
Machine Learning and Deep Learning for Modeling and Control of
Internal Combustion Engines

by

Armin Norouzi Yengeje

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Mechanical Engineering
University of Alberta

© Armin Norouzi Yengeje, 2022

Abstract

Internal Combustion Engines (ICEs) are ubiquitous; they power a wide range of sys-

tems. The broad use of ICEs globally causes more than 20% of the total greenhouse

gas emissions. In many countries, emission legislation is transitioning from certifica-

tion using only traditional chassis dynomometer testing to now requiring the inclusion

of Real Driving Emissions (RDE). Complying with this legislation has led to increased

challenges to meet emissions levels under on-road use of the engine. The stringent

legislation governing emissions and fuel economy, in combination with the complexity

of the combustion process, have led to requirements for significantly more advanced

engine controllers than are currently used. Reducing the emissions of diesel engines

while simultaneously increasing their thermal efficiency through online control op-

timization and Machine Learning (ML) are the main objectives of this thesis. ML

techniques offer powerful solutions that help to address the existing challenges in ICE

modeling, control, and optimization. ML can also help to reduce the time, cost, and

effort required for ICE calibration for both vehicular and stationary applications.

In this thesis, a four-cylinder medium-duty Cummins diesel engine and emission

measurement system including an electrochemical fast Nitrogen Oxides (NOx) sensor,

Pegasor Particle Sensor (PPS-M), and MKS Fourier-Transform Infrared Spectroscopy

(FTIR) are used for experimental implementation. A dSPACE MicroAutoBox II,

which is a rapid prototyping system, is used for control implementation. In order

to compare the proposed control method with the existing Cummins calibrated en-

gine control unit (ECU), all the production calibration tables are imported to the

MicroAutoBox. The simulation results presented in this thesis are developed using

ii

a detailed physics-based model using the GT-power© software. A co-simulation of

GT-power©/Matlab©/Simulink is used as an Engine Simulation Model (ESM).

The application of ML in engine control can be divided into three main categories:

i) ML in emission prediction, ii) Integration of ML and Model Predictive Control

(MPC), and iii) ML in the learning-based controller.

In the first category, a correlation-based order reduction algorithm is developed to

model NOx, resulting in a simple and accurate model. This algorithm utilizes Support

Vector Machine (SVM) techniques to predict NOx emission with high accuracy. In

addition, a comprehensive study involving eight ML methods and five feature sets is

done for Particulate Matter (PM) modeling using gray-box techniques. Then using

the K-means clustering algorithm, a systematic way to select the best method for a

specific application is proposed.

In the second category, two methods of combining ML and MPC were used: ML-

based modeling and ML imitation control. First, ML is used to identify a model for

implementation in MPC optimization problems. Additionally, ML can be used to

replace MPC, where the ML controller learns the optimal control action by imitating

the behavior of the MPC. Using the ESM to provide simulation data, SVM and

deep recurrent neural networks, including long-short-term memory (LSTM) layers,

are used to develop engine performance and emission models. Then based on these

models, MPC is designed and compared to both a linear controller and the Cummins’

calibrated ECU model in ESM. Then, a deep learning scheme is deployed to imitate

the behavior of the developed controllers. These imitative controllers behave similarly

to the online optimization of MPC but require significantly lower computational time.

The LSTM-based MPC is then implemented on the real-time system using open-

source software. Compared to the stock Cummins ECU, this controller has significant

emission reduction, fuel economy improvement, and thermal efficiency.

Reinforcement Learning (RL) and Iterative Learning controller (ILC) are devel-

oped to investigate learning-based controllers. Using the ESM, a model-free off-policy

iii

algorithm, Deep Deterministic Policy Gradient (DDPG), is developed. A safety filter

is added to the deep RL to avoid damage to the engine. This filter guarantees output

and input constraints for both RL and ILC. The developed safe RL is then compared

with ILC and LSTM-NMPC.

iv

Preface

This thesis is an original work by Armin Norouzi Yengeje. The research was conducted

using available computing systems and the experimental setup of a diesel engine in

the University of Alberta advanced combustion engine lab led by Dr. Koch.

Each chapter is fully or partially based on published or submitted papers in peer-

reviewed journals and conference procedures [1–9]. The experimental setup, including

engine controller reproduction and the emission measurement system setup was pre-

pared in collaboration with David Gordon and Jakub McNally. Engine Simulation

Model (ESM) using GT-power© software was developed by Saeid Shahpouri. For the

real-time implementation of predictive model control, the embedded programming to

compile the controller to C code using open-source software called acados was done in

collaboration with RWTH Aachen University, Germany, and with the support from

Alexander Winkler and Eugen Nuss.

I was the lead author of all of the peer-reviewed published papers used to write

this thesis except Chapter 3. Chapter 3 entitled “Steady-state Particle Matter (soot)

Gray-box Modeling” is based on a peer-review journal paper which Saeid Shahpouri

was the lead author. In that work I was responsible for collecting raw data, an-

alyzing and cleaning the data, and developing, optimizing, and deploying different

ML methods. Saeid’s contributions were developing a physics-based engine model, a

physics-based PM model for comparison purpose with ML-based models, and provid-

ing gray-box and physical insight feature sets.

v

To victims of flight PS752...

vi

Acknowledgments

First and foremost, I would like to express my genuine appreciation to Dr. Bob Koch

for his overarching guidance, encouragement, and support throughout my study. Your

advice always puts things in perspective, and I am deeply indebted to you.

I am also immensely grateful to Dr. Mahdi Shahbakhti for his valuable advice

and support. I would like to thank Dr. Jakob Andert for his valuable feedback for

our joint publications. I also thank Dr. Hoseinali Borhan, Dr. Lisa A Farrell and

Cummins Research and Technology (R&T) for support and insightful discussions that

contributed to the quality of the thesis

Thanks to all of my friends and colleagues in both the University of Alberta and

RWTH Aachen University labs that helped me in the last four years with their kind

support. I would like to especially thank David Gordon and Masoud Aliramezani, two

of my labmates who helped me conduct experiments. I also thank Saied Shahpouri,

Alexander Winkler, Jakub McNally, and Hamed Heidarifar for their contributions to

my projects.

To my family and friends who have supported me on my journey through my

studies, you have my sincerest appreciation. To my mother, Sima, and my father,

Reza, my sister Anita, thank you for everything you have done to support me in my

life. To my aunt, Nasrin, and my grandmother, Fatemeh, for all their support to

help me study abroad. I would like to thank my fiancée, Sara, for her unparalleled

patience, consideration, and tremendous support.

vii

Table of Contents

1 Introduction and Background 2

1.1 Emission Reduction Technologies . 5

1.1.1 Diesel exhaust aftertreatment systems 5

1.1.2 Diesel exhaust feedback optimal control strategies 6

1.2 Model Predictive Control (MPC) Background 8

1.3 Application of Machine Learning in Internal Combustion Engines . . 11

1.3.1 Supervised Machine Learning 12

1.3.2 Unsupervised Machine Learning 14

1.3.3 Reinforcement Learning (RL) 15

1.4 Problem Identification and Proposed Solutions 17

1.4.1 Emission Estimation Modelling challenges 17

1.4.2 Model-based controller challenge 19

1.4.3 Model-free controller challenge 22

1.5 Contributions and Thesis outline . 23

1.5.1 Thesis outline . 23

1.5.2 Contributions . 24

2 Experimental Setup and Engine Simulation Model 28

2.1 Experimental Setup . 28

2.1.1 Engine and Engine Controller Setup 28

2.1.2 Electrochemical NOx sensor 31

2.1.3 Fourier-Transform Infrared Spectroscopy (FTIR) 32

viii

2.1.4 Pegasor Particle Sensor (PPS-M) 32

2.2 Exploratory Data Analysis (EDA) . 35

2.2.1 Steady-state data analysis . 35

2.2.2 Transient data analysis . 36

2.3 Engine Simulation Model (ESM) . 38

2.4 Summary of chapter . 41

3 Steady-state NOx Black-box Modeling 44

3.1 Support Vector Machine . 45

3.1.1 Convex Optimization Problem 45

3.1.2 Dual Optimization Problem and computing weights 48

3.1.3 Karush-Kuhn-Tucker (KKT) conditions and computing bias . 50

3.2 Full-order Model (FOM) . 51

3.3 Model Order Reduction (MOR) Algorithm 56

3.3.1 NOx steady State Model . 57

3.3.2 BMEP steady state Model . 61

3.4 Control Oriented Model (COM) . 64

3.5 Summary of chapter . 67

4 Steady-state Particle Matter (soot) Gray-box Modeling 72

4.1 Gray-Box, Black-Box, and White-Box modeling 73

4.2 Machine Learning Methods . 75

4.2.1 Pre-Processing: Feature Selection 75

4.2.2 Regression Models . 75

4.2.3 Post-Processing: Model Selection 82

4.3 Results and Discussion . 83

4.4 Summary of chapter . 95

ix

5 Machine Learning Integrated with Linear Parameter Varying Model

Predictive Control: Simulation Results 98

5.1 Linear Parameter Varying Modeling 100

5.1.1 Support Vector Machine based Linear Parameter Varying

(LPV) Model . 100

5.1.2 Bayesian Hyperparameters Optimization 103

5.2 Model Predictive Controller Design 106

5.2.1 Controller Design . 106

5.2.2 Controller Results . 108

5.3 Imitation of MPC using a Deep Neural Network 112

5.3.1 Imitation of MPC Concept . 112

5.3.2 Forward Propagation of Imitative Controller 115

5.3.3 Training Imitative MPC . 117

5.4 Summary of chapter . 123

6 Integration of Deep Learning and Nonlinear Model Predictive Con-

trol: Simulation Results 124

6.1 Long-Short Term Memory Network (LSTM) Model 125

6.2 Nonlinear Model Predictive Controller Design 132

6.3 NMPC Imitative Controller . 135

6.4 Results and Discussion . 139

6.5 Summary of chapter . 146

7 Integration of Deep Learning and Nonlinear Model Predictive Con-

trol: Experimental Implementation 149

7.1 Deep Neural Network Modeling . 150

7.2 Nonlinear Model Predictive Control 158

7.2.1 Controller Design . 159

7.2.2 Constraint definition . 161

x

7.2.3 Real-time implementation techniques 162

7.3 Experimental Results . 163

7.3.1 Experimental results in changing IMEP 164

7.3.2 Experimental results in changing engine speed 166

7.3.3 LSTM-NMPC vs Cummins calibrated ECU 168

7.4 Summary of chapter . 171

8 Safe Deep Reinforcement Learning 175

8.1 Deep Reinforcement Learning (Deep RL) 176

8.1.1 Reinforcement Learning vs. Deep Reinforcement Learning . . 176

8.1.2 Deep Deterministic Policy Gradient Agents (DDPG) Algorithm 177

8.1.3 Safe Deep Deterministic Policy Gradient 178

8.1.4 Safe RL versus RL . 184

8.2 Iterative Learning Controller (ILC) 185

8.3 Results and Discussion . 189

8.4 Summary of chapter . 194

9 Conclusions 198

9.1 Machine Learning in Emission Prediction 198

9.2 Integration of Machine Learning and Model Predictive Control 200

9.3 Machine Learning in Learning-based Controller 203

9.4 Future Work . 204

Bibliography 206

Appendix A: Ph.D. Publications 224

A.1 Peer Reviewed Journal Papers . 224

A.2 Refereed Conference Papers in Proceedings 225

A.3 Technical Presentations & workshops (refereed abstract) 226

A.4 Technical Posters . 228

xi

Appendix B: Research Source File 230

xii

List of Tables

1.1 Machine learning in Diesel Engine Emission Modeling and Control . . 11

2.1 Engine specifications . 28

2.2 Rapid prototyping ECU Specifications 31

2.3 Pegasor Particle Sensor specifications 34

3.1 Number of features in each order from 1 to 6 using r-combination with

repetitions formula . 52

3.2 Features Ul of the Full-Order Model (FOM) of NOx and BMEP . . . 53

3.3 Performance of the NOx FOM, HOM, and LOM 61

3.4 Performance of the BMEP Full-Order Model (FOM), High-Order

Model (HOM), and Low-Order Model (LOM) 63

4.1 Training and optimization of ML-based model hyperparameters. . . . 85

4.2 ML-based data-driven soot models comparison 86

4.3 Selected models based on K-means filters 89

4.4 Comparison between studies about soot emissions modeling using GB

models . 92

5.1 Comparison of linear and LPV model error for new generated test data 104

5.2 LPV-MPC constraint Values . 107

5.3 Properties of 2-level engine performance and emission LSTM-based

model . 119

xiii

5.4 Proposed MPC and Imitative MPC results compared to Benchmark

(BM) for engine speeds of 1500 and 1200 rpm 122

5.5 Percentage of difference for proposed MPC and Imitative MPC with

respect to the Benchmark for engine speeds of 1500 and 1200 rpm.

Negative means that controller’s performance is better than that of to

BM . 122

6.1 Properties of 2-level engine performance and emission shown in Figure 6.2129

6.2 Properties of imitative controller based on LSTM-NMPC 138

6.3 Imitative LSTM-NMPC controller train and validation error compared

to LSTM-NMPC online optimization 138

6.4 Turnaround time comparison between Matlab fmincon©, EM-

BOTECH FORCES PRO©, and acados solvers– PIL: Processor in the

loop (performance of controller will be discussed in Chapter 7) 142

6.5 Proposed MPC and Imitative MPC results compared to the benchmark

for engine speeds of 1500 and 1200 rpm 145

6.6 Percentage of improvement for proposed MPC and Imitative MPC with

respect to the benchmark for engine speeds of 1500 and 1200 rpm . . 146

7.1 Specification of training proposed deep network to predict performance

and emission . 155

7.2 Error of DNN model vs experimental using RMSE and normalized

RMSE: IMEP, FQ. PM, and MPRR. 158

7.3 Constraint Values . 161

xiv

7.4 Proposed NMPC results compared to the BM, Cummins calibrated

ECU, for different engine operating conditions (averaged over 400 cy-

cles). Negative value represents that the LSTM-NMPC value is lower

than BM. ∆ : LSTM-NMPC-BM, IMEP: Indicated mean effective pres-

sure, FQ: Fuel Quantity, ηth thermal efficiency. PM: Particle Matter

. 170

8.1 Comparison between Deep RL, Benchmark (BM), and Nonlinear

Model Predictive Control developed in Chapter 6 192

8.2 Comparison between Deep RL, Bechmark, and ILC 194

8.3 Summary of comparison for developed controllers 195

8.4 Summary of comparison for developed controllers– controller perfor-

mance compared to benchmark. Range is used in safe RL as it is

compared with BM using both repetitive and random reference twice

with different reference. 195

xv

List of Figures

1.1 Primary energy consumption . 3

1.2 Schematic of a typical diesel after-treatment system 6

1.3 Timeline of major Theoretical MPC developments 9

1.4 The MPC control concept and prediction receding horizon: illustrated

for engine load control. 10

1.5 Reinforcement learning (RL) Similarity to traditional controls 16

1.6 Schematic of the thesis organization 25

2.1 Diesel engine experimental setup . 29

2.2 Schematic of diesel engine experimental setup 29

2.3 Diesel engine exhaust pipe . 30

2.4 electrochemical fast NOx sensor and sensor control module 32

2.5 FTIR setup . 33

2.6 Pegasor Particle Sensor setup . 34

2.7 Engine-out soot measurements over speed and Break Mean Effective

Pressure (BMEP) . 35

2.8 Engine-out NOx measurements over speed and Break Mean Effective

Pressure (BMEP) . 36

2.9 Diesel engine with soot measurement exploratory data analysis 37

2.10 Engine produce power verses Start of pilot (pre), main, and post injection 38

2.11 Experimental transient data– manipulated inputs 39

2.12 Experimental transient data– measured outputs 40

xvi

2.13 Engine Simulation Model (ESM) development procedure in GT-

power© software . 41

2.14 Histogram of error between physical-based model and experimental data 41

2.15 Engine Simulation Model (ESM) validation 42

3.1 SVM regression and support vectors example 47

3.2 ϵ−sensitive Loss function with slack variable 48

3.3 Maximum error (Emax), correlation coefficient (R2), and cost function

(J(Emax, R
2)) vs regulatory parameter C for a) NOx b) BMEP . . . 55

3.4 Prediction vs actual data for NOx and BMEP FOM 56

3.5 Control Oriented Model (COM) development and SVM-based MOR

algorithm . 58

3.6 Maximum error (R2), squared correlation coefficient (R2), and cost

function (J(Emax, R
2)) vs number of features of prediction function for

steady-state NOx prediction . 59

3.7 Prediction vs actual data for the LOM and the HOM of NOx 62

3.8 Maximum error (R2), squared correlation coefficient (R2), and cost

function (J(Emax, R
2)) vs number of features of prediction function for

steady-state BMEP prediction . 62

3.9 Prediction vs actual data for HOM and LOM of BMEP 64

3.10 Transient response at engine speed = 1250 rpm 67

3.11 Transient response at engine speed = 1500 rpm 68

3.12 Transient response at engine speed = 1750 rpm 69

3.13 Transient response at engine speed = 2000 rpm 70

4.1 Overview of the GB and BB soot emissions model selection process by

K-means clustering algorithm . 74

4.2 Training and test data for ML approaches 84

xvii

4.3 Engine-out soot measurements over speed and Break Mean Effective

Pressure (BMEP) . 84

4.4 First filter clustering of models using K-means algorithm 88

4.5 Second filter clustering of models using K-means algorithm 89

4.6 Second filter clustering of models using K-means algorithm 90

4.7 Comparison of the physics-based GT-power© soot model prediction

against experimental data . 92

4.8 Comparison of model prediction vs. experimental data for different

models . 93

4.9 Comparison of model prediction versus experimental data for different

models . 94

4.10 Prediction error over engine speed and load 95

5.1 Modeling and controller design procedure based on ESM for SVM-LPV

and corresponding imitation controller 99

5.2 Bayesian optimization results for LPV-SVM model parameter opti-

mization . 103

5.3 Linear ARX, LPV-SVM and ESM comparison for engine-out emissions

and performance . 105

5.4 Linear MPC, LPV-MPC and Benchmark comparison in 1200 rpm . . 109

5.5 Linear MPC, LPV-MPC and Benchmark comparison in 1200 rpm

zoomed from 800 to 1050 cycles . 110

5.6 “A” matrix elements for the LPV-SVM model at an engine speed of

1500 rpm . 111

5.7 “B” matrix elements for the LPV-SVM model at an engine speed of

1500 rpm . 112

5.8 Linear MPC, LPV-MPC and Benchmark comparison in 1200 rpm . . 113

xviii

5.9 Linear MPC, LPV-MPC and Benchmark comparison in 1200 rpm

zoomed from 800 to 1050 cycles . 114

5.10 Structure of network for imitation of LPV-MPC 115

5.11 Long-Short-Term Memory (LSTM) cell structure 116

5.12 Loss vs. epochs for NOx, torque and pressure model 118

5.13 LPV-MPC and imitative LPV-MPC comparison in 1500 rpm 120

5.14 LPV-MPC and imitative LPV-MPC comparison in 1200 rpm 121

6.1 Modeling and controller procedure based on Engine Simulation Model

(ESM) for LSTM model and corresponding LSTM imitation controller 126

6.2 Structure of proposed deep neural network model for engine perfor-

mance and emission modeling . 127

6.3 Loss vs. epochs for NOx, torque and pressure model 130

6.4 Training and validation results for the LSTM model vs. ESM 131

6.5 LSTM model comparison for engine-out emissions and performance . 132

6.6 Block diagram of LSTM-NMPC structure 134

6.7 Concept of Imitative NMPC . 136

6.8 Structure of proposed network for imitation of NMPC 137

6.9 Imitative LSTM-NMPC loss function vs. epochs 137

6.10 Controller comparison at nrpm = 1500 140

6.11 Controller comparison at nrpm = 1500 zoomed from 800 to 1050 cycles 141

6.12 Controller comparison at nrpm = 1200 143

6.13 Controller comparison at nrpm = 1200 zoomed from 450 to 650 cycles 144

xix

7.1 Structure of proposed deep neural network model for engine perfor-

mance and emission modeling. LSTM: Long-short term memory, SOI:

start of injection, DOI: duration of injection, Pfuel: fuel rail pressure,

IMEP: indicated mean effective pressure, MPRR: maximum pressure

rise rate, PM: particle matter, tP2M: duration between end of pilot

injection and start of main injection 151

7.2 Diesel engine multiple injection. SOI: start of injection, DOI: duration

of injection, tP2M: duration between end of pilot injection and start of

main injection . 151

7.3 Computational graph of proposed deep network. FC: Fully Connected,

LSTM: Long-Short Term Memory 153

7.4 Loss vs. epochs for proposed deep neural network model 154

7.5 Training, validation, and testing results for LSTM-based DNN model

vs. experimental data: a) IMEP, b) NOx, c) PM, and d) MPRR . . . 156

7.6 Experimental data inputs for training, validation, and testing data

that used for the LSTM-based DNN model: a) DOI of pilot injection,

b) DOI of main injection, c) duration between end of pilot injection

and start of main injection, d) SOI of pilot injection, e) SOI of main

injection, and f) fuel rail pressure . 157

7.7 Block diagram of LSTM-NMPC structure 160

7.8 Experimental results for step changes of IMEP: a) IMEP, b) NOx, c)

PM, d) MPRR, e) engine speed, f) DOI, g)SOI, h) fuel rail pressure 165

7.9 Experimental results of smooth IMEP reference with a bandwidth of

approximately 1 Hz: a) IMEP, b) NOx, c) PM, d) MPRR, e) Engine

speed, f) DOI, g)SOI, h) fuel rail pressure 167

7.10 Experimental results of step changes of engine speed: a) IMEP, b)

NOx, c) PM, d) MPRR, e) Engine speed, f) DOI, g) SOI, h) fuel rail

pressure . 168

xx

7.11 Experimental results of smooth engine speed change with a bandwidth

of approximately 1 Hz: a) IMEP, b) NOx, c) PM, d) MPRR, e) Engine

speed, f) DOI, g) SOI, h) fuel rail pressure 169

7.12 Experimental results of PM vs NOx trade-off improvement: in filled

shapes , NOx is slightly increased (cases 3, 4, 8, and 9), while in the

remaining cases , both PM and NOx are decreased 172

8.1 Safe Deep Deterministic Policy Gradient schematics to minimize diesel

engine fuel consumption and NOx reduction while maintaining output

torque . 182

8.2 Episodic reward vs episode for safe RL and RL 185

8.3 Safe RL vs RL: Comparison between two agents that reached to the

maximum reward for safe RL (agent 3189) and RL (agent 1571) . . . 186

8.4 RL during training: Comparison between agent in middle of training

(agent 947) and agent that reaches to the maximum reward (agent 1571)187

8.5 Safe iterative learning control block diagram 188

8.6 Simulation training ILC and safe ILC 190

8.7 Safe Reinforcement Learning compared with Long-short-term memory

based nonlinear model predictive controller (LSTM-NMPC) 191

8.8 Safe Reinforcement Learning compared with safe ILC and Cummins

calibrated ECU which modeled in GT-power© 193

xxi

Abbreviations and Acronyms

aTDC after Top Dead Center

AFR Air-Fuel Ratio

AOC Ammonia Oxidation Catalyst

AI Artificial Intelligence

ANN Artificial Neural Network

ARX AutoRegressive EXogenous

bTDC before Top Dead Center

BM Benchmark

BNN Beysian Neural Network

BB Black-Box

BMEP Break Mean Effective Pressure

CO2 Carbon Dioxide

CO Carbon Monoxide

CNG Compressed Natural Gas

CI Compression Ignition

CFD Computational Fluid Dynamics

xxii

CAN Controller Area Network

COM Control-Oriented Model

DDPG Deep Deterministic Policy Gradient

Deep RL Deep Reinforcement Learning

DPG Deterministic Policy Gradient

DOC Diesel Oxidation Catalyst

DPF Diesel Particulate Filter

DOI Duration of Injection

ECU Engine Control Unit

ESM Engine Simulation Model

ERT Ensemble of Regression Trees

EGR Exhaust Gas Recirculation

EDA Exploratory Data Analysis

ELM Extreme Learning Machines

FS Feature Selection

FPGA Field Programmable Gate Arrays

FTIR Fourier-Transform Infrared Spectroscopy

FQ Fuel Quantity

FOM Full-Order Model

FC Fully Connected Layer

xxiii

GPR Gaussian Process Regression

GA Genetic Algorithm

GB Gray-Box

HCCI Homogeneous Charge Compression Ignition

IMEP Indicated Mean Effective Pressure

ICE Internal Combustion Engines

ILC Iterative Learning Control

LASSO Least Absolute Shrinkage and Selection Operator

SVM-LPV Least-square Sup-port Vector Machine based Linear Parameter-Varying

LS-SVM Least-Square Support Vector Machine

LQR Linear Quadratic Regulator

LPV Linear Parameter Varying

LQG Linear Quadratic Gaussian

LQG Linear Quadratic Gaussian

LQR Linear Quadratic Regulator

LSTM Long-Short Term Memory

LOM Low-Order Model

ML Machine Learning

MPRR Maximum Pressure Rise Rate

MSE Mean Squared Error

xxiv

MOR Model Order Reduction

MPC Model Predictive Control

NOx Nitrogen Oxides

NARX Nonlinear AutoRegressive EXogenous

NMPC Nonlinear Model Predictive Control

NMPC Nonlinear Model Predictive Control

NRMSE Normalized Root Mean Square of Error

PSO Particle Swarm Optimization

PM Particulate matter

PPS Pegasor Particle Sensor

PHY Physical insight features

PID Proportional Integral Derivative

RDE Real Driving Emissions

ReLU Rectified Linear Unit

RT Regression Tree

RL Reinforcement Learning

RVM Relevance Vector Machine

RMSE Root Mean Square of Error

SCR Selective Catalytic Reduction Catalyst

SMC Sliding Model Controller

xxv

SMC Sliding Model Controller

SI Spark Ignition

SOI Start of Injection

SVM Support Vector Machine

UHC Unburnt Hydrocarbons

VGT Variable Geometric Turbine

xxvi

PART I: Introduction and
Experimental setup

1

Chapter 1

Introduction and Background 1

Global energy consumption is increasing due to rapid population growth and economic

development caused by the industrial revolution [10, 11]. Figure 1.1 presents the

energy consumption projection until 2040. As shown, energy utilization from fossil

fuel in the transportation sector is rising [12]. Current transportation, such as mass

public transportation and millions of personal vehicles, has enabled society to reach

a high standard of living. Heavy-duty and medium-duty diesel engines are needed for

both transportation and power generation. Diesel engines offer the critical advantages

of high efficiency, fuel economy at full-load and part-load conditions, and a long

lifetime [13]. Based on the latest transportation energy data, the proportion of diesel

fuel usage has increased over the last 30 years on national highways in the United

States (US) [14]. This trend shows the importance of heavy-duty applications of

diesel engines. Natural Resources Canada reports that of the 69% of primary energy

converted to secondary energy, 21% is devoted to the transportation sector. Of this

amount, gasoline, diesel fuel oil, and aviation turbo fuels contribute the most: 58%,

28%, and 10% respectively [14].

Although diesel engines have many advantages and are used widely in transporta-

tion and power generation, they play a crucial role in contributing to environmental

pollution problems worldwide. Diesel engine exhaust emissions are a main contributor

to environmental pollution and several health problems [15]. Diesel engine emissions

1 This chapter are partially based on [1, 2]

2

1970 1980 1990 2000 2010 2020 2030 2040
0

1

2

3

4

5

P
J
 p

e
r

d
a

y

10
4

Industry

Non-combusted Industry

Buildings

Transport

Figure 1.1: Primary energy consumption reshaped based on [12]

can be summarized as

• Nitrogen oxides (NOx): The high combustion temperature and lean air-fuel

mixture of diesel engines leads to relatively high NOx emissions. The NOx emis-

sions in diesel engines mainly consist of Nitrogen monoxide (NO) and Nitrogen

dioxide (NO2). Typically, engine exhaust contains 70%-90% NO and 10%-30%

NO2 [16].

• Particulate matter (PM) or soot: PMs are complex structures formed

by soot, hydrocarbons (resulting from fuel and lubrication), and other minor

materials [17]. PM emissions and NOx emissions usually vary inversely [18].

• Carbon dioxide (CO2): CO2 formation is proportional to fuel consumption

for hydrocarbon fuel. Apart from the CO2 emission regulations, CO2 emission

limits are also driven by user demand for fuel economy [19].

• Carbon monoxide (CO): CO is a colorless, odorless, non-irritating, but

highly toxic gas which is a sub-product of combustion [20]. Diesel engines typ-

ically operate at lean conditions (higher air-fuel ratio than the stoichiometric

air-fuel ratio). Therefore, CO emission is a less critical emission than NOx and

3

PM, although it is still an important emission from a diesel engine [15].

• Unburned Hydrocarbon (UHC): UHCs are a product of incomplete com-

bustion of the injected fuel due to low temperature or locally rich conditions

inside the cylinder [21].

Air pollution can cause respiratory diseases and health complications. NOx emissions

are one of the main causes of edema, pneumonia, lung irritation, and bronchitis. They

also affect asthma patients. CO emissions have adverse effects on fetal growth and on

tissue development in young children. UHC contributes to circulatory or respiratory

problems. In developing counties, PM has become the biggest contributor to poor air

quality, particularly in large urban centers [22].

The widespread use of diesel engine in transportation and power generation has

increased the global pollution level. It is predicted that by the end of 2035, the global

CO2 emission level will rise by 29% [22]. According to the International Energy

Agency, the transportation sector’s CO2 emission grew by 92% from 1990 to 2020.

The Agency predicts that between 2020 and 2035 [22] 8.6 billion metric tons will be

emitted. Similarly, in Canada, from 2000 to 2017, the CO2 emission level increased

by 19.2% with freight trucks contributing 44% of the increase [14]. Strict emission

regulations have led to a steady increase in the use of hybridization and electrification

for passenger vehicles. However, the trend is not likely to carry over in near future to

heavy-duty trucks due to the high battery costs and total-cost-ownership [23]. Ac-

cording to the recent studies [14, 23], in the best scenario, battery-electric commercial

vehicles could reach 8 to 27 percent sales of medium duty e-trucks by 2030 [14, 23].

Real Driving Emissions (RDE) testing has been implemented by the New Euro 6d

regulations as an additional requirement. RDE test results are significantly affected

by ambient conditions, traffic, and driver behavior. According to RDE legislation,

engines must operate cleanly under all conditions. This makes engine design and

calibration much more challenging [24]. Complying with RDE legislation is such a

4

large shift from previous legislation. Therefore, with emission legislation becoming

ever more stringent, intelligent engine emission control strategies that take advantage

of Artificial Intelligence (AI) progress and using optimal control as well as advanced

after-treatment systems are needed to meet the rigorous emission regulations. Taking

advantage of AI approaches gives the system the ability to modify engine calibration

during real driving by adapting controller based on the engine operating condition.

This is crucial in RDE legislation compliance.

This chapter will examine systems and techniques for emission reduction as de-

scribed in the literature. Then, the motivations and the organization of this thesis

will be presented.

1.1 Emission Reduction Technologies

1.1.1 Diesel exhaust aftertreatment systems

A wide range of research has been conducted on diesel engine emission reduction

using exhaust after-treatment systems, and by using alternative fuels with or without

additives. The primary after-treatment systems which significantly decrease tail-pipe

emissions are:

• Diesel Particulate Filter (DPF): DPFs are used to trap particulate matter

(PM) from the exhaust gas to increase the reactivity of the trapped particles

during DPF regeneration [25]. They are capable of removing more than 90%

of the PMs [26]. DPF physically filters the PMs, which consequently increases

the pressure drop over the filter. Increasing the pressure drop raises the engine

backpressure and reduces the engine’s thermal efficiency [27]. To compensate

for this effect a periodic DPF regeneration process is done.

• Diesel Oxidation Catalyst (DOC): DOCs are used to oxidize CO and UHC.

The DOC also regulates the NO/NO2 ratio in the exhaust gas [28].

5

• Selective Catalytic Reduction Catalyst (SCR): Urea-based Selective Cat-

alytic Reduction (SCR) is an effective technique to reduce NOx emissions and

may satisfy future emission regulations [29]. The urea C(NH2)2O is injected into

the SCR catalyst and converted to NH3 and CO2 in the SCR. The ammonia

reacts with NOx and produces N2 and H2O in the SCR.

Figure 1.2 shows the schematics of a typical diesel after-treatment system. Gases

coming from the engine cylinders pass through the DOC and DPF where CO, un-

burned hydrocarbons, and soot are reduced. They then flow to the SCR subsystem,

which decreases NOx by using upstream injections of urea. This fluid breaks down to

produce ammonia, which reduces or removes NOx in the SCR. Then to oxidize excess

ammonia before it leaves the tailpipe, the ammonia Oxidation Catalyst (AOC) is

used [30].

DOC DPF SCR AOC
Engine-out

emission
Vent to

atmosphere

Urea dosing

N
O
x

PM C
O

H
C

N
O
x

PM C
O

H
C

N
O
x

PM C
O

H
C

N
O
x

PM C
O

H
C

N
H
3

N
O
x

PM C
O

H
C

N
H
3

N
O
x

PM C
O

H
C

N
H
3

Figure 1.2: Schematics of a typical diesel after-treatment system- based on [30]

These after-treatment devices have significantly reduced tailpipe emissions. How-

ever, missing an intelligent control system based on the engine-out emission feedback

makes the calibration process complex. RDE requirements mean that meeting in-

creasingly stringent legislations is even more difficult [31]. Next, engine Diesel exhaust

feedback control using optimal control strategies will be discussed.

1.1.2 Diesel exhaust feedback optimal control strategies

In automotive applications, especially in Internal Combustion Engines (ICEs) control,

feedback control is often combined with feedforward control to deal with the influ-

6

ence of varying operating points. One of the most common techniques to design a

feedforward controller is two-dimensional look-up tables—so-called calibration maps.

The feedforward controller enables fast changes in operating points, while the feed-

back controller performs the error compensation. The most conventional feedback

controller in ICEs is a Proportional Integral Derivative (PID) controller.

The gains of PID controllers are tuned using the procedure of parameter opti-

mization and fine tuning using the trial-and-error method. The optimization process,

also known as engine calibration, results in finding look-up table values and controller

gains [32, 33]. Due to increasing requirements for low-fuel consumption and emissions,

the number of control inputs have increased substantially, making manual test-bench

calibration difficult and time-consuming.

An ideal solution is systematic optimization based on a simulation model devel-

oped and identified using experimental data. Several model-based controllers have

been used in engine feedback control to address this, such as the Linear Quadratic

Regulator (LQR) controller [34], Linear Quadratic Gaussian (LQG) controller [35],

Sliding Model Controller (SMC) [36–38], Adaptive [38], and Model Predictive Control

(MPC) controller [39, 40].

Among these model-based controllers, MPC is one of the most promising for deal-

ing with the highly constrained nonlinear system of ICEs. MPC can provide an

optimal real-time solution for meeting multi-objective goals while addressing system

and operational constraints. New variants of MPC utilize optimization solvers and

packages that are suitable for the real-time operation of time-critical systems [39, 40].

MPC, a control technique that has been increasingly used in industry during the

past four decades, has the following five main advantages: (1) it implicitly considers

constraints on state, input, and output variables, (2) it provides closed loop control

performance and stability for the optimal problem with constraints, (3) it exploits

the use of a future horizon while optimizing the current control law, (4) it offers

the possibility of both offline and real-time implementations, and (5) it is capable

7

of handling uncertainty in the system’s parameters, delays, and non-linearity in the

model [41].

Model-based engine control techniques have been applied to ICEs for more than

five decades [42]; however, conventional MPC techniques have been applied for ICE

applications only over the past 23 years. Two examples of early MPCs on ICEs

include: (i) the Air-Fuel Ratio (AFR) control of an SI gasoline engine using a linear

AFR model by linear approximation of a neural network model [43] in 1998, and (ii)

the idle speed control of an SI gasoline engine using a linear model by applying system

identification techniques on GT-Power© engine model simulations [44] in 1999.

These early works were done in simulation environments, while recent work [45]

includes the experimental implementation of a nonlinear multi-objective MPC on a

real engine. MPC implementation for ICEs control is becoming increasingly com-

mon [39, 45–73]. The integration of ML and MPC is an emerging area that provides

additional opportunities to control and optimize of ICEs.

1.2 Model Predictive Control (MPC) Background

The idea of using MPC began in the 1960s [74]; however, the first reported application

of MPC in industry was in 1978 [75]. After initial application in the late 80s, MPC

usage grew rapidly in several industries. In particular, the process industry was an

early adopter of MPC as MPC was able to handle both input constraints and states

constraints. Some of these processes were slow enough to allow MPC implementations

with the processors of that time.

A survey in 1997 estimated 2233 applications of MPC from five different ven-

dors [76]. A graphical depiction of MPC development and implementation is shown

in Figure 1.3. Increased interest in MPC stability and robustness started in the early

1990s [76]. At the same time, multiple algorithms were developed to control the non-

linear systems using MPC [77]. Starting around the year 2000, new approaches began

to be developed. Among these are the hybrid MPC, which considers both continuous

8

and discrete variables [78], and the explicit MPC [79].

1970 · · · · · ·• - MPC theory development

1991 · · · · · ·• - Nonlinear MPC
- Robust MPC

2000 · · · · · ·•
- Hybrid MPC
- Stochastic MPC
- Explicit MPC

2005 · · · · · ·•
- Linear time-varying MPC
- Distributed MPC
- Economic MPC

2006 · · · · · ·• - Using fuzzy models in MPC
- Using Genetic Algorithm (GA) in MPC

2010 · · · · · ·• - Embedded optimization solvers
- Machine learning and MPC integration

2017 · · · · · ·• - Growing ML-MPC applications due to emerging
fast edge/cloud computing

Figure 1.3: Timeline of major Theoretical MPC developments

MPC uses a receding horizon to minimize cost function to calculate optimal control

inputs for a finite control horizon. Over the finite prediction horizon, the cost is

minimized with respect to the system’s dynamics, current states, and constraints.

From these calculated control inputs typically, only the first step is applied to control

the system output. Then, for the next time interval, MPC repeats the same process

[45].

A schematic about the MPC operation in an ICE application is depicted graphically

in Figure 1.4 where the Indicated Mean Effective Pressure (IMEP) is controlled using

the injection fuel quantity as a control variable. In this figure, Hu is the control

horizon, and Hp is the prediction horizon. The prediction horizon is longer than the

control horizon with larger computational costs for longer horizons [80].

The control horizon depends on how fast the reference input and disturbance

change. For example, in ICEs, the control horizon could be one cycle for an ICE

9

Control Horizon

Prediction Horizon

Past

Optimized fuel quantity
injections

Model-based predicted
IMEP trajectory

IMEP reference trajectory

IMEP measured Trajectory

 fuel quantity injections

Value

Engine
Cycle, 1 2

Figure 1.4: The MPC control concept and prediction receding horizon: illustrated for
engine load control.

in a highly transient operation in a conventional vehicle and could be three or more

engine cycles for operation in a hybrid electric vehicle for an operating when the ICE

is decoupled from the road load conditions. The MPC formulation can be defined as:

min
u0,...,uN−1

Jf (xN) +
N−1∑︂
k=0

J(xk, yk, rk, uk, sk)

s.t. xk+1 = f(xk, uk, dk), yk = g(xk, uk, dk) k ∈ NN−1
0

xk ∈ X , uk ∈ U k ∈ NN−1
0

XN ∈ Xf x0 = x(t)

(1.1)

where x, y, u, r, s, d, and N represent states, outputs, inputs, references, slack

variables, disturbances, and the prediction horizon, respectively. In this equation, J ,

f , g, X , U , and Xf represent the state function, output function, cost function, state

constraint set, input constraint set, and terminal state constraint set, respectively.

Next, the application of ML in ICE modeling and control will be discussed.

10

1.3 Application of Machine Learning in Internal

Combustion Engines

In general, ML can be divided into three main categories: i) supervised learning,

ii) unsupervised learning, and iii) Reinforcement Learning (RL). These methods are

used widely in different strategies to model and control ICEs. Table 1.1 presents the

categorization of the ML approaches specifically used in internal engine modeling and

control.

Table 1.1: Machine learning in Diesel Engine Emission Modeling and Control– ANN:
Artificial Neural Network; SVM: Support Vector Machine; RVM: Relevance Vec-
tor Machine; GPR: Gaussian Process Regression; ELM: Extreme Learning Machine;
BNN: Bayesian Neural Network

Machine Learning Application Methods

Supervised
learning

Steady-state
models for
estimation

ANN [81–89]

ELM [90–92]

SVM [89, 93–99]

RVM [100]

GPR [101]

Dynamics
modeling for
control

ANN [43, 102–105]

BNN [106]

ELM [107, 108]

LS-SVM [39, 40, 109, 110]

Unsupervised
learning

Misfire/knock,
and component
fault detection

ANN [111]

K-means [111, 112]

Fuzzy C-means [113, 114]

Reinforcement
learning

Pure learning
Actor-critic [115, 116]

Q-learning [117–120]

Tuning controller RL for PID tuning [121]

11

1.3.1 Supervised Machine Learning

Supervised ML is usually used in diesel engine performance and emission modeling.

The Artificial Neural Network (ANN) is a method that is widely applied to ICEs.

ANN was used to develop exhaust emission and performance modeling of CNG-diesel

engines [81], diesel engine coupled with Exhaust Gas Recirculation (EGR) [82], a

hydrogen dual fuel diesel engine with biodiesel blends [83], a mixed biodiesel blends

[84], a dual fuel diesel engine [85], hydrogen-enriched diesel engine [86], diethyl ether

fueled single-cylinder diesel engine [87], and a diesel engine fueled with animal fat

[88]. ANN uses the gradient descent algorithm for training, which increases the risk

of converging to local minima. Additionally, the risk of overfitting is higher for ANN

for the same size of training data with respect to the other methods, such as Support

Vector Machines (SVM) [122]. Another ML method used in diesel engine modeling

is Extreme Learning Machines (ELM). ELM is usually used as a single hidden layer

feedforward network [123]. ELM has been used to predict engine performance and

exhaust emissions [90], and the exergetic performance prediction of diesel engines [91],

and to model and optimize biodiesel engine performance [92].

The Support Vector Machine (SVM) is another popular data-driven method that

is now being increasingly used for modeling internal combustion engines mostly for

the steady-state prediction of engine performance and emissions. The SVM is an ML

approach that is capable of modeling complex and non-linear input-output relations

based on a sufficiently large training data set [124–126]. This approach provides a

black box model without directly involving a physical understanding of the system

but can be accurately trained if the model’s features are selected appropriately [11,

127, 128]. A NOx prediction model was developed for a hydrogen-enriched compressed

natural gas engine using an optimal SVM method where Particle Swarm Optimiza-

tion (PSO) was used to find the regulatory parameters of SVM [94]. Studies have

also examined the effect of SVM model parameters such as the penalty factor kernel,

12

insensitive band loss function, and the training sample size [94]. An optimal SVM

for the diesel engine’s NOx prediction was developed in [93], in which the Genetic

Algorithm (GA) was used to find the regulatory parameter of SVM. The SVM ap-

proach has been used for the exergetic modeling of diesel engines [96]; and to predict

diesel engine performance, and emission [99], hydrogen-enriched compressed natural

gas engine performance at specific conditions [98], and the performance and exhaust

emission of marine diesel engines [97]. Also, the least-square version of the SVM was

used to model and optimize engine performance fueled with biofuel [95].

Another approach used in modeling the performance and emission of diesel engines

is the Relevance Vector Machine (RVM). Its functional form is identical to that of

the SVM but it provides a probabilistic regression [129]. A diesel engine performance

and exhaust emission model was developed using the RVM and compared with the

conventional ANN model, which showed that the RVM is superior to the typical ANN

approach [100].

Gaussian Process Regression (GPR) is another method in engine performance and

emission modeling which is a nonparametric and Bayesian-based approach that has

superior performance with small data sets and can provide an uncertainty measure

on the predictions [130]. The main advantage of GPR is probabilistic prediction.

Unlike other supervised ML methods, GPR infers a probability distribution over all

possible ML model parameter values. A combination of a 1D-CFD model and a GPR

ML method with a fixed input feature set was used in [101] for emission modeling

including NOx and soot emissions. The GPR was also used in black-box NOx and

soot [131–133], CO [132] modeling of diesel engines.

