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'Abstract

This thesis‘is:céncerned'uith the détectionlof edges
in pictures. Edges are defined, the‘ppobiems of their
'detecéion are ouqiined, and edge bpe;éﬁor Ch%racteristics
-are pregented_ Curreﬁt detectiOh.methods; both sequential
‘and p?gallgl,'arf critica%ly sﬁrveyeq. A new edgenoperator
is proposedehiéh is based on the degiee ?f grey level -
ciuste;ing within a picture-segment, and two algofithms are

~

<iﬁgluded. The results of applying six edge dété;ébrs on two
digitized pictures aré pfesentéd.'A‘figﬁre df:mérit ié.
established for evaluating edge‘matrices,taﬁ&ifh@;méfrices'
. resulting from the six deteétofg aré'coﬁbéredi'ﬁafdﬁare*ea;é
detection’techqigues are examiﬁéd apd an appréach usihg_-

hardwarefiS'Suggested.
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Chapter 1 ' /

INTRODUCTION

Tnls thes1s is concerned with dlgltal plcture

e}

proce551ng, a generlc tern comprlslng many dlstlnct bu{

gelated act1v1tles. Edge‘getectlon is one area of interest

whose ramifications %re of concérn throughout the field of

- ° “ t

picture processing. The subjective analysis of two-

-

dimensional images is a common day-to-day task for many
occupatlons. A doctor examlnlngﬁi Rays of his patlents ;}
scartographer 31ft1ng thrdugh alr photographs, foren51c
sgzkntlsts comparing fingerprints, are_a‘few workmffientede>

4,
N Ll

examples of this otﬁerwise ordinary human activity Thé
\

|
'~

advent of t@e dlgltal computer has stlmulated research in

Id

plctures._wlth "Girrent speeds, storage capac1t1es, and I/OF
‘capabllltles of dlgltal computers, it is now efficient in
,cost and time, and becomlng more effecfive in purpose, to
.~a551gn to the computer somq portion of those v1sual/tasks ’l

mentloned a%ove. For example, Andrews et al [1] show that

an, X- ray of a person with Black Lung dlsease is strlklngly

1dent1f1able as such, but Qg;xAylth_proper,computer “ . )/

processing of the original image: The'purpose_of,this

thesis is to critically examine contributions to one

4




specific problen area:of computer‘image processing: the

location of edge-, ithin pictures, Following a survey

“another edgéhdetector‘is'introduced‘which is based -on the

degree of 'order' within a picture segment Tests'are'then,\

conducted on several edge. detectors, and conclu51ons are

drawn. A hardware edge detectlon system 15 outlined which

is computer controllable. The the51s concludes w1th an

= Y
»

Pverall anale1s of all of the above t0p1cs.

. &
]

I. Problems In Pictwre Processing

’

] - T/ f

The term 'plcture‘proce551ng' in a 501ent1f1c-

sense, 1mp11es the computer analysis of two dlmensronal

\ o A- )

'1mageF representlng real sScenes (as opposed to-r thosg -

operatlons on arbltrary matrices not derlved from

~

plcturesy. THe totallty of ‘picture pgocessing-tpsks and

~a - H <

Y

operat;ons,’though exten51ve, can be categorlzed. a "

\

W

‘cla551£1catlodﬁyhere the;computer is becoming particuiarly

valuable 1s in 'pre proce551ng' of pictures. ThlS theS1s \\\

wlll present a thorough examlnatlon of one aspect of
pre‘proce551ng° namely, the deteétlon of the edggs of _
objects Within plciures. To this’ wrlter's knowledge su;h a
critical survey - as not be.n attempted before, although

Grlfrlth [13] do=s make a contrlbutlon 3? this end This

survey and the assucited test results should aid anyone

~

\Who nust choose among several_edge'detection methods.
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‘Definition Of Terms : g o “ , e e
m—— " . . . E . S ’ ) v. \ ,

» . , F .
. . . N « f . Y |
” yA’Rigtgrg iS'Qeflned.as,a'real-va,uedyspatlal ’

functlon of two varlables f(x y) wher@ withbut'lOéS!Of

1

o

i

generallty, one can, assume 1t to be of some standard shape

H
[ -

and 51ze. The bests (descrlbed 1n Chapter 3) will be ’_‘
& - :
concerned wlth\square plctures represented byxlnteger valued

/
matrlces whose - array elements;are p051t1ve, and where the

ok

S

f

¥ 4 '
Y

number of rows or columns w1ll npt exceed 256 ,ﬁach element .,

7 : /';' .

v

of a plctmre matrlx represents the a$erage va}ue of fhe ,
. P . P
brlghtness o"er the correspondlng reglon of th e qri-ginal /A

<

lmage. Commonly, this brlghtness value is referned to asia - ,%

T
SN : -

grey leyel. Tme elemen£§ of the matrlces are referred to as

L

plcture elements’ (p @ls or Qéls).uThe range of~Values that/’

2

B ‘ » S0
a plxel can take 1s called the grey level range. . ’
- » . ’ ¢ . _'q kv\'f
-~ Nofation And Format ’ . p
% .. . - The following mathgmatlcal notatlon has been
1mo}emented°
.
< , R
’ % - the multlply operatlon.
S * - the exponent;atlon operatlon. .
| Xx'| - the absolute value of x. - S D
’ o e ; N - . : a i
. 'd , - is used in *'dx" to indieate Ly -

- partial differentiation.-
1 : . )

Other mathematicalusymbols take on théir'customary
: Co s ' (4 : . . . < N i
connotation, unless othérwise specified. —

£ - ' ’ u



Problem-Areas
Automated'visual;scene analysis is one specific
picture proceSSing task.‘visual inpwt systems, such as the’
. robot progects at MIT: [30] and . Stanford [28], the hand-eye
progect [10], chromosome counting by Ledley et al [ 2413, . =

typically utilize a pre processor to condition their picture

prior to its passage to higher level systems for analysis.

. ‘
Therefore, betw n the:in ut deVice,,such as a TV camera,.
P

and the pattern recognition routines within a system, thek
video Signal must beAtransformed into a properly-organized-d
data structure. This"transformation;normally‘concerns the

following processes:

A

a. Digitization

b. Noise filtering‘
c. Edge detection
d. Contour following

e. Synthesis of line drawing AT (/f._
- - N . - . . R .
. . . a 1 . . N

Digitization'istthe process of transforming the

’

hrightness function of a continuous image “into an array of
discrete grey levels. This’ is accomplished through the
.integration of the image brightness over some small
Q region (samp;igg), then assigning a grey'level to'represent'

/

/ his sampled value (guantization);_Hardware to perform this
&

task includes an input sensOr Ae. 9o TV camera, flying spotv =
,scanner, or- perhaps an im&ge dissector), an-
analog—to-digital (A/D) converter, and-controlling;modules*

,

J
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~
'to sample and gquantize properly wWith respect to tlmé and

p051t10n._

N :
Noise filtering concerns the separation of a 'true'

grey level from the dgerived one. There are bot. hd¥dware andg

software techniques fpr approaching this ideal. In the usual

_case, additive uncorrelated Gaussian noise is assumed. This
degradation is sometimes referred to as 'salt and pepper!
noise, and can be restrained by low-pass. filters implemented

in either hardware or software.
. 9

Edge detection is the location and marking of all

borders betieen two contiguous regions in the picture
matrix. Since this is the theme of this thesis, a morer
complete (though still intuitive) definition will be given

-in the next section.

Contour following is the process of opetating-on the

,bbrder markers (linking, eliminating, or adding to them) to

. the:extent-that'the fesulting structure is suitably
o , , %
. organized for correct abstraction of its features,_iue.,

phyéiéal edges.

°

4 - The sznt

Lo . . . .
is Qf a line drawing is, in essence, the

o

/\\

'transformatlon of the\contour representatlon of its edges
. SN Ly

\ ~

1nto a compact mathemat1¢al form, uhere the llnes (edges)

'abstracted from the border markers are retalned as

coqrdlnate end-p01nts, as :olynomlal coefficients, as vector

fdirectionvdifferentials, or some other suitable form.

v H

e

S ¥



II. Edge Detection ' "‘\
Th ~nse of any edge detection schenme is to output
an indi - the position of borders, or boundaries, of
"0 . .
‘the inpt  -ena. The major objectives in the ‘attainment of

this purpose are: | ‘1
- a. The input image must be available and
appropriately structured. .
b. The edge detection scheme snonld be appropriate.
for thg class of input images. |
 J c. The output dnta nust be.suitAbly orgqnized{ and

should indicate in sonme predeterninea fashion the

"position of all borders in the input scene.

The concept of 'edge! is subject-to many
interpretations (probably hecause it is primitive, and thus
difficult to define). The following indications of what is

meant by an edge element and edge detection should suffice.

Intuiiively, an edge element (edgel) is a picture
element (pi- “1) on the‘border, OL common boundary, between
two nelghbouLlng picture’ reglons which dlffer in some

measureable characteristic by a threshold T.

JEdge detection is the process of assignment to each:

element P(i,j) of a picture matrix P, an indication of the

‘likelihood that the point p(i,dj) is an edgel.

~—



- Types 0f Edges

S Consolidating the opirions of Griffith {13] and
Herskovits { 16], there appear to Be four distinct tyées of
edges. Their common underlying characteristic is some form
of brightness'£ransition befween the picture regions they
:divide. These edges are shown in cross-section form in
o S

The slopes on either side of.. the roof-type edge are

(\_l .
N

not necessarily identical. The skivﬁump edge 1is from

Fig. 1.

, .
Griffith [ 13], the remainder from both authors.
.Griffith [13] distinguishes more types than are shown here,

but they are not sufficiently different for inclusion.

Textﬁre edges (i.e., those/e?ges wvhere there is no
average bfiéhtness‘transition)’ate excluded from
consideratioﬁ since the operators surveyed here are
ordinarily non-effective Hith this type of boundary. //
Hewever,‘Rosenfeld [47] has developed fechniques which alfow

the Roberts operatot-[36] to perform effective'y in a

textured environment.

Methods 0f Edge Detection

Edge detectioif methods can be classified under two

broad headings: sequential and parallel.



step ' . . I
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spatial transition - -

Fig. 1 Types of edges (cross—sectioﬁ)»d

_sequential edge detection methods access and process
elements of the inpdt image'in some fegular seridl'order,
detecting and outputtfng some form of edge indication
'sequentially; This type of operetion is denoted as 1ocal
edge detection, and implies that the detectron of an edge at
element p(i,j) can be nade a functlon of the results from
the prev1ous elements accessed (i.e., nonllnear_qperatldus
are possible). Hith seqﬁential mefhods, f@’is customarj to
base- detectlon criteria on the characterlstlcs of the

nelghboufh&od around p(l 35 ~he size and shape of this

5

v



; N
neighbourhood (e.g., ‘3x3, U4x4, etc.) is a parameter of the

i

detection method used.
" Parallel

Parallel edge detectigf nethods access and process

all elements of the input image simultaneously, producing

all the output edge indications at once, i.e., global edge

detection. This implies that detection should be much faster
than the sequential approach, but that the_detection )
criteria are fixed during any one operation, and are usually

identical for all p(i,J) .

Implementation Apgfbaches

211 of the schemes undef consideration iﬁvthis thesis
use‘optical or'éompptational methods as their prime resource
vfo: detectio¢. Electronic methods of edge detection, e.g.,
using'two—dihensiohai electronic‘filters and gfadient

. takers [ 12,2%,47] to process a video signal s(x,y), have not

been émphasize& in the literature in recent years. It is

possible that the one dimension of a TV»signai causes design
and cost problemé that severely limit, the expansion of 2-D
systems for edgé detection. However, the advent of .
charge-douplgd semi-conductor devices (CCDs), as reported by
Boyle ‘and Sm;th (2] and others [8], wifh their'&apability
for analog‘de;ay at low cost, and with high

bbperfo;mance [46], necéssitates a re-examnination of these

problems. Since their use is currently very restricted,
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electronic methods will not be critically surveyed. In$tead,
a new method of hardware edge detection will be out_ined in
Chaptef 5.

optical Edge Detection :

If has been shown, Presfon [BSJ; that‘when a coherent
beamiof 1ight (i.e., LASER radiation) is shone through a
trénsparency and ah appfopriate lens, the Fogriér tténsform
of the transmittanée of the transparency is prdduqed at the
focal plane of the lens. fhat is, the resulting irradiancé
pattern is a function of tle spatial frequéncy of the
transparency. Highér spatial freguencies show up as regions E&
of high irradithe at distances further from the origin of
the transfofm. These higher spatial fréquenéies &rrespond
to sharp changes in brightness, i.e., edges. The di;ection
from the Of;jiL‘Of these regions‘is directly related to the////

: /

spatial orientation of these frequeﬁties. Thus we have
! Yoz o

implicit edge information embedded in the Fourier transform

/

of a t;anéparency.'This informatioﬁ can be extracted bi'
filtering out the low spatial frequencies. The remainaer of
fhe +ransform can then be reCOnstitpted igtb a real image by
‘passingcit through an identiéal iens placéd an add%tional

t

focal length along the optical axis. This new 1 e will

have intensity ridges at locations where the o ginal
trénsparency had edges. .The filtering action can be

J
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accomplished by“placing an optical stop on the optical axis,

N

“1'
that are .near zero.

tg@s effectively cuttiné off all the spatial freéuencies

b

In summary, the adove process doee a Fourier
transformation on the transparency, Sscreens ogt the near
Zero frequency components, then re-transforms the clipped
/59 rier transform intoqaa“exo—skeietal image. This image can

//”/then bevconsrdered_as the'oqﬁput of anvoptioal edge
detector. The image is not yet;in diéeStible form for edge
analysis or recognition routines, but could'éasiiY'be nade
so. Through the use of optical'methods,'edges can be
.Qeteoted over the entire scene at onoé, i.e:, in parallel.
Other operations, such as rhe LaPlacianfaha the Hadamard
Transformation, can also be‘iaplemented oétioaily; Both the
Fourier»Trahsform and the Hadamard'iransform [34] Ca“‘be
implemented as computer algorithms for contras ~nhancement,
‘but neither will be aisoussed‘further.

’
-

Will and Penninoton [48] disouss_a novel method for
the pre-processing of images which atrempts to refate thé
classical methods. Instead of using the narural light from a
scene, they illuminate it‘ﬁith a projector sHining throagh a
‘crossed grating?. With the resultingigriddéa image"théy
iﬁolement‘their grid-coding rechnique to emphasize faint
edges on 3-D bodies. They then_define edges as the.
intersectioh of geometric planes rather than as pointg of

photometric discontinLity.



.
" JBecause of the vast amount of iaformation in: a

.typical scene (e.g., a 256‘x 256 picture matrix), and the
consequent processing required, COmputational edge detection
implies the use of a computer. Associated with ;ﬁe computér
‘are peripheral devices which sense'the input image, quantize
it;.thenfstore the quantized representation (disk, tapes,
storage scopes), and which can display various
representations of the image (TV monitors, siorage scopes;
graphic displays, etc). =

Edge detection islaccomplished through the use.of
» some edge detecting algorithm implemented as a computer
program. The prdgram operates on tae stored qqanrized image,'
and either replaces the image with i%s edge ﬁransforL‘ or
creates a new structure contalnlng the edge ;nformatlon.

This flnal structure is then normally used as dlrect input

to edge ana1y51s or pattern recognltlon routlnes.

Hardware Versus‘Softuare

~Although hardware of some sort must be used in all
ﬁethods'of edge detecf%ba, software edge detection is
distingulshed as that class of methods uhere the hardware
used only supports the 1mplementat10n of a computer progranm.
'Wlth this in mlnd hardware edge detectlon can be compared

to that of =~ Ftware under four criteria: flex1b111ty, speOd

~

accuracy, and cost.’ .
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E;ggibilitzﬁ Using a parallel approach essentially
limits opiical'systems-to linear edge detection operations
on the input image. On the other hand, the computer can

perform non-linear operations, and can change detection

criteria during any one operation.
' %

§pg§g: The speed of tﬂe edge détection operatidn‘for
| hardware'systems is limited only by the speed at which the
elements can be accesséd. For én optical'sysfem, only the
speed of light limits the speed with which edge detection is

\

accomplished. Thus, detection is essentially immediate.

Accuracy: With software methods there are inherent
errors due to sampling and quantization operations which
degrade to some arbitrary extent the output from the_sensor.

However, even this output has been previously degradzé\qx

the imperfect accuracy of ‘the sensor itself. For hardware

fsystems, both‘electronic and optical, accuracy‘is a function

of the quality of the transmission cdmponedts.

Cost: Aifhough one can certainlj find counfer
examples, it is generally true that digital qomputet edge
detectieon is more expensive than éptical of electroni%
_means. Hdwever,‘thevcomputér cén‘be'used in moré than just
its.edge deteétiéﬁ:role, and thus its cost can be .

distributed over other tasks.

?

e



-advantage of the software nm

14
Summarizing, it is felt that the main advantage of

Al

hardware edge detection is g%eed and cost, wher~ the -
t

hod is flexibility, ag perhapsfi

-accuracy.

:Most of the remalnder of this thesis will concern

.seguential computational methods because of their

'flex1bility, interest, and ¥idespread use [26].

III. Edge Operator Characteristics

"In Chapter 3 several edge detectors are analytically
evaluated ThlS evaluation can be h~ndled best by grading
their several features against a selected set of
characteristics. An additional active evaluation (i e.,

Y

implementation and controlled trlal) of their working
performance could then confirm or deny some of the
analyt1Cal conclu51ons, and perhaps give ev1dence about

characteristlcs where . analy51s is’ difficult It follows

therefore that the assessment of a method depends upon the

‘selection and ueighting of the arbitrary characteristics,

and a proper active e#aluation} According to Roberts [367,

edge detectlon operators should produce sharp edges vith as .

blittle background noise as p0551ble. It was alSo stated that

-

~the 1nten 1ty of the lines produced should correspond

¢closely to a human s ability‘to perceive the edge in the
original picture. This last point lS debatable. A human can

perceive' an, edge even though that edge is not clearly

2

- Visible (i.e., one creates an edge in order to form the



object recognized). If such is the intent of that last

. C, 9 . ' ;
point, then there is no debate. However, if an edge operator

L 3%

produces a faint edge (or none at all) when = human can

definitely'perceive one, then the production of this faint
. - .
edge is pnot a characteristic of a good operator. In fact,

the ‘'perfect? operaté ghould'produce a strong edge resbbnse

ﬁ‘v

even though the“hﬁ ‘h‘hiewer has difficulty d01ng so.

-

‘Bearlng these p01nté in mind, the followlng composite list

of characterlstlcs is clearly relevant to the selectlon and

use «0f an edge detectlng method: \
a. Speed: the amount of time consumed to determiue
the likelihood that one éixel is an edgevelement.
As an arbitrary measure, a Computer Time Unit v
(CTU) wil& be used where it is assuued that the
VADD 1nstruct10n @peratlons and the storage access.
tlme are both approx1mately equal to 1 CTU and
thus about equal to eaoh-other. Further, it (is
assumed that the MULTIPLY and DIVIDE times are
completed in about 4 and 8 CTUs respectively.
COMPARISON operatlons should consume approximately
2 CTUs, while an ABS value operation should juse
about 4 CTUs. MAX or MIN operations should take 3
CTUs (i.e., a subtraction and a comparison) since
the operands will'p:obably be‘in'regisfers when(t
lneeded.tHenceforth, these calculated times for . a

"each operator should not be interpreted as exact

“times, only as approximations..
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b. Is ropy: the insensitivity of an operator to

ehanges in orientation.of edges. However,
. o,

‘ & .isbotropy is certainly desireable if one wishes

to detect edges orlented in a spec1f1c direction.

“¢. Edge Tvpe Besponse' the response of the operator
! c

. to different ﬁﬁpes of edges.

~

d. Dynanmic Range~ éffectlveness of the operator over
[

wide rangeﬁ of brlghtness. . - _ 2 \i>

"

e.-N01se gSensitivity: ability to iﬁdicate correct

N edge €lements under varied poise conditions.

f.'Stqrage*Gosts: economical use of core and:

aux111ary storage.

gyﬁUnlversallty- dégree of machlne/system

v

‘independence of the operator.®

h. Adagtabilitv: abiﬁity to change, expand

1

) otherwlse adapt tﬁe parameters of the operator to

"»‘ o . changing picture condltlons, whlle the operator is

activel ; engaged in prqce551ng a plcture.

The}we&ghting.cf these characteristics'is difficult,

o

" since the individual uset%must_decide on the relative
importance of two (or mcre) features, which may-:be - 0.
'counter—acting,(e.g.,,adaptability as opposed to fast -

response) . However, the functional effectiveness.of any -

. ' Al .
method can be assessed by examination of its output, when

r

given a ‘real' picture as input. This assessment is, K somewhat

subjective hdwever, and therefore will vary under different

._‘;.»«

checking co%&htlons. A later chapter will ‘discuss a more . a
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-

object%ve basis for judging the'merit of any particular egge

operator under a wide range of operatlng conditions.

g\

For thej present’ analytlcal evaluatlon, the ’ e
characterlstics of speed, isotropy,?and.edge type -response.
will be referred.to during'discussiop.oﬁ each method. Other

1y,

features will be mentioned when clearly relevant.

