convergence and higher fault coverage.

14

2.3.3 Differential Evolution

Differential evolution (DE) was recently used for generation of test vectors. The strategy selects

four random individuals and mutates them based on a mutation strategy. Then, a recombination

phase is performed on the new population between an individual from the old population and an

individual from the new generation. Lastly, a selection phase is implemented by comparing the

old population with the new population. The fitness is expected to increase from one population

to the next because the evolution is biased toward more highly fit individuals. In DE-based test

generator [24], each individual has an associated fitness, which measures the test sequence

quality in terms of fault detection, dynamic controllability and observability measures, among

other factors. The evolutionary processes of mutation and crossover are used to generate an

entirely new population from the existing population. In the mutation phase, four individuals are

selected randomly from the existing population, and new individuals are generated according to

the mutant strategy. Then, they are selected as the members of a trial population. The mutant

operator for ATPG is redefined as follows: the circuit is partitioned according to the definition of

input fanout cone, that is, search from a primary input PIj to primary outputs along the circuit, all

parts linked logically to PIj belong to the PIj input fanout cone such that the circuit is partitioned

into N sub-circuits which are logically related.

The possibility that faults inside the PIj cone (sub-circuit) are affected by the logical value of PIj

is maximal, so the number of faults detected inside the PIj cone is taken as the parameter of the

mutant equation. A crossover (recombination) operator is applied on the trial population where

one individual is selected from the old population and the other is selected from the trial

population, with selection biased toward more highly fit individuals. The two individuals are

crossed to generate a new individual.

Table 2.3 shows the overall results for the DE-based test generator which has achieved high fault

coverage in several sequential circuits. However, more research is needed on this algorithm

because of its promising results in ATPG. In comparison with other optimization algorithms, DE

can detect a high number of faults. However, the number of test vectors is noticeably high as

well as the length of test sequence. Testing time is not reported in [24] but DE is known for its

fast convergence compared to GA-type algorithms [82].

15

Table 2.3: Results of DE algorithm implemented in [24].

2.4 Hybrid Test Pattern Generator

The need for a combination of testing algorithms is to eliminate the shortcomings of

deterministic-based algorithms and simulation-based algorithms. The basic idea behind hybrid

test generators is that the testing process starts with a fast run of simulation-based test generators

and then uses a deterministic-based test generator to improve the fault coverage and to identify

untestable faults [3]. In [54], the CRIS-Hybrid algorithm uses a simulation-based technique [15]

until there is no further improvement in fault coverage. The algorithm switches to a deterministic

phase to identify untestable faults and to compute a fault cluster. A targeted set of candidate

faults from the cluster is tested with a deterministic ATPG and the resulting test sequence is used

to restart the search process of the simulation-based technique. The deterministic search

procedure is implemented in two phases: (1) the forward time processing phase, and (2) the state

justification phase. In the first phase, an undetected fault is activated and propagated to a primary

output based on a PODEM-like search [7] and on a single time frame expansion. During this

phase, a state may need to be justified to activate the fault. In this case, the second phase is

activated to justify the state. This technique uses the logic simulator to evaluate sequences based

on good circuit activity. The results show improvements in fault efficiency in comparison with

the HITEC test generator. ALT-TEST [55], is another hybrid test generator which alternates

between a GA-based and deterministic test generator. The test generation process is divided into

three stages. The first stage attempts to detect as many remaining faults as possible from the fault

list. The second stage attempts to maximize the number of visited states and propagated fault

effects to flip-flops. The third stage attempts to detect the final remaining faults and to visit a

new state [3]. ALT-TEST improves the fault coverage and reduces the test set length compared

to results obtained from other test generators. The GA-HITEC test generator [56] was able to

16

relatively reduce the test vectors because of the effectiveness of GA’s for state justification. It

combines deterministic algorithms for fault excitation and propagation with the GA for state

justification. Deterministic procedures for state justification are used if the genetic approach is

unsuccessful, to allow for identification of untestable faults and to improve the fault coverage. A

similar approach, called MIX, was presented in [57]. It is composed of four main procedures:

circuit synchronization, state-driven test generation, deterministic test generation, and GA-based

test generator. The test generation operates from the least computationally intensive to the most

computationally intensive approach, such that the faults go through several test generation

strategies before they are marked as aborted. The MIX-PLUS [58] test generator concentrates on

areas of the search space by removing unnecessarily specified values of state variables. Identical

values in the fault free and the faulty circuits during the fault propagation phase of test

generation help increase the number of mandatory assignments. Thus, the search space is

reduced and the fault efficiency is improved, while the run time is reduced compared to MIX.

Table 2.2 shows the results of several hybrid test generators.

Table 2.4: Results of several hybrid test generators [3].

From Table 2.3, ALT-TEST shows good performance in terms of fault coverage. Conversely,

there is a perceptible increase in the number of vectors in several sequential circuits, such as

s400 and s5378, which is considered as a tradeoff between fault coverage and the number of

vectors. In comparison with simulation-based test generators, test generators that are based on

17

optimization algorithms have shown superior results for most of the circuits except the s35932

circuit which clearly shows the power of these algorithms if they are implemented properly.

2.5 Conclusion

In conclusion, adopting evolutionary algorithms in ATPG started years ago either as stand-alone

algorithms or combined with deterministic algorithms. The promising results of implementing

GA in ATPG allowed researchers to explore other evolutionary algorithms to attain global

optimal solutions. A global optimal solution implies the sequence length is as short as possible;

the number of test vectors is low and the testing time is significantly reduced. Optimum solutions

have been found by several algorithms. However, we cannot assure that the global optimal

solution has been accomplished because a global maximum solution in one algorithm becomes a

local maximum in another algorithm due to several factors, such as algorithm parameter

modifications and improving the implemented fitness function. Since ATPG for sequential

circuits is a search process over a large vector space, the problem will remain open for further

improvements and for new heuristics.

By looking at the results of using several evolutionary algorithms in ATPG, there have been

positive progress since the very first adapted algorithm and the advancement continues. GA

shows slowness in reaching optimal solutions with comparatively low fault coverage while PSO

and DE have relatively faster convergence toward better results. On the other hand, the continued

reduction in the number of test vectors affirms that the optimal solution sets have never been

found for sequential circuits, thus, this issue will remain open for further improvements. The

comparison between GA, DE, and PSO reflects the results obtained from several publications

[3], [17-18], [21], and [23-24] that have been presented in this chapter.

18

 Chapter 3: Fault Simulation

This chapter briefly presents the fault model used in this research and the most dominant fault

simulation algorithms. The HOPE [59] fault simulator is also presented at the end of this chapter

since it is the adapted fault simulator in this work and it has significant impact on the overall

results.

3.1 Introduction

Simulation is the process of predicting the behavior of a circuit before it is physically built. For

digital circuits, simulation has two purposes. It helps the designer to verify that the design

conforms to the functional specification (called logic simulation). It is also used to simulate

faulty circuits during test development (called fault simulation) [25]. A fault simulator

determines whether a fault is detected or not by a given test vector. In addition, the fault

simulators speed up the test generation process. The basic idea behind all fault simulators is as

follows: a fault free circuit and copies of the same circuit with faults injected, such as stuck-at

fault, are simulated. The same test vector is applied to all the copies of the circuit with and

without the fault. The outputs of the faulty circuits are compared in the comparators, with the

output of the fault free circuit. If a mismatch is reported, a fault is detected by the test vector

being simulated. Several fault simulation algorithms have been presented in the literature over

the years with each having its advantages and disadvantages.

3.2 Stuck-at Fault Model

The single stuck-at fault model has been successfully used in many contemporary fault

simulators. Therefore, only single stuck-at faults are adopted in this research. In a single stuck-at

fault, the circuit is assumed to be modeled as an interconnection (called netlist) of Boolean gates.

A stuck-at fault is assumed to affect only the interconnection between gates. Each connecting

line can have two types of faults: stuck-at-1 and stuck-at-0 (commonly written as s-a-1 and s-a-0,

respectively). Thus, a line with a stuck-at-1 fault will always have a logic state 1 irrespective of

the correct logic output of the gate driving it. A circuit with n lines can have 3
n
 – 1 possible stuck

line combinations. This is because each line can be in one of the three states: s-a-1, s-a-0, or

fault-free. All combinations except one having all lines in fault-free states are counted as faults.

Three properties characterize a single stuck-at fault [26]:

19

 Only one line is faulty.

 The faulty line is permanently set to either 0 or 1.

 The fault can be at an input or output of a gate.

For example, Figure 3.1 shows a circuit with a single stuck-at fault in which node D is tied to

logic 0 (D is s-a-0). It is assumed that only a single fault is present in the circuit to simplify the

problem. A logic one must be applied to node D if there is to be a difference between the faulty

and fault-free circuits. Also, a logic zero must be applied to node C so that if the fault is present,

it can be detected at the output E. In addition to the s-a-0 fault at node D, several other faults

must be considered during the test generation process: s-a-1 at D, s-a-0 at A, s-a-1 at A, s-a-0 at

B, etc. Some of these faults are logically equivalent, and no test can be obtained to distinguish

between them. For example, in Figure 3.1, s-a-0 at A, s-a-0 at B, and s-a-0 at D, are equivalent

since they are detected by the same tests. Equivalent fault collapsing is often used by test

generators to identify equivalent faults to reduce the number of faults that must be targeted [3].

Figure 3.1: Single stuck-at fault [3].

A fault can be considered as either testable or untestable Untestable faults are faults for which

there exists no test pattern that can both excite the fault and propagate its fault-effect to a primary

output. In sequential circuits, untestable faults may result from the presence of unreachable states

or impossible state transitions [25]. In contrast, testable faults are faults which there exists at

least one test vector that can propagate its fault effect to a primary output.

3.3 Parallel Fault Simulation

In the parallel fault simulator [13] and [24], the fault free circuit and the faulty circuits are

simulated simultaneously. The number of faulty simulated circuits is determined by the machine

word size. If the word size is 32 bits, then 31 faulty circuits can be simulated plus the fault free

circuit, simultaneously. All faulty circuits are identical to the fault free circuit except a line

where a stuck-at fault is present. The parallel fault simulator lacks the capability to model

accurate rise and fall delays of signals since all signal changes corresponding to several circuits

20

must be computed together. In general, a signal may rise in one circuit while it falls in another.

In a parallel simulator, sequential logic is modeled with unit-delay [27]. More complicated delay

models cannot be modeled because several faults are evaluated at the same time. Furthermore, a

simulation pass cannot terminate unless all the faults in this pass are dropped. Parallel fault

simulation is best used for simulating the beginning of the test pattern sequence, when a large

number of faults are detected by each pattern. Two types of fault simulations use the parallelism

technique to simulate faults. In parallel-pattern single-fault propagation, the computer word

parallelism is used for parallel simulation of several faulty circuit states in the same row of the

table. In parallel-pattern parallel-fault propagation, the computer word parallelism is used for

parallel simulation of several faulty circuit states in multiple rows of the table [28].

3.4 Deductive Fault Simulation

The deductive fault simulator was first introduced by Armstrong in [29]. In this method, only the

fault-free circuit is simulated. All signal values in each faulty circuit are deduced from the fault-

free circuit values and the circuit structure. All deductions are performed simultaneously because

the circuit structure is the same for all faulty circuits. Deductive fault simulation gains

tremendous speed from processing all faults in a single pass of true-value simulation, augmented

with the deductive procedures [17]. Deductive fault simulation involves allocating a fault list to

each gate. The fault list contains one entry for each fault which is detectable on the output of that

gate, plus one entry containing the number of faults in the list. The fault list on a gate's output

can be computed from the fault lists associated with its inputs [30]. Several drawbacks relate to

the deductive fault simulator; the unknown values are not easily handled. Both cases, controlling

and noncontrolling values, must be considered. Moreover, deductive fault simulation is only

suitable for the zero-delay timing model, because no timing information is considered during the

fault propagation process. Lastly, it has a potential memory management problem. Since the size

of the fault lists cannot be predicted in advance, there can be a large variation in memory

requirements during algorithm execution [25].

