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Abstract

External beam radiotherapy (EBRT) utilizes high energy radiation (primarily pho-

tons or electrons) generated from a linear accelerator (linac) for the treatment of

cancer. Current linac technologies lack the ability to continuously monitor the tu-

mour and surround area during treatment. Real-time imaging in combination with

EBRT is ideal, as it can allow for adaptive radiotherapy, or advanced gating to reduce

the radiation damage to healthy surrounding tissues and organs at risk. To achieve

this, several groups around the world have developed systems that combine a linac

with a magnetic resonance imaging (MRI) system (LMR). In fact, many LMRs have

already been installed around the world and have already started clinical trials. With

the increasing popularity of LMR systems, real-time MR imaging is becoming an

important aspect for achieving adaptive radiotherapy or advanced gating techniques.

Real-time on-the-fly MRI presents a challenge, given the length of time it takes to

acquire fully sampled MR data. Speeding up the acquisition can be achieved via the

undersampling of k-space; however, this violates the Nyquist criterion resulting in

aliasing artefacts occurring through the reconstructed image. Therefore, there exists

a trade-off between image quality and image acquisition speed. The work presented

within this thesis investigates MR image reconstruction techniques that are able to

speed up the data acquisition (via k-space undersampling), while preserving the image

fidelity; allowing for real-time MRI. In particular, this work focuses on image recon-

struction for patients with non-small cell cancer (lung tumours), as this provides a

challenging scenario of tracking a tumour during involuntary breathing motion.

Two novel techniques were developed for real-time MR imaging. Compressed sens-

ing principal component analysis (CS-PCA), which uses an incoherent phase encoding
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scheme to undersample k-space. Principal component analysis is conducted on previ-

ously acquired data, to generate principal components that are used to fill the missing

k-space in order to rapidly reconstruct undersampled data in under 10 ms per im-

age. Secondly, 3D convolutional neural networks (CNNs) were used to reconstruct

undersampled data. Two phase encoding schemes were investigated, incoherent un-

dersampling and coherent low-resolution undersampling. A CNN was trained for each

patient individually, making it—what we have termed—a patient-specific CNN. The

CNN utilized a cascading network of convolutional layers and data consistency lay-

ers for reconstruction. Training the CNN took approximately 6 hours to using our

hardware, which consisted of an Intel Xeon E5-2650 CPU and NVIDIA GTX 1080Ti

GPU. The image reconstruction time using the trained CNN parameters was less than

65 ms per image.
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Preface

The work presented within this thesis is the original work of Bryson Dietz. Dr. Eugene

Yip previously acquired the patient data used to evaluate my image reconstruction

techniques. Dr. Jihyun Yun developed an auto-contouring software that was used

to quantitatively evaluate the image reconstruction segmentability. The manuscript

co-authors provided guidance and comments for the published manuscripts.

Chapter 1 provides introductory background for radiotherapy and the various im-

age guided technologies currently available and the benefits for the use of linac-MR

systems. Chapter 2 outlines the pertinent theory including the basic physics of mag-

netic resonance imaging, as well as the current real-time reconstruction techniques

such as principal component analysis, compressed sensing, and convolutional neural

networks. Chapter 3 describes a real-time MR reconstruction technique that utilizes

incoherent sampling and principal component analysis (PCA), which has been pub-

lished as a first authored paper in the journal Medical Physics. Chapter 4 details a

real-time MR reconstruction technique that utilizes 3D convolutional neural networks

(CNNs). This work has been published as a first authored paper in the journal Physics

in Medicine and Biology. Chapter 5 investigates the use of a coherent low-resolution

phase encoding scheme for CNN reconstruction. The coherent-LR phase encoding

scheme is compared to the incoherent scheme presented in the CNN reconstruction
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in Chapter 4. This work has been published as a first authored paper in the journal

Physics in Medicine and Biology. Chapter 6 investigates the effects of translational

and rotational shifts on the CNN reconstruction image quality. We intend to publish

this work in the future. Chapter 7 presents the conclusion and possible future work.

Furthermore, during my literature review of real-time image reconstruction it be-

came evident that there was some confusion surrounding the nomenclature of the

term “real-time”. This resulted in a published first authored letter discussing this

issue in the journal Magnetic Resonance in Medicine, and is included in Appendix A.

Appendix B contains a step-by-step example of the patient-specific convolutional

neural network investigated in Chapter 4.

v



To my wife, Kayla.

vi



Acknowledgments

Throughout the duration of my PhD I have accomplished many milestones in my life.

The most important of which being, getting married to my wife Kayla and having

my son Milo.

Earning a PhD, as I have learnt, demonstrates that one has the ability to persevere.

Getting papers published in reputable journals is not an easy feat, and it could not

have been possible without the guidance and help from my exemplary supervisors Dr.

Keith Wachowicz and Dr. Gino Fallone. Their keen eye to quality research are what

propelled my academic career swiftly. A big thank you to my committee/candidacy

members: Dr. Satyapal Rathee, Dr. Jonathan Sharp, Dr. Nicola De Zanche, Dr.

Boguslaw Tomanek, who always asked insightful questions. I would also like to thank

my external examiner Dr. Ian Cameron for critiquing my thesis.

I would like to acknowledge everyone who has helped me along the way.

vii



Contents

Abstract ii

Preface iv

Dedication vi

Acknowledgments vii

List Of Tables xv

List Of Figures xix

List of Abbreviations xx

1 Introduction 1

1.1 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 External Beam Radiotherapy . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 A Brief History of Linear Accelerators . . . . . . . . . . . . . 4

1.3.2 Prevalence of EBRT in Cancer Treatment . . . . . . . . . . . 6

1.3.3 Radiotherapy Treatment Margins . . . . . . . . . . . . . . . . 7

1.3.4 Current State of External Beam Radiotherapy . . . . . . . . . 8

viii



1.3.5 Image Guidance for External Radiotherapy . . . . . . . . . . . 9

1.4 Linac-MR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Real-time MR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Theory 18

2.1 Magnetic Resonance Imaging (MRI) . . . . . . . . . . . . . . . . . . 18

2.1.1 NMR Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Bloch Equations . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.3 Signal Excitation and Detection . . . . . . . . . . . . . . . . . 26

2.1.4 Signal Localization . . . . . . . . . . . . . . . . . . . . . . . . 30

Slice Selection Gradient . . . . . . . . . . . . . . . . . . . . . 31

Frequency Encoding Gradient . . . . . . . . . . . . . . . . . . 32

Phase Encoding Gradient . . . . . . . . . . . . . . . . . . . . 34

2.1.5 K-space Acquisition . . . . . . . . . . . . . . . . . . . . . . . . 35

Signal Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 35

k-space Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.6 Rapid MR Imaging . . . . . . . . . . . . . . . . . . . . . . . . 37

Spin Echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Gradient Echo . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Balanced Steady State Free Precession (bSSFP) . . . . . . . . 40

2.1.7 Noise & Contrast . . . . . . . . . . . . . . . . . . . . . . . . . 43

Signal to Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . 43

Contrast to Noise Ratio . . . . . . . . . . . . . . . . . . . . . 45

2.1.8 K-space Undersampling . . . . . . . . . . . . . . . . . . . . . 45

Nyquist Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 46

Coherent Undersampling: Parallel Imaging . . . . . . . . . . . 47

ix



Incoherent Undersampling: Compressed Sensing . . . . . . . . 49

2.2 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . . . . 52

2.3 Artifical Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.1 Brief Historical Introduction . . . . . . . . . . . . . . . . . . . 56

2.3.2 Modern Neural Networks . . . . . . . . . . . . . . . . . . . . . 57

2.3.3 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . 60

ReLU Activation Function . . . . . . . . . . . . . . . . . . . . 63

Training an Artificial Neural Network . . . . . . . . . . . . . . 65

Optimization of the Neural Network . . . . . . . . . . . . . . 67

2.3.4 Artificial Neural Network Models . . . . . . . . . . . . . . . . 68

2.3.5 Convolutional Neural Networks for MRI . . . . . . . . . . . . 71

3 Compressed Sensing and Principal Component Analysis (CS-PCA) 73

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.1 Incoherent Sampling . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.2 Offline PCA Development . . . . . . . . . . . . . . . . . . . . 77

3.2.3 Online Real-Time Application of PCA for Undersampled Re-

construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2.4 Retrospective in vivo data . . . . . . . . . . . . . . . . . . . . 81

3.2.5 MRI data acquisition . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.6 Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 83

3.2.7 Split Bregman Compressed Sensing . . . . . . . . . . . . . . . 83

3.3 Quantitative Reconstruction Metrics . . . . . . . . . . . . . . . . . . 85

3.3.1 CS-PCA Parameters . . . . . . . . . . . . . . . . . . . . . . . 85

3.3.2 Dice Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . 85

x



3.3.3 Normalized Mean Square Error (Artifact Power) . . . . . . . . 86

3.3.4 Root Mean Square Error . . . . . . . . . . . . . . . . . . . . . 87

3.3.5 Structural Similarity Index . . . . . . . . . . . . . . . . . . . . 87

3.3.6 Mean Absolute Percentage Error . . . . . . . . . . . . . . . . 88

3.3.7 Centroid Displacement . . . . . . . . . . . . . . . . . . . . . . 88

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4.1 CS-PCA Parameters . . . . . . . . . . . . . . . . . . . . . . . 89

3.4.2 Temporal Evolution . . . . . . . . . . . . . . . . . . . . . . . . 90

3.4.3 Dice Coe�cients and Centroid Displacement . . . . . . . . . . 92

3.4.4 Image Evaluation via Quantitative Metrics . . . . . . . . . . . 93

3.4.5 Visual Comparison . . . . . . . . . . . . . . . . . . . . . . . . 95

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.5.1 Dynamic PCA Image Reconstruction . . . . . . . . . . . . . . 95

3.5.2 Individual Patient Data . . . . . . . . . . . . . . . . . . . . . 96

3.5.3 Clinical Implementation . . . . . . . . . . . . . . . . . . . . . 97

3.5.4 E�ect of Increasing Acceleration . . . . . . . . . . . . . . . . . 99

3.5.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4 Real-Time MR Image Reconstruction using Convolutional Neural

Networks 102

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2.1 Neural Network Image Reconstruction . . . . . . . . . . . . . 106

4.2.2 Neural Network Parameters . . . . . . . . . . . . . . . . . . . 110

4.2.3 Retrospective Data Analysis . . . . . . . . . . . . . . . . . . . 112

xi



CNN Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2.4 Prospective Data Analysis . . . . . . . . . . . . . . . . . . . . 114

CNN Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.2.5 Quantitative reconstruction metrics . . . . . . . . . . . . . . . 117

Dice Coe�cient . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Centroid Displacement . . . . . . . . . . . . . . . . . . . . . . 118

Normalized Mean Square Error . . . . . . . . . . . . . . . . . 118

Peak Signal to Noise Ratio . . . . . . . . . . . . . . . . . . . . 119

Autocontouring . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.3.1 Hyperparameter Selection . . . . . . . . . . . . . . . . . . . . 120

4.3.2 Tumour Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.3.3 Retrospective Analysis . . . . . . . . . . . . . . . . . . . . . . 121

Dice Coe�cient (DC) . . . . . . . . . . . . . . . . . . . . . . . 122

Centroid Displacement . . . . . . . . . . . . . . . . . . . . . . 123

Normalized Mean Square Error (NMSE) . . . . . . . . . . . . 124

Peak Signal to Noise Ratio (PSNR) . . . . . . . . . . . . . . . 124

Structural Similarity Index (SSIM) . . . . . . . . . . . . . . . 124

4.3.4 Qualitative Prospective Artifacts . . . . . . . . . . . . . . . . 125

4.3.5 Reconstruction and Training Time . . . . . . . . . . . . . . . 126

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5 Low Resolution Phase Encoding for Real-Time CNN Reconstruc-

tion 134

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

xii



5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2.1 Convolutional Neural Network . . . . . . . . . . . . . . . . . . 137

5.2.2 CNN Hyperparameter Optimization . . . . . . . . . . . . . . . 139

5.2.3 Tumour Segmentation via Autocontouring . . . . . . . . . . . 139

5.2.4 Retrospective Data Analysis . . . . . . . . . . . . . . . . . . . 140

5.2.5 Prospective Data Analysis . . . . . . . . . . . . . . . . . . . . 141

5.2.6 Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . . 142

Dice Coe�cient . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Centroid Displacement . . . . . . . . . . . . . . . . . . . . . . 142

Structural Similarity Index . . . . . . . . . . . . . . . . . . . . 143

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.3.1 CNN Hyperparameter Search . . . . . . . . . . . . . . . . . . 143

5.3.2 Retrospective CNN Analysis . . . . . . . . . . . . . . . . . . . 144

Dice Coe�cient . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Centroid Displacement . . . . . . . . . . . . . . . . . . . . . . 147

Structural Similarity Index . . . . . . . . . . . . . . . . . . . . 148

5.3.3 Prospective CNN Analysis . . . . . . . . . . . . . . . . . . . . 149

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6 Investigation into robustness of CNN reconstruction with respect to

patient shifts and rotations 156

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.2.1 MRI Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.2.2 Convolutional Neural Network . . . . . . . . . . . . . . . . . . 158

xiii



6.2.3 Shifts and Rotations . . . . . . . . . . . . . . . . . . . . . . . 159

6.2.4 Quantitative Metrics . . . . . . . . . . . . . . . . . . . . . . . 160

Dice Coe�cient . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Structural Similarity Index . . . . . . . . . . . . . . . . . . . . 161

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.3.1 Dice Coe�cient . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.3.2 Structural Similarity Index (SSIM) . . . . . . . . . . . . . . . 162

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7 Conclusion and Future Work 167

Bibliography 172

Appendices 192

A Real-time Nomenclature 193

B CNN Diagram 197

xiv



List of Tables

4.1 Tumour Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.1 Tumour Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

xv



List of Figures

1.1 Radiotherapy treatment margins . . . . . . . . . . . . . . . . . . . . . 7

1.2 Linac-MR system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Zeeman splitting of spin 1/2 system. . . . . . . . . . . . . . . . . . . 21

2.2 Geometrical derivation of the Larmor equation . . . . . . . . . . . . . 22

2.3 Sinc B1 pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Example of spin-echo refocusing . . . . . . . . . . . . . . . . . . . . . 28

2.5 Schematic of gradient coils . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Schematic of slice selection . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Schematic of frequency encoding . . . . . . . . . . . . . . . . . . . . . 33

2.8 Schematic of frequency acquisition . . . . . . . . . . . . . . . . . . . . 34

2.9 Schematic of phase encoding gradient . . . . . . . . . . . . . . . . . . 35

2.10 Spin echo (SE) pulse sequence diagram . . . . . . . . . . . . . . . . . 38

2.11 Gradient echo (GRE) pulse sequence diagram . . . . . . . . . . . . . 40

2.12 Schematic of signal generation in an SSFP sequence . . . . . . . . . . 41

2.13 Balanced Steady State Free Precession (bSSFP) pulse sequence diagram 43

2.14 Nyquist aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.15 GRAPPA schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.16 Incoherent aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xvi



2.17 Casorati matrix transformation . . . . . . . . . . . . . . . . . . . . . 53

2.18 Schematic of simple NN . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.19 Arti�cial neural network diagram . . . . . . . . . . . . . . . . . . . . 59

2.20 Simple NN to showcase backpropagation . . . . . . . . . . . . . . . . 62

2.21 Sigmoid activation and vanishing gradient . . . . . . . . . . . . . . . 64

2.22 Plot of the ReLU activation function . . . . . . . . . . . . . . . . . . 65

2.23 Schematic of dense and convolutional layers . . . . . . . . . . . . . . 69

2.24 Various convolutional operations . . . . . . . . . . . . . . . . . . . . . 72

3.1 Example of pseudo-randomly incoherent phase encoding . . . . . . . 78

3.2 CS-PCA 
ow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 Principal components . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 CS-PCA parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5 CS-PCA temporal evolution . . . . . . . . . . . . . . . . . . . . . . . 91

3.6 CS-PCA average centroid displacement and Dice coe�cient . . . . . . 92

3.7 Temporal evolution of the centroid displacement . . . . . . . . . . . . 93

3.8 CS-PCA quantitative metrics . . . . . . . . . . . . . . . . . . . . . . 94

3.9 CS-PCA qualitative comparison . . . . . . . . . . . . . . . . . . . . . 95

3.10 CS-PCA artefact demonstration . . . . . . . . . . . . . . . . . . . . . 97

3.11 CS-PCA patient data . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.12 Presence of increased artefacts over time . . . . . . . . . . . . . . . . 100

4.1 Cascading CNN architecture . . . . . . . . . . . . . . . . . . . . . . . 110

4.2 Phase encode scheme used for CNN reconstruction . . . . . . . . . . 111

4.3 Non-small cell lung cancer patients used for retrospective analysis . . 112

4.4 Through-slice eddy-current correction . . . . . . . . . . . . . . . . . . 116

4.5 CNN parameter space . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xvii



4.6 CNN retrospective reconstruction . . . . . . . . . . . . . . . . . . . . 122

4.7 CNN DC results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.8 CNN centroid displacement results . . . . . . . . . . . . . . . . . . . 125

4.9 CNN noise metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.10 Prospective CNN reconstruction . . . . . . . . . . . . . . . . . . . . . 127

4.11 Prospective CNN reconstruction . . . . . . . . . . . . . . . . . . . . . 128

4.12 Comparison of CS-PCA and CNN techniques . . . . . . . . . . . . . 130

4.13 Comparison of CS-PCA and CNN centroid displacement . . . . . . . 131

4.14 CNN reconstruction time . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.1 Undersampling schemes . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2 K-Fold cross validation . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.3 CNN hyperparameter optimization for coherent-LR undersampling . . 144

5.4 CNN reconstruction Dice coe�cient results for incoherent and coherent-

LR undersampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.5 CNN percent change From incoherent to coherent-LR phase encoding 146

5.6 Worst case DC for incoherent and coherent-LR CNN reconstruction . 147

5.7 Segmentation centroid results for incoherent and coherent-LR under-

sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.8 SSIM results for incoherent and coherent-LR undersampling . . . . . 149

5.9 Prospective CNN reconstruction for incoherent and coherent-LR un-

dersampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.10 Non-small cell lung cancer patients tumour motion . . . . . . . . . . 154

