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Abstract 

In automated test pattern generation (ATPG), test patterns are automatically generated and tested against 

all specific modeled faults, such as stuck-at fault, which is most commonly used in fault modeling. 

Testing of sequential circuits can be performed exhaustively, randomly or algorithmically. Exhaustive and 

random test pattern generators consume a high percentage of resources which make them impractical 

solutions, especially for large sequential circuits. Moreover, the testing time increases rapidly as the 

number of inputs, or the circuit’s complexity increases, which means that these types of tests are 

ineffective and cannot be fully adapted. Since the test pattern generation is a search process completed 

over a large search space, algorithmic test pattern generation is a favorable option because of its ability to 

reduce the size of the search space, which leads to lowering the number of test patterns and reducing the 

testing time. The objective of this work is to present a complete analytical study of ATPG for sequential 

circuits using algorithmic test pattern generators. Three optimization algorithms, namely: genetic 

algorithm (GA), particle swarm optimization (PSO) and differential evolution (DE), were analytically 

studied for the purpose of generating optimized test sequence sets. Furthermore, this work investigated 

the broad use of evolutionary algorithms and swarm intelligence in automated test pattern generation to 

expand the analysis of the subject. The obtained experimental results demonstrated the improvement in 

terms of testing time, number of test vectors, and fault coverage compared with previous optimization-

based test generators. In addition, the experiments highlight the weakness of each optimization algorithm 

in the test pattern generation (TPG) and offer some constructive methods of improvement. We present 

several recommendations and guidelines regarding the use of optimization algorithms as test pattern 

generators to improve the performance and increase their efficiency. Moreover, the recommendations will 

allow for faster convergence toward optimal solution sets when being implemented for similar 

applications.  
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 Chapter 1: Introduction  

As the development of integrated circuits is rapidly increasing, due to the growth of technology 

needs, testing and validating chip functionality has become more challenging. An integrated 

circuit (IC) can be tested by applying a series of test vectors that can detect any defect that might 

occur in the manufacturing process. The fully automated process of generating the test vectors is 

crucial to gain the minimum number of test vectors possible in the shortest time period. The 

problem of automated test generation belongs to the class of NP-complete problems and it is 

becoming progressively more difficult as the complexity of very large scale integration (VLSI) 

circuits increase. Recently, automated test pattern generation has given full fault coverage on 

almost all combinational circuits.  However, none of the algorithmic test pattern generations can 

fully handle the real-world sequential circuits due to either the occurrences of untestable faults, 

or the complexity of the sequential circuit itself which requires more dedicated efforts to solve 

the problem. 

Algorithmic testing approaches for sequential circuits can be categorized into three categories: 

deterministic algorithms, simulation-based algorithms, and hybrid test algorithms. In the 

simulation-based test generator, where processing occurs in the forward direction only, complex 

sequential circuits are easily tested. A simpler type of simulation-based automated test pattern 

generation (ATPG) is the random test generation, which has several drawbacks that limit its 

capability in terms of testing time and fault coverage. Other advanced simulation-based 

algorithms could significantly reduce central processor unit (CPU) time and improve the fault 

coverage. However, hard-to-detect faults remain a major problem in all the simulation-based 

algorithms. Deterministic algorithms and hybrid algorithms are necessary for most cases of hard-

to-detect faults because of their advanced capabilities of fault testing. However, complexity and 

testing time of those algorithms are very high, which leads to increased overall testing costs. 

Optimization algorithms such as genetic algorithms and particle swarm algorithms belong to 

simulation-based algorithms and are categorized as evolutionary optimization algorithms under 

guided random search methods, as shown in Figure 1.1. Optimization algorithms can generate 

and optimize efficient test vectors for combinational and sequential digital circuits. The basic 

concept behind the evolutionary optimization algorithms is as follows: they start with an initial 

population of individuals (strings of bits), each bit is mapped to a primary input and an 
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individual is evaluated with a fitness function. Better individuals will evolve through several 

generations until a stopping criteria is reached. Several genetic algorithm (GA)-based test 

generators have been presented in the field and the results are promising. Optimization 

algorithms have been used in combination with some other ATPG techniques to detect more 

faults and reduce CPU resources. 

 

Figure  1.1: Classes of search methods [79]. 

Economically, many challenges in the manufacturing process had to be solved to achieve high 

performance systems. One of the steps in this process, namely testing, poses the most significant 

challenge to contemporary and future integrated circuit manufacturing. This is a continuing trend 

due to decreasing silicon cost and increasing complexity of integrated circuits, testing constitutes 

a significant portion of the IC manufacturing cost. (IC) testing for quality assurance is 

approaching 50% of the manufacturing costs for some complex circuits [1]. Testing might 

diminish final profits if it consumes long periods of time and does not produce high fault 

coverage. Low fault coverage will increase the rejection rate of chips, while long testing times 

will increase production cost. This relationship shows how significant the cost of VLSI testing is. 

Shortening testing time while increasing fault coverage will lead to higher circuit design quality, 

profit and a low rejection rate. As complexity of sequential circuits grows rapidly, the testing 

time must be short. This implies that, the testing time should not be affected by any other factors. 

Fault simulators are an essential part in the testing process. The primary role of fault simulators 

is to determine which faults are detected by a specific test vector in a circuit under test (CUT). 

They also determine the quality of each sequence being applied to a circuit. The response is 
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observed and evaluated by comparing it to an expected response of a known good circuit. A fault 

is said to be detected by a test vector if there is a difference between the output of a good circuit 

and the output of the faulty circuit. There are other several tasks realized by fault simulators such 

as: 

 Good circuit simulation, 

 Fault list generation, 

 Circuit structure modification (Gate Injection), 

 Faulty Circuit Simulation (Fault propagation and detection). 

Fault simulation methods play a major role in reducing testing time and attain high testing 

efficiency. Flexibility, efficiency and versatility are three aspects that differentiate between 

different fault simulation methods. For example, the advantages of the concurrent fault 

simulator, which is one of the oldest fault simulation methods, lay in its flexibility and versatility 

and it can easily adopt several delay and functional models. 

1.1 Motivation 

Complexity of testing is proportional to complexity of sequential circuits, and they both follow 

Moore’s law which states that the number of transistors on a chip increases at a rate of roughly 

one, and doubles every 18 to 24 months [2]. This is clearly explained in Figure 1.2, which shows 

the incremental increase of transistors on chips every year. 

 
Figure  1.2: Moore’s Law [65]. 

  

The incremental complexity of VLSI due to a gradual increase in the number of transistors per 

chip places great emphasis on the importance of finding close-to-perfection algorithms to test 

sequential circuits. Exhaustive testing for sequential circuits, which means using all possible 

binary combinations for testing, may take years as indicated in the following: 
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                               , 

where n is the number of inputs and m is the number of flip-flops. 

As an example, the sequential circuit s35932 [50] has 35 primary inputs (PI’s) and 1728 flip-

flops. Therefore, the circuit needs             years to be fully tested at a testing rate of one 

million test vectors per second. Consequently, testing of this circuit implies that the need for 

another technique one that can reduce the testing time to several seconds is extremely urgent. 

Any algorithm must be able to detect faults at the manufacturing level at the earliest point 

possible. If the faulty components find their way into higher levels of integration, the cost of 

production will increase dramatically. It is cheaper to find and fix an IC than to find and fix a 

board in a system. Understanding the reasons for the costs associated with testing is another 

essential aspect to realize the necessity for a perfect algorithmic test generation strategy. It is in 

the chip manufacturer’s best interest to minimize the number of bad devices shipped to the 

customer. A bad device is an IC that fails to meet one or more specifications at any point in the 

manufacturing process. Poorly designed tests, or parts that are not designed for testability, can 

result in bad devices appearing as good parts, or good devices failing tests and appearing as bad. 

The shipment of bad devices leads to incurred replacement costs, loss of reputation, and possible 

loss of market share. The other side of this problem is not much better. When good parts are 

represented as bad, it reduces the chip yield, and correspondingly, it reduces the earnings of the 

chip manufacturer [1]. Finally, effective and efficient testing for all types of IC’s is a must and 

the testing must be performed in a very short time period otherwise the produced IC will be out 

of date and will lose its targeted market share. 

1.2 Research Objectives 

The overall objective when dealing with ATPG is to find the minimum number of test sequences 

that detect all testable faults in the shortest test time possible. There are several objectives for 

this specific research. These objectives are as follows: 

 Analyze genetic algorithm (GA), differential evolution (DE), and particle swarm 

optimization (PSO) algorithms in ATPG for synchronous sequential circuits. 

 Compare the GA, DE and PSO algorithms in terms of their performance and 

effectiveness. 
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 Determine the optimum parameter values for each of the optimization algorithms. 

 Introduce improved versions of currently implemented algorithmic test pattern 

generators. 

 Show the effectiveness of using optimization algorithms as stand-alone algorithms to 

solve the problem of ATPG for sequential circuits. 

 Determine which optimization algorithm would perform better among all other 

optimization algorithms. 

1.3 Research Originality 

This research provides a different viewpoint than other previously implemented algorithms by 

focusing on optimizing the search space and analyzing the searching process of the optimization 

algorithms in test pattern generation. Since none of the optimization-based test generators 

presented in the literature could fully optimize the three criteria, namely, testing time, number of 

test vectors and fault coverage all together; hence, we use an analytical approach to reshape the 

use of optimization algorithms in generating test sequences by studying all the parameters in 

details to understand the type of interactions that exist between them. The results of the 

comparison are more accurate than the presented results in the literature because we use the same 

fitness function and fault simulator for all three optimization algorithms. By achieving the 

research objectives, we could reach the following key contributions: 

 Identified optimal parameter values for each optimization algorithm by analyzing them 

individually to see their effects on the search process for a solution. 

 Optimized overall results such as fault coverage/testing time to their higher/lower values. 

 Identified and classified optimization algorithms based on their effectiveness in solving 

ATPG for sequential circuits. 

1.4 Thesis Organization 

The thesis chapters are organized as follows: 

Chapter 2 presents a focused literature review of the three ATPG categories: deterministic-

based algorithms, simulation-based algorithms and hybrid algorithms. Optimization algorithms 

used in automated test pattern generation were also covered in this chapter, specifically GA, DE 

and PSO. 
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Chapter 3 introduces the commonly used fault simulation algorithms. The HOPE fault 

simulator is presented since it is adopted in this research. The stuck-at fault model is explained in 

detail. 

 Chapter 4 introduces the three optimization algorithms used to generate test vectors. Binary 

versions of DE and PSO are also presented, where we try to investigate each optimization’s 

parameters. 

Chapter 5 presents the implementation of GA, BDE and BPSO to generate test vectors/test 

sequences. Parameters, search space and results are presented and analyzed. The performance of 

each implemented algorithm is presented by observing the testing time and number of test 

sequences which reflects the quality of each algorithm. Results are assembled at the end for 

comparison purposes. 

Chapter 6 presents the summary and conclusions of the thesis. Several directions and 

recommendations are suggested for future work. 
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 Chapter 2: Literature Review 

In this chapter, we comprehensively reviewed different test pattern generation techniques for 

sequential circuits that have been presented in the past but with more concentration on 

optimization-based testing algorithms as they are a pivotal part of this work while other 

categories are out of scope for this research. The test generation techniques have been classified 

in the literature into three categories and several sub-categories, as illustrated in Figure 2.1. The 

classification is principally based on fault excitation, propagation and state justification, which 

determines the advantages and drawbacks of an algorithm. 

 

Figure  2.1: Test pattern generation categories. 