3.5 Concurrent Fault Simulation

In concurrent fault simulation [31], every gate is associated with a concurrent fault list that

consists of a set of bad gates. The concurrent fault simulator is based on the good and faulty

circuits differing in a small region, which is the fan-out cone from the fault site. The concurrent

21

fault simulator simulates only the differential parts of the whole circuit. Concurrent fault

simulation is based on the event driven simulation paradigm [5] where a change in the logic

value of a node (in the good or the faulty machine) constitutes an event and causes that node to

be placed on an “event queue”. The simulation progresses through discrete time steps by

handling all the events at the “current time” and then advancing the simulation clock. The

simulation starts by applying a vector to the primary input nodes of the circuit which causes a

subset of these nodes to be placed on the event queue. When an event is removed from the event

queue, it is processed as follows:

 If the event results from a change in the state of a node in the good machine (good event),

then all the elements gates having that node as input are evaluated. A change in an output

node of any such element causes that node to be scheduled at the appropriate time (the

current time plus the delay of the element).

 An event from a faulty machine (faulty event) is handled similarly with the state of that

node taken from the fault effect list.

 When evaluating an element activated by a good event, any fault effect on the input

nodes of the element is propagated to the output if the fault causes the state of the output

to differ from its fault-free value.

 If the state of a node in the good machine becomes identical to that in a faulty machine,

then the corresponding fault effect is dropped from the fault effect list on that node.

The advantage of concurrent fault simulation is its speed which results from considering only the

active faults in the circuit. However, if the number of active faults is relatively large, then the

speed degrades due to the overhead incurred from the maintenance of the fault effect list.

Another drawback of concurrent fault simulation is its unpredictable memory requirements [29].

3.6 Differential Fault Simulation

In differential fault simulation (DSIM) [33-34], the simulator operates by combining the merits

of concurrent fault simulation and single fault propagation techniques. DSIM reduces the

memory requirement and the overhead of memory management in concurrent fault simulations

by simulating the good machine and each machine separately rather than simulating all machines

simultaneously. Furthermore, DSIM simulates each machine by reprocessing its difference from

the previously simulated machine which improves its efficiency. The name derives from its use

22

of the difference between any two circuits. DSIM requires very little memory because it stores

only one copy of all the line values of the circuit and the differences between adjacent circuits.

However, it cannot drop detected faults easily because subsequent faulty circuits rely on

differences from previous faulty circuits [28]. The algorithm is illustrated in Figure 3.2.

Figure 3.2: Differential fault simulation algorithm [25].

The problem with differential fault simulation is that the order of events caused by fault sites is

not the same as the order of the timing of their occurrence. If the circuit behavior depends on the

gate delay of the circuit, the timing information of every event must be included. This solution,

however, can potentially require high memory consumption [25].

3.7 HOPE Fault Simulator

The HOPE [59] fault simulator is adopted in this work due to its high performance. HOPE is an

efficient parallel fault simulator for synchronous sequential circuits that employs the parallel

version of the single fault propagation technique. HOPE is based on an earlier fault simulator

called PROOFS [60], which employs several heuristics to efficiently drop faults and to avoid

simulation of many inactive faults. The following heuristics are incorporated in PROOFS:

A. Reduction of Faults to be Simulated in Parallel:

This strategy aims to reduce the number of single event non-stem faults simulated in parallel

in two phases. In the first phase, all single event non-stem faults inside fanout-free regions

are mapped to the corresponding stem faults by local fault simulation of the non-stem faults.

23

In the second phase, mapped stem faults that are sensitive are further examined for possible

elimination from parallel simulation.

B. Functional Fault Injection:

The function of a gate changes to reflect the presence of a fault when it is introduced to an

input, or an output of the gate. This suggests that injection of a fault into a circuit can be

accomplished by introducing a new type of gate whose function reflects the behavior of the

fault. Once all the faults are injected, all the gates are given a special number (code). Values

1 - 9 are assigned for fault-free gates. Faulty gates are set to “20 + faulty bit position” as their

index code. Now, the lowest level gate is retrieved from the vent queue and the gate function

is examined using switch and case statements which define the functionality for AND, OR

and the other gates. This method does not incur an overheard in CPU time as the fault-free

gates are examined in the switch-case statements. No extra gates are needed and no added

events occur. But one shortcoming is that it requires a separate evaluation procedure for the

faulty gates which is more complex than that for fault-free gates.

C. Static and Dynamic Fault Grouping Methods:

HOPE proposes the combination of two new fault ordering methods, a static fault ordering

method performed during preprocessing, followed by a dynamic fault ordering method

performed during fault simulation.

3.7 Conclusion

In this chapter, we presented several fault simulation algorithms which are essential to determine

the effectiveness and performance of test vector generators. Parallelism in fault simulation has a

significant positive impact on testing time by taking advantage of parallel simulation of several

faulty circuit states in the same row of the table. Several heuristics were added to some

algorithms to raise the performance. The HOPE fault simulator has shown superior performance

in the literature by employing parallel fault simulation with several heuristics to reduce fault

simulation time. It is expected that HOPE will lower testing time of the implemented algorithms

in this work considerably, and it will positively participate in achieving this work’s objectives,

outlined in section 1.2.

24

 Chapter 4: Optimization Algorithms

In this chapter, a detailed explanation of the three adapted optimization algorithms, namely, GA,

DE and PSO is presented. In addition, binary versions of PSO and DE are also presented since

this research is only concerned with binary-coded solutions.

4.1: Introduction

The adapted optimization algorithms in this thesis belong to the class of evolutionary algorithm

(EA) and swarm intelligence (SI). All the algorithms share a similar strategy as they are all

population-based algorithms, but the implementation is different. In EA, the environmental

pressure causes natural selection, or survival of the fittest, which causes a rise in the fitness of

the population. Given a function to be evaluated, we can randomly create a set of candidate

solutions, i.e., elements of the function's domain, and apply the quality function as an abstract

fitness measure - the higher the better. Based on this fitness measure, some of the better

candidates are chosen to seed the next generation by applying recombination and/or mutation to

them. Recombination is an operator applied to two or more selected candidates, the so-called

parents, and results in one or more new candidates, i.e., the children. Mutation is applied to one

candidate and results in one new candidate. Executing recombination and mutation leads to a set

of new candidates, the offspring, that compete based on their fitness, and possibly age, with the

older ones for a place in the next generation. This process can be iterated until a candidate with

sufficient quality (a solution), is found or a previously set computational limit is reached [61].

SI concerns the collective, emerging behavior of multiple, interacting agents that follow some

simple rules [74]. Each agent may be considered as unintelligent, while the whole system of

multiple agents may show some self-organizational behavior and thus can behave like some sort

of collective intelligence. Many algorithms have been developed by drawing inspiration from the

SI systems in nature. The main properties for SI-based algorithms can be summarized as follows:

 Sharing of information among the multiple agents.

 Agents have self-organization and co-evolution.

 It is highly efficient for its co-learning.

 It can be easily parallelized for practical and real-time problems [75].

25

4.2: Genetic Algorithm

Genetic algorithms were presented by Holland in 1975 in his book Adaptation in Natural and

Artificial Systems [64]. GA is an evolution-inspired algorithm for optimization and machine

learning. It starts with an initial population of chromosomes Figure 4.1. A chromosome can be

binary-coded or it might contain a character from a larger alphabet (non-binary-coded). The

initial population, which is typically generated randomly, evolves into better populations

(solutions) by using a kind of "natural selection" together with the genetics−inspired operators of

crossover and mutation. The process of selection and reproduction is repeated until a complete

new generation is generated and then the old generation will be discarded. A fitness function is

required to measure the quality of each generated solution. The fitness is expected to increase

from one population to another since the selection is biased towards highly fit individuals. The

fittest individual will survive over consecutive generations for solving a problem.

Figure 4.1: GA Population.

The GA is summarized in the pseudo-codes provided in Figures 4.2 and 4.3.

Figure 4.2: (A) Pseudo-code for GA.

26

Figure 4.3: (B) Pseudo-code for GA

4.2.1: Genetic Operators

4.2.1.1: Selection

The meaning of selection is to pass an individual from one generation to another. An individual

is selected based on a fitness function which will determine the quality of each individual.

Selection ensures that survival of the fittest individual is achieved through several techniques to

carry individuals from one generation to another. The following selection techniques are widely

used in several applications and they are briefly explained in the following sections:

 Roulette Wheel Selection

The most straightforward implementation of the selection rule is the so-called roulette-

wheel selection [35]. The conspicuous characteristic of this method is to give each

individual i, a probability p(i), to be selected. It is also known as fitness proportionate

selection. Each individual in a population is allocated a segment in a roulette wheel and

the size of the segment is proportional to its fitness value. Figure 4.4 illustrates how an

individual is selected by using the roulette wheel method. Since the size of a segment

depends on the fitness value, individuals with higher fitness values have more probability

of being selected, which may lead to biased selection towards high fit individuals.

However, there is no guarantee that good individuals will be passed to the next

generation.

27

Figure 4.4: Roulette wheel selection.

The selection probability is given as:

where n donates the population size, and f(i) is the fitness of each individual.

Since the selection is directly proportional to fitness, it is possible that strong individuals

may dominate in producing offspring, thereby limiting the diversity of the new

population. In other words, proportional selection has high selective pressure [36].

 Rank Selection

Rank selection sorts the individuals according to their fitness values, where the rank N is

assigned to the best individual and rank 1 is assigned to the worst individual. Ranking

selection was proposed to eliminate disadvantages of proportionate selections and to

overcome the drawback of premature convergence to a local optimum [37]. The selection

probability in ranking selection is proportional to relative fitness rather than absolute

fitness. This type of selection tends to avoid premature convergence by tempering

selection pressure for large fitness differentials that occur in early generations.

 Tournament Selection:

This type of selection is another widely-used selection strategy in the GA. The idea of

tournament selection is simple. Select some number of individuals randomly from a

population (with or without replacement), select the best individual from this group for

further genetic processing with fixed probability p, and repeat as often as desired (usually

until the mating pool is filled). Tournaments are often held between pairs of individuals

(tournament size s), although larger tournaments can be used and may be analyzed [38].

28

4.2.1.2: Fitness Function:

A mathematical representation is used to determine the ability of an individual to survive

from one generation to another and it is used to quantify how good the solution is

represented by a chromosome [38]. The fitness function should be chosen in such a way

that a chromosome that is closer to the optimal solution in the search space should have a

higher fitness value. The fitness function is the only information, also called the payoff

information, that GA’s use while searching for possible solutions [40].

4.2.1.3 Crossover

Crossover, or recombination, is simply a matter of replacing some of the genes in one

individual by genes of the corresponding individual. Crossover combines (mates) two

chromosomes (parents) to produce a new chromosome (offspring). The idea behind

crossover is that the new chromosome may be better than both parents if it assumes the

best characteristics from each of the parents. Crossover occurs during evolution

according to a user definable crossover probability [62].

A. One-Point Crossover:

The parental chromosomes are split at a randomly determined crossover point.

Subsequently, a new child genotype is created by appending the first part of

the first parent with the second part of the second parent [39], as shown in

Figure 4.5.

Figure 4.5: One-point crossover [40].

B. Two-Point Crossover

In two-point crossover, or m-point crossover, two points are randomly

selected between 1 and L-1, where L is the length of the chromosome. The

contents between these points are exchanged between two mated parents, as

shown in Figure 4.6. Adding more crossover points reduces the performance

29

of the GA because building blocks are more likely to be disrupted. However,

an advantage of having more crossover points is that the problem space may

be searched more thoroughly.

Figure 4.6: Two-point crossover [40].

C. Uniform Crossover:

Two chromosomes are combined to produce new offspring. With the same

probability p, bits are copied from either the first parent or the second parent

to make a new offspring [40], as shown in Figure 4.7.

Figure 4.7: Uniform crossover [40].

4.2.1.4 Mutation

In binary-coded chromosomes, mutation means flipping a gene in a chromosome with

probability p, where p is the probability that a single gene is modified. Since each gene has two

states: zero or one, the size of the mutation step is always one and it happens less frequently

because it is a divergence operation to discover a better minimum/maximum space by breaking

one or more members of the population out of the local minimum/maximum space. The gene to

be mutated is mainly randomly selected. However, there are other mutation techniques for a

given string such as:

 Inversion of a single bit: One randomly chosen bit is inverted with probability p. See

Figure 4.8.