6.1 CNN robustness to translational shifts . . . . . . . . . . . . . . . . . 162

6.2 CNN robustness to rotational shifts . . . . . . . . . . . . . . . . . . . 163

6.3 SSIM of the rotated and shifted CNN reconstructions . . . . . . . . . 164

xviii



6.4 E�ects of rotations on CNN reconstruction . . . . . . . . . . . . . . . 165

B.1 First Convolution, First Data Consistency Step . . . . . . . . . . . . 197

B.2 Second Convolution, First Data Consistency Step . . . . . . . . . . . 198

B.3 Third Convolution, First Data Consistency Step . . . . . . . . . . . . 198

B.4 Fourth Convolution, First Data Consistency Step . . . . . . . . . . . 199

B.5 Aggregated Convolution, Residual Data, and Data Consistency Images 199

B.6 First Convolution, Second Data Consistency Step . . . . . . . . . . . 200

B.7 Second Convolution, Second Data Consistency Step . . . . . . . . . . 200

B.8 Third Convolution, Second Data Consistency Step . . . . . . . . . . . 201

B.9 Fourth Convolution, Second Data Consistency Step . . . . . . . . . . 201

B.10 Aggregated Convolution, Residual Data, and Data Consistency Images 202

B.11 First Convolution, Third Data Consistency Step . . . . . . . . . . . . 202

B.12 Second Convolution, Third Data Consistency Step . . . . . . . . . . . 203

B.13 Third Convolution, Third Data Consistency Step . . . . . . . . . . . 203

B.14 Fourth Convolution, Third Data Consistency Step . . . . . . . . . . . 204

B.15 Aggregated Convolution, Residual Data, and Data Consistency Images 204

B.16 First Convolution, Fourth Data Consistency Step . . . . . . . . . . . 205

B.17 Second Convolution, Fourth Data Consistency Step . . . . . . . . . . 205

B.18 Third Convolution, Fourth Data Consistency Step . . . . . . . . . . . 206

B.19 Fourth Convolution, Fourth Data Consistency Step . . . . . . . . . . 206

B.20 Aggregated Convolution, Residual Data, and Data Consistency Images 207

xix



List of Abbreviations

AAPM American Association of Physics in Medicine

ACS Auto Calibration Signal

bSSFP Balanced Steady State Free Precession

BW Bandwidth

CBCT Cone Beam Computed Tomography

CCI Cross Cancer Institute

CNN Convolutional Neural Network

CNR Contrast to Noise Ratio

CPU Computer Processing Unit

CS Compressed Sensing

CS-PCA Compressed Sensing Principal Component Analysis

CTV Clinical Treatment Volume

DC Dice Coe�cient

DCT Discrete Cosine Transform

xx



DNA Deoxyribonucleic Acid

EBRT External Beam Radiotherapy

EPID Electronic Portal Imaging Device

FE Frequency Encode

FLASH Fast Low Angle SHot

FOV Field Of View

FPS Frames Per Second

GPU Graphical Processing Unit

GRAPPA GeneRalized Autocalibrating Partial Parallel Acquisition

GRE GRadient Echo

GTV Gross Tumour Volume

ITV Internal Target Volume

JPEG Joint Photographic Experts Group

LHS Left Hand Side

MAPE Mean Absolute Percentage Error

MCP McCulloch{Pitts Neuron

MRI Magnetic Resonance Imaging

MLC Multi-leaf Collimator

NMR Nuclear Magnetic Resonance

NMSE Normalized Mean Square Error

xxi



NN Neural Network

NSCLC Non-small Cell Lung Carcinoma

OAR Organ at Risk

PCA Principal Component Analysis

PD Proton Density

PDACS Prior-Data Assisted Compressed Sensing

PE Phase Encode

PDF Probability Density Function

PSNR Peak Signal to Noise Ratio

PTV Planning Treatment Volume

RF Radio Frequency

RHS Right Hand Side

RMSE Root Mean Square Error

RT-MRI Real-Time Magnetic Resonance Imaging

SENSE SENSitivity Encoding

SBRT Stereotactic Body Radiotherapy

SNR Signal to Noise Ratio

SRS Sterotactic Radiosurgery

SE Spin Echo

SS Slice Selection

xxii



SSIM Structured SIMilarity Index

TE Echo Time

TLU Threshold Logic Unit

TPS Treatment Planning System

TR Repetition Time

VMAT Volumetric Modulated Arc Therapy

xxiii



Chapter 1

Introduction

1.1 Thesis Organization

The work presented in this thesis investigated the use of real-time magnetic resonance

imaging (MRI) for adaptive radiotherapy. Chapter 1 introduces the advancements

of external beam radiotherapy, including the Linac-MR system and the necessity for

real-time imaging. Chapter 2 details the theory of MRI as well as two techniques used

for accelerated MRI; principal component analysis (PCA) and convolutional neural

networks (CNNs). Chapter 3 demonstrates the feasibility of using compressed sensing

(CS) and principal component analysis (PCA) for accelerated MR image reconstruc-

tion. Chapter 4 investigated the use of 3D convolutional neural networks (CNNs) for

real-time image reconstruction. Chapter 5 investigated the use of a coherent low res-

olution phase-encoding scheme for CNN reconstruction. Chapter 6 investigated the

robustness of CNN to translations and rotations. Chapter 7 presents the conclusions

and future research endeavors.
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1.2 Background

Nearly 50% of Canadians will be diagnosed with cancer in their lifetime [1]. The

most recent available statistics state that one in four Canadians are expected to

die from cancer. Lung cancer remains the leader in those diagnosed at 14% of all

cancers [1]. Unfortunately, lung cancer has a very low survival rate, which is likely

linked to the detection of the cancer being diagnosed at a late stage. Cancer is

the seventh most costly illness in Canada accounting for for $4.4 billion dollars in

economic costs; these costs include those associated with health care ($3.8 billion)

and lost productivity ($586 million) [2]. It is evident that we must advance in cancer

detection and treatment options in order to reduce the �nancial burden associated

with cancer.

There are several techniques that can be used to treat cancer, which are dependent

on the location, aggressiveness, and stage of the cancer. Surgery involves removing the

diseased pathology but is invasive and may not remove all the cancer cells. Surgery

is most often used when cancer has been detected early and there is a low risk of

metastasis [1]. Chemotherapy uses drugs that are often injected into the bloodstream,

in order to systematically attack cancer cells throughout the body [1]. Chemotherapy

drugs generally attack cells in the body, often resulting in undesirable side e�ects such

as hair loss, vomiting, and loss of appetite. Radiotherapy uses high energy radiation

to destroy the cellular DNA of the cancerous region. Photons, electrons, protons, are

the most commonly used particles; however, photons are the most common clinically.

Radiation can be delivered externally via external beam radiotherapy (EBRT) with

the use of a linear accelerator (linac), or internally via brachytherapy. The research

described within this work focuses on the use of EBRT.
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1.3 External Beam Radiotherapy

External beam radiotherapy (EBRT) is a cancer treatment technique that uses high

energy radiation, often in the form of photons or electrons, to destroy cancerous

tumour cells. Photons are the primary workhorse of radiotherapy as they are able

to penetrate through the body to treat deep tumours [3]. Electrons are generally

only used to treat super�cial cancers, such as basal and squamous cell carcinomas or

melanoma [4]. These particles are often delivered using a medical linear accelerator

(linac) which uses a klystron (or magnetron) to accelerate electrons through a waveg-

uide until the speci�ed energy is achieved. The electrons travel past the primary

collimator, which is a large tungsten conical component that is designed to de�ne the

maximum radiation �eld size, and shield against leakage radiation. The electrons then

either strike a scattering foil or high-Z target (usually tungsten), depending on which

is to be delivered for treatment. The electron scattering foil is required to broaden the

beam of highly focused electrons, as the beam is initially too focused [3]. The high-Z

target creates a forward peaked dose distribution, which may be 
attened using a


attening �lter; however, there has been a recent emergence of using 
attening �lter

free (FFF), as the dose rate can be much higher (resulting in a reduced treatment

time) [5]. This is important for hypo-fractionated deliveries such as stereotactic body

radiotherapy (SBRT) and stereotactic radiosurgery (SRS). The delivered radiation is

conformed to a particular rectangular �eld using large jaws located within the linac.

There will be two sets of jaws, one the x-axis and one for the y-axis. The radiation

�eld is further conformed to the cancerous region using a device such as a multi-

leaf collimator (MLC), which consists of several thin tungsten leaves used to shape

the radiation �eld. Another integral technology required for EBRT is the treatment

couch. The treatment couch must be precisely calibrated, as various shifts may be
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incorporated to align the patient prior to treatment. Furthermore, modern treatment

couches have six degrees of freedom (6-DOF) that can be modi�ed along the three

cardinal axes, rotated about the isocenter, and adjusted along the pitch and roll. The

use of 6-DOF couches for non-SRS treatments remains debatable [6].

Patients will often receive radiation several times over the course of their treatment.

The amount of radiation and number of fractions is very much dependent on the type

of cancer, the organ in which it is situated, and what treatment is delivered [3]. The

clinical implementation for treatment using EBRT is as follows. Once the patient has

been diagnosed with cancer by their oncologist, the patient will undergo a computed

tomography (CT) scan of the region. The CT is important for three reasons: �rstly,

it is used to localize the cancerous region (contoured by the oncologist) as well as

surrounding structures, which (for our site) are contoured by the dosimetrist; secondly,

the CT is used to calculate the electron densities of the tissues, which is needed for

the treatment planning system (TPS); thirdly, the CT data will also be used to ensure

the patient is accurately set-up during their treatment. To position the patient the

linac is equipped with a cone beam CT (CBCT), which will image the patient each

fraction (using either kV/kV orthogonal images, or CBCT), in order to ensure the

patient is positioned accurately.

1.3.1 A Brief History of Linear Accelerators

Over one century ago in 1895, William Rontgen discovered x-rays while studying the

range of cathode rays produced by a Crookes tube. This discovery led to Rontgen

being awarded the Nobel prize in Physics in 1901 [7]. The use of x-rays for imaging

and treatment of pathologies was quickly investigated and implemented (without

knowing the consequences of occupational exposure). In fact, the �rst clinical use
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of x-rays was only 60 days after the discovery, where an ulcerated breast cancer

was treated in Chicago [8]. Prior to the use of linear accelerators, there were other

devices that were developed for the treatment of cancer using external radiation. The

�rst devices operated in the kV range, and therefore were only suitable for super�cial

tumours. One such device is the Coolidge tube developed in 1913, which is essentially

a precursor to the modern x-ray tube [9]. The next major breakthrough was in

1948, when the �rst MV teletherapy unit was installed in Hamilton Canada [9]. The

teletherapy unit used a cobalt 60 source to deliver photons with energies of 1.17 MeV

and 1.33 MeV. This was a large technological advancement as these systems allowed

for the treatment of deep tumours, while sparing dose to the skin. Furthermore,

deliveries of up to 45-60 Gy were possible. Over the course of 20-30 years, 1,000's of

teletherapy systems were sold worldwide and they became the workhorse for external

radiotherapy treatment [9]. During this time, radar research led to the development

of magnetron and klystron technology. These developments would result in the �rst

MV linac, which was installed in London England in 1953. Linacs are ideal clinically,

as they are not a�ected by radioactive decay (Co-60 has a half-life of 5.27 years)

and could produce variable energies between 6-20 MV for the delivery of photons or

electrons.

With the advent of the linac for cancer treatment, there have been many mile-

stones in improving these systems. The multi-leaf collimator (MLC) was developed

in the 1990's which allowed for 3D conformal treatment. Today, the MLC consists of

80-120 tungsten alloy leaves that can be used along with the primary and secondary

collimators, or as a replacement for one of the collimators, to shape the radiation

�eld to avoid healthy structures and/or conform to the tumour. The placement of

the MLC is dependent on the linac manufacturer. Further progress was made in the

early 2000's when intensity-modulated radiotherapy (IMRT) was introduced along
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with inverse treatment planning using a dedicated treatment planning system (TPS).

By modulating the intensity of the radiation beam, sensitive organs could be better

spared while increasing the conformity to the tumorous region [10]. In 2007 further

progress was made with the use of volumetric modulated arc therapy(VMAT) [11].

This technique allows for three parameters to be simultaneously adjusted, MLC aper-

ture, gantry speed, and dose rate, to ensure optimal dose conformity.

1.3.2 Prevalence of EBRT in Cancer Treatment

External beam radiotherapy (EBRT) is the most common type of radiation therapy

for the treatment of cancer. Of the 14 million cases of cancer that are diagnosed

every year globally, 50% of these cases will use EBRT for either curative treatment

or palliative care (approximately a 25% / 25% split) [12]. Furthermore, EBRT is

used to treat a wide variety of sites including head and neck, lung, breast, brain,

and prostate. Many of these sites are in regions where motion may be prevalent

and involuntary, such as breathing or abdominal gas. A tumour in the lung, for

example, may experience motion along the superior-inferior direction of over 3 cm

during a respiratory cycle [13]. A common way to mitigate the motion caused by

involuntary breathing is with the use of respiratory gating. This may involve using a

chest strap or bellows to track the inspiration and expiration, which can be used to

ensure radiation is delivered only during the expiration phase, for example. In order

to increase the accuracy of patient set-up and reproducibility for every treatment

fraction, masks (for head and neck) can be use to secure the patients head to the

treatment couch. Vacuum immobilization bags can be used to minimize unwanted

body motion and to increase patient stability and reproducibility. However, masks

may still present some variation between treatments and gating results in a longer

treatment. Furthermore, respiratory gating cannot be used e�ciently for patients
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that have an irregular breathing cycle. One possible way to solve these issues is by

having real-time imaging feedback to ensure accurate localization of the radiation.

1.3.3 Radiotherapy Treatment Margins

Before discussing the current and future linac technologies, it is important to under-

stand why we strive for more precise localization of the radiation. In general, there

are several terms that are used when planning a radiotherapy treatment. Figure 1.1

contains the boundaries for each of the structures to be discussed. The gross tumour

Figure 1.1: Margins used for radiotherapy treatment planning. The ITV encompasses
motion (mainly physiological such as breathing), and the PTV includes all other
uncertainties to ensure the CTV receives the dose prescribed by the oncologist.

volume (GTV) contains the absolute mass or tumour volume, this is most often con-

toured by the oncologist. There may, however, be microscopic sub-clinical cancerous

tissue surrounding the visible tumour mass; the region that contains the GTV plus

7



the additional sub-clinical tissue is known as the clinical target volume (CTV). In

order to account for tumours in regions of motion (physiological or otherwise), an

additional internal target volume (ITV) may be incorporated into the planning. The

ITV is often asymmetric depending on the location of the tumour. A tumour located

in the lung, for example, will generally experience far greater motion in the superior-

inferior direction and will have a larger ITV in that direction to account for it. Finally,

the planning target volume (PTV) uses yet a larger region in order to incorporate

the patient set-up error, to ensure the dose prescribed by the oncologist is delivered

to the CTV. Thus, if the ITV can be minimized, the PTV will have a margin that

is tightly bounded to the CTV, reducing the dose to the healthy surrounding tissue

and sparing other organs at risk (OARs). While ensuring dose is delivered to the

cancerous region is important, we must also be cognizant of the OARs surrounding

the cancerous region. The OARs generally have a strict dose limit, which should be

minimized whenever possible.

1.3.4 Current State of External Beam Radiotherapy

Modern MV EBRT is generally conducted using linacs, although cobalt 60 teletherapy

systems still see use in developing countries. Depending on the linac manufacturer

the radiation may initially be collimated using large tungsten jaws followed by the

MLC or vice versa. As mentioned earlier, the MLC is comprised of several tungsten

alloy leaves that are used to shape the radiation �eld to avoid healthy structures

and/or conform the radiation close to the tumour. Prior to treatment, patients are

scanned using a CT simulator. The CT simulator is required to determine the elec-

tron densities needed to generate a dosimetric treatment plan. The CT images also

provide the baseline images for all linac treatments to be aligned to. Current linac

units contain an on-board imaging (OBI) device, which generally consists of a cone
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beam CT (CBCT) system. As a patient will often be treated several times within

the course of a month or two, the OBI is required to ensure the alignment of the pa-

tient (at the time of their treatment) to their initial planning CT. This interfraction

alignment is important, as the radiotherapy planning software uses the anatomy of

the planning CT to generate the treatment plan. The treatment plan is developed to

ensure the cancerous tissue receives the prescribed dose requested by the oncologist,

while minimizing the radiation delivered to nearby organs at risk. Alignment ensures

the planning region matches the anatomy of the patient during each round of treat-

ment. However, as the OBI acquires static images to align gross anatomy, it is unable

to cope with any intrafraction motion that may occur from the patient (either vol-

untary or involuntary) during the radiation delivery. Thus, the current state of linac

technology does not have the ability to monitor intrafraction motion using imaging;

however, there are technologies that can monitor tumour motion surrogates, as will

be described in the next section.

1.3.5 Image Guidance for External Radiotherapy

As discussed above, imaging is a crucial requirement for radiotherapy for planning

and patient alignment. Since the 1990's, linacs have made use of electronic portal

imaging devices (EPIDs) as a replacement for MV �lm [14]. An EPID consists of

an amorphous-silicon detector that can generate images from MV photons delivered

by the linac. While these images generally have poor contrast, they reveal bony

anatomy that can be used to aid in the alignment of the patient. In addition to

localization, EPIDs are also used to dosimetrically verify volumetric modulated arc

therapy (VMAT) treatment plans [15]. Following the development of the EPID, linac

manufacturers began including kV imaging systems coupled to the linac, which has

better contrast than the EPID. During the mid 2000's the CBCT was introduced,
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enabling 3D imaging of the patient prior to treatment [16]. Given the additional

dose delivered to the patient via the use of CBCT, it cannot be used for real-time

monitoring purposes.

A few products exist that aim to increase the accuracy of linac treatment, through

the monitoring of intrafraction motion. An excellent review on the topic was recently

published by Bertholet et al. [17]. There are devices, such as respiratory bellows,

that can be used to monitor the breathing phase during treatment to allow for gated

treatment. A more advanced gating technique known as AlignRT (VisionRT, Lon-

don, Great Britain) uses 3D stereo cameras to track the surface of the patient, to

ensure accurate positioning before and during treatment [18]. Isocenter accuracy of

3mm has been recently reported using AlignRT for breast cancer treatments [19].