‘Performing edge detection on a visual scene through
computational meth'ods implies that the scene be preperly
represented in mathematical form. Normally this

representation is a 2-dimensional array of non-negative

integers whose ramnge is 0 <-'n7< 2%*k, where the exponent k
r ) . G :

u?ﬁ/lly lles in the range 0 < k £ 6. The size of the'array‘

should be such that*the %pallest resolvable feature of the@

B

- e
"~ original plcture is much larger than the 1ndbvldual pixel.

Yoo - S /]
. s . M .

I3
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Chapter 2
-SURVEY OF EDGE DETECTION METHODS

»

_'mhis chapter will examine fwélveﬁmethods of =2dge

detection, The order of presentation. -is related to their

. relative complexity, with the simple‘sequential classical

methods being presenté&gfirst, followed by the more modern
seguentiaf‘bperators.4These.sequeqtial approaches are.

terminated with a review of stgtistibal,differenCinq'

" algorithums. Finélly, quaSi;pafallel methods are reviewed in

lesSerfdé%aii, All methods discussed are either recent_d:j-.
) : , C , .

‘uidé;y used. o IR _ ,/2

e

. . T :
I. Sequentia% Methods

[

This section critically surveys Several sequential

methods of localﬁedge detection-ir preparation for
~functional tests of a selected sukset oz t. 1 in Chdpfer 4.
. \\‘.-. cy - . . °

The metﬁbds discussed include: the Roberts ‘operator, the
"Gradient and”LaPlacian dperators, along ﬁith'the newer

Herskovits operator. Methods involving statistical

<

operations are discussed separately. For simplicity,v‘

analysis of the fqllowing edge detectors in fhisASeétibn is,

inﬁgenefal,,restricted to their respomnse to step-like édgésn
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B

The Roberts operaror [36,}‘; aas designed.to detect
gradients of\arbitrary orientation but of minimum width;
That is, an'afte;ptﬁis rade to locate micro-edges in all
directions.'Using a 2 X 2 pixel window (Shqan in Fig. 2),

i

§ : Fig. 2. The Roberts sub-matrix
the whole picture mafrix was examined with the following
simple algorithm:
Edge ﬁerit (EM) = {(A-D)z. + (C-B)2).%*.5 (1)

where A B,C,D are the sguare roots of the -

Acorrespondlng grey level 1nten51tles (1 e., a, b c,d)
in the picture. ThlS 1n1t1al root operatlon is used
since it approx1mates the response of the human eye
to 1ncrea51ng values of brlghtness [ 147, Perhaps a
'somewhat more_useful explapatlon.would bebrhat the
.. oot eperation effectiVeiy normalizes~the dynamlc
_range of grey levels, such that theﬂthreshold needs'

'mlnlmuﬁ~adjustment for effectlve operatlon. However,a

\
it is commqp (see’ Rosenfeld's work on texture

“)a
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analyéis [39], for example) to omit one or both root
operations. For .the preseht assessment the
pre-processing. root operation will be\omittéd for -

reasons of efficiency.

-

- This algorithm emphasizes differences across the window,
both horizontally and vertically. These differences are
indicative of edges. Both terms under the square root sign

contribute to the EM of the vertical edge shown in Fig. 3a.

LY

I 3151 315
At -
I3 15| {t 515 |
- o1 .}
a. Vertical 'b. Diagounal .

Fig. 3. Vertical and diagonal edges

It is clear that a horizontal edge would receive a similar
contribution from both terms; however, the diagonal edge in -
Fig. 3b, although apparently «s strong, would receive only

.aboﬁt two-thirds of the EM received by an equally strong

horiéontal or vertital edge.

With the assumption that!the pixels represent the
actual brightness intens® “ies in the picture rather than
their roots, the speed of the operatcer is still not

-outstanding: a galculatioﬁ shows fcur .storage accesses, two
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subtractions, two multiplications, one addition, one square

P

root operation (approx. 50 CTUs), and one comparison

operation, for a total of about 67 CTUs. This total is

largely comprised of just one'component, the square root

operation. This operation can be omitted (to optimize the

algorithm) under the assumption that the comparison

operation will be done against a squared threshold. With

this change an operator time of approximately 17 CT@g

- results, which is indeed nuch faster.

The stbrage requirements of the operator are clearly

minimal Since only 17 CTUs are used, indicating few

‘instructions. The major éextra storage requirement is the

‘necessity to maintain an edge indicator matrix whose

dimensions are the same as the picture. The fact that the

examined region is small, (2 x 2),'and is analyzed duf of

context with neighbouring regions, hinders correct operation

in themfreéeépe of noise, both high freqﬁénpy and 'salt and
pé@per'.,As noféd'above; Rosenfeld [41] usédzaxmodified
version Qf’this :eratbrr,éompared against ;hrééﬁother
a?gofithms, Rosenfeld rated this méthqd‘second bestﬁin the‘
attempt to éstablish texture boundaries. The Roberts\

operator does this by detecfind the amount of micro-edge per

unit area. This conclusion is developed and teste€d in [417].
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The Gradient

For most purposes one wishes to detect edges at every
orientation over the picture matrix. Note&;hat the Roberts
operator is wéa of;diagonal edges because of fhé‘size of
the examined area.\ Now consider a mefhod uhich‘supposedly
indica£eé edges equa;iy Wwell in any difectibn,.but through
expedient use, is more responsive to diagonailyrorienfed
.edges as opposed to vertical or horizontal ones. This me%hod
calculates the derivative in tﬁe Gradient
direction t38,ép.9u295].'This amounts to takiné the square
root of tgs sum of'the squares of the partiai deriva{;ves in

any pair of -orthogonal directions:

[ (af/dx)2 + (df/dy)2]**.5.
) : g
Félk [{9] uses this méthod in a complex scheme to

.detect edges from imperfect (i:e., noiéy or missing) images.

'With this scheme it is customary to use a 3 x 3 subset of

the picture as the region of interest. The indiviggalwpixeléﬂw

[T PR et

will be referred to he;gqﬁtetwby7¥ﬁélié£ters shown in

Fig. 4. o

S

Vérious ways are suggested for implementing the
Gradient, but a typical ahd symmetrical variation is to-sqm
the positive differences of grey léveis across the central
pixe; such that wé‘have the following digital approximation:.

"EM = |b-h| + |f-4]. . : " (2)
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It 1¢ 16 ne noted that pixel ¢ does not enter into

ti¢ celculation, wven though it is tne <lement aboeut which

the ¢lhove cquation -speaks. Further, note that the four
~ ) . . :
coiner elew:nts of the reglon are also missfhg from the

calculation. Ap

o

arently, their ebsence alds tpe spred ol “he

N

| R E S
’ t a2 | b i«
+ . : ;
L a v

Hh
P S

I I N The Gradient Sidb-ratils

- I

calculsaTion much mOre Tnan thelf- Anciu3ion Would aid a

. L ’ . o
correct “espouse from the operator. AS an ~xample ¢i the

Coerator's action consjler the TWo 5 x4 plChULe SedRents in

\ : . N )
. S d
“
* ~
. > .
~ T T f T 7 M
L3 3 2l E2 33
fomm i
P3PS 5 S 515 b
: : i | 1 i § —_
! 1 T 1 £ 1 1 ]
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"a. PLiagonal "~ ©, Horizontal

Fig. 5. Ideali

W]

(

3 diggonal and horizontal edges.

. ¥

Usingfgguation {2) above to calculate EM, a Vvalue of 4 is

derived. Thresholding at a level of 2 would resuilt in a

i
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strong edge indicatiop.‘Consider now the horizontal edge in

fig 5b. Note now that EM = 2, just barely indieative of an
edge. With spch a marginai thresﬁold, the operétor cap give

false edge indicatipns. Using ;|£hreshold of 2) examine the

two segments of Fig. 6. As can be calculated, Fig. 6a gives

%

— T T — f T r 1
I 41 515 I S 1 31 31
e e T e
P 41 51 5.1 i 31 3 ¢ 5.1
b, |
I 41 51.5 | I S 2 1.3 1
e 1 J L i 4
- a. Obvious Edge b. ¥- Edge

Fig. 6. Sample picture segments

no indiéétion"of an edge, whereas Fig. 6b gives a defiﬁite
indiéatipn. éince the.reverse sitpdtion is the‘corfect one,
the response ef,the operator using-thié"thréshdla is -
unsatiéfactory. A large part of this difficulfy is:dﬁe to
the inequitable responSe“%o edpes thét'are uS‘deprees apaft.
Therefore, isotropy is enly closely apprbximated_uhen the

definition of the Gradient is expediently implemented.

Rosenfeld [38]'also suggests the following Gradjent
operatof: B - _
BN = | (a+bc) - (g+h+i) | jr(a+d+g)—(c+f+l)' M)
This operator attempts to overcome salt and pepper noise by
exam}nlng more_of the pixels of the picture segment during
ome edge operation. Where the additio%ﬁl CPU time needed is

®
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of no real consequence, this variation may be worthwhile.
However, again hote the disparity between vertical and
horizontal edges versus diagonal ones. Using Fig. 5 egain,

it is seen that EM = 8 for the diagonal edge (Fig.“Saj and g
fof the horizontal_edge (Fig. 5b). Thus, unequal response to
edges at different orientations, from an operator whose
purpose is edge detection etvall orientations, leaves
s%mething to be desired. An alleviation to this problem was /

suggested by Holmes [17]:

Let dx = ((c+f+i)/3) - ((a+d+g)/3)

((atb+c) /3) - ((g+h+i)/3)

~and dy
then, |grad| = (MAX(ldxl,tdy])) +

(3/8) * (MIN(1dx [, ldyl)). - ()

¥y
This version almost attains isotropy, but at the expense of

about 76 CTUs.
]

‘ A time analysis.of (2) shows that 17 CTﬁ; are
required; whici is identical to the Roberts‘operator. The
second_;%fiation, i.e.; (3) , of the Gradient uses eight
extra,memo;y accesses and additioﬁs'for an extra 16 CTUs.
Thus, 1its total of 33 CTUs is approximately double the first
variation; Ne version of this operator has excessive sterage

ot

requirements over the npcessary edge matrix required.

Since difficulty_wqe encountered ih obtaining egual

response from edgesAthat were 45 degrees apart from the

. Roberts Operator and tyo versions of the Gradient, and since

[y
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the anisotrobic effects were opposite in sign, a combination
of both of ‘the operators should glve near isotropic results.
A suggested variation is the following:

EM = [a+d-i-f| + |g+h-b-c|. (5)

It can be confirmed that the EM of Fig. 5 using this

combination of operators is 6 for both diagonal'and

horizontal edges, and uses less CPU time than the second
variation of the Gradient. Note that 8 of the 9 pixels in

the segment are used in the calculation, with better resuylts
'in the presence of ﬁ%lse. This is re- conflrmed by the same

computation on Flg."p.,
. { ’ .
The Laplacian

)’ '

The LaPlac1an 1§&an approach vhich is orlented toward

the detection of thin high contrast edges~(e g., Qo

hlghllghts). Kovasnay and Joseph [23] were the'f;r§f:£0-i

discuss this operator. Rosenfe;d (38,p.95] ﬁehtions'théfi.?

£ Pt
= oy

3

operator as "afother useful combination of derivatives ..:if.

1*-{:*‘
s

For a continuum, the Laplaci?n is defined py: ;‘{”
| de/dXZ;+ azfsaye. 7o
A digital approximation of this functiooiuéiné’;
'schéme from Fig. 4, is: : |
EM = be - (b+h+f+d).
A second, moié:noise-free, vqriation [38] is:

EM = 8e - (a+b+c+d+f+§+h+i).
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Both of these expressions tend to maximize in regions

where there is an abrdbt change of slope. Since the most ,
abrupt change is fronm strongly positive to strongly k

negative, it can be seen that this method is more respai

to a thin édge (i.e., One that can be straddled by the:

operator) than to a wider edge.

Although it is clear that the Léplacian is inféndéd “
to be isog;opic (as have previous methods), one note$
anisotropic results using equation (6) on the segments of
Fig. 5. That is, for the diagonal’édge,‘EM=4, ahd for the
7horizon£ainedge, EM;Z. Thus, the first va:iatioh is more
positive.fot diagonal edges (as was fhe Gradienf). Applying

: : O

. , O
the Second.variationA(7) to the segments, one notes that EM

is the same in both vértiéal (horizontal) a;d diagonal'
edges. Therefore, the seéond variation produces a more
isotropic detector output; Also, one‘gén expect the effects’
of noise ﬁo be'lessened becausé of the greater number of
éixelskexamined,-g |

>

© The speed of théﬂoperator using  (6) is 15 CIUS,'and
is 23 CTUs for (7). Ks with previous methbqs; the stbragég'

requirements are minimal.

The. most serious objection to fhis-methéd is ité
‘susceptaﬁili&y to éalf and_peppér noise. Using (7),.considef
- the segment in’;ig; Ta. Obviously, ihe central pixel is nof
.f an ed%ﬁéégeﬁgﬁg; Yet, the addition of a small amount of —

':hoise %gggaf(See'Fig,'7b) results in Eﬁ=16, whereas a
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Fig. 7. ' Picture segments for the LaPlacian -

~
Iy

N . -9
definite edge (see' Fig. 7c) has EM=12. ThlS:EeSUlt was

obtained from the varlatlon uhich would seem to bé hlghly
Sy

'n01se-r951stant (7) As the reader can ea51ly verify,
varlatlon (7) 1s_thé Addltlon of two LaPlac1an operations;
Variation,(G)‘E;g§ the same variation, but @§ing instead the
pixels a,c,g,1 in the subtracted term.> Since th§'Laqucian

is.basically a 'spike! defector, the noise poiht (spike) in

Fig. 7b is mcre stréngly,detected.

" Thus if the picture has minimal noise, the LaPlacian
would be productive for thin high contrast,boundaries in the

scene,

¥
N}

RJ
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The Herék vits Operator

HerskoQifs [ 16] developed a one-dimensional operator
based on the ggometric appearance of an ideal édge. This
opera?or is higﬁly_positive to edges which are step-like iﬁ
.appearance. mhqs in Fig. 8 beloﬁ, curve X wouid be selected
before cur*‘s i and z, since the latter twé chrves are not

singly—stép d over the operator's range of interest.

}c’ < . 7 -
' | “ i | I | i [ | i
! : R » , [
X i . \\J“y ____curve y l
b - ' | o l
r |- ‘ I {
i evedl____curves x,z|"
g | (- ’ - |
h |- | l
.t I |
d n | | |
i e | . L I~
s s |- / b A
c s | ! ¢ i
. T I . { “
e 1 | curves X,¥ | |
t e |- o | ) l
e Vv | { i
e | [ I
lal curye z __ 1| B |
s |- |
| g a b c d |
| /\I‘/ : | @
[ Dty -SSR DR P DR | [ |
j P L P, P P’ 1\1 o
7 ’ i- i- i i
\\/-\

Fig. 8. One dimenslohal pixel array

9 .
The operator involves four consecutive intensity
- . ‘ .i . -/
values,\a,b,c,d, obtained at equal intervals along a line

normal to the orientation of an expectéd‘edge.“See, for



30
‘ ‘y"‘% .
example, the four marked intervals of p in fig. 8. The'

. . ¢
formula is: :

“ EM = 2(b-c) - (a-b) - (c d) o (a\\\'

The first termkonvthe rfght hand side of (8) expresses
dlfference zn ffﬁencxbx as eédgeé-like. The second two terms

argue for flatnesssbefore and after the edge respectlvely

-~ ,‘:5;‘\
[

The above equation, as$ reported by Griffith [13] and_
originating in“[16], leads to two intrinsic difficulties:
First, different EMs are obtained for mirror 1mage edge5°

second, the EM depends on the 51gn of perturbatlons in front

.of, or. behlnd, an edge. Both dlfflcultles can be overcome by

xr

E taklng absolute values of each term in the equation. wlth 5
these changes the following equatlon results.

BM = [2(b-c) | - la=bl - [c-dd. )

Previously discussed edge detectors (i.e., the .

Roberts, Gradient and the LaPlacian) havenbeen designed C’

with 1sotropy 1n mlnd To expand the Herskovits operator for

omn1 dlrectlenal edge detectlon 1t is only necessary to

. apply it on a second scan over the scene in an orthogonal
dlrectlon to that of the first scan. Comblnlng (i.e.,

~adding; or better still squaring, adding, and rooting) the
results of both scans- will produce an EM which approx1mates -

&§$0tropy. This EM can then be arbltrarlly thresholded for an

R ‘ 3
édge indication. "/. '

B R
Ly N

N
N
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TolenableféaéY"cgmparison with other approxzimately
isotropic methods, it is suggested that the following 2-D

ARl

operator be used:

N
EM.=‘MAX({£(bjc)| - ta-b} - |c-d|, .
| 12(£=G)1 = fe-£1 * fe=gl).  (10)
An éxaminatidn of -a pictdre segment 1ettéring scheme given

in Fig. 9 shows that the operator (10) is capable of some

s r R Ll 1 |

| | | e | |

' | 1 i ]

| 3 T i T I_.

N | I £ 1 |

o L 4 ] i 1
/, ¢ . | T 1 4
‘ lal bjc | a
[N d 1 1. J

5 4 | 1 Ll

: N g-f\l

L 1 . M | / ]

Fig. 9. The Herskovits 2-D array

~

degree,of isotropy. Further, it:seems fair to check that
aégree efén though thebéxtendéd version of the éperatdr has
‘been fo:med‘wifhin this thesis,'éince the modification seems’
the mqst’reasonéble in terms of speed and qomplexit}.‘Using
the sum of horizontal dnd vertical édge metits (rather théﬂ;
‘ tﬁé MAX opefatiéﬁ), thoﬁgh.seehingly réasonablé,

-

.

discriminates against_#ertain diagonal edges, and sQ;Fas.not

seriously considered.
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Consider mnow the picture segments in Fig. 10. The
modified Herskovits Operator gives an EM = 2 for the
vertical edge, and an EM = Z for a diagonal edge.»Thus,Vin\

this form, equation (10) is isotropic fo; the special cases
. ’ : ) s, .
shown. (.

) T LY L3 LN L] ] T L} L} 1.
31 31 515 1 3131 31 3.1
t + + — t t } } 4
A 31315151 I 31 31315
L i I { i L i [l i §
| B ] 1 B | L} ] T T |
i 31 31 51 51 I 31 31 51 51|
Y1 L IR I L 1 ! ! 1
| S | o ] T { g T T i
13:1 3151 51 I 315151 51
L o | " | A J . A 3 N 1
a. Vertical o b. Diagonal

Fig. 10. srcical and diagonal edges

for the Herskovits :
In its modified L,.t (10),'the operator uses eight

memory accesses, two multlpllcatlons, ten ghbtractlons, one

addltlon, one comparison, siXx ABS value operations, and one

"

MAX‘b eratlon for a total of 59 CTUs. This is considerably

slower than prev1ously discussed local methods.

With this method also, it is necessary to maintain a
‘binary matrix in correspendence’with the picture matrix to
contain the edge indicators. The storage required by the

operator itself, however, is fairly small



The'Shiggi—Tsuji‘Operator

The last of the local sequential operators to be-

considered has been érbitrarily named the Shirai-Tsuji

3

Operatof for its authors [45].

This method can be considered as a variation on.

’

Difeétionai‘Differencing (mentioned by Rosenfeld |

'[38 P 100] as a further variant on the Gradlent method) . The

operat T computes the horlzontal dlfference Dx ‘and Vertlcal

i
\

fdlfference Dy across a 3 X 3 p: *ure segment, then comblnes

DX'an&-Dy into a seml—lsotroplc value. A further operatlon

/

on Dx and Dy derives the dlrectlon of the gradient vector K.

The operator is. formally defined [u5] as:

- ’ |
M

Dx

= ((atd+g) - (c+f+i)). . (11
“L Dy = ((atbtc) - (gfhei)) o 2y
k\}é D = (D2+uy)/3.+.Kbb f (Kb = constéut} "' S (13)
N .iAlpha‘= arctan(Dy/Dx) g | » B " : ‘ ‘h’1(19)/
b= oDvoif D150, or D =\q if D' € 0 o \ ”’:(15);t
K = (20/pi)*Alpha (mod 20)o(gfadieut di%ection);*k16)
o There is an enouaiy in this opgf?tor which beate

closer examination. The value D is an indicator of the

likelihood that element e is an edge_eleuent;_The—eguation

for D indicates thath"might possibly be a negative value.
Thus, it is.reasouable to assume that either Dk.aud/or Dy =

may take on negative values. Therefore, it iS'possible that

‘va=u; and Dye-u. With these values-one notes that D'=O;d

PR
BEOR

-t
.



indicating‘gg edge, but it is obvious that these values

o . . i
represent a strong diagonal edge, which should be recognized
by the operator. To correct this situation, it is ‘'suggested

that equation (13) for D' be restructured as follows:-

D'= (| Dx|+|Dy|)/3 + Kb (Kb=c'c§n$'{cant) . ' (13a)
It can be seen here that Kb is a négative valued constant
whichféllqﬁs the edge threshold to be set at zero. In
addition, éne no%es that the gradient direction K takes on
real values from 0 to 19, where‘pQSsibly 20 discrete
g:adient directions were intended. Division by zero in the-
célq;ihtion is also normally handled by ordinary arctan

functions.

With these altératigns and assumptions one notes that
" the range of D' straddles zero, yitﬁ Zero - ~1iag the
threshold value. Any change of this thresho. i is
accomplished k' <hanging the Qigg in the equation for D

rather than changing the threshold itself. The bias value

is, of course, Kb.

