UNIVERSITY OF ALBERTA

DESIGN, SYNTHESIS AND BIOLOGICAL EVALUATION OF NOVEL TRICYCLIC CYCLOOXYGENASE-2 (COX-2) INHIBITORS

BY

PRAVEEN RAO PERAMPALLI NEKKAR

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the

requirements for the degree of DOCTOR OF PHILOSOPHY

IN

PHARMACEUTICAL SCIENCES

FACULTY OF PHARMACY AND PHARMACEUTICAL SCIENCES

EDMONTON, ALBERTA

FALL 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and Archives Canada

Published Heritage Branch

Patrimoine de l'édition

395 Wellington Street Ottawa ON K1A 0N4 Canada 395, rue Wellington Ottawa ON K1A 0N4 Canada

Bibliothèque et

Direction du

Archives Canada

Your file Votre référence ISBN: 0-612-96003-X Our file Notre référence ISBN: 0-612-96003-X

The author has granted a nonexclusive license allowing the Library and Archives Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou aturement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis. Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.

Dedicated to my family;

Dad, Mom, Brother, Sister-in-Law and my Wife

ACKNOWLEDGEMENTS

I am indebted to my supervisor Dr. Edward E. Knaus for his excellent guidance and constant encouragement throughout my PhD program.

I am grateful to the funding agencies, the Rx&D-HRF/CIHR and the Alberta Heritage Foundation for Medical Research (AHFMR) for awarding graduate scholarships which helped me to pursue this study. I would like to thank the Faculty of Graduate Studies and Research for awarding a Dissertation Fellowship.

I would like to thank my lab colleagues Drs: Amgad G. Habeeb, Mohsen Amini, Md Abdur Rahim and Md Jashim Uddin for their kind help. I am grateful to fellow graduate students and postdoctoral colleagues for their generous support during my PhD program. I sincerely acknowledge Dr. Somayaji's help in running my NMR samples.

Finally, I am grateful to the Canadian Institutes of Health Research for financial support of this research.

TABLE OF CONTENTS

1.0.0.0.	INTRODUCTION	1
1.1.0.0.	THE CYCLOOXYGENASES	2
1.2.0.0.	THE CYCLOOXYGENASE STRUCTURE	2
1.2.1.0.	Cyclooxygenase (COX) and peroxidase (POX) activities	3
1.2.1.1.	Comparisons of COX-1 and COX-2	4
1.2.1.2.	Structural differences between COX-1 and COX-2	5
1.2.1.3.	Regulation and expression of COX-1 and COX-2	6
1.2.1.4.	Role of COX enzymes in inflammation	6
1.2.1.5.	COX enzymes in the gastrointestinal system	7
1.2.1.6.	COX enzymes in the kidney	7
1.2.1.7.	COX enzymes and the cardiovascular system	8
1.3.0.0.	SELECTIVE CYCLOOXYGENASE-2 (COX-2) INHIBITORS	8
1.3.1.0.	CHEMICAL CLASSIFICATION OF SELECTIVE	
	COX-2 INHIBITORS	10
1.3.1.1.	Methanesulfonanilides	10
1.3.1.2.	Diarylheterocycles as selective COX-2 inhibitors	11
1.3.1.3.	Diarylheterocycles with a central 5-membered thiophene ring.	11
1.3.1.4.	Diarylheterocycles with a central 5-membered pyrazole ring	12
1.3.1.5.	Diarylheterocycles with a central 5-membered furanone ring	12
1.3.1.6.	Diarylheterocycles with a central 5-membered isoxazole ring	13
1.3.1.7.	Diarylheterocycles with a central 6-membered pyridine ring	14
1.3.1.8.	Diarylheterocycles with a central 6-membered pyridazinone ring.	14

1.3.1.9.	Diarylheterocycles with a central 6-membered pyranone ring.	15
1.3.2.0.	Diarylcarbocycles as selective COX-2 inhibitors	15
1.3.2.1.	Diarylcarbocycles with a central 4-membered cyclobutene or	
	cyclobutanone ring	15
1.3.2.2	Diarylcarbocycles with a central 5-membered cyclopentene or	
	cyclopentenone ring	16
1.3.2.3.	Diarylcarbocycles with a central 6-membered benzene ring system	16
1.4.0.0.	MOLECULAR MODELING STUDIES OF SELECTIVE	
	CYCLOOXYGENASE-2 (COX-2) INHIBITORS	17
1.4.1.0.	Structural basis for COX inhibition by NSAIDs and selective	
	COX-2 inhibitors	17
1.4.1.1.	Examples of successful application of molecular modeling (dockin	g)
	experiments in the design of selective COX-2 inhibitors	19
1.4.1.2.	Design of COX-2 selectivity into the nonselective COX inhibitor	
	flurbiprofen	19
1.4.1.3.	Design of COX-2 selectivity into the nonselective COX inhibitor	
	indomethacin	20
1.4.1.4.	Replacement of sulfonamide and methylsulfone pharmacophores	
	in celecoxib and rofecoxib by an azido bioisostere	20
1.5.0.0.	THERAPEUTIC APPLICATION OF SELECTIVE COX-2	
	INHIBITORS	21
1.5.1.0.	Arthritis	21
1.5.1.1.	Cancer	21

1.5.1.2.	Alzheimer's disease (AD)	22
1.5.1.3.	Parkinson's disease (PD)	22
1.6.0.0.	REFERENCES	23
1.7.0.0.	OBJECTIVES OF THE RESEARCH	34
2.0.0.0.	CHAPTER 1.0: Design, syntheses and biological evaluation	
	of novel 1,1-dihalo-2,3-diphenylcyclopropanes as potential	
	cyclooxygenase-2 (COX-2) inhibitors with antiinflammatory-	
	analgesic activity	35
2.1.0.0.	Introduction	35
2.2.0.0.	Chemistry	36
2.3.0.0.	Results and discussion	37
2.4.0.0.	Conclusions	41
2.5.0.0.	Experimental Section	42
2.6.0.0.	References	48
2.7.0.0.	Appendix 1.1	52
3.0.0.0.	CHAPTER 2.0: 6-Alkyl, alkoxy, or alkylthio-substituted 3-	
	(4-methanesulfonylphenyl)-4-phenylpyran-2-ones: a novel class	
	of diarylhetero-cyclic selective cyclooxygenase-2	
	inhibitors	53
3.1.0.0.	Introduction	53
3.2.0.0.	Chemistry	53
3.3.0.0.	Results and discussion	55
3.4.0.0.	Conclusions	57

•

3.5.0.0.	References	57
4.0.0.0.	CHAPTER 3.0: Design, synthesis and biological evaluation of	
	6-alkyl, alkoxy or alkylthio-substituted-3-(4-methane	
	sulfonylphenyl)-4-phenylpyran-2-ones: A novel class of diaryl	
	heterocyclic selective cyclooxygenase-2	
	inhibitors	61
4.1.0.0.	Introduction	61
4.2.0.0.	Chemistry	62
4.3.0.0.	Results and discussion	64
4.4.0.0.	Conclusions	69
4.5.0.0.	Experimental Section	69
4.6.0.0.	References	79
4.7.0.0.	Appendix 3.1	84
5.0.0.0.	CHAPTER 4.0: Design, synthesis and structure-activity relations	ship
	(SAR) studies of 3,4,6-triphenylpyran-2-ones as selective cyclo-	
	oxygenase-2 inhibitors	86
5.1.0.0.	Introduction	86
5.2.0.0.	Chemistry	87
5.3.0.0.	Results and discussion	91
5.4.0.0.	Conclusions	100
5.5.0.0.	Experimental Section	100
5.6.0.0.	References	125
5.7.0.0.	Appendix 4.1	129

6.0.0.0.	GENERAL DISCUSSION AND CONCLUSIONS	134
6.1.0.0.	Design, syntheses, and evaluation of novel 1,1-dihalo-2,3-	
	diphenylcyclopropanes as potential cyclooxygenase-2	
	(COX-2) inhibitors with antiinflammatory-analgesic activity	134
6.2.0.0.	Design, synthesis and biological evaluation of 6-alkyl, alkoxy	
	or alkylthio-substituted-3-(4-methanesulfonylphenyl)-4-phenyl	
	pyran-2-ones: A novel class of diarylheterocyclic selective	
	cyclooxygenase-2 inhibitors	135
6.3.0.0.	Design, synthesis and structure-activity relationship (SAR)	
	studies of 3,4,6-triphenylpyran-2-ones as selective cyclo-	
	oxygenase-2 inhibitors	138
6.4.0.0.	Molecular modeling studies of isomeric acetoxy analogs	
	of rofecoxib	141
6.5.0.0	Molecular modeling studies of celecoxib analogs	143
6.6.0.0.	Conclusions	146
6.7.0.0.	REFERENCES	146

LIST OF SCHEMES

CHA	٩РТ	ΈR	1.0)
· · · ·				

Scheme 1.1:	The synthesis of (Z)- or (E)-stilbenes ($8a-e$ and $9a-e$)	36
Scheme 1.2:	The synthesis of (Z)- or (E)-1,1-dihalo-2,3-diphenylcyclopro-	
	panes (10a–d and 11a–d)	37
Scheme 1.3:	The synthesis of (Z)- or (E)-1,1-dihalo-2,3-diphenylcyclopro-	
	panes (10e–l and 11e–l)	37
CHAPTER 2.	0	
Scheme 2.1:	The synthesis of 2,3-diphenylcyclopropenone (6)	54
Scheme 2.2:	The synthesis of pyridinium salts (9a–i)	54
Scheme 2.3:	The synthesis of 6-alkyl, alkoxy or alkylthio-substituted-3-	
	(4-methanesulfonylphenyl)-4-phenylpyran-2-ones (10a-c,	
	11a-c and 12a-c)	54
CHAPTER 3.	0	
Scheme 3.1:	The synthesis of 2,3-diphenylcyclopropenone (9a and 9b)	62
Scheme 3.2:	The synthesis of pyridinium salts (10a–g and 11a–g)	62
Scheme 3.3:	The synthesis of pyridinium salts (10j–m and 11j–m)	63
Scheme 3.4:	The synthesis of 6-alkyl, alkoxy or alkylthio-substituted-3-	
	(4-methanesulfonylphenyl)-4-phenylpyran-2-ones (14a-v)	63
CHAPTER 4	.0	
Scheme 4.1:	The synthesis of 1,3-diaryl-prop-2-yn-1-ones (9a-r)	87
Scheme 4.2:	The synthesis of substituted-3,4,6-triphenylpyran-2-ones	
	(11a-s)	87

	Scheme 4.3:	The synthesis of substituted-3,4,6-triphenylpyran-2-ones	
		(12a-s)	88
	Scheme 4.4:	The synthesis of substituted-3,4,6-triphenylpyran-2-ones	
		(12t and 12u)	88
	Scheme 4.5:	The synthesis of substituted-3,4,6-triphenylpyran-2-ones	
		(12v and 12w)	89
	Scheme 4.6:	The synthesis of substituted-3,4,6-triphenylpyran-2-ones	
		(12x)	89
	Scheme 4.7:	The synthesis of substituted-3,4,6-triphenylpyran-2-ones	
		(12y)	90
	Scheme 4.8:	The synthesis of substituted-3,4,6-triphenylpyran-2-ones	
		(13a and 13b)	90
	Scheme 4.9:	The synthesis of substituted-3,4,6-triphenylpyran-2-ones	
		(13c-f)	91
	Scheme 4.10:	The synthesis of substituted-3,4,6-triphenylpyran-2-ones	
		(17 a -c)	91
GENERAL DISCUSSION AND CONCLUSIONS			
	Scheme 6.1:	The synthesis of 6-alkyl, alkoxy or alkylthio-substituted-3-	
		(4-methanesulfonylphenyl)-4-phenylpyran-2-ones	
		(4-methanesulfonylphenyl)-4-phenylpyran-2-ones (5)	137
	Scheme 6.2:	(4-methanesulfonylphenyl)-4-phenylpyran-2-ones(5)The synthesis of substituted-3,4,6-triphenylpyran-2-ones	137

LIST OF FIGURES

INTRODUCTION

Figure 1.0.1:	Biosynthetic pathway for the formation of naturally	
	occurring prostanoids	1
Figure 1.0.2:	A. Ribbon diagram of the ovine COX-1 homodimer	
	with flurbiprofen bound within the COX active site.	
	B. Ribbon diagram of ovine COX-1 monomer with	
	flurbiprofen bound, indicating the locations of the COX	
	and peroxidase (POX) active sites and the EGF and	
	MBD domains	3
Figure 1.0.3:	A schematic representation of the branched chain reaction	
	mechanism for the COX enzymes	3
Figure 1.0.4:	A schematic representation of the conversion of AA to	
	prostaglandins PGG ₂ and PGH ₂ respectively	4
Figure 1.0.5:	A. Active site of COX-1. B. Active site of COX-2	6
Figure 1.0.6:	NSAID binding in the COX active site with flurbiprofen	
	(yellow) bound in the ovine COX-1 active site channel	17
Figure 1.0.7:	The ribbon diagram of the murine COX-2 enzyme with the	
	diaryheterocyclic selective COX-2 inhibitor SC-558	
	(represented as space filling model) bound to the COX-2	
	active site	18
Figure 1.0.8:	The diaryheterocyclic selective COX-2 inhibitor SC-558	
	(yellow colored) bound to the murine COX-2 active site	19

Figure 1.0.9:	Overlay of the diaryheterocyclic selective COX-2 inhibitor	
	SC-558 (yellow) with indomethacin analog (55) in green docked	
	into the murine COX-2 active site. The sulfone moiety of	
	SC-558 and 55 are in the same plane within the COX-2	
	secondary pocket	20
CHAPTER 1	.0	
Figure 1.1:	Docking of (E)-1,1-dihalo-2-(4-methanesulfonylphenyl)-3-	
	phenylcyclopropane (11h) on the active site of murine COX-2	39
Figure 1.2:	Docking of (Z)-1,1-dihalo-2-(4-methanesulfonylphenyl)-3-	
	phenylcyclopropane (10h) on the active site of murine COX-2	40
CHAPTER 2	.0	
Figure 2.1:	Docking of 12b (ball and stick) in the active site of murine	
	COX-2 (line and stick)	56
CHAPTER 3	.0	
Figure 3.1:	Docking of 6-ethoxy-3-(4-methanesulfonylphenyl)-4-(4-	
	fluorophenyl)pyran-2-one (14i) in the active site of murine	
	COX-2	66
Figure 3.2:	Docking of 6-ethoxy-3-(4-methanesulfonylphenyl)-4-(4-	
	fluorophenyl)pyran-2-one (14i) in the active site of ovine	
	COX-1	67
CHAPTER 4	.0	
Figure 4.1:	Docking 6-(4-methoxyphenyl)-3-(4-methanesulfonylphenyl)-4-	
	phenylpyran-2-one (12e) (ball and stick) in the active site of muri	ne

	COX-2	94
Figure 4.2:	Docking 6-(4-methoxyphenyl)-4-(4-methanesulfonylphenyl)	
	-3-phenylpyran-2-one (120) (ball and stick) in the active site of	
	murine COX-2	95
Figure 4.3:	Overlay of the binding modes of 12e and 12o within the	
	active site of murine COX-2	97
Figure 4.4:	Docking 6-(4-methoxyphenyl)-3-(4-azidophenyl)-4-phenyl	
	pyran-2-one (17a) (ball and stick) in the active site of murine	
	COX-2	98
GENERAL D	DISCUSSION AND CONCLUSIONS	
Figure 6.1:	Docking of the rofecoxib analog (19b, ball and stick) in the	
	active site of murine COX-2	144
Figure 6.2:	Docking of the celecoxib analog (21a, ball and stick) in the	
	active site of murine COX-2	145
Figure 6.3:	Docking of the celecoxib analog (21b, ball and stick) in the	
	active site of murine COX-2	146

LIST OF TABLES

1.0.0.0. INTR	ODUCTION	
Table 1.0.1:	Comparison of COX-1 and COX-2 properties	5
Table 1.0.2:	Classification of NSAIDs according to their COX-1/2 inhibitory	
	activities	9
2.0.0.0. CHA	PTER 1.0	
Table 1.1:	Antiinflammatory and analgesic activities, molecular volumes	
	and cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2)	
	Inhibition activities for (Z)- and (E)-1,1-dihalocyclopropanes	38
3.0.0.0. CHA	PTER 2.0	
Table 2.1:	In vitro inhibition of COX-1 and COX-2 by 6-alkyl, 6-alkoxy	
	or 6-alkylthio-3-(4-methanesulfonylphenyl)-4-phenylpyran-	
	2-ones (10a-c, 11a-c, and 12a-c)	55
4.0.0.0. CHA	PTER 3.0	
Table 3.1:	COX-1/COX-2 inhibitory and antiinflammatory-analgesic	
	activities of 6-alkyl-, 6-alkoxy-, and 6-alkylthio-3-(4-	
	methanesulfonylphenyl)-4-phenylpyran-2-ones (14a-v)	64
5.0.0.0. CHA	PTER 4.0	
Table 4.1:	COX-1/COX-2 inhibitory activities of substituted-3,4,6-	
	triphenylpyran-2-ones (12a-y)	92
Table 4.2:	COX-1/COX-2 inhibitory activities of substituted-3,4,6-	
	triphenylpyran-2-ones (13a–f and 17a–c)	93

Table 4.3:	Antiinflammatory and analgesic activities of substituted-3,4,6-				
	triphenylpyran-2-ones (12e-f, 12t, 13f and 17a)	99			
6.0.0.0. GEN	IERAL DISCUSSION AND CONCLUSIONS				
Table 6.1:	In vitro inhibition of COX-1 and COX-2 by 3-(2-, 3- and 4-				
	acetoxyphenyl) analogs of rofecoxib (19a-c)	143			

LIST OF CHARTS

CHAPTER 1.	0				
Chart 1.1:	The structures of some selective cyclooxygenase-2 (COX-2)				
	inhibitors having a central 4-, 5- or 6-membered ring system	35			
CHAPTER 2.0					
Chart 2.1:	Representative examples of diarylheterocyclic selective				
	COX-2 inhibitors	53			
CHAPTER 3.0					
Chart 3.1:	Representative examples of selective tricyclic COX-2				
	inhibitors	61			
CHAPTER 4.0					
Chart 4.1:	Representative examples of tricyclic selective COX-2				
	inhibitors	86			

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF APPENDICES

CHAPTER 1.0	
Appendix 1.1: Elemental analysis for compounds 8e, 10d, 10h-l, 11c,	
11d and 11e-l	52
CHAPTER 3.0	
Appendix 3.1: Elemental analysis for compounds 11j and 14a-v	84
CHAPTER 4.0	
Appendix 4.1: Elemental analysis for compounds 8, 9, 11, 12, 13 and 17	130

1.0.0.0. INTRODUCTION

Prostaglandin H synthase (PGHS), also known as cyclooxygenase (COX), is a rate-limiting enzyme in the production of prostaglandins and thromboxanes, that are derived from arachidonic acid (AA). The most significant step implicating prostaglandins in inflammation was the discovery by Vane in 1971 that aspirin, a well known nonsteroidal antiinflammatory drug (NSAID), is an inhibitor of cyclooxygenase.¹ mediators Prostaglandins are of inflammation primarily due to their involvement in the regulation of vascular tissue permeability. tone and The induction of inflammation has been extensively studied and is very complex.

Prostanoids have long been known to behave as important physiological and pathological mediators that have been implicated in a number of therapeutic areas of interest including inflammation, pain, pyrexia, cancer, glaucoma, male sexual dysfunction, osteoporosis, cardiovascular disease, labor and asthma.²

In the early 1990s, an inducible isoform of COX was identified as distinct from the constitutive enzyme which led to the recognition that two different cyclooxygenases exist, namely COX-1 and COX-2. The observations that expression of COX-2 can be upregulated by inflammatory stimuli and that COX-1 was expressed constitutively in most

Figure 1.0.1: Biosynthetic pathway for the formation of naturally occurring prostanoids.

tissues led to the hypothesis for the existence of 'good' versus 'bad' COX with COX-1 producing prostaglandins required for normal physiological prostaglandin functions. In contrast, synthesis induced by COX-2 is responsible for inflammatory reactions.³ This theory led to the development of antiinflammatory-analgesic agents which inhibit COX-2 selectively and provide drugs with a reduced gastrointestinal (GI) toxicity profile. Currently selective COX-2 inhibitors such as Celebrex® and Vioxx® are marketed for the treatment of inflammatory conditions such as rheumatoid arthritis (RA) and osteoarthritis (OA). In addition, the COX-2 enzyme is currently an attractive therapeutic target in the treatment of other disease states that include tissuespecific cancers and neurodegenerative disorders.⁴

1.1.0.0. THE CYCLOOXYGENASES

The two known COX isoforms share a high degree of amino acid sequence similarity and are bifunctional They catalyse first enzymes. the committed step in the biosynthesis of prostaglandins, thromboxanes and other eicosanoids. The production of these eicosanoids the is regulated by availability of AA and the release of AA from membrane phospholipid is mediated by phospholipases. Once AA is released, the COX isoforms catalyze two reactions. sequential The initial cyclooxygenase reaction converts AA to prostaglandin G_2 (PGG₂). The subsequent peroxidase reaction reduces PGG₂ to prostaglandin H_2 (PGH₂). The cell specific isomerization or reduction of PGH₂ produces biologically active end products such as prostacyclin (PGI_2),

prostaglandin E_2 (PGE₂), prostaglandin D_2 (PGD₂), prostaglandin $F_{2\alpha}$ (PGF_{2 α}) and thromboxanes (TXA₂) respectively as shown in Figure 1.0.1.⁵

1.2.0.0. THE CYCLOOXYGENASE STRUCTURE

The COX isoforms are heme containing enzymes that exhibit distinctly different expression profiles and roles in several physiological processes. The primary structure of COX-1 is comprised of 602 amino acid residues whereas COX-2 contains 604 amino acid residues. The residues of COX are numbered by convention to the ovine or murine COX-1 sequence to standardize structural and functional comparisons between species.^o The COX isoforms share 60-65% sequence identity within species and about 85-90% sequence identity among species. The first threedifferent dimensional structure of a COX enzyme, the ovine COX-1 complexed with the NSAID flurbiprofen was published by Picot et al. in 1994.⁷ The structures of human and murine COX-2 are virtually superimposable on the ovine COX-1. The COX isoforms are homodimers both functionally and structurally. The general feature of each monomer is the presence of three structural domains; a N-terminal epidermal growth factor (EGF) domain amino acids. possessing 50 а neighbouring membrane binding domain (MBD) having about 50 amino acids, and a large catalytic domain made up of about 460 amino acids as shown in Figure 1.0.2. The MBDs of COX are made up of four short, consecutive, amphipathic α helices, with helix D merging into the catalytic

Figure 1.0.2: A. Ribbon diagram of the ovine COX-1 homodimer with flurbiprofen bound within the COX active site. B. Ribbon diagram of ovine COX-1 monomer with flurbiprofen bound, indicating the locations of the COX and peroxidase (POX) active sites and the EGF and MBD domains (adapted from ref 6).

These helices surround an domain. which fatty acid opening through substrates and NSAIDs are believed to enter the COX active site. The upper half of the catalytic domain is the COX active site that binds fatty acid substrates and NSAIDs. Both COX-1 and -2 are attached to endoplasmic reticulum (ER) and nuclear envelope through the Cterminal sequences and are present on the luminal surfaces of ER and inner and outer membranes of the nuclear envelope. N-glycosylation of COX isoforms is required for enzyme folding and activity.

1.2.1.0. Cyclooxygenase (COX) and peroxidase (POX) activities

Both COX isoforms catalyze a cyclooxygenase reaction in which the substrate AA and two molecules of molecular O_2 are converted to PGG_2 , and a peroxidase reaction in which PGG_2 is reduced to PGH_2 by a two electron reduction. These two reactions occur at distinct but structurally and functionally interconnected sites as shown in Figure 1.0.2. Both cyclooxygenase and peroxidase activities require heme as a cofactor.

Figure 1.0.3: A schematic representation of the branched chain reaction mechanism for the COX enzymes (adapted from ref 6).

The cyclooxygenase reaction occurs in a hydrophobic channel in the core of the enzyme whereas the peroxidase site is in the heme containing area near the protein surface.⁶ Interestingly, peroxidase can operate independently of cyclooxygenase, whereas the cyclooxygenase activity is dependent on peroxidase activity that requires the oxidation of the heme group.⁸

A branched chain mechanistic model was first proposed by Ruf and coworkers as shown in Figure 1.0.3.⁸ According to this scheme, heme iron reacts with a hydroperoxide substrate thereby initiating а two-electron oxidation yielding compound I (CI), which corresponds to an enzyme state with an oxyferryl heme radical cation. The rapid single electron reduction of compound I via an intramolecular migration of the radical from the heme group to the amino acid residue Tyr³⁸⁵ at the top of COX active site creates intermediate II (Int II).9 The tyrosyl radical thus formed initiate, the COX reaction by abstracting the 13-pro-S hydrogen from the COX substrate AA, thereby forming the arachidonyl radical.¹⁰ This fatty acid radical reacts with molecular O_2 to produce an 11hydroperoxyl radical, which forms the endoperoxide cyclopentane moiety of PGG_2 , whereas the addition of a second O₂ molecule at carbon 15 produces PGH₂ as shown in Figure 1.0.4.^{1 f, 12}

Both COX and POX activities undergo suicide inactivation during catalysis and their activities fall to zero within 1-2 min even in the presence of sufficient substrates. Although the exact mechanisms for suicide inactivation is not yet resolved, it is likely that it proceeds from the Intermediate II.¹³

Recently, on the basis of the structure of PGH_2 bound at the COX active site, a working model for the mechanistically competent conformation of AA that leads to prostaglandin biosynthesis has been proposed.¹⁴

1.2.1.1. Comparisons of COX-1 and COX-2

A second isoform of COX-2 was independently discovered in the late 90's by different groups. ^{15,16} COX-2 expression is inducible by a wide range of extracellular and intracellular stimuli such as lipopolysaccharide (LPS), interleukin-1 (IL-1), and tumor necrosis factor alpha (TNF- α) whereas COX-1 is expressed constitutively in most tissues.

Parameters	COX-1	COX-2		
Gene size	22 kb	8.3 kb		
Exons	11	10		
Chromosome	9q32-q33.3	1q25.2-q25.3		
mRNA	2.8 kb	4.1 kb		
mRNA regulation	constitutive	inducible		
Inducers		LPS, cytokines,		
		phorbol esters		
Molecular weight	70 kD	70-72 kD		
Localization	Nuclear membrane,	Nuclear membrane,		
	ER	ER		
Cofactors	1 mol of heme	1 mol of heme		
Glycosylation	-N, 3 sites	-N, 3 or 4 sites		
Substrate	AA, γ-linolenic	AA, γ -linolenic acid,		
specificity	acid	α-linolenic acid,		
		Eicosapentenoic		
		acid		
Activity	23 mmol	11 mmol		
	AA/mg/min	AA/mg/min		

Lable 1.0.1. Comparison of COA^{-1} and COA^{-2} properties	Table 1	.0.1:	Comparisor	n of COX-1	and COX-2	properties.
--	---------	-------	------------	------------	-----------	-------------

The genomic structure of both human and murine COX-1 is composed of 11 exons and 10 introns spanning 22.5 kb. The human COX-1 maps to chromosome 9q32-q33.3. By comparison, the human COX-2 gene is only 8.3 kb in size and is localized to chromosome 1q25.2-q25.3.¹⁷⁻¹⁹ Both COX-1 and COX-2 have very similar cyclooxygenase active site structures, catalytic mechanisms and products. Table 1.0.1 shows some of the differences between human COX-1 and COX-2.

1.2.1.2. Structural differences between COX-1 and COX-2

The COX-1 and -2 monomers each contain a 25 Å hydrophobic channel that originates at the membrane binding domain (MBD) and extends into the core of the catalytic domain. The MBD forms the mouth and first half of the channel, allowing AA and O_2 to enter directly from the apolar compartment of the lipid layer. The three dimensional X-ray crystal structures of either murine or human COX-2 can be superimposed on that of COX-1.^{7, 20-22} Within the catalytic sites of COX-1 and -2, one critical structural difference occurs at position 523.

At the amino acid residue position 523, COX-1 has a bulkier isoleucine (Ile) whereas the smaller valine (Val) is present in COX-2. This minor change makes the overall molecular volume of the COX-2 active site almost 20% larger than that of COX-1. Consequently, an additional secondary pocket is accessible in the COX-2 active site as shown in

Figure 1.0.5: A. Active site of COX-1. B. Active site of COX-2 (adapted from ref 20).

Figure 1.0.5. ²⁰ This structural difference has been exploited in designing selective COX-2 inhibitors. The carboxylic acid moiety of the COX substrate AA and undergo nonselective **NSAIDs** Arg¹²⁰ electrostatic interaction with which is not possible with diarylheterocyclic selective COX-2 inhibitors.^{21,23,24} Other structural differences exist at amino acid residues 434 and 513 (numbering scheme based on ovine COX-1). The COX-1 isoform has Ile at 434 whereas COX-2 has Val. Similarly, at position 513, COX-1 has histidine (His) and COX-2 has arginine (Arg). These subtle differences

provide more substrate flexibility in the COX-2 active site.

1.2.1.3. Regulation and expression of COX-1 and COX-2

The COX-1 isoform is constitutively expressed at high levels in cells and tissues such as endothelium, monocytes, platelets, renal collecting tubules and seminal vesicles, indicating that it is developmentally regulated.²⁵ Targeted gene disruption has been well, and have no gastric pathology and show less indomethacin induced gastric ulceration than COX-1 wild type mice. COX-1 null mice also exhibit reduced platelet aggregation and decreased inflammatory response.^{26, 27}

The COX-2 enzyme is induced by mediators of inflammation such as LPS, IL-1, TNF- α in a wide variety of cells and tissues such as vascular endothelium, osteoclasts. rheumatoid synovial endothelial cells. monocytes and macrophages. Recent studies have also shown that constitutively expressed COX-2 plays specific functions in reproduction, renal physiology, bone resorption and neurotransmission.²⁸⁻³¹

1.2.1.4. Role of COX enzymes in inflammation

Traditional NSAIDs prescribed to control joint pain to treat inflammatory conditions such as RA and OA produce their antiinflammatory and analgesic properties by nonselective inhibition of COX activity. During the inflammatory process, the COX-1 mRNA and protein activity do not change whereas a dramatic increase in COX-2 levels is seen, leading to increased production of proinflammatory PGs. The GI side with effects associated traditional NSAIDs are due to the inhibition of gastroprotective PGs synthesized via the COX-1 pathway.^{32, 33} The expression of COX-2 has been extensively studied in animal models of inflammation and there is strong evidence that induction of the COX-2 enzyme is associated with inflammation. The COX-1 enzyme to be unaffected by the appears inflammatory process, and similar levels of mRNA and protein are detectable in both normal and inflamed tissue in animal models. At the site of inflammation, local reddening, heat generation, swelling and pain are classic signs of which the former three are caused by increased blood flow and vascular permeability with resultant edema. PGs such as PGE₂ and PGI₂ produced via the COX-2 pathway magnify the degree of inflammation initiated by other mediators of inflammation such as histamine and bradykinin, thereby increasing vascular permeability and edema³⁴⁻³⁷ COX-2 is not detectable in normal tissue, but is detectable after an inflammatory stimuli. Selective COX-2 inhibitors have shown good antiinflammatory and analgesic activities in different animal models. Clinical trials indicate a reduced GI toxicity profile which confirms the role COX-2 of the enzyme in the inflammatory process.³⁸⁻⁴⁰

1.2.1.5. COX enzymes in the gastrointestinal system

In humans and several other species, it has been shown that COX-1, but not COX-2, is expressed constitutively throughout the GI system.⁴¹ PGs such as PGE₂ and PGI₂ formed by COX-1 have cytoprotective effects on the GI mucosa as they reduce gastric acid secretion from parietal cells in the stomach, increase mucosal blood flow, and stimulate release of viscous mucus. Selective COX-2 inhibitors are efficient and often superior antiinflammatory agents with less GI toxicity due to their selective inhibition of COX-2 and sparing action on COX-1. However, there are reports of constitutive expression of COX-2 in healthy human and rabbit GI mucosa.⁴² It has also been reported that during the GI ulcer formation process, COX-2 may be induced and that it could play a role in GI healing.⁴³ However, there is little doubt that COX-1 derived PGs are important for the maintenance of GI mucosal integrity.

1.2.1.6. COX enzymes in the kidney

PGs regulate vascular tone and normal blood flow, thereby maintaining renal function.⁴ Studies using animal models of renal diseases, and patients with congestive heart failure, liver cirrhosis or renal insufficiency have shown that PGE_2 was primarily responsible for maintaining normal kidney function.²² In humans, COX-1 is constitutively expressed in the vasculature, the collecting ducts and the loop of Henle, whereas low levels of COX-2 are expressed constitutively in the macula densa, epithelial cells lining the ascending loop of Henle and medullary interstitial cells of the renal papillae.44 The COX-2 enzyme is involved in normal renal development, and COX-2 deficient mice develop severe nephropathy.^{26,45} Studies have shown that NSAID-induced sodium retention in healthy and elderly patients is mediated by the inhibition of COX-2, whereas decreased glomerular filtration rate is associated with inhibition of COX-1.⁴⁶ Thus both enzymes are involved in renal physiology. Recent studies with the selective COX-2 inhibitor rofecoxib have also shown an association with the development of nephritis.⁴⁷

1.2.1.7. COX enzymes and the cardiovascular system

It is known that the COX-1 isozyme is constitutively expressed in platelets and is responsible for the formation of pro-aggregatory TXA₂. In contrast, the synthesis of anti-aggregatory PGI₂ in endothelial cells is catalyzed primarily by COX-2.48 Aspirin acts as an irreversible inhibitor of the enzyme COX-1 in platelets by acetylating the Ser⁵³⁰ residue. This leads to blocking of TXA₂ synthesis, leading to a reduced risk of thrombosis. The COX mediated vascular control has been demonstrated in COX-1 and -2 knock out animal models. Mice deficient in COX-2 die within 48 hours after birth with a patent ductus arteriosus (an arterial connection that directs blood flow away from the pulmonary circulation in fetal life that must close at birth). Similarly mice deficient in both isoforms of COX die within 12 hours of birth with a similar condition.49

A special communication has raised a cautionary flag regarding the use of COX-2 inhibitors in patients at risk for cardiovascular morbidity such as myocardial infarction that has been explained using the following facts.⁵⁰ PGI_2 is a vasodilator and a potent inhibitor of platelet aggregation produced by COX-2 at the sites of inflammation. Although selective COX-2 inhibitors have no effect on TXA₂ production, by decreasing PGI₂ production, selective COX-2 inhibitors may tip the natural balance between prothrombotic TXA_2 and antithrombotic PGI_2 that could potentially increase the possibility of a thrombotic cardiovascular event. There are other indications of a protective role for PGE₂ and PGI₂ derived from the COX-2 pathway pertaining to oxidative damage.⁵¹ Therefore, both COX-1 and -2 derived PGs appear to have a profound role in the regulation of vascular homeostasis.

1.3.0.0. SELECTIVE CYCLOOXYGENASE-2 (COX-2) INHIBITORS

(nonsteroidal **NSAIDs** antiinflammatory drugs) are the most widely used drugs for the treatment of joint inflammation and musculoskeletal disorders. In the US alone, more than 15 million individuals use NSAIDS daily. Since the discovery of the COX-2 isozyme, numerous studies have shown that selective COX-2 inhibition produces effective antiinflammatory and analgesic activity whereas COX-1 inhibition is associated with side effect profiles exhibited by traditional NSAIDs. GI toxicity associated with NSAID therapy responsible for 200,000-400,000 is hospitalizations each year in the US alone at a cost of \$0.8-1.6 billion.⁵² Current research is focused on developing safer NSAIDs with increased COX-2 selectivity and potency. The COX-2 selectivity (Selectivity Index; SI) of traditional NSAIDs have been tested using various assay systems, including purified recombinant enzyme, transfected cells, and whole blood assays. The SI is expressed as the ratio of the COX-2 IC₅₀ to the COX-1 IC₅₀ value (Table 1.0.2)^{53,}

Table	e 1.0.2:	Classification	of NSAIDs	according t	o their (COX-1/2	inhibitory	activities	(adapted
from	ref 54)								

Class	Properties	Examples		
Group 1	NSAIDs that can inhibit both COX-1 and COX-2 completely with little selectivity	Aspirin, diclofenac, flurbiprofen, indomethacin, piroxicam		
Group 2	NSAIDs that inhibit COX-2 with a 5-50 fold selectivity	Celecoxib, etodolac, meloxicam, nimesulide		
Group 3	NSAIDs that inhibit COX-2 with a > 50 fold selectivity	Rofecoxib, etoricoxib		
Group 4	NSAIDs that are weak inhibitors of both isoforms	5-aminosalicylic acid, sodium salicylate, nabumetone, sulfasalazine		

The differential tissue distribution of the COX-1 and -2 enzymes has made it possible to predict the therapeutic and toxicity profiles of selective COX-2 inhibitors based on their COX-1/2 inhibitory profiles. For example, in the treatment of arthritis, by obtaining data from concentration/time data of COX-2 inhibitors in the synovial/systemic compartments (pharmacokinetic profile) and the selectivity for COX-2/COX-1 (pharmacodynamic profile), one can predict antiinflammatory effects versus toxicity profiles.55

Traditional NSAIDs such as meloxicam (1), nimesulide (2) and etodolac (3) were not designed specifically as COX-2 inhibitors, but were identified from pharmacological tests as potent antiinflammatory agents with low GI toxicity profiles in animal models prior to the discovery that there are two COX isozymes. These drugs are now known to preferentially inhibit COX-2 rather than COX-1.56-58

In recent years extensive research has been directed toward the development of selective COX-2

inhibitors. Successful marketing of selective COX-2 inhibitors have reinforced their usefulness to treat inflammatory conditions. Now, a league of the top 20 drugs includes the selective COX-2 inhibitors celecoxib (Celebrex®) and rofecoxib (Vioxx®) and together, they represented global sales in excess of \$450 million US in the year 2001.⁵⁹ In addition, other potential applications of selective COX-2 inhibitors for the treatment of a wide range of other disease states is being investigated.⁴

1.3.1.0. CHEMICAL CLASSIFICATION OF SELECTIVE COX-2 INHIBITORS

1.3.1.1. Methanesulfonanilide inhibitors

of Members the methanesulfonanilide class of COX-2 inhibitors generally exhibit preferential COX-2 selectivity (COX-2 selectivity anywhere between 5-50, Table 1.0.2). These compounds are characterized as derivatives alkylsulfonanilides. of Nimesulide (2) was the first member of this class discovered. to be Pharmacological studies have demonstrated nimesulide's clinical antiinflammatory properties.⁶⁰ Structural modification of nimesulide led to the development of NS-398 (4) with preferential COX-2 selectivity and antiinflammatory activities.⁶¹ Incorporation of an electron withdrawing substituent into five-membered the carbocyclic ring in L-745,337 (5) increased COX-2 inhibitory potency and selectivity.⁶²

The general structural features present in the methanesulfonanilide class of COX-2 inhibitors are shown below.

> Substituted / unsubstituted aromatic ring, heterocyclic ring, aliphatic cyclic rings

1.3.1.2. Diarylheterocycles as selective COX-2 inhibitors

Currently. diarylheterocycles constitute a major class of selective COX-2 inhibitors. The historical origins of diarylheterocycles as pharmacophores be traced back to can the antiinflammatory agent phenylbutazone (6) which stimulated medicinal chemists worldwide further to explore diarylheterocycles. In this regard, researchers at DuPont initiated an extensive program in the 1970's to evaluate novel diarylheterocycles as antiinflammatory agents, which led to the discovery of a very potent and selective COX-2 inhibitor DuP-697 (7) possessing a central 5-membered thiophene ring.

A common structural feature of these tricyclic molecules is the presence of 1,2-diaryl substitution on a central 4-, 5- or 6-membered ring system. Structureactivity relationship (SAR) studies have

shown that for optimum COX-2 selectivity and inhibitory potency a - SO_2Me , or a $-SO_2NH_2$ substituent at the *para*-position of a phenyl ring was essential, and that the presence of a *para*-F-substituent on the non-sulfonyl vicinal phenyl ring often improves in vivo activity.⁶⁰

1.3.1.3. Diarylheterocycles with a central 5-membered thiophene ring

The 2,3-diphenylthiophene DuP-697 (7) exhibited excellent COX-2 inhibitory potency and selectivity (COX-2 IC₅₀ = 0.01 μ M, COX-1 IC₅₀ = 1 μ M; S.I. = 100).⁶⁰ However, this drug failed in the clinic due to an unusually long plasma half life. Replacement of the bromine atom on the central thiophene compounds provided with better pharmacokinetic profiles.⁶³ Generally, for this class of diarylheterocycles, the presence of a p-SO₂NH₂ moiety resulted in increased COX-2 inhibitory potency and improved oral absorption.64,65

The regioisomeric 3,4diarylthiophenes were found to be COX-2 selective. Compounds 8 and 9 exhibited similar activity profiles (COX-2 IC₅₀ = 0.08μ M, COX-1 IC₅₀ > 100 μ M), whereas the two mono bromo regioisomers (10 and 11) possessed different activity profiles.

Compound 10 exhibited no inhibition of either enzyme at a concentration of 100 μ M whereas 11 was COX-2 selective (COX-2 IC₅₀ = 0.08 μ M, COX-1 IC₅₀ > 100 μ M). Compounds 12 and 13 exhibited significantly lower activity profiles thereby showing the importance of vicinal-diaryl substitution for this class of compounds.⁶⁶

The substitution of the second aryl ring not having the SO₂Me substituent enhanced inhibition of COX-1 in the case of 3,4-diarylthiophenes. For example, the presence of a methoxy group at the *para*-position of 14 showed a COX-1 IC₅₀ = 0.9 μ M and a COX-2 IC₅₀ = 0.08 μ M, whereas introduction of a fluorine substituent (15) resulted in a further improvement in COX-2 selectivity (COX-2 IC₅₀ = 0.03 μ M, COX-1 IC₅₀ > 100 μ M).

Thus, subtle variations in the structures of diphenylthiophenes can alter COX-2 inhibitory potency and selectivity. In addition, the physicochemical properties can be altered by various structural modifications.

1.3.1.4. Diarylheterocycles with a central 5-membered pyrazole ring

The 1,5-diarylpyrazole class of compounds proved to be a fertile source for highly potent and selective COX-2 inhibitors. The first compound in this series (16) exhibited excellent in vitro COX-2 inhibitory potency and selectivity $(COX-2 IC_{50} = 0.24 \mu M, COX-1 IC_{50} >$ 100 μ M) with potent antiinflammatory activity in animal models with no tendency to cause GI damage.⁶⁰ In the initial stages of the development of the 1,5-diarylpyrazole class, SC-58125 (17) was one of the most extensively characterized compounds.36 Compound 17 had a very long in vivo half life of >200 h in the animal models making it unacceptable for clinical use.

Replacement of the para-SO₂Me group by a SO₂NH₂ substituent provided significant improvement in the a pharmacological profile. Compounds of this type exhibited superior pharmacological and oral bioavailability relative to their methylsulfone counterparts. Extensive studies of this class of compounds led to the successful development of the potent and selective COX-2 inhibitor SC-58635 (18) (in vitro COX-2 IC₅₀ = 0.04 μ M; COX-1 IC₅₀ = potent vivo 13 μM) with in antiinflammatory activity. Compound 18 was selected for clinical evaluation and is now successfully marketed as celecoxib (Celebrex®), the first diarylheterocyclic selective COX-2 inhibitor to enter the market.67

Introduction of conformational strain by an additional ring as in **19** was shown to retain COX-2 selectivity (COX-2 IC₅₀ = 0.04 μ M, COX-1 IC₅₀ > 100 μ M).⁶⁸ Several research groups continue to investigate this class of compounds in search of better selective COX-2 inhibitors.⁶⁹

1.3.1.5. Diarylheterocycles with a central 5-membered furanone ring

Extensive evaluation of the 3,4diarylfuranone class of compounds indicated that compound **20** was a selective COX-2 inhibitor (COX-2 IC₅₀ = 0.01μ M, COX-1 IC₅₀ > 4.7 μ M),

12

whereas the regioisomer **21** was inactive. However, replacement of the *para*-SO₂Me substituent of **20** by a *para*-SO₂NH₂ substituent (**22**) lead to a decrease in COX-2 selectivity (COX-2 IC₅₀ = 0.8 μ M, COX-1 IC₅₀ = 5.8 μ M).⁷⁰

Further lead optimization for this class of compounds by Merck and Co, led to the successful development and marketing of the highly selective and potent COX-2 inhibitor rofecoxib (23, Vioxx®). Rofecoxib is an effective antiinflammatory and analgesic agent that does not cause GI toxicity and is a selective in vitro COX-2 inhibitor (IC₅₀ = 0.02 μ M, COX-1 IC₅₀ > 15 μ M).^{70, 71}

Other modifications the in diarylfuranone class such 4,5as diarylfuranones have been reported to possess good in vitro COX-2 inhibitory potency and selectivity with optimal in vivo antiinflammatory properties.⁷² For the 2,2-dimethyl-4,5example. diarylfuranones (24, COX-2 $IC_{50} = 0.03$ μM , COX-1 IC₅₀ = 30 μM) and (25, COX-2 IC₅₀ = 0.05 μ M, COX-1 IC₅₀ = 50 µM) exhibited excellent in vitro COX-2 inhibitory potency and selectivity.

Other variations in the 3,4-diarylfuranone class of compounds include the (S)enantiomer of compound 26 with optimum COX-2 inhibitory and metabolic profile.⁷³

The oral absorption of compounds belonging to the 3,4-diarylfuranone class can be increased by the introduction of a hydroxyl substituent at the C-5 of the central furanone ring, as in the case of **27**, while retaining COX-2 selectivity (COX-2 IC₅₀ = 0.16 μ M, COX-1 IC₅₀ > 100 μ M).⁷⁴

1.3.1.6. Diarylheterocycles with a central 5-membered isoxazole ring

A large number of regioisomeric diarylisoxazoles have been evaluated as selective COX-2 inhibitors. Scientists at Searle reported that **28** is a potent and selective COX-2 inhibitor (COX-2 IC₅₀ = 0.18 μ M, COX-1 IC₅₀ > 1000 μ M) with an excellent in vivo activity profile.⁶⁰ Lead optimization of diarylisoxazoles led to the development of a potent and selective COX-2 inhibitor which had a *para*-SO₂NH₂ substituent (**29**, COX-2 IC₅₀ = 0.005 μ M, COX-1 IC₅₀ = 140 μ M). The 5-methyl compound **29** is converted

in an in vivo rodent model to its active 5hydroxymethyl metabolite 28. Low levels of the metabolite 28 were also found in humans.⁷⁵ Currently, compound **29** is marketed as valdecoxib (Bextra®), a second generation selective COX-2 inhibitor with analgesic and antiinflammatory properties.⁷⁶ Recently, a water soluble prodrug of valdecoxib (Parecoxib sodium, Dynastat®) was injectable launched COX-2 as an inhibitor possessing antiinflammatory and analgesic activities.77

In this regard, studies in the Knaus research program have shown that the regioisomeric 3,4-diarylisoxazoles with a *para*-SO₂Me substituents exhibit excellent in vitro COX-2 inhibitory activity and in vivo antiinflammatory activities. For example, compound **30** was a potent and highly selective COX-2 inhibitor (COX-2 IC₅₀ < 0.005 μ M, COX-1 IC₅₀ > 500 μ M). In contrast, the corresponding regioisomer **31** was a less potent and less selective COX-2 inhibitor (COX-2 IC₅₀ = 0.23 μ M, COX-1 IC₅₀ = 256 μ M).⁷⁸

Tricycles with either a 2,3diarylpyridine or 3,4-diarylpyridine ring system have been investigated as selective COX-2 inhibitors with compounds 32 and 33 exhibiting good in vitro COX-2 selectivity profiles. However, compounds 32 and 33 exhibited poor in vivo antiinflammatory activities.60,79

this novel of From class compounds, Merck and Co successfully developed the orally active potent and selective COX-2 inhibitor etoricoxib (34, Arcoxia[®]) which exhibited clinically acceptable antiinflammatory and analgesic activity with no reports of gastric damage in animal studies and during clinical trials. This second generation selective COX-2 inhibitor showed an in vitro COX-2 $IC_{50} = 0.08$ μ M and COX-1 IC₅₀ = 12 μ M values.⁷⁹⁻⁸¹

1.3.1.8. Diarylheterocycles with a central 6-membered pyridazinone ring

Recent studies have shown that the pyridazinone ring can serve as excellent core template for designing selective COX-2 inhibitors. Structure

14

activity relationship (SAR) studies employing pyridazinones have shown that *N*-substitution is a requirement for COX-2 selectivity as exemplified by **35** (in vitro COX-2 IC₅₀ = 0.08 μ M; COX-1 IC₅₀ > 10 μ M). In the *N*-benzyl series, alkoxy substituted compound **36** showed excellent in vitro selective COX-2 inhibition (COX-2 IC₅₀ = 0.02 μ M; COX-1 IC₅₀ > 10 μ M) and in vivo activity.⁸²

1.3.1.9. Diarylheterocycles with a central 6-membered pyranone ring

novel class of Α 2,3diarylbenzopyran-4-ones was reported recently that exhibits potent in vitro COX-2 inhibitory potency and selectivity.⁸³ Replacement of the para- SO_2Me substituent in 37 by a para-SO₂NH₂ moiety provided compound 38 with increased in vitro COX-2 inhibitory potency and selectivity (COX-2 $IC_{50} =$ 0.06 μ M; COX-1 IC₅₀ = 67 μ M). The introduction of a nitrogen-containing aromatic ring such as pyridine in 39 resulted in a better in vivo activity profile.

1.3.2.0. Diarylcarbocycles as selective COX-2 inhibitors

In the design of selective COX-2 inhibitors various types of tricyclic diarylcarbocycles have been evaluated extensively. Examples include diarylcarbocycles with a central 4membered cyclobutene or cyclobutenone, 5-membered cyclopentenes or а 6-membered cyclopetenone, and а aromatic ring such as benzene.⁶⁰

1.3.2.1. Diarylcarbocycles with a central 4-membered cyclobutene or cyclobutenone ring

A group of 1,2-diarylcyclobutenes were described as selective COX-2 inhibitors. For this class of compounds, the potency and selectivity was very sensitive to minor steric and electronic changes.^{60,84} The 3,4-diarylcyclobutene 40 was a weak inhibitor of COX-2 (COX-2 IC₅₀ > 5 μ M), but incorporation of a ketone moiety to afford a cyclobutenone central ring (41) improved the COX-2 inhibitory activity (COX-2 $IC_{50} = 0.11 \ \mu M$; COX-1 $IC_{50} = 2 \ \mu M$). The COX-2 inhibitory potency was further increased by the incorporation of a geminal dimethyl substituent as in 42 which exhibited potent in vitro COX-2 inhibitory activity (IC₅₀ = $0.002 \ \mu$ M; COX-1 IC₅₀ = 0.12 μ M). On the other hand, the corresponding regioisomer of 42 was a less potent and selective COX-2 inhibitor.