Another product known as the Calypso system (Varian Medical Systems, Palo Alto,

USA) uses three electromagnetic transponders (1.85mm diameter, 8.7mm long) that

are surgically implanted and tracked using a portable detector to monitor its centroid

location (stated as `GPS for the body') [20]. Calypso is an accurate technology (sub-

millimeter) for real-time tumour monitoring, but can only be implanted into certain

sites, only monitors the centroid of the transponders, and has the further compli-

cation of requiring a surgical procedure [21]. The BrainLab ExacTrac (BrainLab,

Feldkirchen, Germany) uses a combination of stereoscopic kV imaging along with

external (IR re
ective �ducials) breathing monitoring to accurately track regions;

however, the use of kV imaging increases the overall patient dose [22]. While these

advanced systems increase the accuracy of EBRT treatments, they do not have the

capability to continuously visualize the treatment location during treatment without

further increasing the dose to the patient.

Recently, there has been a strong interest in image guided linac treatment, partic-
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ularly with the use of magnetic resonance imaging (MRI). MRI is an ideal imaging

modality for external beam radiation treatment (EBRT). The bene�ts of using MRI

include excellent soft tissue contrast (compared to other imaging technologies), var-

ious contrast via pulse sequence, and that it does not contribute to an increased

patient dose. MRI also has the ability to modify the contrast by changing the imag-

ing parameters or pulse sequence. Additionally, MRI is capable of both anatomical

and functional imaging, such as fMRI and di�usion tensor imaging.

By monitoring the tumour during treatment, more conformal and accurate treat-

ments can be achieved. Several groups around the world are currently developing

systems that combine a linac with an MRI system [23, 24, 25, 26]. The Cross Can-

cer Institute (CCI) located in Edmonton, Alberta, has recently developed a system

that combines a 6 MV linac with a 0.5T bi-planar MRI system. This unique system,

known as the Linac-MR (LMR), contains a standard linac treatment unit that is

mounted onto a rotating 0.5T bi-planar magnet. The entire system rotates around

the patient, similar to a conventional linac; however, the MR system allows for simul-

taneous imaging during radiation delivery. The CCI group was the �rst in the world

to demonstrate the feasibility of simultaneous MR imaging during irradiation [27].

The ultimate goal for the Linac-MR is to use real-time MR imaging to adapt the

treatment on the 
y, to ensure the tumour receives the required dose, while sparring

the surrounding healthy tissue.

1.4 Linac-MR

Recently, the Cross Cancer Institute at the University of Alberta has developed a

Linac-MR system that combines MR imaging with a linac [23]. This system{known

as the Aurora RT{is the 
agship product created by the recently formed company,
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MagnetTx. Figure 1.2 contains a rendering of the system to scale, demonstrating

how a patient would be treated. The bi-planar magnet is unique and was created

Figure 1.2: Complete rendering of the Linac-MR Aurora RT system by MagnetTx.
The bi-planar magnet and the linac head are highlighted. The linac is mounted on
the top pole plate of the bi-planar MR system. The bi-planar MR system is unique, in
that it allows for the radiation and the magnetic �eld to be parallel. Image courtesy
of Dr. Gino Fallone, Chairman of MagnetTx.

speci�cally for the development of an LMR system [28], whereas a majority of MR

systems use cylindrical magnets. The entire Linac-MR system is free to rotate around

the patient and will allow for the simultaneous delivery of radiation while imaging

in real-time. The Edmonton group was the �rst to demonstrate the feasibility of

simultaneous MR imaging during irradiation [27]. The design is unique as the ra-

diation is delivered in parallel to the magnetic �eld, which has been shown to be

advantageous compared to the perpendicular orientation such as Elekta's Unity and

ViewRay's MRIdian cylindrical magnet based systems [29]. The Australian LMR
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has the ability to operate using either the perpendicular or parallel orientations [25];

however, the parallel orientation involves the rotation of the patient, which intro-

duces deformations that must be accounted for. Furthermore, the Aurora RT system

is the only system that has the capability to shift the couch laterally, enabling the

treatment of peripheral tumours. Two LMR systems, the Aurora RT system and the

MRIdian, operate at low �eld strengths (0.5T and 0.35T, respectively) [30]. There

are many bene�ts for having an MRI system operate at low �eld [31, 32]. While the

signal-to-noise ratio (SNR) generally decreases at lower �eld strengths, this is not true

for the contrast-to-noise ratio (CNR) [33]. Lower �eld strengths are also less e�ected

by magnetic susceptibility artifacts and speci�c absorption rate (SAR), which can

result in tissue heating. In addition, conductive devices and implants are less prone

to heating at lower �elds.

Having the radiation �eld parallel to the magnetic �eld produces a focusing of

contaminant electrons which may increase the skin dose [34]. In fact, the focusing of

the electrons may be used as an advantage, as it increases the dose along the direction

of the beam [29]. However, when the radiation �eld is perpendicular, electrons will

curl via the Lorentz force

F~ = q(E~ + v~ � B~ ): (1.1)

The Lorentz force (F~) is equal to the charge of the electron (q) multiplied to the

electric �eld E~ in addition to the curl of the speed of the electron and the magnetic

�eld v~ � B~ . The curling of electrons may complicate planning in regions with air,

such as the lung or bowel. This e�ect is known as the electron return e�ect, which is

prominent in tissue interfaces such as the lung [29].

A major bene�t of combining MRI with a linac, is the ability to track tumours via

real-time imaging and deliver radiation simultaneously. Aside from the excellent soft
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tissue contrast o�ered by MRI, it acquires images without the use of ionizing radiation

and is therefore safe for prolonged use. A lower �eld strength is ideal for prolonged

continuous real-time MR imaging; at higher �eld strengths, tissue heating becomes

a limiting factor (due to the RF power deposited into the body) [32]. This is due to

the SAR being proportional to the square of the main magnetic �eld (SAR / B 2
o).

While having adaptive radiotherapy is ideal, real-time MR imaging can also be

used as an advanced gating technique, which may be easier to implement, clinically.

A recent gating study investigated having the patient view the reconstructed images

(during their treatment) using specially constructed glasses allowing them to view a

TV outside the magnet, in order to help control their breathing and guide the tumour

into the treatment region [35]. Real-time imaging can also allow for adaptive radio-

therapy by having the MLC leaves update based on the tumour location calculated

from the real-time images [36]. Image guidance for adaptive radiotherapy will allow

for continuous radiation to be delivered the tumourous region, resulting in a shorter

treatment time compared to current clinical respiratory gating techniques. Another

implementation for real-time MR imaging is the use of a radiation beam stop if an

OAR was to enter the location of radiation delivery.

1.5 Real-time MR

As discussed above, perhaps the most valuable aspect of the LMR is the ability to

image for the purpose of tumour tracking. To achieve this, the MR system must be

capable of real-time imaging. I refer the reader to Appendix A for a discussion on

the nomenclature surrounding the term \real-time" for MRI. In short, it was found

that there is a discrepancy with the terminology surrounding real-time MRI. Ideally,

real-time imaging will generate images that are available for immediate use with low

14



latency. Real-time MR presents a challenge, given the relatively slow acquisition of

raw MR data. The crux being, as one decreases the imaging time (via undersampling

the raw MR data), there is an increased presence of artefacts within the reconstructed

images. Using a 3T Phillips Achieva system, a fast balanced steady-state free preces-

sion (bSSFP) sequence can acquire fully sampled 2D images (128� 128 pixels) at 275

ms per dynamic frame using an echo/repetition time of 2.2/1.1 ms, respectively. This

is faster than the recommended imaging latency of 500 ms presented in the American

Association of Medical Physicists (AAPM) Task Group 76a (TG-76a), which focused

on respiratory motion in radiotherapy [13]. Further accelerating the MR data ac-

quisition, however, may be bene�cial in several ways: increasing the frame rate for

better temporal resolution, increase in spatial resolution, and the ability to acquire

multiple 2D-orthogonal images or full 3D imaging volume.

There are many reconstruction techniques that perform well for dynamic (tempo-

ral) data reconstruction; however, these techniques are generally focused on recon-

structing the entire k-t domain (using the full temporal dataset) [37, 38, 39]. The k-t

reconstruction techniques are not applicable to real-time (online) imaging, which is an

important feature for MR-Linac systems. Depending on the MR hardware constraints

of the LMR system, it may be limited to a small number of coil channels, reducing the

applicability of parallel imaging reconstruction techniques [40, 41, 42], including the

more recent development of the non-linear inverse (NLINV) technique [43]. Therefore,

reconstruction techniques that do not require the use of multi-coil sensitivity maps

are ideal for systems with hardware limitations. There have been a few studies that

have the capability to reconstruct MR images in real-time without the requirement

for large arrays of receive coils. The use of compressed sensing (CS) does not require

the use of multiple coils, and has been addressed for real-time MR reconstruction

at reconstruction times of 160 ms for 128� 128 sized images [44]. The real-time
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CS work comprised of accelerated radial acquisition with an undersampling factor of

5x [44]. Another CS method that utilizes spatial and previous temporal information

can achieve reconstruction times of 710 ms per frame.

In particular, it has been suggested that ideally 3D real-time imaging should be

utilized to track lung tumours (for example) [13, 45]. In order to achieve real-time

3D acquisitions, undersampling of raw MR data will be necessary. While 3D tumour

tracking is ideal, it is also far more di�cult to achieve. Not only will the acquisition

time be increased, but the reconstruction time as well, resulting in a large latency.

For adaptive radiotherapy (via tumour tracking) to be feasible, the latency from the

start of imaging to the delivery of radiation needs to be minimal. This includes

image acquisition, image reconstruction, image segmentation, updating of the MLC,

and the delivery of radiation. Thus, having a higher imaging frame rate with a low

latency is necessary. Solving this unique problem is the bulk in my PhD work, where I

focused on the image reconstruction portion speci�cally. I developed and investigated

two real-time image reconstruction techniques for the use in adaptive radiotherapy

(tumour tracking).

The �rst reconstruction technique I investigated utilized principal component anal-

ysis (PCA). The use of PCA is fast and was discovered to be capable of reconstructing

highly undersampled MR images for real-time imaging purposes. This technique is

suited to dynamic data sets, such as lung motion, and uses a previously acquired

fully sampled data set to �nd the principal components (PCs) of a dynamic data set.

The largest PCs correspond to the direction of greatest variance, which captures the

region of largest dynamic motion. These PCs can be used to �ll in the missing k-space

from the undersampled data in under 10 ms per image. However, it was discovered

that this technique has increasing noise as the database becomes outdated. This led
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me to investigate a more robust technique.

The second reconstruction technique I investigated used convolutional neural net-

works (CNNs). The CNNs utilizes graphical processing units (GPUs) to train a neural

network to learn how to remove the aliasing by convolving �lters to the aliased image.

For this study a CNN was trained for each patient, which is a paradigm shift from

the CNN training that uses data acquired from several patients to create a general-

ized model. Having a CNN trained to each patient (separately) allows the model to

become tuned to each patient's anatomy and pathology. We furthermore investigated

two undersampling phase-encoding schemes for CNN reconstruction: (1) incoherent,

where the central portion of k-space is fully-sampled and the higher spatial resolution

is pseudo-randomly undersampled, and (2) coherent low-resolution, where only the

central region of k-space is acquired.
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Chapter 2

Theory

2.1 Magnetic Resonance Imaging (MRI)

Nuclear magnetic resonance (NMR) can be traced back to the resonance experiments

performed by Isidor Rabi in 1938, who was awarded the 1944 Nobel prize in Physics

for his discovery [46]. Further progress was made in 1946 when Felix Bloch and Ed-

ward Purcell independently published studies investigating NMR in condensed mat-

ter. Their work focused on using NMR for the detection of liquids and solids, which

won them the Nobel prize in Physics in 1952. It was not until 1973 when Lauterbur

and Mans�eld independently published studies investigating the localization of the

NMR signal using gradient coils, that it was realized that NMR could be used for

imaging [47, 48]. Lauterbur and Mans�eld are ultimately credited for the discovery

of magnetic resonance imaging (MRI) as it is used today, and in 2003 they shared

the Nobel prize in Physiology or Medicine for their work.

Magnetic resonance imaging (MRI) is an imaging modality capable of anatomical

and functional imaging. The clinical bene�ts for the use of MRI include superior soft
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tissue contrast, ability to image at various contrasts (T1, T2, PD, etc.), functional

capability using fMRI and di�usion tensor imaging, as well as image acquisition with

the use of non-ionizing radiation. These bene�ts have resulted in MRI becoming a

useful clinical tool for monitoring and diagnosing cancer, since the superior soft tissue

contrast makes MRI an ideal imaging technique for imaging masses such as tumours.

Furthermore, functional techniques such as spectroscopy and di�usion imaging have

been used to aid in the treatment for certain cancers [49, 50]. The non-ionizing

aspect of MRI allows for real-time (
uoroscopic) imaging, without worry of delivering

excess radiation as with standard x-ray devices such as 
uoroscopy and computed

tomography (CT), make MRI the ideal choice for real-time dynamic imaging studies.

2.1.1 NMR Signal

It is well known that subatomic particles contain an intrinsic property known as

spin. Fermions are particles that have a spin value ofn=2, which are of interest for

NMR experiments. Baryons are subatomic particles that contain an odd number of

fermionic quarks, such as protons and neutrons. Protons are abundant in the human

body due to the hydrogen composition in water and will have an angular momentum

J~ and a magnetic moment�~ according to the following equation [51]

�~ = 
J~: (2.1)

The magnetic moment�~ is equal to the gyromagnetic ratio
 multiplied to the spin

angular momentumJ~. The magnitude of the magnetic moment has a value

j�~ j = 
 h
p

s(s + 1) : (2.2)
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Here we have used
 which is the gyromagnetic ratio divided by 2� . The factor h is

Planck's constant (6.6� 10� 34 J � s) and s is the spin quantum number.

When protons are placed into a magnetic �eld (such as one produced in a MRI

system), the magnetic moments will align to the magnetic �eld. The aligned protons

can be oriented parallel or anti-parallel to the �eld. The parallel orientation is more

favoured, creating a net magnetization, as it has a lower energy than the anti-parallel

orientation. This well-known quantum phenomenon is known as the Zeeman e�ect,

which splits the quantum spin degeneracy into two states: spin up or spin down (i.e.

parallel or anti-parallel). The energy of the magnetic moment�~ within the main

magnetic �eld B~ is

E = � �~ � B~

= � � zBz

= � 
 ~ms Bz:

(2.3)

The factor ~ is the reduced Planck's constant (h=2� ), and ms is often regarded as

the magnetic quantum number, which yields 2s+1 values such thatms 2 f� s; :::; sg.

For particles with spin 1/2, there are two possible energy levels

ms = �
1
2

: (2.4)

The Zeeman e�ect is fundamental to NMR, and is the primary reason we are able

to detect a bulk magnetization. Figure 2.1 demonstrates how the single degenerate

energy state is split into two separate energy states.

The gyromagnetic ratio is dependent on the nuclei and is quantum mechanical in
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Figure 2.1: In the presence of an external magnetic �eld, the single degenerate state
is split into two separate energy levels; one that is slightly more favourable (lower
energy) where the spins align parallel (spin up) and one where the spins align anti-
parallel (spin down).

nature. For protons, the gyromagnetic ratio can be calculated using [52],


 =
! o

Bo
=

� N gp

~
: (2.5)

Where gp is a dimensionless quantity that characterizes the magnetic moment and

angular momentum of the proton,� N is the nuclear magnetron, and~ is the reduced

Planck's constant. Furthermore, here we can de�ne the Larmor equation,

! o = 
B o (2.6)

which is the precession angular frequency for the proton magnetic moment. As the

Larmor frequency (and equation) are critical to NMR, we will take a moment to show

a simple geometric derivation [51]. Figure 2.2 shows a magnetic moment precessing

in a magnetic �eld. The change in the magnetic moment can be expressed as,
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Figure 2.2: A simple geometric schematic of a magnetic moment�~ interacting with
a magnetic �eld B~ . The magnetic moment is tipped from the direction ofB~ by an
angle � .

jd�~ j = jd� j� sin�: (2.7)

However, we can also write the torque such that

jd�~ j = 
 j�~ � B~ jdt; (2.8)

= 
�B sin�dt:

Comparing the RHS of the two equations above, we see that

jd� j
dt

= 
B: (2.9)

Which for the constant magnetic �eld Bo, and denoting the angular frequencyjd� j=dt

as ! o, we arrive at the Larmor equation stated in Equation 2.6.
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It is the manipulation and detection of the net magnetization within a sample that

comprises an NMR experiment. There are three components in any NMR experiment

which are:

1. Preparation of the bulk spin system,

2. Excitation of the bulk spin system,

3. Acquisition of the signal as the spins precess while the bulk magnetization

relaxes back to equilibrium.

The preparation component occurs when the spins are manipulated to be aligned

in the same direction, producing a net magnetization, which occurs when a sample

is placed into a strong magnetic �eld. The excitation component involves applying

energy to the system in order to excite the spins with the use of an additional magnetic

�eld, known as the RF or B1 �eld. The acquisition component occurs immediately

after excitation, where (via Faraday's law of magnetic induction) we measure the

exponentially decaying precession (resulting in an alternating voltage) as the sample

(bulk magnetization) relaxes back to equilibrium.

The signal produced from a MR imaging experiment originates from hydrogen

protons. The human body is comprised mostly of water (H2O), of which each molecule

contains two hydrogen nuclei that each contain one proton. When put into a strong

magnetic �eld, nearly 99.9% of the sample will be randomly orientated in the main

magnetic �eld. While this may seem ine�cient, to our bene�t there are approximately

1.6 � 1019 proton spins contained within 1 � L of water! The abundance of these

hydrogen protons, results in the signal (net magnetization) we detect during an MR

experiment.
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The number of protons that favour the lower energy state can be calculated

� N = N " � N #

= N (P+ � P� ):
(2.10)

The term P� is the normalized Boltzmann factor,

P� =
e� E

kT

Z

=
e� � m s ~! o

kT

sP

m= � s
e

� m s ~! o
kT

(2.11)

where the energyE = � ms~! o. The term ms is the spin quantum number,~ is the

reduced Planck's constant, and! o is the angular (Larmor) frequency of the proton.