2.1 Introduction 

Testing IC’s is an essential step when dealing with designing and engineering an IC product. Due 

to increasing size and complexity of real-world sequential circuits, testing is automatically fully 

generated and implemented. Because of the automated process, several factors must be taken 

into consideration, such as testing time and resource consumption. An intensive research effort 

has been proposed in the literature to solve for ATPG with varying degrees of success. Starting 

with very basic TPG algorithms such as the random test pattern generation [12], to more 

complex TPG algorithms such as the hybrid test pattern generation, significant progress has been 

made towards solving the problem of sequential circuit test generation, and yet the problem 

remained unresolved. The ATPG algorithms for sequential circuits can be classified into three 

categories: deterministic algorithms [4-6], [8-11], simulation-based algorithms [3], [12-20], and 

hybrid test generators [54-58]. Each approach has its own merits in terms of fault coverage and 
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rate of convergence. Moreover, each approach has several weaknesses which leaves the topic 

open for further studies.  

2.2 Deterministic algorithms 

Deterministic algorithms used to solve the problem of test generation for sequential circuits are 

complex and time consuming. However, fault coverage in deterministic algorithms is relatively 

high. The need for improved techniques arises to reduce the execution time and improve the fault 

coverage while keeping the complexity low. This is where simulation-based algorithms become 

good candidates to solve automated test pattern generation for sequential circuits. In 

deterministic fault-oriented algorithms, each targeted fault must be excited and the fault effects 

need to be propagated to a primary output (PO). Fault effects may propagate directly to a PO in 

the same time frame, in which the time frame is excited or through flip-flops to the PO’s in 

subsequent time frames. The required state must then be justified through reverse time 

processing. Values required at the flip-flops are backtracked time-frame by time-frame until a 

time-frame is reached in which all flip-flops have do-not-care (Xs) values. The development of a 

deterministic test generator is very time consuming and the test sets can be large [3]. 

The full-scan method is often used for converting sequential circuits to combinational circuits. 

Hence, a test generator for combinational circuits can be used to fully test a sequential circuit. 

Full-scan works as follows: all flip-flops are arranged in a scan chain and the flip-flops are 

scanned in to read current values, then the flip-flops are scanned out after each test vector is 

applied. This method is not attractive due to the additional area and performance overhead. 

Hence, the partial-scan is more desirable since it requires less overhead and only a subset of the 

flip-flops is scanned. 

The HITEC algorithm [4] is a state-of-the-art algorithm when discussing deterministic 

algorithms. This technique was used in later research with simulation-based algorithms to reach 

optimum results. The test generation mechanism is divided into two phases. The first phase 

involves a fault being activated and propagated to a PO in the forward direction only. The second 

phase occurs in reverse time processing to justify the initial state determined in the first phase. 

Despite the long testing time, fault coverage was promising when it was presented and it opened 

the door for further improvements in ATPG.   
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ATOMS [5], which is an improved version of a deterministic ATPG system for combination 

circuits called ATOM [6], is a structure-based technique to speed up the test vector generation 

for sequential circuits. It uses the PODEM algorithm [7] for time frame processing. This 

algorithm proposed a new method to discover unjustifiable states. Starting from a specific state, 

several states are visited during traversing the state transition graph of the sequential circuit in 

the backward direction. This algorithm uses the technique of reducing the size of the search 

space that needs to be explored by eliminating the 0/1 and 1/0 logic value assignment for any 

flip-flop in the excitation time frame. This algorithm significantly reduced the testing time and 

could increase the fault coverage in comparison with other deterministic algorithms described in 

[8] – [10]. 

In [11], state justification in backward time processing is listed as cube structures which make it 

possible to directly backtrack to the point where a decision related to a flip-flop assignment was 

made and a smaller number of flip-flops can be used to find a set of cubes. The results show 

some improvements when compared with some other deterministic algorithms.  

Table 2.1 shows results obtained for two deterministic algorithms in terms of the number of 

vectors and fault coverage. ATOMS could obtain relatively high fault coverage in most of 

circuits but the number of vectors is considerably high. Moreover, the algorithms require a large 

testing time because of the backtracking mechanism, which is required by all deterministic 

algorithms. Lowering the test vectors will surely lower the testing time which the deterministic 

algorithms have failed to achieve. 

 
Table  2.1: Results of deterministic-based test generators [5]. 
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2.3 Simulation-based Algorithms 

Random test pattern generation is the simplest type of simulation-based ATPG. Generating test 

vectors randomly is a preferred technique for only small-scale circuits with easy-to-detect faults. 

However, hard-to-detect faults and untestable faults will not be detected when using only the 

random test generator. Random test vectors can cover a significant number of faults but the fault 

coverage is uncertain even with a very large test set [12]. Several simulation-based algorithms 

have been proposed over the years. The first simulation-based test generator was proposed by 

Seshu and Freeman in [13]. This method uses randomly generated test patterns and any vector 

that increases the fault coverage is added to the test set. While this method was successful for 

combinational circuits, it cannot process hard to test circuits or sequential circuits. Remarkable 

progress in the development of simulation-based algorithms has been made since then. The basic 

idea behind simulation-based TPG for sequential circuits is as follows: one starts with trial test 

sequences. Fault simulation will be performed for those sequences and a cost function will 

determine how close the sequence is from being a good solution. 

One of the best earlier simulation-based algorithms is the CONcurrent TEST (CONTEST) 

algorithm [14]. The test sequences generation process starts by initializing all flip-flops and 

concurrently simulating a list of faults. It ends by targeting a single fault at a time until it reaches 

adequate fault coverage. The fitness function uses a testability measure by estimating the number 

of PI’s of the current vector that must be changed. 

This algorithm basically uses the mutation process, one-bit change heuristic, by mutating a single 

bit from the previously accepted test vector. A new mutated test vector is generated for each 

generation. Consequently, CONTEST generates more test vectors which leads to incremental 

increases in the testing time. This strategy is considered evolutionary because of the evolving test 

sequence, per a specific fitness function. The improvement that evolutionary algorithms have 

brought to ATPG is very noticeable in terms of CPU time, test sequence length and fault 

coverage. Some of the well-known evolutionary and optimization algorithms are addressed in 

detail in the following sections. 

2.3.1 Genetic Algorithm 

The genetic algorithm (GA) was first used in automated test generation for sequential circuits by 

Saab et al, and the strategy is called CRIS [15].  This strategy takes advantage of the fitness 

function used in phase 2 of CONTEST, which is based on the distance of the fault effects to the 
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PO. The second fitness function selects test sequences that increase the signal activity in a 

circuit. The results were not encouraging. The fault coverage was low and the test sequences 

were long because of the insufficient fitness functions used. Another version of CRIS [16] 

improves the fault coverage by using a fault simulator instead of a logic simulator to evaluate 

candidate test vectors. The results were better in terms of fault coverage, but the execution time 

was longer. 

GATTO [17] is another GA-based test generator. A group of 64 faults is chosen when they 

propagate furthest in the circuit. If a test sequence can propagate the fault effect to the PO, the 

test sequence will be added to a test set. The fitness function aims to maximize the circuit 

activity. The fault coverage is higher than the fault coverage of CRIS in some cases, but it is 

lower in other cases. The implementation of GATTO required the reset state to set all flip-flops 

to a known state before test generation. GATTO+ [18] has made several improvements on 

GATTO by modifying the evaluation function and mutation operator to reduce the test length. 

Moreover, the crossover operator was modified to work in a vertical manner. 

Results in terms of number of vectors were improved significantly in GATEST, developed by 

Rudnick [3][19-20]. GATEST can be considered as a reference, or state-of-the-art, when dealing 

with GA-based ATPG. The overall performance was satisfactory with all data-dominant circuits. 

CPU time was reduced in comparison with deterministic algorithms. The number of test vectors 

was well optimized and the fault coverage was high. This strategy starts with randomly 

generated individuals. The process of evaluating and generating new test vectors/sequences go 

through four phases: (1) Flip-flop’s are initialized, (2) Test vectors are generated to detect as 

many faults as possible, (3) The vectors that create high activity levels in the good and faulty 

circuits are selected, and (4) Similar to phase 2, test sequences are generated to detect as many 

faults as possible. 

Table 2.2 shows the results for different GA-based test generators which have been presented in 

the literature in previous years. GATEST has superior results over other GA-based generators in 

terms of the number of test vectors. However, the algorithms show poor performance in fault 

coverage and testing time because it requires multiple visits to the flip-flips in several steps. 

Moreover, the technique moves between generating test vectors and test sequences which adds 

computation overhead and leads to increased testing time. The results indicate GATEST 

consumed a large amount of time to reach a reasonable fault coverage for the s35932 circuit, as 
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well as other large sequential circuits. Since testing time correlates greatly with the size of a 

circuit, the testing time for the s35932 circuit is the largest among all GA-based test generation 

algorithms. 

 

Table  2.2: Results of several GA-based test generators [3], [17-18]. 

 

Each algorithm in Table 2.2 has optimized the test sets differently. While GATEST reduced the 

number of vectors, CRIS and GATTO+ reduced the testing time, and GATTO+ attained higher 

fault coverage in more sequential circuits than other algorithms. The optimal solution has never 

been obtained by any of the previous GA-based test generator since none of the algorithms could 

concurrently optimize the testing time, number of test vectors and fault coverage.  

2.3.2 Particle Swarm Optimization 

The PSO shares several similarities with other evolutionary algorithms. However, fewer 

parameters must be adjusted and analyzed, besides PSO is simpler and easier to implement. 

Recently, researchers’ eyes have turned to PSO to find solutions for ATPG due to its promising 

results in other applications. PSO adjusts the path of particles based on information gained about 

each particle’s best performance of its neighbors. PSO was first used in ATPG in [21]. The main 

concept is similar to GA-based ATPG. However, initializing all flip-flops, selecting targeted 

faults and generating test vectors are all performed by PSO. The technique uses two binary coded 

discrete PSO’s [22] because inputs, outputs and all other signals are discrete values that may be 

zero or one. This technique starts with initializing all flip-flops logically by simulating the circuit 
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with the 3-valued logic simulator that can correctly compute the known state. It ends with a test 

set compaction phase which is important to reduce the number of test vectors, which will lead to 

reduction in the cost of testing. Generating test sequences is well explained in Figure 2.2. The 

results of this strategy were slightly improved compared to GA-based test generation algorithms, 

in terms of CPU time and fault coverage. 

 

Figure  2.2: PSO flowchart for ATPG [21]. 

A similar strategy was used in [23] which shows a faster convergence rate than that for the GA-

based ATPG. The implementation covers several steps starting from setting the initial position 

and velocity until it finds the best optimal solution. This method suggests one should consider 

using PSO in testing small-scale sequential circuits. However, this method is expected to be one 

of the best candidates to solve ATPG for all sequential circuits since it fully uses the circuit 

structure information. Moreover, there are less parameters, compared with GA, to manage when 

using PSO which gives PSO a higher preference over other evolutionary algorithms. Lastly, 

properly setting up PSO will result in faster convergence and higher fault coverage.  
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2.3.3 Differential Evolution 

Differential evolution (DE) was recently used for generation of test vectors. The strategy selects 

four random individuals and mutates them based on a mutation strategy. Then, a recombination 

phase is performed on the new population between an individual from the old population and an 

individual from the new generation. Lastly, a selection phase is implemented by comparing the 

old population with the new population. The fitness is expected to increase from one population 

to the next because the evolution is biased toward more highly fit individuals. In DE-based test 

generator [24], each individual has an associated fitness, which measures the test sequence 

quality in terms of fault detection, dynamic controllability and observability measures, among 

other factors. The evolutionary processes of mutation and crossover are used to generate an 

entirely new population from the existing population. In the mutation phase, four individuals are 

selected randomly from the existing population, and new individuals are generated according to 

the mutant strategy. Then, they are selected as the members of a trial population. The mutant 

operator for ATPG is redefined as follows: the circuit is partitioned according to the definition of 

input fanout cone, that is, search from a primary input PIj to primary outputs along the circuit, all 

parts linked logically to PIj belong to the PIj input fanout cone such that the circuit is partitioned 

into N sub-circuits which are logically related. 