The requirement for accurate modeling to guarantee MPC performance while si-

multaneously having a simpler model has created an opportunity to utilize the ML

method in developing required models in MPC platforms. In ML-based MPC, an

ML-based model is used to develop a predictive dynamics model. This model is

used directly to design MPC or implement optimization. Several ML-based data-

13

driven modeling techniques have been used to model dynamics of system, including

ANN [102, 103], ELM [107, 108], Bayesian Neural Network (BNN) [106], and Least-

Square SVM (LS-SVM) [39, 40] to provide a predictive dynamics model of sufficient

accuracy for model-based control of ICEs.

Among all data-driven transient modeling using ML, ANN is the most common

in ICEs. Adding shallow networks (low number of hidden layers) could be useful

as an accurate function approximation for a classical time-series system identifica-

tion technique, Nonlinear AutoRegressive eXogenous (NARX), to identify a dynamic

system in the literature [43, 102]. This model, in general, is nonlinear and usually re-

quires nonlinear programming for MPC implementation. Alternatively, by linearizing

NARX, linear MPC can be used [43, 108]. ELM was combined with Model Predictive

Control (MPC) to provide a model for both offline and online learning. An Homo-

geneous Charge Compression Ignition (HCCI) engine was modeled using ELM, and

then nonlinear MPC was used to design Indicated Mean Effective Pressure (IMEP)

and stability control [108].

1.3.2 Unsupervised Machine Learning

Unsupervised ML is mostly used for Fault Diagnosis (FD) of diesel engines. Different

unsupervised clustering algorithms have been used for diesel engines FD, such as ANN

clustering, K-means, and fuzzy C-means. The K-means algorithm specifies k number

of centroids, and assigns each data point to the closest cluster while keeping the

centroids as small as possible [134]. K-Means algorithm was used to organize potential

engine faults of diesel marine engines [112]. Also, K-means and ANN clustering

methods were compared for fault diagnosis on a main engine journal-bearing [111].

A fuzzy C-means clustering algorithm, which is more efficient than the K-means

algorithm, has been used in diesel engines. In the K-means algorithm, each data

point is allocated to one cluster. However, in the C-means algorithm, which is a

fuzzy clustering technique, each data point is allocated to all of the clusters with a

14

membership degree. This algorithm was used in predictive modeling of marine engine

performance [113] and fault diagnosis of diesel engine vibration signals [114].

A least-squares version of SVM was used to solve a set of linear equations to lower

the computational cost for constrained optimization programming. Both regression

SVM and least-squares SVM, so-called LS-SVM, have been used to provide ICE

dynamics models for MPC. The Linear Parameter Varying (LPV) formulation of a

Reactivity Controlled Compression Ignition (RCCI) model for CA50 and engine load

control is driven based on the LS-SVM in [39].

1.3.3 Reinforcement Learning (RL)

Unlike the supervised and unsupervised learning that uses measurement data, RL

works dynamically by interacting with system (environment) data. In RL, the goal is

to neither cluster or label the data, but to generate the optimal outcome by finding

the best sequence of actions. RL solves this problem by allowing a piece of software

called an agent to explore, interact with, and learn from the environment. RL has a

similar structure to the traditional control, and Figure 1.5 schematically presents this

similarity. With both methods, we want to determine the correct inputs into a system

that would generate the desired system’s behavior. The controller is tuned using a

tuning algorithm or adaptation law, while in RL policy updates are based on the RL

algorithm [135]. Different kinds of RL algorithms have been developed. However,

this ML approach has seldom been applied to a diesel engine control. One common

algorithm used for model-free RL is Q-learning. In Q-learning, the value of an action

for a particular state is learned and the optimal policy is found by maximizing the

expected value (Q-value) of the total reward [136]. Q-learning has been used in

the diesel engine control auxiliary power network of [117] a marine diesel engine. Q-

learning RL has also been used as the idle speed control of a spark ignition engine by

controlling the spark timing and intake throttle valve position [118]. Similar studies

have been carried-out for diesel engine idle speed control by controlling fuel injection

15

controller
policy

plant
environment

reinforcement
learning algorithm

Training/adapting
controller gains Policy update

actuator commands
actions

state feedback
observations

reference
part of reward
function and observations

Figure 1.5: Reinforcement learning (RL) analogy to traditional controls based on
[135] - Red is used to show traditional control and black is used to show RL

timing [119].

When an agent performs an action that has the highest reward without further

exploring the environmental space it is considered a greedy policy. In continuous

spaces, using a greedy policy to optimize the action at each time interval is extremely

slow. Often, it is not possible to apply Q-learning easily to continuous action systems.

However, an actor-critic method based on the Deterministic Policy Gradient (DPG)

algorithm is a suitable choice for a system with a continuous space [137]. An actor-

critic method using a neural network has also been used for the emission control of

spark ignition engines [115, 116].

Although RL is now receiving attention from the control system community, a

learning controller is not a new concept [138, 139]. One of the well-known learning-

based controllers is Iterative learning control (ILC), which is used to improve the

tracking performance of a system in the presence of repetitive input or distur-

bances [140, 141]. ILC was first introduced in 1984 [139] and since then has been

used for various control problems. ILC has a simple structure and is computationally

efficient for real-time applications and can have stability guarantees. Different types

of ILC have been implemented for internal combustion engine control. ILC has been

used in SI engine load control [142, 143], dual-fuel control of an HCCI engine [144],

SI engine speed and air-to-fuel ratio [145], parameter optimization in Turbocharged

16

SI engine [146], variable injection rate control for CI engines [147], and EGR control

in CI engine [148].

So far, existing technologies of diesel emission reduction have been introduced in

Section 1.1 and the application of ML in ICE has been identified in Section 1.3. Next,

using this knowledge, the main problems and gaps in the literature that motivated

the research in this thesis along with proposed solutions will be discussed.

1.4 Problem Identification and Proposed Solu-

tions

1.4.1 Emission Estimation Modelling challenges

Due to the complexity of combustion phenomena and the high number of subsystems

in ICE, physical-based model development is time-consuming and may become non-

linear and non-convex. ECUs are not capable of the computation required for detailed

physical emission models; thus, these models cannot be used to control emissions in

real-time. In addition, the accuracy of the physics-based method is typically compro-

mised, mainly due to linearization or model-order reduction techniques. Data-driven

or black-box models that use measurement data directly for training ML methods are

an alternative approach for modeling. These models could be as accurate as 3D CFD

physical models and require significantly less processing time for implementation of

model-based controllers in ECUs [149–151].

Despite the many advantages of data-driven black-box models, there are two main

drawbacks: i) they are complex and could run a high risk of overfitting, particularly

when a large number of features are used [149–151], and ii) because they do not con-

tain physical models, their accuracy will be decreased when physics change [89, 152].

The proposed method for the first challenge is to develop a Model Order Reduction

(MOR) or Feature Selection (FS) algorithm. The propose method for the second

challenge is to use gray-box or hybrid modeling techniques. The first challenge is

17

addressed by developing a SVM-based Model Order Reduction (MOR) (will be de-

scribed in Chapter 3) and the second is addressed by developing a gray-box model

using physical understanding of the engine (will be described in Chapter 4).

In Chapter 3, a correlation based MOR algorithm is developed using an SVM to

model NOx emissions and the Brake Mean Effective Pressure (BMEP) of a diesel

engine. The SVM-based MOR algorithm is used to reduce the number of features

of a 34-feature Full-Order Model (FOM) by evaluating the regression performance

of the SVM-based model. Then, the SVM-based MOR algorithm is used to reduce

the number of features of the FOM. Two models for NOx emissions and BMEP are

developed via MOR, one complex model with high-accuracy, called a High-Order

Model (HOM), and the other with acceptable accuracy and a simple structure, called

a Low-Order Model (LOM). The HOM has 29 features for NOx and 20 features for

BMEP, while the LOM has nine features for NOx and six features for BMEP. The

results illustrate that the developed SVM model has shorter training times (five to

14 times faster) and higher accuracy especially for test data compared to the ANN

model.

In Chapter 4, a comprehensive analysis of diesel engine soot emissions modeling

for control applications is presented by developing physical, black-box, and gray-

box models for soot emissions prediction. Different feature sets based on the least

absolute shrinkage and selection operator (LASSO) feature selection method and

physical knowledge are examined to develop computationally efficient soot models

with good precision. The physical model is a virtual engine modeled in GT-Power©

software that is parameterized using a portion of experimental data. Different ML

methods, including Regression Tree (RT), Ensemble of Regression Trees (ERT), svm,

GPR, ANN, and BNN are used to develop the black-box models. The gray-box models

include a combination of the physical and black-box models. A total of five feature

sets and eight ML methods are tested. An analysis of the accuracy, training time and

test time of the models is performed using the K-means clustering algorithm. This

18

provides a systematic way to categorize the feature sets and methods based on their

performance and to select the best method for a specific application.

1.4.2 Model-based controller challenge

As mentioned in Section 1.1, MPC is one of the most promising controllers to deal with

the highly constrained nonlinear system of ICEs. The use of a future horizon while

optimizing the current control law is considered in MPC. Constraints on state, input

and output variables are also structured in MPC to handle multi-variable systems.

Constraint enforcement while performing optimization is a main advantage of MPC,

and useful to address ICE requirements. Since MPC inherently enforces constraints

this significantly reduces calibration and development time. Flexible handling of

uncertainty, delays, and non-linearity in the model and the possibility of both offline

and real-time implementation are other advantages of MPC that make it applicable

in the automotive industry [41]. These MPC features have resulted in MPC being

investigated widely in the automotive industry. However, MPC requires additional

computing and memory resources compared with classic control and an accurate

model is also needed.

To address these drawbacks of MPC (the need for fast optimization and an accurate

model), ML techniques can be used to obtain the performance of MPC but at a lower

computational cost. A variety of ML techniques can be combined with MPC to

provide and update data-driven models and improve computational demand.

As discussed in Section 1.3, several ML-based data-driven modeling techniques

have been used, including ANN [102, 103], ELM [107, 108], BNN [106], and LS-

SVM LPV [39, 40, 110]. Among these models, the LS-SVM LPV model provides

an accurate model. The traditional use of an LPV model requires the evaluation of

a complex model in a grid of scheduling parameters; however, using ML provides a

systematic way to create a state-space LPV model directly from measurement data.

SVM-LPV [153] uses a LS-SVM framework to update state-space matrices. This

19

method has been applied to HCCI engine LPV modeling [39, 40, 110]. In this thesis

SVM-LPV has been extended for CI engines emission prediction and a LPV MPC

controller is designed accordingly.

A nonlinear model can improve the accuracy of emission modeling resulting in

better control of MPC performance. One of the methods explored in this thesis that

has not been explored in the ICE-related literature is Deep Recurrent Neural Network

such as Long-Short Term Memory (LSTM) network. A Recurrent Neural Network

(RNN) is structurally similar to a feedforward neural network with the exception of

backward connections used to handle sequential time series. The advantage of the

RNN compared to a conventional feedforward neural network for dynamic modeling

is its computational efficiency which is the result of parameter sharing. However,

conventional RNN cannot accurately capture long-term dependencies of the model.

This can also be described as the “vanishing gradient,” as the contribution of earlier

steps becomes increasingly small. To solve this lack of long term memory of RNN,

various types of cells with long-term memory have been introduced. The most popular

and well-known of these long-term memory cells is the LSTM [154]. Therefore, in this

thesis, a deep network with an LSTM layer which capable of predicting dynamics of

a system with high accuracy due to long-term memory is used.

Even with ML-based modeling, MPC computational times (especially for deep

networks) is high. Additionally, depending on the control complexity, convexity, and

dynamics time scale it might not be feasible for real-time implementation. Since ICEs

are complex nonlinear systems to control, high computational effort is often required

for real-time implementation. One method to reduce MPC computation load is to re-

place MPC with an ML controller. The ML is used to mimic the MPC controller’s be-

havior to significantly reduce computational time for real-time implementation. The

optimization uses a powerful prototype ECU, and only an ML function is deployed

for the MPC in real-time to significantly reduce the computational time required of a

production ECU with limited computational capability. Here, to reduce the computa-

20

tional time of MPC, an ML-based imitation of the MPC controller is proposed where

a deep network is trained using the MPC inputs and outputs. Imitation MPC has

been previously explored in the control of heating, ventilation, and air conditioning

(HVAC) systems [155, 156], vehicle dynamics control [157, 158], robotics [159], and

power conversion [160] and has shown great success. There is little in the literature

about applying imitation MPC to ICE control. Therefore, in this thesis, both mod-

eling and imitation of MPC for ICEs has been investigated using both real-time and

Engine Simulation Model (ESM) – a detailed physics-based model co-simulation with

Matlab/Simulink©.

In Chapter 5, the SVM-LPV is used to model engine performance and the engine-

out NOx emissions to show the capability of the SVM-LPV technique. This is the

first study to use this technique in emission modeling and control of a CI engine. LPV

MPC is developed based on the developed SVM-LPV model. The online optimization

of the MPC offers advantages in minimizing NOx emissions and fuel consumption

compared to the baseline feedforward production controller (ECU modeled in GT-

power©). For imitation of MPC, the LPV-MPC is first implemented on ESM. Then,

the input and output are recorded and a deep neural network, including a Long-

Short-Term Memory (LSTM) layer, is used to mimic the behavior of the LPV MPC.

In Chapter 6, a deep neural network including LSTM layers is used to model the

NOx emission and engine performance of a diesel engine. Compared to the tradi-

tional ANN method to model system dynamics the LSTM can capture long-term

dependencies in the data. A Nonlinear MPC (NMPC) is required for this process.

As LSTM has a hidden and cell state, a new methodology of NMPC is developed

to implement NMPC. Therefore, a novel approach to augment LSTM in the NMPC

problem (LSTM-NMPC) by augmenting LSTM hidden and cell state into the nonlin-

ear optimization problem has been developed. This LSTM-NMPC is used to develop

imitation of NMPC. In the first step, the designed LSTM-NMPC are implemented

on ESM. Next, the NMPC input and output are recorded, and a deep neural network

21

similar to the imitation LPV-MPC (Chapter 5), including an LSTM layer, is used

to fit the controller data to mimic the behavior of the NMPC. The final step in the

process involves replacing the online NMPC with an imitative controller to avoid the

high computational time of NMPC. That is, instead of solving NMPC optimization

online, the identified function, here a deep network is deployed with a much lower

computation cost.

Comparisons between the LPV-MPC and LSTM-NMPC show the superior per-

formance of the LSTM-NMPC in emission and fuel consumption reduction and load

tracking performance. Therefore, the developed LSTM-NMPC is then implemented

in the MicroAutoBox prototype system in Chapter 7. For adaptation, the LSTM

model is modified by reducing the number of states while increasing the number of

fully connected layers to make NMPC turnaround time feasible for a real-time sys-

tem. Then, based on real-time data, the model is updated. Due to the accessibility of

some new variables such as Particulate Matter (PM), Maximum Pressure Rise Rate

(MPRR), and Indicated Mean Effective Pressure (IMEP) are added to the control

problem. This makes real-time implemented controller more practical for an industry

standard engine controller.

1.4.3 Model-free controller challenge

RL has been used in automotive powertrain control systems especially in energy

management of hybrid electric vehicles [161, 162] and for internal combustion engines

[115, 116, 119–121, 163]. Q-learning RL is used as idle speed control for a Spark

Ignition (SI) engine by controlling the spark timing and intake throttle valve posi-

tion [118]. Similar studies have been carried-out for diesel engine idle speed control

by the control of fuel injection timing [119]. RL has also been used for emission

control of spark ignition engines [115, 116]. A very limited number of studies have

been carried out utilizing RL for internal combustion control, and most of the exist-

ing work has focused on spark-ignition engines. Deep RL algorithms have not been

22

implemented for diesel engine performance and emissions control. Safety concerns

and constraints violations of pure learning controllers in highly complex systems such

as internal combustion engines have hindered the development of these learning con-

trollers. Fortunately, recent studies have addressed output constraints enforcement

in the learning-based controller using a safe learning filter. This method enforces the

output constraints and provides a method to implement safe-learning RL [164–167].

In this thesis, safe-learning RL has been extended to the CI engine.

Safe learning combined with a deep RL for control diesel engine emissions is not

available in the literature. In Chapter 8, a deep RL with and without safety filters is

designed and a comparison conducted to illustrate the potential of safe RL in engine

and emission control. To compare RL to ILC, ILC and safe ILC are also designed.

Additionally, RL is compared with the LSTM-NMPC that is developed in Chapter

6.

1.5 Contributions and Thesis outline

1.5.1 Thesis outline

This thesis is organized into five main parts in nine chapters. Figure 1.6 shows the

three main core parts schematically. The main parts and chanters of this thesis are

as follow:

• PART I: Introduction and Experimental Setup

– Chapter 1 provides background, motivation, and main contributions of

this thesis.

– Chapter 2 presents the experimental setup details, Explanatory Data

Analysis (EDA), and ESM details.

• PART II: Machine Learning in Emission Prediction

23

– Chapter 3 describes developed ML-based NOx steady-state model by

developing MOR algorithm.

– Chapter 4 describes modeling the PM (soot) steady-state model using

gray-box and black-box techniques.

• PART III: Integration of Machine Learning and Model Predictive

Control

– Chapter 5 describes ESM simulation-based implementation of MPC de-

velopment using (SVM-LPV) and imitation MPC accordingly based on

online MPC optimization.

– Chapter 6 shows ESM simulation based implementation of NMPC devel-

oped using an LSTM network and corresponding imitation NMPC based

on online NMPC optimization.

– Chapter 7 describes real-time LSTM-NMPC implementation in engine

and IN comparison with existing ECU.

• PART IV: Machine Learning in Learning-based Controller

– Chapter 8 provides developed safe learning algorithms for ILC and RL

based on ESM simulation.

• PART V: Conclusions

– Chapter 9 provides conclusions.

1.5.2 Contributions

To summarize, the main contributions of this thesis are:

• PART I: Introduction and Experimental Setup

24

Chapter 3:

Chapter 4:

Machine Learning Integrated
with Linear Parameter Varying

Model Predictive
Control: Simulation Results [6]

Integration of Deep Learning
and Nonlinear Model Predictive
Control: Simulation Results [7]

Integration of Deep Learning
and Nonlinear Model Predictive

Control: Experimental
Implementation [8]

Safe Deep Reinforcement
Learning [9]

Steady-state NOx Black-box
Modeling [3,4]

Steady-state Particle Matter
(Soot) Gray-box Modeling [5]

Chapter 7:

Chapter 6:

Chapter 5: Chapter 8:

Chapter 1:

Introduction & Background
[1,2]

Conclusions

Chapter 9:

Experimental Setup & Engine
Simulation Model [3-5]

Chapter 2:

Part I: Introduction & Experimental Setup

Part II: Machine Learning in
Emission Prediction

Part III: Integration of Machine
Learning and Model Predictive
Control

Part IV: Machine Learning in
Learning-based Controller

Part V: Conclusions

Figure 1.6: Schematic of the thesis organization

– Setting up a medium duty Diesel engine for experimental analysis and

controller implementation,

– Exploratory analysis of data for “complete” speed-load maps from a

medium-duty diesel compression ignition engines for use in steady-state

NOx and Soot models.

25

• PART II: Machine Learning in Emission Prediction

– Developing a novel model order reduction algorithm for modeling NOx and

to trade-off model complexity and model accuracy,

– Developing black-box and gray-box soot models using various ML tech-

niques,

– Developing a systematic clustering-based method to choose the best

ML/feature set based on the model application.

• PART III: Integration of Machine Learning and Model Predictive

Control

– Adapting an SVM-LPVmodel to develop a linear parameter-varying model

for engine-out NOx emissions and engine performance metrics.

– Designing an LPV-MPC based on an SVM-LPV model to minimize engine-

out emissions and fuel consumption while maintaining the same output

torque performance and comparing with a benchmark controller using sim-

ulation (ESM)

– Designing an imitation based controller using deep neural network to clone

the behavior of LPV-MPC to reduce the computational time of optimiza-

tion.

– Developing a transient engine performance and emission model based on

LSTM capable of providing a high accuracy model for nonlinear model

predictive control.

– Developing a novel approach to augment LSTM in the NMPC problem

(LSTM-NMPC) by augmenting LSTM hidden and cell state into nonlinear

optimization problem.

– Designing an NMPC based on an LSTM model to minimize engine-out

emission and fuel consumption while maintaining same output torque

26

performance and is compared with a benchmark controller in simulation

(ESM),

– Designing an imitation based controller using a deep neural network to

clone the behavior of LSTM-NMPC to reduce the computational time of

optimization while maintaining the NMPC performance.

– Adapting LSTM-based deep neural network based on real-time experimen-

tal data to develop transient engine performance and emission model. This

model is capable of providing a high accuracy model for NMPC.

– Designing and real-time implementation of an NMPC based on the devel-

oped LSTM-based deep neural network to minimize engine-out emission

and fuel consumption while maintaining the same output torque. This

controller is then compared to the Cummins-calibrated ECU-based bench-

mark control is that replicated using a MicroAutoBox.

• PART IV: Machine Learning in Learning-based Controller

– Designing a deep RL controller for diesel engine NOx control to minimize

NOx and fuel consumption while maintaining the same output torque.

– Designing a safe filter that provides safe RL and safe ILC for diesel engine

emission control.

27

Chapter 2

Experimental Setup and Engine
Simulation Model 1

2.1 Experimental Setup

2.1.1 Engine and Engine Controller Setup

A 4.5-liter medium-duty Cummins diesel engine was used for control design and

experimental testing in this thesis. Table 2.1 shows the relevant specifications of the

Cummins QSB4.5 160 diesel engine that was used. The experimental setup and the

schematics of experimental setup are shown in Figure 2.1 and 2.2.

Table 2.1: Engine specifications

Parameter Value

Engine type In-Line, 4-Cylinder

Displacement 4.5 L

Bore × Stroke 102 mm × 120 mm

Peak torque 624 N.m @ 1500 rpm

Peak power 123 kW @ 2000 rpm

Aspiration Turbocharged

Certification Level Tier 3 / Stage IIIA

1 This chapter are partially based on [3–5]

28

Dynamo

meter

Cummins

Diesel Engine

Monitoring

Camera

mks FTIR

system

Pegasor Particle Sensor PPS-M

dSPACE

MicroAutoBox

NOx SensorControl Room

Figure 2.1: Diesel engine experimental setup

Cummins QSB4.5
160 Diesel Engine

Intake Manifold
Common Rail

Dynamometer
 Output Torque

Intake Air

Fuel

Injector

Aftertreatment
system

Vent to
Atmosphere

CAN
FTIR analyser

(MultiGas 2030)

Electrochemical
NOx Sensor

Exhaust Gas

NOx, CO, CO2, and UHC Concentration

Exhaust Manifold

NOx Concentration

PEGASOR MI3 particle Mass and Particle Number

Engine
Control
Command

Encoder

Pressure
Sensor

Dynamometer Speed

Dynamometer Control
Command

Control
Room

Figure 2.2: Schematic of diesel engine experimental setup

The Cummins production ECU was fully duplicated on an open fully flexible

dSpace MictoAutoBox II (MAXB II). This was used to control various engine pa-

29

rameters including intake air pressure, engine speed, load, injected fuel amount, and

fuel rail pressure. A Kistler piezoelectric pressure sensor was used to measure the

in-cylinder pressure for all tests.

A National Instruments Data Acquisition System (DAQ) was used to record cylin-

der pressure at a 0.1◦ resolution for use in offline post-processing. The pressure signals

were simultaneously input to the Field Programmable Gate Array (FPGA) board in

the prototyping ECU. Details of MABX II prototyping ECU are provided in Table

2.2. The MABX II contains two main boards: a CPU and FPGA. The CPU (ds1401)

was used to replicate the production Cummins ECU tables as well as to implement

the controller developed in this work.

The Xilinx Kintex-7 FPGA contained within the MABX II was used to calculate

various combustion metrics in real-time. These included IMEP and MPRR which

were transferred from the FPGA to CPU to use as inputs to the NMPC. Details

regarding the real-time calculation of these properties can be found in [168, 169].

To measure engine-out emissions, an electrochemical NOx sensor, Pegasor Parti-

cle Sensor (PPS-M), and mks Fourier-Transform Infrared Spectroscopy (FTIR) were

used. The mounted sensors to the exhaust pipe are shown in Figure 2.3.

Figure 2.3: Diesel engine exhaust pipe– The FTIR, PPM, NOx, and Lambda sensor
are mounted in this pipe

30

Table 2.2: Rapid prototyping ECU Specifications

Parameter Specification

Processor dSPACE® 1401 IBM PPC-750GL

Speed 900 MHz

Memory 16 MB main memory

I/O dSPACE® 1511

Analog input 16 Parallel channels

Resolution 16 bit

Sampling frequency 1 Msps

Analog output 4 Channels

Digital input 40 Channels

Digital output 40 Channels

FPGA dSPACE® 1514 Xilinx® Kintex-7

Flip-flops 407600

Lookup table 203800

Memory lookup table 64000

Block RAM 445

DSP 840

I/O 478

2.1.2 Electrochemical NOx sensor

A production amperometric NOx sensor (ECM-06-05) was used in the experiments.

All the sensor working parameters were set using the sensor control module (ECM-

NOxCANt P/N: 02-07). The sensor control module was connected to a computer

via a Controller Area Network (CAN) interface (Kvaser Light HS) to monitor and

log the measurements. The sensor along with sensor control module are shown in

Figure 2.4.

31

Figure 2.4: electrochemical fast NOx sensor and sensor control module

2.1.3 Fourier-Transform Infrared Spectroscopy (FTIR)

A Fourier-Transform Infrared Spectroscopy (FTIR) analyser (MultiGas 2030) was

used to validate the ECM NOx sensor measurement and to measure the concentration

of other species in the exhaust gas. The FTIR spectrometer passes an infrared beam

through a gas sample, obtains the interference pattern of the gas, and identifies the

gas composition based on the absorption spectrum of the gas constituents. The FTIR

analyser was connected to the diesel engine exhaust pipe to measure the engine raw

emissions. The sample exhaust gas passed through two heated filters (Flexotherm

Flex) connected by sample lines (Flexotherm) heated to 191oC to avoid water vapor

condensation in the sample gas as shown in Figure 2.5. The sample data was collected

at a 5 Hz frequency using the mks Series 2000 MultiGas analyzer software version

10.1. In this setup liquid nitrogen was used to cool detector (which can maintain

cryogenic temperatures for up to 12 hours), dry nitrogen gas for optics, and purge

the spectrometer. More information about the FTIR setup is available in [170].

2.1.4 Pegasor Particle Sensor (PPS-M)

To measure soot emissions, a Pegasor Particle Sensor (PPS-M) was used. The

schematic of the soot measurement setup is shown in Figure 2.6 where engine-out

32

Figure 2.5: FTIR setup

exhaust gas flows through an inlet heater line to the pre-charger. The pre-charger

was used to avoid any charge-related problem in soot measurement [171]. The pre-

charger is essential to the accuracy of soot measurement because in recent emission

technology, microscopic particles in the exhaust may be strongly charged. The Pe-

gasor Pre-Charger is a self-heated, non-radioactive, negative diffusion charger. Using

an integrated trap, Pegasor can eliminate ions and small charged particles from the

sample line gas. It charges larger particles into a known negative charge state. The

PPS-M sensor was cleaned for tests to allow good quality air at the right pressure

inside the sensor pump unit. The sampling rate of PPS-M was 100 Hz with a 100

dB Sensor to Noise Ratio (SNR). This sensor detects particle sizes in the range of

[0.001, 290][mg/m3]. The main PPS-M sensor’s specifications are listed in Table 2.3.

33

Figure 2.6: Pegasor Particle Sensor (PPS) setup with air pre-charger unit

Table 2.3: Pegasor Particle Sensor sensor specifications

Parameter Value

Sensor temperature 200 ◦C

Extracted sample temperature -40 up to 850 ◦C

Dilution No need

Time response 0.2 s

Measured particle size range 10 nm and up

Particle number range 300 up to 109 1/cm3

Particle mass range 10−3 up to 300 mg/m3

Sample pressure –20 kPa to +100 kPa

Clean air/Nitrogen supply 10 LPM @ 0.15 MPa

Operating voltage 24 V

Power consumption 6 W

Maximum theoretical error∗ ±24% PN and ±38% PM

∗ not engine specific

34

2.2 Exploratory Data Analysis (EDA)

2.2.1 Steady-state data analysis

The diesel engine was tested for 219 engine steady state operating conditions over

the full range of engine speeds and loads in order to develop a steady-state model

and understand the behaviour of the engine. Figures 2.7 and 2.8 shows the color map

of raw soot and NOx emissions data with respect to engine speed (x-axis) and load

(y-axis), where black dots represent experimental points. Since this engine is designed

for stationary applications, it has limited operating conditions. Therefore, 219 data

points in Figures 2.7 and 2.8 cover most of the possible operating conditions.

1000 1200 1400 1600 1800 2000 2200 2400
speed [rpm]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

B
M

E
P

[b
ar

]

1.4

2.6

3.8

5.0

6.2

7.4

8.6

9.8

11.0

12.2

S
oo

t
[m
g
/m

3]
Figure 2.7: Engine-out soot measurements over speed and Break Mean Effective
Pressure (BMEP)

To analyze the main features of the diesel engine that play an important role in

engine emissions modeling, the histogram of them are plotted in Figure 2.9. This

diesel engine has three injection pulse. The third injection was active in 39% of our

experimentally collected data based on Figure 2.9b. Start and duration of all pulse

of injections along with the total injected fuel in each cycle are shown in Figure 2.9a–

d. Another main fuel path feature that affects soot emissions modeling is common

rail pressure as shown in Figure 2.9e. The majority of data were collected in fuel

35

1000 1200 1400 1600 1800 2000 2200 2400
speed [rpm]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

B
M

E
P

[b
ar

]

80

180

280

380

480

580

680

780

880

980

N
O
x

[p
p

m
]

Figure 2.8: Engine-out NOx measurements over speed and Break Mean Effective
Pressure (BMEP)

rail pressure from 700 to 1100 bar. The air path, intake manifold pressure and air-

fuel equivalence ration (λ) are shown in Figure 2.9f–g. Output torque and engine

speed are the other important features and are shown in Figure 2.9h–i. According to

these histograms, the data collected from experiments covers most of the operating

conditions of the engine successfully. Additionally, to conduct more in-depth analysis

the start of injection for all pulses, all experimental points are plotted in Figure 2.10

where the x-axis is the Crank Angle Degree (CAD) and the y-axis is engine generated

power. As shown, the above specific power post-injection is active in order to reduce

unburned hydrocarbon and soot emission.

2.2.2 Transient data analysis

In order to develop transient models, transient data is collected by using Pseudo

random binary generated inputs. For this reason, the main inputs of the system

include the Duration of Injection (DOI) of the pilot (pre) injection, the DOI of the

main injection, duration between the end of the pre-injection to the start of main

injection (tP2M), the Start of Injection (SOI) of the main injection, and common fuel

rail pressure were changed randomly using a randomly generated sequence both for

36

0 20
SOI [CAD]

0.0%

8.7%

17.4%

26.1%

34.8%
P

er
ce

nt
ag

e

SOI pre Inj.

SOI main Inj.

SOI post Inj.

(a)

0.0 0.2
DOI [ms]

0%

22%

43%

65%

87%

P
er

ce
nt

ag
e

DOI pre Inj.

DOI post Inj.

(b)

1 2
DOI [ms]

0.0%

4.3%

8.7%

13.0%

17.4%

P
er

ce
nt

ag
e

DOI main Inj.

(c)

50 100
Injection amount [mg/stroke]

0.0%

2.2%

4.3%

6.5%

8.7%

P
er

ce
nt

ag
e

(d)

750 1000 1250
Fuel Rail Pressure Measured [bar]

0.0%

4.3%

8.7%

13.0%

17.4%

P
er

ce
nt

ag
e

(e)

1 2
Intake Manifold Pressure (bar)

0.0%

4.3%

8.7%

13.0%

P
er

ce
nt

ag
e

(f)

5 10
λ[−]

0.0%

4.3%

8.7%

13.0%

17.4%

P
er

ce
nt

ag
e

(g)

0 200
Load [N.m]

0.0%

2.2%

4.3%

6.5%

8.7%

10.9%

P
er

ce
nt

ag
e

(h)

1000 2000
Engine speed [rpm]

0.0%

2.2%

4.3%

6.5%

8.7%

10.9%

P
er

ce
nt

ag
e

(i)

Figure 2.9: Diesel engine with soot measurement exploratory data analysis: a) Start
of Injection (SOI), Duration of Injection (DOI), c) DOI of main injection, d) Injec-
tion amount, e) Fuel Rail Pressure Measured, f) Intake Manifold Pressure, g) fuel
Equivalent ration (λ), h) load (engine output torque), i) Engine speed

37

−10 0 10 20 30 40 50
CAD [deg]

0

20

40

60

80

100

p
ow

er
[k

W
]

SOI pre inj

SOI main inj

SOI post inj

withouth pre inj

COVIMEP > 5

Figure 2.10: Engine produce power verses Start of pilot (pre), main, and post injection

frequency and amplitude. Then, the outputs of interest have been recorded. For

emission, soot and NOx are measured using a PPS-M sensor and an electrochemical

fast response NOx sensor. To calculate the Indicated Mean Effective Pressure (IMEP)

and Maximum Pressure Rise Rate (MPRR), an online Field Programmable Gate

Array (FPGA) calculation was used based on measured pressure from an in-cylinder

pressure sensor.

2.3 Engine Simulation Model (ESM)

The first step toward developing an Engine Simulation Model (ESM) was to develop

and parameterize the GT-Power physics-based model. GT-power© is a commercial

software for modeling combustion engines. Physical modeling of the diesel engine is

carried out using the GT power software, which contains several chemical and phys-

ical sub-models that simulate complex combustion processes. The DIPulse model is

employed as the combustion model because it can deal with multi-injection combus-

tion engines. An extended Zeldovich NOx model is added to the combustion model

in order to add a NOx prediction for ESM. Approximately 15% of the raw experi-

mental data is used to calibrate the combustion model using the Genetic Algorithm

(GA) algorithm in GT-Suite© software. The calibration process uses NSGA-III [172]

for multi-objective Pareto optimization as the search algorithm. GA is the optimal

38

Figure 2.11: Experimental transient data– manipulated inputs: a) DOI of pilot in-
jection, b) DOI of main injection, c) duration between end of pre-injection to start of
main injection (tP2M), d) SOI of pilot injection, e) SOI of main injection, f) fuel rail
pressure

choice for problems with different levels of complexity, because of its ability to explore

a broad design space [172].

Figure 2.13 schematically shows how a combustion model with NOx physics-based

model multipliers is calculated using the GA-based algorithm. The GAs, based on

the results obtained, took into account experimental results of in-cylinder pressure

traces for some optimization points. The multipliers for the combustion model are:

39

Figure 2.12: Experimental transient data– measured outputs: a) Nitrogen oxide (from
fast response sensor), b) measured soot emission from PPM sensor, c) calculated in-
dicated mean effective pressure (IMEP) based on online FPGA calculation, d) calcu-
lated maximum pressure rise rate (MPRR) based on online FPGA calculation

Entrainment Rate Multiplier, Ignition Delay Multiplier, Premixed Combustion Rate

Multiplier, and Diffusion Combustion Rate Multiplier for DIPulse combustion model

and NOx calibration multiplier and end oxidation/activation energy multiplier for

extended Zeldovich NOx model. As DIPulse combustion multipliers are also af-

fected by NOx model accuracy, the DIPulse combustion model and extended Zel-

dovich NOx model are calibrated using one multi-objective optimization. The GAs

minimize the deviation between the experimental and simulation in-cylinder pressure

trace and experimental NOx value to calculate the optimal multipliers.

The validation result for crank angle position where 50% of the heat is released

(CA50), NOx, and maximum in-cylinder pressure is shown in Figure 2.14. The av-

erage error for CA50 and maximum in-cylinder pressure are about 2 CAD and 6%

respectively, demonstrating the physical model’s reliability.

40

Experimental
setup

Physical model
(GT-power)

Genetic Algorithm
Model Calibration (Only for Optimization Points)

In cylinder
Pressure Trace

Combustion
Model Parameters

In-cylinder Pressure Trace

Fuel Injection parameters
Manifold Pressure
BMEP & Engine Speed

Figure 2.13: Engine Simulation Model (ESM) development procedure in GT-power©

software

Figure 2.14: Histogram of error between physical-based model and experimental data

The in-cylinder pressure trace for different load and speed conditions are shown

as a function of the crank angle (CAD) in Figure 2.15. Case I (136 [N.m] in 1200

[rpm]), case IV (271 [N.m] in 1800 [rpm]) and case VI (353 [N.m] in 2400 [rpm]) are

selected from optimization points for model calibration (refer to Figure 2.13) while

other cases are not used for calibration. This GT-power© based virtual combustion

engine model is used in this thesis as a Engine Simulation Model (ESM) to develop

data-driven models, and design controllers, and to evaluate the developed controllers.

2.4 Summary of chapter

This chapter provided the details of the experimental setup and experimental data

analysis. Then, a physical-based combustion model using the DIPulse model and

41

Figure 2.15: Engine Simulation Model (ESM) validation for six operating points.
(Case I: 136 [N.m] in 1200 [rpm], Case II: 271 [N.m] in 1600 [rpm], Case III: 271
[N.m] in 1400 [rpm], Case IV: 271 [N.m] in 1800 [rpm], Case V: 271 [N.m] in 2000
[rpm], and Case VI: 353 [N.m] in 2400 [rpm]

an extended Zeldovic model for NOx emission were developed using experimentally

collected data. This model will be used in Chapter 4 for gray-box soot modeling.

In addition, this model’s co-simulation with Matlab/Simulink©, called ESM, will be

used in Chapters 5 and 6 for developing transient model and model predictive control

implementation. This model is also used in Chapter 8 to develop a learning-based

RL and ILC controller for emission reduction.

42

PART II: Machine Learning in
Emission Prediction

43

Chapter 3

Steady-state NOx Black-box
Modeling 1

A correlation-based Model Order Reduction (MOR) algorithm is developed using a

Support Vector Machine (SVM) to model NOx emission and the Break Mean Effective

Pressure (BMEP) of a medium-duty diesel engine. The SVM-based MOR algorithm

is used to reduce the number of features in a 34-feature Full-Order Model (FOM)

by evaluating the regression performance of the SVM-based model. Then, the SVM-

based MOR algorithm is used to reduce the number of features of the FOM. Two

models for NOx emission and BMEP are developed via MOR, one complex model

with a high-accuracy, called the High-Order Model (HOM), and the other with an

acceptable accuracy and simple structure, called the Low-Order Model (LOM). The

HOM has 29 features for NOx and 20 features for BMEP, while the LOM has nine fea-

tures for NOx and six features for BMEP. Then, the steady-state LOM and HOM are

implemented in a Nonlinear Control-Oriented Model (NCOM). To verify the accuracy

of the NCOM, a fast-response electrochemical NOx sensor is used to experimentally

study the engine transient NOx emissions. The HOM and LOM SVM models of

NOx and BMEP are compared to a conventional Artificial Neural Network (ANN)

with one hidden layer. The results illustrate that the developed SVM model has

shorter training times (5 to 14 times faster) and higher accuracy, especially for test

1 This chapter is based on [3, 4]

44

data compared to the ANN model. A control-oriented model (COM) is then devel-

oped to predict the system’s dynamic behavior. Finally, the performance of the LOM

and HOM are evaluated for different rising and falling input transients at four engine

speeds. The transient test results validate the high accuracy of the HOM and the

acceptable accuracy of the LOM for both NOx and BMEP. The HOM is proposed

as an accurate virtual plant while the LOM is suitable for model-based controller

design.

3.1 Support Vector Machine

3.1.1 Convex Optimization Problem

The SVM, introduced by Vapnik [173, 174], is a supervised machine learning ap-

proach. SVM is typically used for classification of labeled data by creating a set of

hyperplanes in an infinite-dimensional space [175]. SVM is also used for regression

and function approximation, also called Support Vector Regression (SVR), which was

introduced by Vapnik [176]. The main idea of SVM is to find an optimal hyperplane,

y(ui), to describe a set of labeled training data, {ui, zi}, where {ui} is the feature

(input) vector and {zi} is the target (output) vector of training data. The function

y(ui) has two main characteristics:

1. y(ui) must be as flat as possible,

2. y(ui) has at most ϵ deviation for all training data.

In other words, the optimization problem is to find the flattest function for which the

acceptable deviation from training data is at most ϵ. The optimal hyperplane which

describes the training data, {ui, zi}, can be defined as:

y(ui) = wTui + b (3.1)

where w and b are found by solving the SVM algorithm for regression problems.

The flatness of y(ui) in the Eq. 3.1 is achieved by minimizing the second norm of

45

w. Therefore, the main objective of the SVM algorithm is to find a function which

minimizes ||w||22 subject to the training error tolerance of ϵ. Then, the optimization

problem to find the optimum y(ui) is defined as:

Minimize:
1

2
||w||22

Subject to:

{︄
zi −wTui − b ≤ ϵ

wTui + b− zi ≤ −ϵ
i = 1, ...,m

(3.2)

where m is the number of data points. The convex optimization problem [177],

Eq. 3.2, is feasible when such a y(ui) exists which is as flat as possible and ap-

proximates all training data with at most ϵ deviation. In other words, the convex

optimization problem is feasible when:

− ϵ ≤ zi − yi ≤ ϵ (3.3)

So, the ϵ-insensitive linear loss function is defined as [176]:

Lϵ(zi,yi) =

{︄
0 |zi − yi| ≤ ϵ

|zi − yi| − ϵ otherwise
(3.4)

where the loss function would be zero if the training error is less than ϵ. Also, the

empirical risk function, Remp, is defined based on the loss function as [178]:

Remp(w,b) =
1

m

m∑︂
i=1

Lϵ(zi,yi) (3.5)

where Remp(w,b) is used in the optimization problem to minimize the defined loss.

If this function does not exist, the convex optimization problem is infeasible. In this

case, slack variables are added to Eq. 3.3 to overcome the above optimization problem

infeasibility as:

− ϵ− ζ−i ≤ zi − yi ≤ ϵ+ ζ+i (3.6)

where the slack variables are introduced as penalty variables to overcome this infea-

sibility of the convex optimization problem. The empirical risk function can then be

rewritten based on the slack variables using Eq. 3.6 as:

Remp(w,b) =
1

m

m∑︂
i=1

(︁
ζ−i + ζ+i

)︁
(3.7)

46

Then, the convex optimization problem is modified by adding the minimizing empir-

ical risk function term to Eq. 3.2

Minimize:
1

2
||w||22 + C

m∑︂
i=1

(ζ+i + ζ−i)

Subject to:

⎧⎪⎨⎪⎩
zi −wTui − b ≤ ϵ+ ζ+i
wTui + b− zi ≤ ϵ+ ζ−i
ζ−i , ζ

+
i ≥ 0

(3.8)

where C is a positive regulatory parameter defined as a trade-off factor between the

flatness of the model and minimizing the training error tolerance. A model with toler-

ated error and slack variables for a single feature-single target system is schematically

depicted in Figure 3.1. The ϵ-insensitive linear loss function is schematically shown

in Figure 3.2.