There are only two spin states (ms) for a proton with an intrinsic spin of 1/2: +1/2,

-1/2. Therefore, we can write

P� =
e� ~! o

2kT

e
~! o
2kT + e

� ~! o
2kT

: (2.12)

The terms on the exponential denominator are the Boltzmann constant (k) and the

temperature in Kelvin (T). Since kT >> ~! o we can approximate the exponential

terms such that e� ax � 1 � ax. After a bit of algebra, we arrive at

� N =
N ~! o

2kT
;

� N
N

=
~
B o

2kT
:

(2.13)

For example, solving Eq. 2.13 at a �eld strength of 3 Tesla (~ = 1.05 x 10� 34 m2 kg

s� 1, 
 = 42.58 MHz/T, T = 300 K, and k = 1.38 x 10 � 23 m2 kg s� 2 K � 1), we get a

value of 10 spins per million. This may not sound like much, but it is important to
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note that we are dealing with a magnitude of Avogadro's constant of protons (6.02 x

1023)!

2.1.2 Bloch Equations

In 1946, Felix Bloch published a paper describing the classical mathematical frame-

work for the NMR signal [53]. The equation for the manipulation of the magnetization

can be written [51],

dM~

dt
= 
M~ � B~ ext +

1
T1

(M o � M z)k̂ �
1
T2

M~ xy : (2.14)

Separating the above equation into individual components yields the laboratory ref-

erence frame equations,

dMx

dt
= 
 (M~ � B~ ext )x �

M x

T2
;

dMy

dt
= 
 (M~ � B~ ext )y �

M y

T2
;

dMz

dt
= 
 (M~ � B~ ext )z +

M o � M z

T1
:

(2.15)

The T1 and T2 values were de�ned by Bloch as relaxation times.T1 is known as the

longitudinal, thermal, or spin-lattice relaxation time. The term longitudinal comes

from the fact that T1 is the time constant (unique for each tissue) indicative of the time

it takes for the magnetization to recover back to the 63% of the maximalM o value.

Thermal, meaning that the energy is irreversibly lost to the surrounding nuclei. Spin-

lattice, is an older term that originated back when NMR experiments were primarily

conducted in crystalline structures [54]; however it is also used to explain the quantum

mechanical nature of the spin phenomena [55]. The time constantT2, is known as

transverse or spin-spin relaxation. After timeT2 the transverse component of the
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magnetization (M xy ) has lost 63% of its original value, due to dephasing. These time

constants are tissue-dependent, where theT2 values are always less than theT1 values.

Assuming the case of a constant �eld along the z-direction (B~ ext = Boẑ), we can

simplify Eq. 2.15 to,
dMx

dt
= 


�
M yBz � M zBy

�
�

M x

T2
;

dMy

dt
= 


�
M zBx � M xBz

�
�

M y

T2
;

dMz

dt
=

M o � M z

T1
:

(2.16)

Equation 2.16 can be simpli�ed by noting that the magnetic �eld is directed along

the z-axis (Bx = 0, By = 0, Bz = Bo). The solution to Eq. 2.16 is,

M x (t) =
�
M x (0) cos(
B ot) + M y(0) sin(
B ot)

�
e� t=T2 ;

M y(t) =
�
M y(0) cos(
B ot) � M x (0) sin(
B ot)

�
e� t=T2 ;

M z(t) = M z(0)e� t=T1 + M o(1 � e� t=T1 ):

(2.17)

This can be simpli�ed with a bit of algebra. Using the de�nition that M xy � M x (t)+

iM y(t) we can rewrite the above to:

M xy (t) = M xy (0)e� t=T2 ;

M z(t) = M z(0)e� t=T1 + M o(1 � e� t=T1 ):
(2.18)

2.1.3 Signal Excitation and Detection

In order to excite the sample, we need to tip the magnetization down into the x-y

plane. To do so we use a B1 RF pulse that is delivered perpendicular to the main
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magnetic �eld B0. The B1 �eld can be written as,

B1(t) = B1 a(t) e� i! o te� i� (2.19)

whereB1 is the RF �eld strength (order of � T), a(t) is a unitless pulse envelope and

the exponential terms are the carrier frequency (which is at the Larmor frequency)

and the RF phase, respectively.

Figure 2.3: A common B1 pulse envelope is the Sinc pulse. Here you can see that the
carrier frequency is applied at the Larmor frequency, within the Sinc envelope.

The role of the RF (B1) pulse is to manipulate or rotate the magnetizationM o by

some angle. The angle at which the magnetizationM o will rotate about B1 (in the

rotating frame of reference) is known as the 
ip angle, which is given by (assuming

B1 is on resonance),

� = 

Z t

0
B1(t) dt: (2.20)

If we apply a 90o 
ip angle, we can rewrite the Bloch solutions (Eq. 2.18) as

M xy (t+ ) = M oe� t=T2 ;

M z(t+ ) = M o(1 � et=T1 ):
(2.21)
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The equationM xy (t+ ) = M oe� t=T2 is known as the free induction decay (FID) signal,

which is of great importance for NMR spectroscopy experiments. However, due to

static inhomogeneities, the signal decays with a time constant of 1/T �
2

1
T �

2
=

1
T2

+
1
T 0

2
: (2.22)

Where T2 is dependent on the dipole-dipole (thermodynamic) interactions andT
0

2

is due to the �eld inhomogeneities. The factorT
0

2 arises from imperfections in the

magnetic �eld, or at air/tissue interfaces with large susceptibility di�erences. The

additional signal lost to T
0

2 can be refocused through the use of a spin-echo sequence.

The spin-echo sequence removes the e�ect ofT
0

2 by refocusing the spins as shown in

Figure 2.4. After exciting the excess spins to the xy-plane with a 90o RF pulse (along

the x-axis), a second 180o RF pulse is applied (along the y-axis) at time� , which

reverses the phase causing them to refocus at time 2� .

Figure 2.4: Demonstration of how a spin-echo sequence removes theT0 signal loss by
refocusing the dephasing spins with the use of an additional 180o RF pulse.

As M xy precesses about the transverse plane (after the B1 �eld is turned o�), the

signal can be detected using a receive coil via Faraday's law. Faraday's law states
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that a changing magnetic 
ux will induce anemf in a coil such that,

emf = �
d�
dt

: (2.23)

The 
ux � through the coil can be written as,

� =
Z

A
B~ � dS~: (2.24)

Assuming the coil is oriented perpendicular to the x-axis, � = AB x , where A is

the area of the receive coil andBx is the magnetic �eld along the x-direction. This

can be expressed as,

� = � oAM x (2.25)

where � o is the permeability of free space andM x is the magnetization along the

x-direction. After a 90o pulse, we can then write,

� = � oA � M xy sin(! ot): (2.26)

Calculating the induced voltage, we get the following

emf = � � oA M xy ! o cos(! ot): (2.27)

This is an important result, as it states that the induced voltage is proportional to

the square of the main magnetic �eldB 2
o. This can be seen by the fact that! o = 
B o

and M xy / M o / Bo.
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2.1.4 Signal Localization

In order to generate signal, the RFB1 �eld is used to manipulate the magnetization.

When theB1 �eld is applied, however, it is applied to the entire sample and there is no

way to localize where the signal is coming from spatially. In order to introduce spatial

localization, additional magnetic �elds via gradient coils are used. The gradient coils

induce a small linearly changing magnetic �eld in all three Euclidean axes, a schematic

of basic gradient coil design is shown in Figure 2.5.

Figure 2.5: Standard basic gradient coil design to create a linearly changing magnetic
�eld along each Euclidean axis. The x-axis and y-axis gradients are a pair of saddle
coils, while the z-axis gradient is an example of a Maxwell pair.

The additional gradient magnetic �elds, denoted byGi , create a spatially depen-

dent magnetic �eld whose z-components can be written as,

B z(r ) = ( Bo + Gxx + Gyy + Gzz)k̂

B z(r ) = ( Bo + G � r )k̂:
(2.28)

Solving this via the Bloch equations, we get a signal equation where the frequency

will vary depending on the spatial position,

M (r ; t) = M oe� t=T2 e� i
B o te� i
 (G �r )t : (2.29)
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The �rst exponential is the T2 or spin-spin relaxation, the second exponential is from

the Bo precession, and the third exponential is the gradients.

By convention, the third exponential is often written in terms of k-space,

k = 

Z t

0
G(r ; t)dt: (2.30)

Slice Selection Gradient

As mentioned above, theB1 �eld is non-speci�c, meaning it will excite the entire

sample when applied. In order to excite only the slab or slice we would like to image

we use a slice selection gradient. For the following discussion, the slice selection (SS)

gradient is assumed to be applied along the z-axis.

In the presence of the SS gradient the frequency! varies as a function of position,

! (z) = ! o + 
G zz: (2.31)

Thus, the slice thickness can be determined via,

� f = 
 Gz� Z: (2.32)

The slice selection process is demonstrated in Fig. 2.6.

In order to excite the band of frequencies corresponding the slice location we apply

an RF pulse at the desired frequency at the same time the gradient is turned on. The

bandwidth BW of the RF pulse is simply the � f in Fig. 2.6. Therefore, to excite the

slice shown in Fig. 2.6, the RF frequency would be equal tof 0 + 
 GzZ0.

In order to excite only the protons within a given slice, we seek to �nd a B1 that
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Figure 2.6: Demonstration of how the gradient, slice thickness, and bandwidth are
related.

will excite a rectangular frequency pro�le. It is well known from Fourier analysis,

that this can be achieved with a Sinc function as shown in Fig. 2.3. Mathematically,

Z 1

�1
Sinc(t)e� i 2�f t dt = u(f ): (2.33)

Unfortunately, it would take in�nite time to generate a Sinc that would create a

perfectly rectangular slice excitation. Thus, there remains a trade-o� between the

number of Sinc lobes that are included (i.e. time) and the pro�le of the excited slice.

There are several RF pulses that may be used, dependent on the imaging experi-

ment. Sinc pulses (often windowed or truncated) are a common pulse; however, other

notable RF pulses include adiabatic, composite, and Shinnar-Le-Roux [56, 57].

Frequency Encoding Gradient

Slice selection allows the user to image a slice region of a subject through the use of

a gradient along with the RF pulse (along the z-axis, for example). If the signal were

acquired after slice selection, we would not be able to infer any spatial dependence of

the spins within the imaged slice. In order to create spatial dependence along another
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axis (generally taken to be the x-axis), we need to apply another gradient.

Applying a gradient along the axis within the excited slice (i.e. the x-axis) creates

a spatial frequency variation, such that! = 
G xx. Figure 2.7 contains a schematic

of how the x-gradient creates spatial dependence.

Figure 2.7: Frequency encoding creates a spatial frequency dependence along the x-
axis. We are still not able to resolve the image; however, a one dimensional inverse
Fourier transform does generate projections of the slice.

As shown in Fig 2.7, the signals are summed into one signal that is decomposed

back into individual components. Figure 2.8 demonstrates where the acquisition

occurs and how the gradient is applied. An initial dephasing gradient (negative lobe)

is applied prior to the positive lobe, when the data is acquired. The dephasing gradient

is used to pick the starting k-space location for the acquisition. Generally, the k-space

will be read from kmin to kmax with the echo-time located within the center of the

positive lobe. The frequency of samples are acquired such that �kx = 
G x � t, where

� t is the inter-sample spacing.
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Figure 2.8: Demonstration on how the frequency is acquired and how the signal is
rephased during the acquisition. The Acquisition occurs during the rephasing, where
the signal is sampled every �t.

Phase Encoding Gradient

The phase encoding (PE) gradient is required in order to create spatial dependence

along the y-axis. As described above, the frequency encoding (FE) requires the

acquisition of a sample every �t; however, phase encoding is more time consuming as

we acquire a separate FE while stepping with an incremental constant gradient. This

can be re
ected in an equation similar to that of frequency encoding, but instead of

an increment in time, the gradient is incremented �ky = 
 � Gy � . An example of the

PE gradient is shown in Figure 2.9.

Compared to FE, this is a time consuming process, as the phase encode gradient

needs to be applied prior to each frequency encode and incremented every TR (to

acquire the signal with a di�erent phase increment). Thus, for an image of size 256

x 256, 256 phase encode steps are required (and therefore 256� TR. When it comes

to reducing the acquisition time, the PE is an important parameter to consider. As
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Figure 2.9: Demonstration of the PE gradient. For each �Gy, the FE gradient is
turned on and the signal is acquired (at a rate of �t).

will be discussed later, the PE can be undersampled, as is done with techniques such

as parallel imaging and compressed sensing.

2.1.5 K-space Acquisition

Signal Equation

The general formalism for acquiring the time varying signal from the sample can be

written as,

S(k) =
ZZ

M (x; y) e� i 2� (kx �x+ ky �y) dx dy: (2.34)

The term M (x; y) is the transverse magnetization andkx and ky are the corresponding

k-space coordinates. The signal is acquired from the FID following the application of

the slice selection gradient and during the frequency encoding gradient. This equation

is an example of a Fourier pair, where we can extractM (x; y) with the use of the

Fourier transform,

M (x; y) =
ZZ

S(k)ei 2� (kx �x+ ky �y) dkx dky: (2.35)
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k-space Sampling

The raw data acquired from an MRI system is acquired in frequency space, or k-space.

As discussed previously, in order to localize the NMR signal, gradient magnetic �elds

are used to apply spatially dependent linear magnetic �elds in each cardinal direction.

The spatially dependent magnetic �elds cause the protons to precess at di�ering

frequencies and phases depending on their location within the MR bore. To ensure

that we image the full extent of the required region, the Nyquist criterion must be

met. The Nyquist criterion simply states that to ensure the signal is not aliased; the

sampling step size must be less than the inverse of the FOV.

� k <
1

FOV
: (2.36)

This can also be written as,

FOVx =
1

� kx
=

1

 Gx � t

;

FOVy =
1

� ky
=

1

 � Gy �

:
(2.37)

Violation of the Nyquist criteria will result in aliasing, which ultimately results in

artifacts occurring throughout the image.

Mathematically, this is due to the Fourier Transform of the �nite sampling distri-

bution of signal in k-space. The sampled k-space signal can be written as [58],

M� (kx ; ky) =
M (kx ; ky)
� kx � ky

III 2D

� kx

� kx
;

ky

� ky

�
u2D

� kx

Wkx

;
ky

Wky

�
: (2.38)

HereM� (kx ; ky) is the sampled version of the continuous distribution of magnetization

in frequency space,M (kx ; ky). The Dirac comb III2D is the density of the k-space
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sampling. The box car (Rect) functionu2D represents the maximum sampling range.

The k-space widthsWk i are de�ned as,

Wk i = 2
�
ki max +

� ki

2

�
: (2.39)

Taking the FT of Eq. 2.38 results in the desired image,

m� ( x; y) = m(x; y) � III 2D(� kxx; � kyy) � 2D Sinc(Wkx x) Sinc(Wky y): (2.40)

This equation demonstrates the importance of Nyquist. The imagem is convolved

with the Dirac comb, meaning there will be in�nite replicas ofm; this does not prove

to be an issue so long as the distance is large enough that they do not overlap. In

particular, if 1
� kx

> FOVx , then the spacing of III(� kxx) will be too small, causing

the in�nite replicas to overlap.

The Sinc function introduces ringing into the reconstructed image. As the Rect

function (u) becomes smaller (i.e. more truncation of k-space), the more the ringing

will be apparent. This is a well-known property of the truncation of an in�nite Fourier

series, also known as Gibbs ringing.

2.1.6 Rapid MR Imaging

There are many sequences that can be used for rapid MRI. Before delving into the

rapid sequences, let us �rst discuss the two basic pulse sequences: gradient echo

(GRE) and spin echo (SE).

There are several imaging parameters that a�ect the signal and contrast generated

in an imaging sequence. The repetition time (TR) is the time between subsequent
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RF excitations. The echo time (TE) is the time from the delivered RF pulse to the

acquisition of the signal (or echo). Depending on the TR and TE times, the contrast

may be T1 weighted, T2 weighted, or proton density weighted.

Spin Echo

As discussed previously, the transverse relaxation decays at a rate of T�
2. This e�ect,

however, can be altered with the use of a spin echo (SE) pulse sequence. Figure 2.10

contains a pulse sequence diagram of a SE sequence.

Figure 2.10: The SE sequence uses a 90o RF pulse to tip Mo into the transverse plane.
After a time TE/2, a 180o RF pulse is delivered, which refocused the dephasing at
time TE.

The bene�t to using a SE sequence is that the images contain T2 contrast due to

the rephasing of the T
0

2, which reduces the susceptibility artifacts occurring at tissue

interfaces.
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The signal intensity for a SE sequence is

S(x; y) / � (x; y)
�
1 � e� T R=T1 (x;y )

�
e� T E=T2 (x;y ) : (2.41)

Although SE sequences typically have a high signal, the addition of the 180o refocusing

pulse and long TR make the SE sequence not ideal for fast (real-time) imaging.

Gradient Echo

A gradient echo{also known as gradient-recalled echo (GRE){sequence only uses a

single excitation pulse and does not utilize a 180o refocusing pulse that was required

for the SE sequence. The result of this is a much shorter echo time (TE), resulting

in a contrast that will (generally) be T�
2 weighted; however, a short enough TE will

minimize the T�
2 contribution allowing other contrast mechanisms to dominate, such

as T1. Figure 2.11 contains the pulse sequence diagram for a typical GRE acquisition.

The RF pulse is applied along with the slice gradient, to excite the 2D plane (slice)

of interest. Following the slice selection, the phase gradient is applied, and is applied

for every phase encode line. The readout (or frequency) encoding is then applied,

where the signal is acquired during the positive lobe.

The major bene�t to the GRE sequence is that the acquisition time is much shorter

since the TR values are much shorter. Typical TR values for a SE may be hundreds

to thousands of ms, whereas for a GRE can be as short as 2 ms!