The possibility that faults inside the PIj cone (sub-circuit) are affected by the logical value of PIj 

is maximal, so the number of faults detected inside the PIj cone is taken as the parameter of the 

mutant equation. A crossover (recombination) operator is applied on the trial population where 

one individual is selected from the old population and the other is selected from the trial 

population, with selection biased toward more highly fit individuals. The two individuals are 

crossed to generate a new individual.  

Table 2.3 shows the overall results for the DE-based test generator which has achieved high fault 

coverage in several sequential circuits. However, more research is needed on this algorithm 

because of its promising results in ATPG. In comparison with other optimization algorithms, DE 

can detect a high number of faults. However, the number of test vectors is noticeably high as 

well as the length of test sequence. Testing time is not reported in [24] but DE is known for its 

fast convergence compared to GA-type algorithms [82]. 
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Table  2.3: Results of DE algorithm implemented in [24]. 

2.4 Hybrid Test Pattern Generator 

The need for a combination of testing algorithms is to eliminate the shortcomings of 

deterministic-based algorithms and simulation-based algorithms. The basic idea behind hybrid 

test generators is that the testing process starts with a fast run of simulation-based test generators 

and then uses a deterministic-based test generator to improve the fault coverage and to identify 

untestable faults [3]. In [54], the CRIS-Hybrid algorithm uses a simulation-based technique [15] 

until there is no further improvement in fault coverage. The algorithm switches to a deterministic 

phase to identify untestable faults and to compute a fault cluster. A targeted set of candidate 

faults from the cluster is tested with a deterministic ATPG and the resulting test sequence is used 

to restart the search process of the simulation-based technique. The deterministic search 

procedure is implemented in two phases: (1) the forward time processing phase, and (2) the state 

justification phase. In the first phase, an undetected fault is activated and propagated to a primary 

output based on a PODEM-like search [7] and on a single time frame expansion. During this 

phase, a state may need to be justified to activate the fault. In this case, the second phase is 

activated to justify the state. This technique uses the logic simulator to evaluate sequences based 

on good circuit activity. The results show improvements in fault efficiency in comparison with 

the HITEC test generator. ALT-TEST [55], is another hybrid test generator which alternates 

between a GA-based and deterministic test generator. The test generation process is divided into 

three stages. The first stage attempts to detect as many remaining faults as possible from the fault 

list. The second stage attempts to maximize the number of visited states and propagated fault 

effects to flip-flops. The third stage attempts to detect the final remaining faults and to visit a 

new state [3]. ALT-TEST improves the fault coverage and reduces the test set length compared 

to results obtained from other test generators. The GA-HITEC test generator [56] was able to 
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relatively reduce the test vectors because of the effectiveness of GA’s for state justification. It 

combines deterministic algorithms for fault excitation and propagation with the GA for state 

justification. Deterministic procedures for state justification are used if the genetic approach is 

unsuccessful, to allow for identification of untestable faults and to improve the fault coverage. A 

similar approach, called MIX, was presented in [57]. It is composed of four main procedures: 

circuit synchronization, state-driven test generation, deterministic test generation, and GA-based 

test generator. The test generation operates from the least computationally intensive to the most 

computationally intensive approach, such that the faults go through several test generation 

strategies before they are marked as aborted. The MIX-PLUS [58] test generator concentrates on 

areas of the search space by removing unnecessarily specified values of state variables. Identical 

values in the fault free and the faulty circuits during the fault propagation phase of test 

generation help increase the number of mandatory assignments. Thus, the search space is 

reduced and the fault efficiency is improved, while the run time is reduced compared to MIX. 

Table 2.2 shows the results of several hybrid test generators. 

 

Table  2.4: Results of several hybrid test generators [3]. 

From Table 2.3, ALT-TEST shows good performance in terms of fault coverage. Conversely, 

there is a perceptible increase in the number of vectors in several sequential circuits, such as 

s400 and s5378, which is considered as a tradeoff between fault coverage and the number of 

vectors. In comparison with simulation-based test generators, test generators that are based on 
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optimization algorithms have shown superior results for most of the circuits except the s35932 

circuit which clearly shows the power of these algorithms if they are implemented properly. 

2.5 Conclusion 

In conclusion, adopting evolutionary algorithms in ATPG started years ago either as stand-alone 

algorithms or combined with deterministic algorithms. The promising results of implementing 

GA in ATPG allowed researchers to explore other evolutionary algorithms to attain global 

optimal solutions. A global optimal solution implies the sequence length is as short as possible; 

the number of test vectors is low and the testing time is significantly reduced. Optimum solutions 

have been found by several algorithms. However, we cannot assure that the global optimal 

solution has been accomplished because a global maximum solution in one algorithm becomes a 

local maximum in another algorithm due to several factors, such as algorithm parameter 

modifications and improving the implemented fitness function. Since ATPG for sequential 

circuits is a search process over a large vector space, the problem will remain open for further 

improvements and for new heuristics. 

By looking at the results of using several evolutionary algorithms in ATPG, there have been 

positive progress since the very first adapted algorithm and the advancement continues. GA 

shows slowness in reaching optimal solutions with comparatively low fault coverage while PSO 

and DE have relatively faster convergence toward better results. On the other hand, the continued 

reduction in the number of test vectors affirms that the optimal solution sets have never been 

found for sequential circuits, thus, this issue will remain open for further improvements. The 

comparison between GA, DE, and PSO reflects the results obtained from several publications 

[3], [17-18], [21], and [23-24] that have been presented in this chapter.  
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 Chapter 3: Fault Simulation 

This chapter briefly presents the fault model used in this research and the most dominant fault 

simulation algorithms. The HOPE [59] fault simulator is also presented at the end of this chapter 

since it is the adapted fault simulator in this work and it has significant impact on the overall 

results. 

3.1 Introduction 

Simulation is the process of predicting the behavior of a circuit before it is physically built. For 

digital circuits, simulation has two purposes. It helps the designer to verify that the design 

conforms to the functional specification (called logic simulation). It is also used to simulate 

faulty circuits during test development (called fault simulation) [25]. A fault simulator 

determines whether a fault is detected or not by a given test vector. In addition, the fault 

simulators speed up the test generation process. The basic idea behind all fault simulators is as 

follows: a fault free circuit and copies of the same circuit with faults injected, such as stuck-at 

fault, are simulated. The same test vector is applied to all the copies of the circuit with and 

without the fault. The outputs of the faulty circuits are compared in the comparators, with the 

output of the fault free circuit. If a mismatch is reported, a fault is detected by the test vector 

being simulated. Several fault simulation algorithms have been presented in the literature over 

the years with each having its advantages and disadvantages.  

3.2 Stuck-at Fault Model 

The single stuck-at fault model has been successfully used in many contemporary fault 

simulators. Therefore, only single stuck-at faults are adopted in this research. In a single stuck-at 

fault, the circuit is assumed to be modeled as an interconnection (called netlist) of Boolean gates. 

A stuck-at fault is assumed to affect only the interconnection between gates. Each connecting 

line can have two types of faults: stuck-at-1 and stuck-at-0 (commonly written as s-a-1 and s-a-0, 

respectively). Thus, a line with a stuck-at-1 fault will always have a logic state 1 irrespective of 

the correct logic output of the gate driving it. A circuit with n lines can have 3
n
 – 1 possible stuck 

line combinations. This is because each line can be in one of the three states: s-a-1, s-a-0, or 

fault-free. All combinations except one having all lines in fault-free states are counted as faults. 

Three properties characterize a single stuck-at fault [26]: 
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 Only one line is faulty. 

 The faulty line is permanently set to either 0 or 1. 

 The fault can be at an input or output of a gate. 

For example, Figure 3.1 shows a circuit with a single stuck-at fault in which node D is tied to 

logic 0 (D is s-a-0). It is assumed that only a single fault is present in the circuit to simplify the 

problem. A logic one must be applied to node D if there is to be a difference between the faulty 

and fault-free circuits. Also, a logic zero must be applied to node C so that if the fault is present, 

it can be detected at the output E. In addition to the s-a-0 fault at node D, several other faults 

must be considered during the test generation process: s-a-1 at D, s-a-0 at A, s-a-1 at A, s-a-0 at 

B, etc. Some of these faults are logically equivalent, and no test can be obtained to distinguish 

between them. For example, in Figure 3.1, s-a-0 at A, s-a-0 at B, and s-a-0 at D, are equivalent 

since they are detected by the same tests. Equivalent fault collapsing is often used by test 

generators to identify equivalent faults to reduce the number of faults that must be targeted [3]. 

 

Figure  3.1: Single stuck-at fault [3]. 

A fault can be considered as either testable or untestable Untestable faults are faults for which 

there exists no test pattern that can both excite the fault and propagate its fault-effect to a primary 

output. In sequential circuits, untestable faults may result from the presence of unreachable states 

or impossible state transitions [25]. In contrast, testable faults are faults which there exists at 

least one test vector that can propagate its fault effect to a primary output. 

3.3 Parallel Fault Simulation 

In the parallel fault simulator [13] and [24], the fault free circuit and the faulty circuits are 

simulated simultaneously. The number of faulty simulated circuits is determined by the machine 

word size. If the word size is 32 bits, then 31 faulty circuits can be simulated plus the fault free 

circuit, simultaneously. All faulty circuits are identical to the fault free circuit except a line 

where a stuck-at fault is present. The parallel fault simulator lacks the capability to model 

accurate rise and fall delays of signals since all signal changes corresponding to several circuits 
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must be computed together. In general, a signal may rise in one circuit while it falls in another. 

In a parallel simulator, sequential logic is modeled with unit-delay [27]. More complicated delay 

models cannot be modeled because several faults are evaluated at the same time. Furthermore, a 

simulation pass cannot terminate unless all the faults in this pass are dropped. Parallel fault 

simulation is best used for simulating the beginning of the test pattern sequence, when a large 

number of faults are detected by each pattern. Two types of fault simulations use the parallelism 

technique to simulate faults. In parallel-pattern single-fault propagation, the computer word 

parallelism is used for parallel simulation of several faulty circuit states in the same row of the 

table. In parallel-pattern parallel-fault propagation, the computer word parallelism is used for 

parallel simulation of several faulty circuit states in multiple rows of the table [28]. 

3.4 Deductive Fault Simulation 

The deductive fault simulator was first introduced by Armstrong in [29]. In this method, only the 

fault-free circuit is simulated. All signal values in each faulty circuit are deduced from the fault-

free circuit values and the circuit structure. All deductions are performed simultaneously because 

the circuit structure is the same for all faulty circuits. Deductive fault simulation gains 

tremendous speed from processing all faults in a single pass of true-value simulation, augmented 

with the deductive procedures [17]. Deductive fault simulation involves allocating a fault list to 

each gate. The fault list contains one entry for each fault which is detectable on the output of that 

gate, plus one entry containing the number of faults in the list. The fault list on a gate's output 

can be computed from the fault lists associated with its inputs [30]. Several drawbacks relate to 

the deductive fault simulator; the unknown values are not easily handled. Both cases, controlling 

and noncontrolling values, must be considered. Moreover, deductive fault simulation is only 

suitable for the zero-delay timing model, because no timing information is considered during the 

fault propagation process. Lastly, it has a potential memory management problem. Since the size 

of the fault lists cannot be predicted in advance, there can be a large variation in memory 

requirements during algorithm execution [25]. 