Figure 3.1: SVM regression and support vectors example

47

Figure 3.2: ϵ−sensitive Loss function with slack variable based on [177]

3.1.2 Dual Optimization Problem and computing weights

To consider constraints of the convex optimization problem in Eq. 3.8, the Lagrangian

function is calculated to change the convex optimization problem to a dual optimiza-

tion problem as [177]:

L =
1

2
||w||22 + C

m∑︂
i=1

(︁
ζ−i + ζ+i

)︁
−

m∑︂
i=1

α+
i (−zi + yi + ϵ+ ζ+i)−

m∑︂
i=1

µ+
i ζ

+
i

−
m∑︂
i=1

α−
i (zi − yi + ϵ+ ζ−i)−

m∑︂
i=1

µ−
i ζ

−
i

(3.9)

where α+
i , α

−
i , µ

+
i , and µ−

i are Lagrangian Multipliers and α+
i , α

−
i , µ

+
i , µ

−
i ≥ 0. Based

on the Saddle points condition, the partial differential of the Lagrangian function

with respect to the optimization variables (w,b, ζ+i , and ζ−i) must be equal to zero

as [177]:

∂L

∂w
= 0 → w =

m∑︂
i=1

(α+
i − α−

i)ui (3.10a)

∂L

∂b
= 0 →

m∑︂
i=1

(α+
i − α−

i) = 0 (3.10b)

∂L

∂ζ+i
= 0 → α+

i + µ+
i = C (3.10c)

∂L

∂ζ−i
= 0 → α−

i + µ−
i = C (3.10d)

where Eq. 3.10a is the support vector expansion, Eq. 3.10b is the bias constraints,

and Eq. 3.10c and Eq. 3.10d are the box constraint. Based on the support vector

48

expansion, Eq. 3.1, the prediction function (model) can be rewritten using Eq. 3.10a

as

y(u) =
m∑︂
i=1

(α+
i − α−

i)uiu+ b (3.11)

The dual optimization problem is obtained by substituting Eqs. 3.10a-3.10d into

Eq. 3.9 as

Minimize: L =
1

2

m∑︂
i=1

m∑︂
v=1

(α+
i − α−

i)(α
+
v − α−

v)ui
Tuj

−
m∑︂
i=1

(α+
i − α−

i)zi + ϵ
m∑︂
i=1

(α+
i + α−

i)

Subject to:

⎧⎪⎨⎪⎩
∑︁m

i=1(α
+
i − α−

i) = 0

0 ≤ α+
i ≤ C

0 ≤ α−
i ≤ C

(3.12)

Eq. 3.12 can be rewritten in a standard Quadratic Programming form (QP) [179]:

Minimize:
1

2
αTHα + fTα

Subject to: Aeqα = Beq

(3.13)

where

α =

⎡⎣ α+

α−

⎤⎦ , H =

⎡⎣ H −H
−H H

⎤⎦ , f =

⎡⎣ −zi + ϵ

zi + ϵ

⎤⎦ ,

H =
[︁
ui

T uj

]︁
, Aeq = [1...1 − 1...− 1] , Beq = [0]

(3.14)

where w can be calculated by finding α (Solving Eq. 3.14) and substituting it

into Eq. 3.10a. This fact shows that matrix w is calculated based on the linear

combination of α and the training data.

49

3.1.3 Karush-Kuhn-Tucker (KKT) conditions and comput-
ing bias

Based on the KKT approach, the following equations must be fulfilled at the optimum

point [180]:

α+
i (−zi + yi + ϵ+ ζ+i) = 0 (3.15a)

α−
i (zi − yi + ϵ+ ζ−i) = 0 (3.15b)

µ+
i ζ

+
i = (C − α+

i)ζ
+
i = 0 (3.15c)

µ−
i ζ

−
i = (C − α−

i)ζ
−
i = 0 (3.15d)

Considering Eq. 3.15, only the following five cases are possible:

α+
i = α−

i = 0 (3.16a)

0 < α+
i < C, α−

i = 0 (3.16b)

0 < α−
i < C, α+

i = 0 (3.16c)

α+
i = C, α−

i = 0 (3.16d)

α−
i = C, α+

i = 0 (3.16e)

For |zi−yi| to be exactly equal to ϵ, only Eqs. 3.16b and 3.16c are necessary. So, the

points of the training data which have |zi−yi| = ϵ are called support vectors (circled

data points in Figure 3.1). Hence, the support vectors domain, S, is calculated as:

S = { i | 0 < α−
i + α+

i < C} (3.17)

where S is the index of the training data which form the SVM training algo-

rithm support vectors. Accordingly, for the set of support vectors, zi equals

yi + sign(α+
i − α−

i)ϵ (i ∈ S). As a result, b is calculated as:

b =
1

|S|
S∑︂

i∈S

(zi −wTui − sign(α+
i − α−

i)ϵ) (3.18)

In summary, the convex problem (Eq. 3.8) is changed to the dual problem (Eq. 3.12).

Then, by solving the quadratic programming, Eq. (3.13), and substituting it into the

50

support vector expansion, Eq. 3.10a, w is calculated. Then, vector b is calculated

using Eq. 3.18 (KKT conditions). Finally, by substituting w and b into Eq. 3.1, the

prediction model of a given data set ({ui, zi}) is found as:

y(u) =
m∑︂
i=1

(α+
i − α−

i)uiu+
1

|S|
S∑︂

i∈S

(zi −wTui − sign(α+
i − α−

i)ϵ) (3.19)

In this study, y(u) is used to predict steady-state diesel engine NOx emission and

BMEP. This function is used to predict the steady-state behaviour of the engine and

will be denoted as yss(u) in subsequent sections.

3.2 Full-order Model (FOM)

The diesel engine model consists of three inputs and two outputs. The model inputs

are the injected fuel amount mf , engine speed n, and fuel rail pressure Pr. The model

outputs are engine-out NOx emission and BMEP. To provide the maximum model

flexibility and minimize the model bias, the interactions of the primary features should

also be considered. The number of resulting features depends on the highest order

of interactions considered for the model. The number of total features is calculated

based on the r-combination with repetitions formula (lo+r−1)!
r! (lo−1)!

, where lo is the number

of original features (in our case lo = 3), and r is the order of interactions [181]. So, the

total number of features in a model of order r is equal to the sum of all the features

with orders from 1 to r. The number of features for each interaction order is listed

in Table 3.1.

The total number of experimental points used for training is 62 out of 84 data

points. To simultaneously minimize the model bias and avoid overfitting, orders 1

to 4 of the original inputs and their interactions are considered as the base FOM

model (34 features) to predict the steady-state values of NOx and BMEP. The FOM

features are listed in Table 3.2. The feature vector, Uj, is defined using Table 3.2 as

Ul = {ui}j i = 1, ...,m, l = 1, ..., 34 (3.20)

51

Table 3.1: Number of features in each order from 1 to 6 using r-combination with
repetitions formula

Order (r)
r-combination Features number

with repetitions up to order r

1 (3+1−1)!
1! 2!

= 3 3

2 (3+2−1)!
2! 2!

= 6 3 + 6 = 9

3 (3+3−1)!
3! 2!

= 10 10 + 9 = 19

4 (3+4−1)!
4! 2!

= 15 15 + 19 = 34

5 (3+5−1)!
5! 2!

= 21 34 + 21 = 55

6 (3+6−1)!
6! 2!

= 28 55 + 28 = 83

where m is the number of data points and l is the index number of the features.

As the dimensions and the range of features are quite different, all of the features

must be normalized to improve the training performance [182]. Particularly, for

SVMs, the training time can be significantly reduced by normalizing the features

[183]. Here the rescaling or also called min-max normalization method is used to

normalized feature for the SVM:

Ū =
U−min(U)

max(U)−min(U)
(3.21)

The system outputs vector is defined as

Z = {zi} = [NOx,i BMEPi]
T i = 1, ...,m (3.22)

Then, the predicted steady-state NOx and BMEP are:

yss = [NOx,ss BMEPss]
T (3.23)

By solving the SVM algorithm for a given training data set, {Ūl,Z}, where Ūl and

Z are calculated from Eq. 3.20 and Eq. 3.22, respectively, the approximate function,

yss is obtained to predict the steady-state values of NOx and BMEP. To cover a wide

range of engine operating conditions, the diesel engine is run at 84 operating points,

52

Table 3.2: Features Ul of the Full-Order Model (FOM) of NOx and BMEP

U1 = mf U2 = n U3 = Pr

U4 = m2
f U5 = n2 U6 = P 2

r

U7 = mfn U8 = mfPr U9 = nPr

U10 = m3
f U11 = n3 U12 = P 3

r

U13 = m2
fn U14 = m2

fPr U15 = (n2)Pr

U16 = n2mf U17 = P 2
r mf U18 = P 2

r n

U19 = mfnPr U20 = m4
f U21 = n4

U22 = P 4
r U23 = m3

fn U24 = m3
fPr

U25 = n3Pr U26 = n3mf U27 = P 3
r mf

U28 = P 3
r n U29 = (mfn)

2 U30 = (mfPr)
2

U31 = (nPr)
2 U32 = P 2

r nmf U33 = n2mfPr

U34 = m2
fPrn

62 data points (74 %) are used as the training data, and 22 data points (26 %) are

used to test the SVM learning algorithm. To find hyperparameters of SVM (C–trade-

off between the model flatness and the tolerated error), 15% of the training data set

(9 points of 62 training points) are selected randomly and used for cross-validation.

To find the best regulatory parameter C of the FOM for both NOx and BMEP, the

effect of varying C on the squared correlation coefficient (R2), the maximum error

between prediction and actual data (Emax), and the cost function (J(Emax, R
2)) for

both the training and test data are analysed. The proposed cost function to find C

is defined as

J(Emax, R
2) =

√︄
Emax,tr Emax,ts

R2
tr R

2
ts

(3.24)

where Emax,tr and Emax,ts are the maximum errors between the prediction and the

actual data for the training and test data sets respectively. Also, R2
tr and R2

ts are the

squared correlation coefficients for the training and test data sets, respectively. The

goal is to increase C and minimize the maximum error and maximize the squared

53

correlation coefficients for both the training and test data. Therefore, the best C

for modeling is obtained by minimizing J(Emax, R
2). In this section, cross-validation

data are used in Eq. 3.24 to find the regulatory parameter C. The squared correlation

coefficient R2, the maximum error between the prediction and the actual data Emax

and the cost function J(Emax, R
2) with respect to the regulatory parameter C for

training, cross-validation, and the test data set of the FOM NOx and BMEP model

are shown in Figure 3.3. The regulatory parameter, C, is a trade-off between the

model flatness and the tolerated error. Based on the results shown in Figure 3.3, the

prediction error increases by decreasing C.

The squared correlation coefficient (R2) is used to quantify the model’s accuracy.

The maximum error between the prediction and the actual data for both the training

and cross-validation data decrease as the regulatory parameter C increases, result-

ing in a decrease in J(Emax, R
2). After C reaches a certain value of Co, the model

performance enhancement levels off since the squared correlation coefficient and the

maximum error for all data are saturated. By increasing C to more than Co, the model

performance remains unchanged, but the model flatness decreases, i.e., the overfit-

ting probability has increased. As a result, the model is less robust for new test data

due to possible overfitting. By setting C = Co, the model performance is maximized

while overfitting constraints are fulfilled. To ensure that all the important features

are considered when minimizing the slack variables in the optimization problem, a

sufficiently large value of regulatory parameter C must be selected. Based on Fig-

ure 3.3, Co for NOx and BMEP are selected to be Co,NOx = 85000 and Co,bmep = 60,

respectively as increasing C has no effect in accuracy and these value is sufficiently

large. The prediction versus the actual value for FOM NOx and BMEP are shown

in Figure 3.4. Here, the cross-validation portion of the training data are shown for

both NOx and BMEP; however, to reduce the complexity of figures, for the rest of

the thesis, combined cross-validation and training data is illustrated as training data.

It should be noted that the regulatory parameter remains constant throughout the

54

MOR process.

0 5 10

10
5

0.8

0.9

1

0 5 10

10
5

0

100

200

300

0 1 2 3 4 5 6 7 8 9 10

10
5

50

100

150

200

250

(a) NOx

0 20 40 60 80

0.96

0.98

1

0 20 40 60 80
0

1

2

0 10 20 30 40 50 60 70 80

0

1

2

3

(b) BMEP

Figure 3.3: Maximum error (Emax), correlation coefficient (R2), and cost function
(J(Emax, R

2)) vs regulatory parameter C for a) NOx b) BMEP

55

100 200 300 400 500 600 700

100

200

300

400

500

600

700

100 150 200
100

150

200

(a) Prediction vs Actual for NOx FOM

0 5 10 15

0

5

10

15

1.5 2 2.5 3 3.5
1.5

2

2.5

3

3.5

(b) Prediction vs Actual for BMEP FOM

Figure 3.4: Prediction vs actual data for NOx and BMEP FOM

3.3 Model Order Reduction (MOR) Algorithm

Next, using the proposed FOM the regression matrices w and b are obtained using

SVM. The best C value for the SVM problem, Co, is found in the previous section.

In this section, the MOR algorithm is proposed to reduce the order of NOx and

BMEP steady-state FOM. MOR helps to achieve an appropriate model by remov-

ing redundant features and selecting the important ones. The flow chart in Figure

3.5 shows the Nonlinear Reduced Control-Oriented Model (NRCOM). Starting from

FOM with 34 features,w and b are calculated for a given data set of (mf , n, Pr) as

the inputs and (BMEP,NOx) as the targets. Then, the value of w is evaluated for

each feature. After that, the feature for which the w array has the minimum value is

removed. Then, the SVM algorithm for regression is solved for a new set of features.

As a result of MOR algorithm for NOx and BMEP, two types of models are proposed

as:

1. High-Order Model (HOM): For the HOM, the priority is model accuracy rather

than the number of features and the computation time. Therefore, only the

56

unnecessary features of FOM are removed. The HOM model can be used in

applications that require high accuracy such as developing a NOx sensor fault-

detection algorithm or virtual plants to evaluate a controller in simulation.

2. Low-Order Mode (LOM): For the LOM, the number of features and the com-

putation time must be balanced with model accuracy. The objective is to find a

simple model with fewer features and an acceptable accuracy. As the LOM has

a simple structure and acceptable accuracy, it is useful for designing a controller

[184].

As shown in Figure 3.5, the features of HOM, mHOM , are selected in a way that

Jl(R
2, Emax) is minimized since the main objective of model order reduction for HOM

is to maximize the model accuracy by removing the redundant features, with no

concern for reducing the size of the model. However, reducing the model size while

keeping the accuracy acceptable was the objective for model order reduction to the

LOM. To avoid significant loss of the model accuracy, the least significant features are

removed one by one until the relative difference between cost functions Jl and Jl−1

exceeds the acceptable threshold. Then the corresponding feature number becomes

the number of features of the LOM, mLOM . The relative difference between Jl and

Jl−1 is defined as:

dr(Jl, Jl−1) =
|Jl − Jl−1|

max(Jl, Jl−1)
× 100 (3.25)

In this study, the LOM is found by defining dr = 25% threshold. In other words,

starting MOR from the initial features, as soon as the relative difference between Jl

and Jl−1 exceeds 0.25, the corresponding l is considered as LOM features set, lLOM .

3.3.1 NOx steady State Model

The squared correlation coefficient (R2) and the maximum error between prediction

and actual data (Emax) for both the training and test data and defined cost function

(J(R2, Emax)) with respect to the number of features are shown in Figure 3.6.

57

Raw Data:
Inputs: (mf, n, pr)
Outputs: (BMEP, NOx)

Full Order Model FOM , Eq. (3.20)
𝑙 = number of the features

Convex Optimization Problem
Eq. (3.8)

Removing features ഥU 𝑙𝑚𝑖𝑛

Updating features
Dual Optimization Problem

Eq. (3.12)

Solving Quadratic
Programming, Eq. (3.13)

KKT Conditions, Eq. (3.15)

Finding b, Eq. (3.18)

y = wTu + b
Eq. (3.19)

uHO
′ = yHO

Transient Lag
Eqs. (3.30 − 3.31)

finding w
Eq. (3.10, a)

Control Oriented Model

Support Vector Machine SVM for Regression

Model Order Reduction MOR Algorithm

Experiment setup

Generating features, Table 3.2

Initial Features

𝑙 = 34

𝐹𝑖𝑛𝑑𝑖𝑛𝑔
min 𝑤 𝑙 → 𝑙 = 𝑙𝑚𝑖𝑛

𝑚

𝑙 = 𝑙 − 1

Calculating J𝑙 R
2, Emax

Eq. (3.24)

min J𝑙 R
2, Emax

|𝐽𝑙 − 𝐽𝑙−1|

max{𝐽𝑙 , 𝐽𝑙−1}
< 25%

𝐻𝑂𝑀, 𝐸𝑞. (3.26,3.28) 𝐿𝑂𝑀, 𝐸𝑞. (3.27,3.29)

uLO
′ = yLO

𝐻𝑂𝑀 −𝑁𝐶𝑂𝑀, 𝐸𝑞𝑠. (3.32)
𝑥𝐻𝑂 𝑘 = 𝐴𝑥𝐻𝑂 𝑘 − 1 + 𝐵𝑢𝐻𝑂

′ 𝑘 − 1

𝐿𝑂𝑀 − 𝑁𝐶𝑂𝑀, 𝐸𝑞𝑠. (3.33)
𝑥𝐿𝑂(𝑘) = 𝐴𝑥𝐿𝑂(𝑘 − 1) + 𝐵𝑢𝐿𝑂

′ (𝑘 − 1)
Transient Lag

Eqs. (3.30 − 3.31)

𝑙 = 𝑙𝐻𝑂𝑀 𝑙 = 𝑙𝐿𝑂𝑀

Normalization, Eq. (3.21)

𝑚𝑚𝑖𝑛

Figure 3.5: Control Oriented Model (COM) development and SVM-based MOR al-
gorithm

Based on Figure 3.6, since min{J(R2, Emax)} is achieved for a 29-feature model

(mHOM,NOx = 29). These models with these 29 features is chosen as the HOM NOx.

In other words, the 29-feature model is chosen as the HOM because it has the highest

accuracy among all the models studied. Tracking Jl − Jl−1 as a function of l in

Figure 3.6 by starting from l = 34, the first relative difference larger than 25% occurs

for a 9-feature model (lLOM,NOx = 9). The model with 9 features is chosen as the

LOM for NOx. The model with 9 features is chosen as LOM because by decreasing

the model features to less than 9, there is a significant reduction in model performance

(Jl).

58

51015202530

0.6

0.7

0.8

0.9

1

51015202530
0

100

200

300

400

51015202530
0

200

400

600

0

20

40

60

51015202530

Figure 3.6: Maximum error (R2), squared correlation coefficient (R2), and cost
function (J(Emax, R

2)) vs number of features of prediction function for steady-state
NOx prediction

As ANN is widely used for engine performance and emission modeling, the SVM

model for all of the developed models (FOM, HOM, and LOM) are compared with an

ANN using the same set of features. This provide a standard to compare these results

to an ANN. Here, a two-layer (one hidden layer and one output layer) feed-forward

backpropagation network with three neurons in the hidden layer is employed, and

the Levenberg-Marquardt training method is used to train the model which has a

relatively fast convergence [97]. The selection of hidden layer and neurons number

was based on similar ANN-based studies in the literature. To make sure that the

number of neurons are compatible with the size of the data set, three neurons are

considered for the hidden layer as proposed by a similar study with a similar data

size [97, 185]. The same training, cross validation, and test data set are used for the

SVM and the ANN models. Both algorithms use 15% of the training data set to find

the model hyperparameters.

The maximum error between the prediction and the actual training data set, squared

59

correlation coefficient, the defined cost function, and training time for both the SVM

and ANN training methods are listed in Table 3.3. The results reveal that, the SVM

model has a shorter training time and a more accurate model (larger squared corre-

lation coefficient and smaller maximum error between actual and model), especially

for the test data. This is partly because ANN uses a gradient descent algorithm for

training which increases the risk of converging to local minima. Additionally, the risk

of overfitting is higher for ANN for the same size of training data [122]. This problem

is also shown in the results where the squared correlation coefficient of test data for

ANN is less than the SVM model. Since the training time for SVM is significantly

less than for ANN, it is more suitable for real-time online learning applications where

the model is training while running and collecting data. Another benefit of using this

SVM is that the model is far simpler to explain mathematically in the form of an

equation, especially when a linear kernel is used. When using the linear kernel, the

SVM model is defined based on the vector w with a bias b.

It should be noted that the performance of HOM is even better than FOM as a

result of removing unnecessary features that affect the flatness of the SVM algorithm.

Based on Table 3.3, the accuracy of LOM is acceptable as the error is below the defined

threshold.

Thus, the HOM and LOM features are (see Table 3.2)

ŪNOx,HO = Ūl

l = 1− 9, 11− 15, 17, 19− 27, 29, 31− 34
(3.26)

ŪNOx,LO = Ūl

l = 2, 5, 8, 15, 21, 22, 27, 32, 33
(3.27)

where l is the feature index. By solving the SVM algorithm for NOx, the features of

HOM and LOM are obtained. The predicted steady-state NOx vs the actual value

for both the high-order and low-order steady-state NOx model is shown in Figure 3.7.

Based on Figure 3.7-(a), most of the test and the training data are within the defined

tolerance ϵ for the HOM of NOx. However, as shown in Figure 3.7-(b), the accuracy

60

Table 3.3: Performance of the NOx FOM, HOM, and LOM

Model Type FOM HOM LOM

No. of Features (l) 34 29 9

Training Method SVM ANN SVM ANN SVM ANN

Emax,tr [ppm] 19.7 25.6 19.6 27.3 66.0 57.9

Emax,ts [ppm] 21.7 60.7 21.7 47.8 22.9 60.3

R2
tr 0.993 0.997 0.993 0.984 0.949 0.989

R2
ts 0.972 0.978 0.973 0967 0.968 0.976

J(Emax, R
2) [ppm] 21.0 39.9 20.9 37.1 40.6 54.7

Training Time [ms] 9.5 240.6 11.1 202.0 13.1 194.5

of the LOM is not consistent throughout all data points for both training and test

points and the number of outliers are greater than the HOM.

3.3.2 BMEP steady state Model

Similar to the NOx steady-state model, the BMEP reduced steady-state model is

obtained. The squared correlations coefficient (R2) and maximum error between pre-

diction and actual data (Emax) for both the training and test data and defined cost

function (J(R2, Emax)) with respect to the number of features are shown in Figure 3.8.

Based on Figure 3.8, a 20-feature model (lHOM,BMEP = 20) and a 6-feature model

(lLOM,BMEP = 6) are chosen as the HOM and LOM of BMEP, respectively. The

maximum error between the prediction and the actual data (Emax), the squared cor-

relation coefficient (R2), cost function (J(Emax, R
2)), and training time for ANN and

SVM training methods are listed in Table 3.4. Similar to the NOx model, for all the

BMEP models, the SVM has faster training and more accurate response compared

to the ANN especially for the test data. The general performance of HOM is accept-

able with respect to the FOM, while it has a simpler structure. A 6-feature model

is chosen as LOM using the same criteria as before (Eq. 3.25). As shown in Table

3.4, the accuracy of the model is acceptable, and by reducing the model further, the

61

100 200 300 400 500 600 700

100

200

300

400

500

600

700

250 300 350
250

300

350

(a) HOM of NOx (with 29 features)

100 200 300 400 500 600 700

100

200

300

400

500

600

700

150 200 250
150

200

250

(b) LOM of NOx (with 9 features)

Figure 3.7: Prediction vs actual data for the LOM and the HOM of NOx

model accuracy is no longer acceptable.

51015202530

0.96

0.97

0.98

0.99

1

51015202530
0

0.5

1

1.5

2

51015202530

0.5

1

1.5

2

0

10

20

30

40

51015202530

Figure 3.8: Maximum error (R2), squared correlation coefficient (R2), and cost
function (J(Emax, R

2)) vs number of features of prediction function for steady-state
BMEP prediction

62

Table 3.4: Performance of the BMEP Full-Order Model (FOM), High-Order Model
(HOM), and Low-Order Model (LOM)

Model Type FOM HOM LOM

No. of Features 34 20 6

Training Method SVM ANN SVM ANN SVM ANN

Emax,tr [ppm] 0.36 0.40 0.35 0.39 0.81 0.54

Emax,ts [ppm] 0.35 0.45 0.35 0.42 0.30 0.47

R2
tr 0.998 0.999 0.998 0.995 0.995 0.996

R2
ts 0.996 0.996 0.996 0.996 0.996 0.996

J(Emax, R
2) [ppm] 0.3 0.4 0.3 0.4 0.5 0.5

Training Time [ms] 35.9 199.8 9.2 218.0 9.5 214.7

Thus, the HOM and LOM features are obtained as:

ŪBMEP,HO = Ūl

l = 1, 4, 7− 10, 17− 21, 24− 27, 29− 32, 34
(3.28)

ŪBMEP,LO = Ūl

l = 1, 18, 21, 25, 27, 30
(3.29)

where l is the feature index. By solving the SVM algorithm for BMEP, the HOM

and the LOM are achieved. The predicted steady-state BMEP with respect to the

actual value for both of the high-order and the low-order steady-state BMEP models

are shown in Figure 3.9. As shown in Table 3.4, the HOM and LOM have an

acceptable accuracy while the HOM has a higher accuracy than LOM. However, the

LOM of BMEP has only 6 features, which makes it a simple model that requires

a low computational effort. Most of the test and training data for both the HOM

and LOM of BMEP are within the defined tolerance ϵ, as shown in Figure 3.9.

This means that the MOR improves in the accuracy of the FOM by removing its

unnecessary features.

One important observation from the training time (Table 3.3 and Table 3.4) is

63

0 5 10 15

0

5

10

15

1.5 2 2.5 3 3.5

1.5

2

2.5

3

3.5

(a) of BMEP (with 20 features)

0 5 10 15

0

5

10

15

1.5 2 2.5 3 3.5

1.5

2

2.5

3

3.5

(b) LOM of BMEP (with 6 features)

Figure 3.9: Prediction vs actual data for HOM and LOM of BMEP

that by increasing the number of features in the ANN, the training time is increased.

However, this trend inverses in the SVM such that by decreasing the number of

the features, the training time increases. This behavior results in reducing the overall

training time due to the time saved by reducing the number of training iterations [186].

This trend appears in the HOM and LOM models.

3.4 Control Oriented Model (COM)

The model described in the previous section is used to determine steady state NOx and

BMEP. Now a simple first order dynamic model for transient operation will be

defined. To derive the discrete-time dynamic COM, the NOx concentration at step k

for a sampling interval of T, is calculated as follows:

NOx(k) = (1− T

τNOx + T
)NOx(k − 1) +

T

τNOx + T
NOx,ss(k − 1) (3.30)

64

and the BMEP at step k is calculated using the following equation:

BMEP (k) = (1− T

τBMEP + T
)BMEP (k − 1) +

T

τBMEP + T
BMEPss(k − 1)

(3.31)

where NOx,ss(k − 1) and BMEPss(k − 1) are the steady state NOx and BMEP.

The sample interval is τ and k is the sample time and τNOx and τBMEP are the time

constants for NOx and BMEP respectively, which are estimated based on the experi-

mental data and are found to be 1 and 0.2 seconds, for NOx and BMEP respectively

[187]. The state space of the COM for both high-order and low-order models can be

defined as:

xHO(k) = AxHO(k − 1) +BûHO(k− 1) (3.32)

xLO(k) = AxLO(k − 1) +BûLO(k− 1) (3.33)

where vector x(K) contains two model states:

xHO(k) =
[︂
NOx,HO(k) BMEPHO(k)

]︂T
(3.34)

xLO(k) =
[︂
NOx,LO(k) BMEPLO(k)

]︂T
(3.35)

and vector û(k) is calculated as

ûHO(k) =

⎡⎣ NOx,HO,ss

BMEPHO,ss

⎤⎦ (3.36)

ûLO(k) =

⎡⎣ NOx,LO,ss

BMEPLO,ss

⎤⎦ (3.37)

where NOx,HO,ss, BMEPHO,ss, NOx,LO,ss, and BMEPLO,ss are listed in Appen-

dices A and B. The vector y contains two model outputs:

y(k) =
[︂
x1(k) x2(k)

]︂
(3.38)

65

Matrices A and B are:

A =

⎡⎢⎢⎢⎣
1− T

τNOx+T
0

0 1− T
τBMEP+T

⎤⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎣
T

τNOx+T
0

0 T
τBMEP+T

⎤⎥⎥⎥⎦
(3.39)

Therefore, the HOM and LOM Nonlinear Control Oriented Models (NCOM) for

NOx and BMEP are obtained as Eqs. 3.31 and 3.30. The open-loop response for the

HOM-NCOM and LOM-NCOM for NOx and BMEP at four different engine speeds

of 1250, 1500, 1750, and 2000 rpm are shown in Figures 3.10, 3.11, 3.12, and 3.13.

In all cases, Pr and mf are the system inputs and are applied to both the HOM-

NCOM and LOM-NCOM. In each transient test, the engine speeds remains constant

(with a 10 rpm tolerance). In all of these plots the open-loop response of both the

HOM-NCOM and LOM-NCOM based on the model vs actual measurements are

shown. Figure 3.9 shows that, for BMEP both the HOM-NCOM and LOM-NCOM

follow the experimental responds closely as expected. However, the NOx response

for LOM-NCOM has different accuracies at different engine speeds. For instance, in

Figure 3.13 and Figure 3.11, the LOM-NCOM NOx response is less accurate than in

the HOM model. Nonetheless, the NOx response for the HOM-NCOM is accurate

at all of speeds studied. The HOM-NCOM model has an accurate response over a

wide range of engine operating points and is an accurate model for possible use as a

virtual plant to simulate the designed controller before implementation in a real-time

system. Additionally, it can be used as an accurate model for an NOx sensor fault-

detecting algorithm. As the LOM-NCOM has a simple structure, it is quite suitable

for designing a model-based robust controller and is also capable of predicting samples

ahead based on the system’s current states and inputs. A robust controller can be

66

used to overcome the model mismatch between the LOM-NCOM and HOM-NCOM.

100 200 300 400 500 600 700 800

200

400

600

100 200 300 400 500 600 700 800

2

4

6

100 200 300 400 500 600 700 800

950

1000

1050

100 200 300 400 500 600 700 800

20

30

40

Figure 3.10: Transient response at engine speed = 1250 rpm

3.5 Summary of chapter

In this chapter, an MOR algorithm is developed using an SVM approach to predict

the steady-state NOx and BMEP of a medium-duty diesel engine. Based on the

proposed SVM-based MOR algorithm and starting with a 34-feature FOM, an HOM

and an LOM are developed to predict the steady-state NOx emission and BMEP.

The features of the models are calculated based on orders 1 to 4 of the main model

inputs and their interactions. In this thesis 74% of experimental data is used to

train the steady-state NOx and BMEP , and 26% is used as test data. The model

67

100 200 300 400 500 600 700 800

150

200

250

300

350

100 200 300 400 500 600 700 800

2

4

6

100 200 300 400 500 600 700 800

850

900

950

1000

100 200 300 400 500 600 700 800

30

40

50

Figure 3.11: Transient response at engine speed = 1500 rpm

inputs are engine speed, injected fuel amount, and fuel rail pressure. The results of

the steady-state model show that the HOM model has an accurate prediction but a

more complex structure with 29 features for NOx and 20 features for BMEP. For the

steady-state NOx model, the squared correlation coefficient of the test (R2
ts) is equal to

0.9724, 0.9725, and 0.9677 for the FOM, HOM, and LOM, respectively. The R2
ts value

is equal to 0.9957, 0.9957, and 0.9962 for the FOM, HOM, and LOM, respectively

for the BMEP steady-state model. Consequently, by removing unnecessary features

based on the SVM-based MOR algorithm, the HOM performance for both NOx and

BMEP is enhanced while the HOM complexity decreases 27.9 % with respect to

the FOM. The LOM model has an acceptable accuracy with a squared correlation

68

200 400 600 800 1000 1200

100

200

200 400 600 800 1000 1200

2

4

6

200 400 600 800 1000 1200

900

1000

1100

200 400 600 800 1000 1200

30

40

50

Figure 3.12: Transient response at engine speed = 1750 rpm

coefficient of 0.9393 for NOx and 0.9961 for BMEP while it has 77.9 % and 69.4 %

fewer features with respect to the FOM and HOM, respectively. All of the FOM,

HOM, and LOM SVM models of NOx and BMEP are compared with an ANN, and

the results show shorter training time and more accurate results in the test data for

the SVM models compared to the ANN. The SVM model training are at least 5 to

14 times faster than the corresponding ANN models with the same set of features for

NOx and BMEP respectively. In addition, the use of a linear kernel in the SVM make

it more suitable for real-time applications and for COMs.

Then, a nonlinear control-oriented model (NCOM) is developed based on the de-

veloped SVM models to predict the transient behavior of the system. A fast response

69

200 400 600 800 1000 1200 1400

100

150

200

200 400 600 800 1000 1200 1400

2

4

6

200 400 600 800 1000 1200 1400

900

1000

1100

200 400 600 800 1000 1200 1400

30

40

50

Figure 3.13: Transient response at engine speed = 2000 rpm

electrochemical NOx sensor is used to verify the transient response of the NCOM.

The transient results of HOM and LOM are compared to experimental data show-

ing an accurate and robust prediction of engine BMEP at different engine speeds for

rising and falling step changes of the fuel rail pressure and the injected fuel amount

for HOM. Additionally, the LOM model has an accurate response at different speeds

for BMEP; however, the NOx prediction with LOM has varying accuracy at different

engine speeds. It can be concluded that the HOM can predict NOx and BMEP over

a wide range of operating points, which makes it ideal to be used as a virtual plant

for fault detection purposes. The LOM has a simpler structure, and an acceptable

accuracy which makes it useful in designing a model-based robust controller such as

70

sliding mode controller.

71

Chapter 4

Steady-state Particle Matter (soot)
Gray-box Modeling 1

In this chapter, a detailed analysis of diesel engine soot emissions modeling for control

applications is presented. Physical, black-box, and gray-box models are developed for

soot emissions prediction. Additionally, different feature sets based on the least abso-

lute shrinkage and selection operator (LASSO) feature selection method and physical

knowledge are examined to develop computationally efficient soot models with good

precision. The physical model is a virtual engine modeled in GT-Power© software

that is parameterized using a portion of experimental data. Different ML methods,

including Regression Tree (RT), Ensemble of Regression Trees (ERT), Support Vec-

tor Machines (SVM), Gaussian Process Regression (GPR), Artificial Neural Network

(ANN), and Bayesian Neural Network (BNN) are used to develop the black-box mod-

els. The gray-box models include a combination of the physical and black-box models.

A total of five feature sets and eight different ML methods are tested. An analysis

of the accuracy, training time and test time of the models is performed using the K-

means clustering algorithm. The analysis provides a systematic way to categorize the

feature sets and methods based on their performance and to select the best method

for a specific application.

1 This chapter is based on [5]

72

4.1 Gray-Box, Black-Box, and White-Box model-

ing

The physical model, black-box, and gray-box are described in this section. The first

step toward developing physical and gray-box models was to develop a physical model

for combustion, which is described in Chapter 2. To compare with black-box and

gray-box models, a physical-based model as a white-box model is developed using the

Hiroyasu model [188]. The model is calibrated using 8% of the experimental data.

The oxidation multiplier and formation multiplier are the two parameters of the model

used in the calibration process. The calibration process follows the ESM development

process, which uses the Genetic Algorithm (GA) NSGA-III [172] for multi-objective

Pareto optimization as the search algorithm [172]. The two key inputs for GA are the

population size and number of generations. A population size of 16 is chosen while

the number of generations for soot model calibration are 10.

The process of selecting important features from a feature set is called feature

selection (FS). FS reduces the size of the input feature set, which results in improving

ML method performance. FS process is depicted schematically in Figure 4.1. A total

of five feature sets are used in this study to simulate soot emissions. For FS in this

work, a combination of physical insight and LASSO FS technique is used. For physical

insight FS, the most significant features are selected based on expert prior knowledge

while LASSO FS offers a more systematic form of feature selection regardless of prior

knowledge of system.

The two black-box feature sets (containing only experimental data) used are: black-

box without any feature selection method (BB) and a black-box with LASSO FS

(BB+L). The gray-box features sets used are: gray-box with physical insight FS

(GB+PHYS), gray-box with LASSO FS (GB+L) and ray-box with physical insight

and LASSO FS (GB+PHYS+L). In GB+PHYS, data-driven features are chosen

solely based on physical insight into soot oxidation and formation processes. With

73

Experimental Soot

Black-boxGrey-box

Experimental
setup

Physical model

Physical-model
soot prediction GB + L GB + PHYSGB + PHYS + L BB BB + L

Predicted soot

K-means model selection filter

First filter
(cluster reduction)

Second filter
(cluster selection)

40 models

28 models

12 models

Predicted sootPredicted sootPredicted sootPredicted soot

GPR: GB + PHYS
1-HL BNN: GB + PHYS

SVM: GB + PHYS + L
GPR: GB + PHYS + L
SVM: GB + L
GPR: GB + L
GPR: BB + L

RT: GB + PHYS + L
SVM: GB + PHYS
RT: GB + L
ERT: BB + L
SVM: BB + L

21 features

LASSO

13 features 12 features

Physical insight
feature selection

LASSO LASSO

21 features 10 features47 features

47 features

125 features 125 features

Figure 4.1: Overview of the GB and BB soot emissions model selection process by
K-means clustering algorithm

GB+L, the LASSO feature selection method selects the parameters. GB+PHYS+L

first uses physical insight to select the most important features, then the LASSO FS

method is applied to select the final features. The number of features for the five

different methods are summarised in Figure 4.1. As seen, the experimental data is

used for the physical-based model. The GB and BB model inputs are similar, includ-

ing injection properties (total mass of injected fuel, start of injection (SOI), fuel rail

pressure), intake manifold pressure, BMEP, and engine speed. The K-means cluster-

ing algorithm is used to select the most suitable models and feature sets based on

errors and timing (testing and training times). Two K-means clustering algorithms

74

are applied (the first filter and the second filter). The first filter eliminates feature

sets and models with low accuracy and slow training and prediction times, whereas

the second filter selects the best ML method along with feature sets in terms of accu-

racy, training, and prediction cost for different applications. Finally, 12 soot models

are chosen in total, which will be explained further in Section 4.3.

4.2 Machine Learning Methods

ML algorithms are used in all three aspects of soot modeling including pre-processing,

modeling, and post-processing.

4.2.1 Pre-Processing: Feature Selection

For finding the most effective soot prediction parameters, a LASSO feature selection

algorithm is employed for both black-box and gray-box models. LASSO is a regres-

sion method that performs feature selection and regularization to improve a model’s

prediction accuracy. In LASSO regression, the predicted output is ŷi = θTxi where θ

is the model’s coefficient that is calculated by minimizing the following cost function

J(θ) =
1

m

m∑︂
i=1

(yi − ŷi)
2 + λ

l∑︂
i=1

|θi| (4.1)

where m is the number of training data points and l is number of the parameters

of the model,
∑︁l

i=1 |θi| is the L1 regularization and λ is the regularization variable.

Adding L1 regularization leads to driving the weights down to exactly zero (produces

sparsity in the solution) and results in performing a systematic feature selection [154].

This sparsity depends on λ, which is calculated in the cross-validation process in the

current study.

4.2.2 Regression Models

The five well-known supervised learning regression algorithms are employed: Regres-

sion Trees (RT), Ensemble of the Regression Trees (ERT), Gaussian Process Regres-

75

sion (GPR), Support Vector Machine (SVM), and Neural Network (NN). These are

used to train both the black and gray-box soot models.

A data-driven regression model can be generalized to fit a parameterized model,

ŷ = hθ(xi), for a given training set Dtrain = (xi, yi) such that ŷ converges to yi subject

to given constraints. In this problem, xi is the input feature, yi is the measured

output, and θ is the parameters set. The parameters set can be calculated by solving

the following optimization problem

min
θ

J(θ) (4.2)

where J(Θ) is a cost function defined as

J(Θ) = J̄(Θ) + λL(Θ) (4.3)

where J̄(Θ) is defined based on an error ei(Θ) = hθ(xi) − yi to minimize the

prediction error while regularization term, L(Θ), is added to regulate parameters, Θ.

In general, L(Θ) is L1 or L2 loss function for regularization purposes. For LASSO

regression, the L1 loss function is used while in other regression methods such as

Ridge, SVM, and ANN the L2 loss function is used. The L2 loss function is defined

as

L2(Θ) =
l∑︂

i=1

(θ)2 (4.4)

The regulatory parameter or penalized variable, λ, produces a trade-off between

the smoothness of the model and the training error tolerance minimization [154]. For

some algorithms such as SVM as discussed in Chapter 3, Section 3.1, the optimiza-

tion problem is constrained and the optimization of Eq. 4.2 are solved subject to a

constraint function as ϕ(θ).

76

K-Fold cross Validation

K-fold cross-validation algorithm is used to avoid overfitting of models during training.

The K-fold cross-validation first rearranges the dataset randomly and then divides

the dataset into k groups. In this study, 5-fold validation is used for all ML methods.

In each iteration, the K-fold algorithm chooses one group as a fold, trains a model on

the rest of the groups (out of the fold), and assess it on the fold set [189].

Hyperparameters Optimization

Hyperparameters of ML methods such as tolerated error, regularization parameter

(λ), and optimization iteration stop criteria in the optimization problem of Equa-

tion (4.2) play an important role in decreasing modeling errors and increasing the

model’s reliability. If an ML algorithm such as AΛ (where AΛ ∈ {RT,ERT, SVM} in

this study) has N hyperparameters such as Λ = λ1, λ2, ..., λN , the optimum hyperpa-

rameters can be found by solving the following optimization problem [190]

Λ∗ = argmin
Λ

V (hθ(xi),Dtrain,Dvalid) (4.5)

where V (hθ(xi),Dtrain,Dvalid) measures the performance of a model for a given train-

ing and validation set, Dtraining and Dvalid, based on algorithm AΛ.

In this work, Bayesian optimization [191] is used for the RT, SVM, and ERT

models’ hyperparameters optimization, while a grid search [154], is used for NN-based

models such as ANN and BNN.

For the Bayesian optimization to tune the hyperparameters, the evaluation used

in Equation (4.5) is

V (λ) =
1

n

m∑︂
i=1

(yî − yi)
2 (4.6)

where m is the size of the training set. The model is trained based on training Dtrain

and cross-validated on Dvalid in the inner loop of this optimization. Then, V (λ) is

calculated using both training and cross-validation sets.

77

To evaluate all possible hyperparameter combinations in NN-based methods, grid

search is often used [89]. A search along the space of hyperparameters learning

with high probability is tried in Bayesian optimization in a grid search, and all the

possible hyperparameters combinations within a given range are tried. In this study,

all combinations of layer L ∈ {1, 2} (shallow network) and neurons sl ∈ (1, 40) are

considered where L and sl are the number of layers and number of neurons in the lth

layer. The layers and neuron’s upper limit are set to 2 and 40, respectively, since the

limited number of training data means that a deeper network should be avoided.

Regression Tree (RT)

RT is a modeling method with an iterative process of splitting the data into branches

where the main algorithm to train RT is Classification and Regression Trees (CART)

[192]. In a regression tree, the data are divided into different classes similar to the

classification problem with the only difference that each class is assigned to a specific

value. RT divides data to k classes based on a threshold (tk) based on the following

cost function

J(θ) =
ml

m
MSEl +

mr

m
MSEr (4.7)

where subscripts l and r denote left and right and the Mean Squared Error (MSE) is

defined as

MSE(θ) =
1

m

m∑︂
i=1

(yi − ŷi)
2 (4.8)

where ŷ = 1
mnode

∑︁
i∈node y(i) and ml and ml are left and right branches of the tree. In

this method, both k and tk are considered as model weights and integrated in θ. To

avoid overfitting, the minimum number of samples required at a leaf node (Minimum

Samples Leaf (MSL)) is added to the CART algorithm as a regularization parameter.

The maximum depth of the tree is another regularisation parameter [154].

78

Ensemble of Regression Trees (ERT)

The ERT is constructed using several decision trees. Three primary hyperparameters

to tune the ERT are aggregation methods, number of learners, and MSL. In ensemble

learning, bootstrap aggregation (Bagging) and hypothesis boosting (Boosting) are

two standard aggregation methods. In bagging, the training algorithm is the same

for every predictor, while the training set is a random subset of the training set, i.e.,

several RTs are trained based on different random subsets of the training set. A

well-known example of using the bagging method is the Random Forest. In boosting,

a sequential architecture of several weak learners is aggregated, i.e., a series of RTs

is trained based on the same training data and layers of RT connected through a

series architecture [154]. In this study, Bayesian optimization is used to tune the

ERT hyperparameters including a number of learners (number of RT in ERT), MSL,

and the aggregating method (boosting/bagging).

Support Vector Machine (SVM)

The SVM is an ML method to find a correlation between input and output by solving

a convex quadratic programming problem. More details are provided in Section 3.1

and here SVM with nonlinear kernel is also considered. The cost function of SVM

can be defined as

J(θ) =
1

2

m∑︂
i=1

θ2i + C

m∑︂
i=1

(ζ+i + ζ−i) (4.9)

where ζ−i and ζ+i , are so-called slack variables and perform as penalty variables to

tackle a possible infeasibility of an optimization problem. C includes regulatory

parameters (see also Eq. 3.8) . Eq. 4.9 follows the original cost function defined in

[176] and equals 1/λ [154]. Thus, the SVM optimization equation can be rewritten

as

J(θ) =
λ

2

m∑︂
i=1

θ2i +
m∑︂
i=1

(ζ+i + ζ−i) (4.10)

79

The constraint function, ϕ(θ), of SVM in Equation (4.2) is

ϕ(θ) =

⎧⎪⎨⎪⎩
yi − hθ(xi) ≤ ϵ+ ζ+i
hθ(xi)− yi ≤ ϵ+ ζ−i
ζ−i , ζ

+
i ≥ 0

(4.11)

where ϵ is the maximum tolerable deviation for all training data– refer to Section

3.1. In SVM, instead of training data in ŷ = hθ(xi), a function of training data, a

so-called kernel function, can be replaced by ŷ = hθ(Γ(xi)). This method is called

the SVM kernels trick and adding the kernel does not affect the cost function other

than using higher dimension feature set instead of xi in ŷ. Different kernels such

as linear, polynomial, and Gaussian RBF kernels can be considered in optimization.