Now consider the action of this'operator on-'vertical

(horizontal) and diagonal edgés to determine “its effective

isotropy. An ideal horizontal edge is provided in Fig. 11.



Note that:

Dx=((13) - (13))=0
Dy=((9) - (15)))=~6
Alpha=arctan(-6/0) = 3(pi/2)

D'=(6/3) +Kb=2+Kb.

Assume fhat Kb=-1. For the Sake of reasonableness, it must

!

’ T
b3 631 . §
Pare b—t— ! :
. /{ I 5.1 51 5 |
- : —i +—.
N 2 . I 5151 5]
o > l;": .. ’ | W i 1
CFigs 11. .- N3 .7 h_-izontal edge -
0,

be set at sogé neéative value. 41  yet it should allow a
rglatively strong édge Lo : Lhe“thrésholg easiiy;
certainly the present edée is strong. Then‘ﬁe;have;

| » p- = 2¢(-1) =71 and, “ |

K = (20/pi)*Alpha = 10 (mod 20).

An additional computation with an edge of the same strength,

- but briented diagonally shows that D(=1.666.

This comparison shows again :that iéotropy'is hampered

1.

i
H .

by addition gof horizgntal and vertical values. The diégoﬁal
~edge gives an edge indication which is 66.6%'mqre'positive

thap a ‘horizontal ohe of equal step héighﬁ.
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i
As Roberts f36,p.50] has observed, the case for some sort of

root bperatiqn on the orthogonal values is warrahtéd.v

Computing the speed of the operator, note that the
calculation of.EM (i.e., DY) requires.fen additions, two
subtractiqns,.one division; twelve memoty accesses, one
absolptevvaiué operation, and one coﬁparison for

approximately 42 CTUs. , _ ' - a

To mechanize the calculation of the gradient
direction requirés one division (Dy/Dx only) since the
remaining'diV{sion‘by pi would be stored as a constant), one
‘multiplication, one MOD 10 operation (one division by ten,
.and onewStérage access on the'remainder), plus the time
“taken for an arctan operation (typically'11vCTUs). _
. /

s
<

Therefore, the total time for calculation of K is 32 CIUs. /
vThuS_a complete operation would consume 74 CTUSs. However,
thé_inclusion of gradient K calculatidns will undoubtedly-

speed up a later stage in the pattern recognition process.

That is, contour following is \made more efficient if

information is available concerning the probable direction

-~

of prospective edges. Thus the extra 32 CTUs are, in fact, a
bonus. With 42'éins'remaining,.it is obvibgé that this

method is comparable to the-speeds of theﬂpﬁger ;ocal edge L
operafors._ e A
2 :

Because, 8 of the 9 pixels in the examined picture ¢
‘segment. are used in the edge calculation, this'operatbr is

less susceptible to false alarms (i.e., detection of an edge -

/
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element where none exists}. Indeed, with the derived

dlrectlonal 1nformatlon from -the arctan operatlon, 1t is v
-y .
possible that a iower threshold can be used (i.e., an

M

increased value of Kb) to detect weaker edges, where other

" methods would necessarily have to malntaln hlgher - _‘

“

thresholds. ThlS operator- requlres Space to store 1ts blnary

S

edge matrlx, plus the code for ‘the operator 1tself.

Y

It must also be mentioned here that:the ShiraisTsuji
,operator sequentially follows the action of their own unique.
.noise filter. The fi;ter'selectively;and successivelyi
adjusts’the various grey levels of the 3 x 3 picture segment
using heuristics (uhich-are not discussed here) that

maintain the resolutlon offgoizhedral sh?pes whlle weakening

£

and smearing others. There ore, the edge detector is
o]
desigped for a n01se-free env1ronment; however,_the

v

5 ..
r;
. . .

criticism. of anisotropy still holds.

~

Statistical Differencing _¥-

h e k e

As Rosenfeld {38,p. 100]'points out "Rather than
dlfferenc1ng by 81mply subtrabtlng the (average) grey levels
“

in two nelghborlng regions ...one'tan compare the FREQUENCY

DISTRIBUTIOﬁ& of the grey levels 1n the two reglons" “

‘Under‘the;general headiug of statistical
differencing,vseveral related methods can be fouud;-however,
tHey axme sufficieutly unique_to_bear iudiuidualrattentiou
here. The'statistical_modified LaPlacian [38j modifies“a-

)
S
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LaPlacian—like operation on a picture segmenfrand:idcludes a
standard deyiation measure to detect edges. The -
d1str1but10na\\d1fferenc1ng method examlnes a hlstogram of..
thekplxels from two plcture reglons to determlne
dlSSlmllarlty, and thus galns an 1nd1catlon of edge

llkellhood Griffith's method [13]mintroduces'BaYesian

. .probability along with statistical procedures to perform

N \

edge detection.

Statistical Modified Laplacian (SML)

It has been suggested [38,p.100] that a. useful way to
1mp1ement the concept of frequency dlstrlbutlon of grey !
1evels would be to a531gn edge merit to a pixel p(x,y) 1n
direct proportion to the function (f-Av) /s, where f is the
value of p(x,y), Av is the average of all p(i(j)Ain a
normally symmetrie.neighbdurhood N around p(x,y), and s(x,y)
is the standard deviation over thlS nelghbourhood. ‘This
method is qrbltrarlly named. the Statlstlcal Modlfled

pats

LaPlacian because of its characterlstlcs.

This operator can be justified intuitiyely on,the
grounds that the function\increases in'valueias the vaiue of
a point increaees'over rhe average”of its neighbouring : K?
pginfs (thus indicating a high.point, or micro—edge), and is

restrained in value'if the sthpdard deviation indicates that

there are many points surrounding p(x,y) which are far from

the average (thus indicating a !ndiey' neighbourhood) . This

is illustrated by the 3 xj3 picture segments in Fig. 12, and
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then. compute EM = (f:Av)/s. Note that the sténd;rd deviation
for Fig. 12a is 1.0, and thus the EM is 1.125. However, for
Fig. 12b s=1.59, and EM=.i08. Therefore, with the séme,
average value over a neighbourhood, and with the same

central pixel value, a higher edge merit indication is

obtained from the segment which is,subjectively‘moré

edge-like.
v I3T3l 1 T T —
{ | 4 L -2 1 4
- S S A S B Sl S s
t 1 1 1 t 1 T 1 -
. { 345151 1241513/
. —t—t—t . —t—t—
{3151 51 I &1 7 1 5-1
L 1 J‘ \l [ J 1 ]

Bl

‘ ot .
d. More e&ﬁgrliﬂg b. Less edge-like

Fig. 12. Edge examples for the
’ Statistical Modified LaPlacian

. én atgumentvagainiﬁ thié'approach is iliugfrhted by
Fig. 13. It is hotéd that EM=1.125, but the,segmént is noE}
impressive aS'beiﬁg‘edgéﬁlike. Yet the EM ié the §ame'a§f£he
one with Qgiigigg eage-like qualities (i;e#,(Fig 12a).-TFis

ambiguity is due to the.fact that computationsvfor'standard
. . .

deviation- do not concern themselves with the position of'the

samples relative to'the;; neighbours, only with the'iaﬂues
. . EY ’ : I

the elements are of/prime.importance in edge ihdicatioﬁ.
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-

A method which takes into account the relative

O

position of the elements in a picture segment is proposed in

Chapter 3.

Assuming a squared threshold, a"neighbourhood of 9
¢lements, and considering that each element must be accessed
twice, then a sp@d of 111 CTUs is estimated. Much of this

time is spent computing s**2 (approximately 72 CTUs).

I.T’l' 1
I 51 31 5]
%L L i | @"
¥ ] ¥ | ]
I 3151 31|
F |- t {
4 315
—— 1 A J

Fig. 13. False edge detected by SML. -

_Bistributional Differencing

- Muerle and Allen:[31,p.3-15] use a variant of the
Kolmogorov-Smitnov two-tailed hypothesis test to indirectly
determine€dges in scenes.

Briefly, this hypothesis test confirms thet two

) indepehdent sample'sets have Been dtawn frem popﬁiations' .
ihav1ng the sanme statlstlcal dlstrlbutlon. Utilizing this
‘test on the grey levels of a scene should then enable one to
‘determlne 1f ‘two 1ndependent (but nelghbourlng) sets are
llkely to be part of the same object. If the test strongly

i)
-.rejects this hypothe51s then one assumes that the sets are
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from different objects, and"thé,pixels on the border between

the sets are indicated as edge elements.
. : /

To determine the similarity of the two sets, one can
construct the cumulative probabilities for both sets, then
take the maximum of their positive differences as the EM. If

this EM -exceeds a prescribed threshoid, the sets are from

2

" different objects. As Muerle and-Allen have-détermihed,’tﬁ§§

method gives mediocre results, since the maxinum difference

]

. . Lo . ‘ C
*between the two sets (each containing only one value of greij

level, and also differing.by dnly»one grey level) may be

’ I . S . :
very large, which is misleading and can ihdicaté gross
B - > .. :

dissimilarity. In this case, one wo ﬁg%ppobphéﬁywant.tohshow
. . 1-.7 ; nf‘ij}nh‘ “ ,::_;,.‘t‘\.gf w A 3 .o

el
both sets as pa~t of the same object, Yyl

threshold would allow this. ) ' U

14

Improved results were gained by using "...the'average

o .
magnitude difference between the two cumulative

distributions...rather than the difference at any point‘
,..."[31,p.10).-This”average was>approximated'by determining
the area under the positive difference curve “or the two

distributions. .

Great diffiéﬁity was experienced [31] with pictufes
which were composedfﬁrimarily of edges (e.g., alphabetic

characters) since the compared sets of grey levels had no

‘distinct distributional differences (i.e., the backgrounds

are the same on- both sides of the 'edge! of a character).

t
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Muerle and Allen give no 1mplementable algorlthm in
theid ;paper, and so a speed check on their operator cannot
be,easily performed; however, an. estimate for one local

operdtion.can be made.
A

With m levels of'quantization, assume that one of the
" sample’ sets has its cumulative probability values stored,
and that a'neighboﬁring set of n elements is to be compafed
against these values. A father detailed calculation shows
that épproximately mn+10 (n+1) CTUs are required for n**.5
edge indications (i,e.,'aSSuminé square neighbourhoods of

n elemeots, one is oormglly conce%ne@ with thel'root of n!
elements along the,borderfn For ﬁ;16 and n=4, a speed of 114
CTUs results---slow‘oompared to most of the previous

- methods. The adjustment of the stored values is additional
(vhich prepares for .the next local operation), if the

regions are found to“dg-from the same object.

The settlng of £he threshold was anofher troublesome
.aspect for the designers [31,p.12] "Further, we ‘feel that
t he ogtimal threshold is a function of the mean andAStandard‘
deviation of the grey levels in the pattefn scene. to be

~ processed".

Their conclusion concerning threshold requirements is
. o

~

strikingly related to the foundations of. the Statistical

Modified Laplacian method discussed previously.
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An argument which weighs ékrongl& agéinst
Diétribﬁtional‘Differencing is the same one uéed‘ag;inst thev
Statistical Léplacian; i.e., insuffiCient'notevis‘taken of
the relative position of grey levels in a set, only their‘
relétive‘values. A picture.segment could easily be

constructed to illustrate this.

Griffith's Method

\
A ‘somewhat rore complex distributional method will
now be briefly diSqussed. Lesser atteqtion is given té ﬁhis
;algorithm'because of its leég than bptimal results on a

restrigted class of edge types.
“Hi :

Bayesian probability has been used [ 13] to‘develop aRr
cperator which isbpositive.for narrow-highlights, in
addition " to a class of edgés which can be described as
cliff-liike. % highlight is described as an anomalous
intenéity value betweeﬂ two equal intensi{y valﬁes; Thus we

would have a 'crack'! of light between two black_areas, or a

dark line between two lighter regionms.

Althqugh'fhe development is quite complex, if is
apparent that this operator can be mechanized without too
much difficulty. The inteﬁfion'is'the deSign of a non—loca@ﬁ
.operatbr, buf seemingly valid comparisons are made aéaiqst

local operators by first truncating portions of the new
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operator to simulate the local effe

the operator takes on the following form:

» .

a

a

where:;
R -is
of
R' is
RV is
a is
K is

.

EM = R"

measure
region,
measure
measure

measure

by

Q
RS,

chese

A
» With this adjustment,

AR

+ Ka2 - MIN(R,R') (17)

‘related to the highlight similarity

ﬁeiated to its edge similarity,
‘ 5 o

_df its homogeneity,;%

of the local gr&dient,

some constant.

y

-

Each term under the MIN function in the above formula

represents a different type of edge that the bpératof is

sensitive to. Thus it is -seen that this particular operation

?

is positive to, or is concerned'ﬁith, clgff-typeﬁedges, and

peaks. Griffith [ 13,p.25] also mentions a simple

generalization scheme to enable profiles of othér types of

.- edges to be incorporated. into the.éguation.

Coﬁparisons with the Roberts Operator and the

Herskovits Operator using representations of six different

edge types show that it is [13,p.25] "...twice as sensitive

'ps_the'Roberts operator..." and F...slightly more

sensitive..." than the Herskovits operator. Griffith

mentions that 500 microseconds was used tb& perform one local

operation.’ Copared to 'the methods mentioned previously,

this is much slower. This:.statement must, however, be’

tempered with the knowledge that'Griffith'S’time is
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tactual', and is not calculated using the procedure of this
thesis. He concludes that his operator has a "...marked

superiority...providing the cost of obtafning'intensity

values “is considerably greater than the cost of

computation."[ 13,p.267.

It is of slight concern that he appears to modify the
Roberts operator for his'comparisons.’It is noted that

- Roberts uses the square root of the intensity values as

i3

input to hi% operator, whereas Griffith uses the natur%if“//

logarithm of the intensity values as input to. the Roberts
Operator. Since both operations (1ln anc 00:) have similar
effedts, it is unlikely that the results of that comparison

would be mad= invalid.

IXI. Quasi-parallel Methods

~This seétioﬁﬁqoﬁcgrns recent method. of edgé
detecti n-which cannot be classed as iocal, fet ﬁhich are
efceedi:gly far from the concept of paraliel‘detectiqn. One
‘can refer to this class of ﬁethods as quési~parallei,
,;méaning.that the operator assigns edge indications td BEOTre

than‘bne pixel with each application.‘
, ‘ - N

It was mentiqned earlier that parallellprocéssing

teChniques for edge detection are currently being emphasized

over seQueﬁtial methOds.iTo?a large extent this change in

/

-
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emphasis ha's come about because of the increasing

availability of parallel processors [29j£vof at least the

use of their simulation langﬁages (e.g., PAX'II) [32,21]. It

is probable that the properties of the mammalian eye haﬁé“ﬂy‘.
. . . ) o 3

made this continuing change toward parallelism seen 3,

logically reasonable, since it is obvious that edge

o . . ‘ 3
detection, if done in the neuronal network of the retina (as
s:vis to be the case), is done in parallel. o

o oo - ‘;g f/
e
,‘ i

Although one assumes that edge‘detéctionf

accomplished by some sort of.parallel pré@essiﬁg within the
. A .

human -eye, being more specific as to detailé@ techniques is

difficult.

The experiments carried out by Lettvin et al [25]‘on“
the frog, and by Hubel and Wiesel [ 19] on the cat have.not
been duplicaéed”og humans. dne.can only suppose that the
"human eye performs edge detection in a fashion similar to
that 6f ﬁhe lower mammals (a perhaps uqreasonable \
supposition, considering the structu:gl differepces). Téﬁs
the quasi-parallel methods to follow use techniques not _
founded only upon the human visual opefation'(whétever-that
may- be), but'inétead are baséd én mathematice. heuristics

3

' U . . :
for measuring differences across large areas simultaneowusly.
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Hueckel's Operatbr

Manfred Hueckel_[ZO] has designed an edge operator
which'examines an arbitrarily large atea of a piétﬁre natrix
in a single operation.'Typically, the number qf elements
analyzed at one ime s chosen from "the folléwing:.
35,52;69,88,137..These pixels are organized into an
‘approximately circular region. Indeéd, each of the numbers
just mentioned represents a number of pixels which can be
arranged into an array which more closeiy resembles a circle
than some other number yifhin the range .of the set. Ping}e

and Tenenbaum [ 33] use this method as a coarse basis for  *

N . '
their accommodlating edge follower.

Using spatial filtering technigques, an ?dée which
appears to pass thrdugh the centre of the input,ﬂdisé' can
be thought of as the zero‘¢rossing of a brightness wave. The
wave's maiimum_youlﬁ éppeai on = side of the centre, the
minimum on the other.:Then as far as the operator is
,concerned;'an-edge can be detected if. the operatér is able
fo produce a mafching-vave whose orientatioh, amplitude, and
wavelengﬁh differsfminimally from the input wave(edge). This
matching wave mustgaléo have absolute characteristics which.

are above some arbitrary threshold.:

It is felt [20] that wavelengths three octaves higher‘
~ than the ﬂiametei of the input disc should be discarded as
c .

high frequency 'noise'. "Hith a low pass filter, the eight

lowest Fourier components are singled out, and the higher
: | - N
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components are discarded as being representative of noise. -
In this fashion only edges whkose size (width) is comparable
. to the size of the input disc are allowed to pass. In

'pérticular, highlights, cracks, and micro-edges are lost.

Hueckel attempts, through abstract mathematics, to

mechanize th« following postulates:

o

a. The importance of the input data decreases towards
the’ periphery 6f the disc.

b. An operator which loca%es edges need not be
sensitive to noise of high spatial frequency.

Cc. An operétor which locates edges by its nature is
sensitive to noise of low spatial frequency.

d. The opérator's computing time should be minimal.

A set of'four,functional>equationé wefe developed to
satisfy the above posfulates; These equations (nqt yet
pu@ii%hed)-uniquély determiné a matrix of comstants H(ip) .
VLetfinng“he‘the iﬁbu? disc composed of elements,b, eaéh of

grev level:fﬁp,,;’fhen:;’é
. S g
P

dﬁif = ;fip)*Ep, for i = 0,...,7. (18)

\

s

One notes that a set of eight numbers ié:developed. This set
is4mapped into a 6-tuple (c¢,s,r,d,b,k), whose elements can

be undérstood,intuitively from the following:
- . X LT AR
a. cx+sysr defines the brighter of two regions whose

common boundarf;is'an edge in the input disc.
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b. cx+sy>r defipesnthe darker of’the two regions
mentioned above, l ‘ |

c. The element b is the averagevgrey.ievel on the
brighter side of the boundary.

d. The eiement d is the 1ncremental grey level that
must be added to b <o egual the average grey level
on the darker sideh

~e. The element k is,the"edge éignal—to—neise ratio!,
i.e., the credence\that is a551gned to the edge
described *, (c.s, g,b d

; . v |
It is clear i the’ above 6-tuple deflnes an}Edge.'
The parameters of t© = edge are produced as a result of
minimizing the Hilb rtldlstance'between the eet of a(i)'s
deveioped from the ._ge 1nput data-and a set of numbersv,!

developed from an ideal edge. When the 1deal edge and input

edge data match closely,‘the operator outputs‘(c,s,r,d,b,k),'

Hueckel claims a speed advantage over other

(unSpecified) methods‘of from 16 tdl81 times, and states:

Ve

T

"Both 1ts speed and rellablllty are based ‘on the
“n

comparatlvely large size of the 1nput area."[20 p.517]. isﬂéﬁ
example of “ speediness, it'is affirmed [20] that an ihpht
disc of 52 s can‘bEdproeessed in 1/}09 seconds on a

PDP—10.~Thi§ is approxtmateiy 10000 CTUs per tocal operation

. but, because of Hueckel's method of;'steppingdﬁacrossqthe'
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picture matrix, this time is effectively reduced to 400
CTUs, still considerably greater than previously mentioned

methods. -

If the time given is correct, then there must exist

other reasonable methods that are 16 times (at least)

6400 CTUs per pixel for edge detection, a suspect result.

e

Aside from the contradictory speed results, note that
: ; , :

the operator iS isotropic ip operatioh, and being much more
sophisticated_than<many othérs, uses more storégé—for’its
?perat;on (épp;oximéiely 100 FORTRAN statements), in
addi%ion’tb £he'data structure needed to 'hold edge

information_(approkimatély ten percent of the

picture
,/ ‘

_ L
storage agpga).
R
R

’x

' B
|

v'fSchubeff [43] has noted that in [ 20,p.9], composifé
e@ge_re$ﬁlts‘(i.e., a line drawing) show that sharp curves\

and thin lines are missed by the operator, and abruptness. of

a

» [t N X . B .

‘edges is‘shown-with much less differentiation than the eye
‘can discern. 0Of course, Hueckel can deal with this problen
. by using a smalier (and hence higher-resolution) version of

his‘operaton;in addition to the larger one, but this would

£ »

~aggravate the time problen.

The width of édges detected by the operator, being
responsible for its speed (or lack of it), is undoubtedly
dlso responsible for the above deficiencies.