3.5 Concurrent Fault Simulation 

In concurrent fault simulation [31], every gate is associated with a concurrent fault list that 

consists of a set of bad gates. The concurrent fault simulator is based on the good and faulty 

circuits differing in a small region, which is the fan-out cone from the fault site. The concurrent 
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fault simulator simulates only the differential parts of the whole circuit. Concurrent fault 

simulation is based on the event driven simulation paradigm [5] where a change in the logic 

value of a node (in the good or the faulty machine) constitutes an event and causes that node to 

be placed on an “event queue”. The simulation progresses through discrete time steps by 

handling all the events at the “current time” and then advancing the simulation clock.  The 

simulation starts by applying a vector to the primary input nodes of the circuit which causes a 

subset of these nodes to be placed on the event queue.  When an event is removed from the event 

queue, it is processed as follows: 

 If the event results from a change in the state of a node in the good machine (good event), 

then all the elements gates having that node as input are evaluated. A change in an output 

node of any such element causes that node to be scheduled at the appropriate time (the 

current time plus the delay of the element). 

 An event from a faulty machine (faulty event) is handled similarly with the state of that 

node taken from the fault effect list. 

 When evaluating an element activated by a good event, any fault effect on the input 

nodes of the element is propagated to the output if the fault causes the state of the output 

to differ from its fault-free value. 

 If the state of a node in the good machine becomes identical to that in a faulty machine, 

then the corresponding fault effect is dropped from the fault effect list on that node. 

The advantage of concurrent fault simulation is its speed which results from considering only the 

active faults in the circuit. However, if the number of active faults is relatively large, then the 

speed degrades due to the overhead incurred from the maintenance of the fault effect list. 

Another drawback of concurrent fault simulation is its unpredictable memory requirements [29]. 

3.6 Differential Fault Simulation 

In differential fault simulation (DSIM) [33-34], the simulator operates by combining the merits 

of concurrent fault simulation and single fault propagation techniques. DSIM reduces the 

memory requirement and the overhead of memory management in concurrent fault simulations 

by simulating the good machine and each machine separately rather than simulating all machines 

simultaneously. Furthermore, DSIM simulates each machine by reprocessing its difference from 

the previously simulated machine which improves its efficiency. The name derives from its use 
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of the difference between any two circuits. DSIM requires very little memory because it stores 

only one copy of all the line values of the circuit and the differences between adjacent circuits. 

However, it cannot drop detected faults easily because subsequent faulty circuits rely on 

differences from previous faulty circuits [28]. The algorithm is illustrated in Figure 3.2. 

 

Figure  3.2: Differential fault simulation algorithm [25]. 

The problem with differential fault simulation is that the order of events caused by fault sites is 

not the same as the order of the timing of their occurrence. If the circuit behavior depends on the 

gate delay of the circuit, the timing information of every event must be included. This solution, 

however, can potentially require high memory consumption [25]. 

3.7 HOPE Fault Simulator 

The HOPE [59] fault simulator is adopted in this work due to its high performance. HOPE is an 

efficient parallel fault simulator for synchronous sequential circuits that employs the parallel 

version of the single fault propagation technique. HOPE is based on an earlier fault simulator 

called PROOFS [60], which employs several heuristics to efficiently drop faults and to avoid 

simulation of many inactive faults. The following heuristics are incorporated in PROOFS: 

A. Reduction of Faults to be Simulated in Parallel: 

This strategy aims to reduce the number of single event non-stem faults simulated in parallel 

in two phases. In the first phase, all single event non-stem faults inside fanout-free regions 

are mapped to the corresponding stem faults by local fault simulation of the non-stem faults. 
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In the second phase, mapped stem faults that are sensitive are further examined for possible 

elimination from parallel simulation. 

B. Functional Fault Injection: 

The function of a gate changes to reflect the presence of a fault when it is introduced to an 

input, or an output of the gate. This suggests that injection of a fault into a circuit can be 

accomplished by introducing a new type of gate whose function reflects the behavior of the 

fault. Once all the faults are injected, all the gates are given a special number (code). Values 

1 - 9 are assigned for fault-free gates. Faulty gates are set to “20 + faulty bit position” as their 

index code. Now, the lowest level gate is retrieved from the vent queue and the gate function 

is examined using switch and case statements which define the functionality for AND, OR 

and the other gates. This method does not incur an overheard in CPU time as the fault-free 

gates are examined in the switch-case statements. No extra gates are needed and no added 

events occur. But one shortcoming is that it requires a separate evaluation procedure for the 

faulty gates which is more complex than that for fault-free gates. 

C. Static and Dynamic Fault Grouping Methods: 

HOPE proposes the combination of two new fault ordering methods, a static fault ordering 

method performed during preprocessing, followed by a dynamic fault ordering method 

performed during fault simulation. 

3.7 Conclusion 

In this chapter, we presented several fault simulation algorithms which are essential to determine 

the effectiveness and performance of test vector generators. Parallelism in fault simulation has a 

significant positive impact on testing time by taking advantage of parallel simulation of several 

faulty circuit states in the same row of the table.  Several heuristics were added to some 

algorithms to raise the performance. The HOPE fault simulator has shown superior performance 

in the literature by employing parallel fault simulation with several heuristics to reduce fault 

simulation time. It is expected that HOPE will lower testing time of the implemented algorithms 

in this work considerably, and it will positively participate in achieving this work’s objectives, 

outlined in section 1.2. 
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 Chapter 4: Optimization Algorithms 

In this chapter, a detailed explanation of the three adapted optimization algorithms, namely, GA, 

DE and PSO is presented. In addition, binary versions of PSO and DE are also presented since 

this research is only concerned with binary-coded solutions. 

4.1: Introduction 

The adapted optimization algorithms in this thesis belong to the class of evolutionary algorithm 

(EA) and swarm intelligence (SI). All the algorithms share a similar strategy as they are all 

population-based algorithms, but the implementation is different. In EA, the environmental 

pressure causes natural selection, or survival of the fittest, which causes a rise in the fitness of 

the population. Given a function to be evaluated, we can randomly create a set of candidate 

solutions, i.e., elements of the function's domain, and apply the quality function as an abstract 

fitness measure - the higher the better. Based on this fitness measure, some of the better 

candidates are chosen to seed the next generation by applying recombination and/or mutation to 

them. Recombination is an operator applied to two or more selected candidates, the so-called 

parents, and results in one or more new candidates, i.e., the children. Mutation is applied to one 

candidate and results in one new candidate. Executing recombination and mutation leads to a set 

of new candidates, the offspring, that compete based on their fitness, and possibly age, with the 

older ones for a place in the next generation. This process can be iterated until a candidate with 

sufficient quality (a solution), is found or a previously set computational limit is reached [61].  

SI concerns the collective, emerging behavior of multiple, interacting agents that follow some 

simple rules [74].  Each agent may be considered as unintelligent, while the whole system of 

multiple agents may show some self-organizational behavior and thus can behave like some sort 

of collective intelligence. Many algorithms have been developed by drawing inspiration from the 

SI systems in nature. The main properties for SI-based algorithms can be summarized as follows: 

 Sharing of information among the multiple agents. 

 Agents have self-organization and co-evolution. 

 It is highly efficient for its co-learning. 

 It can be easily parallelized for practical and real-time problems [75]. 
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4.2: Genetic Algorithm 

Genetic algorithms were presented by Holland in 1975 in his book Adaptation in Natural and 

Artificial Systems [64]. GA is an evolution-inspired algorithm for optimization and machine 

learning. It starts with an initial population of chromosomes Figure 4.1. A chromosome can be 

binary-coded or it might contain a character from a larger alphabet (non-binary-coded). The 

initial population, which is typically generated randomly, evolves into better populations 

(solutions) by using a kind of "natural selection" together with the genetics−inspired operators of 

crossover and mutation. The process of selection and reproduction is repeated until a complete 

new generation is generated and then the old generation will be discarded. A fitness function is 

required to measure the quality of each generated solution. The fitness is expected to increase 

from one population to another since the selection is biased towards highly fit individuals. The 

fittest individual will survive over consecutive generations for solving a problem. 

 

 
Figure  4.1: GA Population. 

 

The GA is summarized in the pseudo-codes provided in Figures 4.2 and 4.3. 

 
Figure  4.2: (A) Pseudo-code for GA. 
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Figure  4.3: (B) Pseudo-code for GA 

 

4.2.1: Genetic Operators 

4.2.1.1: Selection 

The meaning of selection is to pass an individual from one generation to another. An individual 

is selected based on a fitness function which will determine the quality of each individual. 

Selection ensures that survival of the fittest individual is achieved through several techniques to 

carry individuals from one generation to another. The following selection techniques are widely 

used in several applications and they are briefly explained in the following sections: 

 Roulette Wheel Selection 

The most straightforward implementation of the selection rule is the so-called roulette-

wheel selection [35]. The conspicuous characteristic of this method is to give each 

individual i, a probability p(i), to be selected. It is also known as fitness proportionate 

selection. Each individual in a population is allocated a segment in a roulette wheel and 

the size of the segment is proportional to its fitness value. Figure 4.4 illustrates how an 

individual is selected by using the roulette wheel method. Since the size of a segment 

depends on the fitness value, individuals with higher fitness values have more probability 

of being selected, which may lead to biased selection towards high fit individuals. 

However, there is no guarantee that good individuals will be passed to the next 

generation. 
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Figure  4.4: Roulette wheel selection. 

The selection probability is given as: 

      
    

      
   

  

where n donates the population size, and f(i) is the fitness of each individual.  

Since the selection is directly proportional to fitness, it is possible that strong individuals 

may dominate in producing offspring, thereby limiting the diversity of the new 

population. In other words, proportional selection has high selective pressure [36]. 

 Rank Selection 

Rank selection sorts the individuals according to their fitness values, where the rank N is 

assigned to the best individual and rank 1 is assigned to the worst individual. Ranking 

selection was proposed to eliminate disadvantages of proportionate selections and to 

overcome the drawback of premature convergence to a local optimum [37]. The selection 

probability in ranking selection is proportional to relative fitness rather than absolute 

fitness. This type of selection tends to avoid premature convergence by tempering 

selection pressure for large fitness differentials that occur in early generations.  

 Tournament Selection: 

This type of selection is another widely-used selection strategy in the GA. The idea of 

tournament selection is simple. Select some number of individuals randomly from a 

population (with or without replacement), select the best individual from this group for 

further genetic processing with fixed probability p, and repeat as often as desired (usually 

until the mating pool is filled). Tournaments are often held between pairs of individuals 

(tournament size s), although larger tournaments can be used and may be analyzed [38]. 
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4.2.1.2: Fitness Function: 

A mathematical representation is used to determine the ability of an individual to survive 

from one generation to another and it is used to quantify how good the solution is 

represented by a chromosome [38]. The fitness function should be chosen in such a way 

that a chromosome that is closer to the optimal solution in the search space should have a 

higher fitness value. The fitness function is the only information, also called the payoff 

information, that GA’s use while searching for possible solutions [40]. 

4.2.1.3 Crossover 

Crossover, or recombination, is simply a matter of replacing some of the genes in one 

individual by genes of the corresponding individual. Crossover combines (mates) two 

chromosomes (parents) to produce a new chromosome (offspring). The idea behind 

crossover is that the new chromosome may be better than both parents if it assumes the 

best characteristics from each of the parents. Crossover occurs during evolution 

according to a user definable crossover probability [62]. 