These kernels are defined as

K(xi, xj) =

⎧⎪⎨⎪⎩
xi

Txj Linear

(xi
Txj + c)n Polynomial

exp(−γ||xi − xj||22) Gaussian RBF

(4.12)

where n and γ are degrees of polynomial and scales of RBF kernels, respectively,

[193]. In this study, the optimal kernel type including kernel parameters, i.e., scale

and degree of freedom, as well as λ and ϵ are found using Bayesian optimization.

Gaussian Process Regression (GPR)

GPR is a nonparametric and Bayesian-based approach that has superior performance

with small data sets and can provide an uncertainty measure on the predictions [130].

The main advantage of GPR is probabilistic prediction. Unlike other supervised ML

methods, GPR infers a probability distribution over all possible ML model parameter

values. The GPR cost function is defined based on negative log marginal likelihood

as

J(θ) = − log(p(θ|y,X)) (4.13)

where p(θ|y,X) is posterior distribution (i.e., a likelihood function of θ given X and

y) that is defined based on Bayes’ Rule as

p(θ|y,X) =
p(y|X, θ)p(θ)

p(y|X)
(4.14)

80

p(y|X, θ) is a likelihood function of y given X and θ, and P (y|X) is a marginal

likelihood function of y given X [130]. Different covariance kernel functions are con-

sidered in this study, such as Exponential Kernel, Matern, and Quadratic Kernel

with different options. Here, two standard kernels for GPR method including Ra-

tional Quadratic kernel function and Matérn kernel function are used. The Rational

Quadratic kernel function is

K(xi, xj|θ) = σ2
l (1 +

r2

2ασ2
l

)−α (4.15)

and the general Matérn kernel function defines as

Kp+1/2(xi, xj) = σ2
f exp (−

√
2p+ 1r

σl

)
p!

(2p)!

p∑︂
i=1

(p+ i)!

i!(p− i)!
(
2
√
2p+ 1r

σl

)p−i (4.16)

where r is the Euclidean distance between xi and xj (r =
√︁

(xi − xj)T (xi − xj)), σl is

characteristic length scale, σf is signal standard deviation, and α is a positive-valued

scale-mixture parameter [130]. In Eq. (4.16), usual value for p is p = 0 (Matérn 1/2

K1/2(xi, xj)), p = 1 (Matérn 3/2 K3/2(xi, xj)), and p = 2 (Matérn 5/2 K5/2(xi, xj)).

The Beysian optimization method in this study resulted in using Matérn 5/2 function

as the optimum choice for two cases GB + L, GB + PHYS, and GB + PHYS + L

which is defined as

K5/2(xi, xj) = σ2
f (1 +

√
5r

σl

+
5r2

3σ2
l

) exp(−
√
5r

σl

) (4.17)

Neural Network (NN)

In general, an NN is a set of algorithms to model phenomena by mimicking the

behavior of the human brain. NN contains three main layers: the input layer, hidden

layer (HL), and output layer network [194]. Since only a small amount of data is

available, only shallow neural networks with only 1 or 2 hidden layers are considered

in this study which are denoted as ANN. Similar to previous ML methods, the cost

function of an NN method can be written as

81

J(θ) =
m∑︂
i=1

(hθ(xi)− yi)
2 +

λ

2

K−1∑︂
k=1

sk∑︂
i=1

sk+1∑︂
j=1

(θ
(k)
j,i)

2 (4.18)

where K is the number of total layers (input + output + hidden layer), sk is the

number of neurons in the kth layer, and m is the size of the training set. The first

term in this equation is used to minimize the modeling error while the L2 loss function

is used for regularization. As input neurons and output neurons are set by input and

output layers, only the hidden layer number and neuron size are found by using the

grid search, i.e., (LHL = K−2) and the number of neurons (s2 and s3) in the Hidden

Layer (HL).

Bayesian-based NN, denoted as BNN, refers to extending the ANN with Bayesian

inference. Unlike the ANN, in which the model’s weights are assigned as a single value,

in BNN, weights are considered to be a probability distribution. These probability

distributions of network weights are used to estimate the uncertainty in weights and

predictions [195]. All ANN and BNN configuration combinations are evaluated using

this optimization method, and the best model is obtained based on cross-validation

data.

A summary of developed models, along with hyperparameter optimization methods

and optimized parameters, are listed in Table 4.1.

4.2.3 Post-Processing: Model Selection

The K-means clustering algorithm, an unsupervised ML method, is used to analyze

the results and select the best feature sets and methods for different applications.

K-means algorithm divides data into n clusters with equal variance. To do this the

K-means algorithm tries to divide this data into M disjoint clusters, then minimizes

the within-cluster sum-of-squares or inertia, which is the sum of squared Euclidean

distance between cluster members and the cluster center

J(θ1, ..., θM) =
N∑︂
i=1

M∑︂
k=1

I(xi ∈ Ck)||xi − θk||2 (4.19)

82

where J(θ) is a cost function of the K-means algorithm (also known as inertia) and

θk is the center of cluster k. If xi ∈ Ck, I(xi ∈ Ck)=1; otherwise, I(xi ∈ Ck)=0. The

algorithm starts with random centers and updates the centers in each iteration until

the centers remain unchanged, which is a local optimum point. In order to find out

the optimum number of clusters for a data set, the elbow method could be used. In

this method, inertia is plotted as a function of the number of clusters. The elbow of

this curve shows the optimum number of clusters. All these models are evaluated for

the test set in Section 4.3, and results will be discussed next.

4.3 Results and Discussion

The engine experimental data points are divided into 80% (175 points) for training

Dtrain, and 20% for testing Dtest (44 points). Figure 4.2 shows the distribution of the

test and training data. The K-fold validation method with five folds (k = 5) is also

included in training Dvalid. Testing data Dtest is used only for the final evaluation of

the model. Figure 4.3 shows the color map of raw soot data with respect to engine

speed (x-axis) and load (y-axis), where black dots represent experimental points (see

Chapter 2 for more detail about soot data collection). Since this engine is designed

for stationary applications, it has limited operating conditions. Therefore, the 219

data points in Figure 4.3 cover most of the possible operating conditions.

Table 4.1 and Table 4.2 show details about the data-driven methods used in this

study and their performance for different feature sets. A total of 40 models are defined

by five different feature sets and eight ML methods. Model performance is evaluated

by considering the following criteria:

1. The coefficient of determination of test data R2
test;

2. Root Mean Square of Error of test data RMSEtest [mg/m3];

3. Maximum of absolute prediction error of test data |Etest,max| [mg/m3];

83

1000 1200 1400 1600 1800 2000 2200 2400 2600
0

100

200

300

400

500

Figure 4.2: Training and test data for ML approaches– 175 data points are used as
the training dataset (80%) and 44 data points are used as the testing dataset (20%)

1000 1200 1400 1600 1800 2000 2200 2400
speed [rpm]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

B
M

E
P

[b
ar

]

1.4

2.6

3.8

5.0

6.2

7.4

8.6

9.8

11.0

12.2

S
oo

t
[m
g
/m

3]
Figure 4.3: Engine-out soot measurements over speed and Break Mean Effective
Pressure (BMEP)

4. Training time ttrain [s];

5. Prediction time ttest [ms].

The accuracy of the model is based on the first three criteria. The third criterion

is useful to assess the model reliability since outliers cause high maximum errors.

High maximum error means that model will be inaccurate in some instances. A low

maximum error is associated with less severe outliers and a more robust model. There

84

Table 4.1: Training and optimization of ML-based model hyperparameters.

Method Opt.
Method

Opt. Hyper-
parameters

Model Type Opt. Model Configuration

RT Bayesian
Min samples leaf
(MSL)

BB MSL = 13

BB + L MSL = 1

GB + L MSL = 5

GB + PHYS MSL = 5

GB + PHYS + L MSL = 5

ERT Bayesian

Ensemble
method, min
samples leaf, and
number of
learners

BB Boosting, 75 Learners, and MSL = 2

BB + L Boosting, 28 Learners, and MSL = 4

GB + L Boosting, 35 Learners, and MSL = 5

GB + PHYS Boosting, 488 Learners, and MSL = 47

GB + PHYS + L Boosting, 487 Learners, and MSL = 2

SVM Bayesian
Kernel function λ
and ϵ

BB Cubic, λ = 0.96, ϵ = 0.010

BB + L Quadratic, λ = 0.77, ϵ = 0.330

GB + L Gaussian, λ = 9.59, ϵ = 0.004

GB + PHYS Quadratic, λ = 3.49, ϵ = 0.003

GB + PHYS + L Cube, λ = 5.79, ϵ = 0.009

GPR Bayesian

Kernel function,
initial value for
the noise standard
deviation (σ)

BB Rational quadratic, σ = 12.68

BB + L Rational quadratic, σ = 0.0005

GB + L Matérn 5/2, σ = 0.0001

GB + PHYS Matérn 5/2, σ = 0.0001

GB + PHYS + L Matérn 5/2, σ = 2.996

1-HL ANN Grid search
Number of
neurons in each
layer

BB Network conf.: [25]

BB + L Network conf.: [19]

GB + L Network conf.: [4]

GB + PHYS Network conf.: [4]

GB + PHYS + L Network conf.: [19]

2-HL ANN Grid search
Number of
neurons in each
layer

BB Network conf.: [7,25]

BB + L Network conf.: [25, 31]

GB + L Network conf.: [4, 13]

GB + PHYS Network conf.: [7,13]

GB + PHYS + L Network conf.: [16, 19]

1-HL BNN Grid search
Number of
neurons in each
layer

BB Network conf.: [7]

BB + L Network conf.: [31]

GB + L Network conf.: [31]

GB + PHYS Network conf.: [13]

GB + PHYS + L Network conf.: [25]

2-HL BNN Grid search
Number of
neurons in each
layer

BB Network conf.: [7,28]

BB + L Network conf.: [16, 13]

GB + L Network conf.: [10, 22]

GB + PHYS Network conf.: [22, 22]

GB + PHYS + L Network conf.: [10, 19]

85

Table 4.2: ML-based data-driven soot models comparison– BB, L, GB, and PHYS
stand for black-box, LASSO, gray-box, and physical insight, respectively

Model Criteria RT ERT SVM GPR
1-HL 2-HL 1-HL 2-HL

NN NN BNN BNN

BB

R2
train 0.85 0.95 0.86 0.87 0.86 0.86 0.88 0.90

R2
test 0.41 0.51 0.50 0.27 0.52 0.54 0.51 0.52

RMSEtrain[mg/m3] 1.41 0.90 1.39 1.35 1.44 1.38 1.27 1.21

RMSEtest[mg/m3] 2.52 2.38 2.53 2.35 2.41 2.32 2.39 2.43

|Etest,max|[mg/m3] 8.7 8.5 8.2 7.7 6.6 7.9 7.7 7.5

ttest[ms] 2.23 16.73 2.08 3.11 8.66 9.53 6.47 6.93

ttrain[s] 0.74 3.50 0.40 1.56 3.77 1.11 2.07 14.31

BB + L

R2
train 0.98 0.99 0.97 1 0.97 0.98 0.99 0.99

R2
test 0.87 0.91 0.93 0.96 0.90 0.92 0.95 0.94

RMSEtrain[mg/m3] 0.48 0.52 0.66 0.28 0.66 0.63 0.22 0.20

RMSEtest[mg/m3] 1.33 1.07 0.98 0.51 1.19 1.10 0.83 0.93

|Etest,max|[mg/m3] 5.02 3.14 4.37 1.87 4.35 4.53 2.85 4.3

ttest[ms] 1.94 5.26 2.27 2.73 7.49 8 14.7 10.4

ttrain[s] 0.75 1.57 0.44 1.32 2.80 2.33 4.57 15.13

GB + L

R2
train 0.97 0.99 0.98 0.99 0.96 0.96 0.99 0.99

R2
test 0.92 0.93 0.95 0.94 0.90 0.92 0.95 0.95

RMSEtrain[mg/m3] 0.62 0.06 0.48 0.38 0.73 0.72 0.34 0.09

RMSEtest[mg/m3] 1.09 1.00 0.81 0.67 1.2 0.88 0.88 0.97

|Etest,max|[mg/m3] 2.9 3.7 1.9 1.9 3.6 2.3 2.3 2.6

ttest[ms] 2.21 47.16 2.05 3.59 7.24 12.42 7.39 6.86

ttrain[s] 0.79 8.57 0.37 6.1 2.97 1.04 12.10 14.66

GB +
PHYS

R2
train 0.98 0.99 0.98 0.99 0.97 0.98 0.99 0.99

R2
test 0.87 0.96 0.94 0.97 0.90 0.89 0.93 0.83

RMSEtrain[mg/m3] 0.54 0.01 0.57 0.13 0.70 0.6 0.07 0.01

RMSEtest[mg/m3] 1.3 0.74 0.91 0.5 1.2 0.94 1.2 1.06

|Etest,max|[mg/m3] 5.88 1.8 3.3 1.58 4.35 4.76 2.67 5.52

ttest[ms] 2.74 58.19 3.1 5.87 7.3 14.22 6.69 10.63

ttrain[s] 0.75 13.90 0.46 43.24 3.09 1.11 35.87 103.90

GB +
PHYS +
L

R2
train 0.98 0.99 0.98 0.99 0.95 0.98 0.99 0.99

R2
test 0.89 0.95 0.97 0.96 0.91 0.94 0.90 0.93

RMSEtrain[mg/m3] 0.60 0.01 0.57 0.31 0.87 0.49 0.13 0.08

RMSEtest[mg/m3] 1.24 0.83 0.71 0.52 1.2 0.94 1.19 1.06

|Etest,max|[mg/m3] 2.94 2.65 1.64 1.41 3.42 2.97 4.73 3.4

ttest[ms] 2.06 56.31 2.28 3.08 9.13 10.4 6.32 7.06

ttrain[s] 0.79 10.65 0.52 3.77 2.70 1.22 8.59 8.22

86

is a direct relationship between the complexity of the model and the training time.

Overfitting is more likely to occur in complex models, so typically less complex models

are more likely to show the same performance for different applications [196]. The

K-means clustering algorithm is employed to choose the most appropriate models

and feature sets for a variety of applications including calibration, real-time control,

and to study the effect of changes in different engine components. The above five

separate parameters are used as the input feature set for the K-means algorithm.

The appropriate number of clusters must be determined before using the K-means

algorithm. This is accomplished with the elbow method, as previously mentioned.

Based on the elbow method, the optimum number of clusters is 6.

Figure 4.4 shows the result of clustering of the models. The same color is assigned to

models that are part of the same cluster. The first filter (the first K-means algorithm)

aims to exclude data sets and methods with low accuracy and high training and testing

times. The red and black clusters (the clusters where the members are shown in red

and black in Figure 4.4) have a very low accuracy compare to other cluster members

(low R2, high RMSE and high |Emax| in Figure 4.4(a), (b), and (c)). A higher ttest

is the main characteristic of the green cluster members compared to other clusters

based on Figure 4.4(d). Additionally, the pink clusters have a considerably larger

ttraining than the others based on Figure 4.4(e). This analysis leads to the removal of

the red, black, green, and pink clusters due to their low accuracy and long training

and prediction (testing) times. As a result, 12 of the 40 models are removed by the

first filter, leaving 28 models for the second K-means based filter.

A second K-means filter is applied to choose the best models out of the remaining

models for the varied applications including real-time control and calibration. Fig-

ure 4.5 shows the result of the clustering by means of the second filter. Each cluster

is assigned a number to simplify the subsequent discussion. The error values, training

time, and test time for members of different clusters are shown in Figure 4.6. Mem-

bers of clusters 1, 4 and 2 have higher accuracy than the other clusters. Members of

87

RT ERT SVM GPR
1-HL ANN

2-HL ANN
1-HL BNN

2-HL BNN

BB+L
BB

GB + L
GB+PHYS

GB+PHYS+L

(a)

RT ERT SVM GPR
1-HL ANN

2-HL ANN
1-HL BNN

2-HL BNN

BB+L
BB

GB + L
GB+PHYS

GB+PHYS+L

(b)

RT ERT SVM GPR
1-HL ANN

2-HL ANN
1-HL BNN

2-HL BNN

BB+L
BB

GB + L
GB+PHYS

GB+PHYS+L

(c)

RT ERT SVM GPR
1-HL ANN

2-HL ANN
1-HL BNN

2-HL BNN

BB+L
BB

GB + L
GB+PHYS

GB+PHYS+L

(d)

RT ERT SVM GPR
1-HL ANN

2-HL ANN
1-HL BNN

2-HL BNN

BB+L
BB

GB + L
GB+PHYS

GB+PHYS+L

(e)

Figure 4.4: First filter clustering of models using K-means algorithm: 40 models
divided into 6 clusters and sorted based on (a) R2

test, (b) RMSEtest [mg/m3], (c)
|Etest,max| [mg/m3], (d) ttest [ms] (test time), and (e) ttrain [ms] (training time)

cluster 0 and 3 have the largest maximum error, lowest R2 and highest RMSE with

high testing time based on Figure 4.6(a), (b), and (c). As a result, these clusters

can be removed as it is low in accuracy and high in deployment (test) time. Using

88

RT ERT SVM GPR
1-HL ANN

2-HL ANN
1-HL BNN

2-HL BNN

BB+L

GB + L

GB+PHYS

GB+PHYS+L

3
1
3
1

1 1
4
1
4

4
4
2
4

3
3
3
3

3
0
3
0

0
0
2
3

0
0

1

Figure 4.5: Second filter clustering of models using K-means algorithm. The assigned
number for each color is shown.

Table 4.3: Selected models based on K-means filters

Cluster Model Accuracy Reliability
Less Real-time Virtual

complexity control test

2 GPR: GB + PHYS × × ×

2 1-HL BNN: GB + PHYS ×

4 SVM: GB + PHYS + L × × × ×

4 GPR: GB + PHYS + L × × × ×

4 SVM: GB + L × × × ×

4 GPR: GB + L × × ×

4 GPR: BB + L × × × ×

1 RT: GB + PHYS + L ×

1 SVM: GB + PHYS ×

1 RT: GB + L ×

1 ERT: BB + L

1 SVM: BB + L × ×

the remaining models, we could determine which feature sets and methods were best

suited to the different applications. Table 4.3 shows the selected ML methods and

feature sets for different applications.

For accuracy, R2, RMSE and |Emax| are important parameters. The reliability of a

model depends heavily on its |Emax|. A high value of |Emax| indicates severe outliers.

As a result, there is a possibility of high error rates for some predictions in the model,

making it unreliable. Training time is a deciding factor in choosing a model with a low

degree of complexity. The selection of models is limited to experimental feature sets

for real-time control and adaptive learning because only measurable features could

be used as input in real-time control . So, the experimental feature sets (BB and

BB+L) are acceptable. Unlike real-time control, virtual tests are based on feature

89

RT ERT SVM GPR
1-HL ANN

2-HL ANN
1-HL BNN

2-HL BNN

BB+L

GB + L

GB+PHYS

GB+PHYS+L

(a)

RT ERT SVM GPR
1-HL ANN

2-HL ANN
1-HL BNN

2-HL BNN

BB+L

GB + L

GB+PHYS

GB+PHYS+L

(b)

RT ERT SVM GPR
1-HL ANN

2-HL ANN
1-HL BNN

2-HL BNN

BB+L

GB + L

GB+PHYS

GB+PHYS+L

(c)

RT ERT SVM GPR
1-HL ANN

2-HL ANN
1-HL BNN

2-HL BNN

BB+L

GB + L

GB+PHYS

GB+PHYS+L

(d)

RT ERT SVM GPR
1-HL ANN

2-HL ANN
1-HL BNN

2-HL BNN

BB+L

GB + L

GB+PHYS

GB+PHYS+L

(e)

Figure 4.6: Second filter clustering of Models using K-means algorithm: 28 models
divided into 5 clusters where three clusters, including 12 models, have been chosen
as the final selection. (a) R2

test, (b) RMSEtest [mg/m3], (c) |Etest,max| [mg/m3], (d)
ttest [ms] (test time), and (e) ttrain [ms] (training time)

90

sets generated by the engine model (GB, GB+L, and GB+PHYS+L). Clustering is

used to choose the models with the highest possible accuracy for different applications.

Based on Figure 4.6 (a), (b), and (c) clusters 2 and 4 have the highest accuracy and

reliability, so the majority of their members were selected for these factors. Based on

Figure 4.6 (e), cluster 2 is characterized by the high training time. So, its members

are not selected based on the lower complexity criterion. Cluster 1 has acceptable

accuracy for most of its cases, despite being not as accurate as cluster 4 and has a

low training time. As a result, some of the members of cluster 1 are rated as less

complex.

Table 4.3 shows the 12 selected models for different applications. Figure 4.7 shows

the prediction vs experiment diagrams for the physical soot model. Figures 4.8 and

4.9 shows the prediction vs experiment diagrams for the test data for 12 selected

models. By comparing the results in Figure 4.7 and Figures 4.8- 4.9, all the 12

models are much more accurate than the physical soot model. The complexity of

soot formation and oxidation processes [197] makes it difficult for soot emissions

formation and oxidation processes to be adequately represented by 1D physical soot

models [197] which is reflected in Figure 4.7. Model-based studies for soot emissions

prediction show the same trend [198], and have motivated the data-driven methods

of soot emissions prediction.

According to Table 4.5, GPR and SVM are the most accurate methods for this

data set. Further, the virtual engine model enhances the model’s accuracy and 4

out of 5 models that are selected for high accuracy have used some forms of the GB

feature set. In general, GPR: GB + PHYS, SVM: GB + PHYS + L (both has the

same R2
test), and GPR: BB+L are found to be the best models among the GB and

BB models, respectively. Comparison between GPR: GB + PHYS and SVM: GB +

PHYS + L results in almost the same accuracy with different criteria including R2
test,

RMSEtest [mg/m3], and |Etest,max| [mg/m3]; however, as SVM: GB + PHYS+ L takes

less training and testing time, it has been chosen as the best GB model. Figure 4.10

91

Figure 4.7: Comparison of the Physics-based GT-power soot model prediction against
experimental data (when the data follows the diagonal line, the accuracy is accept-
able)

shows the accuracy of soot prediction for SVM: GB + PHYS+ L and GPR: BB+L

models for the training and the test data over engine speed-load diagram. For most of

the engine’s load and speed ranges, both models are quite accurate in soot prediction.

In comparison to GPR: BB+L model (BB), the SVM: GB+PHYS+L model (GB)

have fewer outliers. This is attributed to the use the combustion physical model in

the gray-box model, which assists in reducing outliers in soot emissions prediction.

Table 4.4 shows a comparison between state-of-the-art studies about soot emissions

modeling using GB models.

Table 4.4: Comparison between studies about soot emissions modeling using GB
models

Study Machine learning method Soot modeling R2
test

Lang et al. [101] GPR 0.83

Mohammad et al. [89] ANN 0.95

Shahpouri et al. [199] SVM 0.95

Current study SVM/GPR 0.97

92

Figure 4.8: Comparison of model prediction versus experimental data for different
models: (a) GPR: GB + PHYS, (b) 1-HL BNN: GB + PHYS, (c) SVM: GB +
PHYS + L, (d) GPR: GB + PHYS + L, (e) SVM: GB, (f) GPR: GB (when the data
follows the diagonal line, the accuracy is acceptable)

93

Figure 4.9: Comparison of model prediction versus experimental data for different
models: (a) GPR: BB + L, (b) RT: GB + PHYS + L, (c) SVM: GB + PHYS, (d)
RT: GB, (e) ERT: BB + L, (f) SVM: BB + L (good accuracy is when the data follows
the diagonal line)

94

As seen, the best GB model developed in this study (SVM: GB+PHYS+L) with

respect to test R2
test outperforms the best models presented in previous studies.

Figure 4.10: Prediction error [%] over engine speed and load for two models: (a)
GPR: BB + L, (b) SVM: GB + PHYS + L

4.4 Summary of chapter

To predict soot emissions for a compression ignition engine, physical, BB, and GB

modeling were used in this chapter. GB and BB soot emissions models were developed

using eight different machine learning methods. Based on the LASSO feature selection

95

method and physical insight, five feature sets were tested for BB and GB models. To

analyze the results, the K-means clustering algorithm was applied in two steps to

categorize the models according to their performance. Different methods and feature

sets were chosen for various applications. Real-time control is only feasible with BB

methods since the physics-based model is too computationally expensive for a real-

time Engine Control Unit (ECU). Based on the results, the GPR method with LASSO

as the feature selection method is the most reliable ML method/feature set with R2
test

= 0.96, RMSEtest [mg/m3] = 0.51, |Etest,max|[mg/m3] = 1.87 and ttest [ms] = 2.73. GB

models can be used as a virtual engine to conduct simulation tests for development

and calibration purposes, reducing the need for costly experiments. Among the GB

models, an SVM-based ML method along with LASSO and physical insight for feature

selection provides the best performance with R2
test = 0.97, RMSEtest [mg/m3] = 0.71,

|Etest,max|[mg/m3] = 1.64 and ttest [ms] = 2.28. In most cases, GB models outperform

their BB counterparts in terms of accuracy.

96

PART III: Integration of Machine
Learning and Model Predictive
Control

97

Chapter 5

Machine Learning Integrated with
Linear Parameter Varying Model
Predictive Control: Simulation
Results 1

In this chapter, two methods of combining ML and Model Predictive Control (MPC)

are presented. The two methods presented are ML-based modeling and ML imitation

of an online optimization of MPC controller. A model of the engine performance

and emissions is developed using ML and is then used as the model implemented

on a diesel engine for MPC. This online optimized MPC solution offers advantages

in minimizing the NOx emissions and fuel consumption compared to the baseline

feedforward production controller. To reduce the computational cost of this MPC, a

deep learning scheme is designed to mimic the behavior of the developed controller.

An overview of the methodology is depicted in Figure 5.1. First, randomly generated

inputs are fed into the ESM and the output engine performance is recorded for control

modeling. A Least-square Support Vector Machine based Linear Parameter-Varying

(SVM-LPV) model is developed using the input-output data. This model is used to

design the LPV-MPC controller. Finally, this MPC controller is used to train the

ML based imitation controllers. To assess, the LPV-MPC controller performance it

is compared to a Linear Autoregressive with Extra Input (ARX) based linear MPC

1 This chapter is based on [6]

98

using a GT-power©/Matlab/Ssmulink© co-simulation platform.

Training Data Log

Pseudo Binary Random Input Output

Step 2: Engine Modeling using Machine Learning

Step 3: Model Predictive Controller Design

Training SVM-LPV Model

Predicted
output

Optimizer

Objective
Function Constraints

Reference

Model Predictive Control (MPC)

States
Feedback

Step 1: Experimental Setup and Engine Simulation Model (ESM)

Experimental Setup

Model Calibration

Imitation Training Data Log

Step 4: Imitation of MPC using Deep Neural Network

Reference

States Feedback

Input

Output

Input Output

SVM-LPV

Scheduling

Updating
 and

Training ML Controller

Engine
Simulation

Model (ESM)

Engine
Simulation

Model (ESM)

Engine
Simulation

Model (ESM)

Engine
Simulation

Model (ESM)

-

Figure 5.1: Modeling and controller design procedure based on ESM for SVM-LPV
and corresponding imitation controller

99

5.1 Linear Parameter Varying Modeling

5.1.1 Support Vector Machine based Linear Parameter Vary-
ing (LPV) Model

First an LPV model is developed using the SVM framework. The LPV model is

defined as:

x(k + 1) = A (p(k))x(k) +B (p(k))u(k)

y(k) = C (p(k))x(p(k)) +D (p(k))u(k)
(5.1)

Where the state matrices (A,B,C and D) are a function of scheduling parameters,

p(k). An SVM-based algorithm is used to update the state matrices. In this study

u(k). x(k), and y(k) are defined as

u(k) =
[︂
FQ(k) SOI(k) VGT(k)

]︂T
,

x(k) =
[︂
Tout(k) Pman(k) NOx(k)

]︂T
,

y(k) =
[︂
Tout(k) NOx(k)

]︂T
,

(5.2)

where FQ(k) is Fuel Quantity (FQ), SOI(k) is the Start Of Injection (SOI) for the

main injection, VGT(k) is the Variable Geometric Turbine (VGT) rate, (Tout) is the

engine output torque, Pman is the intake manifold manifold pressure, and NOx(k) is

the engine-out Nitrogen Oxides (NOx) emissions. The SVM-LPV algorithm devel-

oped in [153] is then adapted for this specific problem. Additionally, to tune the

hyperparameters of the SVM-LPV, a Bayesian optimization is implemented. It is as-

sumed that the output of the model is equal or partially equal to states of the system

and that the system states are measurable. Thus, the matrix C is not scheduled, and

matrix D is identically zero. Then, the model can be simplified as

x(k + 1) = A (p(k))x(k) +B (p(k))u(k) (5.3)

where u(k) ∈ Rnu , x(k) ∈ Rnx , and p(k) ∈ Rnsp are the inputs, states, and scheduling

parameters at k, and A ∈ R(nx×nx) and B ∈ R(nx×nu) are the state-space model

matrices (nx and nu are the number of states and manipulated variable while nsp

100

is the number of scheduling parameters). To formulate our problem in an SVM

framework, A(p(k)) and B(p(k)) are written as

A (p(k)) =W1ϕ1 (p(k)) , B (p(k)) = W2ϕ2 (p(k)) (5.4)

where ϕ1 ∈ R(nx×nh) is the high dimension feature space where nh is the dimension of

a high dimensional feature space. Substituting Eq. 5.4 into Eq. 5.3 results in

x(k + 1) = [W1 W2]⏞ ⏟⏟ ⏞
W

⎡⎣ (ϕ1 (p(k))x(k))
T

(ϕ2 (p(k))u(k))
T

⎤⎦
⏞ ⏟⏟ ⏞

Φ(k)T

(5.5)

The residual error of modeling, e(k), is added to Eq. 5.5 as

x(k + 1) = WΦ(k)T + e(k) (5.6)

The LS-SVM cost function is then defined as

Minimize:
1

2
||W ||22 +

1

2

N∑︂
j=1

e(j)Tγe(j)

Subject to: x(j + 1) = WΦ(j)T + e(j)

(5.7)

Where N is the number of training samples used for modeling and j is the discrete

time sample defined from 1 to N . In this LS-SVM formulation, γ is a diagonal matrix

of size nx that acts as the regularization parameter. The Lagrangian function could

then be calculated based on Eq. 5.7 as

L(W) =
1

2
||W ||22 +

1

2

N∑︂
j=1

e(j)Tγe(j)−
N∑︂
j=1

αT
j

(︁
WΦ(j)T + e(j)− x(j + 1)

)︁
(5.8)

where αT
j ∈ Rnx are the discrete-time Lagrange multipliers. To find the optimum

W , the derivatives of the Lagrangian, Eq. 5.8, with respect to optimization variables

must be zero as

∂L

∂W
= 0 → W =

N∑︂
j=1

αjΦ(j) (5.9a)

∂L

∂e
= 0 → αj = γe(j) (5.9b)

∂L

∂α
= 0 → x(j + 1) = WΦ(j)T + e(j) (5.9c)

101

Substituting Eqs. 5.9a and 5.9c into Eq. 5.6 results in

x(k + 1) =
N∑︂
j=1

αj Φ(j)Φ(k)
T⏞ ⏟⏟ ⏞

[Ω]

+γ−1α(k) (5.10)

where Φ(j)Φ(k)T is the kernel matrix, [Ω], and could be defined as

[Ω] = x(j)TK (p(j), p(k))x(k) + u(j)TK (p(j), p(k))u(k) (5.11)

where K(p(j), p(k)) is a nonlinear kernel function. Usually, a Radial Basis Function

(RBF) kernel, KRBF , is used as the kernel function, which is defined as

KRBF (p(j), p(k)) = exp

(︃
−||p(j)− p(k)||2

2σ

)︃
(5.12)

where σ is a free parameter that is tuned during the hyperparameter optimization

and ||p(j)− p(k)||2 is the L2 norm between the two feature vectors. Writing Eq. 5.10

in a compact notation yields

X = αΩ + γ−1α (5.13)

where X = [x(1) ... x(N)]T . Solving this equation for α results in

α =
(︁
IN ⊙ γ−1 + ΩT ⊙ Inx

)︁−1
X (5.14)

where IN and Inx indicate the identity matrix in the dimension of a training sample

size and x size and ⊙ is an element-wise or Kronecker product. By calculating α, the

state-space model matrices can be calculated as

A (p(k)) =
N∑︂
j=1

αjx(j)
TKRBF (p(j), p(k))

B (p(k)) =
N∑︂
j=1

αju(j)
TKRBF (p(j), p(k))

(5.15)

where the j index shows the data used in the training set. Where the model is

developed using the training set of x(j) j ∈ (1, 2, ..., N) and u(j) j ∈ (1, 2, ..., N).

Additionally, the scheduling parameter, p is also given in the training set as p(j) j ∈

(1, 2, ..., N).

102

5.1.2 Bayesian Hyperparameters Optimization

The SVM-LPV model has two main hyperparameters: γ, the regularization coeffi-

cient, and σ, the kernel free parameters. The cost function of the hyperparameter

optimization is defined as

J(γ, σ) =
1

NCV

NCV∑︂
i=1

(︂
X̂(i)−X(i)

)︂2
(5.16)

where x̂(i) is the modeled output and x(i) is the measured states and NCV is the

validation dataset that is used for optimizing the parameters. Bayesian Optimization

utilizes the Bayes Theorem to direct a search of a global optimization problem. The

cost function versus iteration number for 100 iterations of the Bayesian optimization

is shown in Figure 5.2. In this figure, the Bayesian optimization approaches to the

global optimum after 76 iterations.

Figure 5.2: Bayesian optimization results for LPV-SVM model parameter optimiza-
tion showing the cost function (J) values versus the integration number

The Bayesian-optimized SVM-LPV can capture all states with an accuracy of 7.3%,

1.1%, and 1.9% for NOx, Tout, and Pman respectively when using the training data.

As this model will be used for the MPC, its accuracy for a new data-set is critical.

The SVM-LPV is compared to a standard model, a linear state-space model called

Autoregressive with Extra Input (ARX). The ARX-based discrete-time state-space

model of the diesel engine emissions and performance is trained using the same train-

103

ing dataset as the SVM-LPV resulting in:

A =

⎡⎢⎢⎢⎣
0.73 7.13 −0.002

0.02× 10−2 0.99 8.99× 10−6

−0.61 33.94 0.91

⎤⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎣
1.27 −1.09 1.01× 10−5

−0.07× 10−2 0.14× 10−2 −1.01× 10−5

2.94 −8.24 −0.02

⎤⎥⎥⎥⎦
C =

⎡⎣ 1 0 0

0 0 1

⎤⎦

(5.17)

The linear ARX and SVM-LVP model are run simultaneously in one simulation. The

ML models are compared against the ESM. Both models are evaluated for the test

data that is unseen for both models. Figure 5.3 shows the model comparison. Both

models have a high accuracy within 5% normalized root mean square error (NRMSE)

for estimating the output torque. However, the linear model fails to provide an

accurate estimation for intake manifold pressure and NOx emissions. The accuracy

comparison for test data is presented in Table 5.1 For the intake manifold pressure,

the SVM-LPV model has significantly better estimations than the linear model where

NRMSE is 0.95% in comparison to 14.81% for the linear model. For NOx, the SVM-

LPV estimates with less than 7% error. The linear ARX model is unable to accurately

capture the exact emission level, resulting in an NRMSE of 32.3%. Next, using the

developed SVM-LPV model, an MPC combustion controller will be designed.

Table 5.1: Comparison of linear and LPV model error for new generated test data

NOx Tout Pman

Linear 32.3% 4.04% 14.81%

SVM-LPV 6.95% 3.02% 0.96%

104

Figure 5.3: Linear ARX, LPV-SVM and ESM comparison for engine-out emissions
and performance at engine speed of 1500 rpm: a) engine-out NOx, b) intake manifold
pressure (Pman), c) engine output torque (Tout), d) Fuel quantity (FQ), e) SOI, f)
Variable Geometry Turbine (V GT) rate

105

5.2 Model Predictive Controller Design

5.2.1 Controller Design

In this section, an MPC controller is designed based on the developed LPV model.

The objective of the controller is to minimize engine-out NOx emissions and fuel

consumption while maintaining the desired engine output torque. The cost function

J(u(k), s(k)) of the finite horizon optimal control problem (OCP) with a horizon

length of Np is defined as

J(u(k), s(k)) =

Np−1∑︂
i=0

[︂
||Tout(k + i)− Tout, ref(k + i)||2wTout⏞ ⏟⏟ ⏞

Torque output tracking

+ ||NOx(k + i)||2wNOx⏞ ⏟⏟ ⏞
NOx minimizing

+ ||FQ(k + i)||2wFQ⏞ ⏟⏟ ⏞
fuel consumption minimizing

+ ||u(k + i)− u(k + i− 1)||2w∆u⏞ ⏟⏟ ⏞
control effort penalty

+ wss(k)
2⏞ ⏟⏟ ⏞

Constraint violation penalty

]︂
(5.18)

where

||.||2w = [.]Tw[.] (5.19)

where s(k) is a slack variable that is added to the cost function to penalized possible

violations of constraints. In this equation, wv, v ∈ [Tout,NOx,FQ,∆u, s] are the MPC

weights. The optimization decision, u(k), is defined as

u(k) = [u(k)T u(k + 1)T ... u(k + p− 1)T] (5.20)

Based on the defined cost function, the OCP that is solved at each discrete-time

instance as

min
u(k),s(k)

J(u(k), s(k))

s.t. x(0) = x̄(0)

x(k + 1) = f(x(k), u(k)) k = 0, . . . , Np − 1

x ≤ x(k) ≤ x k = 0, . . . , Np

u ≤ u(k) ≤ u k = 0, . . . , Np − 1

(5.21)

106

Where f(x(k), u(k)) are based on Eq. 5.3 and the SVM-LPV model of the system

and x are the states of the model. A five-step prediction horizon Np and a single step

control horizon are used. For linear MPC, A and B are constant matrices.

The optimization of LPV-MPC is subject to the constraints listed in Table 5.2.

The 500 ppm maximum NOx is chosen as the upper limit on NOx to keep the emis-

sions below the maximum experimentally measured NOx output from the Cummins

calibrated engine controller. However, this constraint could be adjusted depending on

emission legislation. The limit on FQ is used to prevent exceeding the fuel flamma-

bility limit. Limits in SOI are added to avoid early combustion (which could lead

to combustion noise or knock) and late combustion (which can lead to low thermal

efficiency and high exhaust gas temperatures). The turbocharger characteristic map

is used to set the VGT limit.

Table 5.2: LPV-MPC constraint Values

Min Value (x, u) Variable (x, u) Max Value (x, u)

0 ppm NOx 500 ppm

10 mg/cycle FQ 80 mg/cycle

−2 aTDC CAD SOI 11 aTDC CAD

70 % V GT 100 %

For the linear MPC, the model dynamics of the discrete-time state-space model

given in Eq. 8.5 are utilized as xk+1 = Axk +Buk. The linear MPC formulation has

been implemented in MATLAB© using the MATLAB© Linear MPC block, mpc(sys)

and the corresponding linear MPC block in Simulink.

For the LPV model, the model matrices are changed based on scheduling parame-

ters identified using the SVM techniques described above. Here the model dynamics,

which are utilized as xk+1 = f(xk, uk), are given in Eq. (5.3). For this, the MPC

structure is defined in the MATLAB MPC toolbox©. Then using the MATLAB©

Adaptive MPC block, the system matrices A and B are updated using the defined

107

scheduling parameters. For both the linear and LPV MPC, the fmincon Matlab©

function has been used. For both LPV MPC and linear MPC, the interior-point (IP)

algorithm is used in fmincon solver. In both of these models, the state vector is

defined as

x(k) =
[︂
Tout(k) Pman NOx(k)

]︂T
(5.22)

The weights of the Linear and LPV MPC values are wTout = 0.009, wNOx = 0.0004,

wFQ = 0.06, w∆u = 0.1. The constraint softening value was set as 0.1 which indicates

hard constraints.

5.2.2 Controller Results

The Controllers are compared in this section. They are the developed MPC based

on the SVM-LPV model, the linear ARX-based linear MPC (LMPC) and benchmark

(BM) ESM calibrated ECU based on the Cummins production ECU. The results are

compared in Figure 5.4 where the reference input is shown as well as the contrarians.

Except for a slight violation in NOx constraints (for example at engine cycle 600),

both the LMPC and LPV-MPC controllers are able to keep NOx emissions below the

specified constraint. For the NOx emissions, both the linear MPC and BM controller

have higher overall emissions levels than the LPV-MPC controller. This is attributed

to the linear model used in the linear MPC that is unable to capture the non-linear

NOx formation trends. The torque (Tout) tracking of the controllers are shown for a

step up and a step down in Figure 5.5. Acceptable performance is achieved for both

the LMPC and LPV-MPC. It is interesting to note that even though the BM uses

the most fuel, it has a torque offset from the steady-state reference.

As shown, both the LPV-MPC and Linear MPC (LMPC) tend to generate late

injection timings which reduces the peak combustion temperature, resulting in lower

NOx levels. However, this late combustion phasing can result in lower thermal effi-

ciency and higher fuel consumption. For this reason an upper bound is added to the

108

Figure 5.4: Linear MPC, LPV-MPC and Benchmark comparison in 1200 rpm: a)
engine-out NOx, b) intake manifold pressure (Pman), c) engine output torque (Tout),
d) fuel quantity (FQ), e) Start of injection (SOI), f) Variable Geometry Turbine
(V GT) rate

SOI. The output torque (Tout) tracking performance is within 5% for all three con-

trollers. The feed-forward based controller (refereed as BM) controller fails to reach

109

Figure 5.5: Linear MPC, LPV-MPC and Benchmark comparison in 1200 rpm zoomed
from 800 to 1050 cycles: a) engine-out NOx, b) intake manifold pressure (Pman), c)
engine output torque (Tout), d) fuel quantity (FQ), e) Start of injection (SOI), f)
Variable Geometry Turbine (V GT) rate

the target torque and remains slightly below the reference on the step up and above

the reference on the step down in Figures 5.4 and 5.5.

110

The LPV-SVM model contains gain-scheduling matrices A and B which are depen-

dent on the inputs SOI and FQ. The scheduling parameters as a function of inputs

for matrix A and B are shown in Figures 5.6-5.7 which shows that the relationship

between the model inputs and the scheduling parameters are non-linear for the diesel

combustion process. This non-linearity of the gain scheduling variables of the LPV-

SVM model are an advantage of using the LPV model for combustion instead of using

only a few points of linearization. The gain scheduling matrix B is similarly nonlinear.

Figure 5.6: “A” matrix elements for the LPV-SVM model at an engine speed of 1500
rpm

The LPV model is developed at a constant speed of 1500 rpm. To evaluate the

robustness of the controllers, each controller with the same constraints are tested at

an engine speed of 1200 rpm. As shown in Figure 5.8 (zoomed version from 450

to 650 is shown in Figure 5.9), both the LMPC and LPV-MPC perform significantly

better than the BM. Here the benchmark controller tends to advance injection timing

at lower speeds which results in significant increases in NOx emissions. Due the

increased accuracy of the LPV model, the LPV-MPC performs slightly better. In the

111

Figure 5.7: “B” matrix elements for the LPV-SVM model at an engine speed of 1500
rpm

next section MPC will be replaced by imitation ML to reduce computation.

5.3 Imitation of MPC using a Deep Neural Net-

work

5.3.1 Imitation of MPC Concept

ML was used to model the system described in Section 5.2. In this section, ML is used

to replace the MPC with a learning controller called imitative MPC. This is used to

avoid the high computational time of MPC, that requires solving MPC optimization

online. Instead, a function, in this case a deep network, is trained to approximate the

MPC and deploy it with a much lower computational cost.