There are dozens of rapid pulse sequences that utilize GRE; which can be e�ec-

tively split into two distinct streams: steady-state incoherent (SSI) and steady-state

coherent (SSC) [59]. The SSI sequences generally spoil the residual Mxy every TR,

whereas for SSC sequences the residual Mxy is refocused. Examples of common SSI

sequences include fast low-angle shot (FLASH) and spoiled gradient-recalled echo
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Figure 2.11: The GRE sequence uses a 90o RF pulse to tip Mo into the transverse
plane. Unlike the SE, there is no refocusing with a 180o RF pulse and the acquisition
occurs almost immediately after the RF pulse is delivered.

(SPGR). The sequence used to acquire the data presented within this thesis is the

SSC sequence known as balanced steady state free precession (bSSFP).

Balanced Steady State Free Precession (bSSFP)

Steady state free precession is an SSC sequence that occurs when a repetitive chain

of RF pulses is applied at a time TR that is much shorter than the T2 for the tissues.

This continuously refocuses the residual Mxy causing the \FID" and the \Echo" to

merge into a continuous 
uctuating signal as demonstrated in Figure 2.12. The bSSFP

pulse sequence is shown in Figure 2.13

The use of the bSSFP sequence relies on the quantity known as the resonance
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Figure 2.12: Here we demonstrate how the signal of the FID and echos (A) are merged
into a continuous signal (B). Figure courtesy of Allen D. Elster, MRIquestions.com.

o�set angle [51],

� = 
 � B TR + 
r~ �
Z TR

0
G~(t)dt

= 

� !



TR +
� � � � � � � � �: 0

r~ �

Z TR

0
G~(t)dt

= 2� � T R :

(2.42)

The integral is null for the bSSFP sequence, as the zeroth gradient moments are

zero (this is where the \balanced" term comes from). In general, the� term is set

to � � [51] through the RF phase. This results in a larger signal (than the non-

alternating case) and shifts the passband from o�-resonance 180o to on-resonance
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0o [56]. When� = � the signal for the SSC limit can be written as [60],

M +
y (1 ) =

M 0(1 � E1) sin(� )
(1 � E1 cos(� )) � E2(E1 � cos(� ))

(2.43)

whereE1 and E2 are (1-TR=T1) and (1-TR / T2), respectively. This is simpli�ed in the

limit where TR << T 2,

M +
y (1 ) = M 0

sin(� )
(1 + cos(� )) + (1 � cos(� )) T1

T2

: (2.44)

Furthermore, the optimal 
ip angle is given by [51],

cos(� opt) =
E1(1 � E2 cos(� ) + E2(cos(� ) � E2)
(1 � E2 cos(� )) + E1E2(cos(� ) � E2)

: (2.45)

The � term is the phase of the successive RF pulses. When� = � and in the limit

whereTR � T2, we can approximate the optimal 
ip angle to the following simpli�ed

expression

cos(� opt) �
T1=T2 � 1
T1=T2 + 1

: (2.46)

Inserting the optimal 
ip angle into the signal equation, we �nd

M +
y (1 )j � = � opt �

M 0

2

r
T2

T1
: (2.47)

This result is the reason why bSSFP is an ideal fast imaging sequence. The ability

to achieve 50% ofM 0 (for liquids that have T2 � T1) results in bSSFP providing a

high SNR compared to other fast imaging techniques [60]. Even for the case when

T2=T1 � 1, 10%{30% ofM 0 can still be achieved, which is greater than other FLASH

sequences [61]. One possible downside to using bSSFP is that because the signal is
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dependent onT2=T1, liquids and fat (which have di�ering T2 and T1 values) will have

similar contrast, given the ratio of T2/T1 is similar [60].

Figure 2.13: The pulse sequence diagram for a balanced steady state free precession
acquisition. The slice, phase, and frequency encodings are all balanced.

2.1.7 Noise & Contrast

Signal to Noise Ratio

Every imaging technique is subjected to noise, and MRI is no exception. The signal

to noise ratio (SNR) is a general measure of how well an imaging system can detect

signal over noise.

In terms of imaging parameters, we can write the SNR/voxel as,

SNR
Voxel

/ � x� y� z

r
NacqNxNyNz

BW
: (2.48)

This essentially boils down to SNR being proportional to the voxel size, the square
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root of the number of phase encodes (along the y and z directions) and the square

root of the read encode durationTs = Nx � t (since 1=BW = � t).

Although it looks as though you can increase the SNR by simply decreasing the

BW, doing so requires a long acquisition time (Ts) given the inverse relationship.

Long acquisition times result in increasedT �
2 e�ects, susceptibility artifacts, as well

as other detrimental artefacts such asBo geometric distortion [62]. This is due to

having more time for intravoxel phase dispersion to occur (given the small readout

gradient).

In terms of the main magnetic �eld strength Bo, the SNR will vary depending

whether the sample noise or coil noise dominates. A general equation can be written

as,

SNR =
B 2

oq
�B 2

o + �B 1=2
o

; (2.49)

where the �rst and second terms in the denominator are due to noise in the sample

and coil, respectively. The factors� and � are constants. At clinical �eld strengths,

the sample noise is the most dominant, resulting in [58]

SNR / Bo: (2.50)

At lower �eld strengths (generally � 0:5T), coil noise becomes the more dominant

factor and the SNR proportionality becomesSNR / B 7=4
o .

As the �eld strength is increased, so too does the SNR. It is for this reason that

3.0 Tesla MR systems and becoming more popular in a clinical setting. In recent

years, clinical systems with �eld strengths up to 7.0 Tesla have been developed and

installed in sites worldwide.
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There are also many issues when it comes to imaging with higher �elds. One

which is known as the dielectric e�ect. As the �eld strength is increased, the RF

wavelength is shortened creating constructive (bright spots) and destructive (dark

spots) standing waves. It is important to keep in mind, that SNR is only one piece of

the image quality puzzle. While being able to resolve the signal over the noise 
oor

is important, equally important is the ability to distinguish between various tissues /

structures in the acquired images.

Contrast to Noise Ratio

The contrast to noise ratio (CNR) is de�ned as the ability to distinguish signal from

two objects (A and B). A simple CNR equation is often written as,

CNRAB = SNRA � SNRB : (2.51)

Similar to SNR, the CNR is dependent on factors such as the pulse sequence (bSSFP,

FLASH, GRE, etc.), 
ip angle, TE, and TR. The CNR is also dependent on the

relative relaxation parameters (T1, T2, T �
2 ) of the tissues being imaged [33]. While

SNR may increase with increasing �eld strength, CNR is more complex. It has been

shown that for some tissue / tumour combinations that a lower �eld will increase the

CNR compared to a higher �eld [33].

2.1.8 K-space Undersampling

As discussed in the previous chapter, k-space is generally sampled to ensure that it

satis�es the Nyquist criteria to avoid aliasing artifacts. A common method to save

time in MR imaging is to reduce the number of phase encodes (PE's) required to

meet the Nyquist criteria. Skipping lines of k-space coherently; however, results in a
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fold-over artifact. The technique of coherently skipping PE's is commonly employed

in parallel imaging. Parallel imaging is a popular technique that is often used in

clinical imaging. [63] Another way to reduce the imaging time is to undersample the

PE's in an incoherent manner. This more recently developed technique is known as

compressed sensing [64].

Nyquist Sampling

Before discussing the e�ects of undersampling k-space, we should �rst understand

how to fully sample k-space to ensure aliasing does not occur. The measurement of

the continuous MR signal results in discretization via �nite sampling using a Dirac

comb function,

III( k) = � k
1X

p= �1

� (k � p� k); (2.52)

where � k is the k-space sampling distance. Of interest, is the Fourier transform of

Equation 2.52,

III( x) =
1X

q= �1

� (x � q=� k): (2.53)

The comb function III(x) is convolved with the spin density� (x) (in k-space III(k)

is multiplied to the signal s(k)), which yields in�nite replicas of the signal separated

by 1=� k. Thus, we can write

FOV =
1

� k
: (2.54)

In order to ensure the replicas do not overlap, the following criterion must be met,

� k <
1

FOV
(2.55)

where � k is the sampling spacing. This is known as the Nyquist criterion.
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Coherent Undersampling: Parallel Imaging

By coherently skipping phase encode lines of k-space, aliasing occurs such that the

image is folded over onto itself. This is due to mathematical properties of �nite

sampling as discussed in the above section. When a continuous signal is sampled into

discrete points, an in�nite number of replicas of the signal are generated. When the

sampling step size is too large and does not meet the Nyquist criteria, the replicas

are shifted onto one another resulting in the aliased signal. Figure 2.14 demonstrates

how the aliasing occurs.

A requirement for all parallel imaging reconstruction techniques, is that the signal

must be acquired using a multi-coil array. There are two main techniques that are

used to reconstruct images that have been coherently undersampled, SENSitivity

Encoding (SENSE), and GeneRalized Autocalibrating Partial Parallel Acquisition

(GRAPPA).

SENSE is an image reconstruction technique that is done post reconstruction and

utilizes coil sensitivity maps to aid in the unfolding of the aliased signal [40]. A

sensitivity map is simply a map containing the signal strength for each of the coils

used to acquire the signal. The general equation for SENSE can be written as,

I~ = C � �~ (2.56)

where I~ are the aliased pixel values,C is the coil sensitivity matrix, and �~ are the

true pixel values. This will result in linear equations equal to the number of coils

Nc. It should be noted that the acceleration factor (R) cannot be greater than the

number of coils. In order to calculate the true (unaliased) pixel values (�~ ), we need

to invert Equation 2.56. The solution to this problem is through the pseudo-inverse
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Figure 2.14: Demonstration of signal aliasing. (A) demonstrates when the Nyquist
criterion is met, where no overlap between the in�nite replications occurs. Meanwhile,
when the Nyquist criterion is not satis�ed, the replicas move closer together and
aliasing (or fold-over) occurs as shown in (B). The k-space sampling schemes for (A)
and (B) are shown in (C). The fully sampled k-space is sampled adequately in both
kx and ky (ky sampling is � k1), however by doubling the k-space sampling (dashed
lines are zero-�lled in this case), the distance between the replicas (A) reduces by half
resulting in (B).

(ignoring noise),

F = jI � C � � j2; (2.57)

= I yI � � yCyI � I yC� + � yCyC�: (2.58)

Note that we have dropped the vector notation for simpli�cation of the notation. We
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wish to calculate the minimum given by@F=@�y, which gives us

� = f (CyC)� 1CgI: (2.59)

This equation is applied pixel-wise to the aliased signal to reconstruct the full FOV

image.

In contrast with SENSE, which is applied in the image domain, GRAPPA is a

technique that performs the correction in k-space, prior to image reconstruction. The

GRAPPA technique is a generalized form of the SMASH (SiMultaneous Acquisition

of Spatial Harmonics) parallel imaging technique [65]. GRAPPA does not use coil

sensitivity maps, but instead uses an auto-calibration signal (ACS) to correct for

the missing lines of k-space, which is generally the central region of k-space that is

fully sampled. The ACS and acquired lines of k-space from each coil are used to

calculate the spatial harmonic weights in order to �t the missing lines of k-space for

each coil [41]. This is demonstrated in Figure 2.15.

Incoherent Undersampling: Compressed Sensing

As discussed previously, parallel imaging is a technique used to coherently undersam-

ple k-space. This creates an aliasing e�ect that can be corrected using algorithms

such as SENSE or GRAPPA. More recently, a reconstruction technique that utilizes

incoherent undersampling has been developed. Known as compressed sensing (CS),

this technique has proven to be an e�ective method of k-space undersampling [64, 66].

The CS algorithm generally has three requirements:

(a) The data must be representable in a sparse domain (compressible),

(b) The k-space must be acquired incoherently,
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Figure 2.15: Demonstration of how GRAPPA is used to calculate the coil weights.
Data from all coils are used to estimate the missing k-space data for each coil. The
global weights calculated from the ACS line form a kernel, which is then used to
calculate the missing k-space data.

(c) The image reconstruction is non{linear, enforcing both sparsity and data con-

sistency.

Of the 1000's of images we view on the internet in our day-to-day activities, nearly

all of them have been compressed. Without compression, the amount of data required

to store these images would be very large. The goal of CS is to utilize a transform

space where the data is sparse. One of the most common compression algorithms was

developed by the joint photographic experts group (JPEG). The JPEG compression

algorithm is based on the discrete cosine transform (DCT). Simply put, an image can

be transformed into DCT space, where much of the data can be set to zero (depending

on the level of compression). To take the data from DCT space back into the image,

we apply the inverse DCT. Generally, nearly 90% of the data can be set to zero

without a large loss in image quality [67]. A more advanced method (JPEG-2000)

uses the wavelet transform. Another sparse representation can simply be the image

pixel space for images of blood vessels, for example. Finite di�erence can also be used
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(especially true in the temporal domain). The goal of these transforms is to �nd a

space where information is sparse. Mathematically, this can be written as

minimize jj 	 mjj 1

s.t. jjFsm � yjj 2 < �:
(2.60)

This optimization problem states that we want to minimize thel1 norm of jj 	 mjj

which promotes sparsity. The term 	 is an operator that transforms the image (m)

to the chosen sparsifying transform (DCT, wavelet, etc.). The second term utilizes

the l2 norm to enforce data �delity by ensuring the undersampled image (Fsm, where

Fs is the undersampled Fourier transform), remains close to the data acquired from

the scanner (y); where � controls the �delity of the data.

An important aspect for CS is the incoherent undersampling. Generally, only the

phase encode is incoherently undersampled, given that the frequency encoding portion

is fast enough to leave fully sampled. This is demonstrated in Figure 2.16, where a

fully sampled brain image has been undersampled only along the PE direction. For 3D

data sets, incoherent acquisition can be exploited further, since there are essentially

two phase encoding directions. Similarly for dynamic data, the temporal domain

can be undersampled such that each dynamic frame has a di�erent sampling pattern;

which can then incorporate previous data to build a more complete k-space (i.e. lower

apparent acceleration).

It has been previously demonstrated that CS alone can achieve good results for

real-time lung tumour segmentation at 3 T and simulated low SNR of 0.5 T [68].

Yip et al. developed a CS technique that utilized a secondary �delity term that

constrained the current acquired dynamic frame to the mean prior data. Yip demon-

strated reconstruction speeds of under 300 ms, with acceleration factors up to 7x

51



Figure 2.16: Demonstration of incoherent artifacts. (A) demonstrates when the
Nyquist criteria is met (fully sampled). (B) demonstrates the noise-like artifact that
occurs when the Nyquist criteria is violated incoherently. (C) demonstrates how the
k-space is sampled for a general incoherent acquisition at 5x acceleration (20% of
k-space is acquired).

acceleration via Cartesian acquisitions. Majumdaret al. developed a fast nonconvex

solution to the CS problem for dynamic data with a sparse temporal di�erence [44].

Majumdar investigated real-time CS and demonstrated reconstruction times of 130

ms for 128� 128 sized images acquired radially and mapped to Cartesian space via

the non-uniform fast Fourier transform (NUFFT).

2.2 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a statistical technique that uses an orthogonal

transformation to convert a set of possibly correlated variables into a set of linearly

uncorrelated variables called principal components. In other words, PCA reduces the
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dimensionality of large data sets to �lter out noise and reveal hidden dynamics. For

example, PCA is often used for denoising fMRI data prior to performing statistical

analysis [69]. When applying PCA to a set of dynamic MR images, the largest princi-

pal components will contain the greatest variance, which will generally be the patient

motion in a particular direction (superior-inferior breathing motion, for example).

When applying PCA to a data set such as dynamic imaging data, the data should

�rst be transformed into a Casorati matrix to make the application to PCA simple

and straightforward. The Casorati matrix takes (in our case) three-dimensional data,

for example 256� 256� 30, and reshapes it into a two-dimensional space 65536� 30.

A schematic of the Casorati matrix transformation is shown in Figure 2.17 forp

dynamic MR images of sizen � m.

Figure 2.17: An example of how a Casorati matrix is constructed using several dy-
namic images. Each dynamic frame is vectorized into annm � 1 vector and then
concatenated together to form annm � p matrix.

The process of calculating the principal components is fast and rather simple to

implement. Lets assume we have a matrix (B) de�ned as above via the Casorati

matrix ( nm � p), then we can calculate the principal components through the use of

the covariance matrix (C) or through the Gram matrix (G). The use ofC or G are
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ideal, as they are square symmetric matrices.

C = B � B T

G = B T � B:
(2.61)

It should be noted that if B is comprised of complex numbers the transpose becomes

the conjugate transpose. A simple proof demonstrates that eitherC or G can be used

for PCA. The principal components are the eigenvectors of the matrixC,

Cvi = � i vi : (2.62)

This can be problematic, given that the matrixC will be massive (nm � nm). Alter-

natively, we can show that theG matrix can also be used with a small caveat,

Gvi = � i vi

B T Bv i = � i vi

BB T (Bv i ) = � i (Bv i )

C(Bv i ) = � i (Bv i ):

(2.63)

The second last step in Equation 2.63 we multiplied both sides by the matrixB ,

which demonstrates that the same eigenvectors and eigenvalues exist for bothG and

C; however, when usingG we must project the eigenvectors onto the matrix B. Thus,

both G and C share the same non-zero eigenvalues. The bene�t being that the matrix

B will be of sizep � p instead ofnm � nm! For large matrices (such as the Casorati

matrix above), calculation of the covariance matrix may not be possible as there may

not be enough memory to store such a large matrix.
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2.3 Arti�cal Neural Networks

When writing code to solve a computational problem, we generally have input values

x and some functionf (x) that we program in order to solve for the output valuey.

Arti�cial neural networks (ANNs) switch the paradigm, such that, given the input x

and output y, we attempt to solve for the functionf (x). ANNs are used as a com-

putational tool to solve problems by \mimicking" the process of biological neurons.

Essentially, ANNs can be thought of as universal function approximators that tweak

a set of parameters to take an input to generate a desired output. It is important

to note that the parameters are the weights and biases that are updated during the

training optimization. These are not to be confused with hyperparameters, which are

not updated during the training optimization, and generally need to be set prior to

training (or optimized separately). In general, an ANN algorithm requires: a dataset

(generally input and output values), a cost function as a way to calculate the error,

an optimization procedure (most commonly gradient descent), and a model [70]. The

idea is to train the network using a training dataset, such that the model becomes

generalized; meaning, it can perform well on previously unobserved data. Interest-

ingly, it has been proven that there is no best machine learning algorithm and no

best form of regularization [71, 72]. However, if we make assumptions about the data

distribution encountered in real-world data, we can then design ANN algorithms that

perform better than others.