1.3.2.2. Diarylcarbocycles with a central 5-membered cyclopentene or cyclopentenone ring

Diarylcyclopentenes and cyclopentenones were among the first series of compounds to be evaluated for COX-2 selectivity and potency.⁶⁰ Searle reported scientists that the diarylcyclopentene SC-57666 (43)exhibited a very high degree of in vitro COX-2 inhibitory potency and selectivity. In vivo antiinflammatory activity assays showed 43 was effective and no gastric complications were observed.⁸⁵ The replacement of para-SO2Me moiety of SC-57666 by a para-SO₂NH₂ moiety as in 44 lead to an improved oral bioavailability.

Further modification of 44 by incorporation of a ketone moiety at the 3-position of the central cyclopentene ring

afforded **45** with equal COX-2 inhibitory activity and selectivity.⁶⁰

1.3.2.3. Diarylcarbocycles with a central 6-membered benzene ring system

Novel compounds with a central 6-membered benzene ring template (46) were reported to exhibit in vitro COX-2 inhibitory potency and selectivity. Further optimization of 46 by replacement of the para-SO₂Me group with a para-SO₂NH₂ substituent and additional substitution on the central benzene ring furnished 47 which exhibited excellent in vitro COX-2 inhibitory potency (COX-2 $IC_{50} = 0.004$ μ M; COX-1 IC₅₀ = 5.7 μ M) and superior in vivo antiinflammatory activity relative to 46. The corresponding methylsulfone analogue 48 was less potent COX-2 inhibitor (COX-2 IC₅₀ = 0.014μ M; COX-1 IC₅₀ > 100 μ M) but more selective COX-2 inhibitor than 47.86

1.4.0.0. MOLECULAR MODELING STUDIES OF SELECTIVE CYCLOOXYGENASE-2 (COX-2) INHIBITORS

Following the discovery that inhibition of the inducible isoform of COX produced non-ulcerogenic agents with good antiinflammatory activity, a great deal of research has been focused on the design and development of novel selective COX-2 inhibitors. The first solved X-ray crystal structure was that of ovine COX-1 isozyme the which provided a basic understanding of the 3D structure for this membrane-bound protein.⁷ Subsequently, several studies have been published for the X-ray crystal structures of COX-1-ligand complexes.^{87,88} In this regard, the most important information was the X-ray crystal structure of the enzyme COX-2 with the diarylheterocyclic selective COX-2 inhibitor SC-558 bound in the active site.²¹ This particular enzymeligand structure facilitated the rational design of selective COX-2 inhibitors. The in silico design of various ligands and their docking into the COX-2 active site has enhanced our understanding of the crucial binding interactions necessary for obtaining COX-2 selectivity.

1.4.1.0. Structural basis for COX inhibition by NSAIDs and selective COX-2 inhibitors

The interactions of NSAIDs within the COX active sites have been studied extensively. All NSAIDs are nonselective inhibitors of both isozymes whereas selective COX-2 inhibitors exhibit tight binding to the COX-2 active site. Traditional NSAIDs exhibit one of three different modes of binding: i) reversible binding (e.g. ibuprofen), ii) rapid, low affinity reversible binding followed by a time-dependent, higher affinity, slowly reversible binding (eg: flurbiprofen), iii) or a rapid, reversible binding followed by a covalent modification of the enzyme (eg: aspirin). Selective COX-2 inhibitors exhibit timedependent inhibition of COX-2 but not COX-1.

The two COX enzymes possess a long hydrophobic channel. At the entrance of the channel, Arg¹²⁰, Glu⁵²⁴, Tyr³⁵⁵ and His⁹⁰ form a network of hydrogen bonds that act as a gate to the binding site. NSAIDs generally bind between the upper portion of the COX channel located near Tyr³⁸⁵ and Arg¹²⁰ which is present at the mouth of the COX channel as shown in Figure 1.0.6.

Figure 1.0.6: NSAID binding in the COX active site with flurbiprofen (yellow) bound in the ovine COX-1 active site channel (adapted from ref 89).

The carboxyl moiety of acidic NSAIDs such as flurbiprofen (49) and diclofenac (50) interacts with Arg^{120} in both COX isoforms, via hydrogen bonding or electrostatic interactions. The remaining ligand-protein interaction is hydrophobic. In the COX-2 active site, due to the presence of a smaller valine at acid residue position amino 523 (isoleucine in COX-1) and a valine (isoleucine in COX-1) subsitution at position 434 creates an extra pocket (secondary pocket) which is accessible in the COX-2 active site. This difference. increases the overall volume of COX-2 active site (394 Å³) by almost 20% compared to COX-1 (316 $Å^3$).

nonacidic selective COX-2 Thus inhibitors can show enhanced binding to COX-2 due to reduced steric and ionic crowding at the mouth by Arg¹²⁰. The Xcrystal structure of the rav diarylheterocyclic selective COX-2 inhibitor SC-558 (51) firmly established the structural basis for the COX-2 selectivity exhibited by this class of compounds (Figure 1.0.7).²¹

The para- SO_2NH_2 pharmacophore of the 1,5-diarylpyrazole **51** played a crucial role in COX-2 selectivity by insertion into the COX-2 secondary pocket to form favourable interactions with amino acid residues lining the secondary pocket such as His⁹⁰,

Figure 1.0.8: The diaryheterocyclic selective COX-2 inhibitor SC-558 (yellow colored) bound to the murine COX-2 active site. Amino acid residues Val⁴³⁴, Val⁵²³ and Phe⁵¹⁸ are shown as space filling (copper colored) models (adapted from ref 89).

Arg⁵¹³, Phe⁵¹⁸ and Gln¹⁹² within the COX-2 active site. The C-5 *para*bromophenyl ring of **51** is oriented towards the top of the COX-2 active site and undergoes hydrophobic contacts with Phe³⁸¹, Tyr³⁸⁵, Phe⁵¹³, Trp³⁸⁷ and Leu³⁸⁴ (Figure 1.0.8).

The CF₃ group at the 3-position of the central pyrazole ring binds to a hydrophobic pocket consisting of Met¹¹³, Val¹¹⁶, Val³⁴⁹, Tyr³⁵⁵, Leu³⁵⁹ and Leu⁵³¹. This X-ray crystal structure showed the importance of pharmacophores such as a SO₂NH₂, or a SO₂Me, substituent at the *para*-position of one of the phenyl rings in the design of diarylheterocyclic or diarylcarbocyclic selective COX-2 inhibitors.

1.4.1.1. Examples of successful application of molecular modeling (docking) experiments in the design of selective COX-2 inhibitors

A comparison of X-ray crystal structures for the two COX isoforms has identified structural differences within the two COX active sites. Computer modeling has helped to exploit these differences in the design of selective COX-2 inhibitors.

1.4.1.2. Design of COX-2 selectivity into the nonselective COX inhibitor flurbiprofen

Docking the nonselective COX inhibitor flurbiprofen (49) into the human COX-2 crystal structure showed a potential difference at the upper part of the COX active site. A conserved residue Leu³⁸⁴ was oriented differently in each isoform due to a sequence difference of the neighboring residue 503. In COX-1, residue 503 is phenylalanine whose larger size pushes the Leu³⁸⁴ side chain into the upper part of the active site. In contrast, due to the smaller Leu⁵⁰³, in COX-2 the Leu³⁸⁴ is oriented away from the active site, thereby forming a small lipophilic alcove.

Scientists at Merck and Co exploited this difference in designing compound **52** possessing 3',5'-bisethoxy substituents that exhibited a 77 fold greater selectivity for COX-2 relative to COX-1 (COX-2 IC₅₀ = 0.10 μ M; COX-1 IC₅₀ = 7.7 μ M). Alternatively, compound **53** having a fused methylpyrrole ring system, occupied the lipophilic alcove present at the upper portion of the COX-2 active site. This resulted in a 45 fold greater selectivity for COX-2 than COX-1 1 (COX-2 IC₅₀ = 0.23 μ M; COX-1 IC₅₀ = 10.5 μ M).⁹⁰

1.4.1.3. Design of COX-2 selectivity into the nonselective COX inhibitor indomethacin

Recently, COX-2 selectivity was incorporated into the nonselective COX inhibitor indomethacin (54) with the aid of computational experiments which resulted in the identification of indomethacin analogs with excellent in vitro COX-2 selectivity and in vivo activity profiles.⁹¹

Accordingly, Palomer and coworkers, in an elegant study, described the design of indomethacin analogs as selective COX-2 inhibitors by incorporating a *para*-SO₂Me pharmacophore such that it interacted with the accessible COX-2 secondary pocket.

Molecular modeling studies confirmed that the *para*-SO₂Me

pharmacophore of compound 55 was orientated within the COX-2 secondary pocket as shown in Figure 1.0.9. Compound 55 exhibited good in vitro COX-2 selectivity (COX-2 IC₅₀ = 0.65 μ M; COX-1 IC₅₀ = 19 μ M).⁹²

Figure 1.0.9: Overlay of the diaryheterocyclic selective COX-2 inhibitor SC-558 (yellow) with indomethacin analog (55) in green docked into the murine COX-2 active site. The sulfone moieties of SC-558 and 55 are in the same plane within the COX-2 secondary pocket (adapted from ref 92).

1.4.1.4. Replacement of sulfonamide and methylsulfone pharmacophores in celecoxib and rofecoxib by an azido bioisostere

SO₂Me The and SO₂NH₂ pharmacophores are known to induce COX-2 selectivity by insertion into the secondary pocket of COX-2 which is absent in COX-1. The secondary pocket present in COX-2 has been attributed to the presence of isoleucine (Ile 523) in COX-1 relative to the smaller valine (Val⁵²³) in COX-2. Another critical difference between the two COX isozyme active sites is the presence of a histidine (His⁵¹³) in COX-1 relative to arginine (Arg^{513}) in the COX-2 active site.

Our research group has exploited this difference by replacing the respective para-SO₂Me para-SO₂NH₂ and pharmacophores present in celecoxib (Celebrex[®]) and rofecoxib (Vioxx[®]) with an azido substituent. The azido pharmacophore has the potential to undergo electrostatic (ion-ion) binding interactions with amino acid residues, particularly Arg⁵¹³, lining the secondary pocket of COX-2. The azide substituent is therefore a potentially new COX-2 pharmacophore obtain COX-2 to series selectivity. Α of docking experiments of celecoxib and rofecoxib analogs showed that the para-azido pharmacophore was interacting with Arg⁵¹³ and His⁹⁰ within the COX-2 active site. Compounds 56 and 57 exhibited excellent in vitro COX-2 inhibitory potency and selectivity with good in vivo activity profiles.⁹³

1.5.0.0. THERAPEUTIC APPLICATION OF SELECTIVE COX-2 INHIBITORS

1.5.1.0. Arthritis

Selective COX-2 inhibitors are currently used to relieve joint pain in patients with rheumatoid arthritis (RA) and osteoarthritis (OA). Patients with RA exhibit abundant COX expression, particularly the COX-2 isoform in synovial blood vessels, synovial lining cells and chondrocytes. Selective COX-2

inhibitors such as Celebrex® and Vioxx[®] have been shown in clinical trials to relieve pain and inflammation associated with RA as effectively as NSAIDs with significantly less adverse GI side effects.⁹⁴ OA is a debilitating, degenerative disease of the articular cartilage and synovial fluid which affects the elderly. The COX-2 enzyme was markedly induced in human tissues of osteoarthritis patients and is prominently expressed in the synovium, fibrocartilage of osteophytes, and in the blood vessels in the OA knee joint. Thus selective COX-2 inhibitors are now regularly used in treating the symptoms of OA.^{95,96}

1.5.1.1. Cancer

Over the years several reports have shown that traditional NSAIDs such as sulindac and indomethacin exhibit protective effects against colorectal cancer.⁹⁷ The role of COX-2 in the development of colorectal tumors was first identified using COX-2 knock out mice which exhibited reduced numbers and size of polyps in animal tumor models.⁹⁸ The selective COX-2 inhibitor celecoxib received recent FDA approval as a pharmacologic adjunct in the management of familial adenomatous polyposis (FAP).⁹⁹

Selective COX-2 inhibitors could also be potentially useful in the treatment of prostate cancer since the COX-2 enzyme is highly expressed in prostate cancer.¹⁰⁰ La and coworkers demonstrated that NS-398, a selective COX-2 inhibitor, induces apoptosis and down regulates bcl-2 expression in the human prostate cancer cell line LNCaP.¹⁰¹ Recent studies have shown that the selective COX-2 inhibitor celecoxib induces apoptosis in human prostate cancer cell lines (PC-3) expressing COX-2 by blocking Akt (antiapoptotic kinase) activation.¹⁰²

Recent studies have shown that expression of cyclooxygenase-2 (COX-2) is elevated in gastric adenocarcinomas. These findings support the treatment of gastric carcinomas with selective COX-2 inhibitors as а chemotherapeutic modality.¹⁰³ In addition, COX-2 over expression has been described in human breast cancer where the COX-2 enzyme is present in about 40% of invasive breast carcinomas. These findings suggest that inhibition selective COX-2 may constitute an effective strategy for the treatment of breast cancers.¹⁰⁴

1.5.1.2. Alzheimer's disease (AD)

The use of traditional NSAIDs has been associated with delaying the onset of AD in high risk families.¹⁰⁵ AD with associated inflammatory is conditions in the brain. Therefore, the protective effect provided by NSAIDs is consistent with their antiinflammatory Up regulation of COX-2 activity. expression was found in the frontal cortex in AD patients. Consequently, treatment of AD with selective COX-2 inhibitors may slow the progression of AD without causing GI side effects.¹⁰⁶ However, a recent study has shown that the selective COX-2 inhibitor Vioxx® failed to slow cognitive decline in patients with mild-to-moderate AD.¹⁰⁷

1.5.1.3. Parkinson's disease (PD)

PD is a neurodegenerative disease wherein loss of dopaminergic transmission leads to rigidity, resting tremors and slowness of movement, ultimately leading to death. Since PD has an inflammatory component to its progression, studies on the role of COX-2 in PD neurodegeneration has shown that mice deficient with enzyme COX-2 were resistant to 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine (MPTP) induced model of PD. These results showed that COX-2 plays an important role in MPTPinduced degeneration of dopaminergic neurons.¹⁰⁸

Pzedborwski and coworkers recently described the pathological role of COX-2 in the development of PD. Their studies showed that COX-2 was up-regulated in brain dopaminergic neurons of PD patients and that the selective COX-2 inhibitor Vioxx® exhibited a neuroprotective effect in animal models of PD.¹⁰⁹

1.6.0.0. REFERENCES

- Vane, J. R. Inhibition of prostaglandin synthesis as a mechanism of action of aspirinlike drugs. *Nature New Biol.* 1971, 231, 232-235.
- (2) Abramovitz, M.; Metters, K. M. Prostanoid receptors. Ann. Rep. Med. Chem. 1998, 33, 223-231.
- (3) Hawkey, C. J. COX-2 inhibitors. Lancet 1999, 353, 307-314.
- (4) Katori, M.; Majima, M. Cyclooxygenase-2 : its rich diversity of roles and possible application of its selective inhibitors. *Inflamm. Res.* 2000, 49, 367–392.
- (5) Parente, L.; Perretti, M. Advances in the pathophysiology of constitutive and inducible cyclooxygenases: two enzymes in the spotlight. *Biochem. Pharmacol.* 2003, 65, 153–159.
- (6) Smith, W. L.; DeWitt, D. L.; Garavito, R. M. Cyclooxygenases: structural, cellular, and molecular biology. Ann. Rev. Biochem. 2000, 69, 145-182.
- (7) Picot, D.; Loll, P. J.; Garvito, R.
 M. The x-ray crystal structure of the membrane protein prostaglandin H₂ synthase-1. *Nature* 1994, 367, 243–249.
- (8) Dietz, R.; Nastainczyk, W.; Ruf, H. Higher oxidation states of prostaglandin H synthase: rapid electronic spectroscopy detected two spectral intermediates during the peroxidase reaction with prostaglandin G₂. Eur. J. Biochem. 1988, 171, 321-328.
- (9) Smith, W.L.; Eling, T. E.; Kulmacz, R. J.; Marnett, L. J.; Tsai, A. Tyrosyl radicals and their

role in the hydroperoxide dependent activation and inactivation of prostaglandin endoperoxide synthase. *Biochemistry* **1992**, *31*, 3–7.

- (10) Tsai, A.; Kulmacz, Tyrosyl radicals in prostaglandin H synthase-1 and -2. *Prostaglandins Other Lipid Mediat.* 2000, 62, 231-254.
- (11) Donk, V. W. A.; Tsai, A. L.; Kulmacz, R. J. The cyclooxygenase reaction mechanism. *Biochemistry* 2002, 41, 15451-15458.
- (12) Marnett, L. J.; Rowlinson, S. W.; Goodwin, D. C.; Kalgutkar, A. S.; Lanzo, C. A. Arachidonic acid oxygenation by COX-1 and COX-2. J. Biol. Chem. 1999, 274, 22903-22906.
- (13) Wu, G.; Wei, C.; Kulmacz, R. J.; Osawa, Y.; Tsai, A. L. A mechanistic study of selfinactivation of the peroxidase activity in prostaglandin H synthase-1. J. Biol. Chem. 1999, 274, 9231-9237.
- (14) Kiefer, J. R.; Pawlitz, J. L.; Moreland, K. T.; Stegeman, R. A.; Hood, W. F.; Gierse, J. K.; Stevens, A. M.; Goodwin, D. C.; Rowlinson, S.W.; Marnett, L. J.; Stallings, W. C.; Kurumbail. R. Structural insights into the stereochemistry of the cyclooxygenase reaction. *Nature* 2000, 405, 97–101.
- (15) Simmons, D. L.; Levy, D. B.; Yannoni, L.Y.; Erikson, R. L. Identification of a phorbol ester repressible v-src-inducible gene. Proc. Natl. Acad. Sci. USA 1989, 86, 1178-1182.

- (16) Kujubu, D. A.; Fletcher, B. S.; Varnum, B.C.; Lim, R. W.; Herschman, H. R. TIS10, a phorbol ester tumor promoter inducible mRNA from swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J. Biol. Chem. 1991, 266, 12866–12872.
- (17) Yokoyama, C.; Tanabe, T. Cloning of human gene encoding prostaglandin endoperoxide synthase and primary structure of the enzyme. *Biochem. Biophys. Res. Commun.* 1989, 165, 888– 894.
- (18) Kosaka, T.; Miyata, H. A.; Ihara, S.; Hara, T.; Sugimoto, O.; Takeda, E.; Takahashi, Tanabe, T. Characterization of the human gene (PTGS2) encoding prostaglandin endoperoxide synthase-2. Eur. J. Biochem. 1994, 221, 889–897.
- (19) Kraemer, S.; Meade, E.; DeWitt, D. Prostaglandin endoperoxide synthase gene structure: identification of the transcriptional start site and the 5` flanking regulatory sequence. Arch. Biochem. Biophys. 1992, 293, 391–400.
- (20) Luong, C.; Miller, A.; Barnett, J.; Chow, J.; Ramesha, C.; Browner, M. F. Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2. *Nat. Struct. Biol.* 1996, 3, 927–933.
- (21) Kurumbail, R.; Stevens, A.; Gierse, J.; McDonald, J.; Stegeman, R. A.; Pak, J.Y.; Gildehaus, D.; Miyashiro, J. M.; Penning, T. D.; Seibert, K.; Isakson, P. C.; Stallings, W. C.

Structural basis for selective inhibition of cyclooxygenase-2 by antiinflammatory agents. *Nature* **1996**, *384*, 644–648.

- (22) Vane, J. R.; Bakhle, Y. S.; Botting, R. M. Cyclooxygenases 1 and 2. Ann. Rev. Pharmacol. Toxicol. 1998, 38, 97-120.
- (23) Mancini, J. A.; Riendeau, D.; Falgueyret, J. P.; Vickers, P. J.; O'Neill, G. P. Arginine 120 of prostaglandin G/H synthase-1 is required for the inhibition by nonsteroidal antiinflammatory drugs containing a carboxylic acid moiety. J. Biol. Chem. 1995, 270, 29372-29377.
- (24) Bhattacharya, D. K.; Lecomte, M.; Rieke, C. J.; Garavito, R. M.; Smith, W. L. Involvement of arginine 120, glutamate 524 and tyrosine 355 in the binding of arachidonate and 2phenylpropionic acid inhibitors to the cyclooxygenase active site of ovine prostaglandin endoperoxide H synthase-1. J. Biol. Chem. 1996, 271, 2179–2184.
- (25) Smith, W. L.; DeWitt, D. L. Prostaglandin endoperoxide H synthases-1 and -2. Adv. Immunol. 1996, 62, 167-215.
- (26) Dinchuk, J. E.; Car, B. D.; Focht, R. J.; Johnston, J. J.; Jaffee, B. D.; Covington, M. B.; Contel, N. R.; Eng, V. M.; Collins, R. J.; Czerniak, P. M.; Gorry, S. A.; Trzaskos. J. M. Renal abnormality and an altered inflammatory response in mice lacking cyclooxygenase II. Nature 1995, 378, 406-409.
- (27) Langenbach, R.; Morham, S. G.; Tiano, H. F.; Loftin, C. D.; Ghanayem, B. I.; Chulada, P.C.;

Mahler, J. F.; Lee, C. A.; Goulding, E. H.; Kluckman, K. D.; Kim, H. S.; Smithies, О. Prostaglandin H synthase-1 gene disruption in mice reduces arachidonic acid induced inflammation and indomethacin induced gastric ulceration. Cell **1995**, *83*, 483–492.

- (28) Lim, H.; Paria, B. C.; Das, S. K.; Dinchuk, J. E.; Langenbach, R.; Trzaskos, J. M.; Dey, S. K. Multiple female reproductive failures in cyclooxygenase 2deficient mice. *Cell* 1997, 91, 197–208.
- (29) Cheng, H. F.; Wang, J. L.; Zhang, M. Z.; Miyazaki, Y.; Ichikawa, I.; McKanna, J. A.; Harris, R. C. Angiotensin II attenuates renal cortical cyclooxygenase-2 expression. J. Clin. Invest. 1999, 103, 953–961.
- (30) Breder, C. D.; DeWitt, D. L.; Kraig, R. P. Characterization of inducible cyclooxygenase in rat brain. J. Comp. Neurol. 1995, 355, 296-415.
- (31) Pilbeam, C.C.; Fall, P. M.; Alander, C. B.; Raisz, L. G. Differential effects of nonsteroidal antiinflammatory drugs on constitutive and inducible prostaglandin G/H synthase in cultured bone cells. J. Bone Miner. Res. 1997, 12, 1198-1203.
- (32) Allison, M. C. A.; Howatson, A. G.; Torrance, C. J.; Lee, F. D.; Russell, R. L. Gastrointestinal damage associated with the use of nonsteroidal antiinflammatory drugs. N. Engl. J. Med. 1992, 327, 749–754.

- (33) Eberhart, C. E.; DuBois, R. N. Eicosanoids and gastrointestinal tract. Gastroenterology 1995, 109, 285-301.
- (34) Smith, C. J.; Zhang, Y.; Koboldt, C. M.; Muhammad, J. Zweifel, B.
 S.; Shaffer, A.; Talley, J. J.; Masferrer, J. L.; Seibert, K.; Isakson, P. C. Pharmacological analysis of cyclooxygenase-1 in inflammation. *Proc. Natl. Acad. Sci. USA* 1998, 95, 13313–13318.
- (35) Lee, S. H.; Soyoola, E.: Chanmungam, P.; Hart, S.; Sun, W.; Zhong, H.; Liou, S.; Simmons. D.; Hwang D. Selective expression of mitogeninducible cyclooxygenase in macrophages stimulated with lipopolysachharide. J. Biol. Chem. **1992**, *267*, 25943–25948.
- (36) Seibert, K.; Hang, Y.; Leahy, K.; Hauser, S.; Masferrer, J.; Perkins, W.; Lee, L.; Isakson, P. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. *Proc. Natl. Acad. Sci. USA* 1994, 91, 12013– 12017.
- Bailey, (37) Davies, P.; Ρ. J.; Goldenberg, M. M.; Ford Hutchinson. The role of arachidonic acid oxygenation products in pain and inflammation. Ann. Rev. Immunol. 1984, 2, 335-357.
- (38) Chan, C. C.; Boyce, S.; Brideau,
 C.; Ford-Hutchinson, A. W.;
 Gordon, R.; Guay, D.; Hill R. G.;
 Li, C. S.; Mancini, J.; Penneton,
 M. Pharmacology of a selective cyclooxygenase-2 inhibitor, L-745,337: a novel nonsteroidal antiinflammatory agent with an

ulcerogenic sparing effect in rat and nonhuman primate stomach. J. Pharmacol. Exp. Ther. **1995**, 274, 1531–1537.

- (39) Silverstein, F. E.; Faich, G.; Goldstein, J. L.; Simon, L. S.; Pincus, T.; Whelton, A.; Makuch, R.: Eisen, G.: Agrawal, N. M.: Stenson, W. F.; Burr, A. M.; Zhao, W. W.; Kent, J. D.; Lefkowith, J. B.; Verburg, K. M.; Geis, G. S. Gastrointestinal toxicity with celecoxib nonsteroidal vs antiinflammatory for drugs osteoarthritis and rheumatoid arthritis: the CLASS study, a randomized controlled study. Celecoxib long term arthritis safety study. JAMA 2000, 284, 1247-1255.
- (40) Bombardier, C.; Laine, L.; Reicin, A.; Shapiro, D.; Burgos-Vargas, R.: Davis, B.; Day, R.; Ferraz, M. B.; Hawkey, C. J.; Hochberg, M. C.; Kvien, T. K.; Schnitzer, T. J. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR study group. N. Engl. J. Med. 2000, 343, 1520-1528.
- (41) Kargman, S.; Charleson, S.; M.; Frank, J.: Cartwright. Riendeau, D.; Mancini, J.; Evans, J.; O'Neill, G. Characterization of prostaglandin G/H synthase 1 and 2 in rat, dog, monkey and human gastrointestinal tracts. 1996, Gastroenterology 111. 445-454.
- (42) Zimmermann, K. C.; Sarbia, M.;
 Schor, K. Weber, A. A.
 Constitutive cyclooxygenase-2
 expression in healthy human and

rabbit gastric mucosa. Mol. Pharmacol. 1998, 54, 536–540.

- (43) Mizuno, H. Sakamoto, C.: Matsuda, K.; Wada, K.; Uchida, T.; Noguchi, H.; Akamatsu, T.; Induction Kasuga, M. of cyclooxygenase gastric 2 in mucosal lesions and its inhibition by specific antagonist delays healing in mice. Gastroenterology **1997**, *112*, 387–397.
- (44) FitzGerald, G. A.; Patrono, C. The coxibs, selective inhibitors of cyclooxygenase-2. N. Engl. J. Med. 2001, 345, 433-442.
- (45) Morham, S. G.; Langenbach, R.; Loftin, C. D.; Tiano, H. F.; Vouloumanos, N. O. Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. *Cell* 1995, *83*, 473–482.
- (46) Catella-Lawson, F.; McAdam, B.; Morrsion, B. W.; Kapoor, S.; Kujubu, D.; Antes, L.; Lasseter, K. C.; Quan, H.; Gertz, B. J.; FitzGerald, G. A. Effects of specific inhibition of cyclooxygenase-2 on sodium balance. hemodynamics and vasoactive eicosanoids. J. Pharmacol. Exp. Ther. 1999, 289, 735-741.
- (47) Rocha, J. L.; Fernandez-Alonso, J. Acute tubulointestinal nephritis associated with the selective COX-2 enzyme inhibitor, rofecoxib. *Lancet* 2001, 357, 1946–1947.
- (48) McAdam, B. F.; Catella-Lawson, F.; Mardini, I. A.; Kapoor, S.; Lawson, J. A.; FitzGerald, G. A. Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)-2: the human

pharmacology of a selective inhibitor of COX-2. Proc. Natl. Acad. Sci. USA 1999, 96, 272– 277.

- (49) Loftin, C. D.; Trivedi, D. B.; Tiano, H. F.; Clark, J. A.; Lee, L. A.; Epstein, J. A.; Morham, S. G.; Breyer, M. D.; Nguyen, M.; Hawkins, B. M.; Golet, J. L.; Smithies, O.; Koller, B. H. Langenbach, R. Failure of ductus arteriosus closure and remodeling in neonatal mice deficient in cyclooxygenase-1 and cyclooxygenase-2. *Proc. Natl. Acad. Sci. USA* 2001, *98*, 1059– 1064.
- (50) Mukherjee, D.; Nissen, S. E.; Topol, E. J. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA 2001, 286, 954–959.
- (51) Adderley, S. R.; FitzGerald, D. J. Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2 mediated induction of cyclooxygenase-2. J. Biol. Chem. 1999, 274, 5038-5046.
- (52) Lanza, F. L. and the members of the ad hoc committee on practice parameters of the American college of gastroenterology. A guideline for the treatment and prevention of NSAID-induced ulcers. Am. J. Gastroenterol. 1998, 93, 2037–2046.
- (53) Vane, J.; Botting, J. eds. Selective COX-2 inhibitors: pharmacology, clinical effects and therapeutic potential. Dordrecht: Kluwer Academic Publishers, 1997, 3, 27-46.
- (54) Warner, T. D.; Giuliano, F.; Vojnovic, I.; Bukasa, A.; Mitchell,

J. A.; Vane, J. R. Nonsteroid drug selectivities for cyclooxygenase-1 rather than cyclooxygenase-2 are associated with human gastrointestinal toxicity. *Proc. Natl. Acad. Sci. USA* **1999**, *96*, 7563–7568.

- (55) Vane, J.; Botting, R. M. eds. Clinical significance and potential of selective COX-2 inhibitors. London : William Harvey Press, 1998, 31–39.
- (56) Distel, M.; Mueller, C.; Bluhmki,
 E.; Fries, J. Safety of meloxicam: a global analysis of clinical trials. *Br. J. Rheumatol.* 1996, 25, 29–37.
- (57) Tavares, I. A.; Bishai, P. M.; Bennet, A. Activity of nimesulide on constitutive and inducible cyclooxygenases. Arzbeimittelforschung/ Drug Res. 1995, 45, 1093-1095.
- (58) Glaser, K.; Sung, M. L.; O'Neill, K.; Belfast, M.; Hartman, D.; Carlson, R.; Kreft, A.; Kubrak, D.; Hsiao, C. L.; Weichman, B. Etodolac selectively inhibits human prostaglandin G/H synthase 2 (PGHS-2) versus PGHS-1. human Eur. J. Pharmacol. 1995 281, 107-111.
- (59) Bain, B.; Brazil, M. Adalimumab.
 Nature Rev. Drug Dis. 2003, 2, 693–694.
- (60) Talley, J. J. Selective inhibitors of cyclooxygenase-2 (COX-2). Prog. Med. Chem. Res. 1999, 36, 201– 234.
- (61) Huff, R.; Collins, P.; Kramer, S.; Seibert, K.; Koboldt, C.; Gregory, S.; Isakson, P. A Structural feature of N-[2-(cyclohexyloxy)-4-nitrophenyl] methanesulfonamide (NS-398) that governs its selectivity and

affinity for cyclooxygenase 2 (COX-2). Inflamm. Res. 1995, 44, S145–S146.

- (62) Li, C. S.; Black, W. C.; Chan, C. C.; Ford-Hutchinson, A. W.; Gauthier, J. Y.; Gordon, R.; Guay, D.; Kargman, S.; Lau, C. K.; Mancini, J.; Roy, P.; Vickers, P.; E.; Young, Wong, R. N.; Zamboni, Prasit. Ρ. R.; Cyclooxygenase-2 inhibitors: synthesis and pharmacological of activities 5methanesulfonamido-1-indanone derivatives. J. Med. Chem. 1995, 38, 4897-4905.
- (63) Pinto, D. J. P.; Copeland, R. A.; Covington, M. B.; Pitts, W. J.; Batt, D. G.; Orwat, M. J.; Lam, G. N.; Joshi, A.; Chan, Y. C.; Wang, S.; Trzaskos, J. M.; Magolda, R. L; Kornhauser, D. M. Chemistry and pharmacokinetics of diarylthiophenes and terphenyls as selective COX-2 inhibitors. *Bioorg. Med. Chem. Lett.* 1996, 6, 2907–2912.
- (64) Leblanc, Y.; Gauthier, J. Y.; Ethier, D.; Guay, J.; Mancini, J.; Riendeau, D.; Tagari, P.; Vickers, P.; Wong, E.; Prasit, P. Synthesis and biological evaluation of 2,3-Diarylthiophenes as selective COX-2 and COX-1 inhibitors. *Bioorg. Med. Chem. Lett.* 1995, 5, 2123–2128.
- (65) Bertenshaw, S. R.; Talley, J. J.; Rogier, D. J.; Graneto, M. J.; Rogers, R. S.; Kramer, S. W.; Penning, T. D.; Koboldt, C. M.; Veenhuizen, A. W.; Zhang, Y.; Perkins, W. E. 3,4diarylthiophenes are selective COX-2 inhibitors. *Bioorg. Med. Chem. Lett.* 1995, 5, 2919–2122.

- (66) Gauthier, J. Y.; Leblanc, Y.; Black, W. C.; Chan, C. C.; Cromlish, W. A.; Gordon, R.; Kennedey, B. P.; Lau, C. K.; Léger, S.; Wang, Z.; Ethier, D.; Guay, J.; Mancini, J.; Riendeau, D.; Tagari, P.; Vickers, P.; Wong, E.; Xu, L.; Prasit, P. Synthesis and biological evaluation of 2,3diarylthiophenes selective as COX-2 inhibitors. part II: replacing the heterocycle. *Bioorg*. Med. Chem. Lett. 1996, 6, 87–92.
- (67) Penning, T.D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G.D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.; Isakson, P. C. **Synthesis** and biological evaluation of the 1.5diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1vllbenze nesulfonamide (SC-58635, celecoxib). J. Med. Chem. 1997, 40, 1347-1365.
- (68) Bertenshaw, S. R.; Talley, J. J.; Rogier, D. J.; Graneto, M. J.; Koboldt, C. M.; Zhang, Y. Conformationally restricted 1,5diarylpyrazoles are selective COX-2 inhibitors. *Bioorg. Med. Chem. Lett.* 1996, 6, 2827–2830.
- (69) Pal, M.; Madan, M.; Padakanti, S.;
 Pattabiraman, V. R.; Kalleda, S.;
 Vanguri, A.; Mullangi, R.;
 Mamidi, N. V.; Casturi, S. R.;

Malde, A.; Gopalakrishnan, B.; Yeleswarapu, K. R. Synthesis and cyclooxygenase-2 inhibiting property of 1,5-diarylpyrazoles substituted with benzenesulfonamide moiety as pharmacophore: Preparation of for sodium salt injectable formulation. J. Med. Chem. 2003. 46, 3975-3984.

- (70) Prasit, P.; Wang, Z.; Brideau, C.; Chan, C. C.; Charleson, S.; Cromlish, W.; Ethier, D.; Evans, J. F.; Ford-Hutchinson, A. W.: Gauthier, J. Y.; Gordon, R.; Guay, J.; Gresser, M.; Kargman, S.; Kennedy, B.; Leblanc, Y.; Leger, S.; Mancini, J.; O'Neill, G. P.; Ouellet, M.; Percival, M. D.; Perrier, H.; Riendeau, D.; Rodger, I.; Zamboni, R.; Boyce, S.; Rupniak, N.; Forrest, M.; Visco, D.; Patrick, D. The discovery of rofecoxib, [MK 966, VIOXX[®], 4-(4'-methylsulfonylphenyl)-3phenyl-2(5H)-furanone], an orally active cyclooxygenase-2 inhibitor. Bioorg. Med. Chem. Lett. 1999, 9, 1773-1778.
- (71) Chan, C. C.; Boyce, S.; Brideau, C.; Charleson, S.; Cromlish, W.; Ethier, D.; Evans, J.; Ford-Hutchinson, A. W.; Forrest, M. J.; Gauthier, J. Y.; Gordon, R.; Gresser, M.; Guay, J.; Kargman, S.; Kennedy, B.; Leblanc, Y.; Leger, S.; Mancini, J.; O'Neill, G. P.; Ouellet, M.; Patrick, D.; Percival, M. D.; Perrier, H.; Prasit, P.; Rodger, I.; Tagari, P.; Therien, M.; Vickers, P.; Visco, D.; Wang, Z.; Webb, J.; Wong, E.; Xu, L. J.; Young, R. N.; Zamboni, R.; Riendeau, D. Rofecoxib [Vioxx, MK-0966; 4-(4'-

methylsulfonylphenyl)-3-phenyl-2-(5H)-furanone]: a potent and orally active cyclooxygenase-2 inhibitor. Pharmacological and biochemical profiles. J. Pharmacol. Exp. Ther. **1999**, 290, 551–560.

- (72) Shin, S. S.; Noh, M. S.; Byun, Y. J.; Choi, J. K.; Kim, J. Y.; Lim, K. M.; Ha, J. Y.; Kim, J. K.; Lee, C. H.; Chung, S. 2,2-Dimethyl-4,5-diaryl-3(2H)furanone derivatives as selective cyclooxygenase-2 inhibitors. *Bioorg. Med. Chem. Lett.* 2001, 11, 165–168.
- (73) Leblanc, Y.; Roy, P.; Wang, Z.; Li, C. S.; Chauret, N.; Nicoll-Griffith, D. A.; Silva, J. M.; Aubin, Y.; Yergey, J. A.; Chan, C. C.; Riendeau, D.; Brideau, C.; Gordon, R.; Xu, L.; Webb, J.; Visco, D. M.; Prasit, P. Discovery of a potent and selective COX-2 inhibitor in the alkoxy lactone series with optimized metabolic profile. *Bioorg. Med. Chem. Lett.* 2002, 12, 3317–3320.
- (74) Black, W. C.; Brideau, C.; Chan, C. C.; Charleson, S.; Cromlish, W.; Gordon, R.; Grimm, E. L.; Hughes, G.; Leger, S.; Li, C. S.; Riendeau, D.; Therien, M.; Wang, Z.; Xu, L. J.; Prasit, P. 3,4-Diaryl-5-hydroxyfuranones: highly selective inhibitors of cyclooxygenase-2 with aqueous solubility. *Bioorg. Med. Chem. Lett.* 2003, 13, 1195–1198.
- (75) Talley, J. J.; Brown, D. L.; Carter, J. S.; Graneto, M. J.; Koboldt, C. M.; Masferrer, J. L.; Perkins, W. E.; Rogers, R. S.; Shaffer, A. F.; Zhang, Y. Y.; Zweifel, B. S.; Seibert, K. 4-[5-Methyl-3-phenylisoxazol-4-yl]-

benzenesulfonamide, valdecoxib: a potent and selective inhibitor of COX-2. J. Med. Chem. 2000, 43, 775–777.

- (76) Chavez, M. L.; DeKorte, C. J. Valdecoxib: a review. *Clin. Ther.* 2003, 25, 817–851.
- (77) Joubert, C. B.; Lorthiois, E.; Moreau, F. To market, to market. *Ann. Rep. Med. Chem.* 2003, 38, 347–374.
- (78) Habeeb, A. G.; Rao, P. N. P.; Knaus, E. E. Design and syntheses of diarylisoxazoles: novel inhibitors of cyclooxygenase-2 (COX-2) with analgesic-antiinflammatory activities. *Drug Dev. Res.* 2001, 51, 273–286.
- (79) Friesen, R. W.; Brideau, C.; Chan, C. C.; Charleson, S.; Deschenes, D.; Dube, D.; Ethier, D.; Fortin, R.; Gauthier, J. Y.; Girard, Y.; Gordon, R.; Greig, G. M.; Riendeau, D.; Savoie, C.; Wang, Z.; Wong, E.; Visco, D.; Xu, L. J.; Young, R. N. 2-Pyridinyl-3-(4methylsulfonyl)phenylpyridines: selective and orally active cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett. 1998, 8, 2777-2782.
- (80) Riendeau, D.; Percival, M. D.; Brideau, C.; Charleson, S.; Dube, D.; Ethier, D.; Falgueyret, J. P.; Friesen, R. W.; Gordon, R.; Greig, G.; Guay, J.; Mancini, J.; Ouellet, M.; Wong, E.; Xu, L.; Boyce, S.; Visco, D.; Girard, Y.; Prasit, P.; Zamboni, R.; Rodger, I. W.; Gresser, M.; Ford-Hutchinson, A. W.; Young, R. N.; Chan, C. C. Etoricoxib (MK-0663): preclinical profile and comparison with other agents that selectively

inhibit cyclooxygenase-2. J. Pharmacol. Exp. Ther. 2001, 296, 558–566.

- (81) Chauret, N.; Yergey, J. A.; Brideau, C.; Friesen, R. W.; Mancini, J.; Riendeau, D.; Silva, J.; Styhler, A.; Trimble, L. A.; Nicoll-Griffith, D. A. In vitro metabolism considerations, including activity testing of metabolites, in the discovery and selection of the COX-2 inhibitor etoricoxib (MK-0663). *Bioorg. Med. Chem. Lett.* 2001, 11, 1059– 1062.
- (82) Li, C. S.; Brideau, C.; Chan, C. C.; Savoie, C.; Claveau, D.; Charleson, S.; Gordon, R.; Greig, G.; Gauthier, J. Y.; Lau, C. K.; Riendeau, D.; Therien, M.; Wong, E.; Prasit, P. Pyridazinones as selective cyclooxygenase-2 inhibitors. *Bioorg. Med. Chem. Lett.* 2003, 13, 597-600.
- (83) Hyup, Y. H.; Kwan, J. K.; Kang, S. H.; Noh, M. S.; Ha, J. Y.; Kyu, J. K.; Min, K. M.; Hoon, C. H.; Chung, S. 2,3-Diarylbenzopyran derivatives as a novel class of selective cyclooxygenase-2 inhibitors. *Bioorg. Med. Chem. Lett.* 2003, 13, 413-417.
- (84) Friesen, R. W.; Dubé, D.; Fortin, R.; Frenette, R.; Prescott, S.; Cromlish, W.; Greig, G. M.; Kargman, S.; Wong, S.; Chi, C. C.; Gordon, R.; Li, J. X.; Riendeau, D. Novel 1,2diarylcyclobutenes: selective and orally active COX-2 inhibitors. *Bioorg. Med. Chem. Lett.* 1996, 6, 2677–2682.
- (85) Li, J. J.; Anderson, G. D.; Gregory, S. A.; Huang, H. C.; Isakson, P. C.; Koboldt, C. M.;

Logusch, E. W.; Norton, M. B.; Perkins, W. E.; Reinhard, E. J.; Seibert, K.; Veenhuizen, A. W. 1,2-Diarylcyclopentenes as selective cyclooxygenase-2 inhibitors and orally active antiinflammatory agents. J. Med. Chem. **1995**, 38, 4570–4578.

- (86) Li, J. J.; Norton, M. B.; Reinhard, E. J.; Anderson, G. D.; Gregory, S. A.; Isakson, P. C.; Koboldt, C. M.; Masferrer, J. L.; Perkins, W. E.; Seibert, K.; Zhang, Y.; Zweifel, B. S.; Reitz, D. B. Novel terphenyls as selective cyclooxygenase-2 inhibitors and orally active antiinflammatory agents. J. Med. Chem. 1996, 39, 1846–1856.
- (87) Selinsky, B. S.; Gupta, K.; Sharkey, C. T.; Loll, P. J. Structural analysis of NSAID binding by prostaglandin H₂ synthase: time-dependent and time-independent inhibitors elicit identical enzyme conformations. *Biochemistry* 2001, 40, 5172-5180.
- (88) Loll, P. J.; Picot, D.; Garavito, R. M. The structural basis of aspirin activity inferred from the crystal structure of inactivated prostaglandin H₂ synthase. *Nat. Struct. Biol.* 1995, *8*, 637–643.
- (89) Garavito, R. M.; Mulichak, A. M. The structure of mammalian cyclooxygenases. 2003, 32, 183– 206.
- (90) Bayly, C. I.; Black, W. C.; Leger, S.; Ouimet, N.; Ouellet, M.; Percival, M. D. Structure-based design of COX-2 selectivity into flurbiprofen. *Bioorg. Med. Chem. Lett.* 1996, 9, 307–312.
- (91) Black, W. C.; Bayly, C.; Belley, M.; Chan, C. C.; Charleston, S.;

Denis, D.; Gauthier, J. Y.; Gordon, R.; Guay, D.; Kargman, S.; Lau, C. K.; Leblanc, Y.; Mancini, J.; Ouellet, D.; Percival, D.; Roy, P.; Skorey, K.; Tagari, P.; Vickers, P.; Wong, E.; Xu, L.; Prasit, P. From indomethacin to a selective COX-2 inhibitor: development of indolalkanoic acids as potent and selective cyclooxygenase-2 inhibitors. *Bioorg. Med. Chem. Lett.* **1996**, *9*, 725–729.

- (92) Palomer, A.; Cabre, F.; Pascual, J.; Campos, J.; Trujillo, M. A.; Entrena, A.; Gallo, M. A.; Garcia, L.; Mauleon, D.; Espinosa, A. Identification of novel cyclooxygenase-2 selective inhibitors using pharmacophore models. J. Med. Chem. 2002, 45, 1402-1411.
- (93) Habeeb, A. G.; Rao, P. N. P.; Knaus, E. E. Design and synthesis celecoxib and of rofecoxib analogues as selective cyclooxygenase-2 (COX-2)inhibitors: replacement of sulfonamide and methylsulfonyl pharmacophores by an azido bioisostere. J. Med. Chem. 2001, 44, 3039–3042.
- (94) Kawai, S. Current drug therapy for rheumatoid arthritis. J. Orthop. Sci. 2003, 8, 259–263.
- (95) Koki, A.; Khan, N. K.; Woerner, B. M.; Dannenberg, A. J.; Olson, L.; Seibert, K.; Edwards, D.; Hardy, M.; Isakson, P.; Masferrer, J. L. Cyclooxygenase-2 in human pathological disease. Adv. Exp. Med. Biol. 2002, 507, 177-184.
- (96) Gibofsky, A.; Williams, G. W.; McKenna, F.; Fort, J. G. Comparing the efficacy of cyclooxygenase 2-specific

inhibitors in treating osteoarthritis: appropriate trial design considerations and results of a randomized, placebo-controlled trial. Arthritis Rheum. 2003, 48, 3102–3111.

- (97) Waddell, W. R.; Loughry, R. W. Sulindac for polyposis of the colon. J. Surg. Oncol. 1983, 24, 83–87.
- (98) Oshima, M.; Dinchuk, J. E.; Kargman, S. L.; Oshima, H.; Hancock. B.; Kwong, E.; Trzaskos, J. M.; Evans, J. F.; Taketo, M. M. Suppression of polyposis intestinal in Apc delta716 knockout mice bv inhibition of cyclooxygenase 2 (COX-2). Cell 1996, 87, 803-809.
- (99) North, G. L.; Celecoxib as adjunctive therapy for treatment of colorectal cancer. Ann. Pharmacother. 2001, 35, 1638–1643.
- (100) Tsujii, M.; DuBois, R. N.; Alterations in cellular adhesion and apoptosis in epithelial cells over expressing prostaglandin endoperoxide synthase-2. Cell 1995, 83, 493– 501.
- (101) Liu, X.; Yao, S.; Kirschenbaum, A.; Levine, A. C. NS-398, a selective cyclooxgenase-2 inhibitor, induces apoptosis and down regulates bcl-2 expression in LNCaP cells, *Cancer Res.* 1998, 58, 4245-4249.
- (102) Hsu, A. L.; Ching, T. T.; Wang, D. S.; Song, X.; Rangnekar, V. M.; Chen, C. S. The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking akt activation in human prostate cancer cells independently of bcl-

2. J. Biol. Chem. 2000, 275. 1397–1403.

- (103) Saukkonen, K.; Tomasetto, C.; Narko, K.; Rio, M. C.; Ristimaki, A. Cyclooxygenase-2 expression and effect of celecoxib in gastric adenomas of trefoil factor 1deficient mice. *Cancer Res.* 2003, 63, 3032–3036.
- (104) Howe, L. R.; Dannenberg, A. J.; COX-2 inhibitors for the prevention of breast cancer. J. Mammary Gland Biol. Neoplasia 2003 8, 31-43.
- (105) Breitner, J. C.; Welsh, K. A.; Helms, M. J.; Gaskell, P. C.; Gau, B. A.; Roses, A. D.; Pericak-Vance, M. A.; Saunders, A. M. Delayed onset of Alzheimer's disease with nonsteroidal antiinflammatory and histamine H₂ blocking drugs. *Neurobiol. Aging* 1995, *16*, 523-530.
- (106) Pasinetti, G. M.; Aisen, P. S. Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer's disease brain. Neuroscience 1998, 87, 319–324.
- (107) Aisen, P. S.; Schafer, K. A.; Grundman, M.; Pfeiffer, E.; Sano, M.; Davis, K. L.; Farlow, M. R.; Jin, S.; Thomas, R. G.; Thal, L. J. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 2003, 289, 2819–2826.
- (108) Feng, Z. H.; Wang, T. G.; Li, D. D.; Fung, P.; Wilson, B. C.; Liu, B.; Ali, S. F.; Langenbach, R.; Hong, J. S. Cyclooxygenase-2-deficient mice are resistant to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced damage of dopaminergic neurons

in the substantia nigra. Neurosci. Lett. 2002, 329, 354–358.

(109) Teismann, P.; Tieu, K.; Choi, D. K.; Wu, D. C.; Naini, A.; Hunot, S.; Vila, M.; Jackson-Lewis, V.; Przedborski, S. Cyclooxygenase-2 is instrumental in Parkinson's disease neurodegeneration. *Proc. Natl. Acad. Sci. U S A.* 2003, 100, 5473-5478.

2.0.0.0 OBJECTIVES OF THE RESEARCH

Nonsteroidal antiinflammatory drugs (NSAIDs) are invaluable agents for the treatment of RA and OA. Inhibition of the cyclooxygenase (COX) enzyme pathway is a hallmark feature of marketed virtually all NSAIDs. However, nonselective COX inhibition by NSAIDs such as indomethacin and ibuprofen can cause mechanism based side effects including dyspepsia and gastrointestinal ulceration/bleeding. The recently introduced selective COX-2 inhibitors Celebrex® and Vioxx® elicit efficient antiinflammatory and analgesic activities, and fewer adverse GI side effects. Selective COX-2 inhibitors are also proving to be very useful in the prophylactic treatment of a wide variety of cancers neurodegenerative and disorders.

The majority of selective COX-2 inhibitors belong to the tricyclic class. Extensive SAR studies for the tricyclic class of selective COX-2 inhibitors have shown that the nature and position of substituents on the central ring, and on the two vicinal aryl ring moieties attached to the central ring, are important determinants of the type of binding interactions within the COX-2 active site, which in turn dictates COX-2/COX-1 selectivity. Therefore, it was of interest to design a second generation tricyclic COX-2 inhibitors.

Accordingly, the primary objectives of this research encompass synthesis the design. and pharmacological evaluation of a diverse variety of tricyclic classes of compounds, to ultimately provide a more efficacious, mechanism-specific

(selective), nonsteroidal COX-2 inhibitory antiarthritic agent that exhibits clinically acceptable antiinflammatory and analgesic activities.

Hypothesis 1: The spatial disposition of the 2,3-diphenyl rings relative to the C-C of the cyclopropane ring to which they are attached is important to COX-2 selectivity, where the function of the 3membered ring containing the C-C is to provide the necessary geometry about the C-C, and that the COX-2 binding interaction is sensitive to both steric and electronic properties at all three positions of the cyclopropane ring.