The schematic of imitative MPC was previously shown in Figure 5.1 (step 4). First,

the LPV-MPC are implemented on ESM. Second, the input and output are recorded,

and a deep neural network, including a Long-Short-Term Memory (LSTM) layer, are

112

Figure 5.8: Linear MPC, LPV-MPC, and Benchmark comparison in 1200 rpm: a)
engine-out NOx, b) intake manifold pressure (Pman), c) engine output torque (Tout),
d) FQ, e) SOI, f) V GT rate

used to mimic the behavior of the MPC as shown schematically in Figure 5.10. The

inputs of this network are engine output torque, Tout, the error in output torque, eTout ,

engine-out NOx, intake manifold pressure, Pman, and engine speed nrpm. The outputs

113

Figure 5.9: Linear MPC, LPV-MPC, and Benchmark comparison in 1200 rpm zoomed
from 800 to 1050 cycles: a) engine-out NOx, b) intake manifold pressure (Pman), c)
engine output torque (Tout), d) FQ, e) SOI, f) V GT rate

are estimated (FQ), (SOI), and VGT. The outputs are denoted with a “hat”, i.e.,

FQ̂(k), SOIˆ (k), and VGTˆ . This network includes four main layers where the first,

third and fourth layer are fully connected (FC) layers with a layer size (neuron) of 32.

114

The second layer is an LSTM layer with the same layer size. The reason for using an

FC layer around the LSTM to create a deep network is to increase the complexity of

the model without increasing the hidden and cell states of the entire network. Finally,

the online MPC is replaced with the designed imitative MPC. More details on the

LSTM are in the next section.

FC1 LSTM FC2 FC3
Tout
e

NOx
Pin
nrpm

Tout
SOI

FQ

VGT

Figure 5.10: Structure of network for imitation of LPV-MPC

5.3.2 Forward Propagation of Imitative Controller

LSTM utilizes a hidden state that is split into two main parts as shown schematically

in Figure 5.11: h(k) the short-term state, and c(k) the long-term state. The long-

term state c(k − 1) travels though the network and first enters the forget gate f(k)

where past values are dropped. Then, additional values (memories) are added to

the input gate i(k) at each time step (k). Therefore at each time step some data is

added, and some is dropped. Further, after adding new memory, the long-term state

is replicated, passed into the hyperbolic tangent activation function (tanh), and the

output gate filters the result to generate the short-term state h(k) (equal to the cell’s

output y(k) for this time step) [154].

115

Forget gate

input gate

output gate

LSTM cell

Element-wise multiplication Addition

Figure 5.11: Long-Short-Term Memory (LSTM) cell structure

LSTM computations can be summarized as:

i(k) = σ
(︁
W T

uiu(k) +W T
hih(k − 1) + bi

)︁
f(k) = σ

(︁
W T

ufu(k) +W T
hfh(k − 1) + bf

)︁
g(k) = tanh

(︁
W T

ugu(k) +W T
hgh(k − 1) + bg

)︁
o(k) = σ

(︁
W T

uou(k) +W T
hoh(k − 1) + bo

)︁
c(k) = f(k)⊙ c(k − 1) + i(k)⊙ g(k)

h(k) = y(k) = o(k)⊙ tanh (c(k))

(5.23)

where Wu(f,g,i,o) are the weight matrices applied to the input vector u(k) and

Wh(f,g,i,o) are weight matrices of the previous short-term state h(k). In this equa-

tion, ⊙, is an element-wise multiplication and b(f,g,i,o) are the biases. In Eq. 5.23, i(k)

is the input gate, f(k) is the forget gate, g(k) is the cell candidate, o(k) is the output

gate, c(k) is the cell state, and h(k) is the hidden state. Two activation functions are

used in Eq. 5.23 which are given as:

i) tanh(z) activation function:

tanh(z) =
e2z − 1

e2z + 1
(5.24)

ii) σ(z) activation function:

σ(z) =
1

1 + e−z
(5.25)

116

The Fully Connected (FC) layers are added around the LSTM layer to increase

the network capacity to better estimate the nonlinearity of the engine emissions and

performance without increasing the number of hidden and cell states. An FC layer

equation with a Rectified Linear Unit (ReLU) activation function is defined as

zFC(k) = ReLU(W T
FCu(k) + bFC) (5.26)

where ReLU is an activation function defined as

ReLU =

{︄
0 if z ≤ 0

z if z > 0
(5.27)

Therefore, the forward propagation of this imitative network is used to replace the

online MPC optimization as

zFC1(k) = ReLU
(︁
W T

FC1u(k) + bFC1

)︁
(5.28a)

hLSTM(k) = oLSTM(k)⊙ tanh (cLSTM(k))⏞ ⏟⏟ ⏞
based on Eq. 5.23

(5.28b)

zFC2(k) = ReLU
(︁
W T

FC2hLSTM(k) + bFC2

)︁
(5.28c)

zFC3(k) = û(k) = W T
FC3zFC2(k) + bFC3 (5.28d)

where û(k) is the approximated control variables defined as [FQ̂(k) SOIˆ (k) VGTˆ]T

5.3.3 Training Imitative MPC

The output of the imitative MPC network is the estimated control actions and are

û(k) =

⎡⎢⎢⎢⎣
FQ̂(k)

SOIˆ (k)

VGTˆ

⎤⎥⎥⎥⎦ (5.29)

The cost function for this network is as

J(W, b) =
1

m

m∑︂
k=1

L (û(k), u(k)) + λ

2m

L∑︂
l=1

||W [l]||22 (5.30)

117

where L (û(k), u(k)) is the loss function, λ is the regularization coefficient, and

||W [l]||22 is the Euclidean norm which is defined as

||W [l]||22 =
n[l]∑︂
i=1

n[l−1]∑︂
j=1

(w
[l]
ij)

2 (5.31)

The Mean Squared Error (MSE) cost function is used and is defined as

L (û(k), u(k)) = 1

m

m∑︂
k=1

(û(k)− u(k))2 (5.32)

The training information along with the design values for the proposed network

are summarized in Table 5.3. To train this model, MATLAB Deep Learning Toolbox

© has been used with the Adam algorithm. In Figure 5.12, the loss function versus

iteration for both the performance and emission networks are shown. Where within a

defined number of epochs, the loss functions converges to a minimum. Epochs indicate

the number of passes of the entire training dataset the ML algorithm has completed.

The validation loss function also converges to match the training function, indicating

that there is no overfitting or underfitting of the model. The training accuracy for

FQ, SOI, and VGT is 4.3%, 6.3%, and 8.3% while for the validation data are 4.3%,

8.9%, 10.3%.

Figure 5.12: Loss vs. epochs for NOx, torque and pressure model

To test the imitative LPV-MPC, the controller is tested on an unseen reference and

compared to the LPV-MPC in Figure 5.13 at 1500 rpm and Figure 5.14 at 1200 rpm.

118

Table 5.3: Properties of 2-level engine performance and emission LSTM-based model

Name Value

FC(1,2) size 32

FC3 size 3

LSTM size 32

Optimizer Adam

Maximum Epochs 500

Mini batch size 512

Learn rate drop period 200 Epochs

Learn rate drop factor 0.5

L2 Regularization 0.8

Initial learning rate 0.01

Validation frequency 1

Momentum 0.9

Squared gradient decay 0.99

The results show that the imitative controller can successfully clone the behaviour

of LPV-MPC and generate almost the same optimal control without performing the

online optimization.

The performance of the controllers at engine speeds of 1500 and 1200 rpm are

summarized in Table 5.4. In addition, the performance compassion of the controller

to the baseline model are summarized in Table 5.5. As the LPV controller was

designed only based on constant speed data at 1500 rpm, the LPV-MPC and imitative

controller’s performance show reasonable controller robustness to a different engine

speed. Here significant NOx emissions reduction can be seen for all the controllers over

the baseline model except for the LMPC model at 1500 rpm which can be attributed

to the use of a simplified linear model. In addition to the reduced emissions for all

controllers, they maintain or improve fuel consumption compared to the baseline.

This demonstrates the advantage of the optimized controllers over the calibration

119

Figure 5.13: LPV-MPC and imitative LPV-MPC comparison in 1500 rpm: a) engine-
out NOx, b) intake manifold pressure (Pman), c) engine output torque (Tout), d) FQ,
e) SOI, f) V GT rate

based baseline. One disadvantage of the developed models is an increase in load

tracking error in comparison to the baseline model at 1500 rpm. However, this 2%

discrepancy in load tracking results in significant emission reduction of 18-70% and

120

Figure 5.14: LPV-MPC and imitative LPV-MPC comparison in 1200 rpm: a) engine-
out NOx, b) intake manifold pressure (Pman), c) engine output torque (Tout), d) FQ,
e) SOI, f) V GT rate

fuel consumption reduction of 1-10%.

The imitative MPC controllers provide similar improvements to the full MPC con-

trollers compared to the baseline model, while providing significantly improved com-

121

Table 5.4: Proposed MPC and Imitative MPC results compared to Benchmark (BM)
for engine speeds of 1500 and 1200 rpm

1500 rpm

Cumulative Average Load Cumulative Average Execution

NOx [ppm] NOx [ppm] error [%] FQ [g] FQ [mg] time [ms]∗

Benchmark 556100.0 376.8 3.95 67.9 46.0 -

LMPC 593500.0 402.1 4.99 61.1 41.4 1.17

LPV-MPC 450570.0 305.3 2.96 65.5 44.4 1.69

Imitative LPV-MPC 455770.0 308.8 2.92 65.5 44.3 0.03

1200 rpm

Cumulative Average Load Cumulative Average Execution

NOx [ppm] NOx [ppm] error [%] FQ [g] FQ [mg] time [s]∗

Benchmark 1961900.0 1329.2 2.18 64.8 43.9 -

LMPC 662970.0 449.2 3.16 64.0 43.4 1.93

LPV-MPC 593040.0 401.8 3.06 64.8 43.9 2.62

Imitative LPV-MPC 579220.0 392.4 5.74 63.6 43.1 0.03

∗ time per cycle

Table 5.5: Percentage of difference for proposed MPC and Imitative MPC with respect
to the Benchmark for engine speeds of 1500 and 1200 rpm. Negative means that
controller’s performance is better than that of to BM

1500 rpm

NOx [%] FQ [%] load tracking performance [%]

LMPC +6.71 -10.00 -1.04

LPV-MPC -18.98 -3.48 +0.99

Imitative LPV-MPV -18.05 -3.70 +1.03

1200 rpm

NOx [%] FQ [%] load tracking performance [%]

LMPC -66.20 -1.23 -0.98

LPV-MPC -69.77 0.00 -0.88

Imitative LPV-MPV -70.48 -1.85 -3.56

putational times. As presented in Table 5.5, the imitative controllers are 50 and

77 times faster than online MPC optimization at 1500 and 1200 rpm, respectively.

All these simulations carried on a computer equipped with an Intel Core i7-6700K

122

processor with 32.0 GB of RAM.

5.4 Summary of chapter

This chapter presents the integration of ML and MPC for both modeling and con-

troller implementation for diesel engine applications. First, an SVM-based LPV

model is developed to design an LPV-MPC. The LPV model showed better pre-

diction accuracy for all engine outputs in test data compared to the linear baseline

model. Using these models a linear MPC and an LPV-MPC are designed. Then,

the LPV-MPC is implemented in an ESM simulation and the controller input and

output data are collected from the MPC. This input-output data is used to train a

deep neural network. After testing the imitative MPC controller at two different en-

gine speeds, the imitative controller performs very closely to the full online optimized

MPC performance but with a significant reduction in processing time. In addition,

the MPC and imitative MPC showed significant improvements in NOx emissions and

a reduction in fuel consumption while providing similar load following capabilities as

the feed-forward baseline production controller. Both the LPV-MPC and imitative

controller are able to reduce NOx emissions by 18-70% while reducing fuel consump-

tion by 1-10% compared to the Cummins production controller and the imitative

controller, which both require 1/50 computation time compared to online MPC op-

timization.

123

Chapter 6

Integration of Deep Learning and
Nonlinear Model Predictive
Control: Simulation Results 1

Deep learning and nonlinear model predictive control (NMPC) are used in this chap-

ter to minimize the emissions and fuel consumption of a compression ignition engine.

In this chapter, similar to Chapter 5, deep learning is used for two applications: i)

identify a model for MPC, ii) imitation of MPC. In Chapter 5, an SVM-based algo-

rithm is used to model a system which results in a linear parameter varying parameter

MPC. To identify the model for MPC in this chapter, a deep recurrent neural net-

work including long-short-term memory (LSTM) layers to model the emission and

performance of a compression ignition engine are used. This model is then used for

model predictive controller implementation. As this model is a nonlinear model, a

nonlinear version of MPC is then implemented. A novel scheme is used by aug-

menting hidden and cell states of the network in an NMPC optimization problem

(LSTM-NMPC) that combined LSTM with MPC. For imitation of MPC, the devel-

oped LSTM-NMPC is used to train an imitation controller. A deep learning network

is deployed to clone the behavior of the developed controller. The LSTM-NMPC and

the imitative LSTM-NMPC are then compared with the calibrated Cummins ECU

model in an engine simulation model (ESM). This chapter differs from Chapter 5 in

1 This chapter is based on [7]

124

that a different method (deep learning) to identify the model for MPC is used.

Schematics of the procedure followed in this chapter and the main chapter sections

are shown in Figure 6.1. The first stage was explained in Chapter 2, and a detailed

physical-based model in GT-power has been developed and parameterized with ex-

perimental data. This results in the Engine Simulation Model (ESM) in GT-power.

Then, randomly generated inputs are used to drive the ESM model and the ESM

outputs are recorded for modeling. Next, using input-output pairs of data, an LSTM

model is developed and used for the design of the NMPC controllers (the ESM is

too complex for the MPC design). Finally, to reduce the computational time of the

NMPC, the controllers output is used to train the ML-based imitation controllers.

All of the controllers developed in this chapter are simulated using the ESM for co-

simulation. The real-time implementation of the LSTM-NMPC on the engine is the

subject of Chapter 7.

6.1 Long-Short Term Memory Network (LSTM)

Model

The details and the LSTM equation have been described in Section 5.3. Here, the

LSTM will be used for both modeling and imitation of the MPC. Through a design

process, a 2-level deep network is proposed, including two series networks, one for

predicting intake manifold pressure and output torque and another for NOx emis-

sions. Each network contains one LSTM layer and three fully connected (FC) layers.

The structure of this network is shown schematically in Figure 6.2. The main reason

for having two separate networks is to incorporate a physical understanding of the

system. As NOx is created during combustion and is usually measured through a sen-

sor after each combustion cycle, it depends not only on u(k) but also on intermediate

states such as intake manifold pressure. For modeling NOx, having output torque

is also helpful and adds additional features to improve prediction accuracy. Based

on physical understanding, NOx depends on all five features of the NOx prediction

125

Training data
Logging

Input Output
Section 6.1: Long-Short Term Memory (LSTM) Model

Section 6.2: Nonlinear Model Predictive Controller Design

Training Deep RNN model

Trained LSTM model

Predicted output

Optimizer

Objective
Function Constraints

Reference

Nonlinear Model Predictive Control (NMPC)

Chapter 2: Experimental setup and Engine Simulation Model

Training Data
Logging

Section 6.3: NMPC imitative controller

Training Imitative
Controller

Reference

States Feedback

Input Output

Input Output

States Augmentation

Trained LSTM model

NMPC States
Augmentation

Hidden
States

Cell
States

Experimental Setup
Model

Calibration Engine
Simulation

Model (ESM)

Engine
Simulation

Model (ESM)

Engine
Simulation

Model (ESM)

Engine
Simulation

Model (ESM)

-

Figure 6.1: Modeling and controller procedure based on Engine Simulation Model
(ESM) for LSTM model and corresponding LSTM imitation controller

network, but the other two outputs, including output torque and intake manifold

pressure, are not dependent on NOx. As LSTM is used in this architecture and has

recurrent behavior, adding all outputs to a single network makes intake manifold pres-

sure and output torque function of NOx, which does not correspond to the physics.

The FC layers are added around the LSTM layer to increase the network capacity

to better estimate the nonlinearity of the engine emissions and performance without

increasing the number of hidden and cell states (see Section 5.3).

Because the state and output functions have the form of x(k + 1) = F (x(k), u(k))

and y(k) = F (x(k), u(k)) repetitively and must be imported into the NMPC frame-

126

Torque and intake pressure model
FC1 LSTM1 FC2 FC3

FC4 LSTM2 FC5 FC6

NOx model

Figure 6.2: Structure of proposed deep neural network model for engine performance
and emission modeling. FC: Fully connected layer, LSTM: Long-short term memory.

work the equations for a predictive model of MPC are presented here. To generate

state and output functions, the forward propagation needs to be evaluated for the

network shown in Figure 6.2. The forward propagation of the first part of the pro-

posed network is used to estimate engine-out torque and intake manifold pressure and

is calculated using the LSTM computation (Eq. 5.23) and the FC layer computation

(Eq. 5.26) as

zFC1(k) = ReLU
(︁
W T

FC1u(k) + bFC1

)︁
(6.1a)

zLSTM1(k) = hLSTM1(k) = oLSTM1(k)⊙ tanh (cLSTM1(k))⏞ ⏟⏟ ⏞
based on Eq. 5.23

(6.1b)

zFC2(k) = ReLU
(︁
W T

FC2zLSTM1(k) + bFC2

)︁
(6.1c)

zFC3(k)⏞ ⏟⏟ ⏞
[Tout(k) Pman(k)]T

= W T
FC3zFC2(k) + bFC3

(6.1d)

where each equation refers to the output of each layer in the top part of Figure 6.2

127

where u(k) are the system inputs which are defined as

u(k) = [FQ(k) SOI(k) VGT(k)]T (6.2)

The estimated intake manifold pressure P̂man and output torque T̂ out are then

appended to the system inputs u(k) to estimate the engine-out NOx emissions in the

lower part of Figure 6.2 as

zFC4(k) = ReLU(W T
FC4

⎡⎢⎣u(k) zFC3(k)⏞ ⏟⏟ ⏞
[Tout(k) Pman(k)]T

⎤⎥⎦+ bFC4) (6.3a)

zLSTM2(k) = hLSTM2(k) = oLSTM2(k)⊙ tanh (cLSTM2(k))⏞ ⏟⏟ ⏞
based on Eq. 5.23

(6.3b)

zFC5(k) = ReLU(W T
FC5zLSTM2(k) + bFC5) (6.3c)

zFC6(k)⏞ ⏟⏟ ⏞
NOx(k)

= W T
FC6zFC5(k) + bFC6

(6.3d)

The output of this network can be calculated as

Ŷ (k) = [T̂ out(k) P̂man(k)⏞ ⏟⏟ ⏞
zFC3(k)

NÔx(k)⏞ ⏟⏟ ⏞
zFC6(k)

]T =

⎡⎣ zFC3(k)

zFC6(k)

⎤⎦ (6.4)

The NMPC states of this model including hidden states and cell states, are

x(k) =

⎡⎢⎢⎢⎢⎢⎢⎣
hLSTM1(k) ∈ R26

hLSTM2(k) ∈ R26

cLSTM1(k) ∈ R26

cLSTM2(k) ∈ R26

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R104 (6.5)

For training, the same cost and loss function described in Section 5.3.3 is used, but

with different hyperparameters and numbers of hidden units. The training informa-

tion along with the design values for the proposed network are summarized in Table

6.1. As described before, to train this model, MATLAB Deep Learning Toolbox© has

been used with the Adam algorithm. In Figure 6.3, the loss function versus iteration

128

for both the performance (the load and pressure) and emission (NOx) networks are

shown. Within a defined number of epochs, the loss functions converges to a min-

imum. The validation loss function also converges to match the training function,

indicating that no overfitting or underfitting of the model has occurred.

Table 6.1: Properties of 2-level engine performance and emission shown in Figure 6.2

Name Value

FC(1,2,4,5) size 26

FC3 size 2

FC6 size 1

LSTM(1,2) size 26

Optimizer Adam

Maximum Epochs 500

Mini batch size 512

Learn rate drop period 150 Epochs

Learn rate drop factor 0.5

L2 Regularization 0.1

Initial learning rate 0.001

Validation frequency 1

Momentum 0.9

Squared gradient decay 0.99

The training (first 80,000 cycles) and validation (80,000 to 100,000 cycles) results

in the model shown in Figure 6.4. To develop this neural network based model,

consisting of more than 11,000 learnable parameters, a larger data set is needed. The

ESM was run for 100,000 engine cycles; cycles 1 to 80,000 are devoted to training and

cycles 80,001 to 100,000 are used for validation, as shown in Figure 6.4. The results

show that the LSTM model can estimate intake manifold pressure, output torque,

and NOx emission with high accuracy for both training and validation data sets. The

accuracy of the training data is 2.35%, 1.98%, and 1.07% for NOx, Tout, and Pman,

129

Figure 6.3: Loss vs. epochs for NOx, torque and pressure model

respectively. For the validation data set, an accuracy of 2.86%, 2.27%, and 1.53% for

NOx, Tout, and Pman are found.

As this model will be used inside a Nonlinear Model Predictive Controller (NMPC)

an accurate model is critical. To compare LSTM models, LSTM model is evaluated

for test data (data never seen before for the models). In this manner, the LSTMmodel

is evaluated using a test dataset that is new for the models. Figure 6.5 compares the

ESM with the LSTM model; high accuracy is obtained on all of these outputs, shown

by the curves lying almost on top of each other.

To summarize the accuracy of the model, the Normalized Root Means Square

Error (NRMSE) between the ESM and LSTM model are calculated. The RMSE is

normalized using the range (defined as the maximum value minus the minimum value)

of the ESM logged data. The NRMSE for NOx, Pman, and Tout are 4.04%, 2.21%,

and 2.35%, respectively. As shown, this model is capable of predicting emission and

output torque with an error of less than 5%. Comparing to the linear and LPV

models developed in Chapter 5, the LSTM provides better accuracy, especially for

the NOx emission. For NOx, it is 3% more accurate than the SVM-LPV, and for

torque prediction is approximately 1% more accurate. However, for the manifold

pressure, LPV provides 1.3% better accuracy compared to the LSTM. The LSTM is

found to be generally more accurate than the SVM-LPV and the ARX linear model

130

Figure 6.4: Training and validation results for the LSTM model vs. ESM: a) engine-
out NOx, b) intake manifold pressure Pman, c) engine-output torque Tout, d) FQ, e)
SOI, f) V GT rate. Cycles 1 to 80,000 are devoted to training and cycles 80,001 to
100,000 used for validation

131

Figure 6.5: LSTM model comparison for engine-out emissions and performance: a)
engine-out NOx, b) intake manifold pressure (Pman), c) engine-output torque (Tout),
d) FQ, e) SOI, f) V GT rate

developed in Chapter 5 for these outputs.

6.2 Nonlinear Model Predictive Controller Design

In this section, the control objective is the same as LPV-MPC controller (the same

cost function Eq. 5.18 in Section 5.2 is used). But instead of an LPV model which

132

results in an LPV-MPC, a nonlinear function LSTM model is used which results

in Nonlinear MPC (NMPC). Therefore in the optimal control problem (Eq. 5.21),

xk+1 = f(x(k), u(k)) is a nonlinear model leading to nonlinear MPC. For the formu-

lation of the LSTM-NMPC, the hidden and cell states of the two LSTM networks

are augmented. Therefore, the prediction model of the LSTM-NMPC consists of the

following: the state vector x(k), the output vector y(k), and the control vector u(k)

which are defined as

x = [hLSTM1, hLSTM2, cLSTM1, cLSTM2]
T ,

y = [Tout, NOx]
T ,

u = [FQ, SOI, VGT].

(6.6)

The added hidden and cell states (2 networks each have 26 cell states and 26 hidden

states) lead to a total number of 104 states for the LSTM-MPC. A schematic of the

LSTM-NMPC is shown in Figure 6.6. The recurrent network prediction and update

functions, stated in Eq. 6.1 and Eq. 6.3, are defined by formulating the chain rule.

The prediction horizon, Np, has been chosen as Np = 5 with a control horizon of one

step the same as the LPV-MPC in Chapter 5.

The NMPC problem has 104 states, and all of these states must be estimated to

update the NMPC block that is used in MATLAB/SIMULINK©. Therefore, the

same dynamic model is used as an estimator for the hidden and cell states of the

LSTM model to provide the 104 states of the NMPC problem. The lower and upper

values of the state and control constraints are chosen to have the same value as the

LPV-MPC and are listed in Table 5.2.

The weights of the LSTM-NMPC are tuned manually by giving the highest weight

to the output torque and giving equal weight to the emission and fuel consump-

tion reduction. The states, outputs, and control inputs are normalized using z-score

normalization, which is defined as

znormal =
z − µ

σ
(6.7)

133

Optimizer

LSTM model

Objective
Function

Constraints

Reference

Predicted
Outputs

Nonlinear Model Predictive Control

SOI, FQ, VGT

LSTM model

Tout, NOx

NMPC States
Augmentation

Hidden
States

Cell
States

States
Feedback

LSTM and States Augmentation

Engine
Simulation

Model (ESM) Tout,ref

Figure 6.6: Block diagram of LSTM-NMPC structure

where µ is the mean and σ is the standard deviation of z. This can be used for both

input and outputs.

In this chapter the NMPC is implemented in simulation on the ESM engine model.

The MATLAB Toolbox© utilizing the fmincon© solver (SQP with QP solver of

interior point method) is used for the NMPC simulation. Alternatives to solving

the NMPC include state-of-the-art commercial solver FORCES PRO© by EMBOTECH

[200, 201] (SQP solver) and open-source package acados [202, 203] with the QP

solver HPIPM (High-Performance Interior-Point Method) [204]. In NMPC, the OCP

structured Nonlinear Programming (NLP) is reformulated into a Sequential Quadratic

Programming (SQP) problem by means of iterative quadratic approximations at the

shooting nodes [205]. This results in sequential quadratic subproblems that are solved

and contribute to the holistic solution of the NLP by means of reformulations of the

initial problem. The number of SQP iterations are called SQP steps and have a

134

strong influence on the computational efficiency as well as the prediction quality of

the NMPC. In Section 6.4, the computational timing of fmincon©, FORCES PRO©,

and acados with HPIPM are compared. Computation cost is important and ideally

needs to be reduced. Imitation NMPC described in the next section, could replace

NMPC online optimization and provide significantly less computational effort.

6.3 NMPC Imitative Controller

The imitation of NMPC, using deep learning methods, is called imitative NMPC

and is used to avoid the high computational time of the online optimization of the

NMPC [158]. In Section 5.3, a deep neural network is used to imitate the LPV-MPC.

Here, the same architecture with different hyperparameters is used to clone or imitate

NMPC behavior.

The concept of imitative NMPC is shown schematically in Figure 6.7 which depicts

the three main steps. In the first step, the previously designed LSTM-NMPC is

implemented on ESM. Second, the NMPC input and output are recorded, and a deep

neural network, including an LSTM layer is used to fit the controller data to mimic

the behavior of the NMPC. Finally, the online NMPC is replaced with an imitative

controller which greatly reduces the computational time of the NMPC. The result is

that, instead of solving NMPC optimization online, the identified function –here a

deep network– is deployed with a much lower computation cost.

In order to clone the behavior of the NMPC, a deep network structure using LSTM

is proposed. The imitative NMPC structure for imitative LSTM-NMPC is schemat-

ically shown in Figure 6.8. The engine output torque Tout, error in output torque

(eTout), engine-out NOx, intake manifold pressure Pman, and engine speed nrpm are

the inputs of the imitative NMPC. The goal here is to generate control action of

fuel quantity (FQ), start of injection (SOI), and VGT by mimicking the previously

designed NMPC controllers.

The forward propagation of this imitative network, used to replace the online

135

LSTM-NMPC

1. LSTM-NMPC Implementation

2. Deep Neural Network Controller Training

Training network
Training data pairs
(error, control input)

3. Imitative LSTM-NMPC Controller implementation

Imitative LSTM-
NMPC ControllerReference

Reference
Engine

Simulation
Model (ESM)

Engine
Simulation

Model (ESM)

Figure 6.7: Concept of Imitative NMPC– 1) implementation of original LSTM-NMPC
in ESM co-simulation, 2) training deep neural network based on LSTM-NMPC col-
lected data, 3) replacing of trained deep network (imitative controller) with LSTM-
NMPC in ESM co-simulation (NMPC: Nonlinear Model Predictive Control; LSTM:
Long-Short-Term Memory; ESM: Engine Simulation Model).

optimization of MPC is

zFC1(k) = ReLU
(︁
W T

FC1u(k) + bFC1

)︁
(6.8a)

zLSTM(k) = hLSTM(k) = oLSTM(k)⊙ tanh (cLSTM(k))⏞ ⏟⏟ ⏞
based on Eq. 5.23

(6.8b)

zFC2(k) = ReLU
(︁
W T

FC2zLSTM(k) + bFC2

)︁
(6.8c)

zFC3(k)⏞ ⏟⏟ ⏞
û(k)=[û(k) SOIˆ (k) V GTˆ]T

= W T
FC3zFC2(k) + bFC3

(6.8d)

The control output of the imitative LSTM-NMPC network is

û(k) =

⎡⎢⎢⎢⎣
FQ̂(k)

SOIˆ (k)

V GTˆ

⎤⎥⎥⎥⎦ (6.9)

The structure and training of the imitative controller is summarized in Table 6.2.

As with all system identification, the performance of the imitative controller depends

136

FC1 LSTM FC2 FC3
Tout
e

NOx
Pin
nrpm

Tout
SOI

FQ

VGT

Figure 6.8: Structure of proposed network for imitation of NMPC

Figure 6.9: Imitative LSTM-NMPC loss function vs. epochs

on collected data. Widely varying operating conditions were simulated and used as

inputs to the network. To do this, the NMPC controller was evaluated for randomly

changing engine speed from 1200 rpm to 1800 rpm and a requested load (Tout refer-

ence) from 120 N.m to 320 N.m. This was done to make the imitative controller robust

to a range of operating conditions. The loss function versus iteration is shown in Fig-

ure 6.9. This loss function indicates that the training process has been completed

and the overfitting-underfitting has been avoided as the validation loss converges to

the training loss.

To train the imitative controller, the NMPC is evaluated for 2000 seconds of sim-

ulation, in which 1600 seconds are reserved for training data and 400 seconds are

reserved for validation. The RMSE of the training and validation set are listed in

Table. 6.3 which shows that the DNN network can clone the NMPC behavior with an

137

Table 6.2: Properties of imitative controller based on LSTM-NMPC

Name LSTM-NMPC

FC(1, 2) size 32

FC3 size 3

LSTM size 32

Optimizer Adam

Maximum epochs 400

Mini batch size 512

Learn rate drop period 150 epochs

Learn rate drop factor 0.5

L2 Regularization 1

Initial learning rate 0.02

Validation frequency 1

Momentum 0.9

Squared gradient decay 0.99

average accuracy of 3.9% on training and 8.3% on validation compared to the previous

LSTM-NMPC. These imitative controllers are tested for newly generated references,

and their performance against NMPC online optimization will be presented in the

next section.

Table 6.3: Imitative LSTM-NMPC controller train and validation error compared to
LSTM-NMPC online optimization

FQ SOI VGT

Train 2.12% 4.55% 4.90%

Validation 2.47% 9.98% 12.46%

138

6.4 Results and Discussion

The objective of the controller is to track a target engine load while minimizing both

NOx and the fuel used in the diesel engine. The results of the NMPC controller with an

LSTM-based data driven model and imitative LSTM-NMPC controller are compared

to the BM using the ESM. The BM model is the calibrated ECU tables based on the

Cummins production ECU that is then embedded in GT-power© (further details of

BM and ESM are available in Chapter 2). The controller inputs and outputs for all

three controllers tested are shown in Figure 6.10.

The controllers are subject to constraints on all of the inputs (i.e. NOx, FQ,

SOI and VGT), which is a main advantage of MPC. These limits are listed in Table

5.2. Small constraints violation for NOx at engine cycle 600 are seen for LSTM-

NMPC. This is attributed to the constraint softening that is implemented in the

NMPC. However, overall, both the LSTM-NMPC and the imitative LSTM-NMPC

controllers are able to keep the NOx levels below the specified constraint. The BM

is significantly worse for NOx than the nonlinear MPC model which is likely due to it

operating away from the optimal calibration point in the feedforward tables for this

stationary engine.

The upper limit of the SOI constraint is often active. Here the controllers would like

to implement later injection timing than are currently allowed. These late injection

timings reduce the peak combustion temperature leading to lower NOx levels but also

result in reduced combustion efficiency and increased fuel consumption.

The torque (Tout) tracking of both LSTM-NMPC and BM for a step input in torque

are shown in Figure 6.11. Acceptable performance is achieved. An interesting trend

is that even though the BM uses the most fuel, it has an undesirable offset from the

steady-state torque reference.

To check the controller’s robustness to engine speed, it is changed from 1500 rpm

(the level at which the MPC models were designed and validated) to 1200 rpm. The

139

Figure 6.10: Controller comparison at nrpm = 1500: a) engine-out NOx, b) intake
manifold pressure (Pman), c) engine output torque (Tout), d) fuel quantity (FQ), e)
Start of injection (SOI), f) Variable Geometry Turbine (V GT) rate

140

Figure 6.11: Controller comparison at nrpm = 1500 zoomed from 800 to 1050 cycles: a)
engine-out NOx, b) intake manifold pressure (Pman), c) engine output torque (Tout),
d) fuel quantity (FQ), e) Start of injection (SOI), f) Variable Geometry Turbine
(V GT) rate

141

Table 6.4: Turnaround time comparison between Matlab fmincon©, EMBOTECH
FORCES PRO©, and acados solvers– PIL: Processor in the loop (performance of con-
troller will be discussed in Chapter 7)

Solver
Average Turnaround Real-time verification

time [ms] in PIL setup

Matlab fmincon© 786.02 x

EMBOTECH FORCES PRO© 786.02 > t >> 12.20 x

acados 12.20 ✓

NMPC performance at 1200 rpm can be seen in Figure 6.12. There, the BM has high

NOx values which are attributed to a significant advance in injection timing.

The performance of the controllers at both engine speeds are summarized by listing

the cumulative and average NOx emissions, load error, FQ and execution times are

shown in Table 6.5. For the design speed of 1500 rpm, both the LSTM-NMPC and

the imitative NMPC outperform the BM in terms of NOx emissions with advantages

in fuel consumption reduction.

To investigate the NMPC execution time, acados (SQP with QP solver HPIPM),

FORCES PRO with SQP algorithm, and fmincon with SQP algorithm (QP solver in-

terior point) are each evaluated and their computational time are compared and

summarized in Table 6.4. acados with HPIPM provides the fastest solve time among

the solvers tested. In the acados implementation, a maximum QP iteration of 50

and maximum NLP iteration / SQP steps of 5 are used, which showed an average

runtime of 12.20 ms and a maximum runtime of 31.56 ms at 1500 rpm. This value is

much faster than the average runtime of fmincon that required 786.02 ms. FORCES

PRO was also tested and showed an improvement in runtime over the fmincon but

was slower than the acados implementation. Due to the academic license agreement,

the exact computational timing of FORCES PRO cannot be disclosed.

This difference in runtime can be attributed to the fully condensed problem formu-

lation used in the acados implementation when compared with the sparse formulation

142

Figure 6.12: Controller comparison at nrpm = 1200: a) engine-out NOx, b) intake
manifold pressure (Pman), c) engine output torque (Tout), d) fuel quantity (FQ), e)
Start of injection (SOI), f) Variable Geometry Turbine (V GT) rate

143

Figure 6.13: Controller comparison at nrpm = 1200 zoomed from 450 to 650 cycles: a)
engine-out NOx, b) intake manifold pressure (Pman), c) engine output torque (Tout),
d) fuel quantity (FQ), e) Start of injection (SOI), f) Variable Geometry Turbine
(V GT) rate

144

of fmincon and FORCES PRO. The presented OCP consists of a large state vector with

104 states, a relatively small prediction horizon with 5 steps and a relatively small

control vector with 3 control outputs. This allows the condensed problem formulation

used in acados to take full advantage of the condensation benefits [206, 207]. Another

reason for the difference in runtime is the use of the underlying algorithmic differentia-

tion framework CasADi MX (Matrix expression) symbolic variables in acados instead

of SX (scalar symbolic) variables in FORCES PRO. The general matrix expression type

MX tends to be more economical when working with larger matrices [208].

Although the acados computational time of the online NPMC is orders of magni-

tude slower than imitation NMPC, the ML-based imitation controllers rely on MPC

results, and thus an MPC must first be designed and then used to generate input-

output data for imitative MPC training.

Table 6.5: Proposed MPC and Imitative MPC results compared to the benchmark
for engine speeds of 1500 and 1200 rpm

1500 rpm

Cumulative Average Load Cumulative Average Execution

NOx [ppm] NOx [ppm] error [%] FQ [g] FQ [mg] time [ms]∗

Benchmark 556100.0 376.8 3.95 67.9 46.0 -

LSTM-NMPC 428420.0 290.2 1.90 65.6 44.4 12.20∗∗

Imitative NMPC 438850.0 297.3 3.74 64.6 43.8 0.04

1200 rpm

Cumulative Average Load Cumulative Average Execution

NOx [ppm] NOx [ppm] error [%] FQ [g] FQ [mg] time [s]∗

Benchmark 1961900.0 1329.2 2.18 64.8 43.9 -

LSTM-NMPC 671650.0 455.0 6.95 64.9 43.9 11.50∗∗

Imitative NMPC 718380.0 486.7 7.61 64.0 43.4 0.03

∗ per engine cycle of simulation

∗∗ acados execution time

The performance of the controllers compared to the BM can be seen in Table 6.6.

A significant NOx emissions reduction for the controllers over the BM is shown. In

145

addition to these improvements in emissions, the developed controllers use the same

amount or less fuel than the baseline model. This demonstrates the advantage of

the optimized controllers over the BM. The developed models do experience a slight

increased load error compared to the BM at 1500 rpm. However, the 2% worse load

tracking worth the significant emissions and fuel consumption benefits.

Table 6.6: Percentage of improvement for proposed MPC and Imitative MPC with
respect to the benchmark for engine speeds of 1500 and 1200 rpm

1500 rpm

NOx [%] FQ [%] load error [%]

LSTM-NMPC -22.98 -3.48 +2.05

Imitative NMPC -21.10 -4.78 +0.21

1200 rpm

NOx [%] FQ [%] load error [%]

LSTM-NMPC -65.77 +0.15 -4.77

Imitative NMPC -63.38 -1.23 -5.43

Overall, the imitative NMPC controller provides similar improvements to the

NMPC controller over the BM but the computational time is orders of magnitude

smaller. This makes computational requirements for a real-time implementation for

a production implementation much lower than the MPC online NMPC optimization.

In comparison with the LPV-MPC and linear MPC developed in Chapter 5, the

LSTM-NMPC reduces more NOxand FQ at 1500 rpm. At a lower speed of1200

rpm, the LSTM-NMPC could track loads better than the LPV-MPC with 3% better

NOx reduction (the LPV-MPC reduced NOx by 67% while the LSTM-NMPc reduced

it by 70%). For imitation MPC, both imitative LSTM-NMPC and LPV-MPC (Chap-

ter 5) are comparable.

6.5 Summary of chapter

The integration of deep learning and MPC for both modeling and controller imple-

mentation is discussed in this chapter. First, using a DNN network, a LSTM network

146

is designed. An NMPC is then designed based on this network and by augmenting

hidden and cell states. The accuracy of this model for test data has better than

the LPV and linear model developed in Chapter 5. Higher accuracy is expected as

the LSTM is capable of a more generalizable prediction since it uses hidden and cell

states. In addition to using ML for modeling ML can also be implemented based

on a implemented NMPC. The input-output data is then collected from the NMPC

and used to train a deep neural network. Replacing the online NMPC with an imi-

tative controller reduces the computational time of the NMPC and is compared with

a baseline Cummins calibrated ECU model in simulation using the ESM.

Minimizing NOx emissions and reducing the injected fuel amount while maintaining

the same load is goal of the control. Furthermore, the controllers are constrained to

meet NOx limits and all inputs to ensure system safety. To evaluate the robustness of

the controllers, the engine speed is changed from 1500 rpm where the NMPC model

was validated to 1200 rpm. All of the controllers produce significant NOx reduction

compared to the BM feedforward controller especially at lower engine speeds. The

NOx level for 1500 and 1200 rpm for the NMPC are reduced by 23.0% and 65.8% when

compared to the BM. The imitative controller successfully clones the NMPC behavior

with a NOx reduction of 21.1% at 1500 rpm and a 63.4% reduction at 1200 rpm when

compared to the BM. The imitative controller performs similarly to the online MPC

by learning from the MPC experiment but requires much lower computational time.

The computation time for the imitative controller is a factor of 100 lower than the

online optimized MPC.

A comparison of LSTM-NMPC and LPV-MPC (Chapter 5) shows that the LSTM-

NMPC has better load tracking and emission reduction performance. Fuel consump-

tion reduction is consistent at different speeds, especially at 1500 rpm (the speed at

which this engine usually runs). Based on this comparison, the next chapter will

describe the real-time implementation of the LSTM-NMPC controller on the engine

with some modifications for the experimental setup, including the addition of a par-

147

ticle matter sensor feedback.

148

Chapter 7

Integration of Deep Learning and
Nonlinear Model Predictive
Control: Experimental
Implementation 1

In this chapter, a Long-Short Term Memory-based Nonlinear Model Predictive Con-

trol (LSTM-NMPC) is experimentally implemented in real-time to reduce the engine-

out emissions and fuel consumption of a 4.5 liter 4-cylinder Cummins CI engine while

constraints are simultaneously implemented on engine inputs and outputs. Here, the

LSTM-NMPC developed in Chapter 6 is expanded and implemented on a real-time

system using acados embedded programming. To make the previously developed

controller more general for CI implementation, Particle Matter (PM) soot emission

reduction is also augmented to optimize the NOx and PM trade-off. In addition,

multi-pulse injection timing and duration along with fuel pressure control are added

and compared to LSTM-NMPC developed in Chapter 6 to have more degrees of

freedom to optimally control the CI engine-out emissions.

In this chapter, the emissions and performance of the engine are modeled using

a deep neural network with seven hidden layers and 24,148 learnable parameters

created by stacking FC layers with an LSTM layer in a manner similar to Chap-

ter 6. This model is then utilized to implement NMPC experimentally. In order to

1 This chapter is based on [8]

149

implement this LSTM-NMPC, an open-source software package –acados with the

quadratic programming solver HPIPM (High-Performance Interior-Point Method)– is

employed. This acados embedded programming scheme is used for LSTM-NMPC

real-time implementation. For real-time controller prototyping, a dSPACE MicroAu-

toBox II (MABX II) rapid prototyping system is used. A Field Programmable Gate

Array (FPGA) is also employed to calculate in-cylinder pressure based combustion

metrics online at every 0.1◦ crank angle [209]. The FPGA calculates Maximum Pres-

sure Rise Rate (MPRR) and Indicated Mean Effective Pressure (IMEP).

7.1 Deep Neural Network Modeling

In Chapters 5 and 6, the application of a deep neural network using FC and LSTM

layers has been demonstrated and its benefits over conventional RNN and the feed-

forward network has been discussed. Here, this idea has been expanded to model the

engine and the emissions using real-time collected data. The engine and emissions are

modeled using a deep neural network with seven hidden layers, including 6 FC layers

and one LSTM layer, as shown in Figure 7.1. The inputs to this model are the SOI

for the main injection, DOI for both the main and pilot injections, duration between

the end of the pilot injection, start of the main injection pre-2-main time (tP2M),

and the fuel rail pressure Pfuel. The P2M time, tP2M, is used instead of SOIpilot to

allow for hardware constraints which limit the minimal time between injections to be

implemented in the controller. This is necessary to prevent unintended overlapping

injections where the injector has not fully closed. Figure 7.2 shows the relationship

between the SOI and DOI of both injections as well as the tP2M. The model out-

puts are Nitrogen Oxide (NOx), Particle Matter (PM), Maximum Pressure Rise Rate

(MPRR), and Indicated Mean Effective Pressure (IMEP). The FC layers are added

before and after the LSTM layer to boost the network’s capacity for estimating the

engine’s nonlinearity without increasing the number of hidden and cell states. In

Chapter 6 it was shown that adding 26 hidden units adds 26 cell and 26 hidden states

150

LSTM
Layer

FC1 FC2

FC3

FC5

FC6 FC4
LSTM

64
units

64
units

128
units

4
units 128

units

64
units

4
units

Output Input Fully Connected
Layers

Fully Connected
Layers

Figure 7.1: Structure of proposed deep neural network model for engine performance
and emission modeling. LSTM: Long-short term memory, SOI: start of injection,
DOI: duration of injection, Pfuel: fuel rail pressure, IMEP: indicated mean effective
pressure, MPRR: maximum pressure rise rate, PM: particle matter, tP2M: duration
between end of pilot injection and start of main injection

Figure 7.2: Diesel engine multiple injection. SOI: start of injection, DOI: duration of
injection, tP2M: duration between end of pilot injection and start of main injection

to a number of NMPC states. To make computational turnaround time as short as

possible, keeping the number of hidden units for LSTM as small as possible is crucial.