Initially, ANNs contained only one layer and could only handle linear classi�cation,

which does not apply to many imaging problems. The following section will give

a brief introduction to neural networks and their utility in image processing. A

historical overview of ANNs is presented followed by the mathematics behind the

perceptron, which is the �rst supervised learning NN. Modern ANNs will then be
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presented, which use the mathematical operation of backpropagation and multiple

layers to create deep non-linear networks.

2.3.1 Brief Historical Introduction

Arti�cial neural networks were initially developed in the 40's to mimic the process

of biologic neurons based on a branch of mathematics known as threshold logic [73].

These initial neurons were named after the authors and is known as the McCulloch-

Pitts (MCP) neuron, which is synonymous with the term Threshold Logic Unit

(TLU). This early neuron could only perform binary operations and required that

the inputs be Boolean. Furthermore, it treated all inputs equally, meaning there were

no weights. If the summation of the input data did not exceed some threshold, the

result would be null; if the summation did exceed the threshold, the result would be

unity. Thus, MCP neurons were generally used to perform Boolean operations.

The �rst \real" arti�cial neural network was the perceptron developed in 1957

by Frank Rosenblatt [74]. This single layer neural network essentially relaxed the

constraints of the MCP neuron, which allowed the neurons to \learn" from the data.

The input was no longer required to be Boolean, and variable weights were intro-

duced, the output of which would generally be a Boolean classi�er (i.e. dog or cat).

Rosenblatt's discovery included the development of a supervised learning algorithm

where the neurons \learn" the correct weights by training the data. Given a data set

of inputs and corresponding correct outputs (known as examples) the error for the

neuron was calculated via the di�erence of the neuron output and the correct output.

Training the data is a technique used to update the weights by adding the error to

the previous weights.

Another important aspect is the addition of a bias (w0 = � � ), which is set equal
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to the threshold value; this additional parameter allows for the network to be further

trainable, by shifting where the threshold lies. Mathematically, the perceptron can

be written as,

f (x) =

8
><

>:

1 if
X

wi � x i + w0 � 0

0 otherwise:
(2.64)

The main issue with perceptrons is that they are linear binary classi�ers, which is

not very helpful for most imaging tasks. A schematic of this simple network (for one

neuron and one layer) is shown in Figure 2.18.

Figure 2.18: Simple neural network consisting of three neurons to demonstrate the
di�erences between an MCP neuron and the perceptron. The MCP neuron does not
contain weights or a bias parameter, whereas the perceptron does.

2.3.2 Modern Neural Networks

It is important to state that an ANN is simply a universal function approximator,

that takes some input and produces the desired (known) output. Finding the optimal

parameters and layers often requires experience and expertise, but ultimately the

goal is to �nd the global minimum of some cost function by �tting the input data

appropriately. It has been mathematically proven that a single layer ANN that is
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arbitrarily wide (the number of parameters within a layer is de�ned as the width) can

compute any arbitrary function [75]; a similar result has been proven for a NN that is

width bounded, but arbitrarily deep [76]. Thus, a NN can be trained to compute any

function (this is mathematically proven); but �nding the optimal solution is entirely

dependent on how well the ANN has been designed.

In general, building an ANN requires:

� A data set (the larger the better)

� Activation function (usually non-linear)

� A cost function (such as least squares)

� Optimization procedure (such as gradient descent)

� A model

These will be discussed further in the proceeding sections; however, it is important

to understand the goal of training an ANN. In short, the data set (for supervised

learning) will consist of input data with the associated solution (synonymous with

labelled data set). The activation function is used to implement non-linearity into

the model and is used to determine whether a neuron should be activated or not.

The cost function determines the error of the NN calculated output compared to the

actual output, which is then fed into the optimization algorithm. The optimizer then

tunes the weights and biases to hopefully reduce the error during the next iteration.

Arti�cial neural networks often consist of several layers. When many layers are

used, the ANN is then termed a deep neural network (DNN). For dense layers, each

neuron from the previous layer is connected to each neuron in the current layer.

After the input, each neuron is a weighted sum of the previous layers output along
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with an added bias. The output from each neuron is passed through an activation

function (generally a non-linear function) prior to being fed into the following layer.

Mathematically,

al
j = �

� X

k

wl
jk al � 1

k + bl
j

�
(2.65)

where the activation function is denoted by� for the neuronal
j , wherel is the layer and

j is the neuron within the l th layer. The weights are denoted aswl
jk ; l is the layer the

weight is in
uencing, k is the neuron from the (l-1)st layer, which connects to thej th

neuron in the l th layer. The term bl
j is the added bias, which is an additional training

parameter. Figure 2.19 contains an example of a dense ANN. This process continues

for however many layers are contained within the network. The more layers, the

deeper the network (and more trainable parameters and computational complexity).

Figure 2.19: Diagram of modern neural networks. The inputx i is fed into multiple
hidden layers. The cost of the outputyi and the input is calculated and used to
adjust the weights via backpropagation.
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Once the output is calculated, the costC of the output and the input is calculated.

This will be used to tune the weights and biases through the operation known as

backpropagation. Backpropagation is a technique used to calculate the cost for each

weight (and bias), and ultimately is what adjusts the parameters to a more acceptable

solution. This will be discussed in detail in the following section.

2.3.3 Backpropagation

This is the mathematical framework required to transfer the error calculated at the

output layer back to the previous layers, in order to update the weights. Backpropa-

gation is ultimately just the application of the calculus chain rule. The heart of the

backpropagation algorithm is the expression for@C/ @wi ; the partial derivative of the

cost function C with respect to the network weightswi . Using the notation from Sec-

tion 2.3.2, backpropagation can be developed using the following methodology [77].

Note, we will not be deriving the fundamental equations, rather simply stating them

and their signi�cance to NNs.

The goal of backpropagation is to �nd the associated error (� ) for each weight (and

bias) with respect to the costC calculated from the ANN output and the known (gold

standard) data. This can be calculated such that

� l
j =

@C
@alj

� 0(zl
j ); (2.66)

where � l
j is the error in the j th neuron at the l th layer and C is the cost function.

The @C=@al
j term on the RHS is a measure of how fast the cost is changing at the

j th output activation. The � 0 term is the derivative of the activation function and

is a measure of how the activation function� is changing at the weighted inputzl
j

(for simplicity, zl
j =

P
k wl

jk al � 1
k + bl

j ). We can re-write Eq. 2.66 in a more convenient
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format using the Hadamard product (� )

� l = r aC � � 0(zl ); (2.67)

where the Hadamard product is an element-wise multiplication of matrices. We can

also write the error at layerl in terms of the error in the next layerl + 1,

� l =
�
(wl+1 )T � l+1

�
� � 0(zl ): (2.68)

Eq. 2.68 propagates the error backward through the network via the transposed

weighting matrix (wl+1 )T . Taking the Hadamard product propagates the error back

through the activation function. The combination of Eq. 2.66 and Eq. 2.68 allows us

to compute the error � l for all layers in the network.

The rate of change in the cost function with respect to the network bias can be

written as
@C
@blj

= � l
j : (2.69)

The �nal equation describes how the cost function changes with respect to any

weight in the neural network,
@C

@wljk
= al � 1

k � l
j : (2.70)

These equations succinctly describe the technique known as backpropagation. In

words,

1. Input data X and randomize the weights

2. Feedfoward. Computewlal � 1 + bl for each layer (l = 2; 3; :::; L)
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3. Output the error � l via Eq. 2.67

4. Backpropagate the error

5. Calculate the output via Eq. 2.69 and Eq. 2.70

The output is the gradient of the cost function which steers the solution toward

the local minimum.

To show a simple example, let's look at the simple NN presented in Figure 2.20.

This example breaks down a NN into each step. The input is multiplied to a weight

(xA � w1 = P1, for example) and summed with all other inputs (multiplied to the

corresponding weights), which is fed into a non-linear activation function; in this case

it is modelled as a sigmoid. The output is multiplied to another weight (y1 � w = q1,

for example), which is fed into another sigmoid. Let us see how we would determine

the weightsw1 and w3, as an exercise in backpropagation.

Figure 2.20: Simple NN with two inputs, two layers, and two outputs.

To start, lets calculate the derivative ofw1 with respect to the cost functionC.

Working our way back from the outputs, we have two avenues that will in
uence this
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weight.

@C
@w1

=
@C
@ZA

@ZA
@q1

@q1
@y1

@y1
@P1

@P1
@w1

+
@C
@ZB

@ZB
@q3

@q3
@y1

@y1
@P1

@P1
@w1

: (2.71)

Similarly for w3,

@C
@w3

=
@C
@ZA

@ZA
@q1

@q1
@y1

@y1
@P3

@P3
@w3

+
@C
@ZB

@ZB
@q3

@q3
@y1

@y1
@P3

@P3
@w3

: (2.72)

Here it can be seen that to calculate the appropriate change in the weight from a

previous layer, we need to work our way back via the chain rule. Comparing Eqs. 2.71

and 2.72, we see that many of the derivatives are repeated. This greatly simpli�es

the computation, since we can take advantage of terms that have been previously

computed.

The derivatives are with respect to the output of the activation function, as well as

the cost function. These are generally simple to compute, but are completely depen-

dent on the chosen cost function and activation function. Due to the computational

simplicity, the recti�ed linear unit (ReLU) activation function is often used and is

generally the default activation function for most problems.

ReLU Activation Function

When ANNs initially gained popularity (with the introduction of backpropagation),

the most common activation function for ANNs was the sigmoid function as it was

continuous, di�erentiable, and resembled a binary step function. This has since been

replaced with the Recti�ed Linear Unit (ReLU). In fact, it is generally the default
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activation function for most ANN code packages. This function is given as,

f (x) = max(0 ; x); (2.73)

and the derivative is simple to calculate,

f 0(x) = 0 8 x � 0

= 1 8 x > 0:
(2.74)

Therefore, the ReLU activation function has an all or none response during back-

propagation. The reason ReLU has become the most popular activation is that it

reduces the vanishing gradient issue that is experienced when using the once popular

sigmoid function. The vanishing gradient associated with the sigmoid occurs when

the activation is either large or small, the gradient of the sigmoid trends to zero as

shown in Figure 2.21. Furthermore, the derivative of the ReLU is constant, which

Figure 2.21: Demonstration of the sigmoid activation function, and the derivative,
which results in the vanishing gradient problem. As the activation gets high or low,
the gradient vanishes, resulting in poor training of the ANN.

is far more e�cient to compute and hence, results in faster training (compared to

the sigmoid function). Figure 2.22 shows a plot of the ReLU function along with the
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derivative.

Figure 2.22: Plot of the ReLU activation function along with the derivative.

If the neuron sum is less than zero, the neuron \dies" and will no longer produce

weights going forward. This has been addressed with some alternative activation

functions, such as the leaky-ReLU. The leaky-ReLU introduces a small slope to the

zero-portion of the function, which keeps the \dead" neurons alive. However, these

other activation functions are out of the scope of this thesis and will not be addressed.

Training an Arti�cial Neural Network

The goal of a supervised ANN is to train it such that it can reliably learn the function

required to transform the input into the gold standard data, using large data sets that

consist of the input and the associated gold standard (also known as labelled data).

In general, the ANN is trained to minimize the error between the input and output

data by adjusting the weights and biases of the neurons. However, there needs to

be some way to test how well the ANN is learning with \real world" data (data

that is not used within the training data). This is done using test data, which is a
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portion of the data that is not included into training the ANN. The goal is to simulate

unseen \real world" data, to help aid the training. Therefore, the output from the

trained ANN will be compared to the test data, giving a more realistic measure of

how well the ANN is learning. Depending on the size of the data set, the input data is

separated into an 80/20 split, where 80% is used for training and the remaining 20%

is used to test the NN; however, this is highly dependent on the task. The problem

with this technique, is that the test data eventually gets \memorized" by the NN,

resulting in a bias [70]. A common way to remove this bias is with the use of k-fold

cross-validation [78]. This is a technique where the training data is split into k groups

where (k-1) groups are used for training. Thus, a 5-fold CV will train on 4 of the

5 groups, then test on the one group left out. This will be done 5 times, as we can

simply shift the test group across the training data. After each k-fold iteration, the

errors can be averaged over the k groups. This technique is ideal as it allows you to

incorporate more data for training, and greatly reduces the chances of \memorizing"

the test data. A downside to this technique, is that you end up increasing your

training time by the k-fold factor.

Another technique that can be used to aid the ANN training process is known

as data augmentation. Data augmentation is technique where additional training

data is generated by applying various transformations to the training data. These

transformations may include cropping, rotation, translation, and deformation. The

type of transformation applied to the training is dependent on what the CNN is

modelled to do. Data augmentation essentially creates \new" training data, which is

ideal when dealing with smaller training data sets.
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Optimization of the Neural Network

There are two sets of parameters that need to be considered with respect to an ANN.

The weights and biases that are iteratively updated through the training of an ANN

are known as parameters. There are several other parameters that are chosen prior

to training the ANN, which are known as hyperparameters. Hyperparameters may

consist of: the optimization learning rate, number of layers, batch size, number of

epochs, and activation function. The following discussion details the optimization

algorithms that are used to train the weights and biases (parameters).

There are several optimization techniques that are used for ANNs such as (stochas-

tic) gradient descent (SGD) [79], SGD with momentum [80], RMSProp [81], Adam [82],

and many more. For brevity, we will focus on SGD and Adam, which improves upon

SGD.

Gradient descent applied to the entire data set can be computationally expensive

and slow, so often SGD is used. Stochastic gradient descent optimization separates

the training data into mini-batches to compute the gradient estimate. Instead of

calculating the gradient over the entire data set, it applies it to the mini-batches such

that the gradient estimate G

G  
1
m

r �

mX

i =1

L(f (x~; �~); y~) (2.75)

where m is the number of mini-batches andL is the loss or cost function of the

CNN output f (x~; �~) and the corresponding true outputy~. The CNN parameters are

denoted via �~. When SGD mini-batch has a size of 1, it is known as online-SGD,

which can be quite noisy when approaching the minimum. Generally, it is advised

not to use a large mini-batch, but also one that is not too small [83]. The parameters
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(�~) are updated such that,

�~ = �~ � �G (2.76)

where� is the learning rate.

The optimization algorithm Adam, which stands for adaptive moments, combines

SGD with momentum and the RMSProp optimization algorithms. It has become one

of the most popular optimization algorithms; however, it has been shown to behave

poorly in some situations [84]. Nevertheless, it remains the default optimization

technique for most CNNs. In short, Adam updates the parameters based on both the

�rst and second moments;

P1  � 1P1 + (1 � � 1)G

P2  � 2P2 + (1 � � 2)G2;
(2.77)

where� 1 and � 2 are generally taken to be 0.9 and 0.999; respectively. The parameters

are then updated such that

�~ = �~ � �
P1p

P2 + �
(2.78)

where� is a small constant (usually 10� 8) and � is the step size (learning rate).

2.3.4 Arti�cial Neural Network Models

When developing a supervised arti�cial neural network (ANN) you will generally

have some labelled input and output data, and want to �nd a function capable of

calculating the output from the given input. There are several ANN models that

can be used and are dependant on the task. The most basic neural network models

use dense layers. A dense layer means the each neuron from the previous layer is

connected to the neurons of the next layer. There dense networks were used almost
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exclusively early on. Figure 2.23 contains a schematic of a dense NN layer. Dense

Figure 2.23: Schematics displaying the dense layer con�guration (top) and the convo-
lutional layer con�guration (bottom). (A) contains an example of how the neurons are
connected, (B) demonstrates how convolutional layers utilize tied (or shared) weights.

layers quickly become computationally expensive when evaluating images, especially

when considering standard image sizes today. A dense layer of a 256� 256 image

would result in (2562)2 weights! Initially developed in 1998 by LeCun [85], it was

not until 2012 when convolutional neural networks (CNNs) were found to be superior

for accurate classi�cation of images, that CNNs gained in popularity [86]. The use

of CNNs are advantageous as they have built-in invariance to translation or local

distortions (to some degree), which dense layers lack [85]. CNNs have the added

bene�t in taking advantage of local pixel correlations. A recently published review

on deep learning in medical imaging and radiation therapy demonstrates that CNNs

are utilized in nearly all aspects of medical imaging (segmentation, organ detection,

tissue characterization, registration, etc.) [87].

The work presented in Chapters 4, 5, and 6, focus on the convolutional neural

network (CNN) model, as it is ideal for the analysis of imaging data [70]. As shown
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in Figure 2.23, CNNs require far fewer weights and therefore are much faster to train

than traditional dense ANN models. A CNN uses several convolutional �lters (ker-

nels) to pull out the features of interest. In the case of classi�cation, the kernels

(which are a group of weights) �nd abstract features of the image training dataset.

The weights of the kernels are updated through the same process of backpropagation

as discussed previously. The CNN model requires knowledge of how many convolu-

tional kernels are to be used and the size of kernels. A CNN is generally made up

of several layers, each of which is convolved with a number of kernels (of a given

kernel size). These hyperparameters can be determined in various ways, such as a

manual search, grid search, or random search. Generally, initial hyperparameter val-

ues are determined from previous studies that have demonstrated success in their

implementation.

A few other common ANN models are perceptrons [74], recurrent neural net-

works [88], general adversarial networks [89]. Perceptrons are generally considered

the �rst generation of neural networks, and consist of a single layer feeding into a

single output; however, multi-layer perceptrons (MLPs) have also been developed.

MLPs may be used for tasks such as classi�cation or regression. Recurrent NNs

(RNNs) are most prevalent for speech recognition [90], such as those used for Google

and Apple. RNNs have to ability to \remember" previous inputs making them ideal

for time-series data such as speech analysis. Finally, general adversarial networks

(GANs) use multiple NNs to work together to generate new data. One NN generates

data, while the other NN is tasked with judging the data to ensure it appears natural.