 Bitwise inversion: The entire string is inverted bit by bit with probability p.

30

 Random Inversion: The string is replaced by a randomly chosen one with probability p.

Figure 4.8: Single bit inversion.

4.3: Differential Evolution

Differential evolution (DE) [47-48] is a population-based algorithm that has been successfully

employed to solve a wide range of global optimization problems. The method of DE, as

illustrated in Figure 4.9, is nearly identical to the GA’s approach. DE allows each successive

generation of solution to ‘evolve’ from the previous generations’ strengths.

Figure 4.9: Differential evolution algorithm.

The DE method can be applied to real-valued problems over a continuous space with much more

ease than the GA. In DE, a parent vector from the current generation is called a target vector, a

mutant vector obtained through the differential mutation operation is known as a donor vector,

and finally an offspring formed by recombining the donor with the target vector is called a trial

vector [70]. The idea of the DE method is that the difference between two vectors yields a

difference vector which can be used with a scaling factor to traverse the search space. As in the

GA, DE begins with a random population which is chosen equally over the problem space, and

the next generation creates an equal number of donor vectors (mutant vectors) that are created

through means of:

The “mutation" step is shown in Figure 4.10, where x and y are the axes of the decision space, X1

is chosen either randomly or as one of the best members of the population (depending on

individual encodings), X2 and X3 are randomly chosen and F is the scale factor.

31

Figure 4.10: A simple DE mutation scheme [80].

A trial vector Ti,j is created by selecting between the donor vector and the previous generation for

each element (j) according to the crossover rate (CR) 0–1. For each element in the vector we

choose either the corresponding element from the previous generation vector or from the donor

vector, such that:

where Jrand is randomly chosen for each iteration through i and ensures that no Ti is the same as

the corresponding Xi. Then the trial vector’s fitness is evaluated, and for each member of the new

generation, X′i, we choose the better performing of the previous generation, Xi, or the trial vector,

Ti [49]. DE is considered to be completely self-organized since it adds the weighted difference

between two population vectors to a third vector. DE is summarized in the pseudo-code provided

in Figure 4.11.

Figure 4.11: Pseudo-code for DE.

Since the ordinary DE is incapable of working with problems with binary-valued parameters,

several heuristics have been applied to DE to solve binary-coded problems. Discretized

differential evolution (DDE) [71], uses a sigmoid function to discretize a normalized solution

vector to form a bit string. DDE works as follows: an initial random population is created with

32

initial individuals and their initial fitness is calculated. Through the number of generations

previously set, a trial population is created using the mutation and crossover processes. This new

population is discretized by the sigmoid function which assigns the values 1 or 0, depending on

whether the continuous dimension of the individual is greater than 0 or not. The fitness of this

trial and discretized population is calculated and if the trial individual fitness is greater than the

previous one, the new individual is incorporated into the new population. Figures 4.12 and 4.13

present the pseudo-code of the DDE algorithms [71].

Here, NP is the population size, CR is the crossover rate, F is the mutation rate, PR is the

permutation rate, PM is the mutation rate and the range is the dimension of each individual.

Binary Differential Evolution (BDE) was presented in [69], which uses homomorphous mapping

and the interpretation of the continuous solution vector as a vector of probabilities. An older

version of BDE was introduced in [73] which uses an angle modulation. It consists of a

generation of a bit string using a trigonometric generating function. Another version of BDE was

presented in [72] which is only feasible in binary search space and the original mutation process

of DE is replaced by a random bit inversion, which is inspired by GA. The perturbation process

is a new parameter introduced to measure how many individuals of the population will pass

Figure 4.12: DDE algorithm [71]. Figure 4.13: BDE Algorithm [71].

33

through the mutation and crossover processes and it will ensure there is at least one individual

that will be mutated. The crossover process remains unchanged.

4.4: Particle Swarm Optimization

Particle swarm optimization (PSO) is another population-based search algorithm that simulates

the social behavior of agents that interact with each other by acting on their local environment. It

was designed and presented in 1995 by Kennedy and Eberhart [42]. The algorithm starts with an

initial population of the solution, called particles, and searches for the optimum solutions by

updated generations. The particle swarm concept originated as a simulation of a simplified social

system. The original intent was to graphically simulate the graceful but unpredictable

choreography of a flock of birds. Initial simulations were modified to incorporate nearest-

neighbor velocity matching, eliminate ancillary variables, and incorporate multidimensional

search and acceleration by distance [41-43]. At some point in the evolution of the algorithm, it

was realized that the conceptual model was, in fact, an optimizer. Through a process of trial and

error, a number of parameters extraneous to the optimization were eliminated from the

algorithm, resulting in the very simplified original implementation [44].

In PSO, each particle is treated as a point in the D-dimensional problem space. The ith particle is

represented as Xi=(xi1,xi2,…….,xiN), the best previous position (the position giving the best fitness

value) of the ith particle is recorded and represented as Pi=(pi1,pi2,…….,piN), the index of the best

particle among all the particles in the population is represented by the symbol g. The rate of

position change (velocity) for particle i is represented as Vi=(vi1,vi2,…….,viN), the particles are

manipulated according to the following equations:

Here, c1 and c2 are positive constants and the random variable (rand()) is a uniform distribution

between 0 and 1, w is the inertia weight which shows the effect of the previous velocity vector

on the new vector. A larger inertia weight facilitates global exploration (searching new areas)

while a smaller inertia weight tends to facilitate local exploration to free-tune the current search

area. Suitable selection of the inertia weight provides a balance between global and local

exploration abilities and thus requires fewer iterations on average to find the optimum [4], [45].

34

A modified version of the PSO algorithm was introduced in 1997 [22], that allows PSO to work

in binary space. In the binary PSO (BPSO), the particle’s personal best and global best is updated

as in the continuous version. The major difference between BPSO with the continuous version is

that velocities of the particles are defined in terms of probabilities that a bit will change to one or

zero. Using this definition, a velocity must be restricted within the range: 0-1. Updating the

velocity vector of the particle is performed using the similar equation from PSO. The

normalization procedure is performed by a sigmoid function:

and the new position of the particle is obtained using the equation below:

The BPSO can be used in a variety of applications, especially when the values of the search

space are discrete like decision-making, solving the lot sizing problem, the traveling salesman

problem, scheduling and routing. BPSO can be effectively employed to solve ATPG for

sequential circuits because of its effectiveness in solving several problems such as those

mentioned in [76-78].

4.5: Conclusion

The optimization algorithms included in this chapter are considered the most suitable candidates

to generate test sequences for sequential circuits. Although, optimization algorithms share a

similar principle as they are all population-based algorithms, there are several differences in

terms of the searching mechanism for an optimal solution and updating the individual’s position.

Throughout this research, we investigate each algorithm’s parameters to show their significance

in an algorithm implementation to search for an optimum in ATPG. Moreover, some algorithms

are used differently than originally intended by adding heuristics for performance improvements

which will be explained in detail in the following chapter.

35

 Chapter 5: Test Generation - Implementation and Results

This chapter presents a detailed explanation of the implementation of GA, DE and PSO in

generating test sequences for sequential circuits. A complete investigation of the performance of

each algorithm is also presented, followed by a comparison between each algorithm in terms of

implementation, performance and results. Boxplots [51] were chosen to represent the results

because they help to identify the variation of data and understand an algorithm’s performance. It

is worth mentioning that we use the same fitness function for all optimization algorithms in this

chapter for equitable comparison. The following fitness function measures the quality of a

generated test sequence:

An analysis of the random test generator was also included in this chapter to see the advantages

and drawbacks, if any, of adopting optimization algorithms for test sequences generation.

5.1 Circuits Description

ISCAS89 sequential benchmark circuits [50] were tested in this research because of their high

adoption in the literature. The chosen circuits range from small-scale circuits to large-scale

circuits. Table 5.1 presents a brief description of the several selected circuits, where the PI

column is the number of primary inputs in the circuit, and PO is the number of primary outputs

of the circuit. Sequential depth is defined as the maximum structural sequential depth of all flip-

flops in the circuit, where the structural sequence of a flip-flop is defined as the minimum

number of flip-flops that must be passed through to reach that flip-flop from a PI [2]. In this

research, we considered the single stuck-at fault model in synchronous sequential circuits under

the zero-gate delay model. The HOPE [59] fault simulator was used to simulate each test vector

and compute its fitness.

36

Table 5.1: Description of sequential circuits [3].

5.2 Random Test Generation

Random test generation is the simplest type of simulation-based test generation where test

vectors are applied to a sequential circuit and a fault simulator compares the faulty circuit and

good circuit and determines the existence of a fault. For the analysis, we started by randomly

testing all targeted sequential circuits to classify the type of detected faults. Usually, some faults

are easily detected by randomly generated test vectors which are classified as easy-to-detect

faults. The downside of the random test vectors generator is that it requires an enormous number

of test vectors for fault detection and it consumes a high percentage of CPU resources. While

random test generation is recommended for relatively small-scaled sequential and combinational

circuits, its efficiency is noticeably reduced as the size of the circuits increase.

In this work, the test runs several times, each time with a different number of test vectors, with

each increment is a factor of 10. In sequential circuits fault detection, a sequence of test vectors

is needed because the output of a circuit is dependent on both the present and previous (past)

inputs to the CUT. A test vector plays two roles: drive the circuit under test into a proper state

and detect the given fault from that state. All flip-flops in each circuit are assumed to be in a

known state, either all zeros or all ones, before the test runs. Hence, we assume that fault

detection will start after applying a few test vectors. This assumption holds true for all sections

of this research.

Each circuit has a breakout point where no more faults will be detected no matter how many

more test vectors are randomly applied. For example, fault coverage became nearly constant

when the test vectors reached 100,000 vectors for the s298 circuit. Figure 5.1 shows the

improvement of fault coverage as the test vectors were randomly applied to the s298 circuit.

37

Figure 5.1: Fault coverage for s298 circuit.

The fault coverage stays below 90% even after one million test vectors. The remaining faults

(undetected faults) are considered as hard-to-detect faults which means that an advanced

algorithm is needed to detect the faults. Figure 5.2 shows similar behaviour of fault detection

using random test pattern generation for a larger circuit. Fault coverage increases as the test

vectors are fed to the fault simulator until the fault coverage becomes unchanged. Determining

the stopping point, the point where no more faults are detected, is not possible due to several

reasons such as the nature of a circuit’s faults and the size of a circuit. The s27 circuit, shown in

Figure 5.3, gained full coverage with less than 200 test vectors randomly generated because all

stuck-at faults in the circuit are easy-to-detect faults, which makes the circuit amenable to full

coverage using random test pattern generation.

Figure 5.2: Fault coverage for the s35932 circuit.

0 10 100 1,000 10,000 100,000 1,000,000 10,000,000
20

30

40

50

60

70

80

90

Number of Test Patterns

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

s298

0 10 100 1,000 10,000 100,000 1,000,000 10,000,000
20

30

40

50

60

70

80

90

Number of Test Patterns

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

s35932

38

Figure 5.3: Fault coverage for the s27 circuit.

Figure 5.4 clearly shows that random test generators can only be used to detect easy-to-detect

faults. In the s400 circuit, fault coverage could not reach 20% due to the nature of the faults.

Consumption of the CPU resources increased as we increased the testing limit. Fault detection is

dependent on fault nature (type) and it does not completely depend on the number of test vectors

nor the sequence length. Other graphs for other circuits are shown in Appendices A-D.

Figure 5.4: Fault coverage for the s400 circuit.

The behaviour of all graphs illustrates that an appropriate stopping criteria is highly needed. The

stopping criteria cannot be easily determined because the faults differ from one circuit to

another. However, random test pattern generation is highly recommended as a first testing tool,

but it is not capable of reaching full fault coverage independently of other advanced testing tools

for most of the sequential circuits. Random test pattern generators perform better on data-

10 100 200
50

55

60

65

70

75

80

85

90

95

100

Number of Test Patterns

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

s27

0 10 100 1,000 10,000 100,000 1,000,000 10,000,000
8

10

12

14

16

18

20

Number of Test Patterns

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

s400

39

dominant designs of small-scale circuits. If untestable faults are present, another advanced

technique is highly recommended.