Instead, to capture the nonlinearity, more hidden units are added to the FC which

resulted in a high number of learnable parameters to retain the complexity of the

model but with fewer states.

To implement this network inside an NMPC, the previous description in Section 6.1

is followed and a forward propagation model is used. Then, by augmenting hidden

states and cell states to the actual states of the system, this model can be used inside

151

the NMPC. The LSTM and FC computations are presented in Eq. 5.23 and Eq. 5.26.

A schematic to compute the network is shown in Fig, 7.3. This computation includes

employing an LSTM computation (Eq. 5.23) and an FC computation (Eq. 5.26), so

the model is calculated as

zFC1(k) = ReLU
(︁
W T

FC1u(k) + bFC1

)︁
zFC2(k) = ReLU

(︁
W T

FC2zFC1(k) + bFC2

)︁
zFC3(k) = ReLU

(︁
W T

FC3zFC2(k) + bFC3

)︁
i(k) = σ

(︁
W T

uizFC3(k) +W T
hih(k − 1) + bi

)︁
f(k) = σ

(︁
W T

ufzFC3(k) +W T
hfh(k − 1) + bf

)︁
g(k) = tanh

(︁
W T

ugzFC3(k) +W T
hgh(k − 1) + bg

)︁
o(k) = σ

(︁
W T

uozFC3(k) +W T
hoh(k − 1) + bo

)︁
c(k) = f(k)⊙ c(k − 1) + i(k)⊙ g(k)

h(k) = o(k)⊙ tanh (c(k))

zFC4(k) = ReLU
(︁
W T

FC4h(k) + bFC4

)︁
zFC5(k) = ReLU

(︁
W T

FC5zFC4(k) + bFC5

)︁
zFC6(k)⏞ ⏟⏟ ⏞

Ŷ (k)

= W T
FC6zFC5(k) + bFC6

(7.1)

where WFCi and bFCi are the weights and biases of the fully connected layer where

i ∈ 1, 2, 3, 4, 5, 6 and Wu(f,g,i,o) are the weight matrices of the input vector u(k) and

Wh(f,g,i,o) are the weight matrices to the previous short-term states h(k). In Eq. 7.1,

tanh(z) in hyperbolic tangent, σ(z) is sigmoid, and ReLU is the Rectified Linear

Unit (ReLU) activation function. The functions tanh(z) and σ(z) are used in the

LSTM gates as described in LSTM computation in Eq. 5.23 and ReLU is a common

choice for the FC layer in a DNN structure. These activation functions are defined

in Eq 5.24, 5.25, and 5.27.

The augmented NMPC model (Eq. 7.1) states that include hidden states and cell

152

FC1

FC2

FC3

FC4

FC5

FC6

Learnable = 12864

Learnables = 9156

Learnables = 2128

LSTM

FC

FC

State augmentation

Figure 7.3: Computational graph of proposed deep network. FC: Fully Connected,
LSTM: Long-Short Term Memory

states, are calculated based on the computational graph shown in Figure 7.3.

x(k) =

⎡⎣ hLSTM(k) ∈ R4

cLSTM(k) ∈ R4

⎤⎦ ∈ R8 (7.2)

By adding 4 hidden states and 4 cells, x(k) has a total of 8 states. In the acados

implementation, in order to add derivatives of inputs, 5 system inputs are also added

to the states to make the augmented states dimension 13 states in total (more details

are provided in Section 7.2). For training with experimental data, the cost function

of this network is (see also Eq. 5.30, duplicated here)

153

J(W, b) =
1

m

m∑︂
k=1

L
(︂
Ŷ (k), Y (k)

)︂
+

λ

2m

L∑︂
l=1

||W [l]||22 (7.3)

where L
(︂
Ŷ (k), Y (k)

)︂
is the loss function. In this work, Mean Squared Error

(MSE) loss function is used and is (see also Eq. 5.32, duplicated here)

L
(︂
Ŷ (k), Y (k)

)︂
=

1

m

m∑︂
k=1

(Ŷ (k)− Y (k))2 (7.4)

In Eq. 7.3, λ is the regularization coefficients, m is size of training data, and ||W [l]||22
is the Euclidean norm which is (see also Eq. 5.31, duplicated here)

||W [l]||22 =
n[l]∑︂
i=1

n[l−1]∑︂
j=1

(w
[l]
ij)

2 (7.5)

Table 7.1 summarizes the training data and design parameters for the proposed

network. To train this model, the Adam algorithm was used in the MATLAB Deep

Learning Toolbox©. The loss function vs iteration for the proposed deep network is

given in Figure 7.4, in which the loss functions converge to a minimal value. Addition-

ally, the validation loss function converges to the training loss function, suggesting

that neither overfitting nor underfitting has occurred.

Figure 7.4: Loss vs. epochs for proposed deep neural network model

To develop this deep network, which has more than 24,148 learnable parameters,

a large data set including 65,000 consecutive engine cycles are used. Therefore, the

154

Table 7.1: Specification of training proposed deep network to predict performance
and emission

Name Value

Optimizer Adam

Maximum epochs 5000

Mini batch size 512

Learn rate drop period 1000 epochs

Learn rate drop factor 0.5

L2 Regularization 10

Initial learning rate 0.001

Validation frequency 64 iteration

Momentum 0.9

Squared gradient decay 0.99

diesel engine was run for 65,000 cycles, and all five inputs– SOI of main, DOI of

main, DOI of pilot, P2M time (tP2M), and fuel rail pressure– are changed randomly.

A random signal is used to change both the amplitude and frequency of these five

inputs. The training and validation results of the proposed model are compared to

experimental values in Figures 7.5 and 7.6. Cycles 1 to 40,000 are utilized for training,

cycles 40,001 to 52,000 are used for validation, and cycles 52,001 to 65,000 for testing.

The SOI of the pilot is calculated based on P2M time and is illustrated in Figure 7.6

as the control behavior is easier to understand based on it.

The accuracy of these models for each output are summarized in Table 7.2. For

accuracy, the Root Mean Square Error (RMSE) and Normalized Root Mean Square

Error (NRMSE) are used which are

RMSE =

√︄∑︁N
i=1(Ŷ (i)− Y (i))

N
(7.6)

NRMSE =
RMSE

Ymax − Ymin,

× 100 (7.7)

155

Figure 7.5: Training, validation, and testing results for LSTM-based DNN model vs.
experimental data: a) IMEP, b) NOx, c) PM, and d) MPRR

As presented in Table 7.2, IMEP is the most difficult parameter for the model to

predict since it has a 7% error in training while other outputs are predicted with

less than a 3% error. The same trend can be seen for the testing data, where IMEP

has a 10% error while both emissions have an error of less than 8%. The MPRR

prediction is more accurate than others for test data, with a 2.72% error. The model

could be further tuned to improve prediction accuracy by adding more hidden and

156

Figure 7.6: Experimental data inputs for training, validation, and testing data that
used for the LSTM-based DNN model: a) DOI of pilot injection, b) DOI of main
injection, c) duration between end of pilot injection and start of main injection, d)
SOI of pilot injection, e) SOI of main injection, and f) fuel rail pressure

cell states to the LSTM layer; however, adding more states would clearly increase the

computational time of the model on the real-time hardware. Therefore, this model

was improved only by adjusting the number of hidden units of the fully connected

layers. This model will be used for the NMPC design in the subsequent section.

157

Table 7.2: Error of DNN model vs experimental using RMSE and normalized RMSE:
IMEP, FQ. PM, and MPRR.

Unit Training Validation Testing

IMEP
[bar] 0.29 0.36 0.41

[%] 7.04 8.77 9.75

NOx
[ppm] 18.41 39.33 46.98

[%] 2.90 6.19 7.40

PM
[mg/m3] 0.37 1.27 2.38

[%] 1.16 4.03 7.54

MPRR
[bar/CAD] 0.17 0.24 0.25

[%] 2.45 2.63 2.72

7.2 Nonlinear Model Predictive Control

The details of the design and structure of the proposed NMPC is described in this

section. For the NMPC, an optimization problem is solved at each sample instance for

a receding horizon to determine the control inputs. In this case, the goal is to minimize

engine-out emissions (NOx and PM emissions) while simultaneously reducing fuel

consumption and maintaining the requested output torque. Additionally, the NMPC

is required to meet constraints on the control output and engine combustion metrics.

Finally, the developed NMPC is implemented using dSPACE MABX II for diesel

engine control. Compared to the simulation study in Chapter 6, the PM soot emission

reduction has been added so the NOx and PM trade-off of the diesel engine can be

considered. In addition, multi-pulse injection timing and duration (see Figure 7.2)

along with the fuel rail pressure control are added to the model in Chapter 7 to have

more degree of freedom to control the CI engine-out emissions.

158

7.2.1 Controller Design

For the NMPC design, the Optimum Control Problem (OCP) with a finite horizon

of length Np which has the cost function, J(u(k)), is now

J(u(k)) =

Np−1∑︂
i=0

[︂
||IMEP(k + i)− IMEPref(k + i)||2wIMEP⏞ ⏟⏟ ⏞

IMEP tracking

+ ||NOx(k + i)||2wNOx
+ ||PM(k + i)||2wPMx⏞ ⏟⏟ ⏞

NOx and PM minimization

+ ||DOIpilot(k + i)||2wDOIpilot
+ ||DOImain(k + i)||2wDOImain⏞ ⏟⏟ ⏞

fuel consumption minimization

+ ||u(k + i)− u(k + i− 1)||2w∆u⏞ ⏟⏟ ⏞
control effort penalty

]︂
(7.8)

where wj, j ∈ [IMEP,NOx,PM,DOIpilot,DOImain,∆u], are the MPC weights, and

u(k) is the optimization decision defined as

u(k) = [u(k)T u(k + 1)T ... u(k +Np − 1)T] (7.9)

The outputs and manipulated variables of the model are defined as:

y(k) =
[︂
IMEP NOx PM

]︂T
u(k) =

[︂
DOIpilot DOImain tP2M SOImain Pfuel

]︂T
.

(7.10)

The difference between the current IMEP and the required IMEP (IMEP error) is

penalized in the cost function (Eq. 7.8), along with the NOx, PM, and fuel injection

duration minimization. This formulation results in the following OCP

min
u(k)

J(u(k))

s.t. x(0) = x̄(0)

x(k + 1) = f(x(k), u(k)) k = 0, . . . , Np − 1

x ≤ x(k) ≤ x k = 0, . . . , Np

u ≤ u(k) ≤ u k = 0, . . . , Np − 1

(7.11)

159

which is solved at each discrete-time instant. The states xk+1 = f(x(k), u(k)) are

the developed dynamic model in Eq. 7.1 and x(k) are the augmented states that are

defined by adding inputs in Eq. 6.5 as

x(k) =

⎡⎢⎢⎢⎣
hLSTM(k) ∈ R4

cLSTM(k) ∈ R4

u(k) ∈ R5

⎤⎥⎥⎥⎦ ∈ R13 (7.12)

where u is manipulated variables defined in Eq. 7.10. The manipulated variables are

added to states in order to create a δu term in cost function [206, 207].

Figure 7.7 illustrates the LSTM-NMPC schematic. For the measured states,

MPRR and IMEP are provided by the 0.1◦ FPGA calculation while PM and NOx are

measured in real-time. They are then combined with the cell and hidden states that

are estimated by the DNN model. The prediction horizon, p, is set to five steps with

a one-step control horizon, which was used in the simulation in Chapter 6.

Optimizer
(acados)

DNN model

Objective
Function Constraints

IMEP
reference

Predicted
Outputs

Nonlinear Model Predictive Control

SOImain,
DOIpilot,
DOImain,
Pfuel

DNN model

MPRR,
IMEP

NMPC States
Augmentation

Hidden
States

Cell
States

State
Feedback

DNN model with LSTM

FPGA
Pressure Sensor

Engine-out Exhaust

Emission
measurement

PM,
NOx

SOIpilot
calculation Engine

Speed
SOIpilot

tP2M

Figure 7.7: Block diagram of LSTM-NMPC structure

160

7.2.2 Constraint definition

One advantage of the NMPC is the ability to impose constraints on the control output

and states. Here, constraints on control outputs are used to match hardware limita-

tions, and constraints on measured states are used to ensure safe engine operation.

Table 7.3 lists the lower and upper bounds for the state and control constraints that

are implemented.

Table 7.3: Constraint Values

Min Value (x, u) Variable (x, u) Max Value (x, u)

0 bar IMEP 7 bar

0 ppm NOx 500 ppm

0 mg/m3 PM 10 mg/m3

0 bar/CAD MPRR 5 bar/CAD

0.17 ms DOIpilot 0.24 ms

0.17 ms DOImain 0.55 ms

0.43 ms tP2M 1 ms

−10 bTDC CAD SOImain 2 bTDC CAD

600 bar Pfuel 1400 bar

The limits are imposed on IMEP to limit the engine to low-mid load operation.

The upper IMEP constraint is below the engine maximum load but is imposed to keep

the engine operating near the model calibration range for the initial NMPC real-time

implementation.

The upper limit for NOx and PM is used to constrain peak emission levels, and

can be modified for different emission requirements. A limit of 500 ppm for NOx,

and 10 mg/m3 for PM was selected for this work based on the maximum engine-out

emissions recorded when operating the engine using the production ECU at engine

speed of 1500 rpm.

Controlling the maximum pressure rise rate (MPRR) is crucial in combustion

161

engines to ensure quiet and safe/durable engine operation at various engine loads.

MPRR is the rate at which the pressure increases in the cylinder, and the maximum

permissible MPRR is engine and application-dependent. Here, a typical 5 bar/CAD

constraint is implemented to ensure there is no engine damage [40].

Constraints are also imposed on the DOI for both the pilot and main injections.

The minimum DOI is limited to keep the injector within its calibration range. The

upper limit is defined as 25% higher than the maximum observed injection with the

production ECU.

The SOImain is constrained on both the upper and lower ends. Early SOI is re-

stricted to avoid early combustion phasing, which can result in high engine noise and

low thermal efficiency or engine damage for extreme values. Additionally, late SOI is

limited to avoid low thermal efficiency and elevated exhaust gas temperatures. The

P2M time is constrained to short durations based on hardware limitations to ensure

the injector has fully closed before opening for the main injection. The upper limit

is to restrict excessively early pilot injections. Finally, a limit for the fuel pressure is

imposed to keep the commanded fuel pressure within the injectors’ normal operating

range.

7.2.3 Real-time implementation techniques

Real-time implementation of NMPC is done on a dSPACE MABX II. The previous

work comparing NMPC execution times of various solvers is was found that acados

(High-Performance Interior-Point Method (HPIPM) QP solver) outperforms FORCES

PRO and fmincon as detailed in Chapter 6.

In the implementation of the acados solver, a maximum QP iteration of 50 and a

maximum Nonlinear Programming (NLP) iteration / SQP steps of 5 are used. From

the simulation results in Chapter 6, an average runtime of 12.20 ms and a maximum

runtime of 31.56 ms for acados has been observed while the average runtime of

fmincon was 786.02 ms. FORCES PRO [200, 201] was also tested in the simulation

162

and showed an improvement in runtime over the fmincon but was slower than the

acados implementation. The difference in runtime between solvers is attributed to

two possible causes and is detailed in Chapter 6: Section 6.4.

Because acados utilizing HPIPM provides the fastest solution time of the solvers

tested in the simulation it was used for the real-time implementation. The simulation

time of the NMPC is on a modern PC while the real-time implementation is solved

on an embedded processor located within the prototype ECU. The control is driven

with the cycle time dependent on the speed of the engine. A turnaround time that

varies from 100 ms at 1200 rpm to 66.7 ms at 1800 rpm is needed. The real-time

implementation time based on acados has a maximum of 63.0 ms and an average of

62.3 ms which is feasible for real-time implementation of these engine speeds.

A difficulty in implementing the NMPC is related to compiling the necessary li-

braries for real-time implementation on the MABX. In this work acados, blasfeo

and HPIPM had to be cross-compiled to run acados on the embedded system. Helpful

instructions for this process can be found on the acados documentation website ([210]

“Embedded Workflow”). With this overview, it is possible to use the acados inter-

face of MATLAB/Simulink© on the MABX by using a code-generated s-function in

Matlab. The latter refers to the target system specific libraries compiled in the above-

mentioned “Embedded Workflow” section, and the code-generated problem-specific

source files of the acados OCP instance and solver. The next section provides the

real-time implementation results of the developed NMPC along with a comparison

with the production of Cummin’s ECU.

7.3 Experimental Results

The developed NMPC is experimentally tested for IMEP tracking performance, min-

imization of emissions (NOx and soot), and fuel consumption while also meeting con-

straints on MPRR and SOI. The controller is subjected to a step and smooth change

with a bandwidth of approximately 1 Hz in target IMEP. Then to test the controller’s

163

robustness the engine speed is changed while maintaining a constant IMEP. Finally

the controller is compared to the production ECU or BM for comparison to the

NMPC.

7.3.1 Experimental results in changing IMEP

The deep neural network based NMPC is first evaluated for its load tracking perfor-

mance by following a step reference between 2 and 6 bar IMEP. This load range is

selected to match the lower and upper bounds of the training data that is used for

the model’s development. Figure 7.8 shows the multiple steps used to understand the

performance of the controller on engine inputs and outputs.

The NMPC is capable of achieving the target IMEP within an engine cycle. A

slight overshoot and some oscillation is seen after both the increase and decrease

in target value. The oscillation in IMEP after the step change is attributed to the

relatively slow dynamics of the fuel pump and resulting oscillation in fuel pressure

as seen in Figure 7.8(h). The delay in the fuel system to a pressure change was not

modeled, and thus the NMPC expects instantaneous changes in pressure which is not

possible with the given common rail fuel system. Overall, the controller is found to

be capable of achieving the reference setpoint by 0.26 bar average error and RMSE

of 0.61 bar.

The changing NOx and PM emissions can be seen in Figure 7.8(b) and (c), re-

spectively. As expected an increase in IMEP results in an increase in emissions.

However, to better quantify the improvement of this controller it will be compared

to the production ECU (BM) later in this section.

The engine speed is controlled by a dynamometer and a variation of ±50 RPM is

observed by the dynamometer’s PI speed controller. Finally, no constraint violations

in MPRR, DOI, SOI or fuel pressure or other outputs are observed.

The NMPC is then tested by providing a smooth IMEP reference with a bandwidth

of approximately 1 Hz. The controller’s performance can be seen in Figure 7.9 where

164

Figure 7.8: Experimental results for step changes of IMEP: a) IMEP, b) NOx, c) PM,
d) MPRR, e) engine speed, f) DOI, g)SOI, h) fuel rail pressure

the NMPC is again able to successfully track the target load. The controller is able

to track the reference with a 0.16 bar average error and an RMSE of 0.20. Again, the

165

NMPC does not violate any input or output constraints. As shown in Figure 7.9(h)

there is oscillation in the fuel rail pressure. The current IMEP tracking is acceptable;

however, to further improve the controller a more accurate fuel pressure controller

may be required.

Overall, the developed NMPC performs extremely well at 1500 rpm (the speed at

which the deep neural network model is trained) for tracks both step and smooth

IMEP reference with a bandwidth of approximately 1 Hz. In the next section, the

robustness of the NMPC to a changing engine speed is experimentally tested. Since

the model was developed at constant speed, variations in engine speed result in a

model mismatch and are seen as an unmodeled disturbance.

7.3.2 Experimental results in changing engine speed

To further evaluate the NMPC engine, the speed is changing between 1200 to

1800 rpm while holding IMEP constant at 5 bar. This test will evaluate the con-

trol beyond the single speed at which the embedded model in NMPC was trained.

The controller’s performance in tracking step changes in load is shown in Figure 7.10.

Steps of 100 rpm are implemented for the first 1500 engine cycles and then for the

remaining cycles larger steps of up to 500 rpm are tested. Overall, the controller is

able to maintain the IMEP setpoint over changing speeds with an average error of

0.27 bar. Once again, the NMPC is able to maintain all set constraints over the range

of speeds tested.

A similar result can be seen with smooth engine speed change with a bandwidth of

approximately 1 Hz, as shown in Figure 7.11. Again, no constraint violation occurs.

The NMPC is able to maintain commanded engine load over the step and smooth

engine speed change with a bandwidth of approximately 1 Hz on the engine.

166

Figure 7.9: Experimental results of smooth IMEP reference with a bandwidth of
approximately 1 Hz: a) IMEP, b) NOx, c) PM, d) MPRR, e) Engine speed, f) DOI,
g)SOI, h) fuel rail pressure

167

Figure 7.10: Experimental results of step changes of engine speed: a) IMEP, b) NOx,
c) PM, d) MPRR, e) Engine speed, f) DOI, g) SOI, h) fuel rail pressure

7.3.3 LSTM-NMPC vs Cummins calibrated ECU

In this section, the NMPC is compared to a BM engine controller. Here, the BM is

taken as the replicated Cummins production ECU in the MicroAutoBox. Table 7.4

168

Figure 7.11: Experimental results of smooth engine speed change with a bandwidth
of approximately 1 Hz: a) IMEP, b) NOx, c) PM, d) MPRR, e) Engine speed, f) DOI,
g) SOI, h) fuel rail pressure

169

presents 9 different load/speed cases varying from 2-6 bar IMEP and 1200-1800 rpm.

Each row in the table represents the average of 200 cycles. It should be noted that the

average IMEP may not necessarily perfectly match the reference value for either the

BM or the NMPC. Generally the NMPC achieves closer to the reference value as the

IMEP is input to the NMPC controller where the BM utilizes a feed-forward table. To

compare normalized to load values, especially for emission comparisons, both NOx and

PM are converted to g/kWh unit, which represents the mass of emission produced

per generated power. For the same reason, thermal efficiency is also compared.

Table 7.4: Proposed NMPC results compared to the BM, Cummins calibrated ECU,
for different engine operating conditions (averaged over 400 cycles). Negative value
represents that the LSTM-NMPC value is lower than BM. ∆ : LSTM-NMPC-BM,
IMEP: Indicated mean effective pressure, FQ: Fuel Quantity, ηth thermal efficiency.
PM: Particle Matter

Case Number 1 2 3 4 5 6 7 8 9

Reference IMEP [bar] 5.0 5.0 5.0 5.0 2.0 3.0 4.0 5.0 6.0

BM IMEP [bar] 4.83 5.22 5.04 5.03 2.29 3.09 3.91 4.94 6.02

NMPC IMEP [bar] 5.08 4.88 4.91 4.83 1.96 2.98 3.98 4.92 6.05

Engine Speed [rpm] 1190 1296 1701 1801 1509 1504 1504 1503 1504

∆FQ [%] -7.9 -11.0 -10.4 -9.6 -14.9 -8.3 -7.9 -8.5 -7.3

∆ηth [%] difference +4.7 +1.8 +3.0 +2.1 +0.1 +1.4 +3.1 +3.0 +3.2

∆NOx [%]∗ -18.9 -11.2 17.0 3.4 -22.4 -8.7 6.7 9.1 20.7

∆PM [%]∗ -40.8 -35.3 -14.3 -15.4 -8.0 -36.4 -37.5 -43.6 -34.2

∗ Relative difference Calculated based on [g/kWh] units

Table 7.4 presents the average NOx, particulate matter (PM), fuel quantity (FQ)

and thermal efficiency at the given operating point. The percentage difference of the

NMPC compared to the BM is shown. A negative value represents that the NMPC is

below the BM. The main outputs that the NMPC is designed to improve are shown

in Table 7.4. In all the cases tested, the NMPC is able to reduce the fuel used by

9.5% while also increasing the thermal efficiency by an average of 2.5%.

For the PM emissions, the NMPC shows a significant reduction compared to the

BM at every operating point. However, when looking at NOx there is not a clear

170

trend. At some operating points there is an increase in NOx emissions while at

others there is a decrease. Overall, on average there is a slight decrease of 0.5%

in NOx emissions. A NOx and PM emission comparison between the NMPC and

BM is shown in Figure 7.12. This shows the well known NOx-PM trade-off. The cost

function in the NMPC contains both NOx and PM so a reduction in both emissions at

the upper end of their range can be seen. When significant PM is present, the NMPC

focuses more on reducing PM and may allow a slight increase in NOx particularly if

the NOx value is fairly low, for example in cases 3 and 4. However, if both the PM

and NOx are high, as in case 1 or 2, the NMPC reduces both. This is a significant

advantage as it shows that the NMPC is able to reduce both emissions when they

are high, perhaps close to the regulation boundary. In addition, if one emission is

comparable to the regulation boundary as in case 9 for PM, the NMPC reduces it

significantly by slightly increasing the NOx value, which is lower than the regulated

values for this engine. In this case, the NMPC automatically handles the well-known

PM and NOx trade-off.

7.4 Summary of chapter

It has been demonstrated that deep learning and the NMPC can be successfully im-

plemented for real-time minimization of compression ignition engine-out emissions

and fuel consumption while imposing constraints on engine inputs and outputs. The

emissions and performance characteristics of a 4.5 litre 4-cylinder Cummins compres-

sion ignition engine are modelled using a deep network with seven hidden layers and

24,148 learnable parameters constructed by stacking FC layers with an LSTM layer.

This model is then used to design and implement an NMPC in real-time.

To develop this LSTM-NMPC, the open-source software acados is used in com-

bination with the quadratic programming solution HPIPM. This acados embedded

programming approach enables real-time operation of the LSTM-NMPC with an av-

erage turnaround time of 62.3 milliseconds on dSPACE MicroAutoBox.

171

Figure 7.12: Experimental results of PM vs NOx trade-off improvement: in filled
shapes , NOx is slightly increased (cases 3, 4, 8, and 9), while in the remaining cases
, both PM and NOx are decreased

A dSPACE MicroAutoBox II rapid prototyping engine controller is used to imple-

ment the developed LSTM-NMPC. The MABX II allows for not only implementation

of the developed controller but also contains a FPGA that enables the real-time cal-

culation of pressure rise rates and indicated mean effective pressure from measured

in-cylinder pressure.

When compared to the Cummins calibrated production controller for mid-load

points, the proposed LSTM-NMPC reduces fuel usage by 7.3–14.9% while boosting

thermal efficiency by 0.1–4.7% depending on the operating point. This controller is

capable of reducing NOx and PM concentrations by up to 22.4% and 43.6%, respec-

tively. In order to evaluate emission reduction potential, the well known trade-off

172

between NOx and particulate emissions is analyzed. It was observed that when large

amounts of PM are present, the NMPC prioritizes PM reduction while allowing a

slight rise in NOx if the NOx amount is relatively low. However, if both PM and

NOx levels are high, the NMPC effectively reduces both. This is a significant benefit

since it demonstrates the NMPC’s ability to reduce emissions when they are near the

imposed constraints or regulatory limit.

The developed controller has been evaluated for both step and smooth IMEP refer-

ence with a bandwidth of approximately 1 Hz where it has demonstrated acceptable

tracking performance without violating input and output constraints. The average

tracking error for a step reference is 0.26 bar with an RMSE of 0.61, while the average

tracking error for a smooth IMEP reference with a bandwidth of approximately 1 Hz

is 0.16 bar with an RMSE of 0.20.

The controller was evaluated at speeds ranging from 1200-1800 rpm to determine

the its robustness for operating outside the training range. The experimental findings

demonstrate that tracking and disturbance rejection are appropriate. The controller

is able to maintain IMEP set-point with an average error of 0.16 for step and 0.27

for smooth speed change with a bandwidth of approximately 1 Hz. No constraint

violation has been observed in any tested cases for the state, outputs, and inputs

constants.

173

PART IV: Machine Learning in
Learning-based Controller

174

Chapter 8

Safe Deep Reinforcement
Learning 1

A deep Reinforcement Learning (deep RL) application is investigated to control the

emissions of a Compression Ignition diesel engine in this chapter. The main purpose,

similar Chapter 5–7, is to reduce the engine out NOx emissions while minimizing fuel

consumption and reference tracking load error. This case differs from the previous

chapters in that prior knowledge of a system model is not used to generate optimal

control. Using the Engine Simulation Model (ESM) as a virtual engine in simulation,

a Deep Deterministic Policy Gradient (DDPG) is developed–see Chapter 2 for ESM

details. To reduce the risk of an unwanted output, a safety filter is added to the

deep RL. The developed safe RL is then compared with the LSTM-based NMPC

developed in Chapter 6. A well-known learning-based controller is Iterative learning

control (ILC) which is used to improve the tracking performance of a system in the

presence of repetitive input or disturbances. In this chapter, ILC has been developed

for this problem and compared with the developed safe RL.

1 This chapter is based on [9]

175

8.1 Deep Reinforcement Learning (Deep RL)

8.1.1 Reinforcement Learning vs. Deep Reinforcement
Learning

The main goal of RL is to generate an optimal outcome by finding the best sequence

of actions (see Chapter 1, Section 1.1 for more details). Unlike classical machine

learning, RL uses an agent to explore, interact with, and learn from the defined

system environment. The RL agent learns by receiving the environment observations

and rewards and then generates a sequence of actions to reach a specific goal. The

RL algorithm can be either model-free or model-based; due to the model requirement,

the model-free algorithm has been the main focus in engineering applications [135,

211]. One common algorithm used for model-free RL is Q-learning. In Q-learning,

the value of an action for a particular state is learned and the optimal policy is found

by maximizing the expected value (Q-value) of the total reward [136].

Using Deep Neural Network (DNN) in RL, is referred to as deep RL, and has

solved a wide variety of complicated decision-making tasks that were previously un-

feasible to be solved. Earlier versions of RL algorithms had challenges in the design

of the features selection. In contrast, deep RL has been able to successfully overcome

complicated tasks often despite a limited amount of previous available information.

When an agent performs an action which has the highest reward without further

exploring the environmental space it is considered a greedy policy. In continuous

spaces, it takes an extremely long time to obtain a greedy policy to optimize the

action at each time interval. Therefore, it is not often possible to apply Q-learning

easily to continuous action systems. However, an actor-critic method based on the

Deterministic Policy Gradient (DPG) algorithm is often a suitable choice for a system

with a continuous space [137]. The DPG learning procedure is robust and stable

because the off-policy network training takes samples from the replay buffer (which

is a finite sized cache used to store previous samples from the environment). This

176

allows for the reduction of the correlation between samples [212]. Off-policy learning

is independent of the agent’s actions and it determines the optimal policy regardless of

the agent’s motivation. So in contrast with on-policy learning where the agent learns

about the policy to generate the data, the off-policy estimates the reward for future

actions and adds value (an estimated reward) to the new state without following any

greedy policy [136].

8.1.2 Deep Deterministic Policy Gradient Agents (DDPG)
Algorithm

The Deep Deterministic Policy Gradient Agents (DDPG) is a model-free and off-

policy RL algorithm where an actor-critic RL agent calculates an optimal policy by

maximizing the long-term reward. DDPG differs from DPG in that DDPG uses a

Deep Neural Network (DNN) as an approximator in DDPG to learn for large state

and action pairs [212]. In this chapter, a DDPG algorithm is used to minimize the

engine-out emissions and fuel consumption while maintaining the same load. As

presented in Algorithm 8.1 [212], during training, the actor and critic are updated

by the DDPG algorithm at each sample time, and the agent stores past experiences

using an experience buffer. The actor and critic are then updated using a mini-batch

of those experiences randomly sampled from the buffer. The selected policy action is

also perturbed using a stochastic noise model at each training step [135].

In the DDPG algorithm presented in Algorithm 8.1, a copy of the critic Q′(x, u|θQ′
)

and actor network µ′(x|θµ′
) is initially created. Then, these target network weights

are updated “gently” to follow the learned networks: θ′ ← τθ+(1− τ)θ′ with τ ≪ 1.

The target value is constrained to change at a slow rate to improve the stability of

learning. Exploration is a significant challenge of learning when the action spaces

are continuous. Since exploration is an off-policy algorithm, in DDPG, the learning

algorithm and exploration policy µ can be formed by combining a noise process N

with the actor policy. In the DDPG algorithm, the Ornstein-Uhlenbeck process noise

177

model is used to create a noise process for agent exploration [135, 213, 214].

Algorithm 8.1: Deep Deterministic Policy Gradient Agents (DDPG) algorithm [212]

Initialize critic network randomly Q(x, u|θQ) with weights θQ

Initialize actor network randomly µ(x|θµ) with weights θµ

Initialize target network Q′ and µ′ with weights θQ
′ ← θQ and θµ

′ ← θµ

Initialize replay buffer R

For episode = 1, Ef

Initialize a random noise process N to add action exploration

Receive initial observation state x(1) For k = 1, kf

Select action at = µ(x(k)|θµ) +N (k)

Execute action u(k) and observe reward r(k) and observe new state x(k + 1)

Store (x(k), u(k), r(k), x(k + 1)) in R

Sample a random minibatch of N transition (x(k), u(k), r(k), x(k+1)) from
R

Set r̂(k) = r(k) + γQ′(︁x(k + 1), µ′(x(k + 1)|θµ′
)|θQ′)︁

Update critic by minimizing the loss:

L = 1
NΣi(r̂(k)−Q(x(k), u(k)|θθQ))2

Update actor based on the sampled policy gradient:

∇θµ = 1
M

∑︁M
i=1GuGµ

Gu = ∇uQ(x(k), u(k)|θQ) where u = µ(x(k)|θµ)
Gµ = ∇θµµ(x(k)|θµ)

Update the target network:

θQ
′ ← τθQ + (1− τ)θQ

′

θµ
′ ← τθµ + (1− τ)θµ

′

8.1.3 Safe Deep Deterministic Policy Gradient

Despite all the advantages of deep RL, it relies on experience and interaction with the

environment (here ESM). To enforce output constraints, the following optimization-

based filter is added to the DDPG algorithm

Minimize:
x

||u(k)− uRL(k)||22

subject to: y(k) < ymax

umin < u(k) < umax

(8.1)

178

where u(t) is a safe action and uRL(k) is the DDPG generated action. The goal of

this optimization is to enforce that the output is not to exceed the defined output

maximum value ymax given lower (umin) and upper bound (umax) of actions while

minimizing the difference between the DDPG generated action and the safe action.

For the ESM plant model, the constrained output and control actions are defined

as

y(k) = [NOx(k) Tout(k)]
T

u(k) = [FQ(k) SOI(k) VGT(k)]T
(8.2)

where FQ(k), SOI(k), and VGT(k) are injected fuel quantity, start of main injection,

and Variable-geometry turbocharger (VGT) valve rate, respectively. The outputs are

defined as engine-out NOx emission NOx(k) and output torque Tout(k). To simplify

the control problem similar to that described in Chapters 5 and 6, the pilot-injection

is kept constant at 9 mg and is injected 8 Crank Angle Degree (CAD) before the

main injection.

The optimization of, Eq. 8.1, uses quadratic programming (QP) to find the control

action u(k) that minimizes the function ||u(k) − uRL(k)||22. The QP solver applied

the following constraints to the optimization:

f
(︁
x(k)

)︁
+ g
(︁
x(k)

)︁
u(k) < ymax

umin < u(k) < umax

(8.3)

Where f
(︁
x(k)

)︁
and g

(︁
x(k)

)︁
are coefficients of the constraint function which depend

on the modeled plant states x(k). Linear plant dynamics developed in Chapter 5 is

used here:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(8.4)

where A and B are state-space matrices developed using a Autoregressive with Extra

179

Input (ARX) model as:

A =

⎡⎢⎢⎢⎣
0.7286 7.1252 −0.0019
0.0002 0.9859 8.9878× 10−6

−0.6105 33.94287 0.9076

⎤⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎣
1.2639 −1.0899 1.0084× 10−5

−0.0007 0.0014 −1.01397× 10−5

2.9360 −8.2453 −0.0106

⎤⎥⎥⎥⎦
C =

⎡⎣ 1 0 0

0 0 1

⎤⎦

(8.5)

where the constrained output y(k), states x(k) and control actions u(k) are defined

as

y(k) = [NOx(k) Pman(k) Tout(k)]
T

y(k) = [NOx(k) Tout(k)]
T

u(k) = [FQ(k) SOI(k) VGT(k)]T

(8.6)

where FQ(k), SOI(k), and VGT(k) are injected fuel quantity, start of main injection,

and Variable-geometry turbocharger (VGT) valve rate (percentage opening), respec-

tively. The states are defined as engine-out NOx(k) emission, intake manifold pressure

Pman(k), and output torque Tout(k). By substituting Eq. 8.4 in Eq. 8.3, f
(︁
x(k)

)︁
and

g
(︁
x(k)

)︁
can be found as

f
(︁
x(k)

)︁
= CAx(k)

g
(︁
x(k)

)︁
= CB

(8.7)

Substituting system matrices (Eq. 8.5) in Eq. 8.7 results in

f
(︁
x(k)

)︁
=

⎡⎣ 0.7286 7.1252 −0.0019
−0.6105 33.94287 0.9076

⎤⎦x(k)

g
(︁
x(k)

)︁
=

⎡⎣ 1.2639 −1.0899 1.0084× 10−5

2.9360 −8.2453 −0.0106

⎤⎦ (8.8)

To simplify the control problem, the pre-injection is kept constant at 9 mg that is

injected 8 Crank Angle Degree (CAD) before the main injection.

180

The upper bound of NOx is used to regulate peak NOx exhaust emissions levels.

This value depends on government legislation limits. Here, the experimental maxi-

mum NOx level of 500 ppm is observed for the production TIER 3 engine during

standard operation load range and this value is used as the upper bound of NOx.

A 500 N.m torque is used as the upper bound for load to avoid high loads beyond

the defined operating range. To regulate the amount of injected fuel and avoid large

fuel injections, a constraint is imposed for injected fuel amount of 10 mg/cycle to

90 mg/cycle. To avoid late injections that cause combustion inefficiency and high

exhaust gas temperatures, a lower limit of SOI is also imposed. Due to the physical

limitations, the VGT is limited between 70% to 100%. To avoid increased combustion

noise and cause low combustion efficiency, SOI is also limited by an upper bound.

Therefore, the constraints can be summarized as:

ymin = [NOx,min(k) Tout, min(k)]
T = [0 0]T

ymax = [NOx,max(k) Tout, max(k)]
T = [500 500]T

umin = [FQmin(k) SOImin(k) VGTmin(k)]
T = [10 − 2 70]T

umax = [FQmax(k) SOImax(k) VGTmax(k)]
T = [90 11 100]T

(8.9)

A schematic of safe DDPG for minimizing diesel engine emissions and fuel con-

sumption while maintaining load is shown in Figure 8.1. The states of the system for

the DDPG algorithm are defined as

x(k) = [NOx(k) eTout(k) Tout(k) Pman(k)]
T (8.10)

where Pman(k) is intake manifold pressure and eTout(k) is output torque tracking error

defined as

eTout(k) = Tout, r(k)− Tout(k) (8.11)

where Tout, r(k) is the requested load reference.

181

FC1 FC2 FC3

Tout
e
NOx
Pin

Tout

FC4

FC6 FC7 FC8 FC9

FQ
SOI
VGT

FC11 FC12

FC5

FC1 FC2 FC3

Tout
e

NOx
Pin

Tout

FC4 FC5 FC7 FC8 FC9

FQ
SOI
VGT

safety filter

Policy (Actor) Network

Value (Critic) Network

Reward
calculation

Deep Deterministic
Policy Gradient
(Algorithm 1)

Replay Buffer

Update Critic Network

Update Actor Network

Constraints

FC10

Engine Simulation
Model (ESM)

Figure 8.1: Safe Deep Deterministic Policy Gradient schematics to minimize diesel
engine fuel consumption and NOx reduction while maintaining output torque

182

To achieve the control objective, and output torque error, its derivative the fuel

quantity and NOx values are added to the reward function, r(k) as

r(k + 1) = −
(︄
r1eTout(k) + r2

eTout(k)− eTout(k − 1)

Ts

+ r3FQ(k − 1) + r4NOx(k) + r5(NOx(k) > 500)

)︄ (8.12)

where r(k) is reward and Ts is the sampling time, in this application it is each cycle

or 0.08 s at a constant engine speed. r1 to r5 is a positive value representing reward

weights. Here the agent is penalized when the system produces more than 500 ppm

NOx. The DDPG is designed to maximize the reward function for minimization of

the constraints used in this work they are multiplied by a negative value.

As shown in Figure 8.1, the actor has 9 FC layers with a layer size chosen to be 64

(except output layer, FC9, which has 3 units). The critic is set to 12 FC layers with the

same layer size (64) as the actor in each layer (except output layer, FC9, which has 1

unit). To train both the DDPG and safe DDPG a minibatch size of 64 and smoothing

factor of 0.001 are used. A noise model has been implemented with a variance of 5.66,

0.42, and 0.01 for FQ(k), SOI(k), and V GT (k), respectively. It is common to have

this variable multiply to root square of sampling time (σ2 × √Ts) and be between 1%

and 10% of the action range. To force the RL to explore more, the variance decay rate

is selected as a small value (10−6). All of these values including number of layers, layer

size, and noise model parameter are designed based on trial and error and monitoring

reward value vs iteration (episode). Other hyperparameters such as minibatch size,

smoothing factor, variance decay rate, and learning rate are set based on suggested

values in the literature [135]. This schematic also shows the configuration of the ESM

and the implementation of a safety filter to enforce the provided constraints. RL

agents in this study are trained using the Matlab Reinforcement Learning Toolbox©.

183

8.1.4 Safe RL versus RL

In this study, two agents are developed: “RL” which is a traditional DDPG im-

plementation and “safe RL” which is a DDPG with a safety filter to constrain the

output. In both agents, the structure of actor and critic are kept the same. The

episodic reward that the agent receives vs the episode number is shown in Figure 8.2.

A 40 second simulation (500 engine cycles) with a randomly requested load, Tref(k),

is provided to the agent and the load reference is changed for each episode. On an

Intel Core i7-6700K based PC with 32.0 GB RAM running each episode takes an

average of 346.84 s for the total ESM simulation and RL algorithm to update the

networks. For the training of both agents the simulation is set to run for a maximum

of 5000 episodes. The episodic reward versus episode is presented until the agents

reaches to its maximum reward in Figure 8.2. At this point, the agent is considered

an acceptable agent and saved. As shown in Figure 8.2, safe RL takes almost twice

as long to reach the maximum reward compared to regular RL. Safe RL has more

space which needs to be explored so it takes longer. Additionally, due to the use of

a safety filter in safe RL, it reaches a larger reward which can be seen by comparing

the agent at episode 1572 of RL and the agent at episode 3189 of safe RL.

The comparison between the selected agents for both safe RL and RL is presented

in Figure 8.3. As shown, regardless of the training process, both agents are capable of

maintaining load and minimizing NOx emissions and fuel quantity. The RL also tries

to obey the constraints as they are included in the reward function. According to the

results presented, the safety filter does not provide any benefits since even without

the safety filter, RL can learn the constraints as well as minimize the tracking error

and NOx.

Despite the fact that both the final selected agents perform well, it is interesting

to compare them during the training of the agents. Figure 8.4 shows two agents of

the RL at various stages of training. These agents are also presented in Figure 8.2.

184

Figure 8.2: Episodic reward vs episode for safe RL and RL

One agent is in the middle of the training process at episode 924 and the other is

the final agent that has reached the desired maximum reward of -150 at episode

1571. The oscillation observed from the controller during the early stages of training

(episode 924) is due to the noise used to excite the system to allow for increased

learning. Although agent 1571 is able to obey all constraints, there is a significant

constraints violation in the NOx output during training in earlier episodes. For online

training the presence of safety filter is crucial in observing the constraints throughout

training. However, if training is carried out in simulation, the use of a safety filter in

not necessary, as the final agent is able to meet constraints while providing a stable

output without the increased training time of using a safety filter.