These have become famous by the scientists at NVIDIA for creating life-like portraits

of people who do not exist [91]! GANs have even been used to create portraits of

people based on the sound of their voice [92].
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2.3.5 Convolutional Neural Networks for MRI

As mentioned above, ANNs and in particular, CNNs are becoming common for use in

MRI analysis. It has been used for image segmentation [93], super-resolution [94, 95],

classi�cation [96], and image reconstruction [97, 98, 99]. CNNs have also been used

to reduce the dosage of contrast enhancing gadolinium by an order of magnitude

for contrast-enhanced brain MRI, without sacri�cing image quality [100]. It has been

demonstrated that CNN reconstructed cardiac studies provide similar results to other

\state-of-the-art" techniques, such as kt-SLR and low-rank sparse (L+S) [97]. CNNs

are optimal for imaging studies, as they learn features from the input data [101].

For example, the �rst layer may typically represent the presence or absence of edges

throughout the images. The second layer may detect motifs by arrangements of edges.

The third layer may combine the motifs into larger combinations corresponding to

parts of familiar objects throughout the images.

As brie
y discussed above, there are several hyperparameters speci�c to CNNs.

These depend on the task being investigated. The kernel size, or size of the convolu-

tion operation, is often chosen to be su�ciently small to detect small features in the

image data set. The convolution stride, or how many pixels the convolution jumps, is

another adjustable hyperparameter (this is almost always taken to be unity). Kernel

dilation is another hyperparameter that can be modi�ed. Typically, a convolution

is taken to be a region of pixels adjacent to one another; however, the kernel can

be dilated to allow separation between the convolved pixels. Zero padding can also

be used to ensure the convolved image is the same size (or larger) as the image the

convolution is applied to. Figure 2.24 contains examples of various convolutional

operations.

In order to bene�t from the use of ANNs for MRI reconstruction (or any other
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Figure 2.24: Examples of various convolutional operations. (A) example of a 3x3
kernel, (B) dilated convolution (with dilation equal to 1), (C) example of kernel (A)
with a stride equal to 1, (D) \same" padding to ensure the output image is the same
dimension as the input.

analysis), the use of graphical processing units (GPUs) is generally required. The

GPU has the ability to perform many of the mathematical operations in parallel,

resulting in a vast speed up in training time. A limitation for the use of ANN is that

it is highly dependant on the training data. For studies that aim to have a generalized

model (that can be applied to multiple patients, for example), having hundreds, if

not thousands of imaging data sets are required. Having large data sets, however,

also greatly increases the computational complexity and time to train the ANN. As

will be discussed in the upcoming chapters, I developed a CNN model that uses data

only from one patient, to reconstruct aliased data from the same patient at another

imaging session. This is known as a patient-speci�c CNN, which is ideal for dynamic

data, where several temporal frames can be used for training the CNN.
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Chapter 3

Compressed Sensing and Principal

Component Analysis (CS-PCA)

Parts of this chapter have been adapted from a published article: Dietz B, Yip E,

Yun J, Fallone BG, Wachowicz K. Real-time dynamic MR image reconstruction using

compressed sensing and principal component analysis (CS-PCA): Demonstration in

lung tumor tracking. Medical Physics. 2017;44(8):3978{3989 [102].

3.1 Introduction

Real-time adaptive radiotherapy requires continuous imaging throughout treatment

to track and monitor the tumour over time. Tracking a tumour in real-time may

allow for decreased dose to organs at risk surrounding the tumor by minimizing the

treatment margin within the planning target volume (PTV). Adaptive radiotherapy

is ideal for tumours situated near organs of motion, such as the lung, due to the

potential for reduced treatment margins that are conventionally used to compensate
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for motion. The development of hybrid linac radiotherapy systems combined with

magnetic resonance imaging (LMR) [27, 24, 25, 26], opens the path towards real-time

MR guided adaptive radiotherapy [36]. The use of MRI is ideal for real-time imaging:

aside from the excellent soft tissue contrast, it does not contribute any additional

dose to the patient.

It has been recommended by the American Association of Physicists in Medicine

Task Group (AAPM's TG-76), that real-time adaptive radiotherapy should have a

total system latency (image acquisition, reconstruction, contouring, and MLC colli-

mation) under 500 milliseconds [13]. The total system latency goal that our group

aims to achieve is 250 milliseconds, or four frames per second (FPS). The focus of

this study is to minimize the time required for the image acquisition and reconstruc-

tion processes. Previous work by our group has already considered the contouring

speed, and to some degree the image acquisition and reconstruction using a prior-data

assisted compressed sensing (PDACS) [103, 68].

Unfortunately, MRI is an inherently slow imaging modality in comparison to real-

time x-ray techniques. Image reconstruction times can be lengthy and for this reason,

many real-time reconstruction techniques, such as k-t sparse techniques, are per-

formed o�ine [104, 105, 106]. O�ine methods refer to reconstruction techniques that

are performed after the data has been acquired; whereas online methods refer to tech-

niques that can reconstruct the data during imaging. Real-time is a special case of

online method, where the images are reconstructed as they are acquired with minimal

latency, allowing the image data to re
ect the current status of the subject. Real-time

methods ideally have reconstruction times on the order of tens of milliseconds and

have clinically useful images (from a tumour tracking perspective). Parallel imaging

(PI) techniques, such as sensitivity encoding (SENSE) or generalized autocalibrat-
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ing partial parallel acquisition (GRAPPA), require several channels in order to take

advantage of coil geometry; however, LMR systems may not be capable of having

enough coils to allow for highly accelerated PI. Current fast imaging techniques, such

as balanced steady-state free precession (bSSFP), can acquire images within about

275 ms. By imaging faster (acquisition and reconstruction) we can bene�t from: (1)

an increased frame rate, (2) an increased image resolution, (3) an acquisition of multi-

slice orthogonal planes or full 3D volume while keeping the frame rate minimal. To

achieve real-time online imaging with low latency and fast frame-rate, the MR data

acquisition needs to be undersampled. Undersampling the data; however, violates the

Nyquist criteria resulting in unwanted artifacts throughout the image.

Compressed sensing (CS) is a technique used to reconstruct a signal from under-

sampled data [64]. For compressed sensing to be successful, two conditions must be

met: the data must be compressible in a known sparse domain, and the undersam-

pled data must be acquired in an incoherent manner. The method of CS essentially

states that if data can be represented in a sparse domain, or can be transformed into

a known sparse domain, then the incoherently undersampled signal (that violates the

Nyquist criteria) can be recovered. Incoherent sampling results in an artifact resem-

bling noise to appear throughout the image, which can be removed by transforming

the data into a sparse domain. For the present study, principal component analysis

(PCA) is used as the sparse domain. Previous studies have demonstrated that CS

can reconstruct images at 300 ms per dynamic frame [68, 44]. The latency caused by

this reconstruction (along with the k-space acquisition) is still too time consuming

for real-time radiotherapy. Further, the aforementioned CS techniques are limited in

the k-space acceleration they can achieve.

Principal component analysis (PCA) is a common data analysis technique that is

75



often used to reduce the dimensionality of a data set. The dimensionality is reduced

by �nding the orthogonal basis set that orders the dimensions by redundancy. The

least redundant dimensions, or principle components, can be attributed to noise in

a data set [107]. Examples of PCA being applied to images include the generation

of eigenfaces for facial recognition, and preprocessing resting-state functional MRI

data [108, 69].

A recent study by Zonget al. investigated the combination of compressed sensing

(CS) and principal component analysis (PCA) for the use in reconstructing under-

sampled images [109]. Zong demonstrated that static undersampled images could be

reconstructed from a database of similar images, using CS-PCA with reconstruction

times of around one second. Using a similar CS-PCA methodology, a real-time re-

construction algorithm has been developed capable of reconstructing undersampled

dynamic images in tens of milliseconds. This speedy reconstruction is an essential for

real-time adaptive radiotherapy treatment.

The study presented proposes a novel CS-PCA reconstruction method, capable

of real-time reconstruction for adaptive radiotherapy for use with our hybrid Linac-

MR system. The algorithm was evaluated using retrospective data acquired from

six patients with non-small cell lung cancer. Undersampled reconstruction was in-

vestigated at several acceleration factors. The acceleration factor indicates by how

much the data has been undersampled; an acceleration factor of 2 speci�es that 50%

of the fully sampled data is used for reconstruction (4x = 25%, etc.). The under-

sampled reconstructions were quantitatively evaluated using several metrics. Using a

neural-network contouring software developed by our group, the contoured tumours

calculated from the undersampled data were compared to the original contours de-

rived from the fully sampled data [103]. The contours were compared using the dice
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coe�cient (DC) [110], normalized mean square error (NMSE) [111], root mean square

error (RMSE), mean absolute percentage error (MAPE), and structural similarity in-

dex (SSIM) [112]. Furthermore, the centroid displacement of the tumour contours

was calculated to measure any segmentation drift in the accelerated reconstructions.

3.2 Methods

3.2.1 Incoherent Sampling

In order to utilize compressed sensing, it is important that the MR k-space data

be acquired in an incoherent manner. We used a pseudo-random sampling pattern

that uses a Monte Carlo sampling pattern weighted by a probability function. [64] A

distribution of random numbers equal to the number of (image space) pixels along

the fully-sampled PE direction are generated, if the random value at a given location

is below the probability density function, that PE line is sampled. If the number of

sampled PEs does not equal the required value, the random numbers are iterated and

the process repeats. The probability function enforces more sampling at the center

of k-space, which contains the most energy (the low spatial-frequency components).

Figure 3.1 contains an example of an incoherently undersampled phase-encode scheme

at 4x acceleration.

3.2.2 O�ine PCA Development

Our CS-PCA reconstruction algorithm consists of an o�ine portion that uses database

images to generate principal components (PC's), which take on the order of 10 ms to

compute, followed by online real-time reconstruction. Both o�ine and online portions

of the algorithm are implemented in (complex) k-space. Figure 3.2 contains a 
ow
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Figure 3.1: The left side of the �gure contains the probability density function, which
is developed to ensure the central portion (low-resolution) of k-space is always ac-
quired. Then, we repetitively use randomly calculated values (via MATLAB rand) to
�nd the acquired lines. If the random numbers (red) are below the PDF, we sample.
This is indicated in the right side of the �gure by the yellow lines. The process of
generating random numbers continues until we �nd the number of lines required for
a given acceleration.

chart of our proposed algorithm. All data was processed o�ine using commercially

available software (MATLAB 2015a, The MathWorks Inc., Natick, MA).

Prior to real-time imaging (but within the same imaging session), a database of

fully-sampled dynamic frames are acquired of sizeM � N . The database will be used

to guide the reconstruction via PCA decomposition. Let the databaseDB denote

a Casorati matrix of fully-sampled k-space frames, i.e.DB = [ DB 1; DB 2; :::;DB J ],

where J is the number of k-space frames in the database andDB i is an MN � 1

vector. In general, the CasoratiDB matrix will then be of sizeMN � J . The mean

k-space is calculated and subtracted from eachDB i (demeaned), which is denoted as

DM i . A J x J Gram matrix G is calculated,

G =
1

(J � 1)
DM T � DM : (3.1)

The eigenvectors and eigenvalues are then calculated from the Gram matrix. See
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Figure 3.2: Flow chart of the CS-PCA algorithm, which is completely implemented
in k-space. The o�ine portion of the algorithm is to be calculated immediately prior
to the acquisition of the undersampled accelerated data. The CS-PCA algorithm
iterates N times to update the weights, which are used to calculate and update the
unsampled portion of k-space.

Section 2.2, on how the Gram matrix is related to the covariance matrix. To calculate

the PC's, DM is multiplied by the eigenvectors (E) and divided by the sum of the

eigenvalues (ei )

PC =
DM � E
P

i ei
: (3.2)

Which results in PCs that are of the sizeMN � J . Figure 3.3 contains six computed

PC's for one patient (that have been Fourier transformed into image space for visu-

alization purposes), where it is evident that the higher PC's contain more noise and
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therefore less variation.

Figure 3.3: Example unweighted PC's for one patient Fourier transformed into image
space. Notice how the noise becomes more prevalent in the higher PC components.
For this reason, thresholding the PC's help decrease the noise in the reconstructed
image by throwing away the noisy components.

3.2.3 Online Real-Time Application of PCA for Undersam-

pled Reconstruction

Everything up to this point is calculated o�ine, prior to real-time imaging. Now is

when we would acquire accelerated (undersampled) k-space data, denoted asUSD .

The undersampled data (USD ) is zero-�lled to be the same size as the fully-sampled

data (and hence,PC ). First, we must demean theUSD using the mean database

that was calculated o�ine, which we will denote asUSD DM . It is important to

note, that the accelerated data should not deviate far from the mean database. Each

principal component is initially multiplied by the demeaned undersampledUSD DM
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and a vector of weights (W ) is calculated

W i = PC T
i � USD DM : (3.3)

The size ofW is dependent on the number of principal components (which is deter-

mined by the J images contained inDB ). At this point, we truncate W by keeping

only values above a threshold which we have de�ned as,

W i = 0 8
W iP
i W i

< T; (3.4)

where T is a user de�ned threshold. The PC's are multiplied by their corresponding

weights, summed together along with the mean k-space, and the missing lines of k-

space fromUSD are �lled. This process continues iteratively, such that theUSD DM

from above is replaced with the new (fully-�lled and demeaned) k-space. The PCA it-

eration updates the value of the weights using the updated k-space (where unacquired

k-space lines are estimated with the previous PC �t). The number of iterations can

be determined using a stop condition (i.e. when change between iterations becomes

small); however, we chose to use an empirically de�ned value to ensure consistency

of reconstruction time.

3.2.4 Retrospective in vivo data

Six retrospective data sets of non-small cell lung cancer patients were used to test our

CS-PCA reconstruction technique. These data sets contain fully sampled dynamic

images of free breathing cancer patients containing lung tumours. Lung tumours were

chosen as they are often in regions where large motion occurs, due to respiratory

processes. For this reason, the PTV margins required to treat these tumours can
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be large [113]. Tracking the tumour in real-time will allow for decreased margins,

sparing healthy tissue that would otherwise have a large radiation dose.

From the fully sampled k-space, we applied a PDF weighted Monte Carlo de-

rived binary mask to mimic an incoherent sampling pattern commonly utilized in

compressed sensing [64]. The incoherent sampling mask was applied for acceleration

factors ranging from 2x to 10x. An acceleration factor of 2x implies that 50% of the

k-space has been masked (set to a value of zero); an acceleration factor of 10x implies

that only 10% of the fully sampled k-space is acquired. Having the fully sampled data

allows for a quantitative comparison of the undersampled reconstructed data using

our CS-PCA technique.

3.2.5 MRI data acquisition

A total of six patients with non-small cell lung cancer were recruited with approval

from the institutional board of ethics. The patients were imaged using a 3T Philips

Achieva Scanner (Philips Medical Systems, The Netherlands) for three minutes under

free breathing. A 2D bSSFP sequence was used to acquire 650 dynamic frames with

a �eld of view (FOV) of 40 x 40 cm2, voxel size of 3.1 x 3.1 x 20 mm3, TR/TE

= 2.2/1.1 ms, resulting in a total acquisition time for each frame = 275 ms. The

data was acquired using a 6-channel torso coil, which was combined via the scanner

software using coil sensitivity maps and coil covariance measurements to output single

channel combined (complex) data.

Several linac-MR systems have been reported, each with di�ering magnetic �elds,

including: 0.35, 0.5, 1.0, and 1.5 T [27, 24, 25, 26]. It is well known that lower �eld

strengths will result in a decrease in detected signal, resulting in decreased SNR. To

investigate the robustness of CS-PCA to the presence of increased noise, we increased
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the noise of our 3T data by a factor of N = 6 to simulate the SNR at 0.5T (3T=0:5T),

by adding random Gaussian distributed numbers [114]. This will be representative of

the SNR one would expect at lower, given the known-to a �rst order approximation-

linear dependency of the �eld on SNR. The standard deviation of the noise added

was calculated such that,

� added =
p

N 2 � 1 � � meas: (3.5)

To avoid the e�ect of the Rician noise distribution, � meas was calculated using the

average� in a region of zero signal in the real and imaginary images separately.

Further details can be found in a previous study from our group [114].

3.2.6 Image Reconstruction

The image reconstruction code was written and implemented using MATLAB. The

reconstruction time does depend on the parameters of the CS-PCA algorithm, such

as the database size and number of PCA iterations. For a database size of 30 images

the average reconstruction time was 9.3 ms using an Intel i7-4710HQ CPU @ 2.5

GHz. As a comparison (using the same CPU), the time for regular zero-�lled FFT

and CS reconstructions were on average 0.9 ms and 253 ms, respectively.

3.2.7 Split Bregman Compressed Sensing

The Split Bregman CS algorithm was chosen as a comparison method, as it is a

fast CS technique with freely available MATLAB code [115]. The Split Bregman

formulation solves the compressed sensing formulation

arg min
m

jjFsm � yjj 2
2 + � jj 	 mjj 1 (3.6)
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where m is the solution (in image space),y is the measured data,Fs is the masked

Fourier transform, and 	 is the sparsifying transform. Goldstein proposed using the

Split Bregman solver to break the total variation ansiotropic form of Equation 3.6

arg min
m

� jjFsm � yjj 2
2 + jjr xmjj 1 + jjr ymjj 1 (3.7)

up into steps that are easy to solve iteratively. First, Goldstein cast Equation 3.7

into the form

arg min
m;dx;dy

� jjFsm � yjj 2
2 + jjdxjj 1 + jjdyjj 1 + � jjdx � r xmjj 2

2 + � jjdy � r ymjj 2
2; (3.8)

where we constraindx ! r xm and dy ! r ym. Then, the computationally e�cient

Split Bregman steps are the following:

mk+1 = arg min
m

� jjFsm � yjj 2
2 + � jjdx � r xm � bk

x jj 2
2 + � jjdy � r ym � bk

y jj 2
2; (3.9)

dxk+1 = arg min
dx

jjdxjj 1 � � jjdx � r xm � bk
x jj 2

2; (3.10)

dyk+1 = arg min
dy

jjdyjj 1 � � jjdy � r ym � bk
y jj 2

2; (3.11)

bk+1
x = bk

x + r xmk+1 � dxk+1 ; (3.12)

bk+1
y = bk

x + r ymk+1 � dyk+1 : (3.13)

The terms dx0, dy0, b0
x , b0

y, are all initialized to zero when performing the Split

Bregman calculation. It was shown that this solution converges faster than alternative

methods, such as the gradient descent solution [115].