Testing time can be obviously seen with larger circuits such as s35932. The sequential circuit

s35932 gained 86.993% fault coverage in 40.5 minutes by one million test vectors applied,

which is considered a very high testing time. Random test pattern generator is not an effective

solution, nor a practical test generator candidate to solve ATPG problems for sequential circuits

even with full fault coverage when it is reachable. The need arises to find another testing

algorithm to optimize the search space in the random test generator because that will lead to

optimized testing time with the number of test vectors.

Searching for a solution by using random test generators is not effective nor efficient due to two

major reasons: the search space is promotional to the size of a circuit and to the sequence length,

which means that search space becomes enormous with large circuits and ultra large circuits. The

second reason is that the search mechanism is not directed by any means which leads to visiting

a state several times regardless how good the state is. The consequence of these two reasons is

that resource consumption in terms of time and memory becomes maximum. To make the use of

random test generators effective and efficient, two points must be considered. Firstly, a circuit

must be small in size. As the size of a circuit increases, the efficiency of the test generations

decrease. Secondly, defining a stopping criteria for test generation in terms of a fault coverage

percentage will thus increase the efficiency.

5.3 Genetic Algorithm

The GA was explained in detail in section 5.1. I only used binary coding where every

chromosome is a string of bits, 0 or 1. Each character of a string is mapped to a PI. Thus, all PI’s

are set to known states, 0 or 1, and the unknown state X is discarded.

The sequential GA-based test generator is divided into two processes and several sub-processes:

1. GA Pre-process:

o Initialize all flip-flops.

o Preprocess and partition the circuit.

2. GA Process:

o Generate a random sequence (vector series) as an initial population.

o Compute the fitness of each sequence.

40

o The evolutionary processes of GA are used to generate a new population

from the existing population.

Initialization of sequential circuits is implemented in the pre-process state where all flip-flops in

a circuit will be set to Zero (off-set). The first “time frame” will have a pseudo-primary Output

(PPO) of zeros. This helps to shorten the test sequence since several leading bits will be

discarded (Figure 5.5). Note that this assumption is valid if an external reset signal is

implemented by resettable flip-flops. Several test vectors might be used to ensure that all flip-

flops are set to Zero. These vectors will be applied to the fault-free circuit. This step is not

obligatory. However, it will be important if a circuit contains some portions that are hard to

initialize and it can take place within the pre-process step. Most of the work concentrated on test

vector generation for fault detection (GA Process step).

In sequential circuits, a circuit must be in a specific state (time frame) to detect a specific fault. A

sequential circuit is duplicated into several copies to represent the circuit in a different state. A

sequential circuit should be driven to a specific state; all flip-flops should have specific values, in

order to arrive at a specific primary output.

Figure 5.5: Test sequences.

5.3.1 Parametric Analysis

Several GA parameters should be investigated carefully to achieve satisfactory fault coverage.

The initial population is the first element that needs to be addressed. Most of the previous GA-

based test pattern generators ignore the effects of the initial population on later populations and

several publications did not consider the initial population as a “Parameter”. In GA-based

generators, each population is constructed of individuals. Each individual represents a sequence

of test vectors. A vector within a sequence is supposed to either detect a fault or drive a circuit to

a specific state, called a time frame. A vector (gene) is said to be a relatively strong vector (gene)

if it can detect a fault, or faults, or it causes the effects of a fault, or faults, to propagate to a flip-

flop, or flip-flops. A population should be large enough to ensure adequate diversity. In addition,

41

it is important that the initial (first) population is strong enough to increase the rate of

convergence. Since the first (initial) population is generated randomly and applied to a sequential

circuit, the initial population’s performance becomes unpredictable unless it is calculated

afterwards. The results of the initial population are a measure of the later populations.

It is obvious that the quality of the initial population correlates with positive evolution of the

population unless good genes were lost during the sequence process. To ensure that an initial

population is good enough before proceeding to the next generation, the quality of the initial

population is calculated before deciding whether to move to the next generation or to create

another initial population. If the evaluated initial population is equal to or greater than a specific

value, which is a predefined value, the next generation will be generated, otherwise another new

initial population will be randomly generated. By performing this step, computation is reduced in

later generations alongside gaining a faster rate of convergence. Moreover, selection operator

effects on the results have been minimized. In this work, the algorithmic condition, shown in

Figure 5.6, was added to the initial population generation.

Figure 5.6: Initial population algorithm.

Figure 5.7: Test sequence.

Another key parameter is the population size. It has been mentioned earlier in this section that a

population should have a sufficient size to avoid computational overhead. The population size is

not fixed for all circuits. The size is related to vector length (see Figure 5.7), and primary inputs,

to ensure a higher degree of diversity. Table 5.2 [3] was found to be useful in determining the

appropriate population size for sequential circuits. However, there are some limitations on

applying these population size values to GA. As the vector length increases (> 99), the initial

population will cover a very small area of the whole search space. To overcome this issue, the

number of generations needs to be increased to allow the individuals to explore the maximum

42

possible area of the search space. However, computational overhead will increase because of the

incremental increase in the number of generations.

Table 5.2: Population size value [3].

Another important parameter is the number of generations. The program will stop when it

reaches full coverage, or when it reaches the maximum number of generations. It is possible to

reduce the computation overhead by lowering the number of generations. However, we might

end up having poor fault coverage. Several applications [3], [19-20] decided to limit the number

of generations for time reduction purposes. This technique works well, with large sequential

circuits; only if the population size is highly optimized with the existence of good-enough

individuals.

Crossover and mutation are other major and crucial parameters. In this work, I used a probability

of 1 for crossover which means that two individuals are always crossed to generate new

individuals. Generating new test sequences through the process of crossover will lower the

probability of applying identical sequences to the sequential circuit. As the crossover probability

decreases, the probability of applying similar test sequences in the following generation

increases. The crossover scheme occurs between vectors within two sequences. It is basically

swapping two vectors (genes) of two different sequences to generate a new set of sequences. A

negative consequence of crossover is that a good vector (a key individual) might be lost which

may lead to a negative change of search direction.

Mutation probability is a problem-dependent value. Having a high mutation rate value will cause

the search space to be maximized, while a very low mutation value will cause premature

convergence. The mutation selects a position, either randomly or previously-defined, and

complements it. Many publications suggest that the mutation rate ranges between 0.005 – 0.01

[63]. However, since the length of test sequences varies from one circuit to another, it is better to

modify the mutation rate accordingly. In this work, a mutation rate of 0.01 was used by default

and it was modified according to vector length. Mutation might cause the search direction to be

completely changed if it complements a key individual within a test sequence. Test sequences

43

processing caused by mutation and crossover operators have relatively higher effects on the

results than the selection operator.

The fitness function is the major parameter when discussing optimization algorithms. In GA-

based test pattern generations, the fitness function will measure the ability of a test sequence to

either detect a fault or propagate a fault to a flip-flop. Since the main goal of ATPG is to detect

the maximum number of faults, the fitness function will calculate how many faults were detected

by each test vector. Furthermore, the fitness function will determine the ability of a test vector to

propagate fault effects to a flip-flop. Then, the overall quality of a test sequence will be

determined.

5.3.2 Results

The results of implementing GA in ATPG are demonstrated below. Figures 5.8, 5.9 and 5.10

show the results of the s298 circuit with two different selection strategies and different crossover

approaches. Two-point crossover attained higher fault coverage with lower data distribution. The

uniform crossover has higher distribution with lower fault coverage because the random gene

swapping led to an increase in the probability of losing good genes and the search for a solution

is randomized. The overall results show that one-point and two-point crossover techniques have

firm and explicable results, unlike uniform crossover. It has been mentioned earlier that the

selection technique does not have a major impact on the results. However, rank selection causes

the competition to occur between strong sequences because of the ordering scheme. The

outcomes of using rank selection show that strong sequences live longer until later generations.

The sensitivity of a test vector (gene) within a sequence is high which means that any change

within a sequence may cause the search direction to change dramatically, then the fault coverage

becomes unpredictable. Each test vector causes a sequential circuit to move from one time frame

to another, a change in a test vector will cause the circuit to arrive at a different time frame and

the search direction will change because of a change in the test vector. The mutation operator has

little effect on fault coverage for most of the circuits. Figure 5.11 shows the effects of different

mutation rate values on the s298 circuit. Results have little variation from one value to another. It

is recommended that mutation occurs either at the beginning, or at the end of a population to

explore much more search space. The default mutation rate of 0.01 shows good-enough results

for most of the sequential circuits.

44

83

83.5

84

84.5

85

85.5

86

86.5

87

87.5

88

1

s298

OnePoint Crossover

78

79

80

81

82

83

84

85

86

87

88

1

s298

TwoPoint Crossover

76

77

78

79

80

81

82

83

84

85

1

s298

Uniform Crossover

The number of test vectors is a crucial parameter. The s298 circuit has its highest fault coverage

with about 144 test vectors in less than two seconds. These test vectors could cover nearly 88%

of all faults. Random test pattern generation could find the same fault coverage with more than

100,000 test vectors. The s35932 circuit has its highest fault coverage with about 197 test vectors

in 4.3 minutes. These test vectors could cover nearly 87% of all faults. GA reduced the number

of test vectors significantly which implies that GA-based test pattern generation is a perfect

candidate to replace random test pattern generation for all types of sequential circuits.

Figure 5.9: Fault Coverage for s298 circuit, rank selection.

1 2 3 4 5 6 7 8 9 10
70

72

74

76

78

80

82

84

86

88

90

RUNS

F
a
u
lt
 C

o
v
e
ra

g
e
 %

OnePoint Crossover

TwoPoint Crossover

Uniform Crossover

82

82.5

83

83.5

84

84.5

85

85.5

86

1

s298

OnePoint Crossover

84

84.5

85

85.5

86

86.5

87

87.5

1

s298

TwoPoint Crossover

78

79

80

81

82

83

84

85

1

s298

Uniform Crossover

Figure 5.8: Results of s298 circuit using rank selection (Left) and roulette wheel selection (Right). Different

crossover schemes were used.

45

Figure 5.10: Fault coverage for s298 circuit, roulette wheel selection.

Figure 5.11: Mutation effects on several sequential circuits.

1 2 3 4 5 6 7 8 9 10

76

78

80

82

84

86

88

RUNS

F
a
u
lt
 C

o
v
e
ra

g
e
 %

OnePoint Crossover

TwoPoint Crossover

Uniform Crossover

1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-3

70

75

80

85

90

95

100

Mutation Rate

F
a
u
lt
 C

o
v
e
ra

g
e

Circuit s298

Circuit s1196

Circuit s386

46

5.4 Particle Swarm Optimization

This section explains the implementation of BPSO in generating test sequences for sequential

circuits. It presents an analysis of each parameter and its effects on testing time and fault

coverage. In comparison with GA and BDE, BPSO has fewer parameters to optimize to reach the

desired solution. The initial population is made up of randomly initialized particles. Particles

revise their own velocity and position based on a predefined fitness function of its own and other

particles in a population. In other words, particles modify their movement according to their own

experience and their neighboring particle experience. Position and velocity are to be modified in

each iteration of the PSO algorithm to find the optimum solution. Inertia weight w, is a key role

in the process of providing balance between the exploration and exploitation processes. The

inertia weight determines the contribution rate of a particle’s previous velocity to its velocity at

the current time step. The basic PSO, presented by Eberhart and Kennedy in 1995 [42], has no

inertia weight. In 1998, Shi and Eberhart [52] first presented the concept of inertia weight by

introducing constant inertia weight [53]. Further improvements on the concept of inertia weight

have been introduced afterwards.

In binary coding PSO, each binary string represents a particle which is constructed of a series of

test vectors. Velocity is defined as the probability of a bit to change from zero to one, or vice

versa, which will help a particle to move to another location. The location might be a global

optimum solution or another local optimum solution. The search space in BPSO is limited

between zero and one. However, the length of a test sequence increases the size of the search

space accordingly.