A. One-Point Crossover:  

The parental chromosomes are split at a randomly determined crossover point. 

Subsequently, a new child genotype is created by appending the first part of 

the first parent with the second part of the second parent [39], as shown in 

Figure 4.5. 

 

Figure  4.5: One-point crossover [40]. 

B. Two-Point Crossover 

In two-point crossover, or m-point crossover, two points are randomly 

selected between 1 and L-1, where L is the length of the chromosome. The 

contents between these points are exchanged between two mated parents, as 

shown in Figure 4.6. Adding more crossover points reduces the performance 
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of the GA because building blocks are more likely to be disrupted. However, 

an advantage of having more crossover points is that the problem space may 

be searched more thoroughly. 

 

Figure  4.6: Two-point crossover [40]. 

C. Uniform Crossover: 

Two chromosomes are combined to produce new offspring. With the same 

probability p, bits are copied from either the first parent or the second parent 

to make a new offspring [40], as shown in Figure 4.7. 

 

Figure  4.7: Uniform crossover [40]. 

4.2.1.4 Mutation 

In binary-coded chromosomes, mutation means flipping a gene in a chromosome with 

probability p, where p is the probability that a single gene is modified. Since each gene has two 

states: zero or one, the size of the mutation step is always one and it happens less frequently 

because it is a divergence operation to discover a better minimum/maximum space by breaking 

one or more members of the population out of the local minimum/maximum space. The gene to 

be mutated is mainly randomly selected. However, there are other mutation techniques for a 

given string such as: 

 Inversion of a single bit: One randomly chosen bit is inverted with probability p. See 

Figure 4.8. 

 Bitwise inversion: The entire string is inverted bit by bit with probability p. 
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 Random Inversion: The string is replaced by a randomly chosen one with probability p. 

 

Figure  4.8: Single bit inversion. 

4.3: Differential Evolution 

Differential evolution (DE) [47-48] is a population-based algorithm that has been successfully 

employed to solve a wide range of global optimization problems. The method of DE, as 

illustrated in Figure 4.9, is nearly identical to the GA’s approach. DE allows each successive 

generation of solution to ‘evolve’ from the previous generations’ strengths. 

 

Figure  4.9: Differential evolution algorithm. 

The DE method can be applied to real-valued problems over a continuous space with much more  

ease than the GA. In DE, a parent vector from the current generation is called a target vector, a 

mutant vector obtained through the differential mutation operation is known as a donor vector, 

and finally an offspring formed by recombining the donor with the target vector is called a trial 

vector [70]. The idea of the DE method is that the difference between two vectors yields a 

difference vector which can be used with a scaling factor to traverse the search space. As in the 

GA, DE begins with a random population which is chosen equally over the problem space, and 

the next generation creates an equal number of donor vectors (mutant vectors) that are created 

through means of: 

                        

The “mutation" step is shown in Figure 4.10, where x and y are the axes of the decision space, X1 

is chosen either randomly or as one of the best members of the population (depending on 

individual encodings), X2 and X3 are randomly chosen and F is the scale factor. 



31 

 

 
Figure 4.10: A simple DE mutation scheme [80]. 

A trial vector Ti,j is created by selecting between the donor vector and the previous generation for 

each element (j) according to the crossover rate (CR) 0–1. For each element in the vector we 

choose either the corresponding element from the previous generation vector or from the donor 

vector, such that: 

                                                                   

where Jrand is randomly chosen for each iteration through i and ensures that no Ti is the same as 

the corresponding Xi. Then the trial vector’s fitness is evaluated, and for each member of the new 

generation, X′i, we choose the better performing of the previous generation, Xi, or the trial vector, 

Ti [49]. DE is considered to be completely self-organized since it adds the weighted difference 

between two population vectors to a third vector. DE is summarized in the pseudo-code provided 

in Figure 4.11. 

 
Figure  4.11: Pseudo-code for DE. 

Since the ordinary DE is incapable of working with problems with binary-valued parameters, 

several heuristics have been applied to DE to solve binary-coded problems. Discretized 

differential evolution (DDE) [71], uses a sigmoid function to discretize a normalized solution 

vector to form a bit string. DDE works as follows: an initial random population is created with 
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initial individuals and their initial fitness is calculated. Through the number of generations 

previously set, a trial population is created using the mutation and crossover processes. This new 

population is discretized by the sigmoid function which assigns the values 1 or 0, depending on 

whether the continuous dimension of the individual is greater than 0 or not. The fitness of this 

trial and discretized population is calculated and if the trial individual fitness is greater than the 

previous one, the new individual is incorporated into the new population. Figures 4.12 and 4.13 

present the pseudo-code of the DDE algorithms [71]. 

  
 

 

 

 

 

 

 

 

 

 

  

 

 

Here, NP is the population size, CR is the crossover rate, F is the mutation rate, PR is the 

permutation rate, PM is the mutation rate and the range is the dimension of each individual. 

Binary Differential Evolution (BDE) was presented in [69], which uses homomorphous mapping 

and the interpretation of the continuous solution vector as a vector of probabilities. An older 

version of BDE was introduced in [73] which uses an angle modulation. It consists of a 

generation of a bit string using a trigonometric generating function. Another version of BDE was 

presented in [72] which is only feasible in binary search space and the original mutation process 

of DE is replaced by a random bit inversion, which is inspired by GA. The perturbation process 

is a new parameter introduced to measure how many individuals of the population will pass 

Figure  4.12: DDE algorithm [71]. Figure  4.13: BDE Algorithm [71]. 



33 

 

through the mutation and crossover processes and it will ensure there is at least one individual 

that will be mutated. The crossover process remains unchanged. 

4.4: Particle Swarm Optimization 

Particle swarm optimization (PSO) is another population-based search algorithm that simulates 

the social behavior of agents that interact with each other by acting on their local environment. It 

was designed and presented in 1995 by Kennedy and Eberhart [42]. The algorithm starts with an 

initial population of the solution, called particles, and searches for the optimum solutions by 

updated generations. The particle swarm concept originated as a simulation of a simplified social 

system. The original intent was to graphically simulate the graceful but unpredictable 

choreography of a flock of birds. Initial simulations were modified to incorporate nearest-

neighbor velocity matching, eliminate ancillary variables, and incorporate multidimensional 

search and acceleration by distance [41-43]. At some point in the evolution of the algorithm, it 

was realized that the conceptual model was, in fact, an optimizer. Through a process of trial and 

error, a number of parameters extraneous to the optimization were eliminated from the 

algorithm, resulting in the very simplified original implementation [44]. 

In PSO, each particle is treated as a point in the D-dimensional problem space. The ith particle is 

represented as Xi=(xi1,xi2,…….,xiN), the best previous position (the position giving the best fitness 

value) of the ith particle is recorded and represented as Pi=(pi1,pi2,…….,piN), the index of the best 

particle among all the particles in the population is represented by the symbol g. The rate of 

position change (velocity) for particle i is represented as Vi=(vi1,vi2,…….,viN), the particles are 

manipulated according to the following equations: 

                                                                                 

               

Here, c1 and c2 are positive constants and the random variable (rand()) is a uniform distribution 

between 0 and 1, w is the inertia weight which shows the effect of the previous velocity vector 

on the new vector. A larger inertia weight facilitates global exploration (searching new areas) 

while a smaller inertia weight tends to facilitate local exploration to free-tune the current search 

area. Suitable selection of the inertia weight provides a balance between global and local 

exploration abilities and thus requires fewer iterations on average to find the optimum [4], [45]. 
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A modified version of the PSO algorithm was introduced in 1997 [22], that allows PSO to work 

in binary space. In the binary PSO (BPSO), the particle’s personal best and global best is updated 

as in the continuous version. The major difference between BPSO with the continuous version is 

that velocities of the particles are defined in terms of probabilities that a bit will change to one or 

zero. Using this definition, a velocity must be restricted within the range: 0-1. Updating the 

velocity vector of the particle is performed using the similar equation from PSO. The 

normalization procedure is performed by a sigmoid function: 

              
 

        
      

  

and the new position of the particle is obtained using the equation below: 

           
                          

                                              

    

The BPSO can be used in a variety of applications, especially when the values of the search 

space are discrete like decision-making, solving the lot sizing problem, the traveling salesman 

problem, scheduling and routing. BPSO can be effectively employed to solve ATPG for 

sequential circuits because of its effectiveness in solving several problems such as those 

mentioned in [76-78]. 

4.5: Conclusion 

The optimization algorithms included in this chapter are considered the most suitable candidates 

to generate test sequences for sequential circuits. Although, optimization algorithms share a 

similar principle as they are all population-based algorithms, there are several differences in 

terms of the searching mechanism for an optimal solution and updating the individual’s position.  

Throughout this research, we investigate each algorithm’s parameters to show their significance 

in an algorithm implementation to search for an optimum in ATPG. Moreover, some algorithms 

are used differently than originally intended by adding heuristics for performance improvements 

which will be explained in detail in the following chapter.  
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 Chapter 5: Test Generation - Implementation and Results 

This chapter presents a detailed explanation of the implementation of GA, DE and PSO in 

generating test sequences for sequential circuits. A complete investigation of the performance of 

each algorithm is also presented, followed by a comparison between each algorithm in terms of 

implementation, performance and results. Boxplots [51] were chosen to represent the results 

because they help to identify the variation of data and understand an algorithm’s performance. It 

is worth mentioning that we use the same fitness function for all optimization algorithms in this 

chapter for equitable comparison. The following fitness function measures the quality of a 

generated test sequence: 

                                   
                                         

                                                        
  

An analysis of the random test generator was also included in this chapter to see the advantages 

and drawbacks, if any, of adopting optimization algorithms for test sequences generation.  

5.1 Circuits Description 

ISCAS89 sequential benchmark circuits [50] were tested in this research because of their high 

adoption in the literature. The chosen circuits range from small-scale circuits to large-scale 

circuits. Table 5.1 presents a brief description of the several selected circuits, where the PI 

column is the number of primary inputs in the circuit, and PO is the number of primary outputs 

of the circuit. Sequential depth is defined as the maximum structural sequential depth of all flip-

flops in the circuit, where the structural sequence of a flip-flop is defined as the minimum 

number of flip-flops that must be passed through to reach that flip-flop from a PI [2]. In this 

research, we considered the single stuck-at fault model in synchronous sequential circuits under 

the zero-gate delay model. The HOPE [59] fault simulator was used to simulate each test vector 

and compute its fitness. 
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Table  5.1: Description of sequential circuits [3]. 

5.2 Random Test Generation 

Random test generation is the simplest type of simulation-based test generation where test 

vectors are applied to a sequential circuit and a fault simulator compares the faulty circuit and 

good circuit and determines the existence of a fault. For the analysis, we started by randomly 

testing all targeted sequential circuits to classify the type of detected faults. Usually, some faults 

are easily detected by randomly generated test vectors which are classified as easy-to-detect 

faults. The downside of the random test vectors generator is that it requires an enormous number 

of test vectors for fault detection and it consumes a high percentage of CPU resources. While 

random test generation is recommended for relatively small-scaled sequential and combinational 

circuits, its efficiency is noticeably reduced as the size of the circuits increase.  

In this work, the test runs several times, each time with a different number of test vectors, with 

each increment is a factor of 10. In sequential circuits fault detection, a sequence of test vectors 

is needed because the output of a circuit is dependent on both the present and previous (past) 

inputs to the CUT. A test vector plays two roles: drive the circuit under test into a proper state 

and detect the given fault from that state. All flip-flops in each circuit are assumed to be in a 

known state, either all zeros or all ones, before the test runs. Hence, we assume that fault 

detection will start after applying a few test vectors. This assumption holds true for all sections 

of this research. 