The algorithm requires the user to set the number of inner and outer loops. We

chose conservative values of 30 inner loops and 5 outer loops, as we were not focused
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on speed for the CS method. The implemented algorithm also has three parameters

that must be chosen for reconstruction. Using normalized mean square error (NMSE)

as our metric for optimization, parameter space was searched for each patient at each

acceleration factor, using a brute force method to �nd the three parameters that

resulted in the smallest NMSE.

3.3 Quantitative Reconstruction Metrics

3.3.1 CS-PCA Parameters

There are three main parameters that were investigated for optimal CS-PCA recon-

struction. The number of PCA iterations (for optimization of the PC weights), the

PC weight threshold value (determines how many PCs are kept), and the size of the

prior data (database size). To investigate these parameters, the normalized mean

square error and Dice coe�cients were calculated for all patients at an acceleration

factor of 5x (80% of k-space is set to zero). The number of PCA iterations was varied

from 1-10 using a constant PC threshold of 0.001 and database size of 30 images. The

PC threshold was varied from 0.1-0.00001 keeping the number of PCA iterations at

10, and the size of the database at 30 images. The database parameter was varied

from 2-100 using 10 PCA iterations, and a PC threshold value of 0.001.

3.3.2 Dice Coe�cient

Using a neural-network based automatic contouring software developed by our group,

the tumour segmentations (or contours) from the accelerated undersampled recon-

structions can be tested for accuracy against the fully sampled ground truth recon-
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structions [104]. The Dice coe�cient (DC) [110] is de�ned as

DC = 2 �
ROI F ull \ ROI US

ROI F ull + ROI US
: (3.14)

ROI is the region of interest (segmented tumour area in this situation) for the fully

sampled data (Full ) and the undersampled data (US). The DC is a quantitative

metric of how much overlap exists; in our case, the overlap between two tumour

segmentation masks. The DC is maximum at 1, meaning the segmentations are

perfectly matched; whereas a DC of 0 indicates that the segmentations contained

no overlapping area. The DC is indicative of image quality at a given ROI; as the

number of artifacts increase due to undersampling and acceleration, the segmentation

will deviate more from the fully-sampled case, yielding a lower DC. The average DC

over the 620 frames was calculated for each patient, at acceleration factors ranging

from 2x to 10x (from 50% to 10% of k-space). The total patient aggregate DC for

each acceleration factor was also calculated.

3.3.3 Normalized Mean Square Error (Artifact Power)

The amount of artifact appearing in the undersampled reconstructions can be quan-

titatively determined by calculating the normalized mean square error (NMSE) [111].

An NMSE of zero indicates the images are in perfect agreement, and any value greater

than zero is indicative of an increased presence of artefacts from the CS-PCA recon-

struction. The NMSE is calculated by taking the square of the di�erence between

the undersampled reconstruction and the fully sampled image, and dividing by the

square of the fully sampled image,

NMSE =
P

(I F ull � I US)2

P
(I F ull )2

: (3.15)
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The average NMSE over the 620 frames was calculated for each patient, at acceleration

factors ranging from 2x to 10x. The NMSE was calculated over the entire image, to

include all artefacts that may be present. The total patient aggregate NMSE for each

acceleration factor was also calculated.

3.3.4 Root Mean Square Error

Another metric commonly used to quantify the amount of artifact appearing through-

out the entire image via undersampled reconstruction is the root mean square error

(RMSE). The RMSE was calculated over the entire image, to include all artefacts

that may be present from the reconstruction. This metric is calculated by taking the

square root of the square of the di�erence between the fully sampled images and the

undersampled images, divided by the number of pixels,

RMSE =

r P
(I F ull � I US)2

N
: (3.16)

3.3.5 Structural Similarity Index

The structural similarity index (SSIM) is a metric used for measuring image quality.

The SSIM determines the quality through the computation of three terms, the lumi-

nance, contrast, and structural terms [112]. The combination of these three terms

results in the SSIM,

SSIM =
(2� F � US + C1) (2� F;US + C2)

(� 2
F + � 2

US + C1) ( � 2
F + � 2

US + C2)
: (3.17)

Where � F , � US, � F , � US are the means and standard deviations of the fully sam-

pled and undersampled data, and� F;US is the cross-correlation of the images. The
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constants C1 and C2 are typically chosen based on the dynamic range (DR) of the

images: C1 = (0.01 � DR)2, and C2 = (0.03 � DR)2. The SSIM was calculated over the

entire image, to include all artefacts that may be introduced from the reconstruction.

3.3.6 Mean Absolute Percentage Error

The mean absolute percentage error (MAPE) is another common statistic used for

measuring image quality. This simple metric evaluates the absolute di�erence between

the fully sampled data and the undersampled data, normalized to the fully sampled

data. To calculate it as a percentage, the sum is multiplied by 100 and divided by

the number of pixels (N),

MAPE =
100
N

X �
�
�
I F ull � I US

I F ull

�
�
� (3.18)

The MAPE was calculated over the entire image, to include all artefacts that may be

introduced from the reconstruction.

3.3.7 Centroid Displacement

Another metric that is of importance is the tumour segmentation centroid displace-

ment, which is a measure of how much the contour identi�ed on the undersampled

reconstruction has displaced from that of the fully sampled reconstruction. The cen-

troid displacement is simply calculated as the center of mass di�erence between the

tumour segmentations of the fully sampled reconstruction to the undersampled re-

construction. The centroid displacement combined with the dice coe�cient and other

quantitative metrics, give a complete description of how well the CS-PCA algorithm

is performing from a real-time tracking perspective.
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3.4 Results

3.4.1 CS-PCA Parameters

To empirically determine the optimal parameters, the Dice coe�cient (DC) and nor-

malized mean square error (NMSE) were calculated for all patients, at an acceleration

factor of 5x, using varying parameters. Figure 3.4 displays how the various parame-

ters e�ected the DC and NMSE. Figure 3.4A demonstrates that the NMSE and DC

Figure 3.4: Plots demonstrating the e�ect of CS-PCA parameters on DC and NMSE.
All data plotted is the aggregated average over all patients at an acceleration fac-
tor of 5x at 3T. Data displayed are mean values with 95% con�dence intervals. (A)
contains a plot showing how the DC and NMSE change with increasing PCA itera-
tion value. Plot (B) demonstrates how the DC and NMSE are e�ected by database
size. (C) displays how the PC threshold value e�ects the DC and NMSE. The DC
value increases as the threshold is decreased; whereas the NMSE value decreases with
increasing threshold.

trend toward a constant value after 5 PCA iterations; however, as the number of
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PCA iterations does not greatly increase the computational time, we used 10 PCA

iterations as the default. The PC threshold parameter is shown in Figure 3.4C. The

NMSE reached a minimum at 0.01; however, the DC steadily increased as the thresh-

old decreased to 0.001. Below 0.001, both the NMSE and DC trend toward a constant

value. Since DC is a more important metric of how well the reconstruction is perform-

ing, we used a PC threshold of 0.001 as our default. Figure 3.4B displays the e�ect

of the database size. Increasing the database is bene�cial as it decreases the NMSE

and increases DC; however, it also increases reconstruction time. As the database

size increased past 30 the increase in DC became mostly constant. For example, an

increase from a database size of 30 to 50 resulted in a 0.5-1% increase in DC.

A database size of 30 was su�cient for all patients; however, one patient bene�ted

in an increased DC from increasing the database size (data not shown). Increasing

the database from 30 to 100 increased the DC by 15% (averaged over all acceleration

factors); however, the reconstruction time also increased threefold. For the patient

grouped data, a database size of 30 was used for all patients to be consistent. The

choice of using 30 database images also stems from the fact that our neural-network

segmentation algorithm used 30 training images, aside from it being a conscious

compromise between reconstruction time, low NMSE, and high DC.

3.4.2 Temporal Evolution

As the proposed technique uses a small database acquired prior to real-time imaging,

it is of importance to evaluate the algorithm temporally. Figures 3.5(a) and 3.5(b)

contain box and whisker plots of the NMSE and DC of one patient at acceleration

factors ranging from 2x to 10x. It is evident that the DC remains largely una�ected

by the increase in NMSE at higher acceleration values. Figures 3.5(c) and 3.5(d)
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contain the NMSE and DC values calculated for all 620 frames, for one patient. It

is evident from Figure 3.5(c) that NMSE increases over time; however, the DC data

remained largely una�ected (Figure 3.5(d)). Linear �ts for the DC plots shown in

Figure 3.5(d) for 2x and 10x acceleration were calculated, which resulted in slope

values of� 4 � 10� 6 frame� 1 and � 8 � 10� 6 frame� 1, respectively.

Figure 3.5: Temporal evolution of the CS-PCA NMSE (a), (c) and the Dice coe�cient
(b), (d) for one patient at 3T. The box plots (a), (b) contain data averaged over the
620 frames for each acceleration factor (red crosses denote outliers). The plots (c), (d)
contain the temporal evolution over the duration of scanning for acceleration factors
of 2x and 10x. It is evident from (c) that the NMSE increases with increasing time
(or dynamic frames); however, the dice coe�cient (d) remains relatively unchanged
over time.
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3.4.3 Dice Coe�cients and Centroid Displacement

The Dice coe�cient (DC) and centroid displacement were investigated as an ag-

gregated average for each acceleration factor. Figure 3.6A contains the patient ag-

gregated centroid displacement calculated for CS and CS-PCA at 3T and 6x noise

degraded data. Both algorithms had a low average centroid displacement for 2x ac-

celeration (50% acquired k-space); however, it is evident that CS-PCA produces a

smaller centroid displacement than CS for accelerations up to 10x (10% acquired

k-space). Furthermore, the centroid displacement for CS is sporadic, and has a sig-

ni�cant increase in displacement at 7x acceleration (� 14% acquired k-space). The

centroid displacement for the CS-PCA technique remained under 1.15 mm for all

acceleration factors, whereas the displacement for CS remained above 1.49 mm (with

the exception of 2x acceleration).

Figure 3.6: Data points represent the mean and 95% con�dence interval for each plot.
(A) Patient averaged centroid displacement for each acceleration factor. Notice that
CS-PCA remained under 1.15 mm displacement for all acceleration factors; using
CS alone, the displacement is both larger and more erratic; (B) displays the group
averaged DC (all 620 frames for the 6 patients) for CS-PCA and CS. The plot also
contains the 6x noise degraded data for both CS-PCA and CS.

Figure 3.7 contains the temporal evolution of the DC and CD. It can be seen that

the temporal evolution of the DC and CD follow a similar trend, such that low DC
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values do, in general, correspond to a high CD. The aggregate DC averaged over 620

Figure 3.7: Temporal evolution of the DC and CD. It can be seen that the low dips
in the DC correspond to high peaks in the CD data.

frames for all six patients at each acceleration factor is shown in Figure 3.6B. The

DC for the CS-PCA algorithm consistently performed superior to the CS method.

The DC for the CS-PCA algorithm remained above 0.9 for accelerations up to 10x,

for both the 3T and 6x noise degraded data; whereas only 2x acceleration for the CS

method was above 0.9.

3.4.4 Image Evaluation via Quantitative Metrics

Figure 3.8 contains plots of the patient aggregated MAPE, RMSE, NMSE, and SSIM

metrics, averaged over all 620 frames. The MAPE, RMSE, and NMSE data at 3T

and 6x noise degraded data, for CS-PCA and CS, are shown in Figure 3.8A, 3.8B,

and 3.8C, respectively. It is evident that these three metrics share similar results,
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with the exception of MAPE for the CS data, where the 3T data resulted in a higher

MAPE value than the 6x noise degraded data. The CS-PCA data had remained

relatively unchanged with increasing acceleration factor for all four metrics shown in

Figure 3.8. The NMSE for CS-PCA remained below 0.05 for the 3T data, and below

0.06 for the 6x noise degraded data whereas CS greatly increased in NMSE as the

acceleration factor increased. It is also interesting to note that the SSIM data in

Figure 3.8D displayed a similar trend to the DC shown in Figure 3.6B.

Figure 3.8: Quantitative evaluation of our proposed CS-PCA technique. The quan-
titative metrics include: (A) MAPE, (B) RMSE, (C) NMSE, and (D) SSIM. Each
plotted data point contains the mean and 95% con�dence interval for all 620 frames
for all six patients, at each acceleration factor. It is evident from the plots that CS-
PCA preformed superior than CS alone for all metrics. Further, CS-PCA performs
similarly for acceleration factors ranging from 2x to 10x.
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3.4.5 Visual Comparison

While quantitative metrics are useful in determining how well a technique is perform-

ing, a qualitative visual comparison is also important to see how each technique is

handling the data. Figure 3.9 includes two patients each displaying their fully sam-

pled reconstruction, along with the CS-PCA and CS reconstruction at 5x acceleration

(20% of k-space used for reconstruction) at both 3T and the 6x noise added data.

Figure 3.9: Images of two non-small cell lung cancer patients. The CS-PCA and CS
images are reconstructed using only 20% of the k-space (5x acceleration). It is evident
that CS-PCA retains visual quality, whereas the CS images have artefacts occurring
throughout.

3.5 Discussion

3.5.1 Dynamic PCA Image Reconstruction

It is evident that CS-PCA reconstruction is an e�ective reconstruction technique

for real-time dynamic imaging. The CS-PCA algorithm �nds the components (from

the database) with the greatest variance (i.e. greatest organ motion) and ranks them

higher than non-redundant components, which can be attributed to noise. In dynamic
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imaging of the lung, for example, acquiring several repetitions of the breathing cycle

will result in the greatest variance to be the motion of the diaphragm and surrounding

lung structures. Projecting the accelerated (current) image to the PC's produces the

PC weights, which are indicative of how relevant each component of the database is

to the current image. Therefore, CS-PCA is a technique that is best suited for any

dynamic imaging of rhythmic motion such as breathing or cardiac imaging.

An important aspect of the CS-PCA algorithm, is that the central lines of k-space

are always acquired and incorporated into the reconstruction. This was evaluated and

can be seen in Figure 3.10, where an unexpected square artefact was introduced into

the data set, but excluded from the initial o�ine database. This artefact-imposed

image was transformed into k-space and undersampled by an acceleration factor of

5x. Using CS-PCA, the artefact was correctly reconstructed with only minor edge

defects, even though the artefact was not present in the database. Thus, CS-PCA

is not constrained to data contained in the o�ine training database images acquired

prior to the real-time online undersampled data.

3.5.2 Individual Patient Data

The data shown in the results section contain the patient aggregated data. Figure 3.11

contains the DC and NMSE data for all six patients individually. One patient (patient

5) had NMSE values that were much larger than the other �ve patients. It can be seen

in Figures 3.11B and 3.11D that the cause of the increased NMSE can be attributed

to a streaking artefact emanating from the liver region. Although this resulted in

larger NMSE values, the DC values for the tumour segmentations were not a�ected.
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Figure 3.10: Demonstration showing how data not contained within the image
database is handled. Images (A, C) contain a simulated artefact introduced to the
data set, but not into the o�ine training database. (B, D) contain the CS-PCA
reconstruction of images (A, C) after being transformed into k-space and undersam-
pled, which contain the square artefact that was not present in the database images.
Images (C) and (D) contain zoomed in regions of (A) and (B). It is evident in (B, D)
that the square artefact is present in the reconstruction, although some of the high
frequency information is lost.

3.5.3 Clinical Implementation

A possible clinical implementation of CS-PCA for our Linac-MR system is described

as follows. The patient would receive a planning CT/MRI, as is the current clinical

standard, along with a dynamic MRI scan prior to treatment. The dynamic MRI

would be used to train the neural-network contouring algorithm our group has de-

veloped for target (tumour) tracking purposes [103]. For the treatment day(s), the

patient would be placed into the Linac-MR and imaged for positioning and alignment.

Their images would be registered (as is currently done with CBCT for standard linac

treatment) to their planning data. Following patient positioning the database images
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Figure 3.11: Individual patient data for (A) the dice coe�cient and (C) the normalized
mean standard error (NMSE). It is evident from (C) that patient 5 had larger NMSE
values, with a larger variance. This was due to an artefact occurring from the liver,
which resulted in a streaking occurring throughout the 620 dynamic images used
to calculate the metrics; however, this did not result in dice coe�cients that were
signi�cantly poorer that the other �ve patients. (B) and (D) contains a slice from 2x
(50% k-space) and 5x (20% k-space), respectively.

would be generated, which takes less than 10 s for a 30-image database (at a TR

of 2.2 ms and 128 x 128 matrix size). Immediately following the acquisition of the

database, the PCA components are calculated and the accelerated real-time CS-PCA

imaging would be initiated for treatment.

It is evident from Figures 3.6 and 3.8 that increasing the noise by a factor of 6,

increased the NMSE, RMSE, and MAPE; however, the increase in noise did not a�ect

the more clinically relevant DC and centroid displacement for CS-PCA. The fact that

CS-PCA performs well in a variety of noise conditions suggests that this algorithm
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will perform well across a wide array of MR platforms and �eld strengths.

3.5.4 E�ect of Increasing Acceleration

As shown in Figure 3.6B, the DC decreases slightly with increasing acceleration factor.

The reason for this can be explained by the increasing reliance on the mean database,

which creates more motion blurring at higher acceleration factors. Recall that the

unacquired data is �lled using data from the mean database image plus the sum of

the weighted PC's. As the acceleration factor increases there are more lines of k-space

that need to be �lled, which means that sum of the weighted components has less

of an impact as the acceleration increases. The weighted components are reduced

due to the decreasing amount of high frequencies acquired and the increasing artefact

present from acceleration. Thus, in the case when the acceleration tends to in�nity

the resultant reconstruction will simply be the mean database image.

3.5.5 Limitations

There are several limitations to this preliminary study. Firstly, the database used

in this retrospective study was acquired at the same time as the reconstructed data

(i.e. both the database and data for reconstruction had the same acceleration value).

While having fully sampled data is ideal for preliminary (proof of concept) studies,

it is not truly indicative of how it may perform with prospectively-acquired acceler-

ated data. However, the data used in this study were derived from a steady-state

bSSFP sequence, meaning that there will not be inherent k-space signal variation

in the phase-encode axis. This makes a retrospective approach more feasible in this

proof-of-concept investigation. Regardless, in the clinical case data would be directly

undersampled, and any impact this may have will need to be investigated in future
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