5.4.1 Parametric Analysis

Since the inputs, outputs and all other internal signals are discrete values, the following

evolutionary equation, which is the two-binary coded discrete PSO, has been used:

The sigmoid function is used to normalize the original velocity to be a value between 1 and 0:

47

where w is the inertia weight, w0 is the initial value of the inertia weight, wf is the final value of

the inertia weight, T is the maximum iteration, rand is a random number between 0-1 with

uniform distribution, and c1 and c2 are positive acceleration constants. Vi (vi1, vi2, …, vid) is the

velocity of the particle, Xi (xi1, xi2,…, xid) is the current particle of the ith particle, Pi (pi1, pi2, …,

pid) is the best visited position for the ith particle and Gi (gi1, gi2, …, gid) is the best position

explored so far. The subscripts i,and j refer to particle number i and the particular bit j of that

particle’s velocity, respectively.

Inertia weight is used to balance the global and local search capabilities. It shows the effects of

the previous velocity on the new velocity. A large weight facilitates a global search. That is, as

velocity becomes larger, the particles move and search in more space. Thus, the ability to explore

more regions of the search space increases. Conversely, a smaller weight facilitates a local search

which means that the velocity becomes smaller and that benefits the current solution space to

find a good solution. The search will be concentrated on a promising area to find a solution.

Inertia weight w, needs to be well optimized to achieve balance and it is an application-

dependent value.

Acceleration coefficients, c1 and c2, are better to be well adjusted to quantify the performance

relative to the experience and neighbors, respectively. If c1 = 0, then we will have a social-only

model which means that a particle does not have its own past performance. If c2 = 0, then we will

have a cognition-only model which means that the neighbors’ experience is unknown and there

is no sharing of information between particles. In this work, several values of c1 and c2 in the

range 0–4 have been used and we reached the best solution set by using equal values for c1 and

c2 of 2.

The initial population affects the convergence rate. Generating test sequences randomly might

increase the area of search space because of the difference in fitness value between particles.

Since there is no selection mechanism in PSO, the population size is equal to the neighborhood

size and all neighbors are fully connected with each other which means that the velocity is

dynamically adjusted according to the particle’s personal best performance achieved so far and

the best performance achieved so far by all the other particles. Lastly, the number of iterations

depends on the size of a circuit and sequence length. In each iteration, PSO updates a set of

48

previously generated/evaluated test sequences, called particles, in terms of fitness and velocity.

The particles will move to new position if they attain higher fitness value than previous ones.

5.4.2 Results

PSO for ATPG works as follows: an initial population of test sequences is generated randomly

and applied to a sequential circuit. Initial velocities are generated in the range of 0-1 for each test

sequence in the initial population. Each sequence is updated to fly to another position within a

search space. If the fitness of the updated sequence is better than “gBest” or “pBest”, the updated

sequence will replace the previous particle position with either “gBest” or “pBest”, and the

velocity will be updated as well. When the stopping condition is met, which is either a full fault

coverage or maximum iteration number, the set of global/local solutions for the targeted faults

are the end results.

The probability of losing a good gene within a sequence is very low because of the

comparison/replacement scheme of particles. Each updated particle will move according to its

own experience and the whole group experience within the search space. Consequently, the

search mechanism is highly directed and guided. Thus, a particle, or particles, will move to areas

of possible solutions quickly, efficiently and effectively. Figure 5.12 shows a search space in 2D

which has the axes y1 and y2, i.e., the place we are going to look for the optimum solution, of a

few particles after a few iterations for the sequential circuit s298. Each green square represents a

particle at its local solution. A blue circle represents a best solution, or the global optimal

solution. The oval shape represents areas of possible global optimal solutions. All particles

within these oval shapes have high fitness values. Most of the particles outside these two circles

have relatively small fitness values. The length of arrows delineates how much a particle’s

fitness value has improved.

Figure 5.12: A part of the search space for the s298 circuit

49

The overall results of using PSO in ATPG are very encouraging and promising. Faults coverage

was high in most of the tested sequential circuits and testing time was advantageous over other

evolutionary algorithms. Figure 5.13 shows the fault coverage of the s298 circuit by

implementing PSO. The variation in results is low and the difference between the highest

detected fault and the lowest detected fault is only a few faults which implies that the reliability

of this method is high. Figure 5.14 shows fault coverage for a larger circuit. The fault coverage

obtained by PSO for all CUTs in this work is high and all easy-to-detected faults were covered in

a short time period with the fewest possible test vectors. PSO detects 86.3% of the faults for the

s35932 circuit in 1 minute 14 seconds, which is considered a major improvement and advantage

compared to other ATPG algorithms. Since PSO relies on sequence manipulation, increasing the

sequence length results in increasing the fault simulation time. As an example, the sequential

s349 circuit has 9 inputs, PSO-based test generator detects 98% of the total faults in 0.1 seconds

with a sequence length of 9. As the sequence length was doubled to 18, the fault coverage did not

improve and it stayed at 98% while the fault simulation time increased to 0.445 seconds.

Sequence length must be kept as low as possible because updating the bit string will double the

testing time a factor of 2 or even higher. However, sequence length needs to be well determined

to allow the circuit to arrive at the targeted state and thus the fault effects arrive at either a PPO

or PO. Figure 5.15 shows the effects of increasing sequence length on testing time and the fault

coverage on the circuit s1196. The sequence length was doubled while keeping other parameters

at their lower values. On the other hand, reducing the sequence length to be equal to the PIs will

reduce the fault simulation time by approximately 2%. Initial population is another key

parameter that has a direct impact on testing time which is shown in Figure 5.16. However, the

effects on testing time that come from initial population is lower than the effects that come from

sequence length and number of iterations.

50

Figure 5.13: Fault coverage of the s298 circuit using the PSO-based test generator, max detected fault = 272, min

detected fault = 257.

Figure 5.14: Fault coverage of the s35932 circuit using the PSO-based test generator, max detected fault = 33730,

min detected fault = 32178.

It is recommended to start with a low iteration value and increase it proportionally with the size

of a circuit to avoid unnecessary computational overhead. The doubled sequential depth value

was used as an initial iteration value, and then it was modified as needed. In fact, setting the

sequential depth value of each circuit as a progressive limit and doubling the sequence length

shows high, but not the highest, fault coverage results. Figure 5.17 shows the effects of

increasing the number of iteration of fault coverage and testing time

83

83.5

84

84.5

85

85.5

86

86.5

87

87.5

88

88.5

1

s298

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

82

82.5

83

83.5

84

84.5

85

85.5

86

86.5

1

s35932

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

51

Figure 5.15: Sequence length effects on testing time and fault coverage for the s1196 circuit.

Figure 5.16: Initial population effects on testing time and fault coverage for the s1196 circuit.

Figure 5.17: Number of iteration effects on testing time and fault coverage for the s1196 circuit.

20 30 40 50 60 70 80 90 100 110
0

0.2

0.4

0.6

0.8

1

1.2

Sequence Length.

T
e
s
ti
n
g
 T

im
e
 (

s
)

20 30 40 50 60 70 80 90 100 110
88

90

92

94

96

98

100

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

Initial Population.

T
e
s
ti
n
g
 T

im
e
 (

s
)

10 15 20 25 30 35 40 45 50 55
86

88

90

92

94

96

98

100

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Iteration.

T
e
s
ti
n
g
 T

im
e
 (

s
)

50 100 150 200 250 300
82

84

86

88

90

92

94

96

98

100

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

52

5.5 Differential Evolution

Binary coded differential evolution (BDE) has been implemented in several applications [66-69],

and [71]. BDE in ATPG for sequential circuits aims to limit the search space in the range [0-1].

It starts with a randomly generated initial population and each individual is evaluated through a

fitness function. A new population is then generated through the process of crossover and

mutation according to a mutation strategy. The BDE algorithm used in this work is explained in

Figure 5.18.

Figure 5.18: Binary DE algorithm (BDE).

The binary mutation strategy is driven from the original differential mutation in addition to the

mutation operator from GA. Figure 4.11 shows the original differential mutation and we treat

each variable as follows:

 X3 is the parent vector that has the highest fitness value in the current generation.

 X1, X2 are chosen randomly from the current population.

 F is the scale factor which has an effect on the difference between the particles (X1, X2).

The resultant mutant vector comes from the following:

The binary mutation strategy is slightly different since there are eight combinations of three

binary variables. The mutation operation is performed as follows [81]:

 If X3 equals zero and X1 equals X2, then the result of mutation equals zero.

 If X3 equals one and X1 equals X2, then the result of mutation equals one.

 If X3 equals zero and X1 is different from X2, then X3 will mutate to 1 - X3 with some

probability.

53

 If X3 equals one and X1 is different from X2, then X3 will mutate to 1 - X3 with some

probability.

Table 5.3 summarizes the four mutation rules.

Table 5.3: Mutation strategy.

The crossover operator is used to build the trial vector from the mutant vector and the candidate

vector. It is used to produce a fitter offspring. There are two main types of crossover in DE:

binomial and exponential. Binomial is similar to uniform crossover used in GA where at least

one component is taken from the mutant vector. This type of crossover is neglected in this work.

On the other hand, exponential crossover is similar to two-point crossover used in GA where the

first-cut point is randomly selected and the second-cut point is determined such that L

consecutive components are taken from the mutant vector.

In this work, mutation and crossover is repeated for all NP members of the current generation.

Next, we evaluate the fitness function for each of the trial vectors, test sequences, and compare

each vector’s fitness value with the fitness value of the candidate from the previous generation. If

the trial fitness function value is higher than that produced by the candidate vector, then the trial

vector replaces the candidate vector, otherwise the candidate vector will survive to the next

generation.

5.5.1 Parametric Analysis

 In binary DE, there are a few parameters to analyze, including NP, CR and PF. It should be

noticed that NP should be at least four individuals because three test sequences are needed to

create a mutant vector and one test sequence is needed for the crossover operation. Increasing

population size, NP, or test sequence length, leads to increasing the search space which leads to

more exploration and the probability of finding a global optimum solution increase as a result.

However, testing time increases in DE due to increasing the search space. In BDE, search space

54

is limited in the range 0-1. However, since the sequential circuits need a series of test sequences

of different lengths for fault detection, the search space increases accordingly.

As mentioned earlier, three test sequences are needed for mutation and they can be chosen

randomly or one test sequence can be one of the best test sequences in a population. Choosing

one of the best test sequences for mutation helps strong genes to survive to next generations,

while randomness in choosing the test sequences increases the probability of losing strong genes

because weak test sequences might compete together. This work always assigned the best

individual of the current population to be one of the three test sequences to help guide the search

process towards areas of possible solutions. Choosing a suitable mutation strategy is what

determines the effectiveness of BDE in ATPG. Several mutation strategies have been discussed

in chapter 3. The adopted strategy in this work has shown good results with the literature, beside

its simple implementation [81].

A predefined rate PF, was added to the mutation strategy to determine which bit will be mutated

in some cases. This rate was kept random to allow for diversity. It is important to not allow

copying of a test sequence by mutation or crossover. This case has rarely happened after crossing

the mutant vector with the target vector where the resultant vector was the exact same previous

target vector.

The fitness function is a major parameter in all evolutionary algorithms. It aims to measure the

quality of a candidate vector to detect faults or propagate fault effects to flip-flops. The problem

of measuring the fitness of a candidate vector in ATPG is that it is not a straightforward

calculation; each test vector/test sequence must be fully simulated before calculating its fitness.

The testing time is the total simulation time plus calculation time. The fitness time used in this

work is similar in all the sections of this paper. However, it is recommended to modify the

fitness function to reach higher coverage.

5.5.2 Results

BDE was able to detect most of the easy-to-detect stuck-at faults. The overall performance was

not as expected. The testing time was noticeably high, especially in large circuits such as the

s35932 circuit with 6.6 minutes and the fault coverage was not maximized. On the other hand,

the fault coverage in small-scaled sequential circuits was relatively high as demonstrated with

the s298 circuit in Figure 5.19. In this work, the testing time, which is proportional to the

sequence length, was mostly consumed by the mutation strategy. The adapted mutation strategy

55

increased the computational overhead with larger circuits while the computational overhead

remained within the expected range with small-scaled circuits.

Figure 5.19: Fault coverage of the s298 circuit using the DE-based test generator. Maximum faults detected = 271

(87.987%), minimum faults detected = 255 (82.792%).