Each circuit has a breakout point where no more faults will be detected no matter how many 

more test vectors are randomly applied. For example, fault coverage became nearly constant 

when the test vectors reached 100,000 vectors for the s298 circuit. Figure 5.1 shows the 

improvement of fault coverage as the test vectors were randomly applied to the s298 circuit. 
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Figure  5.1: Fault coverage for s298 circuit. 

The fault coverage stays below 90% even after one million test vectors. The remaining faults 

(undetected faults) are considered as hard-to-detect faults which means that an advanced 

algorithm is needed to detect the faults. Figure 5.2 shows similar behaviour of fault detection 

using random test pattern generation for a larger circuit. Fault coverage increases as the test 

vectors are fed to the fault simulator until the fault coverage becomes unchanged. Determining 

the stopping point, the point where no more faults are detected, is not possible due to several 

reasons such as the nature of a circuit’s faults and the size of a circuit. The s27 circuit, shown in 

Figure 5.3, gained full coverage with less than 200 test vectors randomly generated because all 

stuck-at faults in the circuit are easy-to-detect faults, which makes the circuit amenable to full 

coverage using random test pattern generation. 

 
Figure  5.2: Fault coverage for the s35932 circuit. 
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Figure  5.3: Fault coverage for the s27 circuit. 

 

Figure 5.4 clearly shows that random test generators can only be used to detect easy-to-detect 

faults. In the s400 circuit, fault coverage could not reach 20% due to the nature of the faults. 

Consumption of the CPU resources increased as we increased the testing limit. Fault detection is 

dependent on fault nature (type) and it does not completely depend on the number of test vectors 

nor the sequence length. Other graphs for other circuits are shown in Appendices A-D. 

 

 
Figure  5.4: Fault coverage for the s400 circuit. 

 

The behaviour of all graphs illustrates that an appropriate stopping criteria is highly needed. The 

stopping criteria cannot be easily determined because the faults differ from one circuit to 

another. However, random test pattern generation is highly recommended as a first testing tool, 
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dominant designs of small-scale circuits. If untestable faults are present, another advanced 

technique is highly recommended. 

Testing time can be obviously seen with larger circuits such as s35932. The sequential circuit 

s35932 gained 86.993% fault coverage in 40.5 minutes by one million test vectors applied, 

which is considered a very high testing time. Random test pattern generator is not an effective 

solution, nor a practical test generator candidate to solve ATPG problems for sequential circuits 

even with full fault coverage when it is reachable. The need arises to find another testing 

algorithm to optimize the search space in the random test generator because that will lead to 

optimized testing time with the number of test vectors. 

Searching for a solution by using random test generators is not effective nor efficient due to two 

major reasons: the search space is promotional to the size of a circuit and to the sequence length, 

which means that search space becomes enormous with large circuits and ultra large circuits. The 

second reason is that the search mechanism is not directed by any means which leads to visiting 

a state several times regardless how good the state is. The consequence of these two reasons is 

that resource consumption in terms of time and memory becomes maximum. To make the use of 

random test generators effective and efficient, two points must be considered. Firstly, a circuit 

must be small in size. As the size of a circuit increases, the efficiency of the test generations 

decrease. Secondly, defining a stopping criteria for test generation in terms of a fault coverage 

percentage will thus increase the efficiency. 

5.3 Genetic Algorithm 

The GA was explained in detail in section 5.1. I only used binary coding where every 

chromosome is a string of bits, 0 or 1. Each character of a string is mapped to a PI. Thus, all PI’s 

are set to known states, 0 or 1, and the unknown state X is discarded.  

The sequential GA-based test generator is divided into two processes and several sub-processes: 

1. GA Pre-process: 

o Initialize all flip-flops. 

o Preprocess and partition the circuit. 

2. GA Process:  

o Generate a random sequence (vector series) as an initial population. 

o Compute the fitness of each sequence. 
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o The evolutionary processes of GA are used to generate a new population 

from the existing population.  

Initialization of sequential circuits is implemented in the pre-process state where all flip-flops in 

a circuit will be set to Zero (off-set). The first “time frame” will have a pseudo-primary Output 

(PPO) of zeros. This helps to shorten the test sequence since several leading bits will be 

discarded (Figure 5.5). Note that this assumption is valid if an external reset signal is 

implemented by resettable flip-flops. Several test vectors might be used to ensure that all flip-

flops are set to Zero. These vectors will be applied to the fault-free circuit. This step is not 

obligatory. However, it will be important if a circuit contains some portions that are hard to 

initialize and it can take place within the pre-process step. Most of the work concentrated on test 

vector generation for fault detection (GA Process step).  

In sequential circuits, a circuit must be in a specific state (time frame) to detect a specific fault. A 

sequential circuit is duplicated into several copies to represent the circuit in a different state. A 

sequential circuit should be driven to a specific state; all flip-flops should have specific values, in 

order to arrive at a specific primary output. 

 

Figure  5.5: Test sequences. 

5.3.1 Parametric Analysis 

Several GA parameters should be investigated carefully to achieve satisfactory fault coverage.  

The initial population is the first element that needs to be addressed. Most of the previous GA-

based test pattern generators ignore the effects of the initial population on later populations and 

several publications did not consider the initial population as a “Parameter”. In GA-based 

generators, each population is constructed of individuals. Each individual represents a sequence 

of test vectors. A vector within a sequence is supposed to either detect a fault or drive a circuit to 

a specific state, called a time frame. A vector (gene) is said to be a relatively strong vector (gene) 

if it can detect a fault, or faults, or it causes the effects of a fault, or faults, to propagate to a flip-

flop, or flip-flops. A population should be large enough to ensure adequate diversity. In addition, 
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it is important that the initial (first) population is strong enough to increase the rate of 

convergence. Since the first (initial) population is generated randomly and applied to a sequential 

circuit, the initial population’s performance becomes unpredictable unless it is calculated 

afterwards. The results of the initial population are a measure of the later populations. 

It is obvious that the quality of the initial population correlates with positive evolution of the 

population unless good genes were lost during the sequence process. To ensure that an initial 

population is good enough before proceeding to the next generation, the quality of the initial 

population is calculated before deciding whether to move to the next generation or to create 

another initial population. If the evaluated initial population is equal to or greater than a specific 

value, which is a predefined value, the next generation will be generated, otherwise another new 

initial population will be randomly generated. By performing this step, computation is reduced in 

later generations alongside gaining a faster rate of convergence. Moreover, selection operator 

effects on the results have been minimized. In this work, the algorithmic condition, shown in 

Figure 5.6, was added to the initial population generation. 

 
Figure  5.6: Initial population algorithm. 

 

 

 
Figure  5.7: Test sequence. 

Another key parameter is the population size. It has been mentioned earlier in this section that a 

population should have a sufficient size to avoid computational overhead. The population size is 

not fixed for all circuits. The size is related to vector length (see Figure 5.7), and primary inputs, 

to ensure a higher degree of diversity. Table 5.2 [3] was found to be useful in determining the 

appropriate population size for sequential circuits. However, there are some limitations on 

applying these population size values to GA. As the vector length increases (> 99), the initial 

population will cover a very small area of the whole search space. To overcome this issue, the 

number of generations needs to be increased to allow the individuals to explore the maximum 
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possible area of the search space. However, computational overhead will increase because of the 

incremental increase in the number of generations. 

 
Table  5.2: Population size value [3]. 

Another important parameter is the number of generations. The program will stop when it 

reaches full coverage, or when it reaches the maximum number of generations. It is possible to 

reduce the computation overhead by lowering the number of generations. However, we might 

end up having poor fault coverage. Several applications [3], [19-20] decided to limit the number 

of generations for time reduction purposes. This technique works well, with large sequential 

circuits; only if the population size is highly optimized with the existence of good-enough 

individuals.  

Crossover and mutation are other major and crucial parameters. In this work, I used a probability 

of 1 for crossover which means that two individuals are always crossed to generate new 

individuals. Generating new test sequences through the process of crossover will lower the 

probability of applying identical sequences to the sequential circuit. As the crossover probability 

decreases, the probability of applying similar test sequences in the following generation 

increases. The crossover scheme occurs between vectors within two sequences. It is basically 

swapping two vectors (genes) of two different sequences to generate a new set of sequences. A 

negative consequence of crossover is that a good vector (a key individual) might be lost which 

may lead to a negative change of search direction.  

Mutation probability is a problem-dependent value. Having a high mutation rate value will cause 

the search space to be maximized, while a very low mutation value will cause premature 

convergence. The mutation selects a position, either randomly or previously-defined, and 

complements it. Many publications suggest that the mutation rate ranges between 0.005 – 0.01 

[63]. However, since the length of test sequences varies from one circuit to another, it is better to 

modify the mutation rate accordingly. In this work, a mutation rate of 0.01 was used by default 

and it was modified according to vector length. Mutation might cause the search direction to be 

completely changed if it complements a key individual within a test sequence. Test sequences 
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processing caused by mutation and crossover operators have relatively higher effects on the 

results than the selection operator.  

The fitness function is the major parameter when discussing optimization algorithms. In GA-

based test pattern generations, the fitness function will measure the ability of a test sequence to 

either detect a fault or propagate a fault to a flip-flop. Since the main goal of ATPG is to detect 

the maximum number of faults, the fitness function will calculate how many faults were detected 

by each test vector. Furthermore, the fitness function will determine the ability of a test vector to 

propagate fault effects to a flip-flop. Then, the overall quality of a test sequence will be 

determined.  

5.3.2 Results 

The results of implementing GA in ATPG are demonstrated below. Figures 5.8, 5.9 and 5.10 

show the results of the s298 circuit with two different selection strategies and different crossover 

approaches. Two-point crossover attained higher fault coverage with lower data distribution. The 

uniform crossover has higher distribution with lower fault coverage because the random gene 

swapping led to an increase in the probability of losing good genes and the search for a solution 

is randomized. The overall results show that one-point and two-point crossover techniques have 

firm and explicable results, unlike uniform crossover.  It has been mentioned earlier that the 

selection technique does not have a major impact on the results. However, rank selection causes 

the competition to occur between strong sequences because of the ordering scheme. The 

outcomes of using rank selection show that strong sequences live longer until later generations. 

The sensitivity of a test vector (gene) within a sequence is high which means that any change 

within a sequence may cause the search direction to change dramatically, then the fault coverage 

becomes unpredictable. Each test vector causes a sequential circuit to move from one time frame 

to another, a change in a test vector will cause the circuit to arrive at a different time frame and 

the search direction will change because of a change in the test vector. The mutation operator has 

little effect on fault coverage for most of the circuits. Figure 5.11 shows the effects of different 

mutation rate values on the s298 circuit. Results have little variation from one value to another. It 

is recommended that mutation occurs either at the beginning, or at the end of a population to 

explore much more search space. The default mutation rate of 0.01 shows good-enough results 

for most of the sequential circuits. 
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The number of test vectors is a crucial parameter. The s298 circuit has its highest fault coverage 

with about 144 test vectors in less than two seconds. These test vectors could cover nearly 88% 

of all faults. Random test pattern generation could find the same fault coverage with more than 

100,000 test vectors. The s35932 circuit has its highest fault coverage with about 197 test vectors 

in 4.3 minutes. These test vectors could cover nearly 87% of all faults. GA reduced the number 

of test vectors significantly which implies that GA-based test pattern generation is a perfect 

candidate to replace random test pattern generation for all types of sequential circuits.  