Hypothesis 2: The spatial disposition of the 3,4-diphenyl rings relative to the C=C of the lactone ring to which they are attached is important to COX-2 selectivity, where the function of the 6membered ring is to provide the necessary geometry about the C=C bond and that the primary function of the C-6 substituent is to orient the molecule in the primary binding site, such that the p-SO₂Me moiety inserts into the COX-2 secondary pocket.

Accordingly, a group of 1,1dihalo-2,3-diphenylcyclopropanes, 6alkyl, alkoxy or alkylthio substituted-3-(4-methanesulfonylphenyl)-4-

phenylpyran-2-ones and 6-substituted-3,4,6-triphenylpyran-2-ones were prepared using a variety of synthetic methods that were evaluated in vitro to assess their COX-2 inhibitory and profiles. vivo selectivity In pharmacological evaluation was carried out using animal models to assess the antiinflammatory-analgesic potential (carrageenan-induced rat paw edema and 4% NaCl-induced abdominal constriction assays).

2.0.0.0. CHAPTER 1.0

Design, Syntheses and Evaluation of Novel 1,1-Dihalo-2,3-diphenylcyclopropanes as

Potential Cyclooxygenase-2 (COX-2) Inhibitors with Analgesic-Antiinflammatory

Activity

2.1.0.0. Introduction

Current interest in the design and development of selective cyclooxygenase-2 (COX-2) inhibitors is attributed to their reduced adverse effects on the gastrointestinal (GI) tract and renal system compared to traditional NSAIDS.¹⁻³ Celebrex® (celecoxib, 1) was the first selective COX-2 inhibitor marketed for the treatment of both rheumatoid arthritis (RA) and $(OA).^{4}$ osteoarthritis More recently, (rofecoxib, Vioxx® 2) has been introduced for the treatment of OA.⁵

Chart 1.1: Structures of some selective cyclooxygenase-2 (COX-2) inhibitors having a central 4-, 5- or 6-membered ring system represented by Celecoxib (Celebrex[®]) (1), Rofecoxib (Vioxx[®]) (2), 3-(4methanesulfonylphenyl)-2,2-dimethyl-4phenylcyclobutenone (3), and 1-(4methanesulfonylphenyl)-2-phenylbenzene (4).

A number of central ring templates have been successfully designed that, when appropriately functionalized. provide selective COX-2 inhibitory compounds. One common feature of these tricyclic molecules is 1,2-diaryl substitution to a central 4-, 5- or 6-membered ring system such as cyclobutene, pyrazole or 2-(5H)furanone, or benzene, respectively (Chart Structure-activity relationship 1.1). (SAR) studies have shown that a - SO_2Me , $-SO_2NH_2$ or -F substituent at the para-position of a phenyl ring provides optimal COX-2 selectivity, inhibitory potency and oral activity.^{6,7} Compounds with smaller four-membered а cyclobutenone ring system, in which the dihedral angle between the two aryl rings attached to the olefinic bond of the pharmacophore is larger relative to related five-membered rings, showed greater COX-2 selectivity.⁸ In a previous study, we reported that fusion of a dichloroor dibromocyclopropane moiety across the C_5 - C_6 olefinic bond of 1,4-dihydropyridine ring a system afforded 4-benzoyl-5-phenyl-7-halo-2azabicyclo[4.1.0]hept-3-enes that exhibited good antiinflammatory and analgesic activity.⁹ Furthermore, 1.1dichloro-2,3-diphenylcyclopropanes are also of interest since they have been reported to be potent antitubulin and antibreast cancer agents.¹⁰ In the present study, we report the syntheses and biological evaluation of (Z)- and (E)-1,1dihalo-2-(4-substituted-phenyl)-3phenylcyclopropanes, in which a central 4-,5- or 6-membered ring has been

Drug Dev. Res. 2002, 55, 79-90

Scheme 1.1: Reagents and conditions: (a) Ac_2O , Et_3N , reflux 12 h; (b) quinoline, $2CuO-CrO_3$, reflux at 180-190°C, 2h; (c) $C_6H_5CH_2P^+(Ph)_3$ Cl⁻, 50% aqueous NaOH, 25°C, 30 min; (d) 50% aqueous Oxone[®] (potassium peroxymonosulfate) solution, MeOH, THF, 25°C, 2-3 h.

replaced by a 3-membered cyclopropane ring, designed as selective COX-2 with inhibitors analgesicantiinflammatory activity. This design concept is based on a hypothesis that the spatial disposition [(Z) and (E)] of the 2,3-diaryl rings relative to the C-C of the cyclopropane ring to which they are attached could be an important determinant of COX-2 selectivity, and that the COX-2 binding interaction is sensitive to both electronic and steric properties of substituents at the paraposition on the C-2 phenyl moiety. The vicinal diarylcyclopropane ring system is a good model to test this hypothesis.

2.2.0.0. Chemistry

The *para*-substituted (Z)- and (E)stilbenes (8a-d and 9a-d), required for the synthesis of the target 1,1-dihalo-2,3diphenylcyclopropanes, were prepared in vield good using the Perkin condensation¹⁰ of a para-substitutedbenzaldehyde (5, R = Cl, Br, F) with phenylacetic acid (6) in the presence of a base, and subsequent decarboxylation of the resulting cinnamic acid derivative (7) to yield a mixture of two separable Z)-8ad and (E)-9a-d isomers in a ratio

5:1, respectively (see Scheme 1.1).

Alternatively, the Wittig reaction¹⁴ of benzyltriphenylphosphonium chloride with a *para*-substituted-benzaldehyde (5, R = Cl, Br, F, SMe) afforded a mixture of the two separable (**Z**)-8a-d and (**E**)-9a-d stilbenes in a ratio of about 1.3:1, respectively. Oxidation of the (**Z**)-8d and (**E**)-9d methylthio stereoisomers using Oxone® afforded the respective (**Z**)-8e, or (**E**)-9e, methanesulfonyl derivative.

Nitration of the 1,1-dihalo-2,3diphenylcyclopropanes [(Z)-10a-b or (E)-11a-b] by nitronium ion, generated in situ from copper (II) nitrate trihydrate in anhydride,²² acetic afforded the respective 1,1-dihalo-2-(4-nitrophenyl)-3-phenylcyclopropane [(Z)-10-c-d, or (E)-11c-d, Scheme 1.2].

1,1-Dihalocyclopropanes derived from stilbenes can be prepared in good yields by the in situ generation of dihalocarbenes (:CX₂). Dihalocarbenes generated thermally from reagents,15 organomercurial or а trihalomethane (CHX₃) in the presence of NaOH and a phase transfer catalyst,¹⁶ undergo facile addition to olefinic bonds (Schemes 1.2 and 1.3).

Scheme 1.2: Reagents and conditions: (a) 50% aqueous NaOH, CHX_3 (X = Cl, Br), benzyltriethylammonium chloride, 25°C; (b) copper (II) nitrate trihydrate, Ac₂O, 25°C, 38-48 h.

Dihalocarbenes are less reactive species, relative to carbenes, that give a superior yield of cyclopropane product due to the undesired absence of insertion reactions.²³⁻²⁵ Accordingly, the thermal in situ generation of dihalocarbenes (:CX2, X = Cl, Br) from the Seyferth reagents PhHgCBrCl₂ or PhHgCBr₃ in the presence of a *para*-substituted (Z)- or (E)-stilbene [(Z)-8a-c,e;(E)-9a-c,e] afforded the respective (Z)-, or (E)-1,1dichloro(or 1,1-dibromo)-2-(4-substituedphenyl)-3-phenylcyclopropane [(Z)-10e-I; (E)-11e-I] in moderate to good yield (26-70%) as illustrated in Scheme 1.3.

A large number of ¹H NMR spectra for substituted-cyclopropanes have been reported. Our results are consistent with the fact that the magnitude of vicinal coupling constants for J_{cis} are always larger than J_{trans} for any given pair of stereoisomers.²⁶⁻²⁹ cyclopropyl Accordingly, the (Z)-, or (E)stereochemistry for this group of 1,1dihalocyclopropanes was assigned based on the ¹H NMR chemical shift positions and coupling constants for the vicinal cyclopropyl C-2 and C-3 protons. In this respect, the resonances for the cyclopropyl vicinal hydrogens appeared as an AB quartet around δ 3 for the previously unreported (Z)-1,1-dihalo-2,3-diphenylcyclopropanes (10d, 10h-l) with coupling constants (J values) ranging from 11.6-12.2 Hz,¹⁰ which clearly shows the nonequivalent nature of the vicinal cyclopropyl hydrogens.

Scheme 1.3: Reagents and conditions: (a) PhHgCBrCl₂ (X = Cl), or PhHgCBr₃ (X = Br), benzene, 78-80°C, reflux, 8 h.

2.3.0.0. Results and discussion

A small group of (Z)- and (E)-1,1dichloro(or dibromo)-2,3diphenylcyclopropanes [(Z)-10a-b; (E)-11a-b] were prepared using а benzyltriethylammonium chloride catalyzed phase transfer dihalocyclopropanation (:CX₂) reaction of the (Z)-8f and (E)-9f stilbenes. The para-nitrophenyl derivatives (Z)-10c-d and (E)-11c-d were prepared by nitration of (Z)- and (E)-1,1-dichloro(or dibromo)-2,3-diphenylcyclopropanes [(Z-10a-b, (E)-11a-b] using copper nitrate and

Table 1.1: Antiinflammatory and Analgesic Activities, Molecular Volumes, and Cyclooxygenase-1 (COX-1) and Cyclooxygenase-2 (COX-2) Inhibition Activities for (Z)- and (E)-1,1-dihalo-2,3-diphenylcyclopropanes.

R	R H X X X
x* * x (Z)	(E)

<u> </u>		IC ₅₀ (μM) ^a			Selectivity Index	ry ^b AI Act	^b AI Activity ^c		Analgesic Activity ^d	
Cmpd	R	X	COX-I	COX-2		% Inhibition at 3 hours	% Inhibition at 5 hours	% Inhibition at 30 min.	% Inhibition at 60 min.	
(Z)-10a	Н	Cl		-	_	23.4 ± 4.3	15.3 ± 3.2	57.0 ± 09.8	55.0 ± 6.1	227
(E)-11a	Н	Cl	_		_	34.9 ± 12.3	09.3 ± 19.9	53.3 ± 15.7	49.6 ± 8.4	227
(Z)-10c	NO_2	Cl	> 200	214.43	_	30.3 ± 11.6	35.1 ± 9.7	56.7 ± 7.3	63.1 ± 7.6	247
(E)-11c	NO ₂	Cl	278.8	0 80.52	3.5	-	_	-		247
(Z)-10e	Cl	Cl		_		15.1 ± 7.8	13.0 ± 8.3	65.6 ± 16.3	74.4 ± 5.9	240
(<i>E</i>)-11e	Cl	Cl	-	_	_	10.3 ± 7.6	9.8 ± 7.8	73.3 ± 7.0	69.2 ± 8.7	240
(<i>É</i>)-11f	Br	Cl		_	-	1.5 ± 7.6	Inactive	54.9 ± 6.4	63.4 ± 14.5	5 248
(Z)-10h	SO ₂ Me	CI	> 100	> 200	-	23.4 ± 4.1	18.8 ± 6.0	44.2 ± 15.8	65.4 ± 8.1	273
(<i>É</i>)-11h	SO ₂ Me	ci ci	0.59	3.04		30.9 ± 9.9	35.95 ± 5.2	71.6 ± 9.0	77.1 ± 4.5	273
(Z)-101	SO ₂ Me	Br		-		03.9 ± 9.2	14.2 ± 9.4	54.6 ± 14.4	54.5 ± 10.6	279
(É)-111	SO ₂ Me	Br	28.90	> 100	6.7	44.9 ± 8.1	37.2 ± 12.9	54.5 ± 13.2	73.1 ± 6.2	279
Aspirin	-			-	-	_	-	57.8 ± 2.8	~~	154
Ibuprofe	n					43.8 ± 2.8	51.7 ± 3.6	-	-	212
Celecox	ib		22.90	0.0567	> 404	79.9 ± 1.9	58.2 ± 1.8	31.7 ± 9.6	62.0 ± 7.3	298

^a Values are means of two determinations and deviation from the mean is < 10% of the mean value. ^b In vitro COX-2 selectivity index (IC₅₀ COX-1/IC₅₀ COX-2). ^c Inhibitory activity in the rat 4% NaCl -induced abdominal constriction assay. The results are expressed as mean \pm SEM (n = 4–6) following a 50 mg/kg intraperitoneal dose of the test compound. ^d Inhibitory activity on carrageenan-induced rat paw edema. The results are expressed as mean \pm SEM (n = 4–6) following a 50 mg/kg oral dose of the test compound. ^e The volume of the molecule after minimization using the PM3 forcefield, was calculated using the Alchemy 2000 program.

acetic anhydride (Scheme 1.3). A related group of (Z)- and (E)-1,1-dihalo-2-(4-substituted-phenyl)-3-

phenylcyclopropanes [(Z)-10e-l, (E)-11el] that possess either dichloro or dibromo substituents at C-1 of the cyclopropane ring were synthesized by the stereospecific addition of dihalocarbenes (:CX₂ generated from PhHgCBrCl₂ or PhHgCBr₃) to the olefinic bond of *para*phenyl-substituted (F, Cl, Br, SO₂Me) (Z)- and (E)- stilbenes [(Z)-8a-c,e; (E)- 9a-c, e] as illustrated in Scheme 1.3.

In vivo analgesic activity, determined using the 4% NaCl-induced writhing (abdominal constriction) assay, showed that this group of 1,1-dihalo-2-(4substituted-phenyl)-3phenylcyclopropanes [(Z)-10, (E)-11) inhibited writhing by 44-77% relative to the reference drugs aspirin and celecoxib (58 and 62% inhibition at 30 and 60 minutes post-drug administration, respectively) as summarized in Table 1.1.

In vivo antiinflammatory activity, determined using the carrageenaninduced rat paw edema assay, showed that these 1,1-dihalo-2-(4-substitutedphenyl)-3-phenylcyclopropane

derivatives [(Z)-10, (E)-11] inhibited inflammation by 1.5-45% at 3 hours, and 9-37% at 5 hours, post-drug administration relative to reference drug ibuprofen (44 and 52% inhibition at 3 and 5 hours, respectively (Table 1.1).

In vitro COX-1 and COX-2 inhibition studies showed that (E)-1,1-dichloro-2-(4-nitrophenyl)-3-phenylcyclopropane (11c) inhibited COX-1 (IC₅₀ = 278.8 µM) and COX-2 (IC₅₀ = 80.5 µM) to provide a COX-2 selectivity index of 3.5. In contrast, (E)-1,1-dichloro-2-(4methanesulfonylphenyl)-3-

phenylcyclopropane (11h) was a more potent inhibitor of both COX-1 (IC₅₀ = 0.59μ M) and COX-2 (IC₅₀ = 3.04μ M), but it was more selective for the COX-1 isozyme (Table 1.1).

Figure 1.1: Docking of (E)-1,1-dichloro-2-(4methanesulfonylphenyl)-3-phenylcyclopropane (11h) (ball and stick) on the active site of murine COX-2 (line and stick) ($E_{intermolecular} = -$ 39.08 Kcal/mol.

Docking

(E)-1,1-dichloro-2-(4-

methane sulfonylphenyl)-3phenylcyclopropane (11h) on the active site of murine COX-2 (Figure 1.1) indicates that the 1,1-dichloro substituents are oriented in the direction of the mouth of the channel towards Arg^{120} , and that the C-2 MeSO₂ moiety is oriented towards the apex of the active site with the S-atom of the MeSO₂ substituent positioned about 6.56 Å inside the entrance to the secondary pocket (Val⁵²³). In contrast, the S-atom of the MeSO₂ substituent of the (Z)stereoisomer (10h) is much further removed from the entrance to the secondary pocket of COX-2 (Figure 1.2).

Cyclopropyl C-C bonds mimic a C=C bond due to their ability to conjugate with an adjacent olefinic bond,³⁰ and the hybridization of a cyclopropyl C-C bond is intermediate in character between sigma (σ) and pi (π) bonds. In the 1,1-dihalo-2-(4-substituted-phenyl)-3-phenylcyclopropane class of compounds, the two phenyl substituents are bent out of the plane of the planar cyclopropane ring since they are attached to a sp^3 hybridized carbon that results in either a (Z)- or (E)stereochemical orientation. Furthermore, the geminal C-1 dihalo substituents in and (E)-1,1-dihalo-2,3-diphenyl (Z)cyclopropanes are oriented such that one halogen atom is above, and the other halogen atom is below, the plane of the planar cyclopropane ring. It was therefore of interest to investigate the effect which various substituents (H. Cl. Br, F, NO₂, SO₂Me) at the para-position of the C-2 phenyl ring present in (Z)-(E)-1,1-dihalo-2,3-diphenylcyclo and stereoisomers propane has upon analgesic-antiinflammatory activity, and COX-2 selectivity. Acquisition of this type of biological data should indicate 39

whether a central cyclopropane ring scaffold is a suitable template for the design of selective COX-2 inhibitors.

Analgesic structure-activity data. determined using the 4% NaCl-induced abdominal constriction assay showed that this group of (Z)-10 and (E)-11 1,1dihalo-2-(4-substituted-phenyl)-3phenylcyclopropanes inhibited writhing by 44-73% at 30 minutes, and 49-77% at 60 minutes, post-drug administration, relative to the reference drugs aspirin and celecoxib (58 and 32% inhibition at 30 minutes post-drug administration) for a 50 mg/kg intraperitoneal dose (Table 1.1). The relative analgesic potency profile with respect to substituent variation at the para- position of the C-2 phenyl ring was: (Z)-10 series of compounds at 30 minutes, $Cl > NO_2 \approx H$ > SO₂Me; (*E*)-11 series at 30 minutes, Cl \approx SO₂Me > Br \approx H; (Z)-10 series at 60 minutes, $H \approx Cl \geq SO_2Me \approx NO_2$; (E)-11 series at 60 minutes, $SO_2Me > Cl \ge Br >$ H. Overall, the Cl and MeSO₂ paraphenyl substituents generally provided superior analgesic activity. The most active compound, (E)-1,1-dichloro-2-(4methanesulfonylphenyl)-3-

phenylcyclopropane (11h) exhibited good analgesic activity at 30 minutes (72% inhibition) and 60 minutes (77% inhibition) post-drug administration, respectively.

Structure-activity relationships, acquired using the antiinflammatory rat paw edema assay, showed that this group of (Z)-10 and (E)-11 1,1-dihalo-2-(4substituted-phenyl)-3-

phenylcyclopropane compounds exhibit antiinflammatory activity in the inactiveto-moderate activity range (1.5-45% inhibition) with respect to the *para*phenyl substituent at a 50 mg/kg oral dose (see Table 1.1). The antiinflammatory potency order for the (Z)-10 series of compounds was $NO_2 > MeSO_2 \approx H \geq Cl$, and for the (E)-11 series of compounds was $H \geq MeSO_2 > Cl \approx Br.$ (E)-1,1-dibromo-2-(4-methanesulfonylphenyl)-3-

phenylcyclopropane (111) was the most active antiinflammatory agent (45% and 37% reduction in inflammation at 3 and 5 hours post-drug administration, respectively). Within the paramethanesulfonylphenyl group of compounds, the (E)-stereoisomers (11h, **111**) were more active than the corresponding (Z)-stereoisomers (10h, 10I).

Figure 1.2: Docking of (*Z*)-1,1-dichloro-2-(4methanesulfonylphenyl-3phenylcyclopropane (**10h**) (ball and stick) on the active site of murine COX-2 (line and stick) ($E_{intermolecular} = -8.41$ Kcal/mol).

The major difference between the binding sites for COX-1 and COX-2 is at position 523 where COX-2 has the amino acid residue Val in place of Ile for COX-1. This difference produces a secondary pocket extending off the primary binding site in COX-2 that is absent in COX-1.

Consequently, the combined volume (394 Å³) of the primary binding site and the secondary pocket in COX-2 is about 25% larger than the volume of the COX-1 (316 Å^3) binding site.³¹ This difference in volume, and the presence of the secondary pocket in COX-2, can be exploited by varying the volume of the drug and the placement of substituents possessing different electronic and steric properties (Cl, Br, F, NO₂, SO₂Me) at the para position of one of the aryl rings present in (Z)- and (E)-1,1-dihalo-2,3diphenylcyclopropanes.^{9,32} Compounds 10-11 have volumes in the range of 227-279 Å³, relative to the selective COX-2 inhibitor celecoxib (298 Å³), and the nonselective COX-1/COX-2 inhibitor ibuprofen (212 Å³) as listed in Table 1.1.

A comparison of the ability of the (Z)-10c and (E)-10c ($R = NO_2$), and the (Z)-10h and (E)-11h ($R = MeSO_2$) stereoisomers to inhibit COX-1 and COX-2 that the (Z)indicates stereoisomers (10c, 10h) are inactive inhibitors of both COX-1 and COX-2 $(IC_{50} > 100 \ \mu M)$. Although the (E)stereoisomer (11c, $R = NO_2$) was a moderately selective COX-2 inhibitor [COX-2 selectivity index (SI) = 3.5], (E)-11c remains a weak inhibitor of COX-2 $(IC_{50} = 80.5 \ \mu M)$. In contrast, (E)-11h (R = $MeSO_2$) was a much more potent inhibitor of both COX-1 (IC₅₀ = 0.59 μ M) and COX-2 (IC₅₀ = 3.04 μ M), but it is more selective for COX-1 than COX-2. These results suggest that (E)-1,1-dihalo-2-(4-substituted-phenyl)-3-

phenylcyclopropanes (11) bind more favourably to the active site of either COX-1 or COX-2 than the corresponding (Z)-10 isomer.

It was therefore of interest to dock the (E)-11h, and (Z)-10h, 1,1-dichloro-2-(4-methanesulfonylphenyl)-3-

phenylcyclopropanes stereoisomers on

the active site of the human COX-2 isozyme to determine their orientation in the active site which may help to explain their difference in COX-2 binding efficacy. Docking the (E)-11h stereoisomer in the active site of COX-2 (Figure 1.1) showed that it binds in the center of the active site with the 1,1dichloro substituents oriented in the direction of the mouth of the channel (Arg^{120}) . The MeSO₂ moiety is oriented towards the apex of the active site, and the S-atom of the MeSO₂ group is positioned about 6.56 Å inside the entrance to the secondary pocket of COX-2 (Val⁵²³). A similar docking study for the (Z)-10h stereoisomer (Figure 1.2) shows that the unsubstituted C-3 phenyl ring moiety is oriented toward the COX-2 secondary pocket, and that the S-atom of the MeSO₂ moiety is now much closer to the Ser⁵³⁰ OH group (4.02 Å). These molecular modeling (docking) studies suggest that the MeSO₂ moiety present in (E)-11h is more suitably positioned, relative to the $MeSO_2$ moiety in (Z)-10h, since it is inserted into the secondary pocket of COX-2 near Val⁵²³. One potential drug design approach to increase the COX-2 selectivity and/or inhibitory potency of the (E)-11h stereoisomer could involve selective replacement of one of the 1,1-dichloro substituents by a larger substituent such as CF_3 or an alkyl substituent (Et, cyclopropyl, i-Bu, t-Bu) which would increase the overall size of the molecule to take advantage of the larger volume of the COX-2 binding site and its associated secondary pocket. More particularly, substituents of this latter type offer a method to reorient the MeSO₂ moiety present in (Z)-10h such that it is properly positioned to insert deep into the secondary binding pocket present in COX-2 that may result in selective COX-2 binding, and potent COX-2 inhibition.

2.4.0.0. Conclusions

The results of this investigation shows that (i) a 3-membered cyclopropane ring can serve as a potential ring template in the design of tricyclic COX-2 inhibitors that exhibit in vivo antiinflammatoryanalgesic activity (ii) that the COX-2 binding interaction is governed by steric and electronic properties at the *para*position on the C-2 phenyl ring, and (iii) that the molecular modeling studies help in understanding the binding interactions of 1,1-dihalo-2,3-diarylcyclopropanes in the COX-2 active site.

2.5.0.0. Experimental section

General. Melting points were determined using a Buchi capillary apparatus and are uncorrected. Infrared (IR) spectra were recorded using a Nicolet 550 Series II Magna FT-IR Nuclear spectrometer. magnetic resonance (¹H NMR, ¹³C NMR, ¹⁹F spectra were recorded on a NMR) Bruker AM-300 spectrometer. Elemental analyses were performed for C, H and N (MicroAnalytical Service Laboratory, Department of Chemistry, University of Alberta). The volume $(Å^3)$ of compounds was calculated using an IBM computer with the Alchemy 2000 Program (Version 2.0) from SciVision Inc., after minimization using the MM3 force field. Molecular modeling experiments were performed on an Indigo 2 R4400 SGI workstation using the Insight II software modules Builder, Discover, Biopolymer and Docking (Molecular Simulations Inc., San Diego, CA). Preparative thin laver chromatography (PTLC) was performed using Camag Kieselgel DF-5 plates, 1.0 mm in thickness. Silica gel column chromatography was performed

using Merck silica gel 60 ASTM (70-230 mesh). Compounds 8a-d and 9a-d were synthesized (see procedures illustrated in Scheme 1.2) according to the reported procedures.¹⁰⁻¹⁴ Phenyl(bromodichloro methyl)mercury $(PhHgCBrCl_2)$ and phenyl(tribromomethyl) mercury were prepared according to the literature method.¹⁵ Compounds 10a-c and 11a-b were synthesized using the reported methods as illustrated in Scheme 1.3.¹⁶⁻¹⁸ All other reagents were purchased from Aldrich Chemical (Milwaukee, WI). In vitro COX-1 and COX-2 inhibition assays were performed using enzyme immunoassay (EIA) kits purchased from Cayman Chemical, Ann Arbor, MI. Male Sprague-Dawley rats, used in the antiinflammatory and analgesic screens, were supplied by Animal Health Services, University of Alberta. All experiments involving animals were carried out using protocols approved by Animal Welfare the Committee. University of Alberta.

General Procedure for the Synthesis of (Z)-4-Methanesulfonylstilbene (8e) and (E)-4-Methanesulfonylstilbene (9e). An aqueous solution of Oxone® (50% w/v, 6.0 mmol) was added drop wise with stirring to a solution of either (Z)-8d, or (E)-9d, (0.47 g, 2.0 mmol) in THF (15 mL) and MeOH (15 mL) at 0 °C, and the reaction was allowed to proceed at 25 °C for 2-3 h. The reaction mixture was concentrated in vacuo, diluted with water (25 mL), and extracted with CH_2Cl_2 (3 x 20 mL). The combined organic extracts were washed with brine (20 mL) and the organic fraction was dried (Na₂SO₄). Removal of the solvent in vacuo afforded a white solid that was gel purified by silica column chromatography using CH₂Cl₂-petroleum ether (9:1, v/v) as eluent to afford (Z)-8e, 42 or (E)-9e, that crystallized upon standing in a refrigerator.

Product (Z)-8e: Yield, 70%; mp 140-142 °C; IR (KBr): 1305, 1156 (SO₂) cm⁻ ¹; ¹H NMR (CDCl₃): δ 3.05 (s, 3H, SO_2CH_3), 6.58 (d, J = 12.2 Hz, 1H, Ph-CH=CH-), 6.77 (d, J = 12.2 Hz, 1H, Ph-CH=CH-), 7.11-7.27 (m, 5H, phenyl hydrogens), 7.40 (d, J = 8.2 Hz, 2H, 4methanesulfonylphenyl H-2, H-6), 7.77 (d, J= 8.2 Hz, 2H, 4methanesulfonylphenyl H-3, H-5). Anal. (C15H14O2S): C, H.

Product (E)-9e: Yield, 82%; mp 179-181 °C; IR (KBr): 1305, 1153 (SO₂) cm⁻ ¹; ¹H NMR (CDCl₃): δ 3.08 (s, 3H, SO₂CH₃), 7.11 and 7.16 (two s, 1H each, -CH=CH-), 7.27-7.57 (m, 5H, phenyl hydrogens), 7.67 (d, J = 8.2 Hz, 2H, 4methanesulfonylphenyl H-2, H-6), 7.91 (d, J8.2 Hz, 2H, 4methanesulfonylphenyl H-3, H-5). The 'H NMR spectral data was identical to that reported for (E)-9e obtained by oxidation of a mixture of (Z)-8d and (E)-**9d** using *meta*-chloroperbenzoic acid and then recrystallization of (E)-9e from the product mixture.^{8,12}

General Procedure for the Synthesis of (Z)-1,1-Dibromo-2-(4-nitrophenyl)-3-phenylcyclopropane (10d), (E)-1,1-Dichloro-2-(4-nitrophenyl)-3-

phenylcyclopropane (11c), and (E)-1,1-Dibromo-2-(4-nitrophenyl)-3-

phenylcyclopropane (11d). A mixture of copper (II) nitrate trihydrate (0.56 g, 2.3 mmol) in Ac₂O (4.2 mL) was stirred at 25 °C for 1.5 h, the respective 1,1-dihalo-2,3-diphenylcyclopropane (10b, 11a or 11b, 1.1 mmol) was added, and the reaction was allowed to proceed at 25 °C for 14 h. An additional aliquot of copper (II) nitrate (0.28 g, 1.15 mmol) was

added, and the reaction was allowed to proceed for a further 24 h at 25 °C with stirring. Water (20 mL) was added, the mixture was extracted with EtOAc (2 x 20 ml), the combined organic extracts were washed consecutively with 10% NaHCO₃ solution (2 x 20 mL), water (20 mL), and the organic fraction was dried (Na₂SO₄). Removal of the solvent in vacuo gave a brown oil that was purified by silica gel column chromatography using EtOAc-hexane (1:3, v/v) as eluent to afford the respective product (**10d**, **11c** or **11d**) as a pale yellow oil that solidified upon storage after several days at 0-5 °C.

Product 10d: Yield, 45%; mp 133-135 °C; IR (KBr): 1523, 1349 (NO₂), 3067, 3025 (cyclopropyl C-H) cm⁻¹; ¹H NMR (CDCl₃): δ 3.36 (d, J = 11.6 Hz, 1H, cyclopropyl, H-3), 3.47 (d, J = 11.6 Hz, 1H, cyclopropyl, H-2), 6.98-7.09 (m, 2H, phenyl H-2, H-6), 7.20 (d, J = 8.4 Hz, 2H, 4-nitrophenyl H-2, H-6), 7.25-7.27 (m, 3H, phenyl H-3, H-4, H-5), 8.14 (d, 2H, J = 8.4 Hz, 4-nitrophenyl H-3, H-5). Anal. (C₁₅H₁₁Br₂NO₂): C, H.

Product 11c: Yield, 31%; mp 88-91 °C; IR (KBr): 1518, 1346 (NO₂), 3050, 3025 (cyclopropyl C-H) cm⁻¹; ¹H NMR (CDCl₃): δ 3.22 (d, J = 9.1 Hz, 1H, cyclopropyl H-3), 3.25 (d, J = 9.1 Hz, 1H, cyclopropyl H-2), 7.26-7.29 (m, 2H, phenyl H-2, H-6), 7.36-7.40 (m, 3H, phenyl H-3, H-4, H-5), 7.54 (d, J = 8.5Hz, 2H, 4-nitrophenyl H-2, H-6), 8.25 (d, J = 8.5 Hz, 2H, 4-nitrophenyl H-3, H-5). Anal. (C₁₅H₁₁Cl₂NO₂): C, H.

Product 11d: Yield, 42%; mp 120-123 °C, IR (KBr): 1518, 1353 (NO₂), 3050, 3025 (cyclopropyl C-H) cm⁻¹; ¹H NMR (CDCl₃): δ 3.27 (d, J = 9.1 Hz, 1H, cyclopropyl H-3), 3.30 (d, J = 9.1 Hz,

1H, cyclopropyl H-2), 7.26-7.27 (m, 2H, phenyl H-2, H-6), 7.40-7.42 (m, 3H, phenyl H-3, H-4, H-5), 7.55 (d, J = 8.4Hz, 2H, 4-nitrophenyl H-2, H-6), 8.26 (d, J = 8.4 Hz, 2H, 4-nitrophenyl H-3, H-5). Anal. (C₁₅H₁₁Br₂NO₂): C, H.

General Procedure for the Synthesis (Z)-1,1-Dihalo-2-(4-substitutedof phenyl)-3-phenylcyclopropanes (10e-l) (E)-1,1-Diahalo-2-(4-substitutedand phenyl)-3-phenylcyclopropanes (11e-l). PhHgCBrCl₂ or PhHgCBr₃ (2.2 mmol) was added to a solution of the selected para-substituted (Cl, Br, F or SO₂Me) (Z-)-8a-c,e, or (E)-9a-c,e, stilbene derivative (2.2 mmol) in dry benzene (20 mL) under a nitrogen atmosphere with stirring, and the reaction mixture was refluxed for a total reaction time of 8 h at 78-80 °C during which time an additional aliquot of PhHgCBrCl₂ or PhHgCBr₃ (2.2 mmol) was added every 2 h. After cooling the reaction mixture to 25 °C. the precipitated PhHgBr was removed by filtration, and the solvent was removed in vacuo to afford a brown oil which was by preparative purified thin laver chromatography (PTLC) using CH₂Cl₂petroleum ether (1:9, v/v), or EtOAchexane (1:3, v/v) as the development solvent. The physical and spectral data for the previously unreported (Z)-10h-l and (E)-11e-l products prepared using this general method are listed below.

(Z)-1,1-Dichloro-2-(4methanesulfonylphenyl)-3-

phenylcyclopropane (10h). Product 10h was prepared by reaction of 8e with PhHgCBrCl₂. Yield, 50%; mp 142-144 °C; IR (KBr): 1303, 1152 (SO₂), 3046, 3020 (cyclopropyl C-H) cm⁻¹; ¹H NMR (CDCl₃): δ 3.09 (s, 3H, SO₂CH₃), 3.33 (d, J = 11.6 Hz, 1H, cyclopropyl H-3), 3.43 (d, J = 11.6 Hz, 1H, cyclopropyl H-2), 7.03-7.06 (m, 2H, phenyl H-2, H-6), 7.17 8.2 Hz, 2H, 4-(d, J= methanesufonylphenyl H-2, H-6), 7.27-7.31 (m, 3H, phenyl H-3, H-4, H-5), 7.78 (d, J= 8.2 Hz, 2H. 4- ^{13}C methanesulfonylphenyl H-3, H-5); NMR (CDCl₃): δ 39.1 (cyclopropane C-39.7 (cyclopropane C-2), 44.4 3), (SO_2CH_3) , 64.5 (cyclopropane C-1), 126.6, 127.7, 128.2, 130.6 (phenyl CH carbons, 4-methanesulfonylphenyl C-2 and C-6), 130.7 (4methanesulfonylphenyl C-4), 131.6 (4methanesulfonylphenyl C-3, C-5), 138.6 and 139.3 (4-methanesulfonylphenyl C-1 phenyl C-1). Anal. and (C₁₆H₁₄Cl₂O₂S.1/3H₂O): C, H.

(Z)-1,1-Dibromo-2-(4-chlorophenyl)-3-phenylcyclopropane (10i). Product 10i was synthesized by reaction of 8a with PhHgCBr₃. Yield: 30% (oil); IR (film): 3058, 3025 (cyclopropyl C-H) cm⁻¹; ¹H NMR (CDCl₃): δ 3.34 (d, J = 11.9 Hz, 1H, cyclopropyl H-3), 3.41 (d, J = 11.9Hz, 1H, cyclopropyl H-2), 6.96 (d, J =8.2 Hz, 2H, 4-chlorophenyl H-2, H-6), 7.05-7.07 (m, 2H, phenyl H-2, H-6), 7.21 (d, J = 8.2 Hz, 2H, 4-chlorophenyl H-3, H-5), 7.27-7.29 (m, 3H, phenyl H-3, H-4, H-5). Anal. (C₁₅H₁₁Br₂Cl.1/3H₂O): C, H.

(Z)-1,1-Dibromo-2-(4-bromophenyl)-3-phenylcyclopropane (10j). Product 10j was prepared by reaction of **8b** with PhHgCBr₃. Yield, 34% (oil); IR (film): 3052, 3025 (cyclopropyl C-H) cm⁻¹; ¹H NMR (CDCl₃): δ 3.31 (d, J = 12.2 Hz, 1H, cyclopropyl H-3), 3.40 (d, J = 12.2Hz, 1H, cyclopropyl H-2), 6.89 (d, 2H, J = 8.2 Hz, 4-bromophenyl H-2, H-6), 7.05-7.07 (m, 2H, phenyl H-2, H-6), 7.20-7.28 (m, 3H, phenyl H-3, H-4, H-5), 7.36 (d, J = 8.2 Hz, 2H, 4-bromophenyl H-3, H-5). Anal. $(C_{15}H_{11}Br_{3.1}/2H_2O)$: C, H.

(Z)-1,1-Dibromo-2-(4-fluorophenyl)-3-phenylcyclopropane (10k). Product 10k was obtained from the reaction of 8c with PhHgCBr₃. Yield: 32% (viscous oil); IR (film): 3050, 3025 (cyclopropyl C-H) cm⁻¹; ¹H NMR (CDCl₃): δ 3.26 (d, J = 11.9 Hz, 1H, cyclopropyl H-3), 3.32 (d, J = 11.9 Hz, 1H, cyclopropyl H-2), 6.87-7.12 4H, 4-fluorophenyl (m, hydrogens), 7.23-7.38 (m, 5H, phenyl hydrogens); ¹⁹F NMR (CDCl₃): δ 47.45 (dddd, $J_{FCCH} = 8.5$ Hz, $J_{FCCCH} = 4.9$ Hz, 1F). Anal. (C₁₅H₁₁Br₂F.1/2H₂O): C, H.

(Z)-1,1-Dibromo-2-(4methanesulfonylphenyl)-3-

phenylcyclopropane (10l). Product 10l was synthesized by the reaction of 8e with PhHgCBr₃. Yield, 70% (viscous oil); mp 122-125 °C; IR (film): 1306, 1152 (SO₂), 3050, 3025 (cyclopropyl C-H) cm⁻¹; ¹H NMR (CDCl₃): δ 3.10 (s, 3H, SO_2CH_3), 3.42 (d, J = 11.9 Hz, 1H, cyclopropyl H-3), 3.52 (d, J = 11.9 Hz, 1H, cyclopropyl H-2), 7.20-7.29 (m, 2H, phenyl H-2, H-6), 7.35- 7.47 (m, 3H, phenyl H-3, H-4, H-5), 7.59 (d, J = 8.2Hz, 2H, 4-methanesufonylphenyl H-2, H-6), 7.98 (d, J = 8.2 Hz, 2H, 4methanesulfonylphenyl H-3, H-5); ¹³C NMR (CDCl₃): δ 39.1 (cyclopropane C-3), 39.7 (cyclopropane C-2), 44.4 (SO_2CH_3) , 64.5 (cyclopropane C-1), 126.6, 127.7, 128.1, 130.0 (phenyl CH carbons, 4-methanesulfonylphenyl C-2 and 130.7 C-6), (4methanesulfonylphenyl C-4), 131.6 (4methanesulfonylphenyl C-3, C-5), 133.5 (phenyl C-1), 138.6 (4methanesulfonylphenyl C-1). Anal. $(C_{16}H_{14}Br_2O_2S.1/3H_2O)$: C, H.

(E)-1,1-Dichloro-2-(4-chlorophenyl)-3-phenylcyclopropane (11e). Product 11e was prepared by reaction of 9a with PhHgCBrCl₂. Yield, 42%; mp 73-75 °C; IR (KBr): 3050, 3025 (cyclopropyl C-H) cm⁻¹; ¹H NMR (CDCl₃): δ 3.19 (d, J =11.3 Hz, 1H, cyclopropyl H-3), 3.23 (d, J= 11.3 Hz, 1H, cyclopropyl H-3), 3.23 (d, J= 11.3 Hz, 1H, cyclopropyl H-2), 7.25-7.28 (m, 2H, phenyl H-2, H-6), 7.30-7.32 (m, 3H, phenyl H-3, H-4, H-5), 7.33-7.36 (m, 2H, 4-chlorophenyl H-2, H-6), 7.37-7.44 (m, 2H, 4-chlorophenyl H-3, H-5). Anal. (C₁₅H₁₁Cl₃.1/2H₂O): C, H.

(E)-1,1-Dichloro-2-(4-bromophenyl)-3-phenylcyclopropane (11f). Product 11f was synthesized by reaction of 9b with PhHgCBrCl₂. Yield, 41% (viscous oil); IR (film): 3050, 3025 (cyclopropyl C-H) cm⁻¹; ¹H NMR (CDCl₃): δ 3.20 (d, J = 11.6 Hz, 1H, cyclopropyl H-3), 3.30 (d, J = 11.6 Hz, 1H, cyclopropyl H-2),6.86 (d, J = 8.2 Hz, 2H, 4-bromophenyl H-2, H-6), 6.97-7.03 (m, 2H, phenyl H-2, H-6), 7.19-7.22 (m, 3H, phenyl H-3, H-4, H-5), 7.34 (d, J = 8.2 Hz, 2H, 4bromophenyl H-3, H-5). Anal. (C₁₅H₁₁BrCl₂.1/2H₂O): C, H.

(E)-1,1-Dichloro-2-(4-fluorophenyl)-3-phenylcyclopropane (11g). Product 11g was prepared by reaction of 9c with PhHgCBrCl₂. Yield: 27% (viscous oil); IR (film): 3046, 3025 (cyclopropyl C-H) cm⁻¹; ¹H NMR (CDCl₃): δ 3.12 (d, J =11.6 Hz, 1H, cyclopropyl H-3), 3.18 (d, J =11.6 Hz, 1H, cyclopropyl H-3), 3.18 (d, J =11.6 Hz, 1H, cyclopropyl H-2), 6.90-7.05 (m, 4H, 4-fluorophenyl hydrogens), 7.19-7.30 (m, 5H, phenyl hydrogens); ¹⁹F NMR (CDCl₃): δ 47.01 (dddd, $J_{FCCH} =$ 9.2 Hz, $J_{FCCCH} = 6.1$ Hz, 1F). Anal. (C₁₅H₁₁Cl₂F.1/3H₂O): C, H.

(E)-1,1-Dichloro-2-(4methanesulfonylphenyl)-3phenylcyclopropane (11h). Product 11h was synthesized by reaction of 9e with PhHgCBrCl₂. Yield, 35%; mp 127-129 °C; IR (KBr): 1303, 1152 (SO₂), 3050, 3025 (cyclopropyl C-H) cm⁻¹; ¹H NMR (CDCl₃): δ 3.09 (s, 3H, SO₂CH₃), 3.26 (d, J = 9.4 Hz, 1H, cyclopropyl H-3), 3.30 (d, J = 9.4 Hz, 1H, cyclopropyl H-2), 7.27-7.28 (m, 2H, phenyl H-2, H-6), 7.33-7.45 (m, 3H, phenyl H-3, H-4, H-5), 7.58 (d, J = 8.5 Hz, 2H, 4methanesufonylphenyl H-2, H-6), 7.97 (d, J8.5 Hz, 2H, 4methanesulfonylphenyl H-3, H-5); ¹³C NMR (CDCl₃): δ 39.7 (cyclopropane C-40.3 (cyclopropane C-2), 44.5 3), (SO_2CH_3) , 64.66 (cyclopropane C-1), 127.7, 128.0, 128.5, 128.7 (phenyl CH carbons, 4-methanesulfonylphenyl C-2, C-6), 129.9 (4-methanesulfonylphenyl C-3, C-5), 133.5 (phenyl C-1), 139.9 and 140.7 (4-methanesulfonylphenyl C-1 and C-4). Anal. $(C_{16}H_{14}Cl_2O_2S)$: C, H.

(E)-1,1-Dibromo-2-(4-chlorophenyl)-3-phenylcyclopropane (11i). Product 11i was obtained from the reaction of 9a with PhHgCBr₃. Yield, 28%; mp 95-97 °C; IR (KBr): 3050, 3025 (cyclopropyl C-H) cm⁻¹; ¹H NMR (CDCl₃): δ 3.22 (d, J = 9.2Hz, 1H, cyclopropyl H-3), 3.26 (d, J =9.2 Hz, 1H, cyclopropyl H-3), 3.26 (d, J =9.2 Hz, 1H, cyclopropyl H-2), 7.26-7.29 (m, 2H, phenyl H-2, H-6), 7.31-7.33 (m, 3H, phenyl H-3, H-4, H-5), 7.36 (d, J =8.8 Hz, 2H, 4-chlorophenyl H-2, H-6), 7.37-7.42 (m, 2H, 4-chlorophenyl H-3, H-5). Anal. (C₁₅H₁₁Br₂Cl): C, H.

(E)-1,1-Dibromo-2-(4-

bromophenyl)-3-phenylcyclopropane (11j). Product 11j was prepared by the reaction of 9b with PhHgCBr₃. Yield,

reaction of **9b** with PhHgCBr₃. Yield, 36%; mp 109-111 °C; IR (KBr): 3060, 3025 (cyclopropyl C-H) cm⁻¹; ¹H NMR (CDCl₃): δ 3.20 (d, J = 9.2 Hz, 1H, cyclopropyl H-3), 3.25 (d, J = 9.2 Hz, 1H, cyclopropyl H-2), 7.25-7.28 (m, 2H, 4-bromophenyl H-2, H-6), 7.29-7.40 (m, 2H, phenyl H-2, H-6), 7.33-7.43 (m, 3H, phenyl H-3, H-4, H-5), 7.52 (d, J = 8.5Hz, 2H, 4-bromophenyl H-3, H-5). Anal. (C₁₅H₁₁Br₃): C, H.

(E)-1,1-Dibromo-2-(4-fluorophenyl)-3-phenylcyclopropane (11k). Product 11k was prepared by the reaction of 9c with PhHgCBr₃. Yield, 31%; mp 59-61 °C; IR (KBr): 3050, 3032 (cyclopropyl C-H) cm⁻¹; ¹H NMR (CDCl₃): δ 3.23 (d, J = 9.4 Hz, 1H, cyclopropyl H-3), 3.26 (d, J = 9.4 Hz, 1H, cyclopropyl H-2), 7.08 (t, J = 8.5 Hz, 2H, 4-fluorophenyl H-3, H-5), 7.27-7.30 (m. 2H. phenyl H-2, H-6), 7.33-7.36 (m, 3H, phenyl H-3, H-4, H-5), 7.37 (dd, $J_{\rm HH}$ = 8.5 Hz, $J_{\rm HF}$ = 4.9 Hz, 2H, 4-fluorophenyl H-2, H-6); ¹⁹F NMR (CDCl₃): δ 47.65 (dddd, $J_{FCCH} = 8.5$ Hz, $J_{\rm FCCCH}$ = 4.9 Hz, 1F). Anal. $(C_{15}H_{11}Br_{2}F.1/3H_{2}O)$: C, H.

(E)-1,1-Dibromo-2-(4methanesulfonylphenyl)-3-

phenylcyclopropane (111). Product 111 was prepared by reaction of 9e with PhHgCBr₃. Yield, 59%; mp 138-140 °C; IR (KBr): 1320, 1152 (SO₂), 3046, 3026 (cyclopropyl C-H) cm⁻¹; ¹H NMR $(CDCl_3)$: δ 3.10 (s, 3H, SO₂CH₃), 3.32 (d, J = 9.4 Hz, 1H, cyclopropyl H-3), 3.36 (d, J = 9.4 Hz, 1H, cyclopropyl H-2), 7.27-7.32 (m, 2H, phenyl H-2, H-6), 7.34-7.46 (m, 3H, phenyl H-3, H-4, H-5), 7.58 (d, J = 8.2 Hz, 2H, 4methanesufonylphenyl H-2, H-6), 7.98 Hz. (d, J 8.2 2H. 4methanesulfonylphenyl H-3, H-5); ¹³C NMR (CDCl₃): δ 35.0 (cyclopropane C-39.7 (cyclopropane C-2), 40.7 3), (cyclopropane C-1), 44.5 (SO₂CH₃), 127.4, 128.0, 128.2, 129.0 (phenyl CH

carbons, 4-methanesulfonylphenyl C-2, C-6), 130.0 (4-methanesulfonylphenyl C-3, C-5), 135.0 (phenyl C-1), 140.0 (4methanesulfonylphenyl C-4), 142.1 (4methanesulfonylphenyl C-1). Anal. $(C_{16}H_{14}Br_2O_2S)$: C, H.

Analgesic Assay. Analgesic activity was determined using the 4% sodium chloride-induced writhing (abdominal constriction) assay ^{19,20} as described previously.

Antiinflammatory Assay. Antiinflammatory activity was determined using the carrageenan induced rat paw edema assay as reported previously.²¹

In Vitro Cyclooxygenase-1 (COX-1) and Cyclooxygenase-2 (COX-2) Inhibition

Assays. The ability of the test compound to inhibit (IC₅₀, μ M) the conversion of arachidonic acid (AA) to prostaglandin H₂ (PGH₂) by ram seminal vesicle cyclooxygenase-1 (oCOX-1) and sheep placental cyclooxygense-2 (oCOX-2) was using a COX-1/COX-2 determined inhibitor screening assay kit (Cayman Chemical, Ann Arbor, MI). Briefly, cyclooxygenase catalyzes the first step in the biosynthesis of AA to PGH_2 . $PGF_{2\alpha}$ produced from PGH₂ by reduction with stannous chloride is measured by enzyme immunoassay (ACETM competitive EIA). This assay is based on the competition between PGs and PGа acetylcholinesterase conjugate (PG tracer) for a limited amount of PG antiserum. The amount of PG tracer that is able to bind to the PG antiserum is inversely proportional to the concentration of PGs in the wells since the concentration of the PG tracer is held

constant while the concentration of PGs varies. This antibody-PG complex binds a mouse anti-rabbit monoclonal to antibody that has been previously attached to the well. The plate is washed to remove any unbound reagents and then Ellman's reagent, which contains the substrate to acetylcholinesterase, is added to the well. The product of this enzymatic reaction produces a distinct yellow color that absorbs at 405 nm. The intensity of this color. determined spectrophotometrically, is proportional to the amount of PG tracer bound to the well, which is inversely proportional to the amount of PGs present in the well during the incubation: Absorbance ∞ [Bound PG Tracer] \propto 1/PGs. Percent inhibition was calculated by comparison of compound-treated to various control incubations. The concentration of the test compound causing 50% inhibition $(IC_{50}, \mu M)$ was calculated from the concentration-inhibition response curve (duplicate determinations). The validity of this in vitro COX-1/COX-2 inhibition assay was demonstrated using celecoxib (Celebrex®) as a reference drug where it gave values (COX-1 IC₅₀ = 22.9 μ M; $COX-2 IC_{50} = 0.0567 \mu M; COX-2$ selectivity index = 404) close to those previously reported.⁴

Modeling Molecular (Docking) Study. The coordinates from the X-ray crystal structure of murine COX-2 used in this simulation were obtained from the Protein Data Bank (PDB file 1cx2), where the active site is bound to the selective COX-2 inhibitor 4-[5-(4bromophenyl)-3-trifluoromethyl-1Hpyrazol-1-yl]benzenesulfonamide (SC-558). The MM3 optimized structures of (E)-(11h)(Z)the and (10h)stereoisomers of 1,1-dichloro-2-(4-

methanesulfonylphenyl)-3-

phenylcyclopropane were subjected to dynamics optimization using the Alchemy 2000 program at 300K over a 0.001 ps time step for 1 ps. The lowest energy conformation obtained in this way was superimposed on SC-558 in the PDB file 1CX2 using the Insight II program, after which SC-558 was deleted. In order to relieve any unfavorable side chain overlaps and non bond-energies introduced in the model structure, the Measure/Bump command was used. Subsets of the enzyme were defined allowing residues within 10 Å of the ligand to relax, whereas all other enzyme residues were fixed. The Affinity command in the Docking module was used to complete the docking experiment. Minimization of the ligand-active site assembly was performed over 20,000 steps reaching a convergence of 0.01 Kcal/molÅ using the steepest descent method followed by the conjugate gradient method to reach a final convergence of 0.001 Kcal/molÅ. The CVFF force field was used in the docking experiment. The intermolecular energy of the drug-active site (assembly) interaction was used to evaluate the quality of the docking experiment.