3

i
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Rosenfeld's Method

Roéénfeld [40] states that "A complete édge‘detection
system should employ, at each point,'pa{rsmof‘neighbourhoodg
of various éizes»and at #arioﬁs ofientations; the laigest of
these sho?ld'have size comparabie to that of the entire
picturé".'This conclusion is based upo; the aésumptiqn that
in most pictqres there exist,vérying 'sizes' of edges, sone
quite Qide; soﬁe narrow: To detgct a Hide edge ke.g.,
between two large sﬁearedrareas), the grey level avetages
_pver‘relaéively large areas iﬁ.order‘that

18] X .
a correct decision be made. Thus, large pairs of

must be determined

neighbourhoods'are used as data input to a large (ot wide)

-edge detector. An analogous reason could be stated for the

justificafion of sméil neighboﬁrhpods as input to a small

(nicro-edge) detector.:

A reasonably simple technique is used to implement a

" parallel processing capability and”make use of multi-size

neighbourhood operations.

If a picture matrigqigﬁshifted to the right one

element (i.e., a shiftvthat§¥s?analogoué to a machine

\

language shift instruction,'whereby’§§§os are brought‘in

from one end of a word, and bits are lost at the other), and

’ theéﬁédded_to itself, the result is that each element is the

sum QiAthe'orﬁginal element in its location plus the element
in the neighbourhood to its immediate left. If one now

shifts this 'summed' picture TWO places to the right, and

> . N N -
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again adds the picture to.itself, the result is now that
each elenent ds the sum of the original element in the
location plus the three neighbours.to its left.
Generalizing, K.righr shifts and additions suffice;to add up
the 2%*%K grey ievels to the lef{ of an element (including
phe element itself). Because the number of terms in each ’

element sum is a power of two, it is very convenient to. find

its average: a simple left shift of the binary point K

places transforms the sum into the grey level aver ? of its

constituents.
' X

"It should be noted that, as 'intermediate steps, the

1

grey level sums have also been computed for all
nelghbourhoods 2%%H elements long, © S H <K (here H = 0 is

1 iy

the original plctureﬂltself).,One could, at an”wstage in the

s o) .
Vg A, f’? .'5‘}' s »

shlftlng process, aompnte aver&ges as'above E%emc?mputatlon
of averages at small K and then later;at large K yroduce the

input for the large and small edge detectors respectlvely.

Te compute ah array of EMs from the array of

) . g
- averages, a shift of 2%%K places, and a subtraction-

operation is required. The resu;t is an ?fIaY'Uf*§§:l
differences‘ This array of differences c:n then be scanned,
- suppressing all but the maxima oner'the matrix; or, the
'outputs of the large  and small edge detectors can be
multlplled whlch effectlvely sharpens the edge.

Rosenfeld [40] has noted that it is- unclear why thls

"mulflplylng operatlon should be so effectlve. In any case,
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*

this penultimate result can then be thresholded, to yield a
binary image.which indicates edges.
The.extension of this method to square neighbourhoods»~

(rather than lineafi is made possible bf alternating the
rightward shifts with downwards shifts, so that the total
.numbe: of shifts gpdu3dds is 2K. The resﬁltkis that the sum

s in any element a(i,j) Qf the array A'is fhe total of all tﬂe,
elements in a 2%*K by é%*K squaré of the original pictpre P .

with p(i,Jj) being the lower righthand corner element of the

square. Averaging and thresholding is carried on in a way

analogous to the linear case.

This method is characterized by:
a. Efficiency (as a result of parallel processing).
" b. A capability to detect a broad range of edge

widths.

. : N f.y ’ N 2
C. A somewhat lesser capability to detect a textural

boundary where the regions concerned may have

identical érey level'averages. A ' }§§

'The benefits of this technique are attained at the

cost of:
b
e

“'a. The need for highly sophisticated computer wvare,

both hard and soft.

b. Some.'sguaring off' of curved'edges.

e
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J

Increaséd 'noise',in detected edges, -esu_ting

'

from the uspe of, parallel techniquesvwkirx,'bf”

1 f
their narﬁie, cannot use sequential edge-following
teeh;iques, ﬁith cleaper results{.However, this
suSceptaBiliry is prpbablyrmorelthan balanced by
the operator's caparility to ?average'out;?noise
by carrylng out computatlons over large segments,

of the plcture ‘matrix 1n one step.

must be finally noted thdt the efficiency

above for parailel processing can only be fully

realized with a truly parallel prosessor;vsimulation of “this

' processor

does not provide savings in CPU time.

o

The use. of - storage on 1mplementat10n of Rosenfeld's

v

method would appear to be’ less eff1c1ent than other methods

since a requwrement exists for three images of the picture

to exist at one time, thhs;limiting the absolute region. size

for any one examination.

» foy
L]
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III. Conclusion

Several pethods of edge detection have been examined.
They range from rudimentary gradient measurements over a
ﬁtiny picture segment to complex mathematical operations over
a large portion of a picture. In several cases it was shown

-

“that contradictbry results can be obtained, i.éfy results
= 1‘.

that are”imtuitively incorrect. Whether.these wrong

indications are statistically serious is a moot point.

U51ng the least complex ver51ons of the operators,
the LaPlacian was the fastest, followed very closely by the
Roberts and the Gradient. Farther back came the Heérskovits
andrghe Shirai—Tsuji operators; The statistical.methods were
mueh slower (e.g., the SML consumed 111 CTUs) since their i&
operations are more eomplek. If Hueckel's calculations are
correct, and understood properly, then his operator is the

‘slowest.

®

All of the operators haveé difficultyawith a correct
‘isotropic response, rut the inclasipn offmore complex root
operatiops (rather than the faster absolute valu~ operatlon)
would improve this characterlstlc.

ﬁ;ch of the»detectors ‘is partial te specific types of
fpedges.;@he Roberts favours narrow’edges of the:step type,
the gradient-—steep,'Brogﬁ‘edges,‘the'LaPlacianf—thin
rldges. The perfect step edge is 1nd1cated best by the

Herskov1ts. The SHL. appears sulted to n01sy rldge edges.'
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Analytical judgments on the remainder are-difficult.

Storage costs for each of the operators turn out to
be relatively unimportant when one considers the size of

pjcture matrix that must be maintained in core mewmory for

edge operations. However, it is noted that Hueckel's method
¥ . . .

takes'100- FORTRAN statements, which is likely to cramp the

capacity of a small coﬁputer (which has to accoémmodate |

portions of the picture matrix besides).

211l of the operators suffer in the presence of noise,
but it would appear that Rosenfeld's method can tolerate
noise better than the remainder, since it is able to work

large sé%%ents of ‘the picture at once, and thus

'average out' noise contamination.

Aside from Rcsenfeld's method, none of the operators
seem to havé the flexibility to easily change {heir‘segment
size dynamically during an edge operation.

- Rt :
The above results lead to what is ‘perhaps an obvious

conclusion® determination of the best operator is not

([8Y)

analytigally;pdssible unless one utilizes a stande -
picture, and has recognized criteria for determini:.g
fgoodness!'. Chépter 4 proposeé such a pi%ture,.and
introdﬁcés numériéalvméasufes to grade the merit of an edge

matrix.
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It vas noted that statistical methods fail to

recbgnize”the position of pixels within a picture segment.

It seems plausible that the inéprporation of some positional .
measure within a statistical procedure would result in an
effec{ive edge detector. .Chapter 3 is directed towards the

.7 - development of such an operator.
SR '
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Chapter 3 ‘

"ANOTHER EDGE.DETECTOR

The preliminary examination conducted on several edge

‘operators in Chapter 2 indicates that improvements could be

made to the standard methods, or possibly that a new and

better local edge detector might be’useful. This chanter

» ,concerns the development of an edge algorithm based on a

measure of order found in the regions'adjacentvto a

suspected edge. o

I. Foundations

Chapter 1 defiﬁed edge detection in terms of the
probability that soméielément b(i,j) was on the bbrder
between two regions. Then, giveﬁ two and only two codtiguous
regions in one's field of view, it seems mandatory to assume -

the presence of gne edge, and thus at least one edgel. In’
Iy

X

. . . , Ve
other words, identifying two and only two regions in one's

field of view isﬁequivalent to identifying} one edge in: that

. field.

~

In a 6ne—dimensional binary:matrf§, such as
00001111000110, note by the ‘above statements, that the five

binafy regions produce four,edges.'On‘a_more local



examination, to wits: 0114"'
U . 1{‘4&“
one edge. since this is a o

edgel per edge is p0551ble. We woﬁld normally a551gn the
o
central plxel of the examlned area as the edgel

« In the'aboYe-examples there'was‘do donht involved in
our - identification of a region; however, t: is also no
doubt that the converﬁe is the norm. One is Lsuall
uncertain, to some extiét in the categorlzatlon of some
area .as a 'reglon'.tThls undertelnty must therefore extend

to the identification and lqbelllng of the assOc1ated edge.

Thus one'canvSay.that: the degree of certainty with which

/

(.

one identifies: two and:only two regions in the field of view '

corresponds to the degree of certainty that one edge is

present. v ' i

further sections.in this 'chapter will “evelop this
degree of certalnty into an algorlthm for edge detectlon,\
both in the binary and the grey level-matrrJ cases. This
.measure’will teke the form of e\differénCe sum, Ds;lgherehy
the sum of absolute differences cf pixel ualues‘across al
picture segment will be suggested as being inversely'reiated
to the probability,of tbe presence of an edge oriented

orthogonally to the scans

~

. II. Region Detection A

For the purposes of thlS chapter those subsets of

.plcture matrlces whose grey levels satlsfy some spatial
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statistical distribution criteria, and whose*elements are

edge~-wise contiguous, will be distinguishéd as 'tegions{.

Binaty Regions

L binary region’is characterized by the 2nce of a
subset of ones and zefos,‘whdSe quantity ratic¢ ... prescriced
by the statistical‘constraints for that region. For example,
one mighi.insist that the regionsvcontain eiclusively ones

or zeros, thus forcing a uni-modal®distribution over the

region. On the other hand, the definition of an even mixture
- ‘ i ) N

of ones and zeros as characterizing a region would give rise

to a balanced bi-modal distribution.

Using a gni;moddl distribution to detect edges would -
reqﬁire fhe satisfaction of that'critéfion oﬁér two a@jécent'
areas each with avdifferent binary véiue.'For example, it is
an easy mafter_to: |

a. Examine one area and deterﬁine'iis Qistfibution as
uni-modal 1n ones, £hen declaTe it t(?"be a *'1¢
regidn?

'b. Examine aﬁ’adjapent area and determiﬁe it as
uni-modal in zérds, and declaréhit as. a '0¢
region..

cvaonclude that there is an edge between théééntyé

'régions;A | _
d. Assign an edge indica*ion to sonme element(s)‘bn

the border between themn.



e

>

61

Note that one might observe both of the above areas

at once under bi-modal distribution crlterla. The

J -

confirmation of bi-modality, would again seem to 1nd1cate th
presence of an edge..The obvious danger of this more
efficient method is 1llustrated in Fig. 14 below. Note that
both regions are balanced bi-modal, but only Fig. 14b

contains one edge. Therefore, confirming a balanced bi-modal

-
g .-
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a, Many Edges - b. One Edge
1 Fig. 14.  Balanced bi-Modali-: -

NI
e

/‘ : . .
distribution is not enough. One must ascertain that each:

arbitrary extent) in prder for an edge to be indicated. Chow
and Kaneko [3] measufe the variance of the neighbourhood
surrounding a point'to determine bi-modality, but,do not

check the order of clustering of this neighbourhood. 0

Dacy and'Tuhg [6,pp 8&—85] list three methods for
1dent1fy1ng randomness; xn p01nt patterns..To detect the
degree of clusterlng they prefer thelr 'Order Method',,whlch

amounts to-measurlng the distance to a p01nt's-nearest
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k neighbours, for all points in the examinedféreé. The

variabilitf of this distance measure is shown to be

proportional to the randomness of thg'd;stribution.
r‘There‘arevcomputatiohal anddééfiéiency problems with

this method. .One must select k prdberly, de{ine tdistance?,
: e Cod L -

vl . . . ' WA '
and compute thls;dxst@nce kn times. Finally, a variance

(

%

. calculation is done and compared against some criterion of

o

"nféﬁﬂdmness.‘ThenCPU time taken for this operation is a

ffuﬁbtﬁqn of the density of the'neighbours_i:\}he pattern,

L

_‘ahdfis,thus gnpredicﬁahieifrom pattern to pattern.

Tl

Lo

‘tend_to-cause edges to be missed.

\

- 1‘ .

' These proﬁ&eﬁé{lead to the proposal of a sub-optimal
. v ' S T

procedure to indicate the degree of 'randomness':.in a point

L
s

" pattern distribution. This disorder is then related to the

nunber of edges in the pattern. The procedure is. sub-optimal

in that texture.shows a high degree of disorder, and‘Vill
*. . . E .

-

FS

[N L 2P

The‘Differean Sum Measure of 'Disorder!'

P . .
5 The Differenqi‘Sum (DS) over an m x m binary
sub-natrix B is comégled as: L : . X |
| | DS = HDS + VDS~ ~» (19)»
“where ﬁbs = SUM(]b(i;j) - b(i,i-V ), and
VDS = SUM(Ib(i,9) - b(i-1,9)1).

where, SUM represents discrete summation;
. W - for HDS, i=1,...,m; J=2,...,m; and,

f for VDS, i#2,.,.,n:_j=1,...,n,
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‘In words, HDS in (19) is computed by summing the agsoiute,
differences between all pairs of horizontéily adjacent
‘pixels. In an analogous manner, VDS is calculated.
Cbnsidering the‘exteht‘of clustering of érouping of
identical vilues in a binary mat:ix as a reflection ofptﬁe'
degfée of torder' in the nmatrix, it canxbe‘éeen that DS is
. inversely proportional to that order. For.éxémple, consider
the one-dimensional matrix 00001111. Here‘is maximum
clustering, reflected by a DS of 1. On the“othéf.hand;

01010101 shows minimum cluster size with DS=7. There is an

' ' L. . N
identity relationship, implied by the definition, between DS

and the gumbggzof'micro—edges (not edgelsf’in ?hefmatrix.

Given a balanced bi-modal distribution over anp m x m
binary matrix, it is clear that DS cannot be less than m.

. o
Consider Fig. 15a below. There is no other configuration

that will reduce the number of 1-0 pairs to less than m=4;

Note that the number of micro-edges formed is jdentical to

1
#»

N S = «;L' ’ )
DS, and is alsg.a minimum. Fig. 15b shows another balanced
bi-modal distribution with DS=6. In this ;%aiﬁern the

. ' i, .
grouping of 1's is slightly less proﬂﬁﬁhced. Therefore, 1/DS

reflects the compgctness of clustering by measuring the

" length of the border between the two binary values. Given
balanced bi-modality, 1/DS will be takén as proportional to
thé*p:obébility of the existence'of'ggg'distincf édjacgnt
regions within the pattern. From a previous paragraph, two

‘distinct adjacent regions give rise to one edge.

-~ : . . *
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At this point it-is noted that straight
diagOnéliy—oriented edges, although intuitively as 'sharp!'
as vertical or herizont;l edges, are not as positively
indicated bf the DS ﬁeasure. In fact, the DS éomputatioﬁ
indicates a diagonal edge to be 1/3 ;eaker than the same’
step edge oriented vertlcally (horizontally). This
anlsotropy is hlghly unde51rable, and will be largely
couptered by 'unbalancing! the modallty measure when a
diagonal edge is suspebted (i.e., when VDS=HDS). This
unbalanciﬁg reflects the difference in the size of tﬁo

- regions separated by a diagonal edge, when the area examined

is square. '

To. measure the balance of a birmddal distribution one

could deflne some simple llnear/measu%e. For'example,

i@

compute the freguency f of occunﬂenéé of one blnary value
~ St "d : .
within. a pattern of n elements' then the functlon

(n/2) - |(n/2)—f| is linear, and peaks at n/2. However, to

r
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provide a sh@fper cutoff (andjeEASequently narrower edges),'
and to accommodate the need for a slight imbalance by
dlagonal edges, the following non-linear géeneral functlon is
proposed: r
f(Zs.— £)

clements of'frequency f.
Since the derivative: of the above function with respect to f
is 2s-2f, it is a maxinum at f=s.. If one desires ah exact
,balance,vtheﬁ.the general fermula>§rensforms to f(n-£f).
Using a 4 x 4 sub-array Size, f(16—f)‘results§'For diagonal
‘edges in this same array, a reasonable choice for s is 10.

Our slightly‘unbalanced modal measureltheh becomes f(20—f).

From the foregoing one can consolldate the formula
for the edge merlt (EM) of an arbjtrary (but usually

: central) pixel of an mh,Xx @ sub-matrix B as:

A3 )
et
et

UM = £(25-£) DS (20)
where s |is the desired number of elements_vithin>the
region, f is the actuél frequency derived, and DS is.‘
the difference sum measure., Note that the constant 1
in the function 1/DS (mentioned earlier in this .
section) s been replaced‘by f(ZS-ff to aq@gift for

DS near zero over a highly unbalanced bi-moda

‘region.
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A Computer Algorithm for Binary Matrices

The following procedure will trénsform the ﬁ X n
binary'matrix B into an edge matrix by de£ermining the
existence of albinary édge element (bedgel) centred on aﬁ
‘M X W sub;matrix (with origin(i,j)), thén indicating the
fyﬁe of bedgel (horizonta;(1), verticalk2), or diagonal (3))
at b(i,j);by,comparing'the ve:tiéal énd hoEizontaI
difference sumsw(i.e., VDS:HDé).-Assuming-m=5, an edge qt"
(i+1ﬁ&‘ﬁ/2),j+1NT(m/2), i.e.,'(i+2,j+2)&_woﬁld be indicated-
at (i,3) , thus overlaying the binérf matrix‘with the édge
matrix, anq SO0 conserving storagg? The falidwing'ﬁquation is

then derived:
9

b(i,j) = (lor2or3) if EM(i+2,j+2)=f (2s-f) /DS > T
= 0 other ise; L . - (21)
t i ) -~ : .
for i,j = 1,2,3,...,0-4 (i.e.,n-m+1)

where‘the ideal threshdid‘T(hv) <}(m**3)/u_
for suspected horizontal (vertical) edges and, ,
T(d) < mz(mf1)2/(8(m—1))‘for suspected giagOnéls£ .
and where the positive value'deri;ed‘(1or20r3)
depends on the orientatiop of th§ detected edge
(as d;termined by the ratio VDS:HDS).
With FORTRAN-like notation (e.g., 3¥3 means 3 timéS‘#),'-:
efficient m§chanization of “the above §r§Cedureﬁ;¢suits in'
the following algorithm: ‘ hﬁ' | |

a. Initialize variables:

M=m*m, MMRT=M+ (M**.5) ,T (hv) ,T(d) ,EPSLON. - »
s . . . ' }'  Y
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' 4. Go to first(next) sub-array location, or STOP.

Over each m X m sub—array,(origin at (i,73))
compute:
| f,VDs,Hbs,n~f,MMRT—f,DS,T(hv)#ns,r(d)*Ds,
‘5Q§L‘v and D ='m(m+1)/2.
{ﬁi d. b(r,j).= 0 5
e. If(f*(mmndlr).LE.T(hQ)*DS) Go To b.
f. IkaBS(HDS-VDS).LT.EPSLQN) Go 'To k. d o
'g. TE(£% (M-f).LT.T (hv)*DS) Go To b.
h. If(HDS.GT.VDS) Increment b (i, J)
i. Increment b(i,]) ‘
j..Go To b.
k. If(f*(D-£f).GE.T(d)*DS! b(i,j)=
1. Go To b. 2
Note: The constant EPSLON determines if the preSPeqtive'edge
is 1ikéiy,to be a diagonal. If the m x m sub-array is small
‘(i.e., about 4 x 4), tnen T (d) ie essentially equal to

T(hv), and a more efficient algorithm becomes possible.

Examination of the above algorithm shows that b{i,j
will be marked as 0,1,2,3; indicating no edge, horizontal
edge, vertlcal edge, or diagonal edge, resoectlvely. Anfj
.algorlthm 51m11ar to the one developed above was 1mplemented'

Jin FORTRAN v and tested on a blnary matrlx 51m11ar in form

";to the reference plcture REFPIC shown in the photographs 1#/

t,the next chapter. The matrix: had salt and" pepper n01se'

.fadded, and alsollncluded various amounts of blurring.
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The algorithm was implemented using  two different
area sizes, and two different threéesholds (for uoisy and '
ideal_edées). The results of that preliminary test shoved
that: - |

a. lhe edge‘matrix produced was a reasonable
‘representation of the expected édges.

5. As vas expedted, the size of'object whose edge is.
detectedais'a‘function of the sub-matrix check
siieL

c. Noise caused minor to moderate errors in the edge
matrix.

,;;d. Tue thresholo'needs only to be a function of the
o | noise‘expected.‘ |

e. CPU time consumed, for a 3 x 3 sub-matrix size,

was 716 microseos/biXel. In CTUs, the time

.estimate was 242.

An Application . i | P

The blnary algorlthm developed above may be used Ain

2

the production of map contour curves. A blnary matrlx
(indicating the z- coordlmate levels to he outllned) would
serve as 1nput..The output contour (edge matrlx) would serve
~as input to some graphlcal dlsplay, or could'be manlpulated
by pattern recognltlon routlnes These operatlons woulq be
greatly eased by the intrinsic dlrectlonallty of the edge'
markers, since they would serve as valuable‘lnput to. |

A

edge-following algorithms [42].
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* Other metﬁoas of performing binary edge detection,.
e.g., the Cradient or the Laplacian, are HOt‘a& easily
conve:tiblegto different area sizes, Oor aS insepsitive to
noise (since all the pixels in their sub-arrays are not

normally accessed during one local operation) .