The implementation of BDE is easier than other evolutionary algorithms with fewer parameters

to set. Setting parameter values appropriately was not a difficult issue. It was better to keep the

CR value as high as possible and make the scale factor F close to 0.5, if needed. The challenge

comes from having a binary mutation strategy that is able to reduce the testing time.

5.6 Conclusion

This chapter focused on representing a complete analysis of several optimization algorithms on

ATPG for sequential circuits. All the three test generators were implemented around the

sequential circuit fault simulator HOPE [59] in the C language. Test results were achieved

assuming that the initial state of all flip-flops were known and set to zero. The results showed the

best fault coverage obtained to illustrate the capability of an optimization algorithm to explore a

search space. Graphs of fault coverage of several sequential circuits showing the result variations

are in Appendices A-D. Table 5.4 shows the number of faults detected and the number of test

vectors for all three optimization algorithms. PSO was able to detect more faults than the other

algorithms in most of the sequential circuits, while GA and DE have similar results. Testing

time, which was reported in a previous chapter, was lower in PSO than in both GA and DE.

83

84

85

86

87

88

1

s298

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

56

Table 5.4: Results for all three optimization algorithms.

Testing time has a significant and direct impact on the final product profits, which is a major

concern in the industry. It must be reduced to a minimum without affecting any other factors, and

it takes the highest priority over other factors. PSO has shown better performance in the shortest

time. Fault coverage obtained depends on the nature of faults, fault simulator and the ATPG

algorithm. The optimization algorithms, in general, show high effectiveness in detecting all

testable faults in low testing time with a relatively small number of test vectors. Figure 5.20

shows the relationship between fault detection and test vector generation over time t.

Figure 5.20: Fault detection as a function of time.

The first test vectors/sequences applied to a sequential circuit are supposed to initialize all flip-

flops to a known state. In this work, all flip-flops are initialized before by a control signal and no

test sequences were generated for initialization purposes. The fault detection starts at its

maximum rate, then the detection rate decays over time because of the fault dropping, which

means any detected fault will be dropped out of the fault list. Fault detection will stop at time t

57

once it reaches the hard-to-detect faults region. Optimization algorithms are the best candidates

to operate in easy-to-detect faults regions. However, the performance was weak in hard-to-detect

faults regions which require non-simulation-based algorithms to effectively search for test

sequences.

PSO shows superiority in performance over other optimization algorithms, as seen in Figure

5.21, and it is expected that SI algorithms will show similar results because of similarities in the

search mechanism which is highly guided since it lets a particle rely on its own experience as

well as the whole group experience. In contrast, the GA search mechanism lets individuals move

to optimum solutions as a group which leads to incremental increases in testing time which

concludes that GA is slower than PSO. In GA, the fitness value of the whole population is

necessary to keep the fitness value of the successive generations increasing. In this work, a

condition was added to the initial generation to measure its overall fitness before proceeding to

the next generation. Although DE is nearly similar to GA, DE would perform better with a

suitable mutation strategy. DE parameters do not require significant modification, which is

necessary in GA, and is considered an advantage of DE over GA. Lastly, this work emphasizes

the substantial performance of PSO to generate test vectors/sequences for synchronous

sequential circuits.

Figure 5.21: Comparison between several circuits of optimization algorithms performance.

s298 s344 s349 s641 s713 s1196
0

200

400

600

800

1000

1200

Sequentail Circuts

N
u
m

b
e
r

o
f

D
e
te

c
te

d
 F

a
u
lt
s

GA

PSO

DE

58

Chapter 6: Conclusions and Future Work

This thesis facilitated developing a solution that can reduce the extensive efforts to find effective

solutions to generate test sequences for sequential circuits. Optimization algorithms offer

attractive results in generating test vectors/sequences for sequential circuits by optimizing the

search space and guiding the searching process to effectively search for solutions in short time

periods. Although this research obtained high fault coverage for most of the sequential circuits

by carefully analyzing and modifying the algorithms’ parameters, rather methods will not

completely solve ATPG for sequential circuits because of the continuous advancement being

made in technology. However, optimization algorithms, especially PSO, show a noteworthy

indication that it has a significant capability to search for the optimum test sequence set. The

conclusion of this thesis emphasizes the high efficiency of the PSO algorithm over other

evolutionary algorithms to solve ATPG for sequential circuits. Several recommendations were

mentioned in the earlier chapter to optimize the results of PSO in generating test vectors which

can be carried out in future work. The GA has a slower searching mechanism and its parameters

require a lot of alternation. We found that one-point crossover and two-point crossover increased

the fault coverage for most of the circuits, while uniform crossover caused the searching process

to be more randomized. The mutation operator in GA had little effect on the overall results and it

is recommended to choose a low mutation value. One advantage of using GA in ATPG is that it

gives more controllability of the searching process since it has many parameters. As an example,

the mutation operator may allow searching, if implemented properly, to move from one local

optimum to another local optimum to explore more search space. DE must have a proper binary

mutation strategy that does not add significant computation overhead when it operates with long

test sequences in large sequential circuits. The mutation strategy needs to have a mutant rate that

excludes a part of the test sequence from being mutated to reduce the testing time. Otherwise, the

testing time will increase rapidly as the length of the test sequence increases.

Evolutionary algorithms (EA’s) show an increase in testing time for all sequential circuits while

swarm intelligence (SI) shows an optimized testing time and higher fault coverage due to the

nature of the searching process. The results of PSO, as a representative of SI, in ATPG raise the

significance of implementing other SI-based algorithms in ATPG, such as Ant Colony.

59

6.1 Future Work

Based on the results of this thesis, some of the studies and experiments that can be performed in

the future are summarized in the following:

- Use a Hybrid PSO to improve the accuracy and increase the fitness of the early

generations. I suggest implementing GA-PSO to take advantage of the selection operator

to eliminate weak particles in the early generations.

- Implement parallelism in PSO to increase convergence rate. Two groups of faults can be

detected at the same time. This will add complexity to the PSO implementation but it will

significantly reduce the testing time.

- Improve DE with another improved mutation strategy. Always consider the test sequence

length since it may increase the computational overhead and reduce the convergence rate.

- Since the parameters of the GA require a large amount of modification, it is crucial to

find optimum values for all parameters that can work with the majority of sequential

circuits. This could be achieved through either clustering or categorizing sequential

circuits based on specific standards and then match each cluster/category with each set of

parameter values.

- Evaluate the fitness functions to see their effectiveness in measuring the quality of a test

sequence should be performed by future researchers because of the major impact of the

fitness functions on the quality of the testing algorithms.

60

Bibliography

[1] A. Grochowslj, D. Bhauacharya, T. R. Viswanathan, and K. Laker. “Integrated Circuit

Testing for Quality Assurance in Manufacturing: History, Current Status and Future Trends”,

IEEE Trans. Circ. Syst. II. vol. 44, no. 8, pp. 610-633, Aug. 1997.

[2] G. E. Moore, “Progress in Digital Integrated Electronics”, In Proc. Of the Int’l. Electron

Device Meeting, pp. 11-13. Moore’s Law, Dec. 1975.

[3] P. Mazumder and E. M. Rudnick, “Genetic Algorithms for VLSI Design, Layout and Test

Automation”, Prentice Hall, New Jersey, 1999.

[4] T. Niermann and J. Patel, “HITEC: A test generation package for sequential circuits”, Proc.

European Conf. Design Automation (EDAC), pp. 214-218, Feb. 1991.

[5] I. Hamzaoglu and J. Patel, “Deterministic test pattern generation techniques for sequential

circuits”, Proc. Int’l Conf. Computer-Aided Design, pp. 538-543, 2000.

[6] I. Hamzaoglu and J. H. Pate1, “New Techniques for Deterministic Test Pattern Generation”,

Proc. 16th, IEEE VLSI Test Symp., pp. 446-452, 1998.

[7] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests for Combinational Logic

Circuits”, IEEE Trans. on Computers, vol. C-30, no. 3, pp. 21-222, March 1981.

[8] A. Dargelas, C. Gauthron and Y. Bertrand, “MOSAIC: a multiple-strategy oriented

sequential ATPG for integrated circuits”, Proc. of European Design & Test Conf., pp. 29-36,

France, March 1997.

[9] A. Gosh, S. Devadas, and A. R. Newton, “Test generation and verification for highly

sequential circuits”, IEEE Trans. Computer Aided Design, vol. 10, no. 5, pp. 652-667. May

1991.

[10] N. Gouders and R. Kaibel “Test generation techniques for sequential circuits”, Proc. IEEE

VLSI Test Symposium, pp. 221-226, 1991.

[11] D. H. Lee and S. M. Reddy, “A New Test Generation Method for Sequential Circuits”,

Proc. Int. Conf. on Computer-Aided Design, pp. 446-449, November 1991.

[12] S. Kang and S. A. Szygenda, “The simulation automation system (SAS); concepts,

implementation, and results”, IEEE Transactions on VLSI Systems, Vol. 2, pp. 89-99, March

1994.

[13] S. Seshu and D. N. Freeman, “The diagnosis of asynchronous sequential switching

systems”, IRE Trans. Electronic Computing, vol. 11, pp. 459-465, Aug. 1962.

61

[14] V.D. Agrawal, K.T. Cheng, P. Agrawal, “A directed search method for test generation using

a concurrent simulator,” IEEE trans. Computer-Aided Design, vol. 8, no. 2, pp. 131-138, Feb.

1989.

[15] D. Saab, Y. Saab, and J. Abraham, “CRIS: A test cultivation program for sequential VLSI

circuits”, Proc. Int. Conf. Computer-Aided Design, pp. 216-219, Nov. 1992.

[16] D. G. Saab, Y. G. Saab, and J. Abraham, “Automatic test vector cultivation for sequential

VLSI circuits using genetic algorithms”, IEEE Trans. Computer-Aided Design, vol. 15, pp.

1278–1285, Oct. 1996.

[17] P. Prinetto, M. Rebaudengo, and M. Sonza Reorda, “An Automatic Test Pattern Generator

for Large Sequential Circuits Based on Genetic Algorithms”, Proc. Int. Test Conf., pp. 240-249,

October 1994.

[18] F. Corno, P. Prinetto, M. Rebaudengo, M. Sonza Reorda, and R. Mosca, “Advanced

techniques for GA-based sequential ATPGs”, in Proc. Eur. Design Test Conf., pp. 375–379,

Mar. 1996.

[19] E. Rudnick, J. Patel, G. Greenstein, and T. Niermann, “Sequential Circuit Test Generation

in a Genetic Algorithm Framework”, In Proc. 31st Annual Design Automation Conference, pp.

698–704, 1994.

[20] E. M. Rudnick, J. H. Patel, G. S. Greestein, and T. M. Niermann, “A genetic algorithm

framework for test generation”, IEEE Trans. Computer-Aided Design, vol. 16, n. 9, pp. 1034-

1044, Sep. 1997.

[21] H. Yanli, Z. Chunhui, and L. Yanping “A new method of test generation for sequential

circuits”, IEEE in Int. Conf. on Communications, Circuits and Systems, pp. 2181-2185, June

2006.

[22] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm algorithm”,

IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, pp. 4104-4108, Oct

1997.

[23] W. Xu and Y. Gu, “Study on automatic test generation of digital circuits using particle

swarm optimization”, pp 324-328, Oct. 2011.

[24] X. Chuanpei, L. Zhi, and M. Wei, “Study of differential evolution on ATPG”, In 2006 Int.

Conf. on Communication, Circuits and Systems Proc., vol. 3, pp. 2084-2087, Guilin, 2006.

62

[25] L. T. Wang, C. Wu, and X. Wen, “VLSI Test Principles and Architectures: Design for

Testability”, Morgan Kaufmann Publishers Inc., USA, 2006.

[26] M. L. Bushnell, V. D. Agrawal, “Essentials of Electronic Testing for Digital, Memory and

Mixed-Signal VLSI circuits”, Kluwer Academic Publishers., 2000.

[27] S. Seshu, “On an Improved Diagnosis Program”, IEEE Transactions on Electronic

Computers, vol. EC-14, no 1, pp 76-79, Feb 1965.