Supporting Information on Elemental Analysis Data is Available in Appendix 1.1.

2.6.0.0. References

 Masferrer, J. L.; Zweifel, B. S.; Manning, P. T.; Hauser, S. D.; Leahy, K. M.; Smith, W. G.; Isakson, P. C.; Seibert, K. Selective inhibition of inducible cyclooxygenase-2 in vivo is antiinflammatory and nonulcerogenic. *Proc. Natl. Acad. Sci. USA*, **1994**, *91*, 3228-3232.

- (2) Chan, C. C.; Boyce, S.; Brideau, C.; Ford-Hutchinson, A. W.; Gordon, R.; Guay, D.; Hill, R. G.; Li, C. S.; Mancini, J.; Penneton, M.; Prasit, P.; Rasori, R.; Riendeau, D.; Roy, P.; Tagari, P.; Vickers, P.; Wong, E.; Rodger, I. W. Pharmacology of a selective cyclooxygenase-2 inhibitor, L-745,337: A novel nonsteroidal antiinflammtory agent with an ulcerogenic sparing effect in rat and nonhuman primate stomach. J. Pharmacol. Exp. Ther. 1995, 274, 1531-1537.
- (3) Goldstein J. L.; Silverstein, F. E.; Agrawal, N. M.; Hubbard, R. C.; Kaiser, R. N. J.; Maurath, C. J.; Verburg, K. M.; Geis, G. S. Reduced risk of upper gastrointestinal ulcer complications with celecoxib, a novel COX-2 inhibitor. Am. J. Gastroenterol. 2000, 95, 1681-1690.
- (4) Penning, T,; Talley. J.: Bertenshaw, S.; Carter, J.; Collins, P.; Docter, S.; Graneto, M.; Lee, L.; Malecha, J.: Miyashiro, J.; Rogers, R.; Rogier, D.; Yu, S.; Anderson, G.; Burton, E.; Cogburn, J.; Gregory, S.; Koboldt, C.; Perkins, W.; Seibert, K.; Veenhuizen, A.; Zhang, Y.; Isakson. Р. **Synthesis** and biological evaluation of the 1,5diarylpyrazole class of cyclooxygenase-2 inhibitors: Identification of 4-[5-(4methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1yl)] benzenesulfonamide (SC-58635, Celecoxib). J. Med. Chem. **1997**, 40, 1347-1365.

- Prasit, P.; Wang, Z.; Brideau, C.; (5) Chan, C. C.; Charleson, S.; Cromlish, W.; Ethier, D.; Evans, J. F.; Ford-Hutchinson, A. W.; Gauthier, J. Y.; Gordon, R.; Guay, J.; Gresser, M.; Kargman, S.; Kennedy, B.; Leblanc, Y.; Leger, S.; Mancini, J.; O'Neill, G. P.; Quellet, M.; Percival, M. D.; Perrier, H.; Riendeau, D.; Rodger, I.; Tagari, P.; Therien, M.; Vickers, P.; Wong, E.; Xu, L. J.; Young, R. N.; Zamboni, R.; Boyce, S.; Rupniak, N.; Forrest.; M.; Visco, D.; Patrick, D. The discovery of rofecoxib, [MK 966, Vioxx[®]. 4-(4'-methylsulfonyl phenyl)-3-phenyl-2(5H)furanone], an orally active inhibitor. cyclooxygenase-2 Bioorg. Med. Chem. Lett. 1999, 9, 1773-1778.
- Luong, C.; Miller, A.; Barnett, J.; Chow, J.; Ramesha, C.; Browner, M. F. Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2. *Nature Struct. Biol*, **1996**, *3*, 927-933.
- (7) Kurumbail, R. G.; Stevens, A. M.; Gierse, J. K.; McDonald, J. J.; Stegeman, R. A.; Pak, J. Y.; Gildehaus, D.; Miyashiro, J. M.; Penning, T. D.; Seibert, K.; Isakson, P. C.; Stallings, W. C. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. *Nature* 1996, 384, 644-648.
- (8) Friesen, R. W.; Dube, D.; Fortin, R.; Frenette, R.; Prescott, S.; Cromlish, W.; Greig, G. M.; Kargman, S.; Wong, E.; Chan, C. C.; Gordon, R.; Xu, L. J. Novel 1,2-diarylcyclobutenes: Selective and orally active COX-2

inhibitors. Bioorg. Med. Chem. Lett. 1996, 22, 2677-2682.

- (9) Agudoawu, S.; Li, H.; Habeeb, A. G.; Rao, P. N. P.; Suresh, M. R.; Knaus, E. E. Design and syntheses of methyl 2-methyl-2-[2-(4-benzoyl-5-phenyl-7-halo-2-azabicyclo[4.1.0]hept-3-ene)]acetates: Novel inhibitors of cyclooxygenase (COX-2) with analgesic-antiinflammatory activity. Drug. Dev. Res. 2000, 49, 75-84.
- (10) Jonnalagadda, S. S.; Haar, E. T.; Hamel, E.; Lin, C. M.; Magarian, R. A.; Day, B. W. Synthesis and biological evaluation of 1,1dichloro-2,3-diarylcyclopropanes as antitubulin and anti-breast cancer agents. *Bioorg. Med. Chem.* 1997, 5, 715-722.
- (11) Wheeler, O. H.; Pabon, H. N. B. Synthesis of stilbenes, a comparative study. J. Org. Chem. 1965, 30, 1473-1477.
- (12) Jiang, X.; Ji, G. Z.; Wang, D. Z. R.; Xie, J. R. Y. Successful application of the spin delocalization substituent constants σ to the correlation of the UV spectra of some model compounds with para-Ysubstituted phenyl groups. J. Phys. Org. Chem. 1995, 8, 781-790.
- (13) Furniss, B. S.; Hannford, A. J.; Smith, P. W. G.; Tatchell, A. R. Vogel's text book of practical organic chemistry, 5th ed. Essex: Longman Scientific. 1995, p 495-501.
- (14) Bestmann, H. J. Old and new ylid chemistry. *Pure & Appl. Chem.* 1980, 52, 771-788.
- (15) Seyferth, D.; Lambert, R. L. Halomethyl-metal compounds. 49

XX. An improved synthesis of phenyl(tribromomethyl)mercury compounds. J. Organometal. Chem. 1969, 16, 21-26.

- (16) Magarian, R. A.; Benjamin, E. J. Synthesis of cyclopropyl analogs of stibene and stilbenediol as possible antiestrogens. J. Pharm. Sci. 1975, 64, 1626-1632.
- (17) Zimmerman, H. E.; Steinmetz, M. G.; Kreil, C. L. The aryl vinyl methane version of the d-π-methane rearrangement. Mechanistic and exploratory organic photochemistry. J. Amer. Chem. Soc. 1978, 100, 4146-4162.
- (18) Lin, L. H.; Lin, S. T.; Yang, H. J. Nitration of 2-aryl-1,1dihalocyclopropanes containing methyl or phenyl group. J. Chinese. Chem. Soc. 1998, 45, 193-197.
- (19) Fukawa, K.; Kawano, O.; Hibi, M.; Misaka, N.; Ohba, S.; Hatanaka, A. Method for evaluating analgesic agents in rats. J. Pharmacol. Methods 1980, 4, 251-259.
- (20) Buolamwini, J. K.; Knaus, E. E. Synthesis and antinociceptive activity of 4-pyridyl and dihydropyridyl analogues of meperidine and ketobemidone. Drug Des. Del, 1990, 7, 19-31.
- (21) Kumar, P.; Knaus, E. E. Synthesis and antiinflammatory activity of N-substituteddihydropyridylacetic acids, esters and amides. *Drug Des. Del.* 1987, 2, 145-149.
- Buchanan, J. G.; Edgar, A. R.; Hutchison, R. J.; Stobie, A.; Wightman, R. H. C-Nucleoside studies. Part 10. A new synthesis

of $3-(2,3,5-\text{tri-}O-\text{benzyl-}\beta-D-\text{ribofuranosyl})$ pyrazole and its conversion into $4-\text{nitro-}3(5)-\beta-D-\text{ribofuranosyl}$ pyrazole. J. Chem. Soc. Perkin. Trans. I **1980**, 2567-2571.

- (23) Moss, R. A. Carbonic selectivity in cyclopropanation reactions. *Acc. Chem. Res.* **1980**, *2*, 58-64.
- (24) Moss, R. A.; Perez, L. A.; Turro, N. J.; Gould, I. R.; Hacker, N. P. Hammet analysis of absolute carbene addition rate constants. *Tetrahedron Lett.* 1983, 24, 685-688.
- (25) Schoeller, W. W.; Aktekin, N.; Friege, H. Olefin selectivities in the addition of carbenes. *Angew Chem Int. Ed.* **1982**, *21*, 932-933.
- (26) Jackman, L. M.; Sternhell, S. Application of nuclear magnetic resonance spectrometry in organic chemistry, 2nd ed. Toronto: Pergamon Press. 1969, p 228-229, 286.
- (27) Tandon, M.; Wiebe, L. I.; Knaus, E. E. Synthesis, separation and absolute configuration of the two 5-(2,2-dibromocyclopropyl) and four 5-(2-bromocyclopropyl) diastereomers of 2'-deoxyuridine. *Can. J. Chem.* 1989, 67, 1484-1488.
- (28) Tandon, M.; Singh, S.; Wiebe, L. I.; Knaus, E. E.; Gati, W. P.; Tempest, M. L. Synthesis of the diastereomers of 5-(2,2-dichlorocyclopropyl) and 5-(2-chlorocyclopropyl)-2'-deoxyuridine and the antiviral and cytotoxic activity of these and bromo analogs. *Drug. Des. Del.* 1992, 7, 295-307.
- (29) Tandon, M.; Singh, S.; Xu, L.; Kumar, P.; Wiebe, L. I.; Knaus,

E. E.; Gati, W. P.; Tempest, M. L. Synthesis and biological activity of 5-(2,2-difluorocyclopropyl)-2'deoxyuridine diastereomers. *Drug Des. Del.* **1992**, *9*, 79-91.

- (30) March, J. Advanced organic chemistry. Reactions, mechanisms and structure. 3rd ed. New York: John Wiley & Sons. 1985, p. 131, 975.
- (31) Gierse, J. K.; McDonald, J. J.; Hauser, S. D.; Rangwala, S. H.; Koboldt, C. M.; Seibert, K. A. single amino acid difference between cyclooxygenase-1 (COX-1) and -2 (COX-2) reverses the selectivity of COX-2 specific inhibitors. J. Biol. Chem. 1996, 271, 15810-15814.
- (32) Bayly, C. I.; Black, W. C.; Leger, S.; Quimet, N.; Quellet, M.; Percival, M. D. Structurebased design of COX-2 selectivity into flurbiprofen. *Bioorg. Med. Chem. Lett.* 1999, 9, 307-312.

Appendix 1.1:

Elemental Analysis for Compounds 8e, 10d, 10h-l, 11c, 11d and 11e-l.

Cmpd	Empirical Formula	Calcula	ted	Found				
		С	Н	N	С	Н	N	
8e	C ₁₅ H ₁₄ O ₂ S	69.74	5.46		69.41	5.13	-	
10d	$C_{15}H_{11}Cl_2NO_2$	45.37	2.79	3.53	45.08	2.61	3.21	
10h	$C_{16}H_{14}Cl_2O_2S.1/3H_2O$	55.29	4.16		55.28	4.10	—	
10i	C ₁₅ H ₁₁ Br ₂ Cl.1/3H ₂ O	45.85	2.97		45.93	2.65	-	
10j	C ₁₅ H ₁₁ Br ₃ .1/2H ₂ O	40.91	2.72	-	40.65	2.58		
10k	$C_{15}H_{11}Br_2F.1/2H_2O$	47.48	3.16	_	47.25	2.90	_	
101	$C_{16}H_{14}Br_2O_2S.1/3H_2O$	44.02	3.36	-	44.04	3.02	_	
11c	$C_{15}H_{11}Cl_2NO_2$	58.46	3.60	4.55	58.41	3.51	4.57	
11d	$C_{15}H_{11}Br_2NO_2$	45.37	2.79	3.53	45.07	2.84	3.50	
11e	C ₁₅ H ₁₁ Cl ₃ .1/2H ₂ O	58.70	3.91	-	58.50	3.52		
11 f	$C_{15}H_{11}BrCl_2.1/2H_2O$	51.27	3.41		51.02	3.11		
11g	C ₁₅ H ₁₁ Cl ₂ F.1/3H ₂ O	62.68	4.06	_	63.04	3.87		
11h	$\mathrm{C_{16}H_{14}Cl_2O_2S}$	56.31	4.14	-	56.05	3.93	_	
11i	$C_{15}H_{11}Br_2Cl$	46.60	2.87		46.43	2.74		
11j	C15H11Br3	41.81	2.57	_	42.03	2.47		
11k	$C_{15}H_{11}Br_2F.1/3H_2O$	47.48	3.07	_	47.77	2.71	_	
111	$C_{16}H_{14}Br_2O_2S$	44.68	3.28		44.73	3.31	_	

3.0.0.0. CHAPTER 2.0 6-Alkyl, Alkoxy or Alkylthio-Substituted 3-(4-Methanesulfonylphenyl)-4phenylpyran-2-ones: A Novel Class of Diarylheterocyclic Selective Cyclooxygenase-2 Inhibitors

3.1.0.0. Introduction

Selective cyclooxygenase-2 (COX-2) inhibitors currently provide effective treatment of inflammatory disease states rheumatoid arthritis such as and osteoarthritis.¹ Recent studies have shown that selective COX-2 inhibitors can also induce apoptosis in colon, stomach, prostate and breast cancer cell lines.² Selective COX-2 inhibitors offer potential for the prophylactic prevention of inflammatory neurodegenerative disorders such as Alzheimer's disease.³

Diarylheterocycles constitute a major class of selective COX-2 inhibitors (Chart 2.1). In this regard, celecoxib (1)possesses a central 5-membered pyrazole ring, whereas etoricoxib (2) has a central 6-membered pyridine ring.⁴ Extensive structural activity relationship (SAR) studies for the diarylheterocycle class have shown that a SO₂NH₂ or SO₂Me and F substituents at the para-position of one of the aryl rings often provides COX-2 selectivity optimum and potency.⁵ Thus, the selective COX-2 SC 57666 inhibitor (3) has а sulfonylmethyl group at the para position of one phenyl ring along with a fluorine atom at the para-position on the other phenyl ring.⁶ The highly selective COX-2 inhibitor rofecoxib (4) belongs to a diarylheterocylic class that possesses a central 5-membered lactone, [2-(5H)furanone], ring system.⁷ We describe herein the design, synthesis and

biological evaluation of a novel class of diarylheterocyclic, 6-alkyl, alkoxy or alkylthio-substituted-3-(4methanesulfonylphenyl)-4phenylpyran-2-ones, that possesses a central 6-membered lactone (pyran-2one) ring.

Chart 2.1: Representative examples of diarylheterocyclic selective COX-2 inhibitors

3.2.0.0. Chemistry

The synthetic reactions used for the synthesis of 6-alkyl, alkoxy or alkylthiosubstituted-3-(4-methanesulfonylphenyl)-4-phenylpyran-2-ones (10a-c, 11a-c and 12a-c) are outlined in Schemes 2.1, 2.2 and 2.3. The 2,3-diphenylcyclopropenone (6) with a thiomethyl substituent at the *para*-position of one of the phenyl rings was prepared in moderate yields (22-

Bioorg. Med. Chem. Lett. 2003, 13, 2205-2209

Scheme 2.1. Reagents and conditions: (a) dry AlCl₃, 1,2-dichloroethane, benzene, 25 °C, 24 h; (b) thioanisole, 25 °C, 24 h; (c) H_2O , 25 °C, 10 min; (d) aqueous Oxone[®], THF- MeOH (1:1), 25 °C, 4-5 h.

33%) using a one-pot reaction starting with tetrachlorocyclopropene (5). The sequential arylation of 5 with benzene and methylthiobenzene, followed by hydration with ice-water yielded 2-(4methylthiophenyl)-3-phenylcycloprop-2ene-1-one (6) as the major product along with the 2-(2-methylthiophenyl)-3phenylcycloprop-2-ene-1-one regioisomer as a minor product (ratio 4:1) which could not be purified by column chromatography. Subsequent oxidation of using aqueous Oxone[®] solution 6 afforded the methane sulfonyl product 7 as shown in Scheme 2.1.⁸ The *N*-alkyl, alkoxy or alkylthiocarbonylmethyl pyridinium chlorides or bromides (9a-i, 33-68%) were prepared by the reaction of the respective alkyl, alkoxy or alkylthiosubstituted chloro or bromoacetate (8a, **8b** or **8c**) with pyridine as illustrated in Scheme 2.2.

The target 6-alkyl, alkoxy or alkylthio-substituted-3-(4-

methanesulfonylphenyl)-4-phenylpyran-2-ones (10a-c, 11a-c and 12a-c) were prepared in low to moderate yields (9-44%) by the condensation of 7 with the respective pyridinium chlorides or bromides (9a-c, 9d-f or 9g-i) in the presence of the base Et_3N to produce an intermediate ylide product that undergoes a ring expansion reaction to afford the title products (10a-c, 11a-c or 12a-c) as illustrated in Scheme 2.3.⁹ The structures

Scheme 2.2: Reagents and conditions: (a) pyridine, THF, 25 °C, 6 h.

Scheme 2.3: Reagents and conditions: (a) benzene, triethylamine, 25 °C, 16-18 h.
of 10-12 were confirmed by microanalyses data and ¹H NMR NOE studies which showed NOE interactions between H-5 and the 6-alkyl (R), alkoxy (O-R) or alkylthio (S-R) moiety, and between H-5 and the C-4 ortho-phenyl hydrogens, which establishes the regiochemistry of the C-4 and C-5 phenyl rings.

3.3.0.0. Results and discussion

The effect of the C-6 alkyl (10a-c), alkoxy (11a-c) and alkylthio (12a-c) substituents on the central 6-membered lactone (pyran-2-one) ring on COX-2 selectivity and potency was determined by in vitro COX-1/COX-2 inhibition studies. The structure activity relationships acquired showed that this lactone class of compounds are moderate to potent selective COX-2 inhibitors (see data in Table 2.1).

The 6-alkyl-3-(4-methanesulfonyl phenyl)-4-phenylpyran-2-ones (10a-c),show weak moderate to COX-1 inhibition (8.0-614.8 μ M range) with good COX-2 inhibition in the 0.5-1.5 μ M range. In the alkoxy series (11a-c), good COX-2 inhibitory activity and selectivity was shown by the 6-ethoxy derivative **11b** (COX-1 IC₅₀ = 281.5 μ M; COX-2 $IC_{50} = 1.3 \ \mu M$; COX-2 Selectivity Index = 216.5). Introduction of a thioethyl (EtS-) substituent at C-6 of the central pyran-2-one ring led to a dramatic increase in COX-2 selectivity and potency, with 12b showing a weak COX-1 inhibition (COX-1 IC₅₀ = 386.2 μ M) and potent inhibition of COX-2 (COX-2 $IC_{50} =$ 0.0032 μ M) for a very high COX-2 S.I. > 120,000 relative to the reference drug rofecoxib (COX-2 $IC_{50} = 0.4279$; S.I. > 1,168).

The critical difference between the binding sites for COX-1 and COX-2 is

Table 2.1: In vitro inhibition of COX-1 andCOX-2 by 6-alkyl, 6-alkoxy or 6-alkylthio-3-(4-methanesulfonylphenyl)-4-phenylpyran-2-ones(10a-c, 11a-c and 12a-c).

Compd	COX-1	COX-2	COX-2	
	inhibition	inhibition	S.I. ^b	Volume
	IC ₅₀ , μM ^a	IC ₅₀ , μM ^a		
				$(Å^3)^c$
10a	614.8	0.68	904.0	294.0
10b	8.0	1.5	5.0	310.0
10c	341.5	0.50	683.0	327.0
11a	14.7	28.3		302.0
11b	281.5	1.3	216.5	320.0
11c	4.0	2.0	2.0	336.0
12a	> 100	2.8	36.0	311.0
12b	386.2	0.0032	120,000	329.0
12c	> 100	> 100		346.0
Rofecoxib	> 500	0.4279	> 1,168	267.0
Celecoxib	22.9	0.0567	404	298.0

^a Values are means of two determinations acquired using an ovine COX-1/COX-2 assay kit (Catalog No. 560101, Cayman Chemicals Inc., AnnArbor, MI) and the deviation from the mean is < 10% of the mean value.

^b In vitro COX-2 selectivity index (IC_{50} COX-1/ IC_{50} COX-2).

^c The volume of the molecule, after minimization using the MM3 forcefield, was calculated using the Alchemy 2000 program.

at position 523 where COX-2 has the amino acid residue Val in place of the bulkier Ile in COX-1. This difference produces a secondary pocket extending off the primary binding site in COX-2 that is absent in COX-1. Consequently, the combined volume of the primary binding site and the secondary pocket in COX-2 is about 25% larger (394 Å³) than the volume of the COX-1 binding site (316 Å^3) .¹⁰ This difference in volume can be exploited to manipulate COX-2 selectivity of diarylheterocyclic classes of COX-2 inhibitors, by varying the volume of the drug and the appropriate placement of substituents with varying electronic and steric properties.¹¹

It is well established for the diarylheterocyclic class of COX-2

Figure 2.1. Docking of 12b (ball and stick) in the active site of murine COX-2 (line and stick) ($E_{intermolecular} = -90.81$ kcal/mol). Hydrogen atoms of the amino acid residues are removed to increase clarity.

inhibitors, that a para-methylsulfone or sulfonamide substituent on one of the phenyl rings is a requirement for good COX-2 potency and selectivity.³ Accordingly, the 6-alkyl, 6-alkoxy and 6alkylthio-3-(4-methanesulfonylphenyl)-4phenylpyran-2-one group of compounds were designed to have a $-SO_2Me$ substituent at the para-position of one of the phenyl rings. Compounds 10a-c, 11ac and 12a-c have volumes in the range of 293-345 $Å^3$, relative to the selective COX-2 inhibitor rofecoxib (267.0 $Å^3$) as shown in Table 2.1. In general, for this series of compounds, COX-2 selectivity and potency was dependant upon steric and electronic properties of the C-6 substituent on the central pyran-2-one ring which positions sulfonylmethyl moiety in the vicinity of the secondary pocket of COX-2.

The orientation of the highly potent

inhibitor, 6and selective COX-2 ethylthio-3-(4-methanesulfonylphenyl)-4phenylpyran-2-one (12b), in the COX-2 active site was examined by a docking experiment (Fig. 2.1).¹² This study showed that 12b binds in the center of the primary binding site of COX-2 with the SO₂Me moiety interacting with the secondary pocket amino acid residues (Phe⁵¹⁸, Gln¹⁹², Arg⁵¹³, Leu³⁵², Ser³⁵³ and Val⁵²³). One of the *O*-atoms of the SO₂Me substituent forms a hydrogen bond with the amide hydrogen of Phe⁵¹⁸ (1.92 Å). The ring O-atom of the central lactone (pyran-2-one) is oriented in the direction of the polar amino acid Arg¹²⁰ at the mouth of the channel, where this O-atom is about 4.24 Å away from the NH_2 (guanidino) group. The C=O of the central pyran-2-one is hydrogen bonding with the OH of Tyr³⁵⁵ (1.70 Å). These interactions may disrupt the salt bridge

between His^{90} , Arg^{120} , Tyr^{355} and Glu^{524} at the mouth of the COX-2 active site. The unsubstituted phenyl ring lies in a hydrophobic cavity lined by Tyr³⁸⁵, Trp³⁸⁷, Tyr³⁴⁸ and Ser⁵³⁰. Interestingly. the C-6 EtS-substituent is located in a hydrophobic region formed by Val³⁴⁴, Ile³⁴⁵, Val³⁴⁹, Ser⁵³⁰ and Leu⁵³¹, with the S-atom forming a weak hydrogen bond with the OH of Ser^{530} (5.08 Å). This shows the importance of C-6 substituent in orienting the molecule such that the methylsulfone moiety inserts into the secondary pocket of COX-2. A similar docking study for the less potent, and less selective, COX-2 inhibitory C-6 OEt analogue (11b) showed that the SO₂Me moiety is inserted less deeply into the secondary pocket than the C-6 SEt of 12b, the lactone ring oxygen atom in 11b is closer to the NH₂ of Arg¹²⁰ (3.26 Å) relative to 4.24 Å in 12b, that the C-6 OEt oxygen atom is not within hydrogen bonding distance of the OH of Ser^{530} (6.63 Å), and the intermolecular energy for the ligand-enzyme complex for **11b** is higher (-87.60 kcal/mol). These observations together with the larger volume (329.0 Å³), provides a good explanation for the potent and selective inhibitory activity of 12b.

3.4.0.0. Conclusions

The results of this investigation show (i) a C-6 thioethyl (-SEt) substituent $(12b)^{13}$ in this 3-(4methanesulfonylphenyl)-4-phenylpyran-2-one diarylheterocycles class of provides potent and selective inhibition of the COX-2 isozyme, (ii) molecular modeling studies indicate the SO₂Me moiety inserts deep into the COX-2 secondary pocket and the C-6 SEt sulfur atom forms a weak hydrogen bond with the OH atom of Ser⁵³⁰ and (iii) these C-6 alkyl, alkoxy and alkylthio compounds **10-12** could serve as useful probes to study the function and catalytic activity of the COX-2 isozyme.

3.5.0.0. References and Notes

- (1) (a) Silverstein, F. E.; Faich, G.; Goldstein, J. L.; Simon, L. S.; Pincus, T.; Whelton, A., Makuch, R.; Eisen, G.; Agrawal, N. M.; Stenson, W. F.; Burr, A. M.; Zhao, W. W.; Kent, J. D.; Lefkowith, J. B.; Verburg, K. M.; Geis. G. S. Gastrointestinal toxicity with celecoxib vs nonsteroidal antiinflammatory drugs for osteoarthritis and rheumatoid arthrits. The class study: a randomized controlled trial. JAMA 2000, 284, 1247-1255. (b) Hawkey, C.; Laine, L.; Simon, T.; Beaulieu. A.; Maldonado, C. J.; Acevedo, E.; Shahane, A.; Quan, H.; Bolognese, J.; Mortensen, E. Comparison of the effect of rofecoxib (a cyclooxygenase-2 inhibitor), ibuprofen and placebo on the gastroduodenal mucosa of patients with osteoarthritis: a randomized, double-blind, placebo-controlled trial. The osteoarthritis rofecoxib endoscopy multinational study group. Arthritis Rheum. 2000, 43, 370-377.
- (2) (a) Arico, S.; Pattingre, S.; Bauvy, C.; Gane, P.; Barbat, A.; Codogno, P.; Denis, O. E. Celecoxib induces apoptosis by inhibiting 3-phosphoinositidedependent protein kinase-1 activity in the human colon cancer HT-29 cell line. J. Biol. Chem. 2002, 277, 27613-27621.

(b) Sawaoka, H.; Kawano, S.; Tsuji, S.; Tsuji, M.; Gunawan, E. S.; Takei, Y.; Nagano, K.; Hori, M. Cyclooxygenase-2 inhibitors suppress the growth of gastric cancer xenografts via induction of apoptosis in nude mice Am. J. Physiol. **1998,** 274, G1061-G1067. (c) Liu, H. X.; Kirschenbaum, A.; Yao, S.; Lee, R.; Holland, F. J.; Levine, C. A. Inhibition of cyclooxygenase-2 suppresses angiogenesis and the growth of prostate cancer in vivo. J. Urol. 2000, 164, 820-825. (d) Davies, G.; Martin, L. A.; Sacks, N.; Dowsett, M. Cyclooxygenase-2 (COX-2), aromatase and breast cancer: a possible role for COX-2 inhibitors in breast cancer chemoprevention Ann. Oncol. 2002, 13, 669-678.

- (3) Pasinetti, G. M. Cyclooxygenase and Alzheimer's disease: implications for preventive initiatives to slow the progression of clinical dementia *Arch. Gerontol. Geriatr.* 2001, 33, 13– 28.
- Т.; Penning, (4) (a) Talley, J.; Bertenshaw, S.; Carter, J.; Collins, P.; Docter, S.; Graneto, M.; Lee, L.; Malecha, J.: Miyashiro, J.; Rogers, R.; Rogier, D.; Yu, S.; Anderson, G.; Burton, E.; Cogburn, J.; Gregory, S.; Koboldt, C.; Perkins, W.; Seibert, K.; Veenhuizen, A.; Zhang, Y.; Isakson, P. J. Med. Chem. 1997, 40, 1347-1365. (b) Riendeau, D.; Percival, M. D.; Brideau, C.; Charleson, S.; Dube, D.; Ethier, D.; Falgueyret, J. P.; Friesen, R. W.; Gordon, R.; Greig, G.; Guay, J.; Mancini, J.; Ouellet, M.;

Wong, E.; Xu, L.; Boyce, S.; Visco, D.; Girard, Y.; Prasit, P.; Zamboni, R.; Rodger, I. W.; Gresser, M.; Ford-Hutchinson, A. W.; Young, R. N.; Chan, C. C. Etoricoxib (MK-0663): preclinical profile and comparison with other agents that selectively inhibit cyclooxygenase-2. J. Pharmacol. Exp. Ther. 2001, 296, 558-566.

- (5) Talley, J. J. Selective inhibitors of cyclooxygenase-2 (COX-2). *Prog. Med. Chem.* 1999, 36, 201–233.
- (6) Li, J. J.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Collins, J. T.; Garland, D. J.; Gregory, S. A.; Huang, H. C.; Isakson, P. C.; Koboldt, C. M.; Logusch, E. W.; Norton, M. B.; Perkins, W. E.; Reinhard, E. J.; Seibert, K.; Veenhuizen, Α. W. 1.2-Diarylcyclopentenes as selective cyclooxygenase-2 inhibitors and orally active antiinflammatory agents. J. Med. Chem. 1995, 38, 4570-4578.
- (7) Prasit, P.; Wang, Z.; Brideau, C.; Chan, C. C.; Charleson, S.; Cromlish, W.; Ethier, D.; Evans, J. F.; Ford-Hutchinson, A. W.; Gauthier, J. Y.; Gordon, R.; Guay, J.; Gresser, M.; Kargman, S.; Kennedy, B.; Leblanc, Y.; Leger, S.; Mancini, J.; O'Neill, G. P.; Quellet, M.; Percival, M. D.; Perrier, H.; Riendeau, D.; Rodger, I.; Tagari, P.; Therien, M.; Vickers, P.; Wong, E.; Xu, L. J.; Young, R. N.; Zamboni, R.; Boyce, S.; Rupniak, N.; Forrest, M.; Visco, D.; Patrick, D. The discovery of rofecoxib, [MK 966, Vioxx[®]. 4-(4'-methylsulfonyl

phenyl)-3-phenyl-2(5H)-

furanone], an orally active cyclooxygenase-2 inhibitor. *Bioorg. Med. Chem. Lett.* **1999**, 9, 1773–1778.

- (8) Li, H.; Rao, P. N. P.; Habeeb, A. G.; Knaus, E. E. Design, syntheses, and evaluation of 2,3-diphenylcycloprop-2-en-1-ones and oxime derivatives as potential cyclooxygenase-2 (COX-2) inhibitors with analgesic-antinflammatory activity. Drug Dev. Res. 2002, 57, 6-17.
- (9) (a) Hayashi, Y.; Nozaki, H. Reaction of sulphonium ylides with diphenylcyclopropenone. A new synthesis of 2-pyrones. *Tetrahedron* 1971, 27, 3085– 3093. (b) Sasaki, T.; Kanematsu, K.; Kakehi, A. Formation of 1,3oxazine and 2-pyrone derivatives from the reaction of pyridinium ylides with diphenyl cyclopropenone. J. Org. Chem. 1971, 36, 2451–2453.
- (10) (a) Luong, C.; Miller, A.; Barnett, J.; Chow, J.; Ramesha, C.; Browner, M. F. Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2 Nature Struct. Biol. **1996,** 3, 927–933. (b) Gierse, J. K.; McDonald, J. J.; Hauser, S. D.; Rangwala, S. H.; Koboldt, C. M.; Seibert, K. A single amino acid difference between cyclooxygenase-1 (COX-1) and -2 (COX-2) reverses the selectivity of COX-2 specific inhibitors. J. Biol. Chem. 1996, 271, 15810-15814.
- (11) Kurumbail, R. G.; Stevens, A. M.; Gierse, J. K.; McDonald, J. J.; Stegemen, R. A.; Pak, J. Y.;

Gildehaus, D.; Miyashiro, J. M.; Penning, T. D.; Seibert, K.; Isakson, P. C.; Stallings, W. C. Structural basis for selective inhibition of cyclooxygenase-2 by anti inflammatory agents. *Nature* **1996**, *384*, 644–648.

(12) Docking studies were performed using Insight II software Version 2000.1 (Accelrys Inc.) running on a Silicon Graphics Octane 2 R14000A workstation. The coordinates of the X-ray crystal structure of the selective COX-2 inhibitor SC-558 bound to the murine COX-2 enzyme was obtained from the RCSB Protein Data Bank (1cx2) and hydrogens were added. The ligand molecules constructed were using the Builder module and were energy minimized for 1000 iterations reaching a convergence of 0.01 kcal/mol Å. The energy minimized ligands were superimposed on SC-558 in the PDB file 1cx2 after which SC-558 was deleted. The resulting structure (ligand-enzyme assembly) was minimized using the Discover module for 5000 iterations or until an RMSD of Å was reached using 0.05 consistent valence force field (CVFF). Further optimization of the ligand-enzyme complex was obtained using the Affinity command in the Docking module of Insight II by defining subsets of the enzyme such that residues within 10 Å of the ligand were allowed to relax, while the rest of the enzyme residues were fixed. The optimal binding orientation was achieved by utilizing 300 steps of steepest descent followed by the conjugate gradient method. The CVFF was employed for all docking purposes. These docked structures were very similar to the minimized structures obtained initially. The quality of the docked structures were evaluated by measuring the intermolecular energy of the ligand-enzyme assembly.

Analytical data for 12b. Mp 175-(13) 176 °C; IR (KBr): 1718 (C=O), 1314, 1153 (SO₂) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): 1.46 (3H, t, J = 7.3 Hz, SCH₂CH₃), 3.03 (3H, s, SO_2CH_3), 3.15 (2H, q, J = 7.3 Hz, SCH_2CH_3), 6.35 (1H, s, pyranone H-5), 7.04-7.07 (2H, m, phenyl H-2, H-6), 7.21-7.31 (3H, m, phenyl H-3, H-4, H-5), 7.35 (2H, d, J = 8.5 Hz, 4-MeSO₂-C₆H₄ H-2, H-6), 7.78 (2H, d, J = 8.5 Hz, $MeSO_2-C_6H_4$ H-3, H-5). Anal. Calcd for C₂₀H₁₈O₄S₂: C 62.16, H 4.69. Found: C 62.04, H 4.85.

4.0.0.0. CHAPTER 3.0

Design, Synthesis and Biological Evaluation of 6-Substituted-3-(4methanesulfonylphenyl)-4-phenylpyran-2-ones: A Novel Class of Diarylheterocyclic Selective Cyclooxygenase-2 Inhibitors

4.1.0.0. Introduction

The differential tissue distribution of cyclooxygenase-1 (COX-1)and cyclooxygenase-2 (COX-2) provides a rationale for the development of selective COX-2 inhibitors as antiinflammatoryanalgesic agents that lack the GI side effects exhibited bv traditional nonsteroidal-antiinflammatory drugs (NSAIDs).¹⁻⁴ This hypothesis has been applied successfully in the design of two highly selective tricyclic COX-2 inhibitors possess that diaryl а heterocyclic template, ring namely and rofecoxib celecoxib (1), (2) respectively (Chart 1).^{5,6} In addition to its role in rheumatoid arthritis and osteoarthritis, COX-2 is also implicated in colon cancer and angiogenesis.⁷⁻⁹ Recent studies have shown that the progression of Alzheimer's disease is reduced among some users of NSAIDs. Chronic treatment with selective COX-2 inhibitors may therefore slow the progress of Alzheimer's disease, without causing GI damage.¹⁰

Diarylheterocycles, and other central ring pharmacophore templates, have been extensively studied as cyclooxygenase inhibitors. All these tricyclic molecules possess 1,2-diaryl substitution on a central 4-, 5- or 6-membered ring system such as cyclobutenone (3), cyclopentene (4), isoxazole (5), pyrazole (1), 2-(5*H*)furanone (2) or pyridine (6), respectively (Chart 3.1).^{5, 11-15} Structure-activity relationship (SAR) studies have shown that for optimum COX-2 selectivity and potency, a SO₂Me or SO₂NH₂ substituent at the *para*-position of a phenyl ring, and that the presence of a *para*-F substituent on the non-sulfonyl vicinal phenyl ring improves in vivo activity.¹⁶ In a very recent letter, we reported the design and

synthesis of a novel class of diarylheterocycle with a central 6membered lactone (pyran-2-one) ring which exhibited good in vitro COX-2 inhibitory potency and selectivity.¹⁷ The Merck Co. has also developed novel methods to synthesize diarylheterocycles

J. Med. Chem. 2003, 46, 4872-4882

Scheme 3.1: Reagents and conditions: (a) dry AlCl₃, 1,2-dichloroethane, R^1 -C₆H₅ (R^1 = H, F), 25 °C, 24 h; (b) thioanisole, 25 °C, 24 h; (c) H₂O, 25 °C, 10 min; (d) aqueous Oxone®, THF, MeOH, 25 °C, 4–5 h.

having a central 6- membered lactone (pyran-2-one) ring system.¹⁸ We now describe the design, synthesis and biological evaluation of a diverse group of 6-alkyl-, 6-alkoxy- or 6-alkylthio-3-(4methanesulfonylphenyl)-4-phenylpyran-2-ones as selective COX-2 inhibitors with antiinflammatory-analgesic activities.

4.2.0.0. Chemistry

The title 3,4-diphenylpyran-2-ones (14a - v), possessing a central 6membered lactone ring with either a 6alkyl, alkoxy, or alkylthio substituent, were prepared by the condensation of a substituted 2,3-diphenylcycloprop-2-en-1-one (9a or 9b) with the respective pyridinium ylide derivative of 11a-m as illustrated in Schemes 3.1, 3.2, 3.3 and 3.4. The 2-(4-methanesulfonylphenyl)-3phenylcycloprop-2-en-1-one (9a), and the 3-(4-fluorophenyl) analog (9b), were prepared using a one-pot reaction starting with tetrachlorocyclopropene 7 according to our previously reported procedure as shown in Scheme 3.1.¹⁹ The pyridinium salts 11a-g were prepared by the reaction of the respective haloalkylketone (10ac), or alkyl haloacetate (10d-g) with pyridine (Scheme 3.2). The nucleophilic substitution reaction of either chloroacetyl chloride or bromoacetyl

bromide with various alcohols, or thiols, gave the respective alkyl haloacetate (10h-i), or alkyl halothioacetate (10j-m), (which on subsequent reaction with pyridine afforded the respective *N*alkoxy, or alkylthiocarbonyl methylpyridinium halides (11h-m) in moderate to good yields (33-68%) as shown in Scheme 3.3.

Scheme 3.2: Reagents and conditions: (a) pyridine, THF, 25 °C, 6 h.

The 3,4-diarylpyran-2-ones (14a-v) were prepared in low to moderate yields (8-44%) by condensation of a 2-(4methanesulfonylphenyl)-3phenylcycloprop-2-en-1-one (9a or 9b) with a pyridinium salt (11a-m) in the presence of the base triethylamine. The initial ylide compound that is formed in the reaction undergoes a spontaneous

Scheme 3.3: Reagents and conditions: (a) diethyl ether, R^2OH ($R^2 = i$ -Bu or 4-Cl-C₆H₄-CH₂), -23 °C \rightarrow 25 °C, 4 h; (b) diethyl ether, $R^2S'Na^+$ ($R^2 = Me$, Et, *n*-Pr or *i*-Pr), -23 °C \rightarrow 25 °C, 4 h; (c) pyridine, THF, 25 °C, 6 h.

Table 1. COX-1/COX-2 Inhibitory and Antiinflammatory-Analgesic Activities of 6-Alkyl-,6-Alkoxy-, and 6-Alkylthio-3-(4-methanesulfonylphenyl)-4-phenylpyran-2-ones (14a-v).

IC ₅₀ (μM) ^a		Selectivity Index	^b AI Activity	Volume $(Å^3)^e$						
Стро	i R	$^{1} R^{2}$	COX-1	COX-2	•	% Inhibition at 3 hours	% Inhibition at 5 hours	% Inhibition at 30 min.	% Inhibition at 60 min.	-
14a	н	Me	614.8	0.68	904.0	12.5 ± 2.2	23.5 ± 3.2	57.0 ± 4.1	60.4 ± 7.3	293.5
14b	F	Me	201.5	125.3	1.6	-	-	-	_ ·	296.6
14c	Η	Et	8.0	1.5	5.3	_	_		-	310.1
14d	Η	<i>i</i> -Pr	341.5	0.50	683.0	09.8 ± 3.1	19.5 ± 5.3	67.8 ± 9.1	56.9 ± 7.1	326.7
14e	F	i-Pr	15.7	13.6	1.1	35.8 ± 4.8	69.1 ± 4.9	50.9 ± 4.2	20.7 ± 5.4	329.8
14f	Η	Me	14.7	28.3	< 0.5	Inactive	22.0 ± 5.4	55.2 ± 10.1	83.4 ± 1.9	301.7
14g	F	Me	> 1000	59.5	> 20	30.6 ± 4.4	30.0 ± 6.5	49.0 ± 10.5	72.6 ± 4.6	305.5
14h	Н	Et	281.5	1.3	216.5	_	-	-	_	318.7
14i	F	Et	288.0	0.10	2880	32.7 ± 5.3	67.8 ± 5.5	42.8 ± 8.2	75.7 ± 4.1	322.3
14j	Н	<i>i</i> -Pr	4.0	2.0	2.0	-	-	-	-	336.0
14k	F	i-Pr	560.0	83.6	6.7			-	-	338.7
141	Н	t-Bu	> 100	2.7	> 37	29.0 ± 2.8	30.1 ± 3.0^{7}	73.8 ± 4.0 ^g	$80.9 \pm 6.2^{\ g}$	351.3
14m	F	<i>t-</i> Bu	68.5	20.4	3.3	-	_	-	-	355.6
14n	Н	<i>i-</i> Bu	3.1	1.8	> 1.7	-	-	-	-	351.7
140	F	<i>i-</i> Bu	42.6	35.0	1.2		-	-	-	355.5
14p	Н	4-Cl-PhC	CH ₂ 50.7	415.8	< 0.12	-	-	-		386.5
14q	F	4-Cl-PhC	$H_2 301.5$	5 53.3	5.6		-	—		390.8
14r	Н	Me	> 100	2.8	> 35.7	-				311.5
14s	Η	Et	386.	2 0.0032	2 > 120,68	$7 09.2 \pm 3.0^{-3}$	(19.5 ± 2.4)	81.0 ± 5.4^{g}	77.4 ± 8.1^{8}	328.5
14t	F	Et	> 100) 1.44	> 69.4	25.8 ± 4.0	$16.8 \pm 7.1^{\circ}$	54.3 ± 11.5 ^g	66.0 ± 6.5 ^g	331.2
14u	Η	n-Pr	> 100) >100	-	-	-		-	344.6
14v	Η	<i>i-</i> Pr	> 100) > 100	-	-	-	-		345.6
Ibupi	ofe	n				56.2 ± 2.0^{3}	41.5 ± 4.9		_	209.5
Celeo	coxi	b	22.9	0.057	> 401	79.9 ± 1.9^{-7}	" 58.2 ± 1.8	$^{\prime}$ 31.7 ± 9.6 ^g	62.0 ± 7.3	^g 298.5
Rofe	coxi	ib	> 500	0.43	> 1,162	_	-	-	_	267.2

^{*a*} Values are means of two determinations and deviation from the mean is < 10% of the mean value. ^{*b*} In vitro COX-2 selectivity index (IC₅₀ COX-1/IC₅₀ COX-2). ^{*c*} Inhibitory activity on carrageenan-induced rat paw edema. The results are expressed as mean \pm SEM (n = 4–6) following a 1mg/kg oral dose of the test compound. ^{*d*} Inhibitory activity in the rat 4% NaCl-induced abdominal constriction assay. The results are expressed as mean \pm SEM (n = 4–6) following a 1mg/kg intraperitoneal dose of the test compound. ^{*e*} The volume of the molecule after minimization using the PM3 forcefield, was calculated using the Alchemy 2000 program. ^{*f*} 50 mg/kg po dose. ^{*g*} 50 mg/kg ip dose. ^{*h*} ID₅₀ = 10.8 mg/kg po dose.

ring expansion²⁰⁻²² reaction to produce the target 6-alkyl-, 6-alkoxy- or 6alkylthio-3-(4-methanesulfonylphenyl)-4phenylpyran-2-ones (**14a**–**v**) having a

central 6-membered lactone ring (pyran-2-one) as illustrated in Scheme 3.4. No other regioisomer was observed using the reaction conditions employed. The structures of compounds 14 were consistent with microanalytical and mass ^{1}H spectral data. **NMR** nuclear Overhauser enhancement (nOe) studies showed nOe interactions between H-5 and the 6-alkyl (R^2) , alkoxy (OR^2) oralkylthio (SR²) moiety, and between H-5 and the C-4 ortho-phenyl hydrogens, which establishes the regiochemistry of the C-4 and C-5 phenyl rings.

4.3.0.0. Results and Discussion

The in vitro abilities (IC_{50} values) of the title compounds (14a-v) to inhibit the isozymes COX-1 and COX-2 were determined by modification of а previously reported procedure (Table 1).²³ The rational design of selective COX-2 inhibitors frequently exploits the difference in the volume of the binding sites for COX-1 and COX-2. Thus a SO₂Me or a SO₂NH₂ substituent placed at the para-position of one of the phenyl rings can interact with secondary pocket amino acid residues such as His⁹⁰, Gln¹⁹² Phe⁵¹⁸ and Arg⁵¹³ that are associated with, and accessible from, the primary COX-2 binding site.^{24,25} Accordingly, we have designed a novel class of 6substituted-3,4-diphenylpyran-2-ones having a C-3 4-(methanesulfonylphenyl) substituent in conjunction with either a C-4 4-fluorophenyl, phenyl, or substituent.

In vitro enzyme inhibition studies for the C-6 alkyl (Me, Et, *i*-Pr) subgroup of compounds (14a-e) showed weak to good COX-2 inhibitory activity (IC₅₀ values in the 0.5–125.3 μ M range) with 6-methyl-3-(4-methanesulfonylphenyl)-4-phenylpyran-2-one (**14a**), showing the best combination of COX-2 inhibitory potency and selectivity index (IC₅₀ = 0.68 μ M; S.I. = 904).

In this C-6 alkyl subgroup (14a-e) of compounds, a para-fluoro substituent on C-4 phenyl ring decreased both the COX-2 selectivity and inhibitory potency but increased COX-1 inhibitory potency (Table 1). In the C-6 alkoxy (OMe, OEt, OPr-i, OBu-t, OBu-i, OCH₂-C₆H₄-4-Cl) subgroup of compounds 14 having a C-4 phenyl substituent, in vitro COX-2 inhibitory activity may not be totally dependent upon steric effects even though the C-6 OEt, i-PrO, t-BuO and i-BuO analogs were equipotent (IC_{50}) values in the 1.3 to 2.7 μ M range). Introduction of a C-6 4-chlorobenzyloxy substituent (14p) significantly reduced COX-2 inhibitory activity and selectivity $(COX-2 IC_{50} = 415.8 \mu M; COX-1 IC_{50} =$ 50.7 μ M; S.I. < 0.12) as shown in Table 3.1. Compounds having a C-4 4fluorophenyl substituent are generally less potent COX-2 inhibitors than the corresponding C-4 phenyl analogs. except for the C-6 OEt compound 14i $(\text{COX-2 IC}_{50} = 0.10 \ \mu\text{M}; \ \text{COX-1 IC}_{50} =$ 288 μ M; S.I. = 2880). The C-6 substituent in the thioalkyl (MeS, EtS, n-PrS, *i*-PrS) subgroup of compounds had a significant effect on COX-2 inhibitory potency (EtS >> MeS > inactive n-PrS and *i*-PrS) and COX-2 selectivity. For example, the C-6 thioethyl compound 14s is a highly potent and selective COX-2 inhibitor (COX-1 IC₅₀ = 386.2μ M; COX-2 IC₅₀ = 0.0032μ M; S.I. > 120,000) relative to the reference drugs rofecoxib (COX-2 IC₅₀ = 0.43 μ M; S.I. > 1,162) and celecoxib (COX-2 $IC_{50} =$ 0.057 μ M; S.I. > 401). The in vitro cyclooxygenase inhibition data for this series (**14a–v**) of compounds illustrate the flexibility of the COX-2 active site in accommodating compounds with a range of molecular volumes (293–390 Å³).

In an earlier communication, we attributed the excellent in vitro COX-2 inhibitory activity exhibited by 14s to the presence of a weak hydrogen bonding interaction of the sulfur atom of the C-6 thioethyl (-SEt) substituent with the OH of Ser⁵³⁰ in the COX-2 binding site.¹⁷ A recent molecular modeling study has confirmed the importance of Ser⁵³⁰ in the inhibitory COX-2 potency of diarylheterocyclic COX-2 inhibitors.²⁶ In order to explain the potent COX-2 (IC_{50}) = 0.10 μ M), and weak COX-1 inhibitory $(IC_{50} = 288 \ \mu M)$, activity of 14i [6ethoxy-3-(4-methanesulfonyl phenyl)-4-(4-fluorophenyl)pyran-2-one], molecular modeling study was performed

where 14i was docked in the binding sites of both COX-1 and COX-2. In addition, molecular dynamics (MD) simulations were carried out to assess the stability of the docked ligand-enzyme complexes. Docking 14i in the COX-2 active site shows that it binds in the primary binding site such that the p-SO₂Me substituent orients towards the secondary pocket amino acid residues (His⁹⁰, Gln¹⁹², Arg⁵¹³, Phe⁵¹⁸, Val⁵²³ and Leu³⁵²) with one of the *O*-atoms of the SO₂Me substituent forming a hydrogen bond with the amide hydrogen of Phe⁵¹⁸ (2.1 Å) as shown in Figure 3.1. The C=O oxygen atom of the central pyran-2-one ring is oriented towards Tyr³⁵⁵ which is part of the entrance to the secondary pocket. This C=O oxygen atom is positioned about 3.64 Å from the OH of Tyr³⁵⁵ and the O-atom of the central pyran-2-one ring is about 4.7 Å from the NH_2 (guanidino group) of Arg¹²⁰.