Grey Level Regions

A greyuigvel region is charactérized by\integér pixel
values whose £ang§ over all regions is commonly 0 to 63, and
over one iegion is defined by the‘preScribed _tatisticél.
constrainfs for thatn}egion. Fop exanple, ongipight insist

I

that a gIey level region be comprised of grey ievels wﬁose'
values are idéntical(’with a Tesulting sharp uni-modal
distribugion. Oon thevother hand, one miéht weakel the
criteria for region definition to the eitent that the

. s

‘distribution would be meso%%@ticéshaped oL even flatter.

existence of an edge théreiﬁfnga‘: it iS textured regions
. 5 S

that result in the sub-gptimality.
Two versions of £he‘procedure are ﬁresented‘here. The
first is measureably faster, and less-coﬁplicated; however,

it lacks in flexibility, and is weak»with didgogal edges.
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ke second, = . - it is a direct outgrowth .of the binary
algoritkm, aust at each of the grey level valuesdas one
of ' two binary lues, with resulting>complications in

“wakl:yg that deci- i n. However, ease in selectlng the balance

of the bi-r ..al’'+ desired, and in- emphas121ng dlagonal
edges, zlorg vy~ more freedom from noise effects, seenm to
14 .
mak~ ©v g secr method worthwhile. For'convenience} refer
. r’ ' .
co th and

the second as the Grey Level‘Moda ity Method. It is

empha51zed here that both methods se the Difference sum.

postulate explalned earller. ’

. Nodcomputef‘algorithm will be given for the two

methods since the mechanization'is straightforward and
: o £

'

simple: ’

’ ‘ S . ’ ‘ RN
Grey Level Deviation Method ,.. E

N e . -

< : r
‘'This algorithm uses two measures:

a. Meau beviation(MD); is the average differenoe'Of'a
set of n‘numbers‘from their arithmetic mean.- This .
measure emphasizes the degree‘or sebaration of the
elements on oné side:ofathewaverage from'those on
“the other..GiVen:a ranéevof u elements from a _
through b, the MD max1mlzes w1th n/2 a values and

n/2 b values. Thus,-lt peaks on a balanced

bi-+ modal dlstrlbutlon with uldely separated modes,

and wlth a given Iange. ThlS last qualrflcatlon‘

g3
neans that two dlfferent ranges could have the



o

g

same MD but have a marmgﬁff different modality

T

-
gt

. .| .
characteristic, Addltlonally, there 1is ,Do- easy way

R
¢

to *tune’ thls medasure to peak on dlagonal edge

dlstrlbutldns. These llabllltles, however, are to

ﬁw ¢

a degrd& counteracted by the pext measure.

'b. The Difference Sum(DS): is, as mentloned /

prcW1ously, the sum of the positive differences
\\\\ Fc}oss a pattern in the horizontal dlrectlon
w*'(HDS), and in the wertical dlrectlon (VDS) . The
measure 1/Ds = 1/ (HDS+VDS) maximizes uhen the grey
- level values are identical. Given-an exactly.f
balanced blmogg; dlstrlbutlon, this measure 1is
la;ge when the elements are, in a positidnal
Sense, tightlf clustered. |
Combiniﬁg these two measures into eqguation fdrm‘we'have:

Edge Merit(EM) = MD/(HDS+VDS). (22)

9Given an n x n grey level matrix G, the foliowing
‘procedure. will transform %t into an edge matrix B by

de@efmini the existence -of an edgéel centred on all m x m -

oA

Sub~mat:ices.(with origin (i,3)) over G. The type of edgel
Awill;be indiéafed as vertical (1), or hcrizontal 2) .,
= accdfding?to £he relative weight of HDS and VDS. ’'quality
:beteeentﬁhem will require an arbitrary decision.
kK .

R

-
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The edgels wlll be mark@$ a@cordlng to:

B(i,3) =

(lor2) if EHM*INT(m/Z) ,j+INT(m/2)) = MD/DS > T .

or ethvalent;y,;lf Total Dev1at1©p > T*DS*p2

I.“o'
2

='0 otherwise. ' L (23)

" This GL deviation method is characteriZed by:

a.

b.

Partiality" “to step like edges..

~.~‘~‘h

The edge w1dth detected is a functlon of the size

. of the sub-matrlx used in the scannlng process.

Weaker responses are derived. from dlagonal edges

than from vertlcal or horlzontal and thus cannot

—

’be absolutely 1dent1f1ed.'

Vertical and horizontal edges are uniggely”

marked. .

It is not necessary .to dynamicaiiy,mgdify‘rhe'
threshold T.

Salt and‘pepper noise tends to drive.the EM below
threshold tﬂus Iosing possibie edges. This effect
could be partlally countered by exponentlatlng the

MD prlor tc the threshold check

The scan normally used is regular and exhaustive

_but ‘could readlly be made context sensitive (that

is, the dlrectlon of motion of the scan could be-a
weighted.functicn of the types of the n previous.'=

edgels) .



Grey Level Kodality Method

13

This method yses two measures:

d.

In
algorithm

a.

Modal Measure:. . f(2s-f), the same measure used for
. & .

binary matrices, but operable on a transformed

subset of a grey level matrix.

The Difference Sum: again the same measure used

5

for binary matrices, and also operable on a

transformation of the GL matrix. ,

essence, this method is identical to the binary

15

The elements of the m X m sub-matrix have been

exanined (i.e., the arithmetic ®ean and/or .the

.fmedian and/or the range has been cémputed);

: '
Thus, one

The elements of the sub-matrix have been
transformed into one of the bihary values
t

according to some criteria determined in

sub—parag;aph a. imnediately above, and in

perhaps the n immediately preceding examinations.’

operates on the resulting simulated binary matrix

to produce an edge hatrixiVAs éxplained in the binary

algorithm

It

procedure

(A

case.

-

is obvious that the crucial phase of -this

is sub-paragraph b. immediately abové.'Pefhaps the

casiest choice is to compute the arithmetic méan of the

elements,

then assign 1's to, those above it, and O's to
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thgse beioﬁ. fhe best transformation is, Aowever, not easily
proven. The grey }evel modality method (using the arithmetic
mean as a‘threshold for the bindry decision) is
\:characterizéd by:
é. éhé same characteristics as the GL deviation
method ébo?é, éXCept; |
"b. biagon%i édges can be detected with about the,sameg
strengih'as vertical and horizontal edgés.
c.hSalf'and pepper ﬁoise effects aré not as serious.
d. Exhaﬁsﬁi?e séanning Can'bé transformed‘into‘an‘
8-directional contextual scan. That is, dia@onal
edges can also be traced. Hoﬁever, this can only
be done 1if a éepara%e structufe ;s 3v§ilable to
maintain the grey:leyel ma#tix iﬁ itsIOriginal

form thtoughout the complete operation. ' -

a 2
- b

A Reasonable Test . 'i =
A
- ‘ l’ . - . .
Ana', ically, it (ts,difficult to decide which of the .
. A =
above two methods is moreyworthwhile. One must balance the

value of diagonal‘édgé detection, %nd operation in the
présénce'of ﬁ8£§éné§ainst the worth of,higﬁef.speed
operation and feiéfiﬁg{ease of iqpleﬁenﬁatidn..waéﬁer, in
. étder to make a’reésonab%e comp;;isgh‘among‘locaiﬂmgthods of( .
edge aetgcfion,'éigfof £hé;abové‘me£hods had-tb-be'choséq;
Afbitrarily,ﬂa vafiaﬁ; bfafherGgéy Leyel\Modali%},ﬁethod‘ﬁas
implg@entgd'és a local, exhaué;ive edggfdetector with a’

. co L . & -
4 x 4 sub-matrix size. It had a ‘secondary “threshold input
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parameter included to match it with the five other standard
methods to be tested in Chapter u Thls method is referred .

thlS operator and the five: others compared in a functlonal

\ v,
test on real images input through a TV camera and digitizer

to a PDP-9 computer system with disc storage.



Chapter 4~
FUNCTION,AL EVALUATION OF EDGE. IM/AGES

f@ﬁﬁ%

."In order to functionally evalgaté edge matrices, it
is,nééessary toureview standard methods for determiniﬁg
image quality, énd ascertain their value iq the,ass7ésment,_
of edge operator output. This assessment must be based on 

what future operations are ‘to be performed on this output.

This chapter emphasizes that edge matrices are normally

operatedhbn by line-fitting algorithms; and thus any
measure (s) de%élbpéd must perform their grading accordingly.

A Digital Picture Processing System (DIPPS) is
described, within which tests on six edge detectors are

carried out. The test images used arebdescribed,:aS'are the

2 . ' ' : o

programs used to access and displij'thesé images and their

edge transforms. Visual, numerical, -and firal ‘subjective
‘ . ‘ _ .
conclusions are drawn.

S . 2 .. e

. . i ' /

- .,

e . I. Quelify of ¥dge Images

. It seems clear that the worth of an edge operator
must be based on the binafy edge matrices that it,proggces.»
"That is,'one’can Teasonably deduce that high quality,edge

o

matrices emanate from highly effectivé-edge operators. Thus,

.
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the assessment of an operator is based on the average . -’

quality of its output. , ', , | v / s ; T
Discussions on 1mage quallty, -and objectlve

[N

parameters for its measurement (Rosenfeld [38 p 85] aﬁd
Roetling et al [37]).empha51ze the use of resolutlon'and
~acutance as measures. Resolution relates'tql£he
distinguishabiiity of close objects, whiie‘acutancé is

concerned ¥ith the sharpness of edges. As Rosenfeld

—

[38,p.85] points out, these measd:es are not neeessarily

\\\intetdependent; It,seems doubtful that-resqiution
-m\asurements¢eould 5e used to grade the qdélit& o£ an edge

matrix sirce, by their nature, all £ﬁ%fdifferent 'regiens'

of an image will be marked (1dent1f1ed) by the grey level 0.

A

Thus, no separation is poss1ble us¥ng regions alone. On the
other=hend, acutance measures ‘the sharpness of edges, and so
it seems_reasenable to gse”thiﬂmparameter as a measure of
gualitﬁ» However, the standard method of implemenﬁing

acutance is:
nb-
| o .
: | (df/dx)2/[ 1 f£(b) - f£(a) ] dx.
[ , . | - )
o ' Ld 3

Us1ng thls equation across a “0001000' edge would result in

i
-

unreasonable ansvers for most choices of a and b. Yet a and
. . R ’ \ Lo
b cannot be pre-set to prevent this. So, it seems that both

,Tesolution and acutance must be reserved for quality
neasurement on 'real! grey. level pictures, rath%r,than edge

matrices. - ' -
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One should assess the qualityvof.an image in zelative
. - ]

-

rerms rather than the absolute measuree mentioned above.
That is, a comparison should be made between the sub-optimal
outéﬁr of‘an edge operator and an 'ideal' edge matrix. The
‘degree of match' between these two, could be used as an

indicator of the quality of thé\output edge matrix. In this

Ry

manner a perfect match would indicate tha+ the output matrix

Y

was - 1dent1cal to the ideal matrlx, and woyld consequently

get a grading of hlgh (perfect) quality. j(

The usuél method for 1mplement1ng the 'degree of
match! measure is to perform a normallzed CrOSS’COIIGlathH

operation between the.two 1ma%gF. However, as Rdsenfeld

L

many d1v151on operatlons) is not necessary to measure the
~ ¢ ¢

?atch between two binary runctions. Instead, it is proposed
: ) .
; to use the addition of two cross-correlations, the first

between the degraded binary matrix and the ideal; the second -

ﬁbetween(%%f 'ﬂegetiVe' of these two functions. If f is the

degraded binary image (€.g., an imperfect edge-matgix), anh

g is the ideal representation of this image, then, thd sum.
. ) . v i .
of two cross-correlation operatiohs:

frg + f'pg? '/N
{

would indicate the degree of met 'h betweek the two images.

Given two degraded edge matrices'E1‘and Eé, and the
corresponding ideal .matrix EO, two correlation numbers, C1

and €2, are produced respectively. Givep C1 > C2, is’it

— -

£

.Z:?(‘ 4

%

s

v
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always true that E1 is a higher'quality edge matrix than E27?
Elementary tests show thatitwo quite different edge matrices-
can produce the same correlation numberSJSExamipation of

these matrices with.a view to fitting straight line segments
makes it clear that the fits will not onlﬂsbe different but

obviously unequal, in quality.. Therefore, one must also

reject degree of match as the perfect indicator of- edge

matrix quality.

Seotion u,_Software). In essence, the program accesses

’measuring chaf

“of 'good' edges;

~One is theﬁ led to re-define image quality as it

applies to edge matrices: the mggsg e of quality of an edge

-

matrix is that characteristic whose measured magnitude is

" proportional to the computational ease with which the most

correct lines'can»be.extracted from it. As Huang -et al
[18,p.1606] have stated:’ "'Much experimentation needs to be
done...[to develop mathematical forms capable of edge error

measurement j".

-

An algorithm has been developed during this research
to measure the absolute merit of edge matrices. ThlS - 7
procedure has been 1mplementﬂd as the program MERED (note
procedural details under The MERED Algorithm, Section_IV),

and was used_to tunctionally test six edge detectors'(see

3

"arbitrarily—sﬁf%ﬁfst-arraysIover‘the whole edge matrix, f

g

g&;cs which are thought to be 1ndicat1ve

u*e“measurement is done twice, with the
S, v

second scan bemng{orthogonal to the first. Méasurements
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include: the number of edge indications in the cu‘b—array,
the wiggliness (or noise) of the edge 1ndicators ‘along the
llne of the scan, the connect1v1ty of the indicators, the
thicknessvof the edge (the number of indications orthogonal‘
to the scan), tHe number of gaps 1in the iine of'edgels, and
the'relation hetween the faults for the two orthogonal
scans. This first attempt at absolute measurement was quite
heuristic, but did show Leasonable correspondence with one's
intuitive notion of a 'good' edge. The test results reported
later in this chapter indicate HERED'S effectiveness,iand

illustrate where improvements could ‘be made.

. g , L _ ) .
- - Since the extraction . of lines requires some sort of.
. N S I / '
*line produceg!, it is appropriate to examine some

R v : .
line-producing algorithms from which one will be chosen as a

LY

reference.

f . . C
... IT. Line  Producing Algorithms
3 2

To‘produCeelines from a set of:coliinegr po}nts, it
is helpful to K now what types oﬂ'lines are expected; and
with what probability. For example;lif one’knew'that only
straight'lines are expected from'thé input, and further,
that Probability(lengthdiines)>1OO pixels) > ,]; then the
d651gn of a line- produc1ng algorithm could be con51derably

C

eased. ‘Straight line input is assumed with only the

«ollowing justification: much of\onr artificial world is
comprised of straight edges'(and they are usually oriented

fwcither vertlcally OF . horizontally) This Straight'line input

\ -
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isﬂnormallY'blurred.and‘noisy’to some arbitrary extent. With
the catégories of input set;'it is now possible to examine

some algorithms for fittdng..‘u

T
y

The Hough(Transformation: A

mentioned above 1s to extract llne paraneters between all
possible‘pairs_of n pornts in a subset of the;edgevmatrix.
[7];.The Siopeé and'intercepts‘developed'dn”thisifashdon”
could be averaged to 1nd1cate the best flttlng 11ne for the_
subset. However, .ds Duda and Hart . [7] have p01nted out, for
large n the cost in CPU tlmekcould be prohlbltlve. Theyv |
propose ‘a varlant»ofithe Hough Transformatlon montloned by
Rosenfeld: [38 p 151] ‘In essence the dough algorlthm uses an o
array of counters of the same dlmen51on as the edge matrlx.;;1
For every '1' at the matrix . p01nt (X(l),y(j)),a llne of
.countersiis inicremented 1n the counter array.}Thls llne 1sh?i
defined by: | o | ‘ | “ EORRE ‘
Sy y(a)*x * x(l) e
"It 1s ea51li verifled that for the colllnear p01hts{,‘“ -
E(x(1),y(1)),...,(x(n) y(n)), 1n the edge matrrx, the
correspondrng llnes 1n the counter array*have a common .
1ntersect10n. Thus, thlS 1ntersectlon wlll have a hlgh

2
-

count' In fact ,the count is. equal to the number of .

colllnear p01nts.,Therefore, a longer 1ife is more easily

dlStlﬁgUlShed than a’ shorter ‘one.

S : . i
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!
N

The: dlfflculty w1th this method is 1ts anlsotropy.
The 1ntersectlon of lines produced from horlzontally . h
collinear points recedes to‘lnf;nlty. It‘ls”evident that
colllnearlty becomes undetectable 1n thls caSe. Dudarand

Hart [7] propose and prove a 51m11ar transformatlon without

this defect.

Least Squares Fitting

The use of a least squares fitting procedure to

El

develop line equations for edge matrices‘seems obvious.
Customarlly, this problem is treated as the solution of an
over- determlned system of llnear equations of the form.

I3

o Ax = b - (25)

with matrix A hav1ng more rows than columns. Tn this' cvfé
partlcular case, the vector X represents the unknown slope‘

and 1ntercept of the best flttlng stralght llne, with

matrlx A spec1ry1ng sample values to be fitted. Using

standard calculus technlques a set of normal equations can

Te developed for solutlon of the parameters of the. fltted

line. The solutlon of these equatlons is stralghtforward

and usually 1terat1ve.

Because vertlcal stralght llnes Were postulated as an

apprec1able portlon of the input, the form of ‘the line

)

eguatlons'must‘be adaptedfto handle this conditiQP.,Thus,
C A

Roberts [36] solves for the coeff1c1ents of

¢ —

ax + byee:c » rather than y = mx + b.

It is seen that the flrst form allows vertlcal llnes with
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manageable humbers where the second does not. The

maintenance of the cumulativébsums X, X2, y, ¥%, xy, allovws

\
\

. for the continuous solution of the coefficients along with
an error measure, when the edge matrix is examined

sequentially along a proposéﬁ\edge.

Other Fits

el I e —

’

Aside from theileast squares fitting procedure, there
are two other less coﬁmon fitting criteria: *
/ . K . !
a. Minimize tﬁe sum of the absolute differences:
A} / . - . .

/!

MINIABS. -
b. Minimize the maximum error: MINIMAX. |
Minimizing the sun oﬁ\gbsolute differences makeé it less

likeiy that'ﬁpise points will be recognized as data. The

MINIMAX algorithm increases this likelihood.

if dné'is concerned with detecting a 'corner' during
the tracing of edgels, thén'those poinﬁs paéy the corner .
will constitute noiserto'theacurrent line coefficients.
Detecting the presence df thié noise is analogous *o
detécting»thefcorner..Thus, using a MINIMAX‘fiﬁ} and

examining the generated error and its sign isa plausible

o “ K e

aAn

N

methdd for locating a corner. It is noted that afIéastA

-
¢

squarés fit will not be affected by the cornmer as sgohﬁai as
' seriously. However, ﬁhe‘mechanizatibd bfzt@eSe quick ‘
reaéting fits is not anélytic, easy, Or common. Tﬁus{ this
thgsjé assumes that least SQuareS'Qrbcédures wixl be'uged

for line-fitting.
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' III. Assessment of Edge Matrices

It was concluded above that the least squares fitting
proceduré»is thé most suitable méthod'for'selection of
straight lines to fit sets of éollinééf-points.’a was
implied that the éye-is ndt‘suitable to aésess the quality
of edge matrices, nor are the Standérd;objective means of
measunement. It is affirmed here fhéf edge.matrices can oﬁl&I
be rated highlyﬂif our fitting ppocéduré develops-tl;e~
correct lines from then. Thus, the bperators that geﬁefate
the matrices are'éraded"On the qpality of lines they

ﬁltimately produce.

A Reference Picture

With several edge operators now in common usage, the

prospective user must be given some means to enable

”

selection of the most appropriate. It.seems clear that ;Réie

-~

i . AN T
should be some 'standard: picture on which a particular edge
detector can be tested. The results of this t€st (i.e., the
'edges or lines generated) -should give valuable inférmation

concerning the effectiveness of that opérator.

This standard or reference picture (REFPIC) must have
‘enough generality to be widely useful, and acceptable.
- REFPIC nust comprise all & common- edge orientations:

vertical, diagonal, horizontal, and curved.

e

T
e
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~

‘Further, these edges must vary fronm narrow (sharp) to wide
(blurred) . Finally, these edges must be -shown not only in

their ideal form, but-also degraded by noise.

A real scene containing all the above edge direction
types, in all their forms, would certainly be a rarity. Even

if it existed, or could be produced, one still lacks the
ideal representation of such a scene, since the real scene;
would be noisy (if ‘nothing else). Thus, it seemsmthat'a test
“picture must be constructed and ingested digitally to retain
its ideal form. The addition of Gaussian noise to-a
duplicatelof;such a scene iswelementary, and would complete

. the requirement. 'f" . ' o \

BN o T ’ |
R .

NG It seems necesg%ry to make the plcture flex1ble under
= B :\rA" . ﬂ \

various condltlons. Therefore, it is suggested that the

™\
\

number of grey- levels used Aangd the extent ‘and type of noise

applledlbemlnput parameters.