8.2 Iterative Learning Controller (ILC)

A learning based controllers that has common elements with RL is an Iterative learn-

ing control (ILC). ILC has a simpler structure than RL as its control law update only

includes two main filters and can be defined as

ut(k) = Q(uj(k − 1)) + L(ej(k − 1)) (8.13)

185

Figure 8.3: Safe RL vs RL: Comparison between two agent that reaches to maximum
reward for safe RL (agent 3189) and RL (agent 1571)– a) engine-out NOx, b) intake
manifold pressure (Pman), c) engine output torque (Tout), d) fuel quantity (FQ), e)
Start of injection (SOI), f) Variable Geometry Turbine (V GT) rate– The blue line
represents the constraints boundary

where L(ej(k)) is the L-filter or learning filter and Q(uj(k)) is the Q-filter. In this

equation, k represents the time interval. One of the simplest types of ILC is P-type

186

Figure 8.4: RL during training: comparison between agent in middle of training
(agent 947) and agent that reaches to maximum reward (agent 1571)– a) engine-
out NOx, b) intake manifold pressure (Pman), c) engine output torque (Tout), d) fuel
quantity (FQ), e) Start of injection (SOI), f) Variable Geometry Turbine (V GT)
rate– The blue line represents the constraints boundary

ILC where the learning filter is Pej(k) and P is a proportional gain and Q-filter is

taken as unity. In a manner similar to the way safe RL enforces the output constraints,

187

a safety filter is added to ILC. Figure 8.5 shows a block diagram of the safe ILC. As

shown, ILC learns from the previous error and control input to generate the current

control action. The states, outputs, and inputs of ESM for ILC are

x(k) = [NOx(k) Pman(k) Tout(k)]
T

y(k) = [NOx(k) Tout(k)]
T

u(k) = [FQ(k) SOI(k) VGT(k)]T

(8.14)

safety filter

Memory L-Filter
MemoryQ-Filter

Iterative Learning Control (ILC)

Constraints

Engine
Simulation

Model (ESM)

Figure 8.5: Safe iterative learning control block diagram

The implementation is slightly different compared to RL. Because of the nature of

repetitive input requirements, a repetitive reference was implemented and the error

between the actual state and the reference was provided to the ILC. The error can

be defined as

e(k) =

⎡⎢⎢⎢⎣
NOx,ref(k)− NOx(k)

Tout, ref(k)− Tout(k)

Pin, ref(k)− Pref(k)

⎤⎥⎥⎥⎦ (8.15)

where NOx,ref(k), Tout, ref(k), and Pin, ref(k) are the respective reference values where

each reference is repetitive with the same frequency. As the only tracking problem is

the load output from the engine, this reference is the actual reference and the other

two are implemented to satisfy the repetition requirements. For NOx, the reference

value changes from 20 to 40 ppm for minimizing it. This variation is required to

188

artificially create a NOx reference to minimize NOx. Similarly, a reference for intake

manifold pressure the set point is changed from 2 to 2.1 bar. All of the references are

repeated every 300 cycles, i.e., for NOx, the set point is 20 ppm for 150 cycles, then

it changes to 40 ppm for 150 cycles, then it repeated. ILC and safe ILC training are

shown in Figure 8.6. This figure presents 46 ILC iterations (a total of 13800 engine

cycles). As shown after cycle 33, (9900 engine cycle), both the safe ILC and ILC

learn to track desired references. As shown, the safe ILC is able to observe the output

constraints; however, the ILC fails to remain within the constraints. Here, unlike the

RL implementation, the presence of a safety filter for both the final stage and during

training is necessary. As shown, the safe ILC tends to require late injections as SOI

remains saturated at the upper limit. The existence of upper limit is necessary to

avoid very late injection timing.

8.3 Results and Discussion

In this section the safe RL controller described in this section will be compared with

the safe ILC and LSTM-NMPC (see Chapter 6). All these controllers are compared

to a Cummins calibrated ECU modeled as ESM and denoted “benchmark (BM)”.

First a comparison between the RL, LSTM-NMPC and BM controllers is presented

in Fig 8.7. As shown, the safe RL is capable of accurately tracking the output torque

with similar performance to the LSTM-NMPC. Both controllers outperform the BM

feedforward production controller. Here the safe RL controller suffers from slightly

increased overshoot when compared to the model based NMPC.

The controllers maintain NOx emissions levels below the defined 500 ppm NOx con-

straint. One clear trend in both the NMPC and RL is that the average NOx value

is significantly lower than the BM. This is expected as both controllers minimize

NOx and fuel consumption. One interesting trend is that the NOx emissions of the

safe RL model follow a similar trend to the BM but at a lower level. When compar-

ing the RL to the LSTM-NMPC, overall the NOx emissions are generally below the

189

Figure 8.6: Simulation training ILC and safe ILC: The reference is repeated every 300
cycles and 46 ILC iterations are shown in this figure– a) engine-out NOx, b) intake
manifold pressure (Pman), c) engine output torque (Tout), d) fuel quantity (FQ), e)
Start of injection (SOI), f) Variable Geometry Turbine (V GT) rate– The blue line
represents the constraints boundary

LSTM-NMPC values and a significant reduction can be seen during the two cycles

after a change in load where the LSTM-NMPC controller focuses on the load change

190

Figure 8.7: Safe Reinforcement Learning compared with LSTM-NMPC developed
in Chapter 6 and the Cummins calibrated ECU which modeled in GT-power©– a)
engine-out NOx, b) intake manifold pressure (Pman), c) engine output torque (Tout),
d) fuel quantity (FQ), e) Start of injection (SOI), f) Variable Geometry Turbine
(V GT) rate– The blue line represents the constraints boundary

resulting in a spike of NOx emissions.

The values of cumulative NOx, fuel quantity, and execution time are compared in

191

Table 8.1: Comparison between Deep RL, Benchmark (BM), and Nonlinear Model
Predictive Control developed in Chapter 6

Cumulative Average Load Cumulative Average Execution

NOx [ppm] NOx [ppm] error [%] FQ [g] FQ [mg] time [ms]∗

BM 5.6 × 105 376.8 3.95 67.9 46.0 -

Safe RL 3.8 × 105 260.4 3.85 69.1 46.8 4.5

LSTM-NMPC 4.3 × 105 290.2 1.90 65.6 44.4 12.20∗∗

∗ per engine cycle of simulation

∗∗ average acados execution time

Table 8.1. To determine the execution time of the NMPC, an open-source package

acados [202, 203] is used for the implementation. For the execution time, the idea

is to examine the feasibility for real-time implementation and thus the deployment

time of RL is considered only and the training time is excluded. In this study, RL

has almost 3 times faster execution time than the online NMPC optimization.

As shown, RL has significantly lower NOx in comparison to both the BM and the

NMPC. The drawback of the RL controllers is slightly increased load error and fuel

quantity. However, the improvement in NOx reduction using a safe RL controller is

more significant than the loss in load error and fuel quantity.

The deep RL controller performs comparably to the model-based NMPC. However,

it is also of interest to compare with another learning-based control strategy such as

the ILC. The developed RL controller is compared to ILC and the BM in Figure 8.8.

As shown, both controllers are capable of tracking the desired output torque with

similar performance to the BM. The ILC tracks the reference more closely than the

deep RL control. The ILC tracking performance is almost perfect with very little

overshoot which is one of its benefits of the ILC since the repetitive input requirements

allow it to ILC learn by repetition. The RL controller suffers from slight torque

overshoot but its performance is still acceptable.

All of the controllers tested were able to remain below the defined 500 ppm

NOx constraint. The NOx reduction using the ILC is slightly better than the RL

192

Figure 8.8: Safe Reinforcement Learning compared with safe ILC and Cummins cal-
ibrated ECU which modeled in GT-power©– a) engine-out NOx, b) intake manifold
pressure (Pman), c) engine output torque (Tout), d) fuel quantity (FQ), e) Start of
injection (SOI), f) Variable Geometry Turbine (V GT) rate– Blue line represent con-
straints boundary

controller and both controllers significantly outperform the BM. When comparing

the models in terms of fuel quantity used both the ILC and RL models use slightly

193

Table 8.2: Comparison between Deep RL, Bechmark, and ILC

Cumulative Average Load Cumulative Average Execution

NOx [ppm] NOx [ppm] error [%] FQ [g] FQ [mg] time [ms]∗

BM 3.17 × 105 317.0 6.65 32.6 32.6 -

Safe RL 1.71 × 105 171.0 5.23 31.4 31.4 4.5

Safe ILC 1.55 × 105 155.4 0.51 29.9 29.9 0.08

∗ per engine cycle of simulation

less fuel than the BM model. However, there is very little difference in the results

between the RL and ILC, as can be seen in Figure 8.8.

The controller performance results, the value of cumulative NOx, fuel quantity, and

execution time are summarized in Table 8.2. As shown, both RL and ILC are able

to reduce NOx emissions significantly compared to the BM. Although a comparison

between the RL and ILC fuel quantity (FQ) showed a better FQ for ILC. The exe-

cution time of ILC is two orders of magnitude faster than the RL with significantly

better load tracking performance. The fast learning time of the ILC indicates that it

could be used for real-time online training. However, its the main draw-back is that

it requires a repetitive reference or disturbance. This condition may be possible for

stationary engines; however, it is not feasible in most of the ICE applications espe-

cially for on-road engines. Therefore the slight performance loss of the RL compared

to the ILC provides the flexibility to remove the requirement of a repetitive reference

or disturbance.

The summary of these comparisons is presented in Table 8.3 and Table 8.4.

8.4 Summary of chapter

In this chapter, a deep RL-based controller was developed to minimize NOx emissions

and fuel consumption of a diesel engine while maintaining a constant output torque.

Using the ESM two learning-based controllers, DDPG and ILC, are investigated in

simulation. A safety filter was applied to DDPG and ILC to enforce the output

194

Table 8.3: Summary of comparison for developed controllers

Method
Constraints Execution Model

Limitation
Enforcement Time Requirement

RL - 50x - Time-consuming in training

ILC - 1x - Repetitive reference requirement

Safe RL ✓ 50x ✓ Time-consuming in training

Safe ILC ✓ 1x ✓ Repetitive reference requirement

LSTM-NMPC ✓ 150x ✓ High accuracy model requirement

Table 8.4: Summary of comparison for developed controllers– controller performance
compared to benchmark. Range is used in safe RL as it is compared with BM using
both repetitive and random reference twice with different reference.

Method
Load Tracking Average Fuel Average NOx

Error Consumption Reduction∗ Reduction∗

Safe RL 3− 5% 0− 4% 30− 45%

Safe ILC ≤ 1% ≥ 8% ≥ 50%

LSTM-NMPC ≤ 2% ≥ 3% ≥ 22%

∗ Reduction calculated relative to BM

constraints.

Comparison between safe RL and RL showed that both with similar performance

once training was completed. The RL is able to learn to enforce the output con-

straints since they are part of the reward function. However, during training, there is

a large violation of the constraints suggesting that using safe learning is crucial when

working with real engineering system in real-time learning. For the ILC, the safety

filter implementation shows a significant effect during both training and final con-

troller performance. This suggests that ILC requires a safety filter to enforce output

constraints.

The safe RL was then compared to safe ILC and LSTM-NMPC to evaluate which

controller had better performance. Although ILC has a 4 percent better torque

tracking and 16 ppm lower average NOx emissions, than the RL based controller,

it is require repetitive references and disturbances. Comparison with LSTM-NMPC

195

shows that the deep RL is capable of further reducing the average NOx emissions by 30

ppm compared to LSTM-NMPC at a cost of 2% higher load error and 4.5% average

fuel consumption increase. These performance differences between the models are

very small. However, the LSTM-NMPC is a model-based controller which requires

a relatively accurate model (black-box or white-box (physical) model) for the online

MPC optimization. In contrast, the Safe RL learns directly from experiments and

required a simple linear model for safety filter.

196

PART V: Conclusions

197

Chapter 9

Conclusions

This thesis studied the application of Machine Learning (ML) to engine modeling,

control, and emission reduction. First the application of ML to emission and perfor-

mance prediction was presented in Chapters 3 and 4 by modeling engine-out NOx,

PM, and load. Chapters 5, 6, and 7 presented integration of ML and Model Predictive

Control (MPC) by using ML in the transient modeling needed in MPC and imitation

of MPC. Finally, Reinforcement Learning (RL) and Iterative Learning Control (ILC)

were presented in Chapter 8 as pure learning-based controls for emission and fuel

consumption minimization. The main conclusions of this study and future related

work are presented next.

9.1 Machine Learning in Emission Prediction

This thesis addressed two main challenges identified for the literature in emission

prediction. First, to address the complexity of black-box models, a Model Order

Reduction (MOR) algorithm was developed using a support vector machine (SVM)

approach to predict the steady-state NOx and Break Mean Effective Pressure (BMEP)

of a medium-duty diesel engine. The MOR algorithm was used to produce two models:

a complex model with high-accuracy called a High-Order Model (HOM), and a Low-

Order Model (LOM) with acceptable accuracy. Unnecessary features were removed

based on the SVM-based MOR algorithm resulting in an enhanced performance of

198

the HOM for both NOx and BMEP while the HOM complexity decreased by 27.9%

with respect to the Full-Order Model (FOM). The LOM model had an acceptable

accuracy with a squared correlation coefficient of 0.94 for NOx and 0.996 for BMEP

while having 77.9% and 69.4% fewer features with respect to the FOM and HOM,

respectively. This algorithm successfully reduced the order of the ML-based data-

driven model without significant loss in the prediction accuracy of prediction. These

results were published in [3, 4].

Secondly, black-box and gray-box modeling for engine PM or soot emissions was

developed and compared to physics-based models which struggle with their prediction

accuracy due to the complexity in Particle Matter (PM) emissions formation. Gray-

box and black-box soot emissions models were developed using eight different machine

learning methods. Based on the Least Absolute Shrinkage and Selection Operator

(LASSO) feature selection method and physical insight, five different feature sets

were tested for black-box and gray-box models. To analyze the results, the K-means

clustering algorithm was applied in two steps to categorize the models according to

their performance. Real-time control is only feasible with black-box methods since

the physics-based model is too computationally expensive for use in current ECUs.

Based on the results, the Gaussian Process Regression (GPR) method with LASSO as

the feature selection method was the most reliable ML method/feature set. Gray-box

models, although more complex than black-box models, are useful as a virtual engine

to conduct simulation tests for development and calibration purposes, reducing the

need for costly experiments. Among gray-box models, the SVM-based ML method

combined with the use of LASSO and physical insight for feature selection provided

the best performance. In most cases, gray-box models outperform their black-box

counterparts in terms of accuracy. This work was published in [5].

199

9.2 Integration of Machine Learning and Model

Predictive Control

The two main challenges of MPC that have been identified are: 1) an accurate model

is required and 2) computation requirement time must be reduced to allow for real-

time implementation. Two main methods using ML have been presented to address

these two challenges. In the first method, ML was used to identify a model for

implementation in model predictive control optimization problems. In the second

method, ML was used as a replacement for the controller, where the ML controller

learned the optimal control action by imitating or mimicking the behavior of the

model predictive controller. The ML replaced the MPC controller.

In Chapters 5 and 6 two MPC controllers using an SVM-based Linear Parameter

Varying (SVM-LPV) method and Long-Short Term Memory (LSTM) models were

developed and compared with linear MPC and the Cummins calibrated benchmark

ECU. The controllers in Chapters 5 and 6 were compared in simulation using the

Engine Simulation Model (ESM) developed in Chapter 2.

To develop the LPV-MPC, an SVM-LPV model was first developed to design an

LPV-MPC. Then, the LPV-MPC was implemented and the controller input and out-

put data were collected from the MPC and used to train a deep neural network.

Replacing the full online MPC with a deep network reduced the computational time

of the MPC. After testing the imitative LPV-MPC controller at two different en-

gine speeds, the imitative controller performed similarly to the full online optimiza-

tion of LPV-MPC performance but with a significant reduction in the processing

time. In addition, the MPC and imitative models showed significant improvements

in NOx emissions and a reduction in fuel consumption while providing similar load

following capabilities as the feed-forward production controller. Both the LPV-MPC

and imitative controller were able to reduce NOx emissions by 18-70% while reducing

fuel consumption by 1-10% compared to the Cummins production controller. The im-

200

itative controller required 1/50 of the computational time compared to online MPC

optimization. This work was published in [6].

For the LSTM-NMPC, a deep neural network with an LSTM layer was designed

to predict diesel engine performance and emissions. The NMPC was designed based

on this network by augmenting hidden and cell states. This model has an acceptable

prediction accuracy for inputs not yet seen (test data). This accuracy is expected

as the LSTM is capable of a more generalizable prediction since it uses hidden and

cell states. Similar to the imitative LPV-MPC, an imitative LSTM-NMPC controller

has been developed. All of the controllers produce significant NOx reduction, espe-

cially at lower engine speeds with respect to the benchmark feedforward production

controller. The NOx reduction for 1500 and 1200 rpm for the NMPC was 23.0% and

65.8%. The imitative controller successfully cloned the NMPC behavior resulting in

a NOx reduction of 21.1% at 1500 rpm. At 1200 rpm the reduction was 63.4% when

compared to the BM. The imitative controller performed similarly to the online MPC

by learning from the MPC experiment but it requires much lower computational time.

The computational time for the imitative controller was a factor of 100 lower than

the online optimized LSTM-NMPC. In addition, a benchmark comparison of NMPC

execution time was performed using an open-source acados (QP solver HPIPM) pack-

age, state-of-the-art commercial FORCES PRO solver, and standard Matlab© fmincon

solver. The acados program with HPIPM provided the fastest solve time among the

solvers tested with an average runtime of 12.20 ms and a maximum runtime of 31.56

ms for 1500 rpm. This value is much faster than the average runtimes of fmincon

that required 786.02 ms. FORCES PRO was also tested and while it showed an improve-

ment in runtime over the fmincon, but it was significantly slower than the acados

implementation. This work was submitted in [7].

The comparison between the LPV-MPC and LSTM-NMPC showed that the

LSTM-NMPC in simulation has more emission reduction with better load tracking.

This knowledge was used to choose the LSTM-NMPC for experimental implementa-

201

tion. The experimental engine control was implemented in a real-time system using

dSPACE MictroAutoBox II rapid prototyping as described in Chapter 7. To do this,

a new deep neural network was developed based on real-time data. Due to the accessi-

bility to fast PM sensor and utilizing an FPGA, PM emissions, as well as the Indicated

Mean Effective Pressure (IMEP) tracking and Maximum Pressure Rise Rate (MPRR)

constraints were added to the model and controller. The main goal was minimized

emissions and fuel consumption while considering constrains and tracking of IMEP.

The constraint for MPRR was to ensure combustion stability and other inputs are

constrained to ensure engine safety. In the real-time implementation, the acados C

package was cross compiled for the MictroAutoBox. For this embedded program, the

average run time of NMPC is 62.5 ms, which was feasible for real-time implementation

with an engine speed of less than 1850 rpm. The controller achieved both reductions

in PM and NOx demonstrating the advantage of using systematic optimization to

solve the NOx-PM trade-off. The proposed controller can reduce average NOx , PM,

and fuel consumption up to 22.4%, 43.6%, and 14.9% while improving thermal ef-

ficiency up to 4.7%. The controller was also tested for transient changes in load.

The average tracking error to a step reference of load was 0.26 bar with an RMSE of

0.61, while the average tracking error for smooth (∼ 1 Hz bandwidth) load reference

changes was 0.16 bar with an RMSE of 0.20. To determine the controller’s robustness

for operation outside the training range of the model, the controller was evaluated

at speeds ranging from 1200 to 1800 rpm. The experimental findings demonstrate

that good tracking and disturbance rejection were achieved for the LSTM-NMPC.

Further, a systematic way to develop the NMPC for a complex nonlinear system with

a fast sampling frequency was demonstrated by using ML with MPC. This work was

submitted in [8].

202

9.3 Machine Learning in Learning-based Con-

troller

A deep Reinforcement Learning (RL) based controller was developed in simulation to

minimize NOx emissions and fuel consumption of a diesel engine while maintaining

a constant output torque. Using the ESM two learning-based controllers were inves-

tigated in simulation. The first was the RL controller utilizing a Deep Deterministic

Policy Gradient (DDPG) which is implemented using a deep network for both actor

and critic. This was extended with the addition of a safety filter. This safety filter

was added to the manipulated control action and used to enforce output constraints.

The second learning-based controller is an Iterative Learning Control (ILC) which is

another well-known control strategy. The same safety filter was applied to ILC to

enforce the output constraints.

Each learning-based controller with a safety filter was compared with its standard

version to better understand the effect of adding a safety filter. It was found that

for deep RL, both the safe and standard controller resulted in almost the same con-

troller performance once training was completed. Even the standard RL was able to

learn to enforce the output constraints. However, during training, there was a large

violation of the constraints suggesting that the use of safe learning is crucial when

working with engineering systems in real-time learning. For the ILC, the safety filter

implementation showed a significant effect during both training and final controller

performance. This suggested that the ILC requires a safety filter to enforce output

constraints.

The safe RL was then compared to the safe ILC to evaluate which controller has

better performance, as they both share a similar learning based controller approach.

This comparison showed that the real-time turnaround time of the ILC was two orders

of magnitude faster than the RL and the ILC had the ability to take advantage of

online learning. Although ILC had a 4 percent better torque tracking and 16 ppm

203

lower average NOx emissions than the RL based controller, it does have the limitation

of requiring repetitive references and disturbances. This makes the ILC applicable

only to certain ICE applications such as power generation which utilize a repetitive

set-point. However, since many ICE applications are non-repetitive, for example on-

road vehicle applications, the ILC is not a feasible option and the safe RL is a better

choice.

To compare the safe RL to a state-of-the-art controller a comparison was made to

the LSTM-NMPC. This comparison showed that the deep RL is capable of reducing

the average NOx emissions by 30 ppm more than the LSTM-NMPC at a cost of a 2%

higher load error and 4.5% average fuel consumption increase. These performance

differences between the models are very small. However, the LSTM-NMPC is a

model-based controller which requires a relatively accurate model for the online MPC

optimization. In contrast, the RL learns directly from experimental data.

9.4 Future Work

Possible ways to extend this work in the future include:

• Real-time implementation and online training of the RL. This work was the

first to propose a method to investigate the possibility of RL implementation in

engine control and emission reduction. Implementing these methods, perhaps

using TensorFlow API called from MicroAutoBox, is one possible method to

achieve RL in real-time.

• Although imitation learning has been studied in simulation, it seems promising

for real-time implementation. There is no guarantee of safety and enforcing

constraints, so other add-on methods such as using RL as an add-on controller,

or using a safe filter with imitation or online updating an imitating controller

require future investigation.

• One limitation of this work is related to the experimental setup. This engine

204

has no Exhaust Gas Recirculation (EGR), and the turbine controller is mechan-

ical. Adding variable boost pressure using either a supercharger or a Variable

Geometric Turbine (VGT) as well as adding an EGR system will allow more

flexibility for control and make the work applicable to modern diesel engines.

This resulting controller could further reduce emission and fuel consumption

while maintaining constraints and safety.

205

Bibliography

[1] A. Norouzi, H. Heidarifar, M. Shahbakhti, C. R. Koch, and H. Borhan, “Model
predictive control of internal combustion engines: A review and future direc-
tions,” Energies, vol. 14, no. 19, 2021.

[2] A. Norouzi, H. Heidarifar, M. Shahbakhti, C. R. Koch, and H. Borhan, “Ma-
chine learning and model predictive control integration in automotive control
system applications: A review and future directions,” Engineering Applications
of Artificial Intelligence (Submitted on June 24, 2022), 2022.

[3] A. Norouzi, M. Aliramezani, and C. R. Koch, “A correlation-based model
order reduction approach for a diesel engine nox and brake mean effective
pressure dynamic model using machine learning,” International Journal of
Engine Research, vol. 22, no. 8, pp. 2654–2672, 2021. eprint: https://doi.org/
10.1177/1468087420936949.

[4] A. Norouzi, D. Gordon, M. Aliramezani, and C. R. Koch, “Machine Learning-
based Diesel Engine-Out NOx Reduction Using a plug-in PD-type Iterative
Learning Control,” in 2020 IEEE Conference on Control Technology and Ap-
plications (CCTA), 2020, pp. 450–455.

[5] S. Shahpouri, A. Norouzi, C. Hayduk, R. Rezaei, M. Shahbakhti, and C. R.
Koch, “Hybrid machine learning approaches and a systematic model selection
process for predicting soot emissions in compression ignition engines,” Ener-
gies, vol. 14, no. 23, 2021.

[6] A. Norouzi, S. Shahpouri, D. Gordon, A. Winkler, E. Nuss, D. Abel, J. Andert,
M. Shahbakhti, and C. R. Koch, “Machine learning integrated with model pre-
dictive control for imitative optimal control of compression ignition engines,”
IFAC-PapersOnLine, 2022, 10th IFAC Symposium on Advances in Automotive
Control AAC 2022 (In Press).

[7] A. Norouzi, S. Shahpouri, D. Gordon, A. Winkler, E. Nuss, D. Abel, J. Andert,
M. Shahbakhti, and C. R. Koch, “Integration of Deep Learning and Nonlin-
ear Model Predictive Control in Emission reduction of Compression Ignition
Combustion Engines: A Simulation Study,” Control Engineering Practice (In
Press), 2022.

206

https://doi.org/10.1177/1468087420936949
https://doi.org/10.1177/1468087420936949

[8] A. Norouzi, D. Gordon, A. Winkler, J. McNally, E. Nuss, D. Abel, J. Andert,
M. Shahbakhti, and C. R. Koch, “Experimental implementation of deep neural
network-based nonlinear model predictive control in diesel engine emission
control,” Transactions on Control Systems Technology (Submitted on May 26,
2022), 2022.

[9] A. Norouzi, S. Shahpouri, D. Gordon, M. Shahbakhti, and C. R. Koch, “Safe
Deep Reinforcement Learning in Diesel Engine Emission Control,” Proceedings
of the Institution of Mechanical Engineers, Part I: Journal of Systems and
Control Engineering (Submitted on April 3, 2022), 2022.

[10] D. G. Kessel, “Global warming—facts, assessment, countermeasures,” Journal
of Petroleum Science and Engineering, vol. 26, no. 1-4, pp. 157–168, 2000.

[11] I. Yusri, A. A. Majeed, R. Mamat, M. Ghazali, O. I. Awad, and W. Azmi,
“A review on the application of response surface method and artificial neural
network in engine performance and exhaust emissions characteristics in alter-
native fuel,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 665 –686,
2018.

[12] B. E. Economics, “BP energy outlook: 2020 Edition,” BP PLC: London, UK,
2020.

[13] A. Vuorinen, Planning of Optimal Power Systems. Vammalan Kirjapaino Oy,
Vammala, Finland, 2009.

[14] S. Davis and R. G. Boundy, “Transportation Energy Data Book: Edition 39,”
Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), Tech. Rep.,
2021.

[15] I. A. Resitoglu, K. Altinisik, and A. Keskin, “The pollutant emissions from
diesel-engine vehicles and exhaust aftertreatment systems,” Clean Technologies
and Environmental Policy, vol. 17, no. 1, pp. 15–27, 2015.

[16] I. Blanco-Rodriguez, Modelling and observation of exhaust gas concentrations
for diesel engine control. Springer, 2014.

[17] S. H. Cadle, P. A. Mulawa, E. C. Hunsanger, K. Nelson, R. A. Ragazzi, R. Bar-
rett, G. L. Gallagher, D. R. Lawson, K. T. Knapp, and R. Snow, “Composition
of Light-Duty Motor Vehicle Exhaust Particulate Matter in the Denver, Col-
orado Area,” Environmental Science & Technology, vol. 33, no. 14, pp. 2328–
2339, 1999.

[18] Y.-C. Chang, W.-J. Lee, T. S. Wu, C.-Y. Wu, and S.-J. Chen, “Use of water
containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate
matter) trade-off in the diesel engine fueled with biodiesel,” Energy, vol. 64,
pp. 678–687, 2014.

[19] C. Thiel, J. Schmidt, A. Van Zyl, and E. Schmid, “Cost and well-to-wheel im-
plications of the vehicle fleet CO2 emission regulation in the european union,”
Transportation Research Part A: policy and practice, vol. 63, pp. 25–42, 2014.

207

[20] L. D. Prockop and R. I. Chichkova, “Carbon monoxide intoxication: An up-
dated review,” Journal of the neurological sciences, vol. 262, no. 1-2, pp. 122–
130, 2007.

[21] X. Gu, Z. Huang, J. Cai, J. Gong, X. Wu, and C.-f. Lee, “Emission charac-
teristics of a spark-ignition engine fuelled with gasoline-n-butanol blends in
combination with EGR,” Fuel, vol. 93, pp. 611–617, 2012.

[22] A. Dewangan, A. Mallick, A. K. Yadav, and R. Kumar, “Combustion-
generated pollutions and strategy for its control in CI engines: A review,”
Materials Today: Proceedings, vol. 21, pp. 1728–1733, 2020, International Con-
ference on Mechanical and Energy Technologies.

[23] B. Heid, R. Hensley, and S. Knupfer, “What’s sparking electric-vehicle adop-
tion in the truck industry?,” 2017.

[24] EuroVI, “Commission regulation (EU) 2016/646 of 20 april 2016 amending
regulation (EC) NO692/2008 as regards emissions from light passenger and
commercial vehicles (Euro 6),” in Euro 6 regulation, 2016.

[25] A. G. Konstandopoulos, M. Kostoglou, E. Skaperdas, E. Papaioannou, D.
Zarvalis, and E. Kladopoulou, “Fundamental studies of diesel particulate fil-
ters: Transient loading, regeneration and aging,” SAE transactions, pp. 683–
705, 2000.

[26] M. K. Khair and W. A. Majewski, “Diesel emissions and their control,” SAE
Technical Paper, Tech. Rep., 2006.

[27] M. Zheng, G. T. Reader, and J. G. Hawley, “Diesel engine exhaust gas
recirculation—-a review on advanced and novel concepts,” Energy conversion
and management, vol. 45, no. 6, pp. 883–900, 2004.

[28] A. Abedi, “The Effect of an Axial Catalyst Distribution on the Performance
of a Diesel Oxidation Catalyst and Inverse Hysteresis Phenomena during CO
and C3H6 Oxidation,” 2012.

[29] A Aksikas, I Aksikas, R. Hayes, and J. Forbes, “Model-based optimal boundary
control of selective catalytic reduction in diesel-powered vehicles,” Journal of
Process Control, vol. 71, pp. 63–74, 2018.

[30] K. Mollenhauer and H. Tschoke, Handbook of diesel engines. Springer Berlin,
2010, vol. 1.

[31] F. Tschanz, A. Amstutz, C. H. Onder, and L. Guzzella, “Feedback control
of particulate matter and nitrogen oxide emissions in diesel engines,” Control
engineering practice, vol. 21, no. 12, pp. 1809–1820, 2013.

[32] L. Guzzella and C. Onder, Introduction to modeling and control of internal
combustion engine systems. Springer Science & Business Media, 2009.

[33] R. Isermann, “Engine modeling and control,” Berlin: Springers Berlin Heidel-
berg, vol. 1017, 2014.

208

[34] J. D. López, J. J. Espinosa, and J. R. Agudelo, “LQR control for speed and
torque of internal combustion engines,” IFAC Proceedings Volumes, vol. 44,
no. 1, pp. 2230–2235, 2011, 18th IFAC World Congress.

[35] R. Pfeiffer, G. Haraldsson, J.-O. Olsson, P. TunestAl, R. Johansson, and B.
Johansson, “System identification and LQG control of variable-compression
HCCI engine dynamics,” in Proceedings of the 2004 IEEE International Con-
ference on Control Applications, 2004., IEEE, vol. 2, 2004, pp. 1442–1447.

[36] A. Norouzi, K. Ebrahimi, and C. R. Koch, “Integral discrete-time sliding mode
control of homogeneous charge compression ignition (hcci) engine load and
combustion timing,” IFAC-PapersOnLine, vol. 52, no. 5, pp. 153–158, 2019,
9th IFAC Symposium on Advances in Automotive Control AAC 2019.

[37] M. R. Amini, M. Shahbakhti, S. Pan, and J. K. Hedrick, “Discrete adaptive
second order sliding mode controller design with application to automotive
control systems with model uncertainties,” in 2017 American Control Confer-
ence (ACC 2017), IEEE, 2017, pp. 4766–4771.

[38] J. S. Souder and J. K. Hedrick, “Adaptive sliding mode control of air–fuel
ratio in internal combustion engines,” International Journal of Robust and
Nonlinear Control: IFAC-Affiliated Journal, vol. 14, no. 6, pp. 525–541, 2004.

[39] B. K. Irdmousa, S. Z. Rizvi, J. M. Velni, J. Naber, and M. Shahbakhti, “Data-
driven modeling and predictive control of combustion phasing for RCCI en-
gines,” American Control Conference (ACC 2019), pp. 1–6, 2019.

[40] L. A. Basina, B. K. Irdmousa, J. M. Velni, H. Borhan, J. D. Naber, and
M. Shahbakhti, “Data-driven modeling and predictive control of maximum
pressure rise rate in RCCI engines,” in IEEE Conference on Control Technology
and Applications (CCTA 2020), IEEE, 2020, pp. 94–99.

[41] W. H. Kwon and S. H. Han, Receding horizon control: model predictive control
for state models. Springer Science & Business Media, 2006.

[42] J. Powell, “A review of IC engine models for control system design,” IFAC
Proceedings Volumes, vol. 20, no. 5, Part 3, pp. 235–240, 1987, 10th Triennial
IFAC Congress on Automatic Control - 1987 Volume III, Munich, Germany,
27-31 July.

[43] B. Lennox, G. A. Montaguet, A. M. Frith, and A. J. Beaumont, “Non-linear
model-based predictive control of gasoline engine air-fuel ratio,” Transactions
of the Institute of Measurement and Control, vol. 20, no. 2, pp. 103–112, 1998.

[44] P. Bromnick, “Development of a model predictive controller for engine idle
speed using cpower,” SAE Paper No. 1999-01-1171, 1999.

[45] D. Liao-McPherson, M. Huang, S. Kim, M. Shimada, K. Butts, and I. Kol-
manovsky, “Model predictive emissions control of a diesel engine airpath: De-
sign and experimental evaluation,” International Journal of Robust Nonlinear
Control, vol. 30, no. 17, pp. 7446–7477, 2020.

209

[46] A. Raut, B. Irdmousa, and M. Shahbakhti, “Dynamic modeling and model
predictive control of an RCCI engine,” Control Engineering Practice, vol. 81,
pp. 129–144, 2018.

[47] M. Karlsson, K. Ekholm, P. Strandh, R. Johansson, and P. Tunest̊al,
“Multiple-input multiple-output model predictive control of a diesel engine,”
IFAC Proceedings Volumes, vol. 43, no. 7, pp. 131–136, 2010, 6th IFAC Sym-
posium on Advances in Automotive Control.

[48] J Dahl, H Wassén, O Santin, M Herceg, L Lansky, J Pekar, and D Pachner,
“Model predictive control of a diesel engine with turbo compound and exhaust
after-treatment constraints,” IFAC-PapersOnLine, vol. 51, no. 31, pp. 349–354,
2018, 5th IFAC Conference on Engine and Powertrain Control, Simulation and
Modeling E-COSM 2018.

[49] D. Zhao, C. Liu, R. Stobart, J. Deng, E. Winward, and G. Dong, “An explicit
model predictive control framework for turbocharged diesel engines,” IEEE
Transactions on Industrial Electronics, vol. 61, no. 7, pp. 3540–3552, 2014.

[50] Y. Yashiro, V. Jiwariyavej, Y.Yamashita, T. Hoshi, K. Terakado, and S.
Ibaraki, “High-speed model predictive control for next-generation turbocharg-
ing system,”Mitsubishi Heavy Industries Technical Review, vol. 54, no. 1, 2017.

[51] M. Huang, D. Liao-McPherson, S. Kim, K. Butts, and I. Kolmanovsky, “To-
ward real-time automotive model predictive control: A perspective from a
diesel air path control development,” in American Control Conference (ACC
2018), IEEE, 2018, pp. 2425–2430.

[52] A. Bemporad, D. Bernardini, R. Long, and J. Verdejo, “Model predictive con-
trol of turbocharged gasoline engines for mass production,” in WCX World
Congress Experience, SAE International, 2018.

[53] B. Saerens, M. Diehl, J. Swevers, and E. Van den Bulck, “Model predictive
control of automotive powertrains-first experimental results,” in 2008 47th
IEEE Conference on Decision and Control, IEEE, 2008, pp. 5692–5697.

[54] T. Broomhead, C. Manzie, P. Hield, R. Shekhar, and M. Brear, “Economic
model predictive control and applications for diesel generators,” IEEE Trans-
actions on Control Systems Technology, vol. 25, no. 2, pp. 388–400, 2016.

[55] S. Di Cairano, D. Yanakiev, A. Bemporad, I. V. Kolmanovsky, and D. Hrovat,
“Model predictive idle speed control: Design, analysis, and experimental eval-
uation,” IEEE Transactions on Control Systems Technology, vol. 20, no. 1,
pp. 84–97, 2011.

[56] K. Ebrahimi and C. B. Koch, “Real-time control of HCCI engine using model
predictive control,” in American Control Conference (ACC 2018), IEEE, 2018,
pp. 1622–1628.

[57] A. Widd, H.-H. Liao, J. C. Gerdes, P. Tunest̊al, and R. Johansson, “Control
of exhaust recompression HCCI using hybrid model predictive control,” in
American control conference (ACC 2011), IEEE, 2011, pp. 420–425.

210

[58] N. Ravi, H.-H. Liao, A. F. Jungkunz, A. Widd, and J. C. Gerdes, “Model
predictive control of HCCI using variable valve actuation and fuel injection,”
Control Engineering Practice, vol. 20, no. 4, pp. 421–430, 2012.

[59] L. Yin, G. Turesson, P. Tunest̊al, and R. Johansson, “Model predictive control
of an advanced multiple cylinder engine with partially premixed combustion
concept,” IEEE/ASME Transactions on Mechatronics, vol. 25, no. 2, pp. 804–
814, 2020.

[60] H. Ferreau, G Lorini, and M. Diehl, “Fast nonlinear model predictive con-
trol of gasoline engines,” in 2006 IEEE Conference on Computer Aided Con-
trol System Design, 2006 IEEE International Conference on Control Appli-
cations, 2006 IEEE International Symposium on Intelligent Control, IEEE,
2006, pp. 2754–2759.

[61] P. Majecki, G. M. van der Molen, M. J. Grimble, I. Haskara, Y. Hu, and C.-F.
Chang, “Real-time predictive control for si engines using linear parameter-
varying models,” IFAC-PapersOnLine, vol. 48, no. 23, pp. 94–101, 2015, 5th
IFAC Conference on Nonlinear Model Predictive Control NMPC 2015.

[62] S. Di Cairano, D. Yanakiev, A. Bemporad, I. V. Kolmanovsky, and D. Hrovat,
“An mpc design flow for automotive control and applications to idle speed
regulation,” in 2008 47th IEEE Conference on Decision and Control, IEEE,
2008, pp. 5686–5691.

[63] N. Rajaei, X. Han, X. Chen, and M. Zheng, “Model predictive control of
exhaust gas recirculation valve,” in SAE 2010 World Congress & Exhibition,
SAE International, 2010.

[64] G. Stewart and F. Borrelli, “A model predictive control framework for indus-
trial turbodiesel engine control,” in 2008 47th IEEE Conference on Decision
and Control, IEEE, 2008, pp. 5704–5711.

[65] H Borhan, G Kothandaraman, and B Pattel, “Air handling control of a diesel
engine with a complex dual-loop egr and vgt air system using mpc,” in Amer-
ican Control Conference (ACC 2015), IEEE, 2015, pp. 4509–4516.

[66] P. Ortner and L. Del Re, “Predictive control of a diesel engine air path,” IEEE
transactions on control systems technology, vol. 15, no. 3, pp. 449–456, 2007.

[67] H. J. Ferreau, P. Ortner, P. Langthaler, L. Del Re, and M. Diehl, “Predic-
tive control of a real-world diesel engine using an extended online active set
strategy,” Annual Reviews in Control, vol. 31, no. 2, pp. 293–301, 2007.

[68] P. Drews, K. Hoffmann, R. Beck, R. Gasper, A. Vanegas, C. Felsch, N. Pe-
ters, and D. Abel, “Fast model predictive control for the air path of a tur-
bocharged diesel engine,” in 2009 European Control Conference (ECC), IEEE,
2009, pp. 3377–3382.

[69] M. E. Emekli and B. A. Güvenç, “Explicit mimo model predictive boost pres-
sure control of a two-stage turbocharged diesel engine,” IEEE transactions on
control systems technology, vol. 25, no. 2, pp. 521–534, 2016.

211

[70] S. Sudhakar, A. Hansen, and J. K. Hedrick, “Algorithmic performance of re-
ceding horizon sliding control for engine emission reduction,” in 2016 IEEE
Conference on Control Applications (CCA), IEEE, 2016, pp. 1398–1403.

[71] Q. Zhu, S. Onori, and R. Prucka, “An economic nonlinear model predictive
control strategy for SI engines: Model-based design and real-time experimental
validation,” IEEE Transactions on Control Systems Technology, vol. 27, no. 1,
pp. 296–310, 2017.

[72] B. Shin, Y. Chi, M. Kim, P. Dickinson, J. Pekar, and M. Ko, “Model predictive
control of an air path system for multi-mode operation in a diesel engine,” in
WCX SAE World Congress Experience, SAE International, 2020.

[73] Q. Zhu, R. Prucka, M. Prucka, and H. Dourra, “A nonlinear model predictive
control strategy with a disturbance observer for spark ignition engines with
external EGR,” SAE International Journal of Commercial Vehicles, vol. 10,
no. 1, pp. 360–372, 2017.

[74] E. Lee and L Markus, “Foundations of optimal control theory,” New York:
Wiley, 1967.

[75] J Rault, A Richalet, J. Testud, and J Papon, “Model predictive heuristic con-
trol: Application to industrial processes,” Automatica, vol. 14, no. 5, pp. 413–
428, 1978.

[76] S. J. Qin and T. A. Badgwell, “An overview of industrial model predictive
control technology,” in AIche symposium series, New York, NY: American
Institute of Chemical Engineers, 1971-c2002., vol. 93, 1997, pp. 232–256.

[77] J. H. Lee, “Model predictive control: Review of the three decades of devel-
opment,” International Journal of Control, Automation and Systems, vol. 9,
no. 3, p. 415, 2011.

[78] A. Bemporad, F. Borrelli, and M. Morari, “Piecewise linear optimal controllers
for hybrid systems,” in American Control Conference (ACC 2000), IEEE,
vol. 2, 2000, pp. 1190–1194.

[79] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit linear
quadratic regulator for constrained systems,” Automatica, vol. 38, no. 1, pp. 3–
20, 2002.

[80] B. Alrifaee, D. Abel, and C. Ament, “Networked model predictive control
for vehicle collision avoidance,” Lehrstuhl und Institut für Regelungstechnik,
Tech. Rep., 2017.

[81] T. F. Yusaf, D. Buttsworth, K. H. Saleh, and B. Yousif, “CNG-diesel engine
performance and exhaust emission analysis with the aid of artificial neural
network,” Applied Energy, vol. 87, no. 5, pp. 1661–1669, 2010.

[82] S. Roy, R. Banerjee, and P. K. Bose, “Performance and exhaust emissions
prediction of a CRDI assisted single cylinder diesel engine coupled with egr
using artificial neural network,” Applied Energy, vol. 119, pp. 330–340, 2014.

212

[83] S. Javed, Y. S. Murthy, R. U. Baig, and D. P. Rao, “Development of ann
model for prediction of performance and emission characteristics of hydrogen
dual fueled diesel engine with jatropha methyl ester biodiesel blends,” Journal
of Natural Gas Science and Engineering, vol. 26, pp. 549–557, 2015.

[84] S. Dharma, M. H. Hassan, H. C. Ong, A. H. Sebayang, A. S. Silitonga, F.
Kusumo, and J. Milano, “Experimental study and prediction of the per-
formance and exhaust emissions of mixed jatropha curcas-ceiba pentandra
biodiesel blends in diesel engine using artificial neural networks,” Journal of
cleaner production, vol. 164, pp. 618–633, 2017.

[85] A. Paul, S. Bhowmik, R. Panua, and D. Debroy, “Artificial neural network-
based prediction of performances-exhaust emissions of diesohol piloted dual
fuel diesel engine under varying compressed natural gas flowrates,” Journal of
Energy Resources Technology, vol. 140, no. 11, p. 112 201, 2018.