Figure 3.1: Docking 6-ethoxy-3-(4-methanesulfonylphenyl)-4-(4-fluorophenyl)pyran-2-one (14i) (ball and stick) in the active site of murine COX-2 ($E_{intermolecular} = -60.7$ kcal/mol). Hydrogens atoms are not shown for clarity.

The C-4 substituted phenyl ring lies in a hydrophobic cavity lined by Tyr³⁸⁵ and Trp³⁸⁷ with the *p*-fluoro substituent located about 5.8 Å away from the OH of Tyr³⁸⁵, and where the distance between the center of the C-4 phenyl ring and the OH of Ser⁵³⁰ was about 6.9 Å. A recent study has shown the importance of Ser⁵³⁰ in the COX-2 inhibitory activity of rofecoxib.²⁶ Accordingly, the C-6 ethoxy (-OEt) substituent of 14i is located in a hydrophobic region formed by Val³⁴⁹, Ile³⁴⁵, Ser⁵³⁰, Leu⁵³¹ and Met⁵³⁵ with the O-atom of C-6 OEt substituent positioned about 4.9 Å away from the OH of Ser⁵³⁰ (Figure 3.1).

Similar docking of 14i on the COX-1 active site showed the drug-enzyme binding interaction was not dramatically different from that observed in COX-2 (Figure 3.2). However, closer examination revealed potentially crucial

interactions involving the central pyran-2-one C=O with the key active site amino acid residue Tyr³⁵⁵, the interaction of the $para-SO_2Me$ substituent C-3 with Ile/Val⁵²³ that forms part of the entrance to the secondary pocket and interaction of the C-6 OEt substituent with Ser⁵³⁰ that may contribute to the in vitro COX-2 inhibitory activity of 14i. The importance of Tyr³⁵⁵ in the binding affinities of diarylheterocyclic COX-2 inhibitors was shown in a recent study, wherein mutation of Tyr³⁵⁵ to Ala in the COX-2 active site lead to increased dissociation rates of celecoxib and valdecoxib.²⁹ Docking 14i in the COX-1 active site suggests that the C=O oxygen atom is separated by a greater distance from the OH of Tyr³⁵⁵ (5.0 Å) than observed for a similar interaction in COX-2 (3.64 Å), and that insertion of the p-SO₂Me substituent into the secondary pocket is

Figure 3.2: Docking 6-ethoxy-3-(4-methanesulfonylphenyl)-4-(4-fluorophenyl)pyran-2-one (14i) (ball and stick) in the active site of ovine COX-1 ($E_{intermolecular} = -49.3$ kcal/mol). Hydrogens atoms are not shown for clarity.

sterically impeded by the bulky Ile⁵²³ as shown in Figure 3.2. In addition, the C-6 ethoxy oxygen atom is further removed (5.5 Å) from the OH of Ser⁵³⁰ compared to COX-2 (4.9 Å). It has been shown that a single amino acid difference (Ile/Val) at position 523 in the respective active sites of COX-1 and COX-2 can be exploited to diarylheterocyclic design COX-2 inhibitors.24,25 However, recent а molecular modeling of the study diarylheterocyclic COX-2 inhibitor rofecoxib in the COX-1 active site has shown that steric hindrance due to the substitution of Ile/Val⁵²³ is not enough to prevent binding of the ligand to COX-1.²⁷ Recent studies have also shown that COX-2 inhibitors belonging to the diarylheterocyclic class show time dependent inhibition of COX-2 while exhibiting, competitive and reversible inhibition of COX-1.28,29 Consequently, the higher binding affinity exhibited by 14i for COX-2 may be due in part to its slow dissociation from COX-2. This possibility is consistent with results from a molecular dynamics simulation of 14i docked in the active site of COX-2 which showed a lower intermolecular energy $(E_{intermolecular} = -60.7 \text{ kcal/mol})$ for this ligand-enzyme complex as compared to 14i docked in the active site of COX-1 $(E_{intermolecular} = -49.3 \text{ kcal/mol}).$

In vivo pharmacological evaluation of some title compounds 14 was carried out to assess their potential antiinflammatory and analgesic activities. Initial compound selection for in vivo screening was based on in vitro COX-1/COX-2 enzyme inhibition obtained. data Qualitative structure-activity relationship data, acquired using the antiinflammatory rat paw edema assay showed that this group of C-6 alkyl-, alkoxy-, or alkylthio substituted 3-(4-methanesulfonylphenyl)- 4-phenylpyran-2-ones exhibit antiinflammatory activity in the inactive to good activity range (inactive–69% inhibition) (Table 3.1). In the C-6 alkyl series (14a, 14d and 14e), 6-isopropyl-3-(4-methanesulfonylphenyl)-4-(4-

fluorophenyl)pyran-2-one (14e) was the most active antiinflammatory agent (35 and 69% reduction in inflammation at 3 and 5 h post-drug administration, respectively) for a 1 mg/kg oral dose as compared to reference drug celecoxib (79 and 58% reduction in inflammation at 3 and 5 h post-drug administration respectively) for a 50 mg/kg oral dose.

The C-6 alkoxy substituted group of compounds (14f, 14g, 14i and 14l) reduced inflammation by 0-67% at different time intervals as shown in Table 3.1. 6-Ethoxy-3-(4-methanesulfonyl phenyl)-4-(4-fluorophenyl)pyran-2-one (14i)was the most potent antiinflammatory agent in this series producing a 32 and 67% reduction in inflammation at 3 and 5 h post-drug administration respectively for a 1 mg/kg oral dose. This in vivo antiinflammatory activity parallels its in vitro COX-2 potency and selectivity (COX-2 $IC_{50} =$ $0.10 \,\mu\text{M}; \, \text{S.I.} = 2880$). In general, the C-6 alkyl and alkoxy substituted compounds, which possess a para-fluoro substituent on the C-4 phenyl ring, exhibit good antiinflammatory activity (Table 3.1). In contrast, the C-6 thioethyl compound 14s, which exhibited excellent in vitro COX-2 potency and selectivity (IC₅₀ = $0.0032 \ \mu$ M; S.I. > 120,000), was a weak antiinflammatory agent (9 and 19.5% reduction in inflammation at 3 and 5 h post-drug administration, respectively) for a 50 mg/kg oral dose. When 14s was administered at lower doses (1, 5 and 10 mg/kg oral dose), it did not exhibit antiinflammatory activity. It is possible that 14s which has a SEt substitutent at the C-6 position of the pyranone ring may be more susceptible to metabolic inactivation compared to C-6 alkyl or alkoxy analogs when administered by the oral route which may result in a lower amount of the drug localization at the inflammation site. Studies using systemic routes of administration may provide more precise explanations for these observations which are not clear.

It is interesting that the C-6 alkyl (14a. 14d and 14e), and the C-6 alkoxy (14f, 14g and 14i) compounds increased rat paw edema volume when administered at a higher 5 and 10 mg/kg oral dose although the data obtained are not statistically significant. Over the years numerous studies employing rat acute models of inflammation have not been able to completely assess the contribution of the COX-2 enzyme in the inflammatory process. Recent studies have shown that in a carrageenan rat paw edema model, rofecoxib increased the levels of proinflammatory cytokine TNF- α in rat paw.³⁰ In addition, studies have implicated increased levels of inducible nitric oxide synthase in the carrageenaninduced rat paw inflammation assay which was not altered by the administration of COX-2 inhibitors.^{31,32} Another recent article has shown the effects of rofecoxib opposite on activating protein (AP-1) and nuclear factor- κ B (NF- κ B) which may explain the lack of clear dose dependency, influencing both its wanted and unwanted effects.³³ Although the exact mechanisms for these observations are not clear, there multiple factors that may are be responsible for the increase in rat paw volume observed at higher doses for the compounds described in this study.

Analgesic activity was determined using the 4% NaCl-induced abdominal constriction assay. Compounds from the C-6 alkyl (14a, 14d and 14e) and C-6 alkoxy (14f, 14g, 14i and 14l) subgroups exhibited a 20-83% inhibition of writhing at different time intervals with 14i [6-ethoxy-3-(4-methanesulfony] phenyl)-4-phenylpyran-2-one] exhibiting 42 and 75% inhibition in writhing at 30 and 60 min. respectively post-drug administration for 1 a mg/kg intraperitoneal dose (Table 3.1). 6-Ethylthio-3-(4-methanesulfonylphenyl)-4-phenylpyran-2-one (14s) was the most active analgesic agent where writhing was reduced by 81 and 77% inhibition at 30 and 60 min post-drug administration for a 50 mg/kg intraperitoneal dose relative to the reference drug celecoxib (31 and 62% inhibition at 30 and 60 min post-drug administration for a 50 mg/kg intraperitoneal dose). The good analgesic activity exhibited by C-6 alkyl (14a, 14d and 14e) and alkoxy (14f, 14g and 14i) compounds at the 1 mg/kg intraperitoneal dose suggests roles for both peripheral and central actions of COX-2 inhibitors in alleviating pain in a wide variety of conditions.^{34,3}

4.4.0.0. Conclusions

The qualitative structure-activity relationships acquired for this novel class of 6-alkyl (alkoxy or alkylthio)-3-(4methanesulfonylphenyl)-4-phenylpyran-2-ones have shown that (i) a 6-membered lactone (pyran-2-one) ring serves as a suitable central ring template to design selective COX-2 inhibitors when the the C=O oxygen atom is suitably positioned to undergo hydrogen bonding to Tyr³⁵⁵ in the COX-2 binding site, (ii) the combined steric and electronic properties of the C-6 central substituted ring modulates COX-2 inhibitory potency and selectivity by orienting the C-3 para-SO₂Me phenyl substituent to the vicinity of the secondary pocket in the COX-2 binding site, vis a vis 14i (C-6 ethoxy) and 14s (C-6 ethylthio) exhibit excellent COX-2 inhibitory potency and selectivity, and (iii) the moderate to weak COX-1 inhibition exhibited by this class of compounds can be attributed partly to the steric hindrance of Ile⁵²³ at the entrance to the side pocket which blocks the access of the para-SO₂Me substituent, and (iv) the presence of a para-fluoro substituent on the C-4 phenyl ring improves in vivo antiinflammatory activity for this class of compounds.

4.5.0.0. Experimental Section

General. Melting points were determined using a Buchi capillary apparatus and are uncorrected. Ibuprofen was purchased from Sigma (St. Louis, MO). All other reagents including 10a-g were purchased from Aldrich (Milwaukee, WI). Silica gel column chromatography was performed using Merck silica gel 60 ASTM (70-230 mesh). Infrared (IR) spectra were recorded using a Nicolet 550 Series II Magna FT-IR spectrometer. Nuclear magnetic resonance (¹H NMR, ¹³C NMR) spectra were recorded on a Bruker AM-300 spectrometer and chemical shifts are expressed in parts per million (ppm, δ) relative to tetramethylsilane as internal standard. Spin multiplets are given as s (singlet), d (doublet), dd (doublet of doublets), t (triplet), q (quartet) and m (multiplet). Coupling constants (J) are given in Hertz (Hz). ¹³C NMR spectra were acquired using the J modulated spin echo technique where methyl and methane carbons appear as positive peaks

and methylene and quaternary carbon resonances appear as negative peaks. High Resolution Mass spectra (HRMS) were acquired using a Kratos MS-50 electron impact (EI) mass spectrometer. Microanalyses were performed for C. H and Ν (MicroAnalytical Service Laboratory. Department of Chemistry, University of Alberta) and were within \pm 0.4% of the theoretical values. Celecoxib rofecoxib were synthesized and according to the literature procedures^{5,14} Compounds 9a [2-(4methanesulfonylphenyl)-3phenylcycloprop-2-en-1-one], and 9b [2-(4-methanesulfonylphenyl)-3-(4fluorophenyl)cycloprop-2-en-1-one], prepared according were to the previously reported method.¹⁹ Male Spargue-Dawley rats, used in the antinflammatory-analgesic screens, were supplied by Animal Health Services, University of Alberta and experiments carried out using protocols were approved by the Animal Welfare Committee, University of Alberta.

General Procedure for the Synthesis of Alkyl haloacetates (10h-i) and alkyl halothioacetates (10j-m). To a stirred solution of either bromoacetyl bromide or chloroacetyl chloride (13.3 mmol) in dry diethyl ether (65 mL) was added 13.3 mmol of the respective alcohol (i-BuOH or 4-chlorobenzyl alcohol) or thiol (MeSNa, EtSH, n-PrSH or i-PrSH) at -23 °C (dry ice/acetone bath) under an argon atmosphere, and the reaction was allowed to proceed at 25 °C for 4 h. The reaction mixture was washed with 10% NaHCO₃ solution (30 mL), the organic phase was separated, and dried (Na_2SO_4) . The solvent was removed either in vacuo, or under a stream of argon, to afford the respective alkyl haloacetate (10h-i), or alkyl halothioacetate (10j-m) as a pale yellow oil in 59-85% yield. Products 10 were used immediately without further purification for the preparation of compounds 11.

General Procedure for the Synthesis of N-Alkyl, alkoxy, or alkylthiocarbonylmethylpyridinium Halides (11a-m). To a stirred solution of dry pyridine (0.45 mL, 5.5 mmol) in dry THF (30 mL) under an argon atmosphere was added either an alkyl ketone (10a-c). alkyl haloacetate (10d-i), or alkyl halothioacetate (10j-m) (5.5 mmol), and the reaction mixture was stirred for 6 h at 25 °C. The solvent was either removed in vacuo, or under a stream of argon gas, and the solid or semisolid product obtained was purified by recrystallization from ethanol-acetone (1:1, v/v) to give the respective product (11a-m) in 33-88% vield. Some physical and spectroscopic (IR, ¹H NMR) data for **11a-m** are listed below.

N-(Methylcarbonylmethyl)

pyridinium Chloride (11a). This product was obtained as a white solid (0.41 g, 44%) by reaction of pyridine with 10a: mp 205–206 °C (lit. 202–204 °C³⁶); IR (KBr): 1658 cm⁻¹ (C=O); ¹H NMR (DMSO-d₆): δ 2.32 (s, 3H, CH₃), 5.79 (s, 2H, N⁺CH₂), 8.23 (dd, J = 7.9, J= 5.5 Hz, 2H, pyridine H-3, H-5), 8.68 (dd, J = 7.9, J = 7.9 Hz, 1H, pyridine H-4), 9.01 (d, J = 5.5 Hz, 2H, pyridine H-2, H-6).

N-(Ethylcarbonylmethyl)

pyridinium Bromide (11b). This product was obtained as a white solid (0.64 g, 50.7%) by reaction of pyridine with 10b: mp 179–181 °C; IR (KBr): 1660 cm⁻¹ (C=O); ¹H NMR (DMSO-d₆):

δ 1.01 (t, J = 6.7 Hz, 3H, CH₂CH₃), 2.64 (q, J = 6.7 Hz, 2H, CH₂CH₃), 5.76 (s, 2H, N⁺CH₂), 8.18 (dd, J = 7.9, J = 5.5 Hz, 2H, pyridine H-3, H-5), 8.64 (dd, J = 7.9, J = 7.9 Hz, 1H, pyridine H-4), 8.84 (d, J = 5.5 Hz, 2H, pyridine H-2, H-6).

N-(Isopropylcarbonylmethyl)

pyridinium Bromide (11c). This product was obtained as a solid (0.69 g, 51.4%) by reaction of pyridine with 10c: mp 148–150 °C; IR (KBr) 1658 cm⁻¹ (C=O); ¹H NMR (DMSO-d₆): δ 1.38 [d, J = 6.7 Hz, 6H, CH(CH₃)₂], 3.76-3.83 [m, 1H, CH(CH₃)₂], 6.00 (s, 2H, N⁺CH₂), 8.27 (dd, J = 7.9, J = 5.5 Hz, 2H, pyridine H-3, H-5), 8.74 (dd, J = 7.9, J =7.9 Hz, 1H, pyridine H-4), 9.08 (d, J =5.5 Hz, 2H, pyridine H-2, H-6).

N-(Methoxycarbonylmethyl)

pyridinium Bromide (11d). This product was obtained as a white solid (0.41 g, 32.4%) by reaction of pyridine with **10d**: mp 176–178 °C (lit. 174– 175°C³⁷); IR (KBr): 1745 cm⁻¹ (C=O); ¹H NMR (DMSO-d₆): δ 3.75 (s, 3H, OCH₃), 5.93 (s, 2H, N⁺CH₂), 8.04 (dd, J = 7.9, J = 5.5 Hz, 2H, pyridine H-3, H-5), 8.54 (dd, J = 7.9, J = 7.9 Hz, 1H, pyridine H-4), 9.30 (d, J = 5.5 Hz, 2H, pyridine H-2, H-6).

N-(Ethoxycarbonylmethyl)

pyridinium Bromide (11e). This product was obtained as a white solid (0.43 g, 31.8%) by reaction of pyridine with **10e**: mp 132–134 °C (lit. 134–136 °C³⁷); IR (KBr): 1750 cm⁻¹ (C=O); ¹H NMR (DMSO-d₆): δ 1.23 (t, J = 6.7 Hz, 3H, OCH₂CH₃), 4.20 (q, J = 6.7 Hz, 2H, OCH₂CH₃), 5.65 (s, 2H, N⁺CH₂), 8.22 (dd, J = 7.9, J = 5.5 Hz, 2H, pyridine H-3, H-5), 8.69 (dd, J = 7.9, J = 7.9 Hz, 1H, pyridine H-4), 9.04 (d, J = 5.5 Hz, 2H, pyridine H-2, H-6).

N-(Isopropyloxycarbonylmethyl)

pyridinium Bromide (11f). This product was obtained as a white solid (0.92 g, 65%) by reaction of pyridine with **10f**: mp 90–91 °C (lit. $79-81^{\circ}C^{37}$); IR (KBr) 1751 cm^{-1} (C=O); ¹H NMR $(DMSO-d_6)$: δ 1.25 [d, J = 6.7 Hz, 6H, $OCH(CH_3)_2],$ 5.01-5.13 [m, 1H, $OCH(CH_3)_2$], 5.72 (s, 2H, N⁺CH₂), 8.27 (dd, J = 7.9, J = 5.5 Hz, 2H, pyridine H-3, H-5), 8.74 (dd, J = 7.9, J = 7.9 Hz, 1H, pyridine H-4), 9.14 (d, J = 5.5 Hz, 2H, pyridine H-2, H-6).

N-(tert-Butoxycarbonylmethyl)

pyridinium Bromide (11g). This product was obtained as a semi-solid (0.70 g, 47%) by reaction of pyridine with 10g: IR (KBr): 1746 cm⁻¹ (C=O); ¹H NMR (DMSO-d₆): δ 1.58 [s, 9H, OC(CH₃)₃], 5.83 (s, 2H, N⁺CH₂), 8.27 (dd, J = 7.9, J = 5.5 Hz, 2H, pyridine H-3, H-5), 8.73 (dd, J = 7.9, J = 7.9 Hz, 1H, pyridine H-4), 9.14 (d, J = 5.5 Hz, 2H, pyridine H-2, H-6).

N-(Isobutoxycarbonylmethyl)

pyridinium Bromide (11h). This product was obtained as a white solid (1.0 g, 68%) by reaction of pyridine with **10h**: mp 86–88 °C; IR (KBr): 1748 cm⁻¹ (C=O); ¹H NMR (DMSO–d₆): δ 0.88 [d, J = 6.7 Hz, 6H, OCH₂CH(CH₃)₂], 1.84– 1.95 [m, 1H, OCH₂CH(CH₃)₂], 3.96 [d, J = 6.7 Hz, 2H, OCH₂CH(CH₃)₂], 5.80 (s, 2H, N⁺CH₂), 8.27 (dd, J = 7.9, J = 5.5Hz, 2H, pyridine H-3, H-5), 8.74 (dd, J =7.9, J = 7.9 Hz, 1H, pyridine H-4), 9.15 (d, J = 5.5 Hz, 2H, pyridine H-2, H-6).

N-(4-Chlorobenzyloxycarbonyl methyl) pyridinium Bromide (11i).

This product was obtained as a semisolid (0.71 g, 38%) by reaction of pyridine with **10i**: IR (KBr): 1746 cm⁻¹ (C=O); ¹H NMR (DMSO-d₆): δ 5.26 (s, 2H, 4-Cl-C₆H₄-CH₂), 5.79 (s, 2H, N⁺CH₂), 7.41 (d, J = 8.5 Hz, 2H, 4chlorophenyl H-2, H-6), 7.45 (d, J = 8.5 Hz, 2H, 4-chlorophenyl H-3, H-5), 8.26 (dd, J = 7.9, J = 5.5 Hz, 2H, pyridine H-3, H-5), 8.73 (dd, J = 7.9, J = 7.9 Hz, 1H, pyridine H-4), 9.14 (d, J = 5.5 Hz, 2H,

N-(Methylthiocarbonylmethyl) pyridinium Bromide (11j). This product was obtained as a white solid (0.93 g, 68.3%) by reaction of pyridine with **10j**: mp 225–226 °C; IR (KBr): 1667 cm⁻¹ (C=O); ¹H NMR (DMSO–d₆): δ 2.5 (s, 3H, SCH₃), 5.99 (s, 2H, N⁺CH₂), 8.23 (dd, J = 7.9, J = 5.5 Hz, 2H, pyridine H-3, H-5), 8.66 (dd, J = 7.9, J =7.9 Hz, 1H, pyridine H-4), 9.02 (d, J =5.5 Hz, 2H, pyridine H-2, H-6). Anal. (C₈H₁₀BrNOS): C, H, N.

N-(Ethylthiocarbonylmethyl)

pyridinium Bromide (11k). This product was obtained as a white solid (0.50 g, 33%) by reaction of pyridine with 10k: mp 173–175 °C; IR (KBr): 1673 cm⁻¹ (C=O); ¹H NMR (DMSO-d₆): δ 1.24 (t, J = 6.7 Hz, 3H, SCH₂CH₃), 3.00 (q, J = 6.7 Hz, 2H, SCH₂CH₃), 5.99 (s, 2H, N⁺CH₂), 8.26 (dd, J = 7.9, J = 5.5Hz, 2H, pyridine H-3, H-5), 8.73 (dd, J =7.9, J = 7.9 Hz, 1H, pyridine H-4), 9.05 (d, J = 5.5 Hz, 2H, pyridine H-2, H-6).

N-(Propylthiocarbonylmethyl) pyridinium Bromide (111). This product was obtained as a viscous oil (0.65 g, 43%) by reaction of pyridine with 101: IR (KBr): 1675 cm⁻¹ (C=O); ¹H, 3H, SCH₂CH₂CH₃), 1.52-1.55 (m, 2H,

SCH₂CH₂CH₃), 2.96 (t, 2H, J = 7.0 Hz, SCH₂CH₂CH₃), 6.00 (s, 2H, N⁺CH₂), 8.23 (dd, J = 7.9, J = 5.5 Hz, 2H, pyridine H-3, H-5), 8.70 (dd, J = 7.9, J =7.9 Hz, 1H, pyridine H-4), 9.04 (d, J =5.5 Hz, 2H, pyridine H-2, H-6).

N-(Isopropylthiocarbonylmethyl)

pyridinium Bromide (11m). This product was obtained as a semi-solid (0.57 g, 38%) by reaction of pyridine with 10m: IR (KBr): 1672 cm⁻¹ (C=O); ¹H NMR (DMSO-d₆): δ 1.38 [d, J = 6.7Hz, 6H, SCH(CH₃)₂], 3.76-3.83 [m, 1H, SCH(CH₃)₂], 6.00 (s, 2H, N⁺CH₂), 8.27 (dd, J = 7.9, J = 5.5 Hz, 2H, pyridine H-3, H-5), 8.74 (dd, J = 7.9, J = 7.9 Hz, 1H, pyridine H-4), 9.08 (d, J = 5.5 Hz, 2H, pyridine H-2, H-6).

General Procedure for the Synthesis of 6-Alkyl, alkoxy, or alkylthio-3-(4methanesulfonylphenyl)-4-

phenylpyran-2-ones (14a-v). To a solution of the N-alkyl, alkoxy, or alkylthiocarbonylmethylpyridinium salt selected (11a-m, 2.4 mmol) in dry benzene (60 mL) at 25 °C was added freshly distilled triethylamine (1 mL, 7 mmol). To this reaction mixture, 2-(4-methanesulfonylphenyl)-3-

phenylcycloprop-2-en-1-one (**9a**, 0.29 g, 1 mmol), or 2-(4methanesulfonylphenyl)-3-(4-

fluorophenyl)cycloprop-2-en-1-one (9b, 0.31 g, 1 mmol), was added and the mixture was stirred for 16-18 h at 25 °C. The solvent was evaporated under reduced pressure and the residue obtained was purified by silica gel column chromatography using hexane-ethyl acetate (1:2, v/v or 1:3, v/v) as eluent to afford the respective title compound 14a-v in 8-45% yield. Some physical and

spectroscopic data for 14a-v are listed below.

6-Methyl-3-(4-methanesulfonyl phenyl)-4-phenylpyran-2-one (14a).The product was obtained as a solid by condensation of 9a with 11a in the presence of triethylamine (0.03 g, 9%): mp 140-141 °C; IR (KBr): 1710 (C=O), 1306, 1150 (SO₂) cm⁻¹; ¹H NMR $(CDCl_3)$: δ 2.38 (s, 3H, CH₃), 3.02 (s, 3H, SO₂CH₃), 6.24 (s, 1H, pyranone H-5), 7.04-7.07 (m, 2H, phenyl H-2, H-6), 7.22-7.31 (m, 3H, phenyl H-3, H-4, H-(d, J = 8.5 Hz, 4-5), 7.36 methanesulfonylphenyl H-2, H-6), 7.78 J8.5 Hz. 2H. 4-(d, = methanesulfonylphenyl H-3, H-5). Anal. $(C_{19}H_{16}O_4S): C, H.$

4-(4-Fluorophenyl)-6-methyl-3-(4methanesulfonylphenyl)pyran-2-one

(14b). The product was obtained as a solid by condensation of 9b with 11a in the presence of triethylamine (0.03 g,8%): mp 156-158 °C; IR (KBr): 1712 (C=O), 1313, 1152 (SO_2) cm⁻¹; ¹H NMR (CDCl₃): δ 2.38 (s, 3H, CH₃), 3.03 (s, 3H, SO_2CH_3), 6.20 (s, 1H, pyranone H-5), 6.94 (dd, $J_{HH}^3 = 8.4$, $J_{FH}^3 = 8.4$ Hz, 2H, 4-fluorophenyl H-3, H-5), 7.05 (dd, J^{3}_{HH} = 8.4, J_{FH}^{4} = 5.2 Hz, 2H, 4-fluorophenyl H-2, H-6), 7.32 (d, J = 8.2 Hz, 4methanesulfonylphenyl H-2, H-6), 7.70 (d, J== 8.2 Hz, 2H. 4methanesulfonylphenyl H-3, H-5). Anal. (C₁₉H₁₅FO₄S): C, H.

6-Ethyl-3-(4-methanesulfonyl phenyl)-4-phenylpyran-2-one (14c). The product was obtained as a solid by condensation of **9a** with **11b** in the presence of triethylamine (0.14 g, 38.3%): mp 172–174 °C; IR (KBr): 1709

(C=O), 1313, 1152 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 1.30 (t, J = 7.3 Hz, 3H, CH₂CH₃), 2.62 (q, J = 7.3 Hz, 2H, CH₂CH₃), 3.02 (s, 3H, SO₂CH₃), 6.22 (s, 1H, pyranone H-5), 7.04–7.08 (m, 2H, phenyl H-2, H-6), 7.22–7.33 (m, 3H, phenyl H-3, H-4, H-5), 7.35 (d, J = 8.5Hz, 4-methanesulfonylphenyl H-2, H-6), 7.77 (d, J = 8.5 Hz, 2H, 4methanesulfonylphenyl H-3, H-5). Anal. (C₂₀H₁₈O₄S): C, H.

6-Isopropyl-3-(4-methanesulfonyl phenyl)-4-phenylpyran-2-one (14d). The product was obtained by condensation of 9a with 11c in the presence of triethylamine (0.05 g, 14%): mp 174–175 °C; IR (KBr): 1703 (C=O). 1307, 1152 (SO₂) cm⁻¹; ¹H NMR $(CDCl_3)$: δ 1.34 [d, J = 7.0 Hz, 6H, $CH(CH_3)_2],$ 2.86-2.91 [m, 1H, $CH(CH_3)_2$], 3.03 (s, 3H, SO_2CH_3), 6.21 (s, 1H, pyranone H-5), 7.05-7.08 (m, 2H, phenyl H-2, H-6), 7.23-7.34 (m, 3H, phenyl H-3, H-4, H-5), 7.36 (d, J = 8.5Hz, 4-methanesulfonylphenyl H-2, H-6), 7.78 (d, J = 8.5 Hz, 2H, 4methanesulfonylphenyl H-3, H-5). Anal. (C₂₁H₂₀O₄S): C, H.

4-(4-Fluorophenyl)-6-isopropyl-3-(4methanesulfonylphenyl)pyran-2-one

(14e). The product was obtained by condensation of 9b with 11c in the presence of triethylamine (0.06 g, 16%): mp 188-189 °C; IR (KBr): 1710 (C=O), 1312, 1148 (SO₂) cm⁻¹; ¹H NMR $(CDCl_3)$: δ 1.36 [d, J = 7.0 Hz, 6H, $CH(CH_3)_2],$ 2.87-2.93 [m, 1H. CH(CH₃)₂], 3.05 (s, 3H, SO₂CH₃), 6.13 (s, 1H, pyranone H-5), 6.98 (dd, $J_{HH}^3 =$ $8.7, J_{FH}^3 = 8.7$ Hz, 2H, 4-fluorophenyl H-3, H-5), 7.07 (dd, $J_{HH}^{2} = 8.7$, $J_{FH}^{4} = 5.2$ Hz, 2H, 4-fluorophenyl H-2, H-6), 7.38 (d, J = 8.2 Hz, 4-methanesulfonylphenyl H-2, H-6), 7.83 (d, J = 8.2 Hz, 2H, 4methanesulfonylphenyl H-3, H-5. Anal. (C₂₁H₁₉FO₄S): C, H.

6-Methoxy-3-(4-methanesulfonyl phenyl)-4-phenylpyran-2-one (14f). The product was obtained as a solid by condensation of 9a with 11d in the presence of triethylamine (0.04 g, 12%): mp 110–112 °C; IR (KBr): 1719 (C=O), 1310, 1145 (SO₂) cm⁻¹; ¹H NMR $(CDCl_3)$: δ 3.02 (s, 3H, SO₂CH₃), 4.03 (s, 3H, OCH₃), 5.59 (s, 1H, pyranone H-5), 7.06-7.09 (m, 2H, phenyl H-2, H-6), 7.21-7.31 (m, 3H, phenyl H-3, H-4, H-7.33 (d, J = 8.5 Hz, 4-5), methanesulfonylphenyl H-2, H-6), 7.75 (d, J = 8.5 Hz, 2H, 4methanesulfonylphenyl H-3, H-5). Anal. $(C_{19}H_{16}O_5S): C, H.$

4-(4-Fluorophenyl)-6-methoxy-3-(4methanesulfonylphenyl)pyran-2-one

(14g). The product was obtained as a solid by condensation of 9b with 11d in the presence of triethylamine (0.05 g,14%): mp 148-149 °C; IR (KBr): 1720 (C=O), 1315, 1150 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 3.03 (s, 3H, SO₂CH₃), 4.04 (s, 3H, OCH₃), 5.56 (s, 1H, pyranone H-5), 6.93 (dd, $J^{3}_{HH} = 8.4$, $J^{3}_{FH} = 8.4$ Hz, 2H, 4-fluorophenyl H-3, H-5), 7.07 (dd, J^{3}_{HH} $= 8.4, J_{FH}^{4} = 5.2$ Hz, 2H, 4-fluorophenyl H-2, H-6), 7.33 (d, J = 8.2 Hz, 4methanesulfonylphenyl H-2, H-6), 7.78 2H, (d, J= 8.2 Hz, 4methanesulfonylphenyl H-3, H-5). Anal. $(C_{19}H_{15}FO_5S): C, H.$

6-Ethoxy-3-(4-methanesulfonyl-

phenyl)-4-phenylpyran-2-one (14h). The product was obtained as a solid by condensation of **9a** with **11e** in the presence of triethylamine (0.06 g, 16%): mp 174–176 °C; IR (KBr): 1719 (C=O),

1310, 1145 (SO₂) cm⁻¹; ¹H NMR $(CDCl_3)$: δ 1.46 (t, J = 7.0 Hz, 3H, OCH₂CH₃), 3.02 (s, 3H, SO₂CH₃), 4.32 $(q, J = 7.0 \text{ Hz}, 2\text{H}, \text{OC}H_2\text{C}H_3), 5.57 \text{ (s,}$ 1H, pyranone H-5), 7.07-7.08 (m, 2H, phenyl H-2, H-6), 7.18-7.31 (m, 3H, phenyl H-3, H-4, H-5), 7.35 (d, J = 8.5Hz, 4-methanesulfonylphenyl H-2, H-6), 7.74 (d, J = 8.5 Hz, 2H, 4methanesulfonylphenyl H-3, H-5); ¹³C NMR (CDCl₃): δ 14.7 (OCH₂CH₃), 44.5 $(SO_2CH_3), 65.7 (OCH_2CH_3),$ 107.2 (pyranone C-5), 112.7 (pyranone C-3), 126.8 (phenyl C-3, C-5), 128.4 and 128.7 (phenyl C-2, C-6; 4methanesulfonylphenyl C-2, C-6), 129.2 C-4), 132.1 (phenyl (4methanesulfonylphenyl C-3, C-5), 137.4 (phenyl C-1), 138.7 (4methanesulfonylphenyl C-1), 140.4 (4methanesulfonylphenyl C-4), 159.0 (pyranone C-4), 160.6 (pyranone C-6), 162.7 (pyranone C-2); HRMS m/z calcd $C_{20}H_{18}O_5S$, 370.08749, for found 370.08729. Anal. (C₂₀H₁₈O₅S); C, H.

4-(4-Fluorophenyl)-6-ethoxy-3-(4methanesulfonylphenyl)pyran-2-one

(14i). The product was obtained as a solid by condensation of 9b with 11e in the presence of triethylamine (0.08 g, 20%): mp 154–156 °C; IR (KBr): 1719 (C=O), 1312, 1146 (SO₂) cm^{-1} ; ¹H NMR $(CDCl_3)$: δ 1.49 (t, J = 7.0 Hz, 3H, OCH₂CH₃), 3.03 (s, 3H, SO₂CH₃), 4.38 $(q, J = 7.0 \text{ Hz}, 2\text{H}, \text{OC}H_2\text{C}H_3), 5.55 \text{ (s,}$ 1H, pyranone H-5), 6.95 (dd, $J^{3}_{HH} = 8.3$, $J_{FH}^{2} = 8.3$ Hz, 2H, 4-fluorophenyl H-3, H-5), 7.08 (dd, $J^{3}_{HH} = 8.3$, $J^{4}_{FH} = 5.2$ Hz, 2H, 4-fluorophenyl H-2, H-6), 7.33 (d, J = 8.5 Hz, 4-methanesulfonylphenyl H-2, 7.78 (d, J = 8.5 Hz, 2H, 4-H-6), methanesulfonylphenyl H-3, H-5). Anal. $(C_{20}H_{17}FO_5S)$; C, H.

6-Isopropyloxy-3-(4-methane

sulfonylphenyl)-4-phenylpyran-2-one (14j). The product was obtained as a solid by condensation of 9a with 11f in the presence of triethylamine (0.10 g,24%): mp 185–187 °C; IR (KBr): 1720 (C=O), 1319, 1140 (SO₂) cm⁻¹; ¹H NMR $(CDCl_3)$: δ 1.46 [d, J = 7.0 Hz, 6H, $OCH(CH_3)_2$], 3.02 (s, 3H, SO_2CH_3), 5.06-5.13 [m, 1H, OCH(CH₃)₂], 5.58 (s, 1H, pyranone H-5), 7.04–7.08 (m, 2H, phenyl H-2, H-6), 7.20-7.32 (m, 3H, phenyl H-3, H-4, H-5), 7.32 (d, J = 8.5Hz, 4-methanesulfonylphenyl H-2, H-6), 7.75 (d, J = 8.5 Hz, 2H, 4methanesulfonylphenyl H-3, H-5). Anal. $(C_{21}H_{20}O_5S)$: C, H.

4-(4-Fluorophenyl)-6-isopropyloxy-3-(4-methanesulfonylphenyl)pyran-2-

one (14k). The product was obtained as a solid by condensation of 9b with 11f in the presence of triethylamine (0.09 g)21%): mp 180-181 °C; IR (KBr): 1722 (C=O), 1310, 1150 (SO₂) cm⁻¹; ¹H NMR $(CDCl_3)$: δ 1.46 [d, J = 6.1 Hz, 6H, $OCH(CH_3)_2$], 3.03 (s, 3H, SO_2CH_3), 5.06-5.13 [m, 1H, OCH(CH₃)₂], 5.55 (s, 1H, pyranone H-5), 6.94 (dd, $J_{HH}^{2} = 8.5$, $J'_{\rm FH} = 8.5$ Hz, 2H, 4-fluorophenyl H-3, H-5), 7.06 (dd, $J_{HH}^{2} = 8.5$, $J_{FH}^{4} = 5.2$ Hz, 2H, 4-fluorophenyl H-2, H-6), 7.33 (d, J = 8.2 Hz, 4-methanesulfonylphenyl H-2, H-6), 7.78 (d, J = 8.2 Hz, 2H, 4methanesulfonylphenyl H-3, H-5). Anal. $(C_{21}H_{19}FO_5S): C, H.$

6-tert-Butoxy-3-(4-methanesulfonyl phenyl)-4-phenylpyran-2-one (141). The product was obtained as solid by condensation of 9a with 11g in the presence of triethylamine (0.10 g, 25%): mp 129–131 °C; IR (KBr): 1719 (C=O), 1310, 1146 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 1.63 [s, 9H, OC(CH₃)₃], 3.02

(s, 3H, SO₂CH₃), 5.68 (s, 1H, pyranone H-5), 7.04–7.07 (m, 2H, phenyl H-2, H-6), 7.21–7.31 (m, 3H, phenyl H-3, H-4, H-5), 7.38 (d, J = 8.5 Hz, 4-methanesulfonylphenyl H-2, H-6), 7.75 (d, J = 8.5 Hz, 2H, 4-methanesulfonylphenyl H-3, H-5). Anal. (C₂₂H₂₂O₅S): C, H.

6-tert-Butoxy-4-(4-fluorophenyl)-3-(4-methanesulfonylphenyl)pyran-2-one (14m). The product was obtained as a solid by condensation of 9b with 11g in the presence of triethylamine (0.09 g,18%): mp 132-133 °C; IR (KBr): 1722 (C=O), 1310, 1152 (SO_2) cm⁻¹; ¹H NMR (CDCl₃): 8 1.55 [s, 9H, OC(CH₃)₃], 3.01 (s, 3H, SO₂CH₃), 5.56 (s, 1H, pyranone H-5), 6.95 (dd, $J_{HH}^3 = 8.5$, $J_{FH}^3 = 8.5$ Hz, 2H, 4-fluorophenyl H-3, H-5), 7.07 (dd, $J_{\rm HH}^3 = 8.5, J_{\rm FH}^4 = 5.2$ Hz, 2H, 4fluorophenyl H-2, H-6), 7.25 (d, J = 8.2Hz, 4-methanesulfonylphenyl H-2, H-6), 7.70 (d, J = 8.2 Hz, 2H, 4methanesulfonylphenyl H-3, H-5). Anal. $(C_{22}H_{21}FO_5S): C, H.$

6-Isobutoxy-3-(4-methanesulfonyl phenyl)-4-phenylpyran-2-one (14n). The product was obtained as a solid by condensation of 9a with 11h in the presence of triethylamine (0.09 g, 22%): mp 156-158 °C; IR (KBr): 1720 (C=O), 1311, 1150 (SO₂) cm^{-1} ; ¹H NMR $(CDCl_3)$: δ 1.05 [d, J = 6.7 Hz, 6H, OCH₂CH(CH₃)₂], 2.11–2.19 [m, 1H, $OCH_2CH(CH_3)_2$], 3.01 (s, 3H, SO_2CH_3), 4.03 [d, J =6.7 Hz, 2H. $OCH_2CH(CH_3)_2$], 5.58 (s, 1H, pyranone H-5), 7.05-7.09 (m, 2H, phenyl H-2, H-6), 7.20-7.30 (m, 3H, phenyl H-3, H-4, H-5), 7.34 (d, J = 8.0 Hz, 4methanesulfonylphenyl H-2, H-6), 7.75 (d, .1 = 8.0 Hz, 2H. 4methanesulfonylphenyl H-3, H-5). Anal. $(C_{22}H_{22}O_5S)$: C, H.

4-(4-Fluorophenyl)-6-isobutoxy-3-(4methanesulfonylphenyl)pyran-2-one

(140). The product was obtained as a solid by condensation of 9b with 11h in the presence of triethylamine (0.10 g,24%): mp 138-139 °C; IR (KBr): 1719 (C=O), 1310, 1150 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 1.06 [d, J = 6.7 Hz, 6H, OCH₂CH(CH₃)₂], 2.12–2.18 [m, 1H, OCH₂CH(CH₃)₂], 3.03 (s, 3H, SO₂CH₃), 4.06 [d, J== 6.7 Hz. 2H. OCH₂CH(CH₃)₂], 5.55 (s, 1H, pyranone H-5), 6.95 (dd, $J_{HH}^{3} = 8.5$, $J_{FH}^{3} = 8.5$ Hz, 2H, 4-fluorophenyl H-3, H-5), 7.07 (dd, $J_{\rm HH}^3 = 8.5, J_{\rm FH}^4 = 5.2$ Hz, 2H, 4fluorophenyl H-2, H-6), 7.32 (d, J = 8.5Hz, 4-methanesulfonylphenyl H-2, H-6), 7.79 (d, J = 8.5 Hz, 2H, 4methanesulfonylphenyl H-3, H-5). Anal. $(C_{22}H_{21}FO_5S): C, H.$

6-(4-Chlorobenzyloxy)-3-(4methanesulfonylphenyl)-4-

phenylpyran-2-one (14p). The product was obtained as a solid by condensation of 9a with 11i in the presence of triethylamine (0.08 g, 16%): mp 157-159 °C; IR (KBr): 1724 (C=O), 1310, 1146 (SO_2) cm⁻¹; ¹H NMR (CDCl₃): δ 3.02 (s, 3H, SO₂CH₃), 5.32 (s, 2H, 4-Cl-C₆H₄- CH_2O), 5.66 (s, 1H, pyranone H-5), 7.03 (m, 2H, phenyl H-2, H-6), 7.13-7.24 (m, 3H, phenyl H-3, H-4, H-5), 7.27 (d, 2H, J = 8.4 Hz, 2H, 4-methanesulfonylphenyl H-2, H-6), 7.31 (d, J = 8.5 Hz, 2H, 4chlorophenyl H-2, H-6), 7.37 (d, J = 8.5Hz, 2H, 4-chlorophenyl H-3, H-5), 7.75 (d, J= 8.5 Hz, 2H, 4methanesulfonylphenyl H-3, H-5). Anal. $(C_{25}H_{19}ClO_5S): C, H.$

6-(4-Chlorobenzyloxy)-4-(4fluorophenyl)-3-(4-

methanesulfonylphenyl)pyran-2-one

(14g). The product was obtained as a solid by condensation of 9b with 11i in the presence of triethylamine (0.07 g,14%): mp 173-174 °C; IR (KBr): 1722 (C=O), 1310, 1148 (SO_2) cm⁻¹; ¹H NMR (CDCl₃): δ 3.03 (s, 3H, SO₂CH₃), 5.32 (s, 2H, $4-Cl-C_6H_4-CH_2O$, 5.63 (s, 1H, pyranone H-5), 6.94 (dd, $J_{HH}^3 = 8.5$, J_{FH}^3 = 8.5 Hz, 2H, 4-fluorophenyl H-3, H-5), 7.05 (dd, $J_{HH}^3 = 8.5$, $J_{FH}^4 = 5.2$ Hz, 2H, 4-fluorophenyl H-2, H-6), 7.32 (d, J = 8.5Hz, 4-methanesulfonylphenyl H-2, H-6), 7.41 (d, J = 8.5 Hz, 2H, 4-chlorophenyl H-2, H-6), 7.44 (d, J = 8.5 Hz, 2H, 4chlorophenyl, H-3, H-5), 7.79 (d, J = 8.5Hz, 2H, 4-methanesulfonylphenyl H-3, H-5). Anal. (C₂₅H₁₈ClFO₅S): C, H.

6-Methylthio-3-(4-methanesulfonyl phenyl)-4-phenylpyran-2-one (14r). The product was obtained as a solid by condensation of 9a with 11j in the presence of triethylamine (0.14)g, 34.3%): mp 207-208 °C; IR (KBr): 1725 (C=O), 1308, 1145 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 2.6 (s, 3H, SCH₃), 3.02 (s, 3H, SO_2CH_3), 6.29 (s, 1H, pyranone H-5), 7.05-7.07 (m, 2H, phenyl H-2, H-6), 7.22-7.31 (m, 3H, phenyl H-3, H-4, H-5). 7.33 (d, J = 8.2 Hz, 4methanesulfonylphenyl H-2, H-6), 7.76 (d, J-8.2 Hz, 2H. 4methanesulfonylphenyl H-3, H-5). Anal. (C₁₉H₁₆O₄S₂.1/2H₂O): C, H.

6-Ethylthio-3-(4-methanesulfonyl

phenyl)-4-phenylpyran-2-one (14s). The product was obtained as a solid by condensation of **9a** with **11k** in the presence of triethylamine (0.06 g, 15%): mp 175–176 °C; IR (KBr): 1718 (C=O), 1314, 1153 (SO₂) cm⁻¹; ¹H NMR

 $(CDCl_3)$: δ 1.46 (t, J = 7.3 Hz, 3H, SCH_2CH_3 , 3.03 (s, 3H, SO_2CH_3), 3.15 $(q, J = 7.3 Hz, 2H, SCH_2CH_3), 6.35 (s,$ 1H, pyranone H-5), 7.04-7.07 (m, 2H, phenyl H-2, H-6), 7.21-7.31 (m, 3H, phenyl H-3, H-4, H-5), 7.35 (d, J = 8.5Hz, 4-methanesulfonylphenyl H-2, H-6), 7.78 (d, J = 8.5 Hz, 2H, 4- ^{13}C methanesulfonylphenyl H-3, H-5); NMR (CDCl₃): δ 14.7 (SCH₂CH₃), 25.8 $(SCH_2CH_3),$ 44.5 $(SO_2CH_3),$ 107.3 (pyranone C-5), 117.6 (pyranone C-3), 126.9 (phenyl C-3, C-5), 128.4 and 128.6 C-2, (phenyl C-6; 4methanesulfonylphenyl C-2, C-6), 129.3 (phenyl C-4), 131.9 (4methanesulfonylphenyl C-3, C-5), 136.5 (phenyl C-1), 139.2 (4methanesulfonylphenyl C-1), 139.9 (4methanesulfonylphenyl C-4). 154.3 (pyranone C-4), 161.7 (pyranone C-6), 162.2 (pyranone C-2). Anal. $(C_{20}H_{18}O_4S_2)$: C, H.

4-(4-Fluorophenyl)-6-ethylthio-3-(4methanesulfonylphenyl)pyran-2-one

(14t). The product was obtained as a solid by condensation of 9b with 11k in the presence of triethylamine (0.07 g)17%): mp 171-172 °C; IR (KBr): 1716 (C=O), 1313, 1152 (SO₂) cm⁻¹; ¹H NMR $(CDCl_3)$ δ 1.46 (t, J = 7.3 Hz, 3H, SCH₂CH₃), 3.04 (s, 3H, SO₂CH₃), 3.15 $(q, J = 7.3 Hz, 2H, SCH_2CH_3), 6.32 (s,$ 1H, pyranone H-5), 6.96 (dd, $J'_{HH} = 8.5$, $J_{FH}^{3} = 8.5$ Hz, 2H, 4-fluorophenyl H-3, H-5), 7.07 (dd, $J^{3}_{HH} = 8.5$, $J^{4}_{FH} = 5.2$ Hz, 2H, 4-fluorophenyl H-2, H-6), 7.35 (d, J = 8.5 Hz, 4-methanesulfonylphenyl H-2, H-6), 7.80 (d, J = 8.5 Hz, 2H, 4methanesulfonylphenyl H-3, H-5). Anal. (C₂₀H₁₇FO₄S₂): C, H.

3-(4-Methanesulfonylphenyl)-6-*n*propylthio-4-phenylpyran-2-one (14u).

The product was obtained as a solid by condensation of 9a with 111 in the presence of triethylamine (0.14 g, 32%): mp 158–160 °C; IR (KBr): 1727 (C=O), 1308, 1157 (SO₂) cm⁻¹; ¹H NMR $(CDCl_3)$: δ 1.06 (t, J = 7.3 Hz, 3H, $SCH_2CH_2CH_3$, 1.56–1.87 (m, 2H, $SCH_2CH_2CH_3$), 3.02 (s, 3H, SO_2CH_3), 3.09 (t, J = 7.3 Hz, 2H, SCH₂CH₂CH₃), 6.35 (s, 1H, pyranone H-5), 7.04-7.06 (m, 2H, phenyl H-2, H-6), 7.22-7.31 (m, 3H, phenyl H-3, H-4, H-5), 7.34 (d, J =8.2 Hz, 4-methanesulfonylphenyl H-2, H-6), 7.76 (d, J = 8.2 Hz, 2H, 4methanesulfonylphenyl H-3, H-5); ¹³C NMR (CDCl₃): δ 13.3 (SCH₂CH₂CH₃), 22.9 $(SCH_2CH_2CH_3),$ 33.2 (SCH₂CH₂CH₃), 44.5 (SO₂CH₃), 107.2 (pyranone C-5), 117.4 (pyranone C-3), 126.9 (phenyl C-3, C-5), 128.4 and 128.8 ((phenyl C-2, C-6; 4methanesulfonylphenyl C-2, C-6), 129.3 (phenyl C-4), 131.9 (4methanesulfonylphenyl C-3, C-5), 136.4 (phenyl C-1), 139.0 (4methanesulfonylphenyl C-1), 139.9 (4methanesulfonylphenyl C-4), 154.3 (pyranone C-4), 161.9 (pyranone C-6), 162.3 C-2). (pyranone Anal $(C_{21}H_{20}O_4S_2): C, H.$

6-Isopropylthio-3-(4methanesulfonylphenyl)-4-

phenylpyran-2-one (14v). The product was obtained by condensation of 9a with 11m in the presence of triethylamine (0.19 g, 44.5%): mp 164–166 °C; IR (KBr): 1721 (C=O), 1310, 1160 (SO₂) cm⁻¹: ¹H NMR (CDCl₃): δ 1.42 [d. J = 6.7 Hz, 6H, SCH $(CH_3)_2$], 3.01 (s, 3H, 3.83-3.92 $SO_2CH_3),$ [m, 1H, $SCH(CH_3)_2$], 6.39 (s, 1H, pyranone H-5), 7.02-7.05 (m, 2H, phenyl H-2, H-6), 7.20-7.29 (m, 3H, phenyl H-3, H-4, H-7.33 (d, J = 8.5 Hz, 5), 4methanesulfonylphenyl H-2, H-6), 7.75 (d, J = 8.5 Hz, 2H, 4methanesulfonylphenyl H-3, H-5). Anal. (C₂₁H₂₀O₄S₂): C, H.