. asic argument agalnst this approach is that,

#

whatever method 1s used to manufacture a n01sy, blurred

5 plcture, it is still art1f1c1al and so does not prec1sely

N

retlect ‘the real world As a compromlse it was dec1ded to

i

~design and draw a black- whlte plcture contalnlng various -

types of edg/s,;and 1nput this- plcture through the total
hardware'system (desdrlbed next sectlon) In thls fashion

normal degradatlons through the transm1551on components

y

would result in an acceptaﬁ%e real picture.
% ™~
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It will be the object of later sections to describe
the results of inputting REFPIC to various edge detectors.
In addition, a TV image'of a human vigsage, FACE;_will be
input to the operators to test thelr reaction tol

/

2~ dlmen51onal representatlons of 3-D bodies.

IV. Test environment.

The purpose of this section is to discuss the—"////

hardware and software conditions under;ﬁhich the tests .on
s N

The major equipments used to input grey level scenes,
perform edge transformations, sﬁore.quantiied~images,‘and

display pictures includes:
a. IV camera and monitor: A small industrial TV
. camera (with top-mounted monitor) was .used.to

sense the input scenes. Resoiution wvas specified
at 650 lines with S/N’fatio at 40 dB.

b. Q;gigiggg; The digitizer‘ispah in-house design
with serial A/D conversion to 6 bits. Cycle time
is a minimunm of,24;micfosecs. The digitizer can be
-windowed to any portioa of the complete TV image
bx keyboard 1nput During . conversion the input
scene is sampled once per raster line until a

complete,lmage columnbls assembled in computer

. COre.



" smaller scenes.

~Computer: A PDP-9 computer was utilized:

e7

(1) to prepare incoming gquantized samples for

disk storage.

(ii) to trahsform the guantized pictures stored

on disk.

(iii) to prepa:e,quahtized pictures and their

transforms for display on‘a,storage scope.

- The eomputer hes an 8K word memory‘(18-bithord),

with a 1 microsec cycle time.
Qgsg: A 256K word disk was used to store_quantized
pictures. ‘One.18-bit word can;bejaccessea/stored

in 16 microsecs.

‘TV 1mage. ‘ ' - ft

i

Storage Scope: The storage scobe ﬂas used to

.dlsplay—pictures and thelr transforms for analYSlS

and nardcopylng (by Polar01d phot@graph) The !

K

1024 X 1024 dlsplay matrix glves a recognlzeable-

and reasonable repreSentatlon of the COILcSpomdlng-

!
i
H -

Cassette Recorder' Tertlargystorage of plcture‘

proce551ng programs, plctures, and thelr /
transforms‘was a cassette reco;der. One ﬂrack of
the cassette (128% words) containgd téh/separate

/
/

pregrams, four 256 x 256 pictures,/&nifseveral'
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.

'§Q§E§é£§v“ - .: - {j v}4" - : | Ve

Majorhutil%ty software designed and used for ‘these
. . - , ‘ ) J" ‘\l‘ﬁ¢ . : N Lo ) . L - El
tests includes: - . Lo

} » ’ ) e . ,
L a. BRING: a program to obtain the output of the
'digirizer, assemblewlhis~output into a coherent

f »ﬁ’»ﬁg,stﬁucgure, anQ transfer the structure to disk.

ard

Ind‘1v1dua1 sampleb were packed 3 to a word untll a.

mconplete-lmage'golumn was obtalned, at whrch tlme
L Cr . ' . o '
a/header was .attached to the data structure, and

transfer‘to disk Began;fColumns of the TV image

- were stored'on‘disk in sequential order.

—_——

"b. SHOW awprﬁgram.to display on the sterage scope a

quantlzed 1mage stored on dlsk This program has .

3

"ithe flex1b111ty tO'“
(1) 5 Dlsplay any portlon of . any plcture that can
be 1nput TN \.;;

s T T b
(11) P051t10n Qhe plcture at anv n01nt on the

storage scopei: . | ’
'(iii) Magnify any.pdértion of a picturgsror displai‘
(to theAeéient‘that_gggfpigel,can £fi1l the scope

face) ' \:i_l k. ’ - ' . "

"w\

(1v) Change the grey level range prlor to dlsplayn
(i. e., although the hardware.supglles 6- blt . 5
samples, these can be scaled to lowerepowers of 2°
for dlsplav)

{(v) Threshold the grey levels 1n such a fashlon

that any pixel over the threshold will be treated
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g

as tue maiimum grey lexe}. This faoility enaé;es
an edge matrix of 1s and 0s to be easily d}spleyed
as‘full white and biack respeotively. )
Pictures are displayed on. the st?rage scope by
illumfhating,a number of points in direot
proportion to the quentized.pixe}'valueg'Eor
exampie, if a 256 x 256 image on'disc is to be
di;played ver the couplete 1024 x 1024 scope
‘face, then each,pixel value determines hoW Rany
scope poings in a 4 x 4 neighbourhood uilivbe
illuminated. Which of the  points will be turnedd
.ou‘was,a funotion,of a r%ndom numberggenerator.
Thus, identicar pixels seldom gave £ﬁé same
sub-set of illuminated poiuts.'Because of “the
'.human eye's 1ogarithmic‘res§onse to light {147,
hthe number of points 1llum1nated cannot be a
llnear functlon of the plxel value. For ease of.
‘implementation, a function of the §g§g§§d pirel.
value was used to access a table oontaiuing.the
number of points to be turned on.
i_IAI' a program to determlne certaln statistics of:
stored 1mages. The mlnlmum, max1mum, average, and
verlance of the quantlzed 1mage is computed.
Addrtlonally, the frequr“cy of each of the pixel
values was output so that a histogram constructlon

was possible. -
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d. QEBEQ; a prégram to evéluate the merit of edge
matricés'under'cerfainucriteria (nbte algorifh; on
following page) . The program ocutputs the number of
edgels ih the edge matrix, and prodﬁces measures
pfoportionélitd the number of gaps in edges, the

,»' . amount of Hlﬁt»aérdss edges, and the 'yiggliﬁéss'
of 'noi;inesé% of the produced edges. These
_measu;eé@were’subjegt to é double ngrmalization
prio; to production as a set of tabyes (iee
.Tables 1 to 10). Fir§£},each neasured value was
. !
diyiqeqﬂpy the numb of edgelsfdgteéfed by its
respeéiive t;ansford,féhen the L—infiﬁity norm was
uséd on each set of results to prdducé taﬁle |

‘ o - : | ‘ .
v value ‘ranging from 0.0000 to 1.0000 (i.e., each

- v

s-
-
set/ of distinct values was divided by the largest

W, |

- Aside from this utility software, six different~edge

value in- the set).

°

~ detectors were implemented as computer programs to be

‘tested. Pgrenthetically, the utility software detailed above

will be5@sed to form the baéic set ofgsubroutines of a

vPicfure Opératin@»System(POPS). The hdrdyare‘and‘software

' together represent the Digital Picture Processing

System (DIPPS) .



'The MERED Algorithm b . -

Since MERED {a 'word description' is iudluded in the
closing paragraphs-of Section II) provided data.from which
conclusions were drawn concerniug the relatiue merit of the
six edge detectors, it seems necessary. to indlude here the

essence of the procedure from whlch the program was bullt

i

The followlng aescrlptlon wlll discuss operatlons on only

\

one sub- matrlx of, the complete edge matrix to be evaluated
Important explanatory notes follow the algorlthm (wrlttpn

‘with a FORTRAN-like notatlon):

i

a. Select an arbitrarily-sized,m X m Sub—matrix H

5
‘_ o

(m should be small compared to suspected edge
vﬁ@ lengths in the edge matrix). Begln searchlng for,
the faults in a prospective vertlcal edge:

b. Initialize to zero,the‘follow1ng varlables:
.BLURS.7 G1PS, NOISE;-CT, SUM. \
c. CT = the number of.edgélszin ﬁ(l).

d. If(CT.NE.0) Go To g.
;o o

e. GAPS 3 GAPS + 1 | - _ note 1
f.. Go, To}. ‘
g. sun = suM + cT , .. note 2
'h{ BLURS = BLURS + CT - 1 S note 3
i.ﬂComPute-éVPSN(i) '(i.e.,‘the a_; age position of
the edgels ian(i)).. - ' ST ggt;yg'
J. Compare AVPSN (i) with AVPSN (i-1) d_ ‘ note 5
- . note 6
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v" "f,

From comparison in j. above, compute:

TREND = -1 or 0 or +1. - ) note 7
If (ABS (TREND (i) ~TREND (i-1)) .GT.1) NOISE = NOISE + 2
- - T - note 8
Incréméﬂg i. \
If(i;LE.m) Go To c. < ’ ” ‘
FAULTSkvert. edges) = GAPS + BLﬁRS + NOISE
Rotate the sub-matrix M ~90 dégrees'énd'be:form

steps b. to 1. once more, then computes:.-

s : ‘ ' :
FAULTS (horiz. sdges) = GAPS + BLURS + WNOISE.
Select the final fault set: . ‘) ' -

5 =
MIN (FAULTS(vert. edges) ,FAULTS (horiz. edges))
. o T : - note 9

" Return to the main calling routine (with SUM, and

. the final fault set) to access the next (last)

NOTES: -

— . -

1.

-sub—matrix M.

!

Of cburse; if the ggggietg sub-matrix M had no

edgels; GAPS would be set to zero by the calling

progrém.

- 50M is used to normalize fault measurements of .

edge.mat%ices which may‘haVe vastly different

;gggggjzbf edges. For simplicity, SUHM is

,caldulated‘t}ice in the algorithm.

‘This reflects the_suppoéition that more than one

.o

edgel/line constitutes blurring. = =
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A ) . . . ' i ~
-, For‘g;ampleﬂ_éonsider~th§ row of edéelé 1 Ohf 1.
The‘ayérage(ﬁbsitiop (AVPSNj would*be_' 'f/
';quaj; to g}.‘{ﬁ)f‘_3+a) /3. That is, AVPSYN - 2.66....
V'SF.Foerimpigcit&,-initializatioﬂlproblemSgérq not
‘discussed here (e.g:,lthere is ndé Oth‘linégﬁ‘\
6. ihis will’yield three logical résﬁl%s:vIeS§'than:
'equél,to; or greateé tha; (i.e.,-1,0,+1). ¢
’7;‘bmvidusly,'ohe éannop establish the.TRENDV .
‘(orien;ationj‘of‘%hé'prqsbecfi%é edge until at

least the second row of M.

8. T'is combarison'allows a ségmeht of an édge (in' .‘
»the.noﬁmd%}y smgll sub-matrix M) ‘to Changég
‘direction by'QS ‘egfees without bé;ng fauited for'
noise. Measuring thisu'wigglineésl is tantamount
to measuring ‘sélt and pepper} noise. The hdise
increment '2' was estaplished by exﬁeriment.

9. A,gggigg;‘vert;cal line of edgels in the _” ;
sub-ﬁatrix gets no faﬁlts 6h a roway~fo§ scan,
~but shows up-as badly gappy and blﬁr;y when

scanned orthogonally. : B



plcture comprlSlng step edges w1th varlous
orlentatlons and rates of earvature,‘and Ieglons
of varlous ‘widths. It is ouggested that thlS A

de51gn could serve .as a model for a much  jpore

fn01se, along with addltlonal edge types such as

roof, ridge, etc. REFE_C was input through -the TV

camera'add digitizer under ordinary office

-

fluorescent llghts. A frequency hlstogram of

REFPIC, along wlth other statlsglcal data, is
4

shown at Flg. 16.;

i
A |
. ce th ot

Agg:'a close-up frontal v1ew of a human face,

Xact on the nose. Depth of field

yght levels and the
Thls pdcture was *the only

. \"/\
_d“fTésté on polyhedrals were

Fig. 17.
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also results. o

magnltude was in

" FACE, which seemed to ag$

oo Gy -

.97

% Digitizer Conditions

.

[}

Because the maximum picture size planned for was
256 x 256,_the image enfthe TV monitor covereé ope-quarter
of its screen area. Settings on the aigitiier[tarred' at .
this area and the picture was sampled. At the'time of

quantlzlng the pictures the vertical resofgtlon of ‘the

| /

'dlgltlzer'was twenty/percent less than the horizontal, with

the result that vertical edges are more blurred than

,hor;zontal. This’ characterlstlc is somewhat;helpful in that

the ‘edges of REFPIC have a variety of blur accordlng tq

their orientatiOn._Hinor vertical'stretchingiof'the image

R

'Edqe‘Operatqr Par?meters

Rather than 'tune'. each detector. for its best edge
transform (which would requiré subjective judgment, or an

a priori reliance on the evaluation program MERED), it was

decided to set\the. threshold of each so that it would just
barely detect a step edge of 8 on a 0"to 63 scale. This

ccord ‘with the acthal steps present in

dsed for thresholding with

45

ﬁﬁkmost of the edge

REFPIC. A step edge of 4 i



o

\Test Procedure "\

\‘ a. Energize all hardware components.
@ b. Input and store the two test pictures REFPIC and
- q : - .
Xt

)

“FACE.

" c. Display and photograph the test pictures.

'd. Execute-the program STAT to record the statistics

of each test picture. - i : BN
T N4
. e. Epnjthe i-th edge detector p;ogram: .
o I(1)_Set,window ahd o:her paraqefers to,conform}to
ihpu£ oicture'criteria of the edge operator. |
(2) Droduce and store on didc thi edge transform
. of a picture. »: S ' .t

-

'
JLii}Record the time taken for the transformation.
(

Execute program MERED, @nd record 1ts : Y

k]

-

evaluation of the edge transform.

45)@Display1and photograph-the edge

_T,:;

transformatlon.'

.

L e
f. On termlnatlon of one test se551on, dump the
, contents of the disk onto a cassette cartridge.

g. Continue test sessions at sub—paragraph e. ;above.

-

. }
{

'VI. Test Results :

Photographic‘Layout'

¢

All photographs in this thes'is were taken wlth a

Polar01d Osc1lloscope Film Pack camera u51ng Type 103

(speed 3000) pack fllm. ‘The plctures reflect all phases of

98-

T
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degradation—-from the‘pura “mage, through all the \

.trarsmlsslon components to the eye--including: lens

abertation,~eleotronic noise in the TV'camera, sampling and * -

quantization 'errors, scope display. inadequacies, fiim

graininess, and finally degradation Tesnlting’from the

photocopylng and publlshlng processes. Visual judgments must

* ke tempered with thlS knowledge.

§

.
PR

So that the reader'may easily correlate the

~ J

Vphotographs wlth the text,,and so that the'many references

1’ 3

'1n the text to 1nd1V1dual photographs w1ll be short and

easily

®

understood, the\follow1ng notation will be used: -

. PACE - refefs to the grey level photograph of a

m o
k4 4 /, PR
1

REFP}C - refers to the grey level reference - - - t{

_ .
photograph at the top of Flg. 18 Y )
N

- ( _
face shown’at the bottom of Fig. 18.

REFPICn-- reférs to thean th transform of REFPIC,
%;‘ :

where n 1nd1cates one of the six edge detectors,»

.(see F;g. 19).

FACEn - refers to the n- th transform of FACE (sge

3

'Fig. 20) | ’ T .

s

DIAGn - refers -» the n-t. transform of the =~

I,
N

dlagonal portlod of REPPIC 1n the uppe;{right'

segment of that p..o* ggraph (see Flg. 21y .

'GROSSn - refers to the n- th transforu of the

x

'cross' seghent "in the mld left portlon of REFPIC

Ny

(see Flg. 22).

»
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v ‘ T . PR . " o oA | .
g. CORNERn‘T/refers to the n-th transform of the .
: Coe L
narrow right angled segment i'n the uppe) ‘middl~
’ ) 3 8 . ; W c ’: ;' !
y : Hportlon “of - REFPIC (see Flg.,23y ' B o

Pald

)

"h.vCIR"LEn ~:lefers to'the n-th transform of the.
) » .

Ll . P 4
. " Ve

;c1rcle in the upper left segment of REFpIp (see

f?ﬁ\ . - Flg._2¢). : \f i »ﬂ"?f; o SR S .

. i
- ° B B { - - A
. ' ‘ . S R 'ﬁ ’ n i ) k
Fault Tables ‘ R o P
. ) I ' v ¢ : ' ’ B . 7 . ‘V
' L ‘ . N : : S ™ ¢
- The data pgoducec by the evaluatlon prmgram MERED 1s
. ¥i Ls
shown at Tables 1 +hrough 10 ThlS dataA along wlth\ﬁdge/‘
v
detector tlmlng data, ls used in the numerlcal evaLuatlon of-
&
each Qperator. ‘ C N ;f » - ,} >

N
PR
»

~



a. REFPIC

18. Storage scope photograbhs

>

of rrey level Imares. « " *



Y
3. REFPIC oberts Opérator b. REFPIC2: Gradleﬁt Operatbr
eQ'QEFPICS; Herskovits Ooerator : i. REFPIC6: Clustering Oberato;

4

% .
Fir. 19. Edre transforms of REFPIC

i ¥
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e, FACEé: Herskovits Operator = f. FACEG: ‘Clustering. Operator

f

Fig., 20, FEdrce transforms of FACE

?j

5



' : 104

a. DIAGL: Roberts Operator . b. DIAG2: Gradient Operator

e.‘DlAqéi Herskovits Opefator .. f. DIAGG: Clustering Operator

N

Flg. 21. Edge trénsforms of DIAG
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a. CROSS1: Rob&fts Operator b. CROSS2: Gradient Operator

)
e. CROSSS: Herék.ovltS' Operator - . CROSSG:,VCI.uster'Ing Operator
. Flg. 22. _Edﬁe'transforms of'c'ROSS
/
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é. CORNERI' Roberts Operxtor . CORNERZ Gradient Operator

“c. CORNER3: LaPlacian Operator d. CORNERL: SML Operator
e ; c

e. CORNERS: HersKovlts Operator = f. CORNER6: Clustéring Operator

- Fig. 23,  Edge {ransforpsroF?CORNER



(T

a. CIRCLE1l: Roberts Operator

e..CiRCLéS: Herskovits Operator f. ClRCLEG:'éIuste}Yng Operator

= \. Flg. 24. Edge transforms of CIRCLE
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TABLE yo. 1+ ..FAULT TABLE- CO!PLFTE I”AGE OU REFPIC
.(N“IGHBOU?HOOD CHECK SIZE = 4)

| - <EDGE | NUMBER OF | FAULT mABbLAmION i
|  OPERATOR | FPGFLG | BLURS = | GAPS | NOISE |
|TTTTTTTTTTTT | T | TTTTTTT |TTTT TS |t TTET T
|. ROBERTS | 10749 1,0000 - . 0,1863 . 0.0881 -

| GRADIENT | .8533 0.8993 0.2777 ©0.2278 -
| LAPLACIAN | 3874 0.4101 1,0000 0.9651

1 STATLAP | 1BLSO0 0.7333 - 025650 . 1.C000

| HERSKOVITS | 5983 0.656U4 0.5.,37 0.8398"

| CLUSTERING | 5621 0.6950 . 0.438% 0.4168 |

e e+ e dvn —— —— ——
A

_-—-————-——.—.——_—..——..—.-—--_——....——..—————————--———-—_-_‘__—.—.———.—.-

TABLE NO. 2. FAULT TABLE- COHDLFTE TJAGV OF FACE
(VEIGWBO%PHOOD CHECK SIZE = &)

CLUSTERIIG 3889 ©0Q.7450 - 0,.,3179 0.2318

| ~ EDGE |- NUMBER OF | FAULT TABULATION , |
| OPF?ATOP | EDGFLS | BLURS | GAPS { NOISET |
|TTTTTTETTTTT jmTTTTTTTTTT | 7T yoToTTTTTTT R l
I ROBERTS | 11973 ,1.0000 $0.1351 0.2945 I
| GPADIENT | 5005 0.8100 0.2627 0.u4u450 |
| LAPLACIAN | 2731 - 0,3u84 1.,0000 - 1,0000 |
| sraTLAP | 23031 0.8177 ©0.1781 . 0.8u73. |
| HERSKOVITS | 6949 , 0.6208 0.u4740 0.9425 |
! | !

I |

-‘————a—-—.———-—_——--————-——————————--———-——————————-———'_——————-
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TABLE NO. 3. FAULT TABLE- DIAGONAL(TOP-RIGHT OF REFPIC)

(NEIGHBOURHOOD CHECK SIZE = 4)

| EDGE . | NUMBER OF | FAULT TA2ULATIQN

|  OPERATOR | EDGELS | BLURS | GAPS | NOISE
i R |-t jTTTTTTTT T Tt
| ROBERTS | 130 "~ 1.0000 0.1508 0.0000
| GRADIENT | 99 0.9356 0.1980 0.0000
| LAPLACIAN ] 28 0.2321 1.0000 0.0000
| TLAP. i 85 0.6309 0.45612 0.2078
I'VEP KOVITS | 53 0.5519 0.3434 1.0000
| CLUSrT FRIHG l 43 0.5291 0.6186 0.4109

| _

--._.—.——.———_—_—._—-_-.—--——-—_—-—_——————_—.._——_-——_-7—.-——-_.._——_-—-

TABLE‘NO. 4. FAULT TABLE- CROSS(MID-LEFT OF REFPIC)

(NEIGEBOUREOOD CHECK SIZE = W4)

__..-..._-_-----_-__-_.-..-.._..-..-..-_.'.-.._“_...._'..‘..‘.‘.'.‘..‘.;.'.'.L-_
| & EDGE | NUMBER OF | FAULT TABJYLATIO
1 oPERATOR | E?GFLS |  BLURS | GAPS
|TTTTTTTTTT T [TTTTTTETTTT JTTTTTTTTTTT | oot I
| ROBERTS | 182 1.0000 0.0190

| GRADIENT ! 136 0.8922 0.0509

| LAPLACIAN | 69 0.5595 0.6020

| STATLAP I 90 0.4085 1.0C00

| PERSXOVITS | 110 . 0.8523 0.2832

| CLUSTERING | 106 . 0.7804 0.0960

I ‘

—— e P . e TR D A e e S MR MR TS S Gh WE S W S R D M W T S T M AL em e -

TABLE NO. S . FAULT TABLE- CORKER(TOP-MIDDLE

- e o . - = -

0.0000
0.0000
0.6522 .
1.0000-"
0.4091"
0.0000

- - - . e S e - WO R e W R e e T A

OF REFPIC)

- — - —- - -

0.0000
0.0000
0.5222
0.5137
1.0000

(NEIGHBOURHOOD CHECK SIZE = 4)

|  EDGE | NUMBER OF | FAULT TABULATIOV
| OPERATOR | EDGELS | BLURS i GAPS |
|=7TTT T . | =TT |==7mTTT T
| ROBERTS | 151 - 1,0000 0.2%43

| GRADIENT | 109 © 0,9375 0.0917
IILAPLACIAN | 50 ' 0.508u ‘ 1.0000

| STATLAP | 24t _ 0.7751 0.4098

| HERSKOVITS | - 9y 0.7302 " 0.5851

| CLYSTERING | 86 0.6385 . - 0.3u88

| |

0.0000

> e A R R T We P - &P S



TABLE NO. - 6.