[86] S. Yıldırım, E. Tosun, A. Çalık,
bibinitperiodI. Uluocak, and E. Avşar, “Artificial intelligence techniques for
the vibration, noise, and emission characteristics of a hydrogen-enriched diesel
engine,” Energy Sources, Part A: Recovery, Utilization, and Environmental
Effects, vol. 41, no. 18, pp. 2194–2206, 2019.

[87] S. Uslu and M. B. Celik, “Prediction of engine emissions and performance
with artificial neural networks in a single cylinder diesel engine using diethyl
ether,” Engineering science and technology, an international journal, vol. 21,
no. 6, pp. 1194–1201, 2018.

[88] A. Domı́nguez-Sáez, G. A. Rattá, and C. C. Barrios, “Prediction of exhaust
emission in transient conditions of a diesel engine fueled with animal fat using
artificial neural network and symbolic regression,” Energy, vol. 149, pp. 675–
683, 2018.

[89] A. Mohammad, R. Rezaei, C. Hayduk, T. O. Delebinski, S. Shahpouri, and
M. Shahbakhti, “Hybrid physical and machine learning-oriented modeling ap-
proach to predict emissions in a diesel compression ignition engine,” in SAE
World Congress Experience, SAE Paper No. 2021-01-0496, 2020.

[90] A. Silitonga, H. Masjuki, H. C. Ong, A. Sebayang, S. Dharma, F. Kusumo,
J. Siswantoro, J. Milano, K. Daud, T. Mahlia, W.-H. Chen, and B. Sugiyanto,
“Evaluation of the engine performance and exhaust emissions of biodiesel-
bioethanol-diesel blends using kernel-based extreme learning machine,” En-
ergy, vol. 159, pp. 1075 –1087, 2018.

[91] M. Aghbashlo, S. Shamshirband, M. Tabatabaei, L. Yee, and Y. N. Larimi,
“The use of ELM-WT (extreme learning machine with wavelet transform al-
gorithm) to predict exergetic performance of a DI diesel engine running on
diesel/biodiesel blends containing polymer waste,” Energy, vol. 94, pp. 443–
456, 2016.

213

[92] P. K. Wong, K. I. Wong, C. M. Vong, and C. S. Cheung, “Modeling and opti-
mization of biodiesel engine performance using kernel-based extreme learning
machine and cuckoo search,” Renewable Energy, vol. 74, pp. 640 –647, 2015.

[93] B. Liu, J. Hu, F. Yan, R. F. Turkson, and F. Lin, “A novel optimal sup-
port vector machine ensemble model for NOx emissions prediction of a diesel
engine,” Measurement, vol. 92, pp. 183–192, 2016.

[94] H. Duan, Y. Huang, R. K. Mehra, P. Song, and F. Ma, “Study on influencing
factors of prediction accuracy of support vector machine (SVM) model for
NOx emission of a hydrogen enriched compressed natural gas engine,” Fuel,
vol. 234, pp. 954–964, 2018.

[95] K. Wong, P. Wong, C. Cheung, and C. Vong, “Modeling and optimization
of biodiesel engine performance using advanced machine learning methods,”
Energy, vol. 55, pp. 519 –528, 2013.

[96] S. Shamshirband, M. Tabatabaei, M. Aghbashlo, L. Yee, and D. Petković,
“Support vector machine-based exergetic modelling of a DI diesel engine run-
ning on biodiesel–diesel blends containing expanded polystyrene,” Applied
Thermal Engineering, vol. 94, pp. 727–747, 2016.

[97] X. Niu, C. Yang, H. Wang, and Y. Wang, “Investigation of ANN and SVM
based on limited samples for performance and emissions prediction of a
CRDI-assisted marine diesel engine,” Applied Thermal Engineering, vol. 111,
pp. 1353–1364, 2017.

[98] D. Hao, R. K. Mehra, S. Luo, Z. Nie, X. Ren, and M. Fanhua, “Experimental
study of hydrogen enriched compressed natural gas (HCNG) engine and appli-
cation of support vector machine (SVM) on prediction of engine performance
at specific condition,” International Journal of Hydrogen Energy, vol. 45, no. 8,
pp. 5309–5325, 2020.

[99] M Ghanbari, G Najafi, B Ghobadian, R Mamat, M. Noor, and A Moosavian,
“Support vector machine to predict diesel engine performance and emission
parameters fueled with nano-particles additive to diesel fuel,” in IOP Con-
ference Series: Materials Science and Engineering, IOP Publishing, vol. 100,
2015, p. 012 069.

[100] K. I. Wong, P. K. Wong, and C. S. Cheung, “Modelling and prediction of diesel
engine performance using relevance vector machine,” International journal of
green energy, vol. 12, no. 3, pp. 265–271, 2015.

[101] M. Lang, P. Bloch, T. Koch, T. Eggert, and R. Schifferdecker, “Application of
a combined physical and data-based model for improved numerical simulation
of a medium-duty diesel engine,” Automotive and Engine Technology, vol. 5,
no. 1, pp. 1–20, 2020.

[102] S. Wang, D. Yu, J. Gomm, G. Page, and S. Douglas, “Adaptive neural network
model based predictive control for air–fuel ratio of SI engines,” Engineering
Applications of Artificial Intelligence, vol. 19, no. 2, pp. 189–200, 2006.

214

[103] Y. Bao, J. Mohammadpour Velni, and M. Shahbakhti, “An Online Transfer
Learning Approach for Identification and Predictive Control Design With Ap-
plication to RCCI Engines,” in Dynamic Systems and Control Conference,
ser. Dynamic Systems and Control Conference, American Society of Mechan-
ical Engineers, vol. 84270, Oct. 2020, V001T21A003.

[104] Y. Hu, H. Chen, P. Wang, H. Chen, and L. Ren, “Nonlinear model predictive
controller design based on learning model for turbocharged gasoline engine
of passenger vehicle,” Mechanical Systems and Signal Processing, vol. 109,
pp. 74–88, 2018.

[105] Y. Bao, J. M. Velni, A. Basina, and M. Shahbakhti, “Identification of state-
space linear parameter-varying models using artificial neural networks,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 5286–5291, 2020, 21th IFAC World Congress.

[106] Y. Bao, J. M. Velni, and M. Shahbakhti, “Epistemic Uncertainty Quantifi-
cation in State-Space LPV Model Identification Using Bayesian Neural Net-
works,” IEEE Control Systems Letters, vol. 5, no. 2, pp. 719–724, 2020.

[107] A. Vaughan and S. Bohac, “Real-time, adaptive machine learning for non-
stationary, near chaotic gasoline engine combustion time series,” Neural Net-
works, vol. 70, pp. 18 –26, 2015.

[108] V. M. Janakiraman, X. Nguyen, and D. Assanis, “An ELM based predictive
control method for HCCI engines,” Engineering Applications of Artificial In-
telligence, vol. 48, pp. 106–118, 2016.

[109] S Batool, J Naber, and M Shahbakhti, “Data-Driven Modeling and Control
of Cyclic Variability of an Engine Operating in Low Temperature Combus-
tion Modes,” IFAC-PapersOnLine, 2021, Modeling, Estimation and Control
Conference (MECC 2021).

[110] B Khoshbakht Irdmousa, J Naber, J Mohammadpour Velni, H Borhan, and M
Shahbakhti, “Input-output Data-driven Modeling and MIMO Predictive Con-
trol of an RCCI Engine Combustion,” IFAC-PapersOnLine, 2021, Modeling,
Estimation and Control Conference (MECC 2021).

[111] A Moosavian, H Ahmadi, A Tabatabaeefar, and M Khazaee, “Comparison
of two classifiers; K-nearest neighbor and artificial neural network, for fault
diagnosis on a main engine journal-bearing,” Shock and Vibration, vol. 20,
no. 2, pp. 263–272, 2013.

[112] I. Morgan, H. Liu, G. Turnbull, and D. Brown, “Predictive unsupervised or-
ganisation in marine engine fault detection,” in 2008 IEEE International Joint
Conference on Neural Networks (IEEE World Congress on Computational In-
telligence), IEEE, 2008, pp. 249–256.

[113] T. Chan and C. Chin, “Data analysis to predictive modeling of marine engine
performance using machine learning,” in 2016 IEEE Region 10 Conference
(TENCON), IEEE, 2016, pp. 2076–2080.

215

[114] X. Bi, J. Lin, D. Tang, F. Bi, X. Li, X. Yang, T. Ma, and P. Shen, “VMD-
KFCM Algorithm for the Fault Diagnosis of Diesel Engine Vibration Signals,”
Energies, vol. 13, no. 1, p. 228, 2020.

[115] P. Shih, B. C. Kaul, S. Jagannathan, and J. A. Drallmeier, “Reinforcement-
learning-based output-feedback control of nonstrict nonlinear discrete-time
systems with application to engine emission control,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 5, pp. 1162–
1179, 2009.

[116] P. Shih, B. C. Kaul, S. Jagannathan, and J. A. Drallmeier, “Reinforcement-
learning-based dual-control methodology for complex nonlinear discrete-time
systems with application to spark engine egr operation,” IEEE transactions
on neural networks, vol. 19, no. 8, pp. 1369–1388, 2008.

[117] J. Huotari, A. Ritari, R. Ojala, J. Vepsäläinen, and K. Tammi, “Q-Learning
based autonomous control of the auxiliary power network of a ship,” IEEE
Access, vol. 7, pp. 152 879–152 890, 2019.

[118] J. Czarnigowski, “A neural network model-based observer for idle speed control
of ignition in si engine,” Engineering Applications of Artificial Intelligence,
vol. 23, no. 1, pp. 1–7, 2010.

[119] S. A. Rahman, H. Masjuki, M. Kalam, M. Abedin, A Sanjid, and H. Sajjad,
“Impact of idling on fuel consumption and exhaust emissions and available
idle-reduction technologies for diesel vehicles–a review,” Energy Conversion
and Management, vol. 74, pp. 171–182, 2013.

[120] J. Xue, Q. Gao, and W. Ju, “Reinforcement learning for engine idle speed con-
trol,” in 2010 International Conference on Measuring Technology and Mecha-
tronics Automation, IEEE, vol. 2, 2010, pp. 1008–1011.

[121] M. N. Howell and M. C. Best, “On-line PID tuning for engine idle-speed control
using continuous action reinforcement learning automata,” Control Engineer-
ing Practice, vol. 8, no. 2, pp. 147–154, 2000.

[122] J. Ren, “Ann vs. SVM: Which one performs better in classification of MCCs in
mammogram imaging,” Knowledge-Based Systems, vol. 26, pp. 144–153, 2012.

[123] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory
and applications,” Neurocomputing, vol. 70, no. 1, pp. 489 –501, 2006, Neural
Networks.

[124] Y. Xu, R. Guo, and L. Wang, “A twin multi-class classification support vector
machine,” Cognitive computation, vol. 5, no. 4, pp. 580–588, 2013.

[125] M. Tanveer, “Robust and sparse linear programming twin support vector ma-
chines,” Cognitive Computation, vol. 7, no. 1, pp. 137–149, 2015.

[126] C. Kavuri and S. L. Kokjohn, “Exploring the potential of machine learning in
reducing the computational time/expense and improving the reliability of en-
gine optimization studies,” International Journal of Engine Research, vol. 21,
no. 7, pp. 1251–1270, 2020.

216

[127] A. Hanuschkin, S. Schober, J. Bode, J. Schorr, B. Böhm, C. Krüger, and S.
Peters, “Machine learning–based analysis of in-cylinder flow fields to predict
combustion engine performance,” International Journal of Engine Research,
vol. 0, no. 0, p. 1 468 087 419 833 269, 0.

[128] P. K. Wong, X. H. Gao, K. I. Wong, and C. M. Vong, “Online extreme learning
machine based modeling and optimization for point-by-point engine calibra-
tion,” Neurocomputing, vol. 277, pp. 187–197, 2018.

[129] M. E. Tipping, “Sparse bayesian learning and the relevance vector machine,”
Journal of machine learning research, vol. 1, no. Jun, pp. 211–244, 2001.

[130] M. Seeger, “Gaussian processes for machine learning,” International Journal
of Neural Systems, vol. 14, no. 02, pp. 69–106, 2004.

[131] B. Berger, F. Rauscher, and B. Lohmann, “Analysing gaussian processes for
stationary black-box combustion engine modelling,” IFAC Proceedings Vol-
umes, vol. 44, no. 1, pp. 10 633–10 640, 2011.

[132] S. Castric, L. Denis-Vidal, Z. Cherfi, G. J. Blanchard, and N. Boudaoud, “Mod-
eling pollutant emissions of diesel engine based on kriging models: A compar-
ison between geostatistic and gaussian process approach,” IFAC Proceedings
Volumes, vol. 45, no. 6, pp. 1708–1715, 2012.

[133] B. Berger and F. Rauscher, “Robust gaussian process modelling for engine
calibration,” IFAC Proceedings Volumes, vol. 45, no. 2, pp. 159–164, 2012.

[134] K Krishna and M. N. Murty, “Genetic k-means algorithm,” IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 29, no. 3,
pp. 433–439, 1999.

[135] Reinforcement Learning with MATLAB. MathWorks, 2019.

[136] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[137] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” 2014.

[138] K. J. Åström and B. Wittenmark, Adaptive control. Courier Corporation, 2013.

[139] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of robots by
learning,” Journal of Robotic systems, vol. 1, no. 2, pp. 123–140, 1984.

[140] S. Su and G. Chen, “Lateral robust iterative learning control for unmanned
driving robot vehicle,” Proceedings of the Institution of Mechanical Engineers,
Part I: Journal of Systems and Control Engineering, vol. 234, no. 7, pp. 792–
808, 2020.

[141] N. Shakeri, Z. Rahmani, A. R. Noei, and M. Zamani, “Direct methanol fuel cell
modeling based on the norm optimal iterative learning control,” Proceedings
of the Institution of Mechanical Engineers, Part I: Journal of Systems and
Control Engineering, vol. 235, no. 1, pp. 68–79, 2021.

217

[142] A. Heinzen, P. Gillella, and Z. Sun, “Iterative learning control of a fully flex-
ible valve actuation system for non-throttled engine load control,” Control
Engineering Practice, vol. 19, no. 12, pp. 1490–1505, 2011.

[143] T. Nagata and M. Tomizuka, “Robust engine torque control by iterative learn-
ing control,” in 2009 American Control Conference, 2009, pp. 2064–2069.

[144] C. Slepicka and C. R. Koch, “Iterative learning on dual-fuel control of homo-
geneous charge compression ignition,” IFAC-PapersOnLine, vol. 49, no. 11,
pp. 347–352, 2016, 8th IFAC Symposium on Advances in Automotive Control
AAC 2016.

[145] R. Hedinger, N. Zsiga, M. Salazar, and C. Onder, “Model-based iterative learn-
ing control strategies for precise trajectory tracking in gasoline engines,” Con-
trol Engineering Practice, vol. 87, pp. 17–25, 2019.

[146] R. Noack, T. Jeinsch, A. H. A. Sari, and N. Weinhold, “Data-driven self-tuning
control by iterative learning control with application to optimize the control
parameter of turbocharged engines,” in 2014 19th International Conference on
Methods and Models in Automation and Robotics (MMAR), 2014, pp. 839–844.

[147] R. Zweigel, F. Thelen, D. Abel, and T. Albin, “Iterative learning approach
for diesel combustion control using injection rate shaping,” in 2015 European
Control Conference (ECC), 2015, pp. 3168–3173.

[148] K. Min, M. Sunwoo, and M. Han, “Iterative Learning Control Algorithm for
Feedforward Controller of EGR and VGT Systems in a CRDI Diesel Engine,”
International journal of automotive technology, vol. 19, no. 3, 2018.

[149] X. V. Nguyen, J. Chan, S. Romano, and J. Bailey, “Effective global approaches
for mutual information based feature selection,” in Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and data
mining, ACM, 2014, pp. 512–521.

[150] M. A. Hall, “Correlation-based Feature Selection for Machine Learning. PhD
thesis. The University of Waikato (1999),”

[151] Z. M. Hira and D. F. Gillies, “A review of feature selection and feature ex-
traction methods applied on microarray data,” Advances in bioinformatics,
vol. 2015, 2015.

[152] M. Bidarvatan, V. Thakkar, and M. Shahbakhti, “Grey-box modeling and
control of HCCI engine emissions,” in American Control Conference (ACC
2014), IEEE, 2014, pp. 837–842.

[153] S. Z. Rizvi, J. Mohammadpour, R. Tóth, and N. Meskin, “An IV-SVM-based
approach for identification of state-space LPV models under generic noise
conditions,” in 2015 54th IEEE Conference on Decision and Control (CDC),
IEEE, 2015, pp. 7380–7385.

[154] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and Tensor-
Flow: Concepts, tools, and techniques to build intelligent systems. O’Reilly
Media, 2019.

218

[155] J. Drgoňa, D. Picard, M. Kvasnica, and L. Helsen, “Approximate model predic-
tive building control via machine learning,” Applied Energy, vol. 218, pp. 199–
216, 2018.

[156] B. Karg and S. Lucia, “Deep learning-based embedded mixed-integer model
predictive control,” in 2018 European Control Conference (ECC), IEEE, 2018,
pp. 2075–2080.

[157] L. Sun, C. Peng, W. Zhan, and M. Tomizuka, “A fast integrated planning and
control framework for autonomous driving via imitation learning,” in Dynamic
Systems and Control Conference, American Society of Mechanical Engineers,
vol. 51913, 2018, V003T37A012.

[158] X. Zhang, M. Bujarbaruah, and F. Borrelli, “Safe and near-optimal policy
learning for model predictive control using primal-dual neural networks,” in
2019 American Control Conference (ACC), IEEE, 2019, pp. 354–359.

[159] B. Cera and A. M. Agogino, “Multi-cable rolling locomotion with spher-
ical tensegrities using model predictive control and deep learning,” in
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2018, pp. 1–9.

[160] M. Novak and T. Dragicevic, “Supervised imitation learning of finite set model
predictive control systems for power electronics,” IEEE Transactions on In-
dustrial Electronics, 2020.

[161] Y. Hu, W. Li, K. Xu, T. Zahid, F. Qin, and C. Li, “Energy management
strategy for a hybrid electric vehicle based on deep reinforcement learning,”
Applied Sciences, vol. 8, no. 2, p. 187, 2018.

[162] X. Qi, G. Wu, K. Boriboonsomsin, and M. J. Barth, “A novel blended real-
time energy management strategy for plug-in hybrid electric vehicle commute
trips,” in 2015 IEEE 18th International Conference on Intelligent Transporta-
tion Systems, IEEE, 2015, pp. 1002–1007.

[163] A. J. Smith, “Applications of the self-organising map to reinforcement learn-
ing,” Neural networks, vol. 15, no. 8-9, pp. 1107–1124, 2002.

[164] K. P. Wabersich and M. N. Zeilinger, “Safe exploration of nonlinear dynamical
systems: A predictive safety filter for reinforcement learning,” arXiv preprint
arXiv:1812.05506, 2018.

[165] K. P. Wabersich, L. Hewing, A. Carron, and M. N. Zeilinger, “Probabilistic
model predictive safety certification for learning-based control,” IEEE Trans-
actions on Automatic Control, 2021.

[166] M. Zanon and S. Gros, “Safe reinforcement learning using robust MPC,” IEEE
Transactions on Automatic Control, 2020.

[167] S. Gros, M. Zanon, and A. Bemporad, “Safe Reinforcement Learning via Pro-
jection on a Safe Set: How to Achieve Optimality?” IFAC-PapersOnLine,
vol. 53, no. 2, pp. 8076–8081, 2020, 21st IFAC World Congress.

219

[168] D. Gordon, C. Wouters, M. Wick, F. Xia, B. Lehrheuer, J. Andert, C. R.
Koch, and S. Pischinger, “Development and experimental validation of a real-
time capable FPGA based gas-exchange model for negative valve overlap,”
International Journal of Engine Research, 2018.

[169] J. Pfluger, J. Andert, H. Ross, and F. Mertens, “Rapid control prototyping
for cylinder pressure indication,” MTZ Worldwide, vol. 73, no. 11, pp. 38–42,
2012.

[170] R. Klikach, “Investigation and analysis of RCCI using NVO on a converted
Spark Ignition engine,” 2018.

[171] L Tarabet, K. Loubar, M. Lounici, K Khiari, T Belmrabet, and M. Tazer-
out, “Experimental investigation of DI diesel engine operating with eucalyptus
biodiesel/natural gas under dual fuel mode,” Fuel, vol. 133, pp. 129–138, 2014.

[172] K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm
using reference-point-based nondominated sorting approach, part I: solving
problems with box constraints,” IEEE transactions on evolutionary computa-
tion, vol. 18, no. 4, pp. 577–601, 2013.

[173] V. Vapnik and A. Lerner, “Generalized portrait method for pattern recogni-
tion,” Automation and Remote Control, vol. 24, no. 6, pp. 774–780, 1963.

[174] V. Vapnik and A. Chervonenkis, “A note on class of perceptron,” Automation
and Remote Control, vol. 24, 1964.

[175] H. Drucker, C. J. Burges, L. Kaufman, A. J. Smola, and V. Vapnik, “Support
vector regression machines,” in Advances in neural information processing sys-
tems, 1997, pp. 155–161.

[176] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[177] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Statis-
tics and computing, vol. 14, no. 3, pp. 199–222, 2004.

[178] V. Vapnik, The nature of statistical learning theory. Springer science & business
media, 2013.

[179] R. Bellman et al., “The theory of dynamic programming,” Bulletin of the
American Mathematical Society, vol. 60, no. 6, pp. 503–515, 1954.

[180] W. Karush, “Minima of functions of several variables with inequalities as side
constraints,” M. Sc. Dissertation. Dept. of Mathematics, Univ. of Chicago,
1939.

[181] R. A. Brualdi, Introductory combinatorics. Pearson Education India, 1977.

[182] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[183] P. Juszczak, D Tax, and R. P. Duin, “Feature scaling in support vector data
description,” in Proc. ASCI, Citeseer, 2002, pp. 95–102.

220

[184] A. Norouzi, M. Aliramezani, and C. R. Koch, “Diesel engine NOx reduction
using a PD-type fuzzy iterative learning control with a fast response NOx
sensor,” Proceedings of Combustion Institute-Canadian Section (CICS 2019),
2019.

[185] Y He and C. Rutland, “Application of artificial neural networks in engine
modelling,” International Journal of Engine Research, vol. 5, no. 4, pp. 281–
296, 2004.

[186] S. Shalev-Shwartz and N. Srebro, “SVM optimization: Inverse dependence
on training set size,” in Proceedings of the 25th international conference on
Machine learning, ACM, 2008, pp. 928–935.

[187] M. Aliramezani, A. Norouzi, C. R. Koch, and R. E. Hayes, “A control oriented
diesel engine NOx emission model for on board diagnostics and engine control
with sensor feedback,” Proceedings of Combustion Institute-Canadian Section
(CICS 2019), Kelowna, Canada, 2019.

[188] H. Hiroyasu, T. Kadota, and M. Arai, “Development and use of a spray com-
bustion modeling to predict diesel engine efficiency and pollutant emissions:
Part 1 combustion modeling,” Bulletin of JSME, vol. 26, no. 214, pp. 569–575,
1983.

[189] J. D. Rodriguez, A. Perez, and J. A. Lozano, “Sensitivity analysis of k-fold
cross validation in prediction error estimation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 3, pp. 569–575, 2009.

[190] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated machine learning: meth-
ods, systems, challenges: Chapter 3- Neural Architecture Search. Springer Na-
ture, 2019.

[191] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization
of machine learning algorithms,” Advances in Neural Information Processing
Systems, vol. 25, 2012.

[192] R. A. Berk, Statistical learning from a regression perspective: Chapter 3- Clas-
sification and regression trees (CART). Springer, 2008, vol. 14.

[193] M. Aliramezani, A. Norouzi, and C. R. Koch, “A grey-box machine learn-
ing based model of an electrochemical gas sensor,” Sensors and Actuators B:
Chemical, vol. 321, p. 128 414, 2020.

[194] M. H. Hassoun et al., Fundamentals of artificial neural networks. MIT press,
1995.

[195] F. D. Foresee and M. T. Hagan, “Gauss-newton approximation to bayesian
learning,” in Proceedings of International Conference on Neural Networks
(ICNN’97), IEEE, vol. 3, 1997, pp. 1930–1935.

[196] J. H. Friedman, The elements of statistical learning: Data mining, inference,
and prediction. springer open, 2017.

221

[197] H. Omidvarborna, A. Kumar, and D.-S. Kim, “Recent studies on soot modeling
for diesel combustion,” Renewable and Sustainable Energy Reviews, vol. 48,
pp. 635–647, 2015.

[198] R. Rezaei, C. Hayduk, E. Alkan, T. Kemski, T. Delebinski, and C. Bertram,
“Hybrid phenomenological and mathematical-based modeling approach for
diesel emission prediction,” in SAE World Congress Experience, SAE Paper
No. 2020-01-0660, 2020.

[199] S. Shahpouri, A. Norouzi, C. Hayduk, R. Rezaei, M. Shahbakhti, and C. R.
Koch, “Soot emission modeling of a compression ignition engine using machine
learning,” IFAC-PapersOnLine, vol. 54, no. 20, pp. 826–833, 2021, Modeling,
Estimation and Control Conference MECC 2021.

[200] A. Domahidi and J. Jerez, Forces professional, Embotech AG,
url=https://embotech.com/FORCES-Pro, 2014–2019.

[201] A. Zanelli, A. Domahidi, J Jerez, and M. Morari, “FORCES NLP: An efficient
implementation of interior-point methods for multistage nonlinear nonconvex
programs,” International Journal of Control, vol. 93, no. 1, pp. 13–29, 2020.

[202] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren, A. Zanelli,
B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl, “Acados – a modu-
lar open-source framework for fast embedded optimal control,” Mathematical
Programming Computation, 2021.

[203] R. Verschueren, G. Frison, D. Kouzoupis, N. van Duijkeren, A. Zanelli, R.
Quirynen, and M. Diehl, “Towards a modular software package for embedded
optimization,” in Proceedings of the IFAC Conference on Nonlinear Model
Predictive Control (NMPC), 2018.

[204] G. Frison and M. Diehl, “HPIPM: a high-performance quadratic programming
framework for model predictive control,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 6563–6569, 2020, 21th IFAC World Congress.

[205] A. Winkler, J. Frey, T. Fahrbach, G. Frison, R. Scheer, M. Diehl, and J.
Andert, “Embedded Real-Time Nonlinear Model Predictive Control for the
Thermal Torque Derating of an Electric Vehicle,” IFAC-PapersOnLine, vol. 54,
no. 6, pp. 359–364, 2021, 7th IFAC Conference on Nonlinear Model Predictive
Control NMPC 2021.

[206] M. Diehl, H. J. Ferreau, and N. Haverbeke, “Efficient numerical methods for
nonlinear mpc and moving horizon estimation,” in Nonlinear Model Predictive
Control: Towards New Challenging Applications, L. Magni, D. M. Raimondo,
and F. Allgöwer, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 391–417.

[207] G. Frison, D. Kouzoupis, J. Jørgensen, and M. Diehl, “An efficient implemen-
tation of partial condensing for nonlinear model predictive control,” Dec. 2016,
pp. 4457–4462.

222

[208] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi –
A software framework for nonlinear optimization and optimal control,” Math-
ematical Programming Computation, vol. 11, no. 1, pp. 1–36, 2019.

[209] D. Gordon, C. Wouters, M. Wick, B. Lehrheuer, J. Andert, C. Koch, and S.
Pischinger, “Development and experimental validation of a field programmable
gate array–based in-cycle direct water injection control strategy for homoge-
neous charge compression ignition combustion stability,” International Journal
of Engine Research, vol. 20, no. 10, pp. 1101–1113, 2019.

[210] acados Documentation: Embedded Workflow, https : / / docs . acados . org /
embedded workflow/index.html, Accessed: 2022-04-06.

[211] M. Aliramezani, C. R. Koch, and M. Shahbakhti, “Modeling, diagnostics, op-
timization, and control of internal combustion engines via modern machine
learning techniques: A review and future directions,” Progress in Energy and
Combustion Science, vol. 88, p. 100 967, 2022.

[212] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv
preprint arXiv:1509.02971, 2015.

[213] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian motion,”
Physical review, vol. 36, no. 5, p. 823, 1930.

[214] P. Wawrzynski, “Control policy with autocorrelated noise in reinforcement
learning for robotics,” International Journal of Machine Learning and Com-
puting, vol. 5, no. 2, p. 91, 2015.

[215] D. Gordon, A. Norouzi, G. Blomeyer, J. Bedei, M. Aliramezani, J. Andert, and
C. R. Koch, “Support vector machine based emissions modeling using parti-
cle swarm optimization for homogeneous charge compression ignition engine,”
International Journal of Engine Research, eprint: https://doi.org/10.1177/
14680874211055546.

[216] A. Norouzi and C. R. Koch, “Robotic manipulator control using pd-type fuzzy
iterative learning control,” in 2019 IEEE Canadian Conference of Electrical
and Computer Engineering (CCECE), 2019, pp. 1–4.

[217] A. Norouzi and C. R. Koch, “Integration of pd-type iterative learning con-
trol with adaptive sliding mode control,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 6213–6218, 2020, 21st IFAC World Congress.

[218] M. Aliramezani, A. Norouzi, and C. R. Koch, “Support vector machine for a
diesel engine performance and NOx emission control-oriented model,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 13 976–13 981, 2020, 21st IFAC World
Congress.

223

https://docs.acados.org/embedded_workflow/index.html
https://docs.acados.org/embedded_workflow/index.html
https://doi.org/10.1177/14680874211055546
https://doi.org/10.1177/14680874211055546

Appendix A: Ph.D. Publications

A.1 Peer Reviewed Journal Papers

1. A. Norouzi, H. Heidarifar, A. Borhan, M. Shahbakhti, C.R. Koch, Integrating

Machine Learning and Model Predictive Control for Automotive Applications:

A Review and Future Directions, Engineering Applications of Artificial Intelli-

gence (Submitted on June 24, 2022).

2. A. Norouzi, S. Shahpouri, M. Shahbakhti, and C. R. Koch, Safe Deep Re-

inforcement Learning in Diesel Engine Emission Control, Proceedings of the

Institution of Mechanical Engineers, Part I: Journal of Systems and Control

Engineering (Submitted on April 3, 2022).

3. A. Norouzi, D. Gordon, A. Winkler, J. McNally, E. Nuss, D. Abel, J. An-

dert, M. Shahbakhti, and C. R. Koch, End-to-End Deep Neural Network-based

Nonlinear Model Predictive Control: Experimental Implementation on Diesel

Engine Emission Control, Transaction on Control Systems Technology (Sub-

mitted on May 26, 2022).

4. S. Shahpouri, A. Norouzi, C. Hayduk, A. Fandakov, R. Rezaei, C. R. Koch,

M. Shahbakhti, Laminar Flame Speed Modeling for Low Carbon Fuels Using

Methods of Machine Learning, Fuel (Submitted on May 9, 2022).

5. A. Norouzi, S. Shahpouri, D. Gordon, A. Winkler, E. Nuss, D. Abel, J. Andert,

M. Shahbakhti, and C. R. Koch, Deep Learning based Model Predictive Control

for Compression Ignition Engines, Control Engineering Practice (In press).

224

6. S. Shahpouri, A. Norouzi, C. Hayduk, R. Rezaei, M. Shahbakhti, and C. R.

Koch, Hybrid Machine Learning approaches and a systematic model selection

process for predicting soot emissions in compression ignition engines, Energies,

14(23) (2021), 7865.

7. D.C. Gordon, A. Norouzi, G. Blomeyer, J. Bedei, M. Aliramezani, J. Andert,

and C.R. Koch, Support Vector Machine Based Emissions Modeling using Parti-

cle Swarm Optimization for Homogeneous Charge Compression Ignition Engine,

International Journal of Engine Research, OnlineFirst, November 2021.

8. A. Norouzi, H. Heidarifar, A. Borhan, M. Shahbakhti, C.R. Koch, Application

of Model Predictive Control for Internal Combustion Engines (ICEs) Control:

A review and future directions, Energies, 14(19) (2021): 6251.

9. A. Norouzi, M. Aliramezani, C.R. Koch, A correlation based model order

reduction approach for a diesel engine NOx and BMEP dynamic model using

machine learning, International Journal of Engine Research, 22.8 (2021): 2654-

2672.

10. M. Aliramezani, A. Norouzi, C.R. Koch, A grey-box machine learning based

model of an electrochemical gas sensor, Sensors and Actuators B: Chemical

321 (2020): 128414.

A.2 Refereed Conference Papers in Proceedings

1. A. Norouzi, S. Shahpouri, D. Gordon, A. Winkler, E. Nuss, D. Abel, J. Andert,

M. Shahbakhti, and C. R. Koch, Machine Learning Integrated with Model Pre-

dictive Control for Imitative Optimal Control of Compression Ignition Engines,

10th Symposium on Advances in Automotive Control (AAC22) (In press).

2. S. Shahpouri, A. Norouzi, C. Hayduk, R. Rezaei, M. Shahbakhti, and C. R.

Koch, Soot emission modeling of a compression ignition engine using machine

225

learning, Modeling, Estimation and Control Conference (MECC 2021), 24-27

October 2021, University of Texas at Austin, Texas, United States. .

3. A. Norouzi, D. Gordon, M. Aliramezani, C.R. Koch, Machine Learning-based

Diesel Engine-Out NOx Reduction Using a plug-in PD-type Iterative Learning

Control, 4th IEEE Conference on Control Technology and Applications (CCTA

2020), August 24-26, 2020, Montreal, QB, Canada.

4. A. Norouzi, C.R. Koch, Integration of PD-type iterative learning control with

adaptive sliding mode control, IFAC World Congress 2020, July 12-77, 2020,

Berlin, Germany.

5. M. Aliramezani, A. Norouzi, C.R. Koch, Support vector machine for a diesel

engine performance and NOxemission control-oriented model, IFAC World

Congress 2020, July 12-77, 2020, Berlin, Germany.

6. A. Norouzi, KH. Ebrahimi, C.R. Koch, Integral Discrete-time Sliding Mode

Control of Homogeneous Charge Compression Ignition (HCCI) Engine Load

and Combustion Timing, 9th Symposium on Advances in Automotive Control

(AAC19), June 23-27, 2019, Orleaon, France.

7. A. Norouzi, C.R. Koch, Robotic manipulator control using PD-type fuzzy

iterative learning control, 32nd Canadian Conference on Electrical & Computer

Engineering (CCECE), May 5-8, 2019, Edmonton, AB, Canada.

A.3 Technical Presentations & workshops (refer-

eed abstract)

1. A. Norouzi, M. Shahbakhti, and C. R. Koch, Machine Learning Control Work-

shop, Canadian Society for Mechanical Engineering International Congress

(CSME), June 5-8, 2022, Edmonton, Canada.

226

2. J. Mcnally, D. Gordon, A. Norouzi, M. Shahbakhti, and C. R. Koch, Experi-

mental Study of Hydrogen Diesel Dual Fuel Engine Characterization, Canadian

Society for Mechanical Engineering International Congress (CSME), June 5-8,

2022, Edmonton, Canada.

3. A. Norouzi, S. Shahpouri, D. Gordon, A. Winkler, E. Nuss, D. Abel M. Shah-

bakhti, and C. R. Koch, Deep Learning and Nonlinear Model Predictive Con-

trol Integration for Compression Ignition Engine Emission Reduction, Canadian

Society for Mechanical Engineering International Congress (CSME), June 5-8,

2022, Edmonton, Canada.

4. A. Norouzi, S. Shahpouri, D. Gordon, M. Shahbakhti, and C. R. Koch, Deep

Reinforcement Learning for Emission Control in Diesel Engines, Canadian So-

ciety for Mechanical Engineering International Congress (CSME), June 5-8,

2022, Edmonton, Canada.

5. S. Shahpouri, A. Norouzi, C. Hayduk, A. Fandakov, R. Rezaei, M. Shah-

bakhtia, C. R. Koch, Laminar Flame Speed Modeling of Hydrogen, Methanol

and Ammonia Using Machine Learning of Machine Learning, Canadian Society

for Mechanical Engineering International Congress (CSME), June 5-8, 2022,

Edmonton, Canada.

6. S. Shahpouri, A. Norouzi, C. Hayduk, R. Rezaei, M. Shahbakhtia, C. R. Koch,

Machine Learning Modeling of Soot Emissions in a Medium Duty Diesel Engine,

Canadian Society for Mechanical Engineering International Congress (CSME),

June 5-8, 2022, Edmonton, Canada.

7. S. Shahpouri, A. Norouzi, C. Hayduk, R. Rezaei, C. R. Koch, and M. Shah-

bakhtia, Modeling of a Medium Duty Dual Fuel Diesel-Hydrogen Engine, Pro-

ceedings of Combustion Institute Canadian Section (CICS), May 16-19, 2022,

Ottawa, ON, Canada

227

8. D. Gordon, J. Mcnally, A. Norouzi, and C. R. Koch, Experimental Investiga-

tion of Hydrogen Diesel Dual Fuel Combustion, Aachen Hydrogen Colloquium,

May 3-4, 2022, Aachen Germany.

9. D. Gordon, A. Norouzi, C.R. Koch,AI-based Advance Control Methods for

next generation combustion engines,Autonomous Systems Initiative (ASI) An-

nual Symposium, June 2, 2021, Edmonton, Canada (Best presentation award).

10. A. Norouzi, M. Shahbakhti, C.R. Koch, Machine Learning-Based Diesel

Engine-Out Emissions Model and Control Using the Learning-Based Control

Technique,WCX SAE World Congress, April 13, 2021, Detroit, USA.

11. M. Aliramezani, A. Norouzi, C.R. Koch, R. E. Hayes, A control oriented diesel

engine NOx emission model for on board diagnostics and engine control with

sensor feedback, Proceedings of Combustion Institute Canadian Section (CICS),

May 13-16, 2019, Kelowna, BC, Canada.

12. A. Norouzi, M. Aliramezani, C.R. Koch, Diesel Engine NOx Reduction Using

a PD-type Fuzzy Iterative Learning Control with a Fast Response NOx Sen-

sor, Proceedings of Combustion Institute Canadian Section (CICS), May 13-16,

2019, Kelowna, BC, Canada.

A.4 Technical Posters

1. D. Gordon, A. Norouzi, C.R. Koch, AI-based Advance Control Methods for

next generation combustion engines,2021 Future Energy Systems Research Sym-

posium, Sept 20, 2021, Edmonton, Canada.

2. M. Aliramezani, A. Norouzi, D. Gordon, C.R. Koch, Emission reduction of

internal combustion engines with advanced control and machine learning tech-

niques, Future Energy Systems Real World Industry Mixer, Feb 20, 2020.

228

3. D. Gordon, A. Norouzi, M. Aliramezani, C.R. Koch, Combustion Control

Research –University of Alberta, Canadian Graduate Engineering Consortium,

Sept 2019

4. D. Gordon, A. Norouzi, M. Aliramezani, C.R. Koch, Real-time Engine Con-

trol Utilizing Emission Measurement with FPGA Controller, 2nd annual Future

Energy Systems Open house, Oct 3, 2018

229

Appendix B: Research Source File

All of the research source codes exist in shared repository with supervisors of this

thesis. The following is a list of the repositories and brief descriptions of each repos-

itories.

• https://gitlab.com/arminny/gt-power-model-soot-model

– Descriptions: Hybrid soot emission model and GT-power model imple-

mentation

– Papers: [5, 199]

• https://gitlab.com/arminny/hcci-model-control

– Descriptions: Homogeneous charge compression ignition (HCCI) engine

control using sliding model control based on a model developed by Khasha-

yar Ebrahimi and HCCI engine-out emission models using a support vector

machine

– Papers: [36, 215]

• https://gitlab.com/arminny/ilc-engine-robatic-papers

– Descriptions: Iterative learning control (ILC) implementation in robotic

including Quanser Qube real-time implementation and manipulated

robotics. ILC implementation on engine to reduce NOx emission based

on an SVM-based model

– Papers: [184, 187, 216, 217]

230

• https://gitlab.com/arminny/mpc-real-time

– Real-time implementation of long-short term memory-based nonlinear

model predictive control (LSTM-NMPC) using acados

– Paper: [8]

• https://gitlab.com/arminny/nmpc-gt-simulation

– Descriptions: NMPC, Linear Parameter Varying (LPV) MPC, and linear

MPC implementation in GT-power model

– Papers: [6, 7]

• https://gitlab.com/arminny/nox-sensor-modeling

– Descriptions: Gray-box NOx sensor modeling including raw-data and

NOx sensor gray-box modeling codes

– Paper: [193]

• https://gitlab.com/arminny/diesel-svm-model

– Descriptions: Support vector machine-based modeling for NOx emission

including model-order reduction algorithm, raw data, and NOx modeling

– Papers: [3, 218]

• https://gitlab.com/arminny/rl-ilc-gt-simulations

– Descriptions: Reinforcement learning and iterative learning control im-

plementation using GT-power model (ESM)

– Papers: [9]

231

	Introduction and Background
	Emission Reduction Technologies
	Diesel exhaust aftertreatment systems
	Diesel exhaust feedback optimal control strategies

	Model Predictive Control (MPC) Background
	Application of Machine Learning in Internal Combustion Engines
	Supervised Machine Learning
	Unsupervised Machine Learning
	Reinforcement Learning (RL)

	Problem Identification and Proposed Solutions
	Emission Estimation Modelling challenges
	Model-based controller challenge
	Model-free controller challenge

	Contributions and Thesis outline
	Thesis outline
	Contributions

	Experimental Setup and Engine Simulation Model
	Experimental Setup
	Engine and Engine Controller Setup
	Electrochemical NOx sensor
	Fourier-Transform Infrared Spectroscopy (FTIR)
	Pegasor Particle Sensor (PPS-M)

	Exploratory Data Analysis (EDA)
	Steady-state data analysis
	Transient data analysis

	Engine Simulation Model (ESM)
	Summary of chapter

	Steady-state NOx Black-box Modeling
	Support Vector Machine
	Convex Optimization Problem
	Dual Optimization Problem and computing weights
	Karush-Kuhn-Tucker (KKT) conditions and computing bias

	Full-order Model (FOM)
	Model Order Reduction (MOR) Algorithm
	NOx steady State Model
	BMEP steady state Model

	Control Oriented Model (COM)
	Summary of chapter

	Steady-state Particle Matter (soot) Gray-box Modeling
	Gray-Box, Black-Box, and White-Box modeling
	Machine Learning Methods
	Pre-Processing: Feature Selection
	Regression Models
	Post-Processing: Model Selection

	Results and Discussion
	Summary of chapter

	Machine Learning Integrated with Linear Parameter Varying Model Predictive Control: Simulation Results
	Linear Parameter Varying Modeling
	Support Vector Machine based Linear Parameter Varying (LPV) Model
	Bayesian Hyperparameters Optimization

	Model Predictive Controller Design
	Controller Design
	Controller Results

	Imitation of MPC using a Deep Neural Network
	Imitation of MPC Concept
	Forward Propagation of Imitative Controller
	Training Imitative MPC

	Summary of chapter

	Integration of Deep Learning and Nonlinear Model Predictive Control: Simulation Results
	Long-Short Term Memory Network (LSTM) Model
	Nonlinear Model Predictive Controller Design
	NMPC Imitative Controller
	Results and Discussion
	Summary of chapter

	Integration of Deep Learning and Nonlinear Model Predictive Control: Experimental Implementation
	Deep Neural Network Modeling
	Nonlinear Model Predictive Control
	Controller Design
	Constraint definition
	Real-time implementation techniques

	Experimental Results
	Experimental results in changing IMEP
	Experimental results in changing engine speed
	LSTM-NMPC vs Cummins calibrated ECU

	Summary of chapter

	Safe Deep Reinforcement Learning
	Deep Reinforcement Learning (Deep RL)
	Reinforcement Learning vs. Deep Reinforcement Learning
	Deep Deterministic Policy Gradient Agents (DDPG) Algorithm
	Safe Deep Deterministic Policy Gradient
	Safe RL versus RL

	Iterative Learning Controller (ILC)
	Results and Discussion
	Summary of chapter

	Conclusions
	Machine Learning in Emission Prediction
	Integration of Machine Learning and Model Predictive Control
	Machine Learning in Learning-based Controller
	Future Work

	Bibliography
	Appendix A: Ph.D. Publications
	Peer Reviewed Journal Papers
	Refereed Conference Papers in Proceedings
	Technical Presentations & workshops (refereed abstract)
	Technical Posters

	Appendix B: Research Source File