Cyclooxygenase Inhibition Studies. All compounds described herein were tested for their ability to inhibit COX-1 and COX-2 using a COX-(ovine) inhibitor screening kit (Catalog No. 560101, Cayman Chemical, Ann Arbor, MI) according to the manufacturer's instructions. Cyclooxygenase catalyzes the first step in the biosynthesis of arachidonic acid (AA) to PGH_2 . $PGF_{2\alpha}$, produced from PGH₂ by reduction with stannous chloride, is measured bv (ACETM immunoassay enzvme competitive EIA). Stock solutions of test compounds were dissolved in a minimum volume of DMSO. Briefly, to a series of supplied reaction buffer solutions (960 µl, 0.1 M Tris-HCl pH 8.0 containing 5 mM EDTA and 2 mM phenol) with either COX-1 or COX-2 (10 µl) enzyme in presence of heme (10 μ l) were added 10 µl of various concentrations of test drug solutions (0.001, 0.01, 0.1, 1, 10, 100, and 500 μ M in a final volume of 1 mL). These solution were incubated for a period of 2 min at 37 °C after which 10 μ l of AA (100 μ M) was added and the COX reaction was stopped by the addition of 50 µl of 1M HCl after 2 min. $PGF_{2\alpha}$, produced from PGH_2 by reduction with stannous chloride, was measured by enzyme immunoassay. This assay is based on the competition between PGs and a PG-acetylcholinesterase conjugate (PG tracer) for a limited amount of PG antiserum. The amount of PG tracer that is able to bind to the PG antiserum is proportional inversely the to concentration of PGs in the wells since the concentration of the PG tracer is held constant while the concentration of PGs varies. This antibody-PG complex binds a mouse anti-rabbit monoclonal to antibody that had been previously attached to the well. The plate is washed to remove any unbound reagents and then Ellman's Reagent, which contains the substrate to acetylcholinesterase, is added to the well. The product of this enzymatic reaction produces a distinct yellow color that absorbs at 405 nm. The intensity of this color. determined spectrophotometrically, is proportional to the amount of PG tracer bound to the well, which is inversely proportional to the amount of PGs present in the well during the incubation: Absorbance ∞ [Bound PG Tracer] \propto 1/PGs. Percent inhibition was calculated by comparison of compound-treated to various control incubations. The concentration of the test compound causing 50% inhibition (IC₅₀, μM calculated was from the concentration-inhibition response curve (duplicate determinations).

Antiinflammatory Assay. The test compounds were evaluated using the in vivo rat carrageenan-induced foot paw edema model reported previously.^{38,39}

Analgesic Assay. Analgesic activity was determined using the 4% sodium chloride-induced writhing (abdominal constriction) assay as described previously.^{40,41}

Molecular Modeling (Docking) Studies. Docking experiments were performed using Insight II software Version 2000.1 (Accelrys Inc.) running on a Silicon Graphics Octane 2 R14000A workstation. The coordinates for the Xray crystal structures of the enzymes COX-1 and COX-2 were obtained from the RCSB Protein Data Bank and hydrogens were added. The ligand molecules were constructed using the Builder module and then energy minimized for 1000 iterations reaching a convergence of 0.01 kcal/mol Å. The docking experiment on COX-2 was carried out by superimposing the energy minimized ligand on SC-558 in the PDB file 1cx2 after which SC-558 was deleted. In the case of COX-1 (PDB file 1prh), the ligand was suitably positioned in the active site while carefully monitoring nonbonded interactions of the ligand-enzyme assembly and any side chain bumps. The resulting ligandenzyme complex was subjected to docking using the Affinity command in the Docking module of Insight II after defining subsets of the enzyme such that residues within 10 Å of the ligand were allowed to relax, while the remainder of the enzyme residues were fixed. The consistent valence force field (CVFF) was employed for all docking purposes. The optimal binding orientation of the ligand–enzyme assembly obtained after docking was further minimized for 1000 iterations using the conjugate gradient method until a convergence of 0.001 kcal/mol Å was reached. The ligandenzyme assembly was then subjected to a molecular dynamics (MD) simulation using the Discover module Version 2.98 at a constant temperature of 300 K with a 200 step equilibration for over 5000 iterations and a time step of 1 fs using a distance dependent dielectric constant 4r.

Supporting Information on Elemental Analysis Data is Available in Appendix 3.1.

4.6.0.0. References

- Masferrer, J. L.; Zweifel, B. S.; (1)Manning, P. T.; Hauser, S. D.; Leahy, K. M.; Smith, W. G.; Isakson, P. C.; Seibert, Κ. Selective inhibition of inducible cyclooxygenase-2 in vivo is antiinflammatory and nonulcerogenic. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 3228-3232.
- (2)Chan, C. C.; Boyce, S.; Brideau, C.; Ford-Hutchinson A. W.: Gordon, R.; Guay, D.; Hill, R. G.; Li, C. S.; Mancini, J.; Penneton, M.; Prasit, P.; Rasori, R.; Riendeau, D.; Roy, P.; Tagari, P.; Vickers, P.; Wong, E.; Rodger, I. W. Pharmacology of а selective cyclooxygenase-2 inhibitor. L-745.337: a novel nonsteroidal antiinflammatory agent with an ulcerogenic sparing effect in rat and nonhuman primate stomach. J. Pharmacol. Exp. Ther. 1995. 274. 1531-1537.
- (3) Silverstein, F. E.; Faich, G.; Goldstein, J. L.; Simon, L. S.; Pincus, T.; Whelton, A., Makuch, R.; Eisen, G.; Agrawal, N. M.; Stenson, W. F.; Burr, A. M.; Zhao, W. W.; Kent, J. D.; Lefkowith, J. B.: Verburg, K. M.: Geis, G. S. Gastrointestinal toxicity with celecoxib vs nonsteroidal antiinflammatory drugs for osteoarthritis and rheumatoid arthrits. The class study: а randomized controlled trial. JAMA 2000, 284, 1247-1255.
- (4) Hawkey, C.; Laine, L.; Simon, T.; Beaulieu, A.; Maldonado, C. J.; Acevedo, E.; Shahane, A.; Quan, H.; Bolognese, J.; Mortensen, E. Comparison of the effect of rofecoxib (a cyclooxygenase-2 inhibitor), ibuprofen and placebo on the gastroduodenal mucosa of patients with osteoarthritis: a

randomized, double-blind, placebocontrolled trial. The rofecoxib osteoarthritis endoscopy multinational study group. *Arthritis Rheum.* 2000, 43, 370–377.

- (5) Penning, T.; Talley, J. J.: Bertenshaw, S.; Carter, J.; Collins, P.; Docter, S.; Graneto, M.; Lee, L.; Malecha, J.; Miyashiro, J.; Rogers, R.; Rogier, D.; Yu, S.; Anderson, G.; Burton, E.; Cogburn, J.; Gregory, S.; Koboldt, C.: Perkins. W.: Seibert. K.; Veenhuizen. Zhang, Y.; A.; Isakson, P. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4methylphenyl)-3-(trifluoromethyl)-1*H*-pyrazol-1-yl)] benzenesulfonamide (SC-58635, Celecoxib). J. Med. Chem. 1997, 40. 1347-1365.
- Chan, C. C.; Boyce, S.; Brideau, (6) C.; Charleson, S.; Cromlish, W.; Ethier, D.; Evans, J.; Ford-Hutchinson, A. W.; Forrest, M. J.; Gauthier, J. Y.; Gordon, R.; Gresser, M.; Guay, J.; Kargman, S.; Kennedy, B., Leblanc, Y.; Leger, S.; Mancini, J.; O'Neill, G. P.; Ouellet, M.; Patrick, D.; Percival, M. D.; Perrier, H.; Prasit, P.; Rodger, I. Rofecoxib [Vioxx, MK-0966; 4-(4'-methylsulfonylphenyl)-3-phenyl-2-(5H)-furanone]: potent and orally active cyclooxygenase-2 inhibitor. Pharmacological and biochemical profiles. J. Pharmacol. Exp. Ther. 1999, 290, 551-560.
- (7) Kawamori, T.; Rao, C. V.; Seibert, K.; Reddy, B. S. Chemopreventive activity of celecoxib, a specific cylooxygenase-2 inhibitor, against colon carcinogenesis. *Cancer. Res.* 1998, 58, 409-412.

- (8) Ghosh, A. J.; Hirasawa, N.; Niki, H.; Ohuchi, K. Cyclooxygenase-2 mediated Angiogenesis in carrageenan-induced granulation tissue in rats. J. Pharmacol. Exp. Ther. 2000, 295, 802–809.
- (9) Katori. M.: Maiima. M. Cyclooxygenase-2 : its rich diversity of roles and possible application of its selective inhibitors. Inflamm. Res. 2000, 49, 367-392.
- (10) Vane, J. R.; Botting, R. M. Antiinflammatory drugs and their mechanism of action. *Inflamm. Res.* 1998, 47, S78–S87.
- (11) Friesen, R. W.; Dube, D.; Fortin, R.; Frenette, R.; Prescott, S.; Cromlish, W., Greig, G. M.; Kargman, S.; Wong, E.; Chan, C. C.; Gordon, R.; Xu, L. J. Novel 1,2-diarylcyclobutenes: Selective and orally active COX-2 inhibitors. *Bioorg. Med. Chem. Lett.* 1996, 22, 2677–2682.
- (12) Li, J. J.; Anderson, G. D.; Gregory, S. A.; Huang, H. C.; Isakson, P. C.; Koboldt, C. M.; Logusch, E. W.; Norton, M. B.; Perkins, W. E.; Reinhard, E. J.; Seibert, K.: Veenhuizen, Α. W. 1.2-Diarylcyclopentenes as selective cyclooxygenase-2 inhibitors and antiinflammatory orally active agents. J. Med. Chem. 1995, 38, 4570-4578.
- (13) Talley, J. J.; Brown, D. L.; Carter, J. S.; Graneto, M. J.; Koboldt, C. M.; Masferrer, J. L.; Perkins, W. E.; Rogers, R. S.; Shaffer, A. F.; Zhang, Y. Y.; Zweifel, B. S.; Seibert, K. 4-[5-Methyl-3-phenylisoxazol-4-yl]-benzenesulfonamide, valdecoxib: a potent and selective inhibitor of COX-2. J. Med. Chem. 2000, 43, 775-777.

- (14) Prasit, P.; Wang, Z.; Brideau, C.; Chan, C. C.; Charleson, S.; Cromlish, W.; Ethier, D.; Evans, J. Ford-Hutchinson, A. F.: W.; Gauthier, J. Y.; Gordon, R.; Guay, J.; Gresser, M.; Kargman, S.; Kennedy, B.; Leblanc, Y.; Leger, S.; Mancini, J.; O'Neill, G. P.; Quellet, M.; Percival, M. D.; Perrier, H.; Riendeau, D.; Rodger, I.; Tagari, P.; Therien, M.; Vickers, P.; Wong, E.; Xu, L. J.; Young, R. N.; Zamboni, R.; Boyce, S.; Rupniak, N.; Forrest, M.; Visco, D.; Patrick, D.; The discovery of rofecoxib, [MK 966, Vioxx®, 4-(4'-methylsulfonylphenyl)-3phenyl-2(5H)-furanone], an orally active cyclooxygenase-2 inhibitor. Bioorg. Med. Chem. Lett. 1999, 9, 1773-1778.
- (15) Riendeau, D.; Percival, M. D.; Brideau, C.; Dube, C. S.; Ethier, D.; Falgueyret, J. P.; Friesen, R. W.; Gordon, R.; Greig, G.; Guay, J.; Mancini, J.; Ouellet, M.; Wong, E.; Xu, L.; Boyce, S.; Visco, D.; Girard, Y.; Prasit, P.; Zamboni, R.; Rodger, I. W.; Gresser, M.; Ford-Hutchinson, A. W.; Young, R. N.; Chan, C. C. Etoricoxib (MK-0663): preclinical profile and comparison with other agents that selectively cyclooxygenase-2. inhibit J_{\cdot} Pharmacol. Exp. Ther. 2002, 296, 558-566.
- (16) Talley, J. J. Selective inhibitors of cyclooxygenase-2 (COX-2). Progress in Medicinal Chemistry, 1999, 36, 201–233.
- (17) Rao, P. N. P.; Amini, M.; Li, H.; Habeeb, A. G.; Knaus, E. E. 6-Alkyl, alkoxy, or alkylthiosubstituted 3-(4methanesulfonylphenyl)-4phenylpyran-2-ones: a novel class of diarylheterocyclic selective

cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett. 2003, 13, 2205-2209.

- (18) Li, C. S.; Lau, C. K.; Therien, M.; Prasit, P. Pyrones as inhibitors of cyclooxygenase-2. World Patent WO 02/02547, 10 January 10, 2002; CA 136: 85758.
- (19) Li, H.; Rao, P. N. P.; Habeeb, A. G.; Knaus, E. E. Design, syntheses, and evaluation of 2,3-diphenylcycloprop-2-en-1-ones and oxime derivatives as potential cyclooxygenase-2 (COX-2) inhibitors with analgesic-antinflammatory activity. Drug Dev. Res. 2002, 57, 6-17.
- (20) Hayashi, Y.; Nozaki, H. Reaction of sulphonium ylides with diphenylcyclopropenone. A new synthesis of 2-pyrones. *Tetrahedron*, 1971, 27, 3085–3093.
- (21) Sasaki, T.; Kanematsu, K.; Kakehi, A. Formation of 1,3-oxazine and 2pyrone derivatives from the reaction of pyridinium ylides with diphenylcyclopropenone. J. Org. Chem. 1971, 36, 2451-2453.
- (22) Henry, W. P.; Hughes, R. P. Organic synthesis using carbon monoxide. Regiospecific cobaltmediated synthesis of 2*H*-pyran-2ones. J. Am. Chem. Soc. 1986, 108, 7862-7864.
- (23) Habeeb, A. G.; Rao, P. N. P.; Knaus, E. E. Design and synthesis of 4,5-diphenyl-4-isoxazolines: novel inhibitors of cyclooxygenase-2 with analgesic and antiinflammatory activity. J. Med. Chem. 2001, 44, 2921-2927.
- (24) Kurumbail, R. G.; Stevens, A. M.; Gierse, J. K; McDonald, J. J.; Stegeman, R. A.; Pak J. Y.; Gildehaus, D.; Miyashiro, J. M.; Penning, T. D.; Seibert, K.; Isakson, P. C.; Stallings, W. C.

Structural basis for selective inhibition of cyclooxygenase-2 by anti inflammatory agents. *Nature* **1996**, *384*, 644–648.

- (25) Gierse, J. K.; McDonald, J. J.; Hauser, S. D.; Rangwala, S. H.; Koboldt, C. M.; Seibert, K. A single amino acid difference between cyclooxygenase-1 (COX-1) and -2 (COX-2) reverses the selectivity of COX-2 specific inhibitors. J. Biol. Chem. 1996, 271, 15810-15814.
- (26) Soliva, R.; Almansa, C.; Kalko, S. G.; Luque, F. J.; Orozco, M. Theoretical studies on the inhibition mechanism of cyclooxygenase-2. is there a unique recognition site ? J. Med. Chem. 2003, 46, 1372–1382.
- (27) Llorens, O.; Perez, J. J.; Palomer, A.; Mauleon, D. Differential binding mode of diverse cyclooxygenase inhibitors. J. Mol. Graphics Modell. 2002, 20, 359– 371.
- (28) Wong, E.; Bayly, C.; Waterman, H. L.; Riendeau, D.; Mancini, J. A. Conversion of prostaglandin G/H synthase-1 into an enzyme sensitive to PGHS-2-selective inhibitors by a double His⁵¹³→ Arg and Ile⁵²³→Val mutation. J. Biol. Chem. 1997, 272, 9280–9286.
- (29) Hood, W. F.; Gierse, J. K.; Isakson, P. C.; Kiefer, J. R.; Kurumbail, R.G.; Seibert, K.; Monahan, J. B. Characterization of celecoxib and valdecoxib binding to cyclooxygenase. *Mol. Pharmacol.* 2003, 63, 870–877.
- (30) Pinheiro, R. M.; Calixto, J. B. Effect of the selective COX-2 inhibitors, celecoxib and rofecoxib in rat acute models of inflammation. *Inflamm. Res.* 2002, 51, 603-610.

- (31) Salvemini, D.; Wang, Z. Q.; Wyatt, P. S.; Bourdon, D. M.; Marino, M. H.; Manning, P. T.; Currie, M. G. Nitric oxide: a key mediator in the early and late phase of carrageenan-induced rat paw inflammation. *Br. J. Pharmacol.* 1996, 118, 829–838.
- (32) Ahmad, N.; Chen, L. C.; Gordon, M. A.; Laskin, J. D.; Laskin, D. L. Regulation of cyclooxygenase-2 by nitric oxide in activated hepatic macrophages during acute endotoxemia. J. Leukoc. Biol. 2002, 71, 1005–1011.
- (33) Niederberger, E.; Tegeder, I.; Schafer, C.; Seegel, M.; Grosch, S.; Geisslinger, G. Opposite effects of rofecoxib on nuclear factor-κB and activating protein-1 activation. J. Pharmacol. Exp. Ther. 2003, 304, 1153-1160.
- (34) Svensson, C. I.; Yaksh, T. L. The spinal phospholipasecyclooxygenase-prostanoid cascade in nociceptive processing. *Annu. Rev. Pharmacol. Toxicol.* **2002**, *42*, 553–583.
- (35) Dannhardt, G. K. W. COX-2 inhibition and control of pain. *Curr. Opin. Investig. Drugs* 2002, 3, 1348–1358.
- (36) Markovac, A.; Patel, A. R.; LaMontagne, M. P.; Ash, A. B. 4-

(3-Nitrophenyl)-2-picoline. J. *Heterocyclic Chem.* **1977**, *14*, 147–148.

- (37) Banks, R. E.; Flowers, W. T.; Khaffaf, S. N. Fluorocarbon derivatives of nitrogen. part 19. synthesis and mass spectrometer analysis of some pyridinium (tetrafluoro-4-pyridyl)-methylides. J. Fluorine Chem. 1991, 53, 127– 142.
- (38) Winter, C. A.; Risley, E. A.; Nuss, G. W.; Carrageenan-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. *Proc. Soc. Exp. Biol. Med.* **1962**, *111*, 544-552.
- (39) Kumar, P.; Knaus, E. E. Synthesis and antiinflammatory activity of N-substituted dihydropyridylacetic acids, esters and amides. *Drug Design Del.* 1987, 2, 145–149.
- (40) Fukawa, K.; Kawano, O.; Hibi, M.; Misaka, N.; Ohba, S.; Hatanaka, Y. Method for evaluating analgesic agents in rats. J. Pharmacol. Methods 1980, 4, 251-259.
- (41) Buolamwini, J. K.; Knaus, E. E. Synthesis and antinociceptive activity of 4-pyridyl and dihydropyridyl analogues of meperidine and ketobemidone. Drug Design Del. 1990, 7, 19–31.

Appendix 3.2:

Elemental Analysis for Compounds 11j and 14a-v.

Cmpd	Empirical Formula	pirical Formula Calculated			Found			
		C	Н	N	С	Н	N	
11j	C ₈ H ₁₀ BrNOS	38.68	4.02	5.64	38.54	3.94	5.51	
14a	$C_{19}H_{16}O_4S$	67.04	4.73	-	67.28	4.96	-	
14b	$C_{19}H_{15}FO_4S$	63.67	4.22	-	63.39	4.17	-	
14c	$C_{20}H_{18}O_4S$	67.78	5.12	_	67.35	5.14		
14d	$C_{21}H_{20}O_4S$	68.27	5.45	-	68.46	5.32		
14e	C ₂₁ H ₁₉ FO ₄ S	65.27	4.95	-	65.34	4.82		
14f	C ₁₉ H ₁₆ O ₅ S	64.03	4.52		63.97	4.66		
14g	C ₁₉ H ₁₅ FO ₅ S	60.95	4.03		60.73	4.21	-	
14h	C ₂₀ H ₁₈ O ₅ S.1/3 H ₂ O	63.82	4.87	-	63.76	4.70		
14i	C ₂₀ H ₁₇ FO ₅ S	61.84	4.41	-	61.78	4.32		
14j	$C_{21}H_{20}O_5S$	65.61	5.24	_	65.46	5.21		
14k	C ₂₁ H ₁₉ FO ₅ S	62.67	4.76	_	62.41	4.54		
14I	$C_{22}H_{22}O_5S$	66.31	5.56	_	66.24	5.47		
14m	C ₂₂ H ₂₁ FO ₅ S	63.44	5.08	_	63.47	5.33	-	
14n	$C_{22}H_{22}O_5S$	66.31	5.56	_	66.28	5.31	-	
140	C ₂₂ H ₂₁ FO ₅ S	63.44	5.08		63.06	4.91	_	
14p	C ₂₅ H ₁₉ ClO ₅ S	64.31	4.10		64.18	3.99		
14q	C ₂₅ H ₁₈ ClFO ₅ S	61.92	3.74	_	61.87	3.46	-	
14r	C ₁₉ H ₁₆ O ₄ S ₂ ·1/2 H ₂ O	59.77	4.19		59.83	4.25		

$C_{20}H_{18}O_4S_2$	62.16	4.69	_	62.04	4.85	-
$C_{20}H_{17}FO_4S_2$	59.39	4.20		59.11	4.17	
$C_{21}H_{20}O_4S_2$	62.98	5.03	_	62.63	4.99	_
$C_{21}H_{20}O_4S_2$	62.98	5.03	_	62.76	5.06	_
	$C_{20}H_{18}O_{4}S_{2}$ $C_{20}H_{17}FO_{4}S_{2}$ $C_{21}H_{20}O_{4}S_{2}$ $C_{21}H_{20}O_{4}S_{2}$	$C_{20}H_{18}O_4S_2$ 62.16 $C_{20}H_{17}FO_4S_2$ 59.39 $C_{21}H_{20}O_4S_2$ 62.98 $C_{21}H_{20}O_4S_2$ 62.98	$C_{20}H_{18}O_4S_2$ 62.164.69 $C_{20}H_{17}FO_4S_2$ 59.394.20 $C_{21}H_{20}O_4S_2$ 62.985.03 $C_{21}H_{20}O_4S_2$ 62.985.03	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

5.0.0.0. CHAPTER 4.0

Design, Synthesis and Structure-Activity Relationship (SAR) Studies of 3,4,6-

Triphenylpyran-2-ones as Selective Cyclooxygenase-2 Inhibitors

5.1.0.0. Introduction

The discovery of another isoform of the enzyme cyclooxygenase (COX-2) in the early 1990's led to the development a new class of nonsteroidal of antiinflammatory drugs (NSAIDs) known as selective cyclooxygenase-2 (COX-2) inhibitors.¹⁻³ Recent studies have shown that selective COX-2 inhibitors are equally effective in the treatment of inflammatory diseases such as rheumatoid arthritis (RA) and osteoarthritis (OA) with an improved gastrointestinal (GI) profile compared to traditional NSAIDs.^{4,5} In recent years there has been significant advancement in drug design concepts regarding selective COX-2 inhibitors and their potential application for the treatment of a variety of disease states. For example, the treatment of colon, breast and prostate cancer have shown promising results.^{6,7} In addition, recent studies have highlighted the potential application of selective COX-2 inhibitors in the prophylactic prevention of neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease.^{8,9}

Diarylheterocycles constitute a major class of selective COX-2 inhibitors. Extensive structure-activity relationship (SAR) studies for the diarylheterocycle class have shown that a SO₂NH₂ or SO₂Me substituent at the *para*-position of one of the aryl rings is a requirement for optimum COX-2 selectivity and potency.¹⁰ Accordingly, the selective COX-2 inhibitor celecoxib (1), possesses a diarylheterocyclic ring template with a central 5-membered pyrazole ring, whereas rofecoxib (2), has a central 5membered lactone [2-(5H)furanone], ring system.^{11,12} Similarly, the recently launched selective COX-2 inhibitor valdecoxib (3), possesses а diarylheterocyclic ring template with a central 5-membered isoxazole ring, whereas etoricoxib (4), possesses a central 6-membered pyridine ring.¹³⁻¹⁵

Chart 4.1: Representative examples of tricyclic selective COX-2 inhibitors.

Recent studies have shown that compounds possessing a pyran-2-one moiety are known to exhibit diverse biological activities including anticancer, antimicrobial and HIV-protease

J. Med. Chem. 2004, 47, 3972-3990

inhibitory activities.¹⁶⁻¹⁸ We have shown that a novel class of diarylheterocycle possessing a central pyran-2-one ring (5, see Chart 4.1), acts as a suitable template for the design of selective COX-2 that exhibited inhibitors good antiinflammatory and analgesic activity profiles.¹⁹ In addition, other studies have also used a central pyran-2-one ring template for the design of selective COX-2 inhibitors.^{20,21} As part of our ongoing research program, we describe herein the design, synthesis and structureactivity relationship (SAR) studies for a novel class of regioisomeric, 3,4,6triphenylpyran-2-ones as selective COX-2 inhibitors.

5.2.0.0. Chemistry

Scheme 4.1: Reagents and conditions: (a) THF, -78 °C, *n*-BuLi, and then at -78 °C to 25 °C over night; (b) acetone, MnO₂, 25 °C, 4–5 h.

A number of methods for synthesizing 3,4,6-triphenylpyran-2-one derivatives have been reported.²²⁻²⁴ The synthetic used methods to prepare the 3,4,6-triphenylpyran-2regioisomeric ones (12a-s) are outlined in Schemes 4.1, 4.2 and 4.3. The initial strategy was to synthesize the 1,3-diarylprop-2-yn-1-ols (8a-r), which was achieved by the condensation of a para-substitutedphenylacetylene (6) with a parasubstituted-benzaldehyde (7) in the presence of *n*-butyllithium (44-84%).²⁵ Subsequent oxidation of 8a-r using activated manganese dioxide (MnO₂) afforded the corresponding 1.3diarylprop-2-yn-1-one (9a-r) in good yield (52-85%) as shown in Scheme 4.1.

Scheme 4.2: Reagents and conditions: (a) DMSO, NaH, 25 °C, 1 h.

The 3,4,6-triphenylpyran-2-ones (11as) having a central 6-membered lactone ring were obtained in moderate to good yields (22-62%) by condensation of a para-substituted-phenylacetic acid ester (10a-c) with a 1,3-diarylprop-2-yn-1-one (9a-i or 9l-r) in the presence of a base such as sodium hydride at 25 °C (Scheme 4.2).²² Oxidation of **11a-s**, using an aqueous solution of Oxone®, afforded the regioisomeric title compounds 12a-s, possessing paraа methanesulfonylphenyl substituent at either the C-3 or C-4 position of the central 6-membered pyran-2-one in good yield (60-85%) as illustrated in Scheme 4.3. The 3,4,6-triphenylpyran-2-one derivatives (12t)and 12u) were synthesized in moderate yield (17-34%) condensation of ethyl 4by methanesulfonylphenylacetate (10d) with a 1,3-diarylprop-2-yn-1-one (9g or 9k) in presence of the base potassium-tbutoxide (Scheme 4.4).

Scheme 4.3: Reagents and conditions: (a) 1,4dioxane, aqueous Oxone®, 25 °C, 4–5 h.

Scheme 4.4: Reagents and conditions: (a) *t*-butanol, potassium-*t*-butoxide, 50-60 °C, 1-1.5 h.

3,4,6-triphenylpyran-2-one The 11t with a C-6 p-NO₂-phenyl substituent was prepared by condensation of 1-(4nitrophenyl)-3-phenylprop-2-yn-1-one (9s) with the phenylacetic acid ester 10b in the presence of NaH. Subsequent oxidation of 11t using aqueous Oxone® afforded the methanesulfonyl derivative 12v in good yield (76%). The 1,3diarylprop-2-yn-1-one (9s) was prepared in low yield (25%) by a copper-catalyzed cross coupling of phenylacetylene with 4nitrobenzoyl chloride in the presence of triethylamine as base (Scheme 4.5).²⁶ Reduction of the nitro compound 12v using hydrazine hydrate in the presence of Pd/C afforded the amine derivative **12w** in good yield (76%).²⁷ 0-Demethylation of the C-6 methoxyphenyl compound 12e using neat pyridinium

Scheme 4.5: Reagents and conditions: (a) Et_3N , CuI, 25 °C, 30 h (b) DMSO, NaH, 25 °C, 1 h; (c) 1,4-dioxane, aqueous Oxone®, 25 °C, 4–5 h; (d) ethanol (95%), Pd/C, NH₂NH₂.H₂O, 75–78 °C, 1 h.

chloride at 190–210 °C afforded the corresponding phenol derivative 12x in low yield (20%) as shown in Scheme 4.6.²⁸

Scheme 4.6: Reagents and conditions: (a) pyridinium hydrochloride, 190–210 °C, 1–1.5 h.

4-methanesulfonylphenyl The C-4 regioisomer 12**v**. of the C-3 4methanesulfonlyphenyl compound 12t, was prepared using the reaction sequence shown in Scheme 4.7. Thus, the 1,3diarylprop-2-yn-1-one derivative (9t) was synthesized by condensation of 1ethynyl-4-methanesulfonylbenzene with 4-methylthiobenzaldehyde in the presence of *n*-BuLi to afford the 1,3diarylprop-2-yn-1-ol (8s) which was subsequently oxidized the to corresponding ketone 9t using activated

MnO₂ in good yield (67%). The starting material 1-ethynyl-4-methanesulfonyl benzene was prepared by the oxidation of 1-ethynyl-4-methylsulfanylbenzene using aqueous Oxone solution (Scheme 4.7). The final cyclization reaction was carried out by condensation of 9t with ethyl phenylacetate (10a) in the presence of potassium-*t*-butoxide to afford the target product 12y in good yield (46%).

The diphenylpyran-2-ones (13a-f), possessing a pyridyl substituent at either the C-3 or C-4 position, were prepared by the condensation of a 1,3-diarylprop-2yn-1-one (9u-x) with a phenyl (pyridyl) acetic acid ester in the presence of a base as illustrated in Schemes 4.8 and 4.9.

Accordingly, reaction of 3ethynylpyridine with a p-substitutedbenzaldehyde ($R^2 = H$ or OMe) in the presence of *n*-BuLi afforded the alcohol 8t or 8u in good yield (40–53%), which on subsequent oxidation with activated MnO₂ afforded the respective ketone 9u or 9v (57-61%). The C-4 pyridin-3ylpyran-2-ones (13a and 13b) were synthesized by the condensation of acetylenic ketones 9u and 9v with ethyl 4-methanesulfonylphenyl acetate (10d) in the presence of NaH in 24-46% vield as

Scheme 4.7: Reagents and conditions: (a) 1,4dioxane, aqueous Oxone (, 25 °C, 4–5 h; (b) THF, -78 °C, *n*-BuLi, -78 °C to 25 °C over night; (c) acetone, MnO₂, 25 °C, 4–5 h; (d) *t*-butanol, potassium-*t*-butoxide, 50–60 °C, 1–1.5 h.

shown in Scheme 4.8. The acetylenic ketones 91 and 9p possessing а methylthio moiety were oxidized to the corresponding acetylenic ketones 9w and 9x possessing a p-SO₂Me substituent aqueous Oxone® using solution. Condensation of 9w or 9x with a pyridin-3-yl or pyridin-4-ylacetic acid ester in the presence of NaH afforded the respective C-3 pyridin-3-yl or pyridin-4-ylpyran-2one (13c-f) in 22-42% yield as shown in Scheme 4.9.

A small group of 3,4,6-triphenylpyran-2-ones in which the SO₂Me

Scheme 4.8: Reagents and conditions: (a) THF, -78 °C, *n*-BuLi, -78 °C to 25 °C over night; (b) acetone, MnO_2 , 25 °C, 4–5 h; (c) CH_2Cl_2 , NaH, 25 °C, 1 h.

pharmacophore was replaced by a dipolar azido substituent (17a-c) were prepared as shown in Scheme 4.10. Accordingly, the reaction of 4aminophenylacetic acid (14) with sodium nitrite under acidic conditions in the presence of sodium azide afforded 4azidophenylacetic acid (15) in high yield (94%). Subsequent esterification of 15 ethanol under using 95% acidic conditions afforded the corresponding ester 16 in good vield (87%).
Condensation of the respective acetylenic ketones (**9e–g**) 4-azidophenylacetic acid

Scheme 4.9: Reagents and conditions: (a) 1,4dioxane, aqueous Oxone®, 25 °C, 4–5 h; (b) CH_2Cl_2 , NaH, 25 °C, 1 h.

ester (16) in the presence of NaH afforded the title compounds (17a-c) in moderate yield (30-35%) as shown in Scheme 4.10.

5.3.0.0. Results and discussion

A group of regioisomeric 3,4,6triphenylpyran-2-ones (12a-y, 13a-f and 17a-c) were designed such that the COX-2 SO₂Me pharmacophore was located at the *para*-position of either the C-3 or the C-4 phenyl substituent on the central pyran-2-one ring. In addition, the substituent at the *para*-position of the C-6 phenyl ring was varied (H, Me, Et, CF₃, OMe, OEt, F, SMe) to determine the effect of steric and electronic substituent properties on COX-2 inhibitory potency

Scheme 4.10: Reagents and conditions: (a) NaNO₂, conc. HCl, 0 °C, 15 min, NaN₃, 15–20 min, 25 °C; (b) conc. H₂SO₄, ethanol (95%), 70–75 °C, 3–4 h; (c) CH₂Cl₂, NaH, 25 °C, 1 h.

and selectivity. Structure-activity relationship (SAR) data for the title compounds (IC₅₀ values) were acquired by evaluating their in vitro ability to inhibit the COX-1 and COX-2 isozymes.¹⁹ In this regard, the pyran-2one compounds (12a-i and 12t-x)possessing C-3 paraа methanesulfonylphenyl substituent on the central lactone ring exhibited a broad range of COX-2 inhibitory potencies and

cmpd	R ¹	R ²	R ³	IC ₅₀ (μM) ^{<i>a</i>}		Selectivity ^b Index (S.I.)	
				COX-1	COX-2	~ /	
12a	Н	Н	SO ₂ Me	> 100	> 100	<u> </u>	
12b	Н	Me	SO ₂ Me	> 100	> 100	_	
12c	Н	Et	SO ₂ Me	> 100	> 100	-	
12d	Н	CF ₃	SO ₂ Me	> 100	> 100		
12e	Н	OMe	SO ₂ Me	> 100	0.02	> 5000	
12f	Н	OEt	SO ₂ Me	> 100	0.05	> 2000	
12g	Н	F	SO ₂ Me	> 100	5.1	> 19.0	
12h	F	OMe	SO ₂ Me	20	1.16	17.0	
12i	F	OEt	SO ₂ Me	3.2	158	-	
12j	Н	SO ₂ Me	Н	> 100	> 100	_	
12k	SO ₂ Me	Н	Н	> 100	1.3	> 77	
121	SO ₂ Me	Me	Н	> 100	1.2	> 83	
12m	SO ₂ Me	Et	Н	> 100	1.4	71	
12n	SO ₂ Me	CF ₃	Н	25.3	3.2	8.0	
120	SO ₂ Me	OMe	Н	31.5	0.45	70	
12p	SO ₂ Me	OEt	Н	31.6	1.1	29.0	
12q	SO ₂ Me	F	Н	11.0	0.07	157	
12r	SO ₂ Me	OMe	F	10.7	1.3	8.0	
12s	SO ₂ Me	OEt	F	1.07	14.50	-	
12t	Н	SMe	SO ₂ Me	37.7	0.16	236	
12u	F	SMe	SO ₂ Me	> 100	31.6	3.0	
12v	Н	NO_2	SO ₂ Me	> 100	7.0	> 14.0	
12w	Η	NH_2	SO ₂ Me	32.5	0.8	40.0	
12x	Н	OH	SO ₂ Me	> 100	> 100		
12y	SO_2Me	SMe	Н	31.2	4.5	7.0	
Celeco	xib			33.1	0.07	474	
Rofeco	oxib			> 100	0.5	> 200	

^{*a*} Values are means of two determinations and deviation from the mean is < 10% of the mean value (Catalog No. 560101, Cayman Chemicals Inc., Ann Arbor, MI, USA). ^{*b*} In vitro COX-2 selectivity index (IC₅₀ COX-1/IC₅₀ COX-2).

selectivity [IC₅₀ values > 100 (inactive) to 0.02 (very potent) μ M range] as summarized in Table 4.1. Varying the R²substituent at the *para*-position of the C-6 phenyl substituent on the central pyran-2one had a dramatic effect on COX-2 inhibitory potency and selectivity where the C-6 *para*-methoxyphenyl compound

12e, which exhibited excellent COX-2 inhibitory potency and selectivity (COX-2 IC₅₀ = 0.02 μ M; SI > 5000), was 3.5and 25-fold more potent than celecoxib (COX-2 IC₅₀ = 0.07 μ M; SI = 474) and rofecoxib (COX-2 IC₅₀ = 0.50 μ M; SI > 200), respectively. Insertion of a para-OEt substituent (12f) resulted in a modest decrease in COX-2 inhibitory potency $(COX-2 IC_{50} = 0.05 \mu M)$. Compound 12t possessing an electron donating R^2 thiomethyl substituent at the paraposition of the C-6 phenyl substituent exhibited weaker COX-2 inhibitory potency and selectivity (COX-2 $IC_{50} =$ $0.16 \ \mu\text{M}$; COX-1 IC₅₀ = 37.7 μM ; SI =

236), compared to the R²-OMe (12e) and R²-OEt (12f) compounds. Introduction of a fluorine substituent at the *para*-position on the C-4 phenyl ring (12h, 12i and 12u) generally decreased COX-2 inhibitory potency and selectivity (Table 1). The relative COX-2 inhibitory potency order for this group of pyran-2ones (12a-i and 12t-x) was OMe > OEt > SMe > NH₂ > F > NO₂ > inactive H, Me, Et, CF₃ and OH.

The C-6 *para*-methanesulfonylphenyl regioisomer **12j** ($R^2 = MeSO_2$) was an inactive COX inhibitor (COX-1 and COX-2 IC₅₀ > 100 μ M). The C-4 *para*-methanesulfonylphenyl pyran-2-one

Table 4.2: COX-1/COX-2 Inhibitory Activities of 3,4,6-Triphenylpyran-2-ones (13a-f and 17a-c)

			IC ₅₀ ((μM) ^a	Selectivity ^b Index (S.I.)	
cmpd	R ¹	R ²	COX-1	COX-2		
13a	Pyridin-3-yl	Н	3.0	8.0		
13b	Pyridin-3-yl	OMe	0.44	0.03	15	
13c	Pyridin-3-yl	Н	3.2	0.33	10	
13d	Pyridin-3-yl	OMe	0.15	1.6	~	
13e	Pyridin-4-yl	Н	> 100	3.0	> 33	
13f	Pyridin-4-yl	OMe	> 100	0.32	> 312	
17a	N ₃	OMe	> 100	0.5	> 200	
17b	N ₃	OEt	> 100	2.3	43	
17c	N ₃	SMe	30.0	0.38	79	
Celecoxib	-		33.1	0.07	474	
Rofecoxib			> 100	0.5	> 200	

^a Values are means of two determinations and deviation from the mean is < 10% of the mean value (Catalog No. 560101, Cayman Chemicals Inc., Ann Arbor, MI, USA). ^b In vitro COX-2 selectivity index (IC₅₀ COX-1/IC₅₀ COX-2).

Figure 4.1: Docking 6-(4-methoxyphenyl)-3-(4-methanesulfonylphenyl)-4-phenylpyran-2-one (12e) (ball and stick) in the active site of murine COX-2 ($E_{intermolecular} = -90.14$ kcal/mol). Red dotted line represents hydrogen bonding. Hydrogen atoms are not shown for clarity.

regioisomers (12k-s, 12y) exhibited moderate to good COX-2 inhibitory potency and selectivity (COX-2 $IC_{50} =$ 0.07-31.6 µM range) as illustrated in 4.1. The Table C-4 paramethanesulfonvlphenvl regioisomer 120. possesses which a C-6 paramethoxyphenyl substituent, also exhibited good COX-2 inhibitory potency $(COX-2 \ IC_{50} = 0.45 \ \mu M; \ SI = 70)$ although it is less potent and selective than the corresponding C-3 paramethanesulfonylphenyl regioisomer 12e. Introduction of a R^3 -F substituent at the para-position of a C-3 phenyl ring significantly decreased both COX-2 inhibitory potency and selectivity (12r and 12s). In contrast, the C-6 parafluorophenyl compound 12q was a highly potent COX-2 inhibitor (COX-2 $IC_{50} =$

0.07 μ M; SI = 157) as shown in Table 4.1. In general, for the C-4 paramethanesulfonylphenyl group of compounds (12k-s and 12y), introduction of a R²-H. Me, Et or OEt substituent at the para-position of the C-6 phenyl ring provided compounds that are equipotent inhibitors of COX-2. Replacement of the C-3 or C-4 phenyl moieties of 3,4,6-triphenylpyran-2-ones by a corresponding pyridin-3-yl or pyridin-4-yl substituent significantly altered the COX-2 inhibitory potency and selectivity (Table 4.2). In this sub group, 3-(pyridin-4-yl)-4-(4-methanesulfonyl phenyl)-6-(4-methoxyphenyl)pyran-2one (13f) exhibited the best combination inhibitory COX-2 potency and of selectivity (COX-2 IC₅₀ = 0.32 μ M; SI > 312).

The SO_2NH_2 and the SO₂Me pharmacophores present in celecoxib and rofecoxib respectively, are known to induce COX-2 selectivity by insertion into the secondary (2°) pocket of the COX-2 binding site that is absent in COX-1.¹⁰ This 2°-pocket in COX-2 is formed due to a conformational change at Tyr³⁵⁵ that is attributed to the presence of Ile⁵²³ in COX-1 relative to Val⁵²³ having a smaller side chain in COX-2.²⁹ It has been reported that replacement of His⁵¹³ in COX-1 by Arg⁵¹³ in COX-2 plays a key role in the hydrogen-bond network of the COX-2 binding site.³⁰ Recently we exploited, for the first time, the amino acid Arg⁵¹³ to design selective COX-2

inhibitors having a dipolar azide (N_3) pharmacophore that can undergo an electrostatic (ion-ion) interaction with in the COX-2 2°-pocket.²⁷ Arg⁵¹³ Accordingly, we replaced the SO₂Me pharmacophore in the most potent and selective COX-2 inhibitors identified from the 3,4,6-triphenylpyran-2-ones investigated in this study (12e, 12f and 12t) with a dipolar azido bioisostere to evaluate compounds 17a-c (see Table 4.2). It is biologically relevant that compounds possessing a dipolar p-N₃ pharmacophore on the C-3 phenyl substituent (17a-c) retained their COX-2 selectivity, even though they are less potent (COX-2 IC₅₀ = $0.38-2.3 \mu M$

Figure 4.2: Docking 6-(4-methoxyphenyl)-4-(4-methanesulfonylphenyl)-3-phenylpyran-2-one (120) (ball and stick) in the active site of murine COX-2 ($E_{intermolecular} = -84.44$ kcal/mol). Hydrogen atoms are not shown for clarity.

range; SI = 79 to > 200 range) than the corresponding C-3 p-MeSO₂-phenyl analogs.

The orientation and binding interactions of the potent and selective COX-2 inhibitor 12e [6-(4methoxyphenyl)-3-(4-methanesulfonyl phenyl)-4-phenylpyran-2-one] within the COX-2 active site was investigated by a molecular modeling (docking) experiment (Figure 4.1). The C-3 paramethanesulfonylphenyl regioisomer 12e binds in the center of the COX-2 binding site such that the SO₂Me pharmacophore inserts deep into the COX-2 secondary pocket, and the *para*-methanesulfonyl phenyl moiety of the ligand which undergoes hydrophobic contact with the protein, is surrounded by Phe⁵¹⁸, Arg⁵¹³, Gln¹⁹², Ser³⁵³, Leu³⁵² and Val⁵²³. Due to the presence of a less bulky Val⁵²³ in COX-2, relative to Ile^{523} in COX-1, the S-atom of the SO₂Me substituent is positioned about 4.53 Å inside the entrance to the COX-2 secondary pocket with one of its oxygen atoms forming a hydrogen bond with the NH of Phe^{518} (distance = 2.19 Å). The distance between the other SO₂Me oxygen atom and the NH₂ (guanidino group) of Arg^{513} is about 3.71 Å. The C-4 unsubstituted phenyl ring was oriented towards a hydrophobic pocket comprised of Trp³⁸⁷, Tyr³⁸⁵, Leu³⁸⁴ and Tyr³⁴⁸ at the top of the COX-2 binding site. The distance between the center of the C-4 phenyl ring and OH of Ser⁵³⁰ was about 6.15 Å. The central 6-membered lactone (pyran-2one) ring was located near the mouth of the COX-2 binding site such that, the central C=O of the lactone ring undergoes a weak hydrogen bonding interaction with the OH of Ser^{353} (distance = 2.91 Å). The interspacial distance between the OH of Tyr^{355} and C=O is about 5.11 Å, and the O-atom of the central lactone ring is positioned about 3.26 Å from the NH₂ (guanidino group) of Arg^{120} .

The para-methoxyphenyl C-6 substituent of 12e is oriented towards a hydrophobic pocket close to the mouth of the COX-2 active site such that it is within a van der Waal's contact range (distance ≈ 5 Å) of Ala⁵²⁷, Ser⁵³⁰, Leu⁵³¹, Met⁵³⁵, Ile³⁴⁵, Val³⁴⁹, and Leu³⁵⁹. The distance between the center of the C-6 phenyl ring and the OH of Ser⁵³⁰ was about 4.86 Å. The phenyl ring (of the C-6 p-MeO-phenyl substituent) undergoes a cation- π interaction with the NH₂ of the guanidino side chain of Arg¹²⁰ (distance = 6.0 Å). This interaction may confer important COX-2 selectivity implications by disrupting the salt bridge between Arg¹²⁰ and Glu⁵²⁴ at the mouth of the COX-2 binding site.^{29,31} Interestingly, the p-OMe substituent attached to the C-6 phenyl ring is within a van der Waal's contact range of Met⁵³⁵ (distance ≈ 5 Å), and the OMe group interacts favorably with the -SMe side chain of Met⁵³⁵.

A similar docking study for the C-4 p- $MeSO_2$ -phenyl regioisomer 120 in the COX-2 binding site shows that the C-4 *para*-methanesulfonylphenyl moiety is positioned in the vicinity of amino acid residues (Phe⁵¹⁸, Arg⁵¹³ and Gln¹⁹²) lining the COX-2 secondary pocket as shown in Figure 4.2. Unlike the C-3 regioisomer 12e, the O-atom of the SO₂Me group in **120** is not hydrogen bonded to Phe^{518} (distance == 3.10 Å), and the methanesulfonyl S-atom is located about 3.8 Å inside the entrance to the COX-2 secondary pocket (Val⁵²³). Similar to the regioisomer the C-3 12e, C-3 unsubstituted-phenyl ring in 120 is oriented towards a hydrophobic pocket made up of Trp³⁸⁷, Tyr³⁸⁵ and Tyr³⁴⁸. The C=O of the central lactone ring is about 4.33 Å away from the OH of Ser⁵³⁰. The C-6 *p*-MeO-phenyl moiety of **120** is located near the mouth of the COX-2 binding site, and it is surrounded by amino acid residues Met¹¹³, Val¹¹⁶, Arg¹²⁰, Val³⁴⁹, Tyr³⁵⁵, Phe³⁵⁷ and Leu³⁵⁹, and the OMe substituent is much further removed from Met⁵³⁵ compared to the C-3 *p*-MeSO₂-phenyl regioisomer **12e**.

Conformational comparisons of the binding modes of the two regioisomers **12e** and **12o** in the COX-2 active site are shown in Figure 4.3. The root mean square deviation (RMSD) between these two conformations was ~ 0.04 Å. The atom pairs of the vicinal diaryl system were selected for superimposition of **12e** and **12o** (the lactone C-3, C-4 and the

Figure 4. 3: Overlay of the binding modes of 12e (blue) and 12o (green) within the active site of murine COX-2. Hydrogen atoms are not shown for clarity.

aromatic carbons C-1, C'-1). The vicinal aromatic rings of both 12e and 12o, and also their *p*-sulfonyl group, lie in a common plane. However, the SO₂Me group of 12e extends much deeper inside the COX-2 secondary pocket relative to 12o (the S-atom of the SO₂Me substituent of 12e is positioned about 4.53 Å inside the entrance to the COX-2 secondary pocket unlike 12o). The central 6membered pyran-2-one ring of both 12e and 12o lie in a common plane. It is noteworthy that due to the regioisomeric position of the SO₂Me group, on either the C-3 or C-4 phenyl ring of the central lactone ring, the C=O is either close to Tyr^{355} (in 12e) at the entrance to COX-2 secondary pocket or near Ser⁵³⁰ (in 120) within the COX-2 binding site. Recent studies have shown the important interaction of diarylheterocyclic selective COX-2 inhibitors with Tyr^{355,32} In addition. the C-6 *p*-MeO-phenyl substituent in the two regioisomers is positioned in different regions within the COX-2 binding site. In this regard, interaction of the p-MeO-phenyl ring substituent of 12e within a hydrophobic pocket comprised of Ile³⁴⁵, Val³⁴⁹, Leu³⁵⁹ and Met⁵³⁵ appears to orient the C-3 p-MeSO₂-phenyl substituent deeper into the COX-2 secondary pocket which does not occur in the case of the C-4 p-MeSO₂phenyl regioisomer 120. A series of molecular dynamics (MD) simulations on the stabilities of the enzyme-ligand complexes reveal that 12e ($E_{intermolecular} =$ -90.14 kcal/mol) has a higher binding affinity for COX-2 as compared to 120 $(E_{\text{intermolecular}} = -84.44 \text{ kcal/mol})$. This data is consistent with the more potent COX-2 inhibition exhibited by 12e (COX-2 IC₅₀ = 0.02; S.I. > 5000) as compared to 120 $(COX-2 IC_{50} = 0.45; S.I. = 70).$

The binding mode of the pyran-2-one 17a, in which the COX-2 SO₂Me pharmacophore was replaced by a linear azido (N_3) bioisostere, within the COX-2 active site is similar to that of the respective C-3 para-MeSO₂-phenyl analog 12e, although there are some subtle differences (Figure 4.4). As expected. the linear dipolar azido substituent of the C-3 p-N₃-phenyl moiety is oriented towards the COX-2 secondary pocket with the dipolar N₃

Figure 4.4: Docking 6-(4-methoxyphenyl)-3-(4-azidophenyl)-4-phenylpyran-2-one (17a) (ball and stick) in the active site of murine COX-2 ($E_{intermolecular} = -77.48$ kcal/mol). Red dotted line represents hydrogen bonding. Hydrogen atoms are not shown for clarity.

group participating in favourable interactions (electrostatic) with Arg⁵¹³ and Phe^{518} ²⁷ The terminal *N*-atom of the dipolar azide group is located about 3.23 Å inside the COX-2 secondary pocket (Val⁵²³), and about 2.63 Å removed from the NH_2 (guanidino group) of Arg^{513} (ionion interaction). The terminal N-atom can also undergo a favourable interaction with the backbone NH of Phe⁵¹⁸ (distance = 3.81 Å). In addition, the terminal Natom of the dipolar azide group is nearly 4.65 Å from the NH of His⁹⁰ at the entrance to the COX-2 secondary pocket. The C-4 unsubstituted phenyl ring is located near a hydrophobic pocket comprised of Trp³⁸⁷, Tyr³⁸⁵ and Leu³⁸⁴ observed similar to the related SO₂Me analog 12e. The central C=O of the lactone ring is hydrogen bonded to the OH of Tyr³⁵⁵ (distance = 2.50 Å) at the mouth of the COX-2 binding site. The C-6 p-MeO-phenyl ring is within van der

Waal's contact range (distance = 5 Å) with the protein, and it is surrounded by Ile³⁴⁵, Leu⁵³¹, Leu³⁵⁹ and Met⁵³⁵. The C-6 phenyl ring also undergoes a cation- π interaction with the NH_2 of the guanidino side chain of Arg^{120} (distance = 6.13 Å). These observations show that the dipolar azido pharmacophore, serves as a suitable bioisostere that undergoes electrostatic interaction with Arg⁵¹³ within the COX-2 secondary pocket. Accordingly, COX-2 selectivity is retained for compounds belonging to the 3,4,6-triphenylpyran-2one class by replacing the traditional SO₂Me pharmacophore by a linear dipolar azido substituent (17a, COX-2 $IC_{50} = 0.50 \ \mu M; S.I. > 200).$

Our previous study on C-3 paramethanesulfonylphenyl pyranones indicated that C-6 alkyl-, alkoxy- or alkylthio- substituents are a major determinant of COX-2 inhibitory potency

Table 4.3: Antiinflammatory and Analgesic Activities of 3,4,6-Triphenylpyran-2-ones (12e-f. 12t. 13f and 17a)

		R ²	AI Activity ^a	Analgesic Activity ^b	
cmpd	R ¹		% Inhibition at 3 hours	% Inhibition at 30 min.	% Inhibition at 60 min.
12e	Н	OMe	31.0 ± 4.7 ^c	37.5 ± 14.4	69.0 ± 14.0
12f	Н	OEt	61.3 ± 1.2^{d}	58.3 ± 10.2	75.0 ± 17.6
12t	Н	SMe	52.6 ± 1.6^{e}	72.0 ± 12.3	64.7 ± 19.4
13f			$50.3 \pm 8.0^{f.g}$	58.3 ± 8.3	55.0 ± 9.1
17a			42.3 ± 7.6^{h}	47.2 ± 10.0	55.5 ± 13.6
Ibuprofen			56.2 ± 2.0^{i}		-
Celecoxib			$80.0 \pm 2.0^{j,k}$	69.33 ± 12.1	79.5 ± 2.0

⁴ Inhibitory activity in a carrageenan-induced rat paw edema assay. The results are expressed

as mean \pm SEM (n = 4-6) following a 5 mg/kg oral dose of the test compound.