! EDPGE

ROBERTS
GRADIERNT
LAPLACIAN
STATLAP
HERSHOVITS
CLUSTERING:

110 -

FAULT TABLE- DIAPGIAL(TOP RIGHT OF ?EFPI”)
(NEIGHBOURMOOD CHECK SIZL = 8)

0.0000
0.0000 %
0.3795
1.0000
0.40089
0.7413"

- e - —— " — S —— - ot - — o S W A P ey R e R P e M G R e . WS e e T . A e -

_ TABLE 0. 1.

FAULT TABLE-

FAULT TASULATION

BLURS GAPS
11,0000 0.1185
0.9460 0.2263
0.3994 - 1.0000
0.8058 0.1976
0.7121 0.3698
0.6177 0.5209

(4

(NEIGHBOURHQOOD CHECK SIZE = 8)

CROSS(MID-LEFT OF REFPIC)

- v e v e e s e e de o e W e e e R e R e e Ge e e S M e B W M vk M NP M e T W e A e e ve G W W e me W G ay e

| EDGE .
|  OPERATGR

| ROBERTS

| GRADIENT

| LAPLACIAN
| STATLAP

| HERSXOVI™S
| CLUSYERING
|

TABLE NO. 8

NUMBER OF
EDGELS

(NEIGHBOURNHOOD CHECK SIZE

1.0000
0.9587
0.5512
0.5735

~0.8643
0/8457

- - = r e - o -

0.0000
0.0000
0.7609
1.C000
0.0000
0.0000

8)

. 0.0u95
=0, 1324
0.260¢
1,0000
0.2455
0.3396 »

- - - o - - -

e an em s G Ee  u M MR S e G B e m WD W Ae m M R - R e T W MR Ee e AR M Th MR NP R WD m R AP W W W WP MR M W em W MR G W 4e e e e fe =

! EDGE
|  OPEPATOR

C% ROBERTS
GRADIENT
| LAPLACIAN
| STATLAP
| HERSKOVITS
| CLUSTERING
I .

NUMBER OF
___EDGELS
151
109
60
24y
9y
86

|
|

'1;0000
0.88§9'
0.5082
0.8870
0.81 :
0.7609

0.C889
0.0000
0.2238
1 0.00090
1.0000
0.9369

0.2980
0.0000
1.0000
© 0.9836
0.6383
0.17uY4

- - e M S A e R G - . G A - G W A e T S e R SIS ML W G D b G e e AL D W W e S SR S ST R T RO W AR B
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| . , \ .
TABLE 0. 9. FAULT TABLE+ CIRCLE(TOP-LEFT OF REFPIC)
(NEIGHBOURHOOD CHECK SIZE = 4)

- n am wm e e e v wm e G e W ) e e e e R BE LMW WP TR G en AR W M L G W A e EM R M Sh S Nt W P W M N M e W ER W W e S W W

!

|

, |
ROBERTS |
GRAPIENT |
"LAPLACIAN |
|

|

!

|

STATLAP
HERSKOVITS
CLUSTERING

1.0000
0.9271
0.2985
0.8150
0.7046
0.7613

| '&NOISH
\

0,0951
oxpooo
1.0000
0.454%
0.5334
0.0943

e - e T S - - - - = —— S G D G G W G W G A 4D S M GBS Sw G S R T W GE G S G G e G R R W S W S v D e

TABLE NO. 1o0.

PAULT TABLE- CIRCLE(TOP‘LEPT OF REFPIC)
(NEIGHBOURHOOD CHECK SIZE = 8)

NUMBER OF. |
EDCELS

| EpcE. |
|  OPERATOR |

| ROBERTS |
| GRADIENT |
| LAPLACIAN |
b S PATLAP )
| "HERSKQVIZTS |

|

|

| CLUSTERING |

48Y4
383
165

766

272
262

|

BLURS

1.0000
0.9096 -
0.3980
0.9487
0.7401
0.7193

|

1.0000
0:2890
10,5474
0.4608

"0.5385
0.5055
0.1050
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o . ; e
Interpretation of Results

The results of the testing carried on for this thesis
can be ClaSSlfled under three headlngS'

subjective visual, numerigali and final subijective

Judgements (based on the two of the three). The

relative value of each 15, rtainly arguable, viz: .the human

AR

eye can examine a photograph of an e¢dge transform and.opinet

5

good, bad, indifferemt etc. However, edge matrices-.are not
VO
]
meant to be looked at, but instead, are to be-mathematically

operated on by line—producing algorithms. In any case this

thought does not‘negéte the value of the eye.

‘ 4 N : .
The output nunbers from MERED (see Chapter 4, Section

§
Iv, Software) glve a numerical representation of the value

N

of each edge matrix. Though the MERED algorlthm'fé%f is not
, analytlcal,‘ltvdoes not violate standards set for measuring
absolute merit of edge hatrices keince none seem to exist);
But it can be argued that the algofithm is possiblyvfaﬁlty'
since it is grossly heqristic,‘and giveé yrong\ansuers to
eome~specia1 cases. Countering'this,-MERED has been checked
on 1dealr3Kd degraded versions of the same edge’ matrix Hlth
sati actory results. The operating tlme of each’ detector
ﬁas determined u51gg the real—tlme clock of the PDP;§
‘oomputer; The timee recorded ve:sus‘the-analytical times‘
defeloped in Chébter 2 for the various operators showfahvide
’ dlsparlty.‘Thls is due to the array 1ndex1ng and

'housekeeplng' operatlons wlthln each detector~ however, the



[1®)
®-

times in Chapter 2 are mostly correct| if considered as

L

relaAhve values {mong the operators. . 9,

Final su jective judgements on overall merit are
, &

necessitated y the 1nadequac1es of .visual and numerical

means alone..One must balance he photographs against the

!
numbers, and produce some ﬁssessmpnt. Therefore, most- of the

-~

remalnder of \this chapter wr(l comprlse oplnlons on the

k)

relative merit of each detector, based. on the 'hard' results
. I
“in the accompanylng flgARES and tables, tempered by

'subjectlve judgment. )

o e

.

Each of the operators: wrllibe assessed separately

using relevant cﬁhterla llsted under Sectlon IT of
e B
Chapter 1. & judgment of the relativefworth of each operator -

" will be made in the closing paragﬁﬁ%hs of this chapter.'
. : Y-

i

The Roberts Operator ; g
. A .

The version used Tor th&s test was a sllghtly

modlfled version of the 'onc¢ rentioned in Chapter 2:

7

i 3~Eu_= la-¢| + rc—bl. D o (26)

The Roberts Operator consumeAd approximately 80
. . &

microsecs/pixel in edge’detectlng, and t@us was by far, the '
fastest of the operators testedﬂ Its speed!resulted»from
51mple ‘operations (subtractlon) on only 4y plxels, and more

,llmportantly, the ease of 'housekeeplng' on adjacent elements

i

in neighbouring columns of the plcture matrlx.

s
l\.‘;( 2
C MR



TR

")“ B \‘_ \\. ) N .
zami:£§fbn of CROSS1 shows reasonable isotropy

(anticipate slightly wider vertical edges ithan horizontal
because of the disparity between the vertical and horizontal
N [ ) /,‘

resolution) . A comparison among;all.the FACE transforms™

shows that the Roberts is quite noisy. Thisféame'C¢mparison

.iilustrates it$ wid dynamic range,(i.e.; the f6;eheéd
shado;yline is fetected where the edge transition step is
‘weak, and yet edé s with fairly 1argé tranéitions are also
tes ‘its éapability'fo detect ngrrOWV

3

.highlighﬁs (or equivalently, cracks'bf\darkness) by seeind
. r ) .

detected) . Qpe also.

. the detefféd hair fuzz under the”left ear of FACE1.
. 7 N ’ )

)

.e
. - . . 9 : e
Numerical - . ’ e ' S o .

————————

- - et

Thé;f;ult tables show défini£ely thaﬁ.theiRéberts is
'seﬁerely-degréded by blurring,'aﬁd as might bg-expected,.haé
:he fewest gap faulfs, Erratié li#éafit& ofledges-(célled
NOISE in the tables) ié Certainly gg;taﬂcharaétéristic of
the Roberté. In1fact,:it is £he most highly4ra£ed in this

respect.

The Gradient - ' R

The Gradient was implémentéd in its fastesqlform:
EM = [d-f| + |b-h|. | (27)
“ i .

The Grddient Operator took 167 micfosecs/pixel for
detection, and thus was the second faétest of the operators.

_The fact that this d or operateéd at only half the speed

>

o
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.0f the Roberts is due solely to array 1ndex1ng

1neff1c1enc1es on three columns of a plcture matrix, where

the plxelsvcons1dered were not adjacent.

£

) A1l the partlal transforms of thls operator (DTAG2
through CIRCLEZ2) show that it approaches isotropy quite
closely. The RE{PIC transforms (REFPIC1’through REFPICH)
show'clearly that the Gradient has less than aterage noise.
The weak forehead shadow edge does not show up in FACE2,

thus 1llustrat1ng that mlcroedges are Qgt easily detected by
the operatorﬂ DIAG2 shows a‘reasonably thin didgonal edge

., with exc%lleht continmity (no gaps). CROSS2 t?;ough CIRCLE2
J confirm this. REFPIC2 seens the most plea51ng to the eye of

i

‘all the REFPIC transforms. )

[N

- Numerlcal

" In general, the fault.tables,shov’that cLoe éradient'
.‘blurs ed;es, but has very few gap faults. In addition, it -
rates falrly hlgh for llnearlty of edges, since 1ts NOISE
, pfaplts are among the loyest. Using a sub-matrix check sfze

of 8 does not,change4thisﬂconclusion.

The‘LaPlacian o

The version of the LaElacian useg for the tests was:

\ U EM = 8e - (atbctd+fegrh+i) - L (28)

~

1
LI
§
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hlthough ét first one might expect the LaPlacian to.be
equally as fast as the G“Qalent, the LaPlac1an, at 255
microsecs, was qulte a bit slower. ThlS 1s, of course, due
to it accessing twice as many éixels'es;the;Gradient,'but'
using the same neighbouthood size. However, it is |
appreciably faster than the average, since the operations‘tt

performs on its neighbourhood pixels are 'one-time' and

simple.-

Visual

———————

'Transforhs DIAG3 through CIRCLE3 show that this
Aeperator is fairly isotropic. The distinguishihg ‘
characteristic among all the Ldﬁlacian transforms is their
v1sual faintness. ThlS is due to fhe operator S capablllty
to 'sharpen'\the edges it detects such that there are very
few‘edgels marklng detected,edges. 0f course, the lack of
enarrow”ridge‘edges in the pictures (except the forehead hair
strands in FACE3) ptobabiy accentuates this faintness.
hdditionally, the LaPlacian is. reasonably lmmunefie noisev
(i.e., mlcroedges) as shown by a comparlson amoég all the
FACE transforms. The difference between vertical and
horizontal resolution, and the LaPlacian's;reaction'to that -~
'chéracteristic, is shown dramatically in éRbSS3. éhis
emphasizes the intolerance of the operator to blurred edges.

Its ablllty to detect around ‘*thin' corners is quite good

as CORNER3 illustrates.
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"Numerical

———— e e e

Generally, one nores that this operator has a very
good blur fault measurement, and conversely, rates very
badly with reference to gappiness. The conclu51ons to be
geined about NOISE are somewhat contradictory in that Tables
3 and 10 rate the operaror hlghly, whereas the remalnder of
the tables generally rate it low, and sometimes very low.

Subjectively, one tends to. give more weight to the majorlty.

‘Phe- Statistical Modified LaPlacian (SML)

Implementation of tyés detector was exaetly as
ekplained.inlchapter-2: | |

" EM = (f-Av)/s. | | _ (29i
1It consumedi617 microsecs per pixel, and thus was among the
sloﬁest of the operators’teeted. This time can be_attributedi
to.the’perfdrmance of fairly complex operatipns on -a large

number of pixels. Additidnally, each of the pixels had to be

accessed twice.
|

Visual

Aithough”this@algorithm‘produceq the Horst visual
esults, there were some interesting features. ASide from
he overﬁhelming,ndiSe, the edges of FACE4 are the sharpeet
f all the FACE trinsforme. In partiqular, one notes thet
‘he mc 1thline is one edgel wide, andjis 2o plete ecross the

full extent of the mouth, Slmllarly, faint edges in the

internal portions of the right ear (not even v151ble in the
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grey level FACE) are outlined very sharply. An unusual
feature shows up at REFPIC4, and is accentuated in the

partial transform.CIRCLEM: note that the edge,obtaineé is

.- very sharp (though certaanV gappy) » but more 1mportantly,

athe line of edgels is segarated from the noisy reglons by a

distinct (and relatively w1de) black background. Tt thus

”'feeems_possible to separate the true edges from the noise

o

with reasonable ease._How this.could be done algorithmically
is an interestingAand'probably solvable problem. Turning now
to the REFPIC transforms, one is startled by the perfec%
verticai edge'in-the'lower left of REFPICY4, eguallx as sharp
as the horlzontal edges in the mlddle and- bottom of the same
photograph. Thus it is seen that, for some light intensity
transitions aéress'edges, this operator is hardly affected
by the differences in edge blurring. It is probable that the-
‘average light intensity across the edge has much to do wlth
thls characterlstlc. " accord with this prop051tlon, one
notes the very structured ‘noise' in the right éeftions of
REFPICH. It is likei& that this parallel wavy set of edgels
is in ﬁact marking true edges, which are not visible to the
eye due to its logarithmic response. It is to be noted?that
even the or;g_nal image did not show these edges. So it
'seems that the SML can détect micro- edges when the average
light intensity is high, bat has difficulty with low

averages.



Numerical ¢

The fault tables indiéate a medium amount of

- blurring, a lesser amount of gappiness, and a medium to
~large amount of noise. This matches what the eye tells us

from the transforms. There is no signif: -ant difference

between the results from the two different check sizes used.

The Herskovits Operator

‘This edge detector was‘implemented as explained in
Chapter 2: ' . | A
EM = MAX(|2(b-c)| - la-b| - |c-di,
[2(f-c) | - fe-£| - fc-gl) . (30)
This operatbr took 401 microsecs/pixel for édge detection, .
\and consequeﬁtly was almost exactly on the average of all
- tested operators. Even though it only accessed 7 pixels in

-

~its neighbourhood, it performed a slightly more compléx

operation on them with the resulting extra time comsumption.

5 (

Visual

fhe line of edgels marking verkical and horizontal
edges (see CROSSS) are greatly different in quality, thus
feflecting the opefator'é reacfiqn to qifferenCes.in the
sharpness of edges. Its susceptability to noise is evident.
]

Sharpness on horizontal edges. is illustrated by the

mouthline of FACES. The operator is moderately blurry and



120

'gappy on step edges (see DIAGS) between fairly large
' regions, but is completely confused on crossing a narrow

region (see CORNERS).

Numerical

The fault tables show generally that the Herskbvifs
operator’has.é‘slightly higher thén averagé susceptibility
to'blurring and noise, bu£ 1e$s than average gapéiness. No
<_gnificant difference was found between the two check

sizes. . -

. The Clustering Operator

_ _ B .
characteristics of the grey level modality method (see

implementation of this detector was guided by the
chapter 3%;>where the arithmetic mean of the neighbourhood
‘picture elements was used to determine fhe ba]anée‘of the
bi—modality:' | | .
| EM = f(2s-f)/DS. " . (31)
This operato: was by fag the slowest. It took é7u
‘microsecs/pixel to detect edges,{wﬁich was ten times slower
than the Rdberts. This big differential in time consumption
is dué'to ;everal‘faCtors,‘thgﬁmost importaﬂf of which are:
it accesses four times the nuﬁbe; of éixelslper local
operation'és the Roberts (and about twice as many as. the .
Trest), it ﬁust access thesg élémeﬁts twice dutiég each

» _a_ A . .
operation, and finally, it.was designed with more generality

b
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in mind than simply local edge detection (e.g., the
neighbourhood size can be an input parameter to the
operator). Additionally, 'housekeepiﬁg' chores proved costly

in CTUs.

Visual

THe clusté;ing operator il%ustratés excellént
isotropy by ﬁarking vertical and horizontal:edges egnally
well (see CROSS6),. even faced with nvak vertical resblution.
Analogously,‘éne'notes that it is no%*t so susceptible to edgé
widéh differences. Its noise_d;scriminatioﬁ is gooé (see
- REFPIC6) , and its sharpness is very gopd (See CFOSS6)Q The

angle corner of CORNER6 is marked excellently. The Opérator

has moderate visual gappiness.

Numerical

e . e

The numerical results for this operator'were'tﬁe most
eq&ivocal, but in general they imply that the‘operator_has
noderate blur faults, a?erage gap faults (except over narrow .
reéions, where it'excels), and is moderate to good with |

. v
reference to noise faults.

VII. Conclusions

)

Regarding blurring, bdth,visually and ﬁumérically_the’
LaPlacian rates the highest, and the Roberts is.the'10west.

%
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The Gradient and the Roberts operators offer the.

fewest gap faults from their gfey,level input.

' Numericaily, non-linearitf of edges; i.e., n01se, is
a- characterlstlc of the statlstlcal modlfled LaPlac1an, with
the ordlnary LaPlacian and the Herskov1ts belng affected in
slightly %esser amounts. However,VV1sual examination of the
edge matrices does not present these differences this
sharply. This measure of 'wiggliness' or 'noisiness! must be
fuqther examined for its fidehity.. |

. e speed of an operator is one of its‘most important
{

char=acter: stics. Note that the Roberts is the fastest and

the Clubterlng Operator is the slowest It should be stated

though;that this operator has a built—in potential te move

across kand dewn) a picture matrik in steps equal to

one-half the sub-array size used. Since a 4 x 4 size was

implemented, such a stepping procedure would have resulted

in an approximate four-fold reduction in CPU time consumed.
@]

The resulting time useage would be qulte competltlve with

the remaln;ng operators.

In~cenclusion, it beconmes ebvious that more complei
operations‘involving:more'neighpourhoed pixels gives
generally better results. However, one must‘balance one's
~u%§h fer the 'best"operator against the cost iﬂ time and

complexity necessary to approafth this ideal.
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Chapter 5

HARDWARE EDGE DETECTION

During the piet tuefyears electronic devices have
been developed'uhieh make iﬁ economically feasib%e to-
proéose realistic designs for hardware edge detectioﬁ
systems. This/chapter will éive a‘brief'explanation of these .

devices, and suggest a method,of implementation.

The Major Problem o S C e S
( . ! 5 ’ ) .b'v - W ::!

- In all of the sequential edge detection schemes '/

- . ' o s . -, ., :
presented in Chapter 2, the requirement was' to perform someé -

mathematical operation:on a smail neighbourhood 6f.pixe1§e
and produce an indication of ‘the likelihood of an edge belng
present. If one contemplates performlng th;s eperatlon u51ng

hardware working directly'on the TV signal (as it beqomes

e . ’ )

' R NN [
avallable), then a difficult problen arises- how does one fh5w¢ I

access nm nelghbourlng plcture resolution elements on each of
n different neighbourlng lines of a TV raster_frame, and»glgu*“

at the same time? It seems clear that the only answer to

this severe tlmlng problem is to first delaz the k- n+1, ;;J
k-n+2,..., k=1 th lines (k2>n) until the k-th line becones
‘ . . - 2

available. If this‘can be done, then TV signals from

; . : S r : ‘
n different,lines (representing the lines' grey levels) can
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be made simultaneously available. With the addition of

m-1 shorter delays on each of these lines, m TV 51gnals/llnfh'

becone available .as 1nput to prospectlve hardware edge
detectors. For 51mp11c1ty, the 1nterlac1ng characteristic of
a Tv raster scan is ignored during the following exposition.

Relevant hardware delay methods are now examined.

L. Delay Devices

Analog Delay Lines - , Y

Two basic delay lines seem worthwhile mentioning in
- the context of analog image processing applications: the &
-crystal delay line an&'the charge-coupled device'(CCD). This

last device is a product of recent MOS technology.