 

  

 

 

  

  

  

 

 

 

 

  

  
 

 

 
Figure  5.9: Fault Coverage for s298 circuit, rank selection. 
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Figure  5.8: Results of s298 circuit using rank selection (Left) and roulette wheel selection (Right). Different 

crossover schemes were used. 
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Figure  5.10: Fault coverage for s298 circuit, roulette wheel selection. 

  

 

 
Figure  5.11: Mutation effects on several sequential circuits. 
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5.4 Particle Swarm Optimization 

This section explains the implementation of BPSO in generating test sequences for sequential 

circuits. It presents an analysis of each parameter and its effects on testing time and fault 

coverage. In comparison with GA and BDE, BPSO has fewer parameters to optimize to reach the 

desired solution. The initial population is made up of randomly initialized particles. Particles 

revise their own velocity and position based on a predefined fitness function of its own and other 

particles in a population. In other words, particles modify their movement according to their own 

experience and their neighboring particle experience. Position and velocity are to be modified in 

each iteration of the PSO algorithm to find the optimum solution. Inertia weight w, is a key role 

in the process of providing balance between the exploration and exploitation processes. The 

inertia weight determines the contribution rate of a particle’s previous velocity to its velocity at 

the current time step. The basic PSO, presented by Eberhart and Kennedy in 1995 [42], has no 

inertia weight. In 1998, Shi and Eberhart [52] first presented the concept of inertia weight by 

introducing constant inertia weight [53]. Further improvements on the concept of inertia weight 

have been introduced afterwards. 

In binary coding PSO, each binary string represents a particle which is constructed of a series of 

test vectors. Velocity is defined as the probability of a bit to change from zero to one, or vice 

versa, which will help a particle to move to another location. The location might be a global 

optimum solution or another local optimum solution. The search space in BPSO is limited 

between zero and one. However, the length of a test sequence increases the size of the search 

space accordingly.  

5.4.1 Parametric Analysis 

Since the inputs, outputs and all other internal signals are discrete values, the following 

evolutionary equation, which is the two-binary coded discrete PSO, has been used: 

                                                                                

               
 
    

The sigmoid function is used to normalize the original velocity to be a value between 1 and 0: 
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where w is the inertia weight, w0 is the initial value of the inertia weight, wf is the final value of 

the inertia weight, T is the maximum iteration, rand is a random number between 0-1 with 

uniform distribution, and c1 and c2 are positive acceleration constants. Vi (vi1, vi2, …, vid) is the 

velocity of the particle, Xi (xi1, xi2,…, xid) is the current particle of the ith particle, Pi (pi1, pi2, …, 

pid) is the best visited position for the ith particle and Gi (gi1, gi2, …, gid) is the best position 

explored so far. The subscripts i,and j refer to particle number i and the particular bit j of that 

particle’s velocity, respectively. 

Inertia weight is used to balance the global and local search capabilities. It shows the effects of 

the previous velocity on the new velocity. A large weight facilitates a global search. That is, as 

velocity becomes larger, the particles move and search in more space. Thus, the ability to explore 

more regions of the search space increases. Conversely, a smaller weight facilitates a local search 

which means that the velocity becomes smaller and that benefits the current solution space to 

find a good solution. The search will be concentrated on a promising area to find a solution. 

Inertia weight w, needs to be well optimized to achieve balance and it is an application-

dependent value. 

Acceleration coefficients, c1 and c2, are better to be well adjusted to quantify the performance 

relative to the experience and neighbors, respectively. If c1 = 0, then we will have a social-only 

model which means that a particle does not have its own past performance. If c2 = 0, then we will 

have a cognition-only model which means that the neighbors’ experience is unknown and there 

is no sharing of information between particles. In this work, several values of c1 and c2 in the 

range 0–4 have been used and we reached the best solution set by using equal values for c1 and 

c2 of 2. 

The initial population affects the convergence rate. Generating test sequences randomly might 

increase the area of search space because of the difference in fitness value between particles. 

Since there is no selection mechanism in PSO, the population size is equal to the neighborhood 

size and all neighbors are fully connected with each other which means that the velocity is 

dynamically adjusted according to the particle’s personal best performance achieved so far and 

the best performance achieved so far by all the other particles. Lastly, the number of iterations 

depends on the size of a circuit and sequence length. In each iteration, PSO updates a set of 
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previously generated/evaluated test sequences, called particles, in terms of fitness and velocity. 

The particles will move to new position if they attain higher fitness value than previous ones.  

5.4.2 Results 

PSO for ATPG works as follows: an initial population of test sequences is generated randomly 

and applied to a sequential circuit. Initial velocities are generated in the range of 0-1 for each test 

sequence in the initial population. Each sequence is updated to fly to another position within a 

search space. If the fitness of the updated sequence is better than “gBest” or “pBest”, the updated 

sequence will replace the previous particle position with either “gBest” or “pBest”, and the 

velocity will be updated as well. When the stopping condition is met, which is either a full fault 

coverage or maximum iteration number, the set of global/local solutions for the targeted faults 

are the end results. 

The probability of losing a good gene within a sequence is very low because of the 

comparison/replacement scheme of particles. Each updated particle will move according to its 

own experience and the whole group experience within the search space. Consequently, the 

search mechanism is highly directed and guided. Thus, a particle, or particles, will move to areas 

of possible solutions quickly, efficiently and effectively. Figure 5.12 shows a search space in 2D 

which has the axes y1 and y2, i.e., the place we are going to look for the optimum solution, of a 

few particles after a few iterations for the sequential circuit s298. Each green square represents a 

particle at its local solution. A blue circle represents a best solution, or the global optimal 

solution. The oval shape represents areas of possible global optimal solutions. All particles 

within these oval shapes have high fitness values. Most of the particles outside these two circles 

have relatively small fitness values. The length of arrows delineates how much a particle’s 

fitness value has improved.  

 
Figure  5.12: A part of the search space for the s298 circuit 
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The overall results of using PSO in ATPG are very encouraging and promising. Faults coverage 

was high in most of the tested sequential circuits and testing time was advantageous over other 

evolutionary algorithms. Figure 5.13 shows the fault coverage of the s298 circuit by 

implementing PSO. The variation in results is low and the difference between the highest 

detected fault and the lowest detected fault is only a few faults which implies that the reliability 

of this method is high. Figure 5.14 shows fault coverage for a larger circuit. The fault coverage 

obtained by PSO for all CUTs in this work is high and all easy-to-detected faults were covered in 

a short time period with the fewest possible test vectors. PSO detects 86.3% of the faults for the 

s35932 circuit in 1 minute 14 seconds, which is considered a major improvement and advantage 

compared to other ATPG algorithms. Since PSO relies on sequence manipulation, increasing the 

sequence length results in increasing the fault simulation time. As an example, the sequential 

s349 circuit has 9 inputs, PSO-based test generator detects 98% of the total faults in 0.1 seconds 

with a sequence length of 9. As the sequence length was doubled to 18, the fault coverage did not 

improve and it stayed at 98% while the fault simulation time increased to 0.445 seconds. 

Sequence length must be kept as low as possible because updating the bit string will double the 

testing time a factor of 2 or even higher. However, sequence length needs to be well determined 

to allow the circuit to arrive at the targeted state and thus the fault effects arrive at either a PPO 

or PO. Figure 5.15 shows the effects of increasing sequence length on testing time and the fault 

coverage on the circuit s1196. The sequence length was doubled while keeping other parameters 

at their lower values. On the other hand, reducing the sequence length to be equal to the PIs will 

reduce the fault simulation time by approximately 2%. Initial population is another key 

parameter that has a direct impact on testing time which is shown in Figure 5.16. However, the 

effects on testing time that come from initial population is lower than the effects that come from 

sequence length and number of iterations. 
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Figure  5.13: Fault coverage of the s298 circuit using the PSO-based test generator, max detected fault = 272, min 

detected fault = 257. 

 

 
Figure  5.14: Fault coverage of the s35932 circuit using the PSO-based test generator, max detected fault = 33730, 

min detected fault = 32178. 

 

It is recommended to start with a low iteration value and increase it proportionally with the size 

of a circuit to avoid unnecessary computational overhead. The doubled sequential depth value 

was used as an initial iteration value, and then it was modified as needed. In fact, setting the 

sequential depth value of each circuit as a progressive limit and doubling the sequence length 

shows high, but not the highest, fault coverage results. Figure 5.17 shows the effects of 

increasing the number of iteration of fault coverage and testing time 
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Figure  5.15: Sequence length effects on testing time and fault coverage for the s1196 circuit. 

 

 
Figure  5.16: Initial population effects on testing time and fault coverage for the s1196 circuit. 

 
Figure  5.17: Number of iteration effects on testing time and fault coverage for the s1196 circuit. 
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5.5 Differential Evolution 

Binary coded differential evolution (BDE) has been implemented in several applications [66-69], 

and [71]. BDE in ATPG for sequential circuits aims to limit the search space in the range [0-1]. 

It starts with a randomly generated initial population and each individual is evaluated through a 

fitness function. A new population is then generated through the process of crossover and 

mutation according to a mutation strategy. The BDE algorithm used in this work is explained in 

Figure 5.18. 

 
Figure  5.18: Binary DE algorithm (BDE). 

 

The binary mutation strategy is driven from the original differential mutation in addition to the 

mutation operator from GA. Figure 4.11 shows the original differential mutation and we treat 

each variable as follows: 

 X3 is the parent vector that has the highest fitness value in the current generation. 

 X1, X2 are chosen randomly from the current population. 

 F is the scale factor which has an effect on the difference between the particles (X1, X2).  

The resultant mutant vector comes from the following: 

                     

The binary mutation strategy is slightly different since there are eight combinations of three 

binary variables. The mutation operation is performed as follows [81]: 

 If X3 equals zero and X1 equals X2, then the result of mutation equals zero. 

 If X3 equals one and X1 equals X2, then the result of mutation equals one. 

 If X3 equals zero and X1 is different from X2, then X3 will mutate to 1 - X3 with some 

probability. 
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 If X3 equals one and X1 is different from X2, then X3 will mutate to 1 - X3 with some 

probability. 

Table 5.3 summarizes the four mutation rules. 

 
Table  5.3: Mutation strategy. 

 

The crossover operator is used to build the trial vector from the mutant vector and the candidate 

vector. It is used to produce a fitter offspring. There are two main types of crossover in DE: 

binomial and exponential. Binomial is similar to uniform crossover used in GA where at least 

one component is taken from the mutant vector. This type of crossover is neglected in this work. 

On the other hand, exponential crossover is similar to two-point crossover used in GA where the 

first-cut point is randomly selected and the second-cut point is determined such that L 

consecutive components are taken from the mutant vector.  

In this work, mutation and crossover is repeated for all NP members of the current generation. 

Next, we evaluate the fitness function for each of the trial vectors, test sequences, and compare 

each vector’s fitness value with the fitness value of the candidate from the previous generation. If 

the trial fitness function value is higher than that produced by the candidate vector, then the trial 

vector replaces the candidate vector, otherwise the candidate vector will survive to the next 

generation.  

5.5.1 Parametric Analysis 

 In binary DE, there are a few parameters to analyze, including NP, CR and PF. It should be 

noticed that NP should be at least four individuals because three test sequences are needed to 

create a mutant vector and one test sequence is needed for the crossover operation. Increasing 

population size, NP, or test sequence length, leads to increasing the search space which leads to 

more exploration and the probability of finding a global optimum solution increase as a result. 

However, testing time increases in DE due to increasing the search space. In BDE, search space 



54 

 

is limited in the range 0-1. However, since the sequential circuits need a series of test sequences 

of different lengths for fault detection, the search space increases accordingly.   