^b Inhibitory activity in the rat 4% NaCl-induced abdominal constriction assay. The results

are expressed as mean \pm SEM (n = 4–6) following a 5 mg/kg oral dose of the test compound. ^c ID₅₀ = 19.2 mg/kg oral dose. ^d ID₅₀ = 5.6 mg/kg oral dose. ^e ID₅₀ = 7.9 mg/kg oral dose. ^f ID₅₀ = 21.4 mg/kg oral dose. ^g 30 mg/kg oral dose. ^h ID₅₀ = 5.6 mg/kg oral dose. ⁱ 50 mg/kg oral dose. ^j 50 mg/kg oral dose. k ID₅₀ = 10.8 mg/kg oral dose.

and selectivity due to their ability to orient the central pyranone ring such that the C-3 para-SO₂Me pharmacophore is positioned in the vicinity of the COX-2 secondary pocket.¹⁹ In this study on 3,4,6-triphenylpyranones, it is shown that a C-6 *p*-substituted-phenyl ring also plays a critical role in positioning the para-SO₂Me pharmacophore close to the COX-2 secondary pocket. In addition, it appears that the regioisomeric placement

of the para-SO₂Me pharmacophore at either the C-3 or C-4 phenyl ring in this latter group of C-6 phenyl analogs is an important determinant with respect to COX-2 inhibitory potency and selectivity. In this regard, the C-3 p- SO_2Me substituted pyranones (12e, 12f) and 12t) exhibited superior COX-2 inhibitory potency and selectivity.

Pharmacological studies were carried out to assess the in vivo antiinflammatory

and analgesic activity of some of the most potent and selective COX-2 inhibitors (12e, 12f, 12t, 13f and 17a) based on in vitro enzyme inhibition data (Table 4.3). In a carrageenan-induced rat paw edema assay model, 12e (COX-2 $IC_{50} = 0.02$; S.I. > 5000) exhibited a 31% inhibition of inflammation at 3 h after administration of a 5 mg/kg oral dose. The most active oral antiinflammatory compound **12f** (COX-2 $IC_{50} = 0.05$; S.I. > 2000) that exhibited an ID_{50} of 5.6 mg/kg was more potent than the reference drug celecoxib ($ID_{50} = 10.8 \text{ mg/kg}$). In a rat model 4% NaCl-induced abdominal constriction assay, a 5 mg/kg po dose of pyran-2-ones exhibited these good analgesic activities (37-75% range) at 30 or 60 minutes post drug administration.

The 6-(4-ethoxyphenyl)-3-(4-methane sulfonylphenyl)-4-phenylpyran-2-one (12f) exhibited good analgesic activity where a 5 mg/kg po dose reduced writhing by 58 and 75% at 30 and 60 min post drug administration.

5.4.0.0. Conclusions

The SAR data acquired for this class of 3,4,6-triphenylpyran-2-ones have shown that (i) compounds exhibiting high COX-2 inhibitory potency and selectivity can be designed by appropriate placement of a p-SO₂Me pharmacophore on either a C-3 or C-4 phenyl ring, in which the pyran-2-one ring serves as a suitable central ring template, (ii) docking studies revealed that the C-3 p-MeSO₂-phenyl regioisomer having an appropriately substituted C-6 phenyl ring, exhibit better binding affinity than the corresponding C-4 p-MeSO₂-phenyl regioisomer, (iii) COX-2 inhibitory potency and selectivity is sensitive to substituent electronic properties at the *para*-position of the C-6 phenyl ring where the C-6 p-MeO-phenyl compound 12e exhibits the best combination of potency and selectivity, and (iv) the linear azido (N_3) substituent is a suitable bioisostere to replace a traditional SO₂Me COX-2 pharmacophore.

5.5.0.0. Experimental Section

General. Melting points were determined using a Buchi capillary apparatus and are uncorrected. Ibuprofen was purchased from Sigma (St. Louis, MO). All other reagents including 8a (1,3-diphenylprop-2-yn-1-ol) and 9a (1,3-diphenylprop-2-yn-1-one) were purchased from Aldrich (Milwaukee, WI). Silica gel column chromatography was performed using Merck silica gel 60 ASTM (70-230 mesh). Infrared (IR) spectra were recorded using a Nicolet 550 Series II Magna FT-IR spectrometer. Nuclear magnetic resonance (¹H NMR, ¹³C NMR) spectra were recorded on a Bruker AM-300 spectrometer and chemical shifts are expressed in parts per relative million (ppm, δ) to tetramethylsilane as internal standard. Spin multiplets are given as s (singlet), d (doublet), dd (doublet of doublets), t (triplet), q (quartet) and m (multiplet). Coupling constants (J) are given in Hertz (Hz). ¹³C NMR spectra were acquired using the J modulated spin echo technique where methyl and methine carbons appear as positive peaks and methylene and quaternary carbon resonances appear as negative peaks. Microanalyses were performed for C, H (Micro Analytical Service and Ν Laboratory, Department of Chemistry, University of Alberta) and were within \pm 0.4% of the theoretical values. Celecoxib and rofecoxib were synthesized according to the literature procedures^{11,12} Compounds 8b [1-(4-methylphenyl)-3phenylprop-2-yn-1-ol], **8**e [1-(4methoxylphenyl)-3-phenylprop-2-yn-1-[1-(4-fluorophenyl)-3oll, 8h phenylprop-2-yn-1-ol], 9b [1-(4methylphenyl)-3-phenylprop-2-yn-1onel. 9e [1-(4-methoxyphenyl)-3-1-ethynyl-4phenylprop-2-yn-1-one], methanesulfonylbenzene and the phenylacetic acid esters (10b and 10c) according to were prepared the previously reported methods.33-37 Male Sprague-Dawley rats, used in the antinflammatory-analgesic screens, were purchased from Animal Health Services at the University of Alberta, and experiments were carried out using protocols approved by the Animal Welfare Committee, University of Alberta.

General Procedure for the Synthesis of 1,3-Diarylprop-2-yn-1-ols (8c-r). A 4-substituted-phenylacetylene (6, $R^1 = H$, SMe or F; 9.75 mmol) was added slowly under an argon atmosphere to a stirred solution of freshly dried THF (10 mL) at -78 °C. A solution of n-BuLi (4 mL of 2.5 M in hexane) was added slowly. After 3 minutes a solution of the respective 4-substituted-benzaldehyde (7, $R^2 = H$, Me, Et, CF₃, OMe, OEt, SMe or F; 9.75 mmol) in dry THF (5 mL) was added slowly while maintaining the temperature at -78 °C, and the reaction was allowed to proceed overnight after stirring and warming to room temperature. The reaction mixture was washed with saturated aqueous NH4Cl (10 mL), extracted with EtOAc (2 x 20 mL), the organic phase was separated, dried over Na₂SO₄, and the solvent was evaporated in vacuo to give a crude oil which was purified by silica gel column chromatography using hexane-ethyl acetate (3:1, v/v) as eluent to afford the respective title compound 8c-r in 44– 84% yield. Some physical and spectroscopic data for 8c-r are listed below.

1-(4-Ethylphenyl)-3-phenylprop-2yn-1-ol (8c). The product was obtained as a white solid (1.4 g, 61%): mp 108– 110 °C; IR (film): 3315 (OH), 2193 (C=C) cm⁻¹; ¹H NMR (CDCl₃): δ 1.22 (t, J = 7.3 Hz, 3H, CH₂CH₃), 2.22 (d, J = 5.8Hz, 1H, CHOH), 2.63 (q, J = 7.3 Hz, 2H, CH₂CH₃), 5.66 (d, J = 5.8 Hz, 1H, CHOH), 7.23 (d, J = 8.2 Hz, 2H, 4ethylphenyl H-3, H-5), 7.28–7.31 (m, 3H, phenyl H-3, H-4, H-5), 7.42–7.49 (m, 2H, phenyl H-2, H-6), 7.52 (d, J = 8.2Hz, 2H, 4-ethylphenyl H-2, H-6). Anal. (C₁₇H₁₆O): C, H.

1-(4-Trifluoromethylphenyl)-3phenylprop-2-yn-1-ol (8d). The product was obtained as a pale yellow oil (1.5 g, 59%): IR (film): 3313 (OH), 2183 (C=C) cm⁻¹; ¹H NMR (CDCl₃): δ 2.40 (d, J =5.8 Hz, 1H, CHOH), 5.64 (d, J = 5.8 Hz, 1H, CHOH), 7.30–7.35 (m, 3H, phenyl H-3, H-4, H-5), 7.44–7.49 (m, 2H, phenyl H-2, H-6), 7.66 (d, J = 8.2 Hz, 2H, 4-trifluorophenyl H-2, H-6), 7.74 (d, J = 8.2 Hz, 2H, 4-trifluorophenyl H-3, H-5).

1-(4-Ethoxyphenyl)-3-phenylprop-2yn-1-ol (8f). The product was obtained as a pale yellow oil (1.6 g, 65%): IR (film): 3310 (OH), 2188 (C=C) cm⁻¹; ¹H NMR (CDCl₃): δ 1.40 (t, J = 7.3 Hz, 3H, OCH₂CH₃), 2.19 (d, J = 5.8 Hz, 1H, CHOH), 4.07 (q, J = 7.3 Hz, 2H, OCH₂CH₃), 5.64 (d, J = 5.8 Hz, 1H, CHOH), 6.91 (d, J = 8.5 Hz, 2H, 4ethoxyphenyl H-3, H-5), 7.30–7.45 (m,

3H, phenyl H-3, H-4, H-5), 7.47–7.51 (m, 2H, phenyl H-2, H-6), 7.53 (d, J = 8.5 Hz, 2H, 4-ethoxyphenyl H-2, H-6). Anal. (C₁₇H₁₆O₂): C, H.

1-(4-Methylsulfanylphenyl)-3-

phenylprop-2-yn-1-ol (8g). The product was obtained as a pale yellow solid (1.95 g, 74.5%): mp 56–58 °C; IR (film): 3310 (OH), 2188 (C=C) cm⁻¹; ¹H NMR (CDCl₃): δ 2.24 (d, J = 5.8 Hz, 1H, CHOH), 2.50 (s, 3H, SCH₃), 5.60 (d, J =5.8 Hz, 1H, CHOH), 7.28 (d, J = 8.2 Hz, 2H, 4-methylsulfanylphenyl H-3, H-5), 7.32–7.35 (m, 3H, phenyl H-3, H-4, H-5), 7.44–7.49 (m, 2H, phenyl H-2, H-6), 7.53 (d, J = 8.2 Hz, 2H, 4methylsulfanylphenyl H-2, H-6). Anal. (C₁₆H₁₄OS): C, H.

3-(4-Fluorophenyl)-1-(4-

methoxyphenyl)prop-2-yn-1-ol (8i). The product was obtained as an oil (2.11 g, 84.4%): IR (film): 3320 (OH), 2124 (C=C) cm⁻¹; ¹H NMR (CDCl₃): δ 2.19 (d, J = 5.8 Hz, 1H, CHOH), 3.87 (s, 3H, OCH₃), 5.63 (d, J = 5.8 Hz, 1H, CHOH), 6.96 (d, J = 8.5 Hz, 2H, 4-methoxyphenyl H-3, H-5), 7.00 (dd, $J^{3}_{HH} = 8.2$, $J^{3}_{FH} = 8.2$ Hz, 2H, 4-fluorophenyl H-3, H-5), 7.43 (dd, $J^{3}_{HH} = 8.2$, $J^{4}_{FH} = 4.9$ Hz, 2H, 4-fluorophenyl H-2, H-6), 7.52 (d, J = 8.5 Hz, 2H, 4-methoxyphenyl H-2, H-6), 7.52 (d, J = 8.5 Hz, 2H, 4-methoxyphenyl H-2, H-6). Anal. (C₁₆H₁₃FO₂): C, H.

3-(4-Fluorophenyl)-1-(4-

ethoxyphenyl)prop-2-yn-1-ol (8j). The product was obtained as an oil (2.06 g, 77.7%): IR (film): 3374 (OH), 2120 (C=C) cm⁻¹; ¹H NMR (CDCl₃): δ 1.41 (t, J = 7.3 Hz, 3H, OCH₂CH₃), 2.16 (d, J =5.8 Hz, 1H, CHOH), 4.07 (q, J = 7.3 Hz, 2H, OCH₂CH₃), 5.62 (d, J = 5.8 Hz, 1H, CHOH), 6.90 (d, J = 8.5 Hz, 2H, 4ethoxyphenyl H-3, H-5), 6.97 (dd, $J^3_{HH} =$ 8.2, $J_{FH}^3 = 8.2$ Hz, 2H, 4-fluorophenyl H-3, H-5), 7.42 (dd, $J_{HH}^3 = 8.2$, $J_{FH}^4 = 4.9$ Hz, 2H, 4-fluorophenyl H-2, H-6), 7.51 (d, J = 8.5 Hz, 2H, 4-ethoxyphenyl H-2, H-6). Anal. (C₁₇H₁₅FO₂): C, H.

3-(4-Fluorophenyl)-1-(4-

methylsulfanylphenyl)prop-2-yn-1-ol (8k). The product was obtained as an oil (1.78 g, 67.2%): IR (film): 3347 (OH), 2135 (C=C) cm⁻¹; ¹H NMR (CDCl₃): δ 2.22 (d, J = 5.8 Hz, 1H, CHOH), 2.50 (s, 3H, SCH₃), 5.64 (d, J = 5.8 Hz, 1H, CHOH), 6.98 (dd, $J_{HH}^{3} = 8.2$, $J_{FH}^{3} = 8.2$ Hz, 2H, 4-fluorophenyl H-3, H-5), 7.25 (d, J8.2 Hz, 2H, 4-methylsulfanylphenyl H-3, H-5), 7.41 $(dd, J^{3}_{HH} = 8.2, J^{4}_{FH} = 4.9 Hz, 2H, 4$ fluorophenyl H-2, H-6), 7.51 (d, J = 8.2Hz, 2H, 4-methylsulfanylphenyl H-2, H-6). Anal. (C₁₆H₁₃FOS): C, H.

3-(4-Methylsulfanylphenyl)-1-

phenylprop-2-yn-1-ol (81). The product was obtained as a reddish brown oil (1.98 g, 80%): IR (film): 3335 (OH), 2226 (C=C) cm⁻¹; ¹H NMR (CDCl₃): δ 2.26 (d, J = 6.1 Hz, 1H, CHOH), 2.48 (s, 3H, SCH₃), 5.68 (d, J = 6.1 Hz, 1H, CHOH), 7.16 (d, J = 8.5 Hz, 2H, 4methylsulfanylphenyl H-3, H-5), 7.32 (d, J = 8.5 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.36–7.44 (m, 3H, phenyl H-3, H-4, H-5), 7.60–7.63 (m, 2H, phenyl H-2, H-6). Anal. (C₁₆H₁₄OS): C, H.

3-(4-Methylsulfanylphenyl)-1-(4-

methylphenyl)prop-2-yn-1-ol (8m). The product was obtained as an oil (1.63 g, 62.2%): IR (film): 3351 (OH), 2220 (C=C) cm⁻¹; ¹H NMR (CDCl₃): δ 2.19 (d, J = 5.8 Hz, 1H, CHOH), 2.38 (s, 3H, CH₃), 2.49 (s, 3H, SCH₃), 5.65 (d, J = 5.8 Hz, 1H, CHOH), 7.16 (d, J = 8.8 Hz, 2H, 4-methylsulfanylphenyl H-3, H-5), 7.21

(d, J = 8.0 Hz, 2H, 4-methylphenyl H-3, H-5), 7.37 (d, J = 8.8 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.40 (d, J = 8.0 Hz, 2H, 4-methylphenyl H-2, H-6). Anal. (C₁₇H₁₆OS): C, H.

3-(4-Methylsulfanylphenyl)-1-(4ethylphenyl)prop-2-yn-1-ol (8n). The product was obtained as an oil (1.96 g, 71.2%): IR (film): 3324 (OH), 2193 (C=C) cm⁻¹; ¹H NMR (CDCl₃): δ 1.22 (t, J = 7.6 Hz, 3H, CH₂CH₃), 2.18 (d, J = 6.1Hz, 1H, CHOH), 2.49 (s, 3H, SCH₃), 2.53 (q, J = 7.6 Hz, 2H, CH₂CH₃), 5.65 (d, J = 6.1 Hz, 1H, CHOH), 7.15 (d, J =8.2 Hz, 2H, 4-methylsulfanylphenyl H-3, H-5), 7.17 (d, J = 8.2 Hz, 2H, 4ethylphenyl H-3, H-5), 7.37 (d, J = 8.2Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.52 (d, J = 8.2 Hz, 2H, 4-ethylphenyl H-2, H-6). Anal. (C₁₈H₁₈OS): C, H.

3-(4-Methylsulfanylphenyl)-1-(4trifluoromethylphenyl)prop-2-yn-1-ol

(80). The product was obtained as an oil (1.35 g, 43%): IR (film): 3355 (OH), 2227 (C=C) cm⁻¹; ¹H NMR (CDCl₃): δ 2.40 (d, J = 5.8 Hz, 1H, CHOH), 2.49 (s, 3H, SCH₃), 5.74 (d, J = 5.8 Hz, 1H, CHOH), 7.17 (d, J = 8.5 Hz, 2H, 4methylsulfanylphenyl H-3, H-5), 7.36 (d, J = 8.5 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.66 (d, J = 8.2 Hz, 2H, 4trifluoromethylphenyl H-2, H-6), 7.73 (d, J = 8.2 Hz, 2H, 4-trifluoromethylphenyl H-3, H-5). Anal. (C₁₇H₁₃F₃OS): C, H.

3-(4-Methylsulfanylphenyl)-1-(4methoxyphenyl)prop-2-yn-1-ol (8p). The product was obtained as an oil (2.32 g, 83.7%): IR (film): 3351 (OH), 2220 (C=C) cm⁻¹; ¹H NMR (CDCl₃): δ 2.17 (d, J = 6.1 Hz, 1H, CHOH), 2.49 (s, 3H, SCH₃), 3.81 (s, 3H, OCH₃), 5.64 (d, J =6.1 Hz, 1H, CHOH), 6.92 (d, J = 8.8 Hz, 2H, 4-methoxyphenyl H-3, H-5), 7.16 (d, J = 8.5 Hz, 2H, 4-methylsulfanylphenyl H-3, H-5), 7.37 (d, J = 8.5 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.53 (d, J = 8.8 Hz, 2H, 4-methoxyphenyl H-2, H-6). Anal. (C₁₇H₁₆O₂S): C, H.

3-(4-Methylsulfanylphenyl)-1-(4ethoxyphenyl)prop-2-yn-1-ol (8q). The product was obtained as a dark brown oil (2.14 g, 73.5%): IR (film): 3328 (OH), 2206 (C≡C) cm⁻¹; ¹H NMR (CDCl₃): δ 1.40 (t, J = 7.0 Hz, 3H, OCH₂CH₃), 2.17 (d, J = 5.8 Hz, 1H, CHOH), 2.49 (s, 3H, CHOH) SCH_3 , 4.02 (q, J = 7.0 Hz, 2H, OCH_2CH_3), 5.65 (d, J = 5.8 Hz, 1H, CHOH), 6.91 (d, J = 8.8 Hz, 2H, 4ethoxyphenyl H-3, H-5), 7.16 (d, J = 8.2Hz, 2H, 4-methylsulfanylphenyl H-3, H-5), 7.37 (d, J = 8.2 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.51 (d, J = 8.8 Hz, 2H, 4-ethoxyphenyl H-2, H-6). Anal. $(C_{18}H_{18}O_2S)$: C, H.

3-(4-Methylsulfanylphenyl)-1-(4fluorophenyl)prop-2-yn-1-ol (8r). The product was obtained as an oil (1.96 g, 73.8%): IR (film): 3382 (OH), 2220 (C≡C) cm⁻¹; ¹H NMR (CDCl₃): δ 2.28 (d, J = 6.1 Hz, 1H, CHOH), 2.49 (s, 3H, SCH_3), 5.66 (d, J = 6.1 Hz, 1H, CHOH), 7.09 (dd, $J_{HH}^3 = 8.8$, $J_{FH}^3 = 8.8$ Hz, 2H, 4-fluorophenyl H-3, H-5), 7.17 (d, J = 8.2)Hz, 2H, 4-methylsulfanylphenyl H-3, H-7.36 (d, J = 8.2 Hz, 2H,5), methylsulfanylphenyl H-2, H-6), 7.56 (dd, $J_{HH}^3 = 8.8$, $J_{FH}^4 = 5.5$ Hz, 2H, 4fluorophenyl H-2, H-6). Anal. (C₁₆H₁₃FOS): C, H.

General Procedure for the Synthesis of 1,3-Diarylprop-2-yn-1-ones (9c-r). To a stirred solution of the respective 1,3diarylprop-2-yn-1-ol (8c-r; 4.5 mmol) in acetone (25 mL) was added activated

manganese IV oxide (7.8 g, 90 mmol), and the reaction mixture was stirred for 4-5 h at 25 °C after which MnO₂ was filtered off, and the organic solvent was removed in vacuo to give the title compound (9c-r) in good yield (52-85%). Some physical and spectroscopic data for 9c-r are listed below.

1-(4-Ethylphenyl)-3-phenylprop-2-

yn-1-one (9c). The product was obtained as a oil by the oxidation of **8c** in the presence of MnO₂ (0.74 g, 70.2%): IR (film): 2152 (C=C), 1650 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 1.25 (t, J = 7.3 Hz, 3H, CH₂CH₃), 2.71 (q, J = 7.3 Hz, 2H, CH₂CH₃), 7.33 (d, J = 8.2 Hz, 2H, 4ethylphenyl H-3, H-5), 7.35–7.51 (m, 3H, phenyl H-3, H-4, H-5), 7.67–7.69 (m, 2H, phenyl H-2, H-6), 8.13 (d, J = 8.2Hz, 2H, 4-ethylphenyl H-2, H-6). Anal. (C₁₇H₁₄O): C, H.

1-(4-Trifluoromethylphenyl)-3-

phenylprop-2-yn-1-one (9d). The product was obtained as a white solid by the oxidation of 8d in the presence of MnO₂ (0.96 g, 77.8%): mp 70–72 °C; IR (film): 2150 (C=C), 1649 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 7.43–7.56 (m, 3H, phenyl H-3, H-4, H-5), 7.67–7.73 (m, 2H, phenyl H-2, H-6), 7.79 (d, J = 8.2Hz, 2H, 4-trifluoromethylphenyl H-3, H-5), 8.33 (d, J = 8.2 Hz, 2H, 4trifluoromethylphenyl H-2, H-6). Anal. (C₁₆H₉F₃O): C, H.

1-(4-Ethoxyphenyl)-3-phenylprop-2yn-1-one (9f). The product was obtained as a white solid by the oxidation of **8f** in the presence of MnO₂ (1.3 g, 53%): mp 57–59 °C; IR (film): 2152 (C=C), 1645 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 1.49 (t, J = 7.0 Hz, 3H, OCH₂CH₃), 4.11 (q, J =7.0 Hz, 2H, OCH₂CH₃), 6.90 (d, J = 8.5 Hz, 2H, 4-ethoxyphenyl H-3, H-5), 7.39– 7.51 (m, 3H, phenyl H-3, H-4, H-5), 7.67–7.69 (m, 2H, phenyl H-2, H-6), 8.18 (d, J = 8.5 Hz, 2H, 4-ethoxyphenyl H-2, H-6).

1-(4-Methylsulfanylphenyl)-3phenylprop-2-yn-1-one (9g). The product was obtained as a solid by the oxidation of 8g in the presence of MnO₂ (0.95 g, 83.6%): mp 50–51 °C; IR (film): 2172 (C=C), 1642 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.54 (s, 3H, SCH₃), 7.31 (d, J = 8.5 Hz, 2H, 4-methylsulfanylphenyl H-3, H-5), 7.40–7.51 (m, 3H, phenyl H-3, H-4, H-5), 7.61–7.67 (m, 2H, phenyl H-2, H-6), 8.11 (d, J = 8.5 Hz, 2H, 4methylsulfanylphenyl H-2, H-6). Anal. (C1₆H₁₂OS): C, H.

1-(4-Fluorophenyl)-3-phenylprop-2yn-1-one (9h). The product was obtained as a solid by the oxidation of **8h** in the presence of MnO₂ (1.4 g, 63%): mp 61– 63 °C; IR (film): 2200 (C=C), 1649 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 7.16 (dd, $J_{HH}^3 = 8.5$, $J_{FH}^3 = 8.5$ Hz, 2H, 4fluorophenyl H-3, H-5), 7.40–7.50 (m, 3H, phenyl H-3, H-4, H-5), 7.67–7.70 (m, 2H, phenyl H-2, H-6), 8.26 (dd, J_{HH}^3 = 8.5, $J_{FH}^4 = 4.9$ Hz, 2H, 4-fluorophenyl H-2, H-6).

3-(4-Fluorophenyl)-1-(4-

methoxyphenyl)prop-2-yn-1-one (9i). The product was obtained as a solid by the oxidation of **8i** in the presence of MnO₂ (0.61 g, 53.3%): mp 104–106 °C; IR (film): 2193 (C=C), 1632 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 3.90 (s, 3H, OCH₃), 6.98 (d, J = 8.8 Hz, 2H, 4-methoxyphenyl H-3, H-5), 7.00 (dd, J³_{HH} = 8.5, J³_{FH} = 8.5 Hz, 2H, 4-fluorophenyl H-3, H-5), 7.43 (dd, J³_{HH} = 8.5, J⁴_{FH} = 4.9 Hz, 2H, 4fluorophenyl H-2, H-6), 7.52 (d, J = 8.5 Hz, 2H, 4-methoxyphenyl H-2, H-6). Anal. $(C_{16}H_{11}FO_2)$: C, H.

3-(4-Fluorophenyl)-1-(4-

ethoxyphenyl)prop-2-yn-1-one (9j). The product was obtained as a solid by the oxidation of **8j** in the presence of MnO₂ (0.68 g, 56.5%): mp 81–83 °C; IR (film): 2193 (C=C), 1622 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 1.41 (t, J = 7.0 Hz, 3H, OCH₂CH₃), 4.07 (q, J = 7.0 Hz, 2H, OCH₂CH₃), 6.96 (d, J = 8.8 Hz, 2H, 4ethoxyphenyl H-3, H-5), 7.09 (dd, J^{3}_{HH} = 8.8, J^{3}_{FH} = 8.8 Hz, 2H, 4-fluorophenyl H-3, H-5), 7.65 (dd, J^{3}_{HH} = 8.8, J^{4}_{FH} = 5.2 Hz, 2H, 4-fluorophenyl H-2, H-6), 8.16 (d, J = 8.8 Hz, 2H, 4-ethoxyphenyl H-2, H-6). Anal. (C₁₇H₁₃FO₂): C, H.

3-(4-Fluorophenyl)-1-(4-

methylsulfanylphenyl)prop-2-yn-1-one (9k). The product was obtained as a solid by the oxidation of 8k in the presence of MnO₂ (0.76 g, 62.4%): mp 119–121 °C; IR (film): 2206 (C=C), 1635 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.53 (s, 3H, SCH₃), 7.13 (dd, $J^{3}_{HH} = 8.2$, $J^{3}_{FH} = 8.2$ Hz, 2H, 4-fluorophenyl H-3, H-5), 7.33 (d, J = 8.2Hz, 2H, 4-methylsulfanylphenyl H-3, H-5), 7.66 (dd, $J^{3}_{HH} = 8.2$, $J^{4}_{FH} = 5.2$ Hz, 2H, 4-fluorophenyl H-2, H-6), 8.10 (d, J= 8.2 Hz, 2H, 4-methylsulfanylphenyl H-2, H-6). Anal. (C₁₆H₁₁FOS): C, H.

3-(4-Methylsulfanylphenyl)-1-

phenylprop-2-yn-1-one (91). The product was obtained as a solid by the oxidation of 81 in the presence of MnO_2 (0.77 g, 68%): mp 54-55 °C; IR (film): 2200 (C=C), 1629 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.52 (s, 3H, SCH₃), 7.23 (d, J = 8.5 Hz, 2H, 4-methylsulfanylphenyl H-3, H-5), 7.50 (d, J = 8.5 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.54-7.66 (m, 3H, phenyl H-3, H-4, H-5), 8.20–8.23 (m, 2H, phenyl H-2, H-6). Anal. ($C_{16}H_{12}OS$): C, H.

3-(4-Methylsulfanylphenyl)-1-(4methylphenyl)prop-2-yn-1-one (9m). The product was obtained as an oil by the oxidation of 8m in the presence of MnO₂ (0.66 g, 55%): IR (film): 2186 (C=C), 1616 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.38 (s, 3H, CH₃), 2.53 (s, 3H, SCH₃), 7.24 (d, J = 8.0 Hz, 2H, 4methylsulfanylphenyl H-3, H-5), 7.30 (d, J = 8.2 Hz, 2H, 4-methylphenyl H-3, H-5), 7.58 (d, J = 8.0 Hz, 2H, methylsulfanylphenyl H-2, H-6), 8.10 (d, J = 8.2 Hz, 2H, 4-methylphenyl H-2, H-6). Anal. (C₁₇H₁₄OS): C, H.

3-(4-Methylsulfanylphenyl)-1-(4-

ethylphenyl)prop-2-yn-1-one (9n). The product was obtained as a solid by the oxidation of 8n in the presence of MnO₂ (0.62 g, 49%): mp 45-46 °C; IR (film): 2193 (C=C), 1635 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 1.22 (t, J = 7.6 Hz, 3H, CH₂CH₃), 2.53 (s, 3H, SCH₃), 2.71 (q, J =7.6 Hz, 2H, CH₂CH₃), 7.17 (d, J = 8.5 Hz, 2H, 4-methylsulfanylphenyl H-3, H-5), 7.24 (d, J = 8.2 Hz, 2H, 4-ethylphenyl H-3, H-5), 7.58 (d, J = 8.5 Hz, 2H, methylsulfanylphenyl H-2, H-6), 8.12 (d, J = 8.2 Hz, 2H, 4-ethylphenyl H-2, H-6). Anal. (C₁₈H₁₆OS): C, H.

3-(4-Methylsulfanylphenyl)-1-(4trifluoromethylphenyl)prop-2-yn-1-one (90). The product was obtained as a solid by the oxidation of 80 in the presence of MnO₂ (0.82 g, 57.2%): mp 88–90 °C; IR (film): 2220 (C=C), 1636 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.54 (s, 3H, SCH₃), 7.26 (d, J = 8.2 Hz, 2H, 4methylsulfanylphenyl H-3, H-5), 7.59 (d, J = 8.2 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.78 (d, J = 8.2 Hz, 2H, 4trifluoromethylphenyl H-3, H-5), 8.31 (d, J = 8.2 Hz, 2H, 4-trifluoromethylphenyl H-2, H-6). Anal. (C₁₇H₁₁F₃OS): C, H.

3-(4-Methylsulfanylphenyl)-1-(4methoxyphenyl)prop-2-yn-1-one (9p). The product was obtained as a solid by the oxidation of **8p** in the presence of MnO₂ (0.86 g, 67.8%): mp 80–82 °C; IR (film): 2200 (C=C), 1618 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.52 (s, 3H, SCH₃), 3.88 (s, 3H, OCH₃), 6.97 (d, J = 8.8 Hz, 2H, 4-methoxyphenyl H-3, H-5), 7.23 (d, J = 8.5 Hz, 2H, 4-methylsulfanylphenyl H-3, H-5), 7.56 (d, J = 8.5 Hz, 2H, methylsulfanylphenyl H-2, H-6), 8.17 (d, J = 8.8 Hz, 2H, 4-methoxyphenyl H-2, H-6). Anal. (C₁₇H₁₄O₂S): C, H.

3-(4-Methylsulfanylphenyl)-1-(4-

ethoxyphenyl)prop-2-yn-1-one (9q). The product was obtained as a oil by the oxidation of 8q in the presence of MnO₂ (0.97 g, 67.5%): IR (film): 2220 (C=C), 1636 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 1.47 (t, J = 7.0 Hz, 3H, OCH₂CH₃), 2.53 (s, 3H, SCH₃), 4.10 (q, J = 7.0 Hz, 2H, OCH₂CH₃), 6.96 (d, J = 8.8 Hz, 2H, 4-ethoxyphenyl H-3, H-5), 7.23 (d, J = 8.5 Hz, 2H, 4-methylsulfanylphenyl H-3, H-5), 7.57 (d, J = 8.5 Hz, 2H, methylsulfanylphenyl H-2, H-6), 8.16 (d, J = 8.8 Hz, 2H, 4-ethoxyphenyl H-2, H-6). Anal. (C₁₈H₁₆O₂S): C, H.

3-(4-Methylsulfanylphenyl)-1-(4-

fluorophenyl)prop-2-yn-1-one (9r). The product was obtained as a solid by the oxidation of **8r** in the presence of MnO₂ (0.54 g, 44.7%): mp 99–100 °C; IR (film): 2193 (C=C), 1630 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.52 (s, 3H, SCH₃), 7.16 (dd, $J^{3}_{HH} = 8.8$, $J^{3}_{FH} = 8.8$ Hz, 2H, 4-fluorophenyl H-3, H-5), 7.26 (d, J = 8.5Hz, 2H, 4-methylsulfanylphenyl H-3, H- 5), 7.57 (d, J = 8.5 Hz, 2H, methylsulfanylphenyl H-2, H-6), 8.20 (dd, $J^{3}_{HH} = 8.8$, $J^{4}_{FH} = 5.5$ Hz, 2H, 4fluorophenyl H-2, H-6). Anal. (C₁₆H₁₁FOS): C, H.

General Procedure for the Synthesis of 3,4,6-Triphenylpyran-2-ones (11as). To a stirred solution of the ethyl 4substituted-phenylacetate (10a-c, $R^3 = H$, SMe or F; 1.7 mmol) in DMSO (10 mL) was added NaH (95% dry powder, 1.9 mmol) immediately after which, the respective 1,3-diarylprop-2-yn-1-one (9a-r, 1.7 mmol) in DMSO (10 mL) was added slowly. The reaction mixture was stirred at 25 °C for 1 h after which it was washed with 1N HCl (10 mL), extracted with EtOAc (2 x 20 mL), the organic phase was separated, dried over Na₂SO₄, and the organic portion was evaporated in vacuo. The brownish oil obtained was purified by silica gel column chromatography using hexane-ethyl acetate (1:2, v/v or 1:3, v/v) as eluent to afford the respective title compound 11as in 22-62% yield. Some physical and spectroscopic data for 11a-s are listed below.

3-(4-Methylsulfanylphenyl)-4,6-

diphenylpyran-2-one (11a). The product was obtained as a yellow solid by condensation of 9a with 10b in the presence of NaH (0.34 g, 55%): mp 232– 234 °C; IR (film): 1703 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.45 (s, 3H, SCH₃), 6.84 (s, 1H, pyranone H-5), 7.09 (d, J =8.2 Hz, 2H, 4-methylsulfanylphenyl H-3, H-5), 7.12 (d, J = 8.2 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.18– 7.21 (m, 2H, phenyl H-2, H-6), 7.29–7.31 (m, 3H, phenyl H-3, H-4, H-5), 7.47– 7.49 (m, 3H, phenyl H-3, H-4, H-5), 7.89–7.93 (m, 2H, phenyl H-2, H-6). Anal. $(C_{24}H_{18}O_2S)$: C, H.

6-(4-Methylphenyl)-3-(4-

methylsulfanylphenyl)-4-phenylpyran-**2-one (11b).** The product was obtained as a yellow solid by condensation of 9b with **10b** in the presence of NaH (0.18 g, 28.3%): mp 246-248 °C; IR (film): 1705 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.42 (s, 3H, CH₃), 2.45 (s, 3H, SCH₃), 6.79 (s, 1H, pyranone H-5), 7.08 (d, J = 9.0 Hz, 2H, 4-methylsulfanylphenyl H-3, H-5), 7.11 (d, J = 9.0 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.15-7.17 (m, 2H, phenyl H-2, H-6), 7.20-7.23 (m, 3H, phenyl H-3, H-4, H-5), 7.28 (d, J = 8.5 Hz, 2H, 4-methylphenyl H-3, H-5), 7.79 (d, J = 8.5 Hz, 2H, 4-methylphenyl H-2, H-6). Anal. (C₂₅H₂₀O₂S): C, H.

6-(4-Ethylphenyl)-3-(4-

methylsulfanylphenyl)-4-phenylpyran-**2-one (11c).** The product was obtained as a yellow solid by condensation of 9c with 10b in the presence of NaH (0.23 g, 34.5%): mp 216–217 °C; IR (film): 1709 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 1.28 (t, J = 7.6 Hz, 3H, CH₂CH₃), 2.45 (s, 3H, SCH_3), 2.68 (q, J = 7.6 Hz, 2H, CH₂CH₃), 6.80 (s, 1H, pyranone H-5), 7.08 (d, J = 8.2 Hz, 2H, 4methylsulfanylphenyl H-3, H-5), 7.12 (d, J = 8.2 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.14-7.20 (m, 2H, phenyl H-2, H-6), 7.23-7.26 (m, 3H, phenyl H-3, H-4, H-5), 7.28 (d, J = 8.2 Hz, 2H, 4ethylphenyl H-3, H-5), 7.81 (d, J = 8.2Hz, 2H, 4-ethylphenyl H-2, H-6). Anal. $(C_{26}H_{22}O_2S): C, H.$

3-(4-Methylsulfanylphenyl)-4phenyl-6-(4-

trifluoromethylphenyl)pyran-2-one

(11d). The product was obtained as a

yellow oil by condensation of **9d** with **10b** in the presence of NaH (0.22 g, 30.3%): IR (film): 1735 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.46 (s, 3H, SCH₃), 6.91 (s, 1H, pyranone H-5), 7.09 (d, J =8.8 Hz, 2H, 4-methylsulfanylphenyl H-3, H-5), 7.13 (d, J = 8.8 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.19– 7.21 (m, 2H, phenyl H-2, H-6), 7.26–7.32 (m, 3H, phenyl H-3, H-4, H-5), 7.72 (d, J =8.2 Hz, 2H, 4-trifluoromethylphenyl H-2, H-6), 8.0 (d, J = 8.2 Hz, 2H, 4trifluoromethylphenyl H-3, H-5). Anal. (C₂₅H₁₇F₃O₂S): C, H.

6-(4-Methoxyphenyl)-3-(4methylsulfanylphenyl)-4-phenylpyran-**2-one (11e).** The product was obtained as a oil by condensation of 9e with 10b in the presence of NaH (0.23 g, 34.4%): IR (film): 1703 (C=O) cm⁻¹; ¹H NMR $(CDCl_3)$: δ 2.45 (s, 3H, SCH₃), 3.87 (s, 3H, OC H_3), 6.72 (s, 1H, pyranone H-5), 6.97 (d, J = 8.8 Hz, 2H, 4-methoxyphenylH-3, H-5), 7.09 (d, J = 8.0 Hz, 2H, methylsulfanylphenyl H-3, H-5), 7.11 (d, J = 8.0 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.16–7.18 (m, 2H, phenyl H-2, H-6), 7.20-7.23 (m, 3H, phenyl H-3, H-4, H-5), 7.85 (d, J = 8.8 Hz, 2H, 4methoxyphenyl H-2, H-6). Anal. $(C_{25}H_{20}O_{3}S): C, H.$

6-(4-Ethoxyphenyl)-3-(4-

methylsulfanylphenyl)-4-phenylpyran-2-one (11f). The product was obtained as a yellow solid by condensation of 9f with 10b in the presence of NaH (0.15 g, 22.2%): mp 212–213 °C; IR (film): 1709 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 1.43 (t, J = 7.0 Hz, 3H, OCH₂CH₃), 2.45 (s, 3H, SCH₃), 4.10 (q, J = 7.0 Hz, 2H, OCH₂CH₃), 6.72 (s, 1H, pyranone H-5), 6.95 (d, J = 8.8 Hz, 2H, 4-ethoxyphenyl H-3, H-5), 7.11 (d, J = 8.2 Hz, 2H, 4-

methylsulfanylphenyl H-3, H-5), 7.13 (d, J = 8.2 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.16–7.20 (m, 2H, phenyl H-2, H-6), 7.23–7.30 (m, 3H, phenyl H-3, H-4, H-5), 7.83 (d, J = 8.8 Hz, 2H, 4-ethoxyphenyl H-2, H-6). Anal. (C₂₆H₂₂O₃S): C, H.

6-(4-Fluorophenyl)-3-(4methylsulfanylphenyl)-4-phenylpyran-**2-one (11g).** The product was obtained as a yellow solid by condensation of 9h with **10b** in the presence of NaH (0.28 g, 43.3%): mp 235–237 °C; IR (film): 1703 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.45 (s, 3H, SCH₃), 6.77 (s, 1H, pyranone H-5), 7.09 (d, J = 8.8 Hz, 2H. 4methylsulfanylphenyl H-3, H-5), 7.12 (d, J = 8.8 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.14 (dd, $J_{HH}^3 = 8.2$, $J_{FH}^3 = 8.2$ Hz, 2H, 4-fluorophenyl H-3, H-5), 7.18-7.20 (m, 2H, phenyl H-2, H-6), 7.25–7.31 (m, 3H, phenyl H-3, H-4, H-5), 7.88 (dd, $J_{\rm HH}^3 = 8.2, J_{\rm FH}^4 = 4.9$ Hz, 2H, 4-H-2, fluorophenyl H-6). Anal. $(C_{24}H_{17}FO_2S): C, H.$

4-(4-Fluorophenyl)-6-(4methoxyphenyl)-3-(4methylsulfanylphenyl)pyran-2-one

(11h). The product was obtained as a yellow solid by condensation of 9i with 10b in the presence of NaH (0.40 g, 57%): mp 196–198 °C; IR (film): 1712 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.46 (s, 3H, SCH₃), 3.87 (s, 3H, OCH₃), 6.68 (s, 1H, pyranone H-5), 6.95 (dd, $J^{3}_{HH} = 8.4$, $J^{3}_{FH} = 8.4$ Hz, 2H, 4-fluorophenyl H-3, H-5), 6.97 (d, J = 8.8 Hz, 2H, 4-methoxyphenyl H-3, H-5), 7.08 (d, J = 9.0 Hz, 2H, methylsulfanylphenyl H-3, H-5), 7.11 (d, J = 9.0 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.13 (dd, $J^{3}_{HH} = 8.4$, $J^{4}_{FH} = 5.2$ Hz, 2H, 4-fluorophenyl H-2, H-6), 7.84 (d, J = 8.8

Hz, 2H, 4-methoxyphenyl H-2, H-6). Anal. $(C_{25}H_{19}FO_3S)$: C, H.

6-(4-Ethoxyphenyl)-4-(4fluorophenyl)3-(4methylsulfanylphenyl)pyran-2-one

(11i). The product was obtained as a yellowish oil by condensation of 9j with 10b in the presence of NaH (0.33 g, 44.8%): IR (film): 1698 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 1.44 (t, J = 7.0 Hz, 3H, OCH₂CH₃), 2.46 (s, 3H, SCH₃), 3.99 (q, J = 7.0 Hz, 2H, OCH₂CH₃), 6.60 (s, 1H, pyranone H-5), 6.85 (dd, $J_{HH}^{3} = 8.4$, J_{FH}^{3} = 8.4 Hz, 2H, 4-fluorophenyl H-3, H-5), 6.90 (d, J = 8.8 Hz, 2H, 4-ethoxyphenyl H-3, H-5), 7.03 (d, J = 9.0 Hz, 2H, methylsulfanylphenyl H-3, H-5), 7.09 (d, J = 9.0 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.10 (dd, $J_{HH}^3 = 8.4$, $J_{FH}^4 = 5.2$ Hz, 2H, 4-fluorophenyl H-2, H-6), 7.75 (d, J = 8.8 Hz, 2H, 4-ethoxyphenyl H-2,H-6). Anal. (C₂₆H₂₁FO₃S): C, H.

6-(4-Methylsulfanylphenyl)-3,4diphenylpyran-2-one (11j). The product was obtained as a yellow solid by condensation of 9g with 10a in the presence of NaH (0.28 g, 45%): mp 170– 172°C; IR (film): 1708 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.55 (s, 3H, SCH₃), 6.80 (s, 1H, pyranone H-5), 7.15–7.27 (m, 10H, phenyl H-2, H-3, H-4, H-5, H-6), 7.28 (d, J = 8.5 Hz, 2H, 4methylsulfanylphenyl H-3, H-5), 7.81 (d, J = 8.5 Hz, 2H, 4-methylsulfanylphenyl H-2, H-6). Anal. (C₂₄H₁₈O₂S): C, H.

4-(4-Methylsulfanylphenyl)-3,6-

diphenylpyran-2-one (11k). The product was obtained as a yellow solid by condensation of 91 with 10a in the presence of NaH (0.33g, 52.5%): mp 177–179 °C; IR (film): 1709 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.45 (s, 3H, SCH₃),

6.83 (s, 1H, pyranone H-5), 7.07 (d, J = 8.2 Hz, 2H, 4-methylsulfanylphenyl H-3, H-5), 7.09 (d, J = 8.2 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.20–7.29 (m, 5H, phenyl H-2, H-3, H-4, H-5, H-6), 7.47–7.49 (m, 3H, phenyl H-3, H-4, H-5), 7.89–7.93 (m, 2H, phenyl H-2, H-6). Anal. (C₂₄H₁₈O₂S): C, H.

6-(4-Methylphenyl)-4-(4methylsulfanylphenyl)-3-phenylpyran-**2-one (111).** The product was obtained as a yellow solid by condensation of 9m with 10a in the presence of NaH (0.27 g, 41.5%): mp 150-152 °C; IR (film): 1709 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.43 (s, 3H, CH_3), 2.46 (s, 3H, SCH_3), 6.78 (s, 1H, pyranone H-5), 7.08 (d, J = 8.2 Hz, 2H, 4-methylsulfanylphenyl H-3, H-5), J= 8.0 Hz, 7.12 (d, 2H, methylsulfanylphenyl H-2, H-6), 7.14– 7.20 (m, 2H, phenyl H-2, H-6), 7.23–7.26 (m, 3H, phenyl H-3, H-4, H-5), 7.28 (d, J = 8.2 Hz, 2H, 4-methylphenyl H-3, H-5), 7.79 (d, J = 8.2 Hz, 2H, 4-methylphenyl H-2, H-6). Anal. (C₂₅H₂₀O₂S): C, H.

6-(4-Ethylphenyl)-4-(4-

methylsulfanylphenyl)-3-phenylpyran-2-one (11m). The product was obtained as a solid by condensation of 9n with 10a in the presence of NaH (0.30 g, 44.8%): mp 128-130 °C; IR (film): 1709 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 1.26 (t, J = 7.6 Hz, 3H, CH₂CH₃), 2.46 (s, 3H, SCH₃), 2.68 (q, J = 7.6 Hz, 2H, CH_2CH_3), 6.78 (s, 1H, pyranone H-5), 7.06 (d, J = 8.2Hz, 2H, 4-methylsulfanylphenyl H-3, H-5), 7.10 (d, J = 8.2 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.19-7.26 (m, 5H, phenyl H-2, H-3, H-4, H-5, H-6), 7.29 (d, J = 8.2 Hz, 2H, 4ethylphenyl H-3, H-5), 7.81 (d, J = 8.2Hz, 2H, 4-ethylphenyl H-2, H-6). Anal. $(C_{26}H_{22}O_2S): C, H.$

4-(4-Methylsulfanylphenyl)-3phenyl-6-(4-trifluoromethylphenyl)-

pyran-2-one (11n). The product was obtained as a yellow oil by condensation of 90 with 10a in the presence of NaH (0.39 g, 52.3%): IR (film): 1703 (C=O) cm^{-1} ; ¹H NMR (CDCl₃): δ 2.47 (s, 3H, SCH_3), 6.90 (s, 1H, pyranone H-5), 7.08 (d. J= 8.8 Hz, 2H. 4methylsulfanylphenyl H-3, H-5), 7.13 (d, J = 8.8 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.20-7.30 (m, 5H, phenyl H-2, H-3, H-4, H-5, H-6), 7.73 (d, J = 8.5 Hz, 2H, 4-trifluoromethylphenyl H-2, H-6), 8.01 (d, J = 8.5 Hz, 2H, 4trifluoromethylphenyl H-3, H-5). Anal. $(C_{25}H_{17}F_{3}O_{2}S): C, H.$

6-(4-Methoxyphenyl)-4-(4-

methylsulfanylphenyl)-3-phenylpyran-**2-one (110).** The product was obtained as a yellow solid by condensation of 9p with 10a in the presence of NaH (0.25 g, 37.7%): mp 156–158 °C; IR (film): 1710 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.46 (s, 3H, SCH₃), 3.88 (s, 3H, OCH₃), 6.71 (s, 1H, pyranone H-5), 6.97 (d, J = 8.8 Hz, 2H, 4-methoxyphenyl H-3, H-5), 7.08 (d, J = 8.8 Hz, 2H, methylsulfanylphenyl H-3, H-5), 7.11 (d, J = 8.8 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.19-7.32 (m, 5H, phenyl H-2, H-3, H-4, H-5, H-6), 7.85 (d, J = 8.8 Hz, 2H, 4methoxyphenyl H-2, H-6). Anal. (C₂₅H₂₀O₃S): C, H.