~Crystal Delay Lines

;
!

Crystél deley linesroperate on the piezofe{eotric
principie in that electrical&signals are ansduced 1nto \
'Vmechanlcal v1bratlons which are transnmi'tted through the
:crystal lattice. Durlng their- transm1551on through the
crystal -the v1brat10ns travel at speeds much slower than

v the electrlcal v1bratlons. ThlS speed reductlon means that

‘the re transformlng of the mechanlcal vibrations into

felectrlc " waves results in an effective delay of the

fsignalg>
‘ e Q"‘.';.

ecent developments in delg; lines have shown [22]
% that electricb_, |

%ﬁgnals can be transduced into surface

Raylelgh mechanlcal vq@ratlons in the crystal such that

GRS s v
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the delay can be greatly extended without loss of much
fidelity in the re-transformed signal..

¢

Corning Glass HWorks has reééntly_released
speiificatidns'and costé of one such device [4+,5]s using
'ultf§sonic glass as the crystal,medium.\It is the MCcA-5.04
Video Delay Line. It can be obtained>qith delaxs Tanging
from 30 microseés to 64 microsecs, witﬂ'ﬁﬁtolerance
of +3.5 nanosecs. The lowest cost of such a device is
currently 250 dollars each. The signal-to-noise ratio is 50

dB, and 4.5 MHz is the 3 dB bandwidth.

TheAaifficulty with these delay liheé is that‘the
delay is fixed by the glass dime&sions, suChAtHat COEPﬁtef
éohtrdl is not bossible. It seems necessary that a'Hardwaré
edge deteétion device should in- orporate sone Cépabilitfyéor
varying the delay, soathat various formations Of Ppixel
neighbourhoods can be accessed. However, it seems likely
that‘avlogical_netiork could be designed to select some
subset of‘glass delay ligesvfof this purpoée. The éost for
the complete set‘of‘delays needed would likely be quite

high.

Charge-Coupled Devices (CCDs)”

Tompsett and Zimanyb[u6] describe the use Of CCDs for
~ delaying analog signals. They show that these M05 devices
can operate with effective delays in the range fron

100 millisecs to 1 microsec, maintaining figelity at
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frequencies up to several MHz, and having wide dynamic

ranges. They 111ustrate TV 1magesn seemingly non—degraded;

which have been delayed 16 mllllsecs."

Symbolically, the CCD can re thought of as a

'hbucket brigade', such that a charge rpacket (representing

the c¢current TV-si; ‘l'voltage) is stepped thrdhgh the‘CCD at

the cormand of a timimg pulse. It is then easily understood
’ C~ ‘ - w
that’/the delay obtained through the'device is a function of
the frequency of this timing pulse. With the apprepriate

_ s

delay, the signals representing one complete TV raster scan

line will be within the CCD at some specific instant of

'time. Furthermore, the s? nal voltages arriVing at the input

w

:\},*jﬂ

g the ccD will appear at the output (delayed approprlately)
Q&Aﬂﬁ:Slgnlﬁlcant degradatlon. It is expected that the CCD
willebe commercially available by August 1973 [44]. Nothing
deflnlte can be said concerning cost as yet, but'it is
reasonable that advan01ng MOS technologyy, and large scale
production, should make the CCD at leasX as coﬁpetitive as.

thegglass delay lines.

P 1

election Of Delay Devices ' ‘

p=3 . . 1

One nust decide the relative importance -of:
avallablllty, cost ‘performance, and flexibility, in .order
to decide whlchftype of delay dev1ce to use in any progected

~

hardware system. It wlll be assumed that the CCD is the
N

short delay dev1ces a~e of the 1nexpen51ve-glass type.
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II. A Hardware Edge Detection Systen

L ThlS sectlon wlll propose the development of a

".‘7-‘J .

. 1
) .

hardvware edge detectl_-‘s’stem whose method of edge

N

detection is dynamicab

’e set of?hgrgsare 1mple ehted edge algorlthms may be

s .

operetinq\ht any time durlng the samplrng and detecting

phase.

The intent of the following description is the

' encouragement of thought and dlscus51on on the perits,.
’methods,'and components for 'hardenlng' the edge detectlon
fprocess;lCon51stent w1th thlS, the dlagrems 1llustrat1ng the

systen (Figs. 25,27,28)'represent a flow-chart approach

rather -than the layout of .actual hardware. s

™ L

A Functional Description

Flg. 25 shous‘a‘functional block diagram of a .
hardware edge detedtlng system. The TV video signal, Stv, is
sensed by the delay’ ‘network (Fig. 27) and is available at

various portsvof the netkork as a function of time. A subset

of these ports protide delayed signals,tSSSd, to each of the

edge detecting modules. Using their threshold input from the

decodqpy“each of the modudes perform thelr oW unlque edge
Wy

detectlbn operatlon on-the. 1mput, produc1ng an edge s1gnal

Sei. These edge 1nd1cat10nsﬁare summed by a voltage adder.

> o

Parenthetlcally, threshold adjustment could force only one

e
. Y N
-

fchangeable. That is, any subset of .

“

At
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:edge detector to be active at any one time. The Digitizer-
Control Unit (DCU) samples the output of the adder, Ssunm,
once perlTV.raster line, gquantizes it, and passes an edge

merit-value, ENn, t0vthe~compdter; The compute;'performs a

o

threshold operatlon on EM accordlng to how many edge
detectlon nodules were active during the,operat}oh. The
résulting edgels are packed into computer words, and at the‘
.end of a TVyimage‘cblhmn, storage on disc commences. During

,thévrelaxation pe:iod between TV. frames, there is sufficient
time to analyze ére;;ous results, and‘reset.th:esholdslfer
lj the_edge'godules as a COHSequence of that enAifsis. These |
new thresholds are converted to useable,ﬁoltagesfby a D/A
qonverter,'and are degit,to_individual nodules hy’a.decodeg;
It is possible to adjust the deiéy net;ork at;this time. .
However, ‘this would probably not be productlve using the by

conflguratlon of the delay network shown 1n Flg -27, except

for experimental purposes. 5

In the forég01ng descrlptlon 1t was mentioned that

the sampllng rate was once per TV, raster’llne. ThlS assumes

‘o;

the presence of an anglog to-digital converter u51ng the

T

(slow)rsuccessive—approximation technique. However, the

computer may. only requlre a’ﬁ{narz decision frOm the DCU A

regarding the existence of an edgel If such were the case,
then a much faster, simpler, and more inexpensive A/D
conVerter may be. utlllzed _a hlgh speed differential
comparator (e.g... Falrchlld UA7161-~ 100 nanosecs). ?he‘
.output.of;this type et comparator can behpre-set’to:vp%tages

A
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i

:représenting logicai_'1{, and '0' for the computer
concerned. Thus) thé sampling rate would be essentially |
limited by fhe computer'sbéycle time. However, other factors
(not‘the least of which is programming'complexity)'further
restrict this-.rate to such an extent that sémpling ﬁore than

once per line seems fruitless -for the present.

.Q—j

M
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Firz. 25. ‘A hardware edgé detection syster.
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4

The Delay Network

‘

'Fig. 26 shows a matrix representation of a small

portion of the TV image. The values in that matrix represent

1

“the order in which the corresponding signals arrive at the

délay hetwotk. These numbers are repeated in the delay

N

\

T T

L1121 3|
P
14516
[ i 1 '
L g T 1 1
1718191
L I WO | ]

Fig. 26. Snb-array of a picturé'matrik
‘ ) —_ , .

ks

netﬁork diagram shqwﬁ at Fig. 27. This particular aetwork is,
able to provide thes~ nine signals simdltaﬁeouslé to the
edge detection noduies. Thé delay network is compoéed éf;
variable delay.CCDs, and fixed—delaj glasg delay lines. Thé
‘large delays, D, can be assﬁmed to delay sigﬁals 63.5
nicrosecs (i.e., one TV liné), aﬁdfthe sm;ll delays, d
(remémberiﬁg the inter-lace problem of a TV rastef scéﬁfl
represent‘approximately 240 nanosecs. A simple (but more-
expensive) addition té the netwo: wauld allow fhe provision
oflvaiues from a- 4 x & matrix, so that a greater variéty'of

edge detecting algorithms could be mechanized.
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DELAY PULSE STREAM

TV SIGNAL

.
N D - VARIABLE DELAY: APPROX. 63:5 MICROSECS
d — FIXED DELAY: APPROX. 240 NANOSECS .
n — SEQUENTIAL PIXEL INDEX NUMBER
HOTES |

The deTay devices above (ji.,e., D and.d) are, in fact,
unaloz <toraze devices ogerating in a fashion similar to:.a:
binary shift register: ° I

-

Device D effectively contains within its bounds at any
instant a TV signal equivalent in time to one - -

TV raster line. ' :

Device d operates like D, except that the TV sianal
contained is equivatlent to gﬂg'p[cture'resolution
element of the TV line. . o

Fing.27. :The delay network.

e
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The Edge Detecting Modules

Fig. 28 shows three edge détecting modﬁles which
could bezconstructed: the Grédient, the LaPlacianC and the
Roberts. For econoﬁy; one module could be designed to handle
all'thfee algorithms. Manual switching among the three would
then become neCessary._Such a design would hinder the )
possibility of>havihg all three simulténeously active; (/
Further, its more complicated design would'offset some of
the-savings realized by having fewer total components. Thus

it is felt that each operator should be constructed as a

separate plug-in unit.

P
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£is. 28. Three edgze detection nodules.
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Applications

Hiih an operating hardware system as just detailed,
it would be possible to:
a. Investigate the effect of each %dge detector on a
. tlive' /image. |
. b. Examine the interactive -effect of several
0perato£s working similtaneously.
c. Efficiently determine thevciass of imagé% for
whichﬁthe various operators are optimal.
d. Investigaté-dynamic thresholdiné techniquesT

e. Develop edge tracing algorithms within the

framework of .the exhaustive scanning hardware.
f. Develop new composite goftware edge detectors as a
result of experiments mentioned in sub-paragraph

b. above.
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Conclu51on

—_——— e ——

o This chapter has eutlined the deﬁelopment of a
harauere?edge detecting system. Its capabilities include:
Speed flex1b111ty, and experimental interest. Sucﬂ a systen
~could ease the detection of a wlde variety of edge types,
51nce a module could be designed for any specific type of
e@ge expected. In Tobot app;teatlons, the transfer of
'Sthware-édge detection routines to hardware implementatiof
wdﬁld oneerve core memory fefaother reCOgnition routines.
The fadt that several har@uare\eﬁge detectors can
effectively 'vote! onvthe$e¥isteﬁce of an'edge’implies that
edges can be located with ﬁore cbnfidence, and therefore
'objects'can be tecognized faster and more accuratelj. The
transfer of thls edge operatlon to hardvare does not mean
loss of computer control over the process since control of.
the threshold of all edge detecting modules (and thus their

‘total output) remains soft.
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Chapter 6

GENERAL CONCLUSIONS

This thesis has surveyed twelve edge detection

) techniqués with respect to their action on 'reai' images. A
novel edge detecting algorithm wvas formulated and developed
" in Chapter 3, based on the degreé of disbrdef of piéture
elements within a picture segment. Functional tests of six
operators were conducted on real pictures, and particular
conciusiéns were_draﬁn. A hardware edge detection syétem ias
.broadlx outlined in Chapter 5. It now remains to éummarize
the findings of the analytiqal&examination and»thé

functional tests. The conclusions are abstracted in

Table 11.

;}_Analytical Evaluation

Remarks about specific éperators éah be found

throughout Chapter 2j however, as the research for this

\

.thesis progressed, it became obvious that analytical
~evaluation of edge detecting methods -was of linited value,

without knowledge of the precise image on which the

: _ U
detectors were to operate, and without generally accepted

standards for evaluation. 'The iny *hard' conclusions that
. [) T . .

(i
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céuld honestly be made were those involving s@eed, isotropy,
!

and storage costs. It became necessary to '*guess' hcw good
\ - i ‘
an operator was for characteristics such as‘qoise

'sensitivity; flexibility, and edge type response.

Analytical Summary’

As one might expect, no one operator:stood out well

|

above the others. If one wishes a high speed operator, and

. expécts his image$ to predominate in gemnerally narrow
step-type edges, then the RUberts operator is suitable. The

LaPlacian is ideal for thin-ridges, or Hig%%ights,-and‘the
§ ' ; - e L T AT

.

ok

Gradient responds positively to wide,'steepﬂﬁ S

i

step edgé% the Herskovits operator is in&icéfed.“T@}@€A ?
statistical methods should operéte well in the presenée'of
noise. No real conclusions can-bé.dréwn about the
quasi-parallel methods exc;;k that edge detection gith them'
cannot be made contéxt?sensitive, since ail edges are

r
detected simultaneously. However, one can say that true
parallel_processing will result in rapia fesponse.(up to
several magnitudes, in fact). In generél,_the analytical
évaluation indicated.that functional £esting was indeed

necessary.
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‘ﬁy II. Functional Evaluation

Based on an analytical examination, six
representative edge detectors were implemented as computer
programs on the PDP-9 computer. One of these, the Clustering

operator, was formulated and developed in Chapter 3.
N -

A1l six opefators were tested on two images: a
ﬁﬁ_ﬁ%ference'picture; REFPIC, containing é variety of step :
w' [
edges at various orientations; and a 'real'. image, FACE&
containiﬂg a mixture of edge types and orientations.
Portions of REFPIC were singfbd»éut féﬁ sp%éific
examination. These ﬁefei'a diagoﬁal'sééﬁeht, DIAG; a

quadrant with alternating black and white segments, CROSS; a

narrow right-angled corner, CORNER; and a circle, CIRCLE.

The results of the“operations'on REFPIC were -’
presented visually and'numerically.'Assessments were made of
the six.detectors using storage scope photographs of the
varibus edgé‘fransforms as evidence. These assessments were
mostly conf:rmed by the numérical evaluation program MERED.
Since this program was developed and %mplemented duriné this
research it should be regarded as only a first attémp£.at
:the"blind' evaluation of an edge matrix. However’, if one
.examines the output of MERED (i.e., the Fault Tables)
éiggggg,recourse to the photographs, the conclusions are
significantlyvsimilar to those obtained ffom the visual

examination. Therefore, at least one can say that MERED is¥o

sensitive to the same faults as the human eye. Since it was
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postulated in Chapter 4 that the eye itself is not

necessarlly correct in 1ts evaluatlon of edge matrlces, 1t

follovs ‘that HERED nay be faulty also. Thus, much more work
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needs to be done along the lines of edge matrlx evaluatlon..

: The folloulng table and paragraph may give some 1n51ght into

the problems and’ p0551b111t1es awaltlng the prospectlve

1nvestlgator.

re

.Tablé 11. Summary of Evaluation Findings

3

S . : 1
r — | 4
1 FACTORV UBJECTIVE/ESTIMATED | ANALYTICAL/ACTUAL-
i ““%wT et =
{ RATED '[ROBIGRD|LAP]SHL|HER|CLU| ROBIGRD|LAP|SML|HER|CLU
L z 1 i ‘1 { } o . i l l l l
L N L] 1 ¥ 1 1 1 L ] 3
|SPEED t 171 17| 2311111 591242] 80|167|255|617|u01|87u
o } ~ } +—t— t +——t—t—+
| BLURRING | F | E 1 B | A {' D | 'C{ F | E | A1 DJ{BY}C
i - L IR BV i | I (R | I |
{GAPS .{ A | B | E | F | b {|-C| A "B | F I CF} E D
A i U g CRRS | N | | l R
|NOISINESS| D|BYCIP®|-E A ]| A CH F | EI.D. | B
] | | | | | [ AR L. P
| MATRIX 1 N R | i i B I L T T B
|MERIT {D|{B|CIF |E|A]| BAPC]| F|E|DIB
| I o ] (] 1 L 1 A M 1 1 ) | | 1

Notes: ' '

a. Names of operators have been abbreviated.

b. Ratings are alphabetlc, and merely indicate ;
order.of precedence, i.e., 'C! does not '
necessarily imply an average- operator.

c. Edge detector speeds are in CTUs’ per

~local operatlon (estimated), and in micro-
secs per local. operatlon (actual) . The
LaPlacian rated here 1s the!slower ver51on,
i.e., equation (7). P .
d. Ratings were abstracted from Tables 1 and 2.
e. Although certainly ‘desireable, the evaluation

,...,.._.._\._....._‘..;._..4;._..;._..&._-

of these detectors by more than one individual

was not p0551ble due to tlme constralnts.

&
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A Perplexing Note on Table' 11

The time sequence of the following.events‘is

//;mportant to the substance of this paragraph. Durlng the

v

final stages of thesis preparatlon, ‘the ratings in Table 11
were abstracted from the photographs and. fault tables. The
subjectlve ratlngs for Blurrl_g, Gaps, and N0151ness were

completed‘f}rst' then later,‘ the analytlcal results fOr
these factors were produced. still later, the cozzlete set
of photographs was examlned to determine subject1Vely
(w1thout regard to the prev1ous ratlngs made above) the best:
~overall edge’0perator {asdde from speed). This resulted in

i

the ratlngs under the subjectlve columgﬁfor the Matrlx Herit -

r4
factor. Flnally, the analytlcal ratlngs for Matrlx Herlt
‘were produced. It is startllng to examine the last two lines
P ’
~of Table 11, and flnd them 1dg?t1cal There belng no

typographical»error, one can perhaps assume that.the author’
.(although trying to Eehobjective) was strghgly_sensitive to
v1sua1 n01se, and so 'was hlS program MERED (“Véh though the

'analytlcal Matrlx Merit ratlng was the mathematxcal average>
of the three other factors) Further, it is 1nterest1ng to - _
note the‘probablllstlc correspondence'between the subjective
ratlngs for Matrlx Merit and those under the analytlcal
column set. If the analytical ratlngs were rang_m
assigned, one c@uldyexpect an average difference in
alphahetic ratiné between the two column sets of 2.5 per

edge operator. The actual auerage difference is only'-

1.666..., seemingly, a significant departure from
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. ~

raudomness; when one . considers that 4 of the 6 .ratings had a

differehce of only 1. Con51derat10n of subjectlve ‘versus
analytlcal ratlngs for onlx GAPS and BLURRING results in an

.actual»average dlfference of 1.00. This last fact-ls

additional evidence that successful results may be
"achievable 1n the absolute evaluatidn. of edge matrices by
algorlthmxc measurement;

P4
Functional Summary

w3
’ ,\ "y \ .

- . ~ . \ v .
Visually,éthe Gradient and-the Clusferfnq operator

gavesthe best results, and the Statistical ©.dified
LaPlacian (SML) gave the(worstlihowever, the SML gave rise
“to some interesting giestions with its surprisingly sharp
‘ “vertical and horzzon -1 lines, embedded in a sea of noise.
gﬁlhe reasons for~this-are not clear,\ nd should he examined
further. As mentloned reV1ously,>the numerlcal wutlngs

.

conflrmed the V1sual examlnatlon. The dlfference in speeds

of the:{ar;ous operators ranged over a magnltude, wlth the

Roberts belng the fastést and the Clusterlng opera-tor the

slowest. These differences wene due to the number of pixels

accessed per 1ocal operatlon, the number or times each pixel
/

was accessed, the com&lex1ty of the operatlon performed and
LY
perhaps more lmportantly, dlfferences in the efficiency of -

~array indexing among the various operatorsr

‘Although a statement of the form: woperator X is the
best." would seenm to be/appropriate in this concluding

chapter, it cannot be given. The reasc for this is theilack
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of generally accepted standards of evaluation. Before
continuing the’developmentoof 'new and better'!' edge . - . ;éﬁ
: x4 R

detecting algorithms, it is mandatory that edge‘matrix -

evaluation methods,be formulated and standardized. _ o

III. Hardened Edge Detection

system vas developed in Chapter 5. The‘realizatioﬁiof this
system should be technlcally easy, relatlvely 1nexpen51ve,
and could be 1ntegrable within existing picture processing
systems, with a ninimum of fuss. Emperiments with such a
system should,accelerate the development of appropriate
detectorsh and mlght even suggest methods for their
evaluatlon. The fact that several edge detectors can be used'

Busly 1mp11es that the ,total edge

\

detecting process could become reasonably 1ndependent of the

on an 1mage 51multan

class oftinput images. 'Good'»results could then be exgected
from widely varying picture types. The ability to control
\the thresholds of the edge detecting modules from wi.thin the
‘computer meansﬂthat an 1mage can be re-scanned several tlmes
wlth settlngs based on the results of prev1ous scans. Thus

one should be .able to tsearch' for the most satlsfactory

edge trahsform;ﬂ
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V. Closing remarke[

The termination £ research on thishthesis has not
resulted in a feeling @f 'job completed". Haﬁy avenues have
been unexplored, and too many techniques have been left
untried. More time is needed to examine, for. instance:
dynamic thtesholdlné techniques, contour follouing and gap .
f£illing algorithms, histogram equalization, and Hadagerd

transformations. These few examples are relevant and

importént to the task of edge detection.

Hubel and Weisel [19] state: "omne of the most

fundamental operatlons performed ‘by- the eye is that of

detecting changes in 1llum1nat10n" These changes gene%ate
the concept of edge within the human nd. Since this

edge- locatlng operatlon is so fundamental to human
existence, one must expect its effectivevaﬁtomation to be
accomplished only with a great deal of thought, imagination,

and effort.
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