[28] N. K. Jha and S. Gupta, “Testing of Digital Systems”, Cambridge University Press, NY,

USA, 2002.

[29] D. B. Armstrong, “A Deductive Method for Simulating Faults in Logic Circuits”, IEEE

Transactions on Computers, vol. C-21, no.5, pp. 464-471, May. 1972.

[30] H. Y. Chang, S. G. Chappell, C. H. Elmendorf, and L. D. Schmidt, “Comparison of parallel

and deductive fault simulation methods”, IEEE Trans. Comp., vol. C-23, pp. 1132-1138, Nov.

1974.

[31] E. G. Ulrich and T. Baker, “Concurrent Simulation of nearly Identical Digital Networks”,

Computer, vol. 7, pp. 39-44, Apr 1974.

[32] D. G. Saab, “Parallel concurrent fault simulation”, IEEE Trans. VLSI Syst., vol. 1, pp. 356–

363, Sept. 1993.

[33] W. T. Cheng and M. L. Yu, “Differential Fault Simulation for Sequential Circuits”, Journal

of Electronic Testing: Theory and Applications, vol. 1, no. 1, pp. 7-13, Feb. 1990.

[34] W. T. Cheng and M. L. Yu, “Differential Fault Simulation - A Fast Method Using Minimal

Memory”, Design Automation Conf., pp. 424-428, 1989.

[35] D. E. Goldberg, “Genetic Algorithms in Search, Optimization, and Machine Learning”,

(Addison-Wesley, Reading, Massachusetts, 1989).

[36] A. Engelbrecht, “Computational intelligence: an introduction”, Chichester, England;

Hoboken, NJ: John Wiley & Sons, 2007.

[37] D. Whitley, “The GENITOR algorithm and selection pressure: Why rank-based allocation

of reproductive trials is best”, In J. David Schaffer, editor, Proc. of the 3
rd

 Int. Conf. on Genetic

Algorithms, pages 116-121, San Mateo, CA, 1989, Morgan Kaufmann Publisher.

[38] D. E. Goldberg and K. Deb, “A comparative analysis of selection schemes used in genetic

algorithms”, in Foundation of Genetic Algorithms, G. Rawlins (ed.), Morgan Kaufman, pp. 69-

93, San Mateo, CA, 1991.

63

[39] C. R. Reeves and J. E. Rome, “Genetic Algorithms Principles and Perspectives”, Kluwer

Academic Publishers. Netherlands, 2003.

[40] A. Mukhopadhyay, U. Maulik, and S. Bandyopadhyay, “Multiobjective Genetic Algorithms

for Clustering”, Springer Publishing Company, Sep 2011,

[41] R. Eberhart, and J. Kennedy, “A New Optimizer Using Particles Swarm Theory”, Proc.

Sixth International Symposium on Micro Machine and Human Science (Nagoya, Japan), IEEE

Service Center, Piscataway, NJ, pp. 39-43, 1995.

[42] J. Kennedy, and R. Eberhart, “Particle Swarm Optimization”, IEEE International

Conference on Neural Networks, IEEE Service Center, Piscataway, NJ, IV, pp. 1942-1948,

Perth, Australia, 1995.

[43] J. Kennedy and R. Eberhart. Swarm Intelligence. Morgan Kaufmann Publishers, Inc., San

Francisco, CA, 2001.

[44] R. Eberhart and Y. Shi, “Particle swarm optimization: developments, applications and

resources”, Proceedings of IEEE Congress on Evolutionary Computation, vol. 1, pp.27-30, May

2001.

[45] R. Eberhart and Y. Shi, “Comparison between genetic algorithms and particle swarm

optimization”, In Proc. Of 7
th

 Int. Conf. on Evolutionary Programming VII, pp. 611-616, March

1998.

[46] M. A. Khanesar, “A Novel Binary Particle Swarm Optimization”, 2007 Mediterranean

Conference on Control and Automation, pp. 1-6, Athens, Greece, 2007.

[47] R. Storn and K. Price, “Differential evolution a simple and efficient heuristic for global

optimization over continuous spaces”, J. Global Optimization, vol. 11, no. 4, pp. 341-359, 1997.

[48] K. Price, “Differential evolution: A fast and simple numerical optimizer”, In Proc. Biennial

Conf. North Amer. Fuzzy Info. Processing Soc., pp. 524–527, Berkeley, CA, USA, 1996.

[49] B. Hegery, C. C. Hung, and K. Kasprak, “A comparative study on differential evolution and

genetic algorithms for some combinatorial problems”, in Proc. of 8th Mexican International

Conference on Artificial Intelligence, 2009.

[50] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of sequential benchmark

circuits”, Int. Symposium on circuits and systems, pp. 1929-1934, May 1989.

[51] J. W. Tukey, “Exploratory Data Analysis”, Addison-Wilson Publishing Company, January,

1977.

64

[52] Y. Shi and R. Eberhart, “A modified particle swarm optimizer”, In Evolutionary

Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence, the 1998

IEEE International Conference, pp. 69–73, 2002.

[53] J. C. Bansal, P. K. Singh, M. Saraswat, A. Verma, S. S. Jadon, and A. Abraham, “Inertia

Weight strategies in Particle Swarm Optimization”, in Proc. IEEE Nature and Biologically

Inspired Computing (NaBIC), Salamanca, pp. 19-21 Oct. 2011.

[54] D. G. Saab, Y. G. Saab, and J. A. Abraham, “Iterative [simulation-based genetics +

deterministic techniques] = complete ATPG”, Proc. Int. Conf. Computer-Aided Design, pp. 40-

43, 1994.

[55] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, “Alternating Strategies for Sequential Circuit

ATPG”, Proc. European Design and Test Conf., pp. 368-374, March 1996.

[56] E. M. Rudnick, and J. H. Patel, “Combining deterministic and genetic approaches for

sequential circuit test generation”, Proc. Design Automation Conf., pp. 183-188, June 1995.

[57] X. Lin, I. Pomeranz, and S. M. Reddy, “MIX: A Test Generation System for Synchronous

Sequential Circuits”, Proc. Int. Conf. on VLSI Design, pp. 456-463, January 1998.

[58] X. Lin, I. Pomeranz, and S. M. Reddy, “Techniques for Improving the efficiency of

Sequential Circuit Test Generation”, Proc. Int. Conf. on Computer-Aided Design, pp. 147-151,

November 1999.

[59] H. K. Lee and D. S. Ha, “HOPE: An efficient parallel fault simulator for synchronous

sequential circuits”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 15, no. 9, pp. 1048–1058, 1996.

[60] T. M. Niermann, W.-T. Cheng, and J. H. Patel, “PROOFS: A fast, memory efficient

sequential circuit fault simulator”, in Proc. Design Automation Conf., pp. 535-540, June 1990.

[61] A. E. Eiben and J. E. Smith, “Introduction to Evolutionary Computing”, New York,

Springer, 2003.

[62] Y. Kaya, M. Uyar, and R. Tekdn, “A Novel Crossover Operator for Genetic Algorithms:

Ring Crossover”, Computing research repository, CORR, vol. abs/1105.0, 2011.

[63] J. Grefenstette, “Optimization of control parameters for genetic algorithms”, IEEE

Transactions on Systems, Man and Cybernetics, Vol. 16, No. 1, 122–128, 1986.

[64] J. Holland, "Adaption in natural and artificial systems. An introduction analysis with

applications to biology, control, and artificial intelligence", Univ. of Michigan, Ann Arbor, 1975.

65

[65] B. F. Cockburn and J. Han, “Review of Classical Sequential Logic Design,”

www.eclass.srv.ualberta.ca/portal/, 2013.

[66] T. Gong and A. Tuson, “Differential evolution for binary encoding”, In soft computing in

industrial applications, pp. 251-262, Springer, 2007.

[67] X. He and L. Han, “A novel binary differential evolution algorithm based on artificial

immune system”, In Proc. of 2007 IEEE congress on evolutionary computation, IEEE, pp. 2267-

2272, 2007.

[68] Y. Chen, W. Xie, and X. Zou, “A binary differential evolution algorithm learning from

explored solutions”, Neurocomputing, vol. 149, 1038-1047, Feb. 2015.

[69] E. Andries and P. Gary, “Binary Differential Evolution Strategies”, In Proc. of 2007 IEEE

Congress on Evolutionary Computation, IEEE, pp.1942-1947. 2007.

[70] S. Das and P. N. Suganthan, “Differential Evolution: A Survey of the State-of-the-Art”,

IEEE Trans. On Evolutionary Comp. vol. 15, pp. 4-31, Feb. 2011.

[71] J. Krause and H. S. Lopes, “A comparison of differential evolution algorithm with binary

and continuous encoding for the MKP”, In Proc. 2013 BRICS Congress on Computational

Intelligence. IEEE Computer Society, pp. 381–387, 2013.

[72] J. Krause, R. Parapinelli, and H. Lopes, “Proposta de um algoritmo inspirado em Evolução

Diferencial aplicado ao Problema Multidimensional da Mochila”, in Anais do Encontro Nacional

de Inteligencia Artificial. Curitiba, PR: SBC, Oct. 2012.

[73] A. Engelbrecht, N. Franken, and G. Pampara, “Binary differential evolution”, In IEEE

Congress on Evolutionary Computation, pp. 1873-1879, 2006.

[74] I. Fister, X-S. Yang, J. Brest, and D. Fister, "A Brief review of Nature-Inspired Algorithms

for Optimization”, Elektrotrhniski, Vestnik, vol. 80(3), pp. 116-122, 2013.

[75] A. Hassanien, and E. Emary, “Swarm Intelligence, Principle, Advances, and Appliactions”,

CRC Press, 2015.

[76] A. Marandi, F. Afshinmanesh, M. Shahabadi, and F. Bahrami, "Boolean Particle Swarm

Optimization and Its Application to the Design of a Dual-Band Dual-Polarized Planar Antenna",

IEEE Congress on Evolutionary Computation, pp. 3212-3218, Canada, July 2006.

[77] N. Franken and A. Engelbrecht, "Particle swarm optimization approaches to coevolve

strategies for the iterated prisoner's dilemma", IEEE Trans. on Evolutionary Computation,

pp.562-579, 2005.

http://www.eclass.srv.ualberta.ca/portal/

66

[78] C. Zhang and H. Hu, "Using PSO algorithm to evolve an optimum input subset for a SVM

in time series forecasting", IEEE International Conference on Systems, Man and Cybernetics,

pp. 3793-3796, 2005.

[79] D. Dawar, “Evolutionary Computation and Applications,”

www.slideshare.net/ddawar/evolutionary-computation-andapplications , 2015.

[80] A. Moraglio, “The Geometry of Evolutionary Algorithms: Unification and Theory-Laden

Design,” http://www.slideshare.net/AlbertoMoraglio/cec-2013-tutorial , June 2013.

[81] C. Deng, C. Ling, Y. Ynag, B. Zhao, and Haizhang, “Binary differential evolution algorithm

with new mutation operator,” In Int. Conf. on Intelligent Computing and Intelligent Systems, pp.

498-501, Oct. 2010.

[82] H. Bersini, M. Doringo, S. Langerman, G. Seront, and L. Gambardella, “Result of the first

international contest on evolutionary optimization (1
st
 ICEO),” In IEEE Int. Conf. on

Evolutionary Computation (ICEC’96), pp. 611-615, Japan, May 1996.

http://www.slideshare.net/ddawar/evolutionary-computation-andapplications
http://www.slideshare.net/AlbertoMoraglio/cec-2013-tutorial

67

0 10 100 1,000 10,000 100,000 1,000,000 10,000,000
50

55

60

65

70

75

80

85

90

95

100

Number of Test Patterns

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

s344

0 10 100 1,000 10,000 100,000 1,000,000
15

20

25

30

35

40

45

Number of Test Patterns

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

s420

0 10 100 1,000 10,000 100,000 1,000,000
45

50

55

60

65

70

75

80

85

90

Number of Test Patterns

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

s641

0 10 100 1,000 10,000 100,000 1,000,000
20

30

40

50

60

70

80

90

100

Number of Test Patterns

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

s953

 Appendix A

Random Test Generator

The following graphs show the performance of adapting random test generators in ATPG. It is clear that

the number of test vectors will easily exceed one million to obtain a reasonable fault coverage value.