As mentioned earlier, three test sequences are needed for mutation and they can be chosen 

randomly or one test sequence can be one of the best test sequences in a population. Choosing 

one of the best test sequences for mutation helps strong genes to survive to next generations, 

while randomness in choosing the test sequences increases the probability of losing strong genes 

because weak test sequences might compete together. This work always assigned the best 

individual of the current population to be one of the three test sequences to help guide the search 

process towards areas of possible solutions. Choosing a suitable mutation strategy is what 

determines the effectiveness of BDE in ATPG. Several mutation strategies have been discussed 

in chapter 3. The adopted strategy in this work has shown good results with the literature, beside 

its simple implementation [81].    

A predefined rate PF, was added to the mutation strategy to determine which bit will be mutated 

in some cases. This rate was kept random to allow for diversity. It is important to not allow 

copying of a test sequence by mutation or crossover. This case has rarely happened after crossing 

the mutant vector with the target vector where the resultant vector was the exact same previous 

target vector. 

The fitness function is a major parameter in all evolutionary algorithms. It aims to measure the 

quality of a candidate vector to detect faults or propagate fault effects to flip-flops. The problem 

of measuring the fitness of a candidate vector in ATPG is that it is not a straightforward 

calculation; each test vector/test sequence must be fully simulated before calculating its fitness. 

The testing time is the total simulation time plus calculation time. The fitness time used in this 

work is similar in all the sections of this paper. However, it is recommended to modify the 

fitness function to reach higher coverage.  

5.5.2 Results 

BDE was able to detect most of the easy-to-detect stuck-at faults. The overall performance was 

not as expected. The testing time was noticeably high, especially in large circuits such as the 

s35932 circuit with 6.6 minutes and the fault coverage was not maximized. On the other hand, 

the fault coverage in small-scaled sequential circuits was relatively high as demonstrated with 

the s298 circuit in Figure 5.19. In this work, the testing time, which is proportional to the 

sequence length, was mostly consumed by the mutation strategy. The adapted mutation strategy 
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increased the computational overhead with larger circuits while the computational overhead 

remained within the expected range with small-scaled circuits.  

 
Figure  5.19: Fault coverage of the s298 circuit using the DE-based test generator. Maximum faults detected = 271 

(87.987%), minimum faults detected = 255 (82.792%). 

 

The implementation of BDE is easier than other evolutionary algorithms with fewer parameters 

to set. Setting parameter values appropriately was not a difficult issue. It was better to keep the 

CR value as high as possible and make the scale factor F close to 0.5, if needed. The challenge 

comes from having a binary mutation strategy that is able to reduce the testing time. 

5.6 Conclusion 

This chapter focused on representing a complete analysis of several optimization algorithms on 

ATPG for sequential circuits. All the three test generators were implemented around the 

sequential circuit fault simulator HOPE [59] in the C language. Test results were achieved 

assuming that the initial state of all flip-flops were known and set to zero. The results showed the 

best fault coverage obtained to illustrate the capability of an optimization algorithm to explore a 

search space. Graphs of fault coverage of several sequential circuits showing the result variations 

are in Appendices A-D. Table 5.4 shows the number of faults detected and the number of test 

vectors for all three optimization algorithms. PSO was able to detect more faults than the other 

algorithms in most of the sequential circuits, while GA and DE have similar results. Testing 

time, which was reported in a previous chapter, was lower in PSO than in both GA and DE.  
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Table  5.4: Results for all three optimization algorithms. 

 

Testing time has a significant and direct impact on the final product profits, which is a major 

concern in the industry. It must be reduced to a minimum without affecting any other factors, and 

it takes the highest priority over other factors. PSO has shown better performance in the shortest 

time. Fault coverage obtained depends on the nature of faults, fault simulator and the ATPG 

algorithm. The optimization algorithms, in general, show high effectiveness in detecting all 

testable faults in low testing time with a relatively small number of test vectors. Figure 5.20 

shows the relationship between fault detection and test vector generation over time t. 

 
Figure  5.20: Fault detection as a function of time. 

 

The first test vectors/sequences applied to a sequential circuit are supposed to initialize all flip-

flops to a known state. In this work, all flip-flops are initialized before by a control signal and no 

test sequences were generated for initialization purposes. The fault detection starts at its 

maximum rate, then the detection rate decays over time because of the fault dropping, which 

means any detected fault will be dropped out of the fault list. Fault detection will stop at time t 
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once it reaches the hard-to-detect faults region. Optimization algorithms are the best candidates 

to operate in easy-to-detect faults regions. However, the performance was weak in hard-to-detect 

faults regions which require non-simulation-based algorithms to effectively search for test 

sequences.  

PSO shows superiority in performance over other optimization algorithms, as seen in Figure 

5.21, and it is expected that SI algorithms will show similar results because of similarities in the 

search mechanism which is highly guided since it lets a particle rely on its own experience as 

well as the whole group experience. In contrast, the GA search mechanism lets individuals move 

to optimum solutions as a group which leads to incremental increases in testing time which 

concludes that GA is slower than PSO. In GA, the fitness value of the whole population is 

necessary to keep the fitness value of the successive generations increasing. In this work, a 

condition was added to the initial generation to measure its overall fitness before proceeding to 

the next generation. Although DE is nearly similar to GA, DE would perform better with a 

suitable mutation strategy. DE parameters do not require significant modification, which is 

necessary in GA, and is considered an advantage of DE over GA. Lastly, this work emphasizes 

the substantial performance of PSO to generate test vectors/sequences for synchronous 

sequential circuits. 

 
Figure  5.21: Comparison between several circuits of optimization algorithms performance. 
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Chapter 6: Conclusions and Future Work 

This thesis facilitated developing a solution that can reduce the extensive efforts to find effective 

solutions to generate test sequences for sequential circuits. Optimization algorithms offer 

attractive results in generating test vectors/sequences for sequential circuits by optimizing the 

search space and guiding the searching process to effectively search for solutions in short time 

periods. Although this research obtained high fault coverage for most of the sequential circuits 

by carefully analyzing and modifying the algorithms’ parameters, rather methods will not 

completely solve ATPG for sequential circuits because of the continuous advancement being 

made in technology. However, optimization algorithms, especially PSO, show a noteworthy 

indication that it has a significant capability to search for the optimum test sequence set. The 

conclusion of this thesis emphasizes the high efficiency of the PSO algorithm over other 

evolutionary algorithms to solve ATPG for sequential circuits. Several recommendations were 

mentioned in the earlier chapter to optimize the results of PSO in generating test vectors which 

can be carried out in future work. The GA has a slower searching mechanism and its parameters 

require a lot of alternation. We found that one-point crossover and two-point crossover increased 

the fault coverage for most of the circuits, while uniform crossover caused the searching process 

to be more randomized. The mutation operator in GA had little effect on the overall results and it 

is recommended to choose a low mutation value. One advantage of using GA in ATPG is that it 

gives more controllability of the searching process since it has many parameters. As an example, 

the mutation operator may allow searching, if implemented properly, to move from one local 

optimum to another local optimum to explore more search space. DE must have a proper binary 

mutation strategy that does not add significant computation overhead when it operates with long 

test sequences in large sequential circuits. The mutation strategy needs to have a mutant rate that 

excludes a part of the test sequence from being mutated to reduce the testing time. Otherwise, the 

testing time will increase rapidly as the length of the test sequence increases. 

Evolutionary algorithms (EA’s) show an increase in testing time for all sequential circuits while 

swarm intelligence (SI) shows an optimized testing time and higher fault coverage due to the 

nature of the searching process. The results of PSO, as a representative of SI, in ATPG raise the 

significance of implementing other SI-based algorithms in ATPG, such as Ant Colony.  
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6.1 Future Work 

Based on the results of this thesis, some of the studies and experiments that can be performed in 

the future are summarized in the following: 

- Use a Hybrid PSO to improve the accuracy and increase the fitness of the early 

generations. I suggest implementing GA-PSO to take advantage of the selection operator 

to eliminate weak particles in the early generations. 

- Implement parallelism in PSO to increase convergence rate. Two groups of faults can be 

detected at the same time. This will add complexity to the PSO implementation but it will 

significantly reduce the testing time. 

- Improve DE with another improved mutation strategy. Always consider the test sequence 

length since it may increase the computational overhead and reduce the convergence rate. 

- Since the parameters of the GA require a large amount of modification, it is crucial to 

find optimum values for all parameters that can work with the majority of sequential 

circuits. This could be achieved through either clustering or categorizing sequential 

circuits based on specific standards and then match each cluster/category with each set of 

parameter values.  

- Evaluate the fitness functions to see their effectiveness in measuring the quality of a test 

sequence should be performed by future researchers because of the major impact of the 

fitness functions on the quality of the testing algorithms.  
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 Appendix A 

Random Test Generator 

The following graphs show the performance of adapting random test generators in ATPG. It is clear that 

the number of test vectors will easily exceed one million to obtain a reasonable fault coverage value. 

Hence, this type of test generator is inefficient and unreliable. 
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Figure  A.1: Fault coverage (Average) for several sequential circuits. (a) Min = 39.5%, Max = 98.5%. (b) Min = 

50%, Max = 98%. (c) Min = 6.3%, Max = 42.1%.  (d) Min = 40.2%, Max = 100%.  (e) Min = 37%, Max = 86.9%.  

(f) Min = 35.6%, Max = 82.3%.  (g) Min = 23.7%, Max = 99.1%.  (h) Min = 10%, Max = 99.8%. 
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 Appendix B 

GA-based Test Generator 

The following graphs represent the performance of GA-based test generators in ATPG. Each graph shows 

the fault coverage of one circuit with three different crossover schemes and rank selection operator. The 

boxplots help to show the data vibrations of 10 runs of a test. Several outliers occurred because of the 

effects of losing good genes on the earlier generations.   
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Figure  B.1: Fault coverage for several sequential circuits using GA-based test generator – rank selection with 

different crossover methods. 
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The following graphs represent the performance of GA-based test generators in ATPG. Each graph shows 

the fault coverage of one circuit with three different crossover schemes and roulette wheel selection 

operator. The boxplots help to show the data vibrations of 10 runs of a test. Several outliers occurred 

because of the effects of losing good genes on the earlier generations.   
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Figure  B.2: Fault coverage for s35932 using GA-based 

test generator – Rank Selection with different crossover 

methods. 

Figure  B.3: Fault coverage for several sequential circuits using GA-based test generator – roulette wheel selection 

with different crossover methods. 
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Figure  B.4: Fault coverage for several sequential circuits using GA-based test generator – roulette wheel selection 

with different crossover methods. 
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The following graphs aim to show the performance of one-point crossover, two-point crossover and 

uniform crossover. The uniform crossover has the least performance in all circuits except s1196. 

Although we used two different selection operators, the comparison between crossover techniques was 

identical.   
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Figure  B.5: Comparison between three crossover methods with rank selection (Results are in ascending order). 
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Figure  B.6: Comparison between three crossover methods with roulette wheel selection (Results are in ascending 

order). 
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 Appendix C 

PSO-based Test Generator 

The following graphs show the fault coverage of several sequential circuits. High fault coverage 

was obtained without any outliers which implies the accuracy and efficiency of search process in 

PSO. 

 

 
Figure  C.1: Fault coverage of several sequential circuits using PSO-based test generator. 
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 Appendix D 

DE-based Test Generator 

The following graphs show the performance of DE-based test generator in ATPG. The obtained 

fault coverage was lower than other methods. However, improvements can be obtained by 

implementing higher effective mutation strategy.  

 

 
Figure  D.1: Fault coverage of several sequential circuits using DE-based test generator. 
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