Hence, this type of test generator is inefficient and unreliable.

0 10 100 1,000 10,000 100,000 1,000,000
95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

Number of Test Patterns

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

s510

0 10 100 1,000 10,000 100,000 1,000,000
55

60

65

70

75

80

85

90

95

100

Number of Test Patterns

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

s349

0 10 100 1,000 10,000 100,000 1,000,000
35

40

45

50

55

60

65

70

75

80

85

Number of Test Patterns

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

s713

0 10 100 1,000 10,000 100,000 1,000,000
10

20

30

40

50

60

70

80

90

100

Number of Test Patterns

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

s1196

Figure A.1: Fault coverage (Average) for several sequential circuits. (a) Min = 39.5%, Max = 98.5%. (b) Min =

50%, Max = 98%. (c) Min = 6.3%, Max = 42.1%. (d) Min = 40.2%, Max = 100%. (e) Min = 37%, Max = 86.9%.

(f) Min = 35.6%, Max = 82.3%. (g) Min = 23.7%, Max = 99.1%. (h) Min = 10%, Max = 99.8%.

68

96.5

97

97.5

98

98.5

1

s344

OnePoint Crossover

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

96

96.5

97

97.5

98

98.5

1

s344

TwoPoint Crossover

84

86

88

90

92

94

96

1

s344

Uniform Crossover

99.5

99.6

99.7

99.8

99.9

100

1

s510

OnePoint Crossover

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

99

99.2

99.4

99.6

99.8

100

1

s510

TwoPoint Crossover

98.8

98.9

99

99.1

99.2

99.3

99.4

99.5

99.6

99.7

1

s510

Uniform Crossover

79

79.5

80

80.5

81

81.5

82

1

s713

OnePoint Crossover

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

79.8

80

80.2

80.4

80.6

80.8

81

81.2

81.4

1

s713

TwoPoint Crossover

77

77.5

78

78.5

79

79.5

1

s713

Uniform Crossover

 Appendix B

GA-based Test Generator

The following graphs represent the performance of GA-based test generators in ATPG. Each graph shows

the fault coverage of one circuit with three different crossover schemes and rank selection operator. The

boxplots help to show the data vibrations of 10 runs of a test. Several outliers occurred because of the

effects of losing good genes on the earlier generations.

93.5

94

94.5

95

95.5

96

96.5

97

1

s349

OnePoint Crossover

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

94.5

95

95.5

96

96.5

97

97.5

1

s349

TwoPoint Crossover

91

92

93

94

95

96

1

s349

Uniform Crossover

84

84.5

85

85.5

86

1

s641

OnePoint Crossover

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

80

81

82

83

84

85

86

1

s641

TwoPoint Crossover

80

80.5

81

81.5

82

82.5

83

83.5

84

1

s641

Uniform Crossover

92

92.5

93

93.5

94

94.5

95

95.5

1

s1196

OnePoint Crossover

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

90.4

90.6

90.8

91

91.2

91.4

91.6

91.8

92

92.2

92.4

1

s1196

TwoPoint Crossover

93

93.5

94

94.5

95

95.5

1

s1196

Uniform Crossover

Figure B.1: Fault coverage for several sequential circuits using GA-based test generator – rank selection with

different crossover methods.

69

82.5

83

83.5

84

84.5

85

85.5

86

86.5

1

s35932

OnePoint Crossover

F
a
u
lt

C
o
ve

ra
g
e
 (

%
)

83

83.5

84

84.5

85

85.5

86

1

s35932

TwoPoint Crossover

80

80.5

81

81.5

82

82.5

83

83.5

84

84.5

85

1

s35932

Uniform Crossover

95.5

96

96.5

97

97.5

98

1

s344

OnePoint Crossover

F
a
u
lt

C
o
ve

ra
g
e
 (

%
)

95.5

96

96.5

97

97.5

98

1

s344

TwoPoint Crossover

91

92

93

94

95

96

1

s344

Uniform Crossover

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

100.1

1

s510

OnePoint Crossover

F
a
u
lt

C
o
ve

ra
g
e
 (

%
)

99.5

99.6

99.7

99.8

99.9

100

100.1

1

s510

TwoPoint Crossover

98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

1

s510

Uniform Crossover

The following graphs represent the performance of GA-based test generators in ATPG. Each graph shows

the fault coverage of one circuit with three different crossover schemes and roulette wheel selection

operator. The boxplots help to show the data vibrations of 10 runs of a test. Several outliers occurred

because of the effects of losing good genes on the earlier generations.

80.5

81

81.5

82

82.5

83

83.5

84

1

s641

OnePoint Crossover

F
a
u
lt

C
o
ve

ra
g
e
 (

%
)

82.5

83

83.5

84

84.5

1

s641

TwoPoint Crossover

74

75

76

77

78

79

80

81

82

1

s641

Uniform Crossover

95.4

95.6

95.8

96

96.2

96.4

96.6

96.8

97

97.2

1

s349

OnePoint Crossover

F
a
u
lt

C
o
ve

ra
g
e
 (

%
)

94.5

95

95.5

96

96.5

97

97.5

1

s349

TwoPoint Crossover

80

82

84

86

88

90

92

94

96

1

s349

Uniform Crossover

Figure B.2: Fault coverage for s35932 using GA-based

test generator – Rank Selection with different crossover

methods.

Figure B.3: Fault coverage for several sequential circuits using GA-based test generator – roulette wheel selection

with different crossover methods.

70

79.8

80

80.2

80.4

80.6

80.8

81

81.2

81.4

81.6

1

s713

OnePoint Crossover

F
a
u
lt

C
o
ve

ra
g
e
 (

%
)

78.5

79

79.5

80

80.5

81

81.5

82

1

s713

TwoPoint Crossover

76.5

77

77.5

78

78.5

79

79.5

80

80.5

81

81.5

1

s713

Uniform Crossover

85.5

85.6

85.7

85.8

85.9

86

86.1

86.2

1

s35932

OnePoint Crossover

F
a
u
lt

C
o
ve

ra
g
e
 (

%
)

85.6

85.8

86

86.2

86.4

86.6

86.8

87

87.2

1

s35932

TwoPoint Crossover

83.6

83.8

84

84.2

84.4

84.6

84.8

85

85.2

85.4

85.6

1

s35932

Uniform Crossover

90

90.5

91

91.5

92

92.5

1

s1196

OnePoint Crossover

F
a
u
lt

C
o
ve

ra
g
e
 (

%
)

90

90.5

91

91.5

92

92.5

1

s1196

TwoPoint Crossover

91

91.5

92

92.5

93

93.5

94

94.5

95

1

s1196

Uniform Crossover

Figure B.4: Fault coverage for several sequential circuits using GA-based test generator – roulette wheel selection

with different crossover methods.

71

1 2 3 4 5 6 7 8 9 10
80

81

82

83

84

85

86

87

88

89

90

RUNS

F
a
u
lt

C
o
ve

ra
g
e
 (

%
)

s35932

OnePoint Crossover

TwoPoint Crossover

Uniform Crossover

1 2 3 4 5 6 7 8 9 10
80

82

84

86

88

90

92

94

96

98

100

RUNS

F
a
u
lt

C
o
ve

ra
g
e
 (

%
)

s344

OnePoint Crossover

TwoPoint Crossover

Uniform Crossover

1 2 3 4 5 6 7 8 9 10
98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

RUNS

s510

F
a
u
lt

C
o
ve

ra
g
e
 (

%
)

OnePoint Crossover

TwoPoint Crossover

Uniform Crossover

1 2 3 4 5 6 7 8 9 10
76

77

78

79

80

81

82

RUNS

s713

F
a
u
lt

C
o
ve

ra
g
e
 (

%
)

OnePoint Crossover

TwoPoint Crossover

Uniform Crossover

The following graphs aim to show the performance of one-point crossover, two-point crossover and

uniform crossover. The uniform crossover has the least performance in all circuits except s1196.

Although we used two different selection operators, the comparison between crossover techniques was

identical.

1 2 3 4 5 6 7 8 9 10
79

80

81

82

83

84

85

86

87

RUNS

s641

F
a
u
lt

C
o
ve

ra
g
e
 (

%
)

OnePoint Crossover

TwoPoint Crossover

Uniform Crossover

1 2 3 4 5 6 7 8 9 10
90

91

92

93

94

95

96

RUNS

s1196

F
a
u
lt

C
o
ve

ra
g
e
 (

%
)

OnePoint Crossover

TwoPoint Crossover

Uniform Crossover

1 2 3 4 5 6 7 8 9 10
90

91

92

93

94

95

96

97

98

RUNS

s349

F
a
u
lt

C
o
ve

ra
g
e
 (

%
)

OnePoint Crossover

TwoPoint Crossover

Uniform Crossover

Figure B.5: Comparison between three crossover methods with rank selection (Results are in ascending order).

72

1 2 3 4 5 6 7 8 9 10
90

91

92

93

94

95

96

97

98

99

RUNS

s344

F
a
u
lt

C
o
ve

ra
g
e
 (

%
)

OnePoint Crossover

TwoPoint Crossover

Uniform Crossover

1 2 3 4 5 6 7 8 9 10
97

97.5

98

98.5

99

99.5

100

RUNS

s510

F
a
u
lt

C
o
ve

ra
g
e
 (

%
)

OnePoint Crossover

TwoPoint Crossover

Uniform Crossover

1 2 3 4 5 6 7 8 9 10
76

77

78

79

80

81

82

RUNS

s713

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

OnePoint Crossover

TwoPoint Crossover

Uniform Crossover

1 2 3 4 5 6 7 8 9 10
83

83.5

84

84.5

85

85.5

86

86.5

87

87.5

RUNS

s35932

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

OnePoint Crossover

TwoPoint Crossover

Uniform Crossover

1 2 3 4 5 6 7 8 9 10
74

76

78

80

82

84

86

88

RUNS

s641

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

OnePoint Crossover

TwoPoint Crossover

Uniform Crossover

1 2 3 4 5 6 7 8 9 10
89

90

91

92

93

94

95

96

RUNS

s1196

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

OnePoint Crossover

TwoPoint Crossover

Uniform Crossover

1 2 3 4 5 6 7 8 9 10
80

82

84

86

88

90

92

94

96

98

RUNS

s349

F
a
u
lt

C
o
ve

ra
g
e
 (

%
)

OnePoint Crossover

TwoPoint Crossover

Uniform Crossover

Figure B.6: Comparison between three crossover methods with roulette wheel selection (Results are in ascending

order).

73

 Appendix C

PSO-based Test Generator

The following graphs show the fault coverage of several sequential circuits. High fault coverage

was obtained without any outliers which implies the accuracy and efficiency of search process in

PSO.

Figure C.1: Fault coverage of several sequential circuits using PSO-based test generator.

97

97.1

97.2

97.3

97.4

97.5

97.6

97.7

97.8

97.9

98

1

s344

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

96

96.2

96.4

96.6

96.8

97

97.2

97.4

97.6

97.8

98

1

s349

85.4

85.6

85.8

86

86.2

86.4

86.6

86.8

87

87.2

1

s641

81.6

81.7

81.8

81.9

82

82.1

82.2

82.3

82.4

82.5

82.6

1

s710

F
au

lt
C

ov
er

ag
e

(%
)

96.2

96.4

96.6

96.8

97

97.2

97.4

97.6

97.8

98

98.2

1

s1196

74

 Appendix D

DE-based Test Generator

The following graphs show the performance of DE-based test generator in ATPG. The obtained

fault coverage was lower than other methods. However, improvements can be obtained by

implementing higher effective mutation strategy.

Figure D.1: Fault coverage of several sequential circuits using DE-based test generator.

95

95.5

96

96.5

97

97.5

1

s344

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

93.5

94

94.5

95

95.5

96

96.5

1

s349

83.5

84

84.5

85

85.5

1

s641

80

80.2

80.4

80.6

80.8

81

81.2

81.4

81.6

1

s713

F
a
u
lt
 C

o
v
e
ra

g
e
 (

%
)

89

89.5

90

90.5

91

1

s1196

78

79

80

81

82

83

84

85

1

s35932