6-(4-Ethoxyphenyl)-4-(4-

methylsulfanylphenyl)-3-phenylpyran-2-one (11p). The product was obtained as a yellow solid by condensation of 9qwith 10a in the presence of NaH (0.44 g, 62.4%): mp 152–154 °C; IR (film): 1712 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 1.43 (t, J = 7.0 Hz, 3H, OCH₂CH₃), 2.46 (s, 3H, SCH₃), 4.07 (q, J = 7.0 Hz, 2H,

OC H_2 CH₃), 6.70 (s, 1H, pyranone H-5), 6.95 (d, J = 8.8 Hz, 2H, 4-ethoxyphenyl H-3, H-5), 7.09 (d, J = 8.2 Hz, 2H, 4methylsulfanylphenyl H-3, H-5), 7.11 (d, J = 8.2 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.19–7.29 (m, 5H, phenyl H-2, • H-3, H-4, H-5, H-6), 7.83 (d, J = 8.8 Hz, 2H, 4-ethoxyphenyl H-2, H-6). Anal. (C₂₆H₂₂O₃S): C, H.

6-(4-Fluorophenyl)-4-(4methylsulfanylphenyl)-3-phenylpyran-2-one (11q). The product was obtained as a yellow solid by condensation of 9r with 10a in the presence of NaH (0.26 g, 39.4%): mp 93-95 °C; IR (film): 1708 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.46 (s, 3H, SCH₃), 6.75 (s, 1H, pyranone H-5), 7.09 (d, J = 8.8 Hz, 2H, 4methylsulfanylphenyl H-3, H-5), 7.12 (d, J = 8.8 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.14 (dd, $J_{HH}^{3} = 8.5$, $J_{FH}^{3} = 8.5$ Hz, 2H, 4-fluorophenyl H-3, H-5), 7.19-7.30 (m, 5H, phenyl H-2, H-3, H-4, H-5, H-6), 7.88 (dd, $J_{HH}^3 = 8.5$, $J_{FH}^4 = 5.2$ Hz, 2H, 4-fluorophenyl H-2, H-6). Anal. (C₂₄H₁₇FO₂S): C, H.

3-(4-Fluorophenyl)-6-(4methoxyphenyl)-4-(4methylsulfanylphenyl)pyran-2-one

(11r). The product was obtained as a yellow solid by condensation of 9p with 10c in the presence of NaH (0.40 g, 56%): mp 156–158 °C; IR (film): 1712 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.46 (s, 3H, SCH₃), 3.87 (s, 3H, OCH₃), 6.70 (s, 1H, pyranone H-5), 6.91–7.00 (m, 4H, fluorophenyl H-3, H-5; 4-methoxyphenyl H-3, H-5), 7.05 (d, J = 9.0 Hz, 2H, methylsulfanylphenyl H-3, H-5), 7.08 (d, J = 9.0 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.13 (dd, $J_{HH}^3 = 8.5$, $J_{FH}^4 = 5.2$ Hz, 2H, 4-fluorophenyl H-2, H-6), 7.84

(d, J = 8.8 Hz, 2H, 4-methoxyphenyl H-2, H-6). Anal. (C₂₅H₁₉FO₃S): C, H.

6-(4-Ethoxyphenyl)-3-(4fluorophenyl)-4-(4-

methylsulfanylphenyl)pyran-2-one

(11s). The product was obtained as a yellow solid by condensation of 9q with 10c in the presence of NaH (0.36 g, 49.4%): mp 160-162 °C; IR (film): 1698 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 1.43 (t, J = 7.0 Hz, 3H, OCH₂CH₃), 2.47 (s, 3H, SCH_3), 4.07 (q, J = 7.0 Hz, 2H, OCH_2CH_3), 6.69 (s, 1H, pyranone H-5), 6.92-7.01 (m, 4H, fluorophenyl H-3, H-5; 4-ethoxyphenyl H-3, H-5), 7.05 (d, J =8.5 Hz, 2H, methylsulfanylphenyl H-3, H-5), 7.08 (d, J = 8.5 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.11 $(dd, J_{HH}^3 = 8.5, J_{FH}^4 = 5.2$ Hz, 2H, 4fluorophenyl H-2, H-6), 7.83 (d, J = 8.8Hz, 2H, 4-ethoxyphenyl H-2, H-6). Anal. $(C_{26}H_{21}FO_{3}S): C, H.$

General Procedure for the Synthesis of 3,4,6-Triphenylpyran-2-ones (12as). An aqueous solution of Oxone® (50%) w/v, 1.62 mmol) was added drop wise to solution a stirred of а 3.4.6triphenylpyran-2-one (11a-s, 0.54 mmol) possessing a 4-methylsulfanyl substituent on either the C-3, C-4 or C-6 phenyl ring in 1,4-dioxane (10 mL) at 0 °C. The reaction was allowed to proceed with stirring at 25 °C for 4-5 h. The reaction mixture was diluted with water (10 mL), extracted with EtOAc (2 x 20 mL), the EtOAc fraction was washed successively with brine solution and water (10 mL each), the organic phase was separated, dried over Na₂SO₄, and the solvent was removed in vacuo to give a crude oil. This oil was purified by silica gel column chromatography using hexane-ethyl acetate (1:2, v/v or 1:3, v/v) as eluent to

afford the respective title compound 12a-s in 60-85% yield. Some physical and spectroscopic data for 12a-s are listed below.

3-(4-Methanesulfonylphenyl)-4,6-

diphenylpyran-2-one (12a). The product was obtained as a yellow solid by oxidation of **11a** in the presence of aqueous Oxone \mathbb{R} solution (0.14 g, 65%): mp 278–280 °C; IR (film): 1709 (C=O), 1306, 1152 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 3.04 (s, 3H, SO₂CH₃), 6.89 (s, 1H, pyranone H-5), 7.12-7.16 (m, 2H, phenyl H-2, H-6), 7.28–7.37 (m, 3H, phenyl H-3, H-4, H-5), 7.40 (d, J = 8.5Hz, 2H, methanesulfonylphenyl H-2, H-6), 7.44–7.51 (m, 3H, phenyl H-3, H-4, H-5), 7.82 (d, J = 8.5 Hz, 2H, methanesulfonylphenyl H-3, H-5), 7.90-7.93 (m, 2H, phenyl H-2, H-6). Anal. $(C_{24}H_{18}O_4S): C, H.$

6-(4-Methylphenyl)-3-(4methanesulfonylphenyl)-4-

phenylpyran-2-one (12b). The product was obtained as a yellow solid by oxidation of 11b in the presence of aqueous Oxone \mathbb{R} solution (0.18 g, 82%): mp 224–226 °C; IR (film): 1703 (C=O), 1320, 1145 (SO₂) cm^{-1} ; ¹H NMR (CDCl₃): δ 2.34 (s, 3H, CH₃), 2.96 (s, 3H, SO₂CH₃), 6.77 (s, 1H, pyranone H-5), 7.04-7.08 (m, 2H, phenyl H-2, H-6), 7.18–7.29 (m, 5H, phenyl H-3, H-4, H-5; 4-methylphenyl H-3, H-5), 7.32 (d, J =8.2 Hz, 2H, 4-methanesulfonylphenyl H-2, H-6), 7.71 (d, J = 8.5 Hz, 2H, 4methylphenyl H-2, H-6), 7.73 (d, J = 8.2Hz, 2H, methanesulfonylphenyl H-3, H-5). Anal. $(C_{25}H_{20}O_4S)$: C, H.

6-(4-Ethylphenyl)-3-(4methanesulfonylphenyl)-4phenylpyran-2-one (12c). The product

was obtained as a oil by oxidation of **11c** in the presence of aqueous Oxone® solution (0.21 g, 92.5%): IR (film): 1705 (C=O), 1306, 1145 (SO₂) cm^{-1} ; ¹H NMR $(CDCl_3)$: δ 1.24 (t, J = 7.6 Hz, 3H, CH_2CH_3), 2.69 (q, J = 7.6 Hz, 2H, CH₂CH₃), 3.03 (s, 3H, SO₂CH₃), 6.85 (s, 1H, pyranone H-5), 7.11-7.15 (m, 2H, phenyl H-2, H-6), 7.26-7.38 (m, 5H, phenyl H-3, H-4, H-5; 4-ethylphenyl H-3, H-5), 7.40 (d, J = 8.5 Hz, 2H, 4methanesulfonylphenyl H-2, H-6), 7.79 (d, J = 8.5 Hz, 2H, 4-ethylphenyl H-2, H-7.83 (d, J = 8.5 Hz, 2H, 6), methanesulfonylphenyl H-3, H-5). Anal. (C₂₆H₂₂O₄S): C, H.

3-(4-Methanesulfonylphenyl)-4phenyl-6-(4-trifluoromethylphenyl)-

pyran-2-one (12d). The product was obtained as a yellowish oil by oxidation of 11d in the presence of aqueous Oxone® solution (0.17 g, 67%): IR (film): 1735 (C=O), 1315, 1142 (SO₂) cm^{-1} ; ¹H NMR (CDCl₃): δ 3.04 (s, 3H, SO₂CH₃), 6.96 (s, 1H, pyranone H-5), 7.13-7.16 (m, 2H, phenyl H-2, H-6), 7.24-7.39 (m, 3H, phenyl H-3, H-4, H-5), 7.41 (d, J = 8.2 Hz, 2H, 4methanesulfonylphenyl H-2, H-6), 7.75 (d, J= 8.2 Hz, 2H. 4trifluoromethylphenyl H-2, H-6), 7.81 (d, J = 8.2 Hz, 2H, methanesulfonylphenyl H-3, H-5), 8.03 (d, J = 8.2 Hz, 2H, 4trifluoromethylphenyl H-3, H-5). Anal. $(C_{25}H_{17}F_{3}O_{4}S): C, H.$

6-(4-Methoxyphenyl)-3-(4methanesulfonylphenyl)-4-

phenylpyran-2-one (12e). The product was obtained as a yellow solid by oxidation of **11e** in the presence of aqueous Oxone® solution (0.20 g, 86.2%): mp 218–220 °C; IR (film): 1705 (C=O), 1315, 1157 (SO₂) cm⁻¹; ¹H NMR

 $(CDCl_3)$: δ 3.03 (s, 3H, SO₂CH₃), 3.89 (s, 3H, OCH₃), 6.77 (s, 1H, pyranone H-5), 6.99 (d, J = 8.2 Hz, 2H, 4-methoxyphenyl H-3, H-5), 7.12-7.16 (m, 2H, phenyl H-2, H-6), 7.22-7.38 (m, 3H, phenyl H-3, H-4, H-5), 7.40 (d, J = 8.5 Hz, 2H, 4methanesulfonylphenyl H-2, H-6), 7.78 (d, J = 8.2 Hz, 2H, 4-methoxyphenyl H-2, H-6), 7.87 (d, J = 8.2 Hz, 2H, methanesulfonylphenyl H-3, H-5); ¹³C NMR (CDCl₃): δ 44.5 (SO₂CH₃), 55.5 (OCH₃), 103.5 (pyranone C-5), 114.4 (4methoxyphenyl C-3, C-5), 119.5 (pyranone C-3), 123.1 (4-methoxyphenyl C-1), 126.9 (phenyl C-3, C-5), 128.5, 128.5 and 128.7 (4-methoxyphenyl C-2, C-6; 4-methanesulfonylphenyl C-2, C-6; phenyl C-2, C-6), 129.2 (phenyl C-4), 131.9 (4-methanesulfonylphenyl C-3, C-5), 137.0 (phenyl C-1), 139.0 (4methanesulfonylphenyl C-1), 140.1 (4methanesulfonylphenyl C-4), 154.7 (pyranone C-4), 159.5 (4-methoxyphenyl C-4), 161.9 (pyranone C-6), 162.1 (pyranone C-2). Anal. $(C_{25}H_{20}O_5S)$: C, H.

6-(4-Ethoxyphenyl)-3-(4methanesulfonylphenyl)-4-

phenylpyran-2-one (12f). The product was obtained as a yellow solid by oxidation of 11f in the presence of aqueous Oxone® solution (0.18 g, 78.5%): mp 250-252 °C; IR (film): 1698 (C=O), 1313, 1142 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 1.44 (t, J = 7.0 Hz, 3H, OCH₂CH₃), 3.03 (s, 3H, SO₂CH₃), 4.08 $(q, J = 7.0 \text{ Hz}, 2H, \text{ OC}H_2\text{C}H_3), 6.77 \text{ (s,}$ 1H, pyranone H-5), 6.97 (d, J = 8.8 Hz, 2H, 4-ethoxyphenyl H-3, H-5), 7.11-7.14 (m, 2H, phenyl H-2, H-6), 7.25-7.31 (m, 3H, phenyl H-3, H-4, H-5), 7.39 (d, J =8.2 Hz, 2H, 4-methanesulfonylphenyl H-2, H-6), 7.78 (d, J = 8.2 Hz, 2H, 4ethoxyphenyl H-2, H-6), 7.85 (d, J = 8.2Hz, 2H, methanesulfonylphenyl H-3, H-

¹³C 5): NMR $(CDCl_3)$: 14.7 δ 44.5 $(OCH_2CH_3),$ $(SO_2CH_3),$ 63.8 (OCH₂CH₃), 103.4 (pyranone C-5), 114.9 (4-ethoxyphenyl C-3, C-5), 119.4 (pyranone C-3), 123.2 (4-ethoxyphenyl C-1), 126.9 (phenyl C-3, C-5), 128.5, 128.5 and 128.7 (4-ethoxyphenyl C-2, C-6; 4-methanesulfonylphenyl C-2, C-6; phenyl C-2, C-6), 129.2 (phenyl C-4), 132.0 (4-methanesulfonylphenyl C-3, C-5), 137.0 (phenyl C-1), 139.0 (4methanesulfonylphenyl C-1), 140.1 (4methanesulfonylphenyl C-4), 154.7 (pyranone C-4), 159.6 (4-ethoxyphenyl C-4), 161.5 (pyranone C-6), 162.1 (pyranone C-2). Anal. $(C_{26}H_{22}O_5S)$: C, H.

6-(4-Fluorophenyl)-3-(4methanesulfonylphenyl)-4-

phenylpyran-2-one (12g). The product was obtained as a yellow solid by oxidation of **11g** in the presence of aqueous Oxone® solution (0.18 g, 79.6%): mp 294-296 °C; IR (film): 1709 (C=O), 1320, 1145 (SO_2) cm⁻¹; ¹H NMR (CDCl₃): δ 3.04 (s, 3H, SO₂CH₃), 6.82 (s, 1H, pyranone H-5), 7.12-7.14 (m, 2H, phenyl H-2, H-6), 7.15 (dd, $J_{HH}^3 = 8.2$, $J_{FH}^3 = 8.2$ Hz, 2H, 4-fluorophenyl H-3, H-5), 7.20-7.35 (m, 3H, phenyl H-3, H-4, H-5), 7.40 (d, J = 8.2 Hz, 4methanesulfonylphenyl H-2, H-6), 7.80 (d, J = 8.2 Hz, 4-methanesulfonylphenyl H-3, H-5), 7.91 (dd, $J_{HH}^3 = 8.2$, $J_{FH}^4 = 5.2$ Hz, 2H, 4-fluorophenyl H-2, H-6). Anal. (C₂₄H₁₇FO₄S): C, H.

4-(4-Fluorophenyl)-6-(4methoxyphenyl)-3-(4methanesulfonylphenyl)pyran-2-one

(12h). The product was obtained as a yellow solid by oxidation of 11h in the presence of aqueous Oxone® solution (0.21 g, 88%): mp 224–226 °C; IR (film): 1709 (C=O), 1315, 1158 (SO₂) cm⁻¹; ¹H

NMR (CDCl₃): δ 3.04 (s, 3H, SO₂CH₃), 3.88 (s, 3H, OCH₃), 6.73 (s, 1H, pyranone H-5), 6.95 (dd, $J'_{HH} = 8.5$, J'_{FH} = 8.5 Hz, 2H, 4-fluorophenyl H-3, H-5), 6.97 (d, J = 8.2 Hz, 2H, 4-methoxyphenyl)H-3, H-5), 7.09 (dd, $J^{3}_{HH} = 8.5$, $J^{4}_{FH} = 5.2$ Hz, 2H, 4-fluorophenyl H-2, H-6), 7.39 (d, J8.8 Hz, 2H, methanesulfonylphenyl H-2, H-6), 7.81 (d, J = 8.2 Hz, 2H, 4-methoxyphenyl H-2, H-6), 7.86 (d, J = 8.8 Hz, 2H, methanesulfonylphenyl H-3, H-5). Anal. $(C_{25}H_{19}FO_5S): C, H.$

4-(4-Fluorophenyl)-6-(4ethoxyphenyl)-3-(4methanesulfonylphenyl)pyran-2-one

(12i). The product was obtained as a yellow solid by oxidation of 11i in the presence of aqueous Oxone® solution (0.19 g, 75.7%): mp 243–245 °C; IR (film): 1703 (C=O), 1310, 1152 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 1.45 (t, J = 7.0 Hz, 3H, OCH₂CH₃), 2.98 (s, 3H, SO_2CH_3 , 4.00 (q, J = 7.0 Hz, 2H, OCH2CH3), 6.64 (s, 1H, pyranone H-5), 6.88 (dd, $J'_{HH} = 8.5$, $J'_{FH} = 8.5$ Hz, 2H, 4-fluorophenyl H-3, H-5), 6.90 (d, J = 8.8)Hz, 2H, 4-ethoxyphenyl H-3, H-5), 7.07 (dd, $J_{HH}^{3} = 8.5$, $J_{FH}^{4} = 5.2$ Hz, 2H, 4fluorophenyl H-2, H-6), 7.31 (d, J = 9.0Hz, 2H, methanesulfonylphenyl H-2, H-6), 7.73 (d, J = 8.8 Hz, 2H, 4ethoxyphenyl H-2, H-6), 7.77 (d, J = 9.0Hz, 2H, methanesulfonylphenyl H-3, H-5). Anal. $(C_{26}H_{21}FO_5S)$: C, H.

6-(4-Methanesulfonylphenyl)-3,4-

diphenylpyran-2-one (12j). The product was obtained as a yellow solid by oxidation of **11j** in the presence of aqueous Oxone® solution (0.18 g, 82.8%): mp 178–180 °C; IR (film): 1716 (C=O), 1306, 1159 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 3.12 (s, 3H, SO₂CH₃), 6.97 (s, 1H, pyranone H-5), 7.16–7.39 (m, 10H, phenyl H-2, H-3, H-4, H-5, H-6), 8.07 (d, J = 8.8 Hz, 2H, 4-methanesulfonylphenyl H-2, H-6), 8.10 (d, J = 8.8 Hz, 2H, 4methanesulfonylphenyl H-3, H-5). Anal. (C₂₄H₁₈O₄S): C, H.

4-(4-Methanesulfonylphenyl)-3,6diphenylpyran-2-one (12k). The product was obtained as a yellow solid by oxidation of 11k in the presence of aqueous Oxone® solution (0.16 g, 76.3%): mp 188–190 °C; IR (film): 1723 (C=O), 1315, 1157 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 3.05 (s, 3H, SO₂CH₃), 6.78 (s, 1H, pyranone H-5), 7.15-7.18 (m, 2H, phenyl H-2, H-6), 7.21–7.26 (m, 3H, phenyl H-3, H-4, H-5), 7.37 (d, J = 8.5Hz, 2H, 4-methanesulfonylphenyl H-2, H-6), 7.48-7.52 (m, 3H, phenyl H-3, H-4, H-5), 7.86 (d, J = 8.5 Hz, 2H, methanesulfonylphenyl H-3, H-5), 7.90-7.93 (m, 2H, phenyl H-2, H-6). Anal. (C₂₄H₁₈O₄S): C, H.

6-(4-Methylphenyl)-4-(4methanesulfonylphenyl)-3-

phenylpyran-2-one (12l). The product was obtained as a oil by oxidation of **111** in presence of aqueous Oxone® solution (0.17g, 78.7%): IR (film): 1695 (C=O), 1317, 1148 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 2.44 (s, 3H, CH₃), 3.05 (s, 3H, SO_2CH_3), 6.74 (s, 1H, pyranone H-5), 7.12-7.17 (m, 2H, phenyl H-2, H-6), 7.18-7.31 (m, 3H, phenyl H-3, H-4, H-5), 7.34 (d, J = 8.4 Hz, 2H, 4methylphenyl H-3, H-5), 7.37 (d, J = 8.2Hz, 2H, 4-methanesulfonylphenyl H-2, H-6), 7.79 (d, J = 8.2 Hz, 2H, 4methylphenyl H-2, H-6), 7.82 (d, J = 8.2Hz, 2H, methanesulfonylphenyl H-3, H-5). Anal. $(C_{25}H_{20}O_4S)$: C, H.

6-(4-Ethylphenyl)-4-(4methanesulfonylphenyl)-3-

phenylpyran-2-one (12m). The product was obtained as a yellow solid by oxidation of 11m in the presence of aqueous Oxone \mathbb{R} solution (0.19 g, 85%): mp 173–175 °C; IR (film): 1709 (C=O), 1315, 1157 (SO₂) cm⁻¹; ¹H NMR $(CDCl_3)$: δ 1.26 (t, J = 7.6 Hz, 3H, CH_2CH_3), 3.05 (s, 3H, SO_2CH_3), 2.71 (g, J = 7.6 Hz, 2H, CH₂CH₃), 6.74 (s, 1H, pyranone H-5), 7.18-7.25 (m, 5H, phenyl H-2, H-3, H-4, H-5, H-6), 7.26 (d, J = 8.5Hz, 2H, 4-ethylphenyl H-3, H-5), 7.37 (d, J = 8.2 Hz, 2H, methanesulfonylphenyl H-2, H-6), 7.82–7.86 (m, 4H, 4-H-3, H-5; 4methanesulfonylphenyl H-6). ethylphenyl H-2, Anal. (C₂₆H₂₂O₄S): C, H.

4-(4-Methanesulfonylphenyl)-3phenyl-6-(4-trifluoromethylphenyl)-

pyran-2-one (12n). The product was obtained as a yellow solid by oxidation of 11n in the presence of aqueous Oxone® solution (0.19 g, 75.4%): mp 203-205 °C; IR (film): 1705 (C=O), 1315, 1145 (SO_2) cm⁻¹; ¹H NMR (CDCl₃): δ 3.05 (s, 3H, SO₂CH₃), 6.86 (s, 1H, pyranone H-5), 7.14-7.19 (m, 2H, phenyl H-2, H-6), 7.23-7.35 (m, 3H, phenyl H-3, H-4, H-5), 7.38 (d, J = 8.8Hz, 2H, methanesulfonylphenyl H-2, H-6), 7.74 8.5 Hz, 2H, 4-(d, J= trifluoromethylphenyl H-2, H-6), 7.77 (d, J = 8.8 Hz, 2H, 4-methanesulfonylphenyl H-3, H-5), 8.01 (d, J = 8.5 Hz, 2H, 4trifluoromethylphenyl H-3, H-5). Anal. $(C_{25}H_{17}F_{3}O_{4}S): C, H.$

6-(4-Methoxyphenyl)-4-(4methanesulfonylphenyl)-3-

phenylpyran-2-one (120). The product was obtained as a yellow solid by oxidation of 110 in the presence of aqueous Oxone® solution (0.19 g, 81.3%): mp 221–223 °C; IR (film): 1709 (C=O), 1311, 1151 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 3.04 (s, 3H, SO₂CH₃), 3.89 (s, 3H, OCH₃), 6.66 (s, 1H, pyranone H-5), 6.98 (d, J = 8.5 Hz, 2H, 4-methoxyphenyl H-3, H-5), 7.13–7.17 (m, 2H, phenyl H-2, H-6), 7.20–7.33 (m, phenyl H-3, H-4, H-5), 7.37 (d, J = 8.8 Hz, 2H, methanesulfonylphenyl H-2, H-6), 7.81– 7.89 (m, 4H, 4-methanesulfonylphenyl H-3, H-5; 4-methoxyphenyl H-2, H-6). Anal. (C₂₅H₂₀O₅S): C, H.

6-(4-Ethoxyphenyl)-4-(4methanesulfonylphenyl)-3-

phenylpyran-2-one (12p). The product was obtained as a yellow solid by oxidation of 11p in the presence of aqueous Oxone® solution (0.16 g, 70%): mp 181-183 °C; IR (film): 1703 (C=O), 1315, 1157 (SO₂) cm^{-1} ; ¹H NMR $(CDCl_3)$: δ 1.44 (t, J = 7.0 Hz, 3H, OCH₂CH₃), 3.05 (s, 3H, SO₂CH₃), 4.08 $(q, J = 7.0 \text{ Hz}, 2H, OCH_2CH_3), 6.66 (s,$ 1H, pyranone H-5), 6.95 (d, J = 8.8 Hz, 2H, 4-ethoxyphenyl H-3, H-5), 7.14-7.18 (m, 2H, phenyl H-2, H-6), 7.21-7.30 (m, 3H, H-3, H-4, H-5), 7.37 (d, J = 8.2 Hz, 2H, 4-methanesulfonylphenyl H-2, H-6), 7.83-7.87 (m, 4H, 4-ethoxyphenyl H-2, H-6; 4-methanesulfonylphenyl H-3, H-5). Anal. (C₂₆H₂₂O₅S): C, H.

6-(4-Fluorophenyl)-4-(4methanesulfonylphenyl)-3-

phenylpyran-2-one (12q). The product was obtained as a yellow solid by oxidation of **11q** in the presence of aqueous Oxone® solution (0.17 g, 78%): mp 233–235 °C; IR (film): 1716 (C=O), 1312, 1143 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 3.05 (s, 3H, SO₂CH₃), 6.72 (s, 1H, pyranone H-5), 7.14–7.20 (m, 4H, 4fluorophenyl H-3, H-5; phenyl H-2, H-6), 7.21-7.25 (m, 3H, phenyl H-3, H-4, H-5), 7.26 (d, J = 8.5 Hz, 2H, methanesulfonylphenyl H-2, H-6), 7.84 J (d, = 8.5 Hz, 2H, methanesulfonylphenyl H-3, H-5), 7.87 $(dd, J^3_{HH} = 8.5, J^4_{FH} = 5.2$ Hz, 2H, 4fluorophenyl H-2, H-6). Anal. (C₂₄H₁₇FO₄S): C, H.

3-(4-Fluorophenyl)-6-(4methoxyphenyl)-4-(4methanesulfonylphenyl)pyran-2-one

(12r). The product was obtained as a yellow solid by oxidation of 11r in the presence of aqueous Oxone® solution (0.20 g, 84%): mp 228–230 °C; IR (film): 1715 (C=O), 1315, 1155 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 3.05 (s, 3H, SO₂CH₃), 3.87 (s, 3H, OCH₃), 6.66 (s, 1H, pyranone H-5), 6.91-7.01 (m, 4H, 4fluorophenyl H-3, H-5; 4-methoxyphenyl H-3, H-5), 7.11 (dd, $J_{HH}^3 = 8.4$, $J_{FH}^4 = 5.2$ Hz, 2H, 4-fluorophenyl H-2, H-6), 7.37 8.2 Hz, (d, J= 2H. methanesulfonylphenyl H-2, H-6), 7.83-7.89 (m, 4H, 4-methoxyphenyl H-2, H-6; methanesulfonylphenyl H-3, H-5). Anal. (C₂₅H₁₉FO₅S): C, H.

3-(4-Fluorophenyl)-6-(4ethoxyphenyl)-4-(4methanesulfonylphenyl)pyran-2-one

(12s). The product was obtained as a yellow solid by oxidation of 11s in the presence of aqueous Oxone® solution (0.23g, 92.5%): mp 210–212 °C; IR (film): 1698 (C=O), 1316, 1157 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 1.44 (t, J = 7.0 Hz, 3H, OCH₂CH₃), 3.05 (s, 3H, SO₂CH₃), 4.07 (q, J = 7.0 Hz, 2H, OCH₂CH₃), 6.65 (s, 1H, pyranone H-5), 6.90–7.00 (m, 4H, fluorophenyl H-3, H-5; 4-ethoxyphenyl H-3, H-5), 7.08 (d, J = 8.5 Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.11 (dd, J^{3}_{HH} = 8.5, J^{4}_{FH} = 5.2 Hz,

2H, 4-fluorophenyl H-2, H-6), 7.37 (d, J = 8.2 Hz, 2H, methanesulfonylphenyl H-2, H-6), 7.82–7.88 (m, 4H, 4methanesulfonylphenyl H-3, H-5; 4ethoxyphenyl H-2, H-6). Anal. (C₂₆H₂₁FO₅S): C, H.

General Procedure for the Synthesis of 6-(4-Methylsulfanylphenyl)-3-(4methanesulfonylphenyl)-4phenylpyran-2-one (12t) and 6-(4-Methylsulfanylphenyl)-3-(4-

methanesulfonylphenyl)-4-(4-

fluorophenyl)pyran-2-one (12u). To a stirred solution of the ethyl 4methanesulfonylphenylacetate (10d, 1.55 mmol) in t-butanol (10 mL) at 30 °C was added potassium-*t*-butoxide (1.90)mmol), followed by a solution of 9g or 9k (1.58 mmol) in *t*-butanol (10 mL), and the reaction mixture was heated at 50-60 °C for 1–1.5 h under an argon atmosphere. The reaction mixture was cooled to 25 °C, washed with 1N HCl solution (10 mL), extracted with EtOAc (2 x 20 mL), the organic organic phase was separated, dried over Na₂SO₄, and the solvent was removed in vacuo to give a dark reddish oil which was purified by silica gel column chromatography using hexane-ethyl acetate (1:2, v/v or 1:3, v/v)as eluent to afford the respective title compound 12t or 12u (in 17 and 34% yield respectively). Some physical and spectroscopic data for 12t and 12u are listed below.

6-(4-Methylsulfanylphenyl)-3-(4methanesulfonylphenyl)-4-

phenylpyran-2-one (12t). The product was obtained as a yellow solid by condensation of 9g with 10d in the presence of potassium-t-butoxide (0.24 g, 34%): mp 231–233 °C; IR (film): 1709 (C=O), 1315, 1157 (SO₂) cm⁻¹; ¹H NMR

(CDCl₃): δ 2.52 (s, 3H, SCH₃), 3.03 (s, 3H, SO₂CH₃), 6.80 (s, 1H, pyranone H-5), 7.12-7.15 (m, 2H, phenyl H-2, H-6), 7.25-7.34 5H, 4-(m, methylsulfanylphenyl H-3, H-5; phenyl H-3, H-4, H-5), 7.40 (d, J = 8.2 Hz, 2H, 4-methanesulfonylphenyl H-2, H-6), 7.78-7.99 (m, 4H, methanesulfonylphenyl H-3, H-5; 4methylsulfanylphenyl H-2, H-6). Anal. $(C_{25}H_{20}O_4S_2)$: C, H.

4-(4-Fluorophenyl)-6-(4methylsulfanylphenyl)-3-(4methanesulfonylphenyl)pyran-2-one

(12u). The product was obtained as a yellow solid by condensation of 9k with 10d in the presence of potassium-tbutoxide (0.13 g, 17.6%): mp 216–218 °C; IR (film): 1703 (C=O), 1313, 1159 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 2.50 (s, 3H, SCH₃), 3.04 (s, 3H, SO₂CH₃), 6.79 (s, 1H, pyranone H-5), 6.95 (dd, J_{HH}^3 = $8.5, J_{FH}^3 = 8.5$ Hz, 2H, 4-fluorophenyl H-3, H-5), 7.10 (dd, $J_{HH}^{3} = 8.5$, $J_{FH}^{4} = 5.2$ Hz, 2H, 4-fluorophenyl H-2, H-6), 7.26 (d, J = 8.5 Hz, 2H, 4methysulfanylphenyl H-3, H-5), 7.38 (d, J = 8.8 Hz, 2H, methanesulfonylphenyl H-2, H-6), 7.81–7.92 (m, 4H, 4methanesulfonylphenyl H-3, H-5; 4methylsulfanylphenyl H-2, H-6). Anal. $(C_{25}H_{19}FO_4S_2): C, H.$

Procedure for the Synthesis of 1-(4-Nitrophenyl)-3-phenylprop-2-yn-1-one (9s). To a mixture of phenylacetylene (1.0 g, 9.8 mmol) and copper (I) iodide (0.09 g, 0.50 mmol), Et_3N (30 mL) was added under an argon atmosphere. 4-Nitrobenzoyl chloride (12.2 mmol) was then added slowly and the reaction mixture was stirred at 25 °C for 30 h at which time the reaction mixture was diluted with EtOAc (25 mL) and the mixture was filtered. The filtrate was evaporated under reduced pressure and the residue obtained was further purified by a silica gel column chromatography using hexane--ethyl acetate (1:3, v/v) as eluent to afford the title compound **9s** as a yellow solid in 24.6% yield: (0.61 g): mp 157-159 °C (lit. 162.5-163 °C³⁸); IR (film): 2192 (C=C), 1643 (C=O), 1535, 1348 (NO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 7.45-7.57 (m, 4H, nitrophenyl H-3, H-5; phenyl H-2, H-6), 7.71 (d, J = 8.4 Hz, 2H, nitrophenyl H-2, H-6), 8.27-8.39 (m, 3H, 4-phenyl H-3, H-4, H-5).

3-(4-Methylsulfanylphenyl)-6-(4nitrophenyl)-4-phenylpyran-2-one

(11t). The product was obtained as a yellow solid by condensation of 9s with 10b in the presence of NaH (0.24 g, 34.4%): mp 182–184 °C; IR (film): 1716 (C=O), 1532, 1351 (NO_2) cm⁻¹; ¹H NMR (CDCl₃): 8 2.46 (s, 3H, SCH₃), 6.97 (s, 1H, pyranone H-5), 7.11 (d, J = 8.5 Hz, 2H, 4-methylsulfanylphenyl H-3, H-5), J= 8.5 7.15 (d, Hz, 2H, methylsulfanylphenyl H-2, H-6), 7.18-7.21 (m, 2H, phenyl H-2, H-6), 7.29–7.35 (m, 3H, phenyl H-3, H-4, H-5), 8.06 (d, J)= 8.8 Hz, 2H, nitrophenyl H-2, H-6), 8.33 (d, J = 8.8 Hz, 2H, nitrophenyl H-3, H-5).Anal. (C₂₄H₁₇NO₄S): C, H, N.

3-(4-Methanesulfonylphenyl)-6-(4nitrophenyl)-4-phenylpyran-2-one

(12v). The product was obtained as a yellow solid by the oxidation of 11t in the presence of aqueous Oxone® solution (0.18 g, 76%): mp 238–240 °C; IR (film): 1696 (C=O), 1528, 1353 (NO₂), 1320, 1148 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 3.04 (s, 3H, SO₂CH₃), 7.02 (s, 1H, pyranone H-5), 7.13–7.15 (m, 2H, phenyl H-2, H-6), 7.29–7.35 (m, 3H, phenyl H-3, H-4, H-5), 7.41 (d, J = 8.5 Hz, 2H, 4-

methanesulfonylphenyl H-2, H-6), 7.82 (d, J = 8.5 Hz, 2H, methanesulfonylphenyl H-3, H-5), 8.08 (d, J = 8.8 Hz, 2H, nitrophenyl H-2, H-6), 8.35 (d, J = 8.8 Hz, 2H, nitrophenyl H-3, H-5). Anal. (C₂₄H₁₇NO₆S): C, H, N.

Synthesis of 6-(4-Aminophenyl)-3-(4methanesulfonylphenyl)-4-

phenylpyran-2-one (12w). To a stirred solution of 12v (0.09 g, 0.22 mmol) in 95% ethanol (15 mL) was added palladium on activated carbon (4 mg). The reaction mixture was warmed to 50 °C with stirring, NH₂NH₂.H₂O (0.04 mL, 0.82 mmol) was added drop wise, and the reaction mixture was refluxed at 75-78 °C for 1 h. After cooling to 25 °C, the reaction mixture was filtered, washed with water (10 mL), extracted with EtOAc $(3 \times 10 \text{ mL})$, the organic phase was separated, dried (Na₂SO₄), and the solvent was removed in vacuo to give a yellowish brown solid which was purified by recrystallization from ethanol (0.07 g, 76%): mp 252–254 °C; IR (film): 3429 (NH₂), 1670 (C=O), 1315, 1143 $(SO_2) \text{ cm}^{-1}$; ¹H NMR (DMSO-d₆): δ 3.17 (s, 3H, SO₂CH₃), 5.96 (s, 2H, NH₂), 6.63 (d, J = 8.5 Hz, 2H, 4-aminophenyl H-3, H-5), 6.92 (s, 1H, pyranone H-5), 7.19-7.21 (m, 2H, phenyl H-2, H-6), 7.22-7.31 (m, 3H, phenyl H-3, H-4, H-5), 7.36 (d, J = 8.2 Hz, 2H, 4-methanesulfonylphenyl H-2, H-6), 7.68–7.76 (m, 4H, 4methanesulfonylphenyl H-3, H-5; 4aminophenyl H-2, H-6). Anal. $(C_{24}H_{19}NO_4S): C, H, N.$

Procedure for the Synthesis of 6-(4-Hydroxyphenyl)-3-(4methanesulfonylphenyl)-4-

phenylpyran-2-one (12x). A mixture of 12e (0.27 g, 0.63 mmol) and pyridinium hydrochloride (2.5 g, 21.7 mmol) was

heated at 190-210 °C for 1-1.5 h. The reaction mixture was cooled, washed with water (20 mL) and extracted with EtOAc $(3 \times 20 \text{ mL})$, the organic phase was separated, and dried (Na_2SO_4) . Removal of the solvent in vacuo gave a dark brown oil which was purified by silica gel column chromatography using hexane-ethyl acetate (1:3, v/v or) as eluent to afford 12x (0.05 g, 20%) as a yellowish brown solid: mp 300-301 °C; IR (film): 3462 (OH), 1705 (C=O), 1320, 1148 (SO₂) cm⁻¹; ¹H NMR (DMSO- d_6): δ 3.20 (s, 3H, SO₂CH₃), 6.77 (s, 1H, pyranone H-5), 6.88 (d, J = 8.8 Hz, 2H, 4-hydroxyphenyl H-3, H-5), 7.21-7.26 (m, 2H, phenyl H-2, H-6), 7.29-7.33 (m, 3H, phenyl H-3, H-4, H-5), 7.39 (d, J =8.4 Hz, 2H, 4-methanesulfonylphenyl H-2, H-6), 7.76 (d, J = 8.8 Hz, 2H, 4hydroxyphenyl H-2, H-6), 7.86 (d, J =8.4 Hz, 2H, methanesulfonylphenyl H-3, H-5), 10.24 (broad s, 1H, OH). Anal. $(C_{24}H_{18}O_5S): C, H.$

Preparation 1-Ethynyl-4of methanesulfonylbenzene. To a stirred solution of 1-ethynyl-4methylsulfanylbenzene (3.0 g, 20 mmol) in 1,4-dioxane (25 ml) at 0 °C, 50% w/v aqueous solution of Oxone® (60 mmol) was added drop wise, and the reaction mixture was stirred at 25 °C for 4-5 h. The reaction mixture was diluted with water (15 mL), extracted with EtOAc (2 x 30 mL), and washed successively with brine solution and then water (15 mL each), the organic organic phase was separated, dried (Na_2SO_4) and the solvent was removed in vacuo to give a crude oil which was purified by silica gel column chromatography using hexane-ethyl acetate (1:2, v/v or 1:3, v/v) as eluent to afford the title compound in 74% yield as a brownish oil (2.2 g). IR (film): 2119

(C=C), 1351, 1158 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 3.06 (s, 3H, SO₂CH₃), 3.30 (s, 1H, C=CH), 7.66 (d, J = 8.5 Hz, 2H, 4methanesulfonylphenyl H-2, H-6), 7.90 (d, J = 8.5 Hz, 2H, 4methanesulfonylphenyl H-3, H-5).

3-(4-Methanesulfonylphenyl)-1-(4methylsulfanylphenyl)prop-2-yn-1-ol

(8s). This product was obtained as a brownish oil by the reaction of 1-ethynyl-4-methanesulfonylbenzene with 4methylthiobenzaldehyde in the presence of n-BuLi (2.5 g, 77.3%): IR (film): 3410 (OH), 2267 (C≡C), 1306, 1152 (SO₂) cm⁻ ¹; ¹H NMR (CDCl₃): δ 2.20 (d, J = 6.1Hz, 1H,CHOH), 2.50 (s, 3H, SCH₃), 3.06 (s, 3H, SO₂CH₃), 5.67 (d, J = 6.1 Hz, 1H,CHOH), 7.28 (d, J = 8.2 Hz, 2H, 4methylsulfanylphenyl H-3, H-5), 7.50 (d, J = 8.2 Hz, 2H, 4-methylsulfanylphenyl H-2, H-6), 7.62 (d, J = 8.5 Hz, 2H, 4methanesulfonylphenyl H-2, H-6), 7.88 (d, 8.5 Hz, 2H. J= methanesulfonylphenyl H-3, H-5). Anal. $(C_{17}H_{16}O_3S_2)$: C, H.

3-(4-Methanesulfonylphenyl)-1-(4methylsulfanylphenyl)prop-2-yn-1-one (9t). This product was obtained as a brown oil by the oxidation of 8s in the presence of MnO₂ (1 g, 67%): IR (film): 2200 (C=C), 1635 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.51 (s, 3H, SCH₃), 3.06 (s, 3H, SO₂CH₃), 7.31 (d, J = 8.5 Hz, 2H, 4methylsulfanylphenyl H-3, H-5), 7.84 (d, J = 8.5 Hz, 2H, 4-methanesulfonylphenyl H-2, H-6), 7.92 (d, J = 8.5 Hz, 2H, 4methanesulfonylphenyl H-3, H-5). 8.09 (d, J = 8.5 Hz, 2H, methylsulfanylphenyl H-3, H-5). Anal. (C₁₇H₁₄O₃S₂): C, H.

6-(4-Methylsulfanylphenyl)-4-(4methanesulfonylphenyl)-3-

phenylpyran-2-one (12y). The product

was obtained as a yellow solid by condensation of 9t with 10a in the presence of potassium-t-butoxide (0.32 g, 45.8%): mp 223-225 °C; IR (film): 1716 (C=O), 1320, 1145 (SO_2) cm⁻¹; ¹H NMR (CDCl₃): 8 2.51 (s, 3H, SCH₃), 3.05 (s, 3H, SO_2CH_3), 6.73 (s, 1H, pyranone H-5), 7.13-7.17 (m, 2H, phenyl H-2, H-6), 7.20-7.25 (m, phenyl H-3, H-4, H-5), 7.26 (d, J = 8.5 Hz, 2H, 4methylsulfanylphenyl H-3, H-5), 7.37 (d, J = 8.2 Hz, 2H, methanesulfonylphenyl H-2, H-6), 7.80–7.86 (m, 4H, 4methanesulfonylphenyl H-3, H-5; 4methylsulfanylphenyl H-2, H-6). Anal. $(C_{25}H_{20}O_4S_2): C, H.$

1-Phenyl-3-pyridin-3-yl-prop-2-yn-1-ol (8t). The product was obtained as a dark brown semisolid by reaction of pyridin-3-ylacetylene with benzaldehyde in the presence of *n*-BuLi (0.39 g, 40%): IR (film): 3160 (OH), 2260 (C=C), cm^{-1} ; ¹H NMR (CDCl₃): δ 2.89 (broad s, CHOH), 5.73 (s, 1H,CHOH), 7.24 (dd, $J_{4.5} = 8.0$ Hz, $J_{5.6} = 4.7$ Hz, 1H, pyridinyl H-5), 7.34-7.46 (m, 3H, phenyl H-3, H-4, H-5), 7.61-7.63 (m, 2H, phenyl H-2, H-6), 7.75 (dd, $J_{4,5} = 8.0$ Hz, $J_{4,6} = 2.2$ Hz, 1H, pyridinyl H-4), 8.52 (dd, $J_{5,6}$ = 4.7 Hz, $J_{4,6} = 2.2$ Hz, 1H, pyridinyl H-6), 8.75 (d, $J_{2,4}$ = 2.2 Hz, 1H, pyridinyl H-2). Anal. (C₁₄H₁₁NO): C, H, N.

1-(4-Methoxyphenyl)-3-pyridin-3-ylprop-2-yn-1-ol (8u). The product was obtained as a soild by reaction of pyridin-3-ylacetylene with 4methoxybenzaldehyde in the presence of *n*-BuLi (1.22 g, 52.3%): mp 86–88 °C; IR (film): 3360 (OH), 2267 (C=C), cm⁻¹; ¹H NMR (CDCl₃): δ 2.83 (broad s, 1H, CHOH), 3.83 (s, 3H, OCH₃), 5.67 (s, 1H,CHOH), 6.97 (d, J = 8.2 Hz, 2H, 4methoxyphenyl H-3, H-5), 7.25 (dd, $J_{4,5}$

= 8.0 Hz, $J_{5,6}$ = 4.7 Hz, H, pyridinyl H-5), 7.52 (d, J = 8.2 Hz, 2H, 4-methoxyphenyl H-2, H-6), 7.74 (dd, $J_{4,5}$ = 8.0 Hz, $J_{4,6}$ = 2.4 Hz, 1H, pyridinyl H-4), 8.52 (dd, $J_{5,6}$ = 4.7 Hz, $J_{4,6}$ = 2.4 Hz, 1H, pyridinyl H-6), 8.73 (d, $J_{2,4}$ = 2.4 Hz, 1H, pyridinyl H-2). Anal. (C₁₅H₁₃NO₂): C, H, N.

1-Phenyl-3-pyridin-3-yl-prop-2-yn-

1-one (9u). The product was obtained as solid by oxidation of **8t** in the presence of MnO₂ (0.56 g, 60.5%): mp 66–68 °C; IR (film): 2200 (C=C), 1635 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 7.35 (dd, $J_{4,5} = 8.0$ Hz, $J_{5,6} = 4.7$ Hz, 1H, pyridinyl H-5), 7.40–7.70 (m, 3H, phenyl H-3, H-4, H-5), 7.95 (dd, $J_{4,5} = 8.0$ Hz, $J_{4,6} = 2.2$ Hz, 1H, pyridinyl H-4), 8.20–8.24 (m, 2H, phenyl H-2, H-6), 8.70 (dd, $J_{5,6} = 4.7$ Hz, $J_{4,6} = 2.2$ Hz, 1H, pyridinyl H-6), 8.92 (d, $J_{2,4} = 2.2$ Hz, 1H, pyridinyl H-6), 8.92 (d, $J_{2,4} = 2.2$ Hz, 1H, pyridinyl H-2). Anal. (C₁₄H₉NO): C, H, N.

1-(4-Methoxyphenyl)-3-pyridin-3-ylprop-2-yn-1-one (9v). The product was obtained as a white solid by oxidation of **8u** in the presence of MnO_2 (0.61 g, 57.3%): mp 126-128 °C; IR (film): 2206 (C=C), 1642 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 3.92 (s, 3H, OCH₃), 6.99 (d, J = 8.8 Hz, 2H, 4-methoxyphenyl H-3, H-5), 7.36 (dd, $J_{4,5}$ = 8.0 Hz, $J_{5,6}$ = 4.7 Hz, 1H, pyridinyl H-5), 7.95 (dd, $J_{4,5} = 8.0$ Hz, $J_{4,6} = 2.4$ Hz, 1H, pyridinyl H-4), 8.18 (d, J = 8.8 Hz, 2H, 4-methoxyphenyl H-2, H-6), 8.68 (dd, $J_{5,6} = 4.7$ Hz, $J_{4,6} =$ 2.4 Hz, 1H, pyridinyl H-6), 8.90 (d, $J_{2,4} =$ 2.4 Hz, 1H, pyridinyl H-2). Anal. $(C_{15}H_{11}NO_2): C, H, N.$

General Procedure for the Synthesis of 3-(4-Methanesulfonylphenyl)-6phenyl-4-pyridin-3-yl-pyran-2-one (13a) and 6-(4-Methoxyphenyl)-3-(4methanesulfonylphenyl)-4-pyridin-3yl-pyran-2-one (13b). To a stirred solution of ethyl 4methanesulfonylphenylacetate (10d, 0.24 g, 1.0 mmol) in CH_2Cl_2 (10 mL) was added NaH (95% dry powder, 1.1 mmol). A solution of the 1,3-diarylprop-2-yn-1one (9u or 9v, 1 mmol) in CH₂Cl₂ (10 mL) was added slowly, and the reaction mixture was stirred at 25 °C for 1 h. Removal of the solvent in vacuo gave a residue that was purified by silica gel column chromatography using hexaneethyl acetate (1:3, v/v) as eluent to afford the respective title product 13a or 13b in 24-46% yield. Some physical and spectroscopic data for 13a or 13b are listed below.

3-(4-Methanesulfonylphenyl)-6phenyl-4-pyridin-3-yl-pyran-2-one

(13a). The product was obtained as a yellow solid by the condensation of 9u with **10d** in the presence of NaH (0.09 g, 24%): mp 269-271 °C; IR (film): 1709 (C=O), 1327, 1162 (SO_2) cm⁻¹; ¹H NMR (CDCl₃): δ 3.05 (s, 3H, SO₂CH₃), 6.86 (s, 1H, pyranone H-5), 7.21 (dd, $J_{4.5} = 7.6$ Hz, $J_{5,6} = 4.9$ Hz, 1H, pyridinyl H-5), 7.39 (dd, $J_{4,5} = 8.0$ Hz, $J_{4,6} = 2.4$ Hz, 1H, pyridinyl H-4), 7.41 (d, J = 8.5 Hz, 2H, 4-methanesulfonylphenyl H-2, H-6), 7.50-7.56 (m, 3H, phenyl H-3, H-4, H-5), 7.83 (d, J = 8.5 Hz, 2H, 4methanesulfonylphenyl H-3, H-5), 7.92 (dd, $J_{5,6} = 4.9$ Hz, $J_{4,6} = 2.4$ Hz, 1H, pyridinyl H-6), 8.53 (d, $J_{2,4}$ = 2.4 Hz, 1H, pyridinyl H-2). Anal. (C₂₃H₁₇NO₄S): C, H, N.

6-(4-Methoxyphenyl)-3-(4methanesulfonylphenyl)-4-pyridin-3yl-pyran-2-one (13b). The product was obtained as a yellow solid by the condensation of 9v with 10d in the presence of NaH (0.2 g, 46%): mp 268-

270 °C; IR (film): 1720 (C=O), 1320, 1152 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 3.04 (s, 3H, SO_2CH_3), 3.92 (s, 3HOCH₃), 6.74 (s, 1H, pyranone H-5), 7.00 (d, J = 8.8 Hz, 2H, 4-methoxyphenyl H-3, H-5), 7.19 (dd, $J_{4.5}$ = 8.0 Hz, $J_{5.6}$ = 4.9 Hz, 1H, pyridinyl H-5), 7.36 (dd, $J_{4,5} =$ 8.0 Hz, $J_{4,6} = 2.4$ Hz, 1H, pyridinyl H-4), 7.40 (d, J = 8.2 Hz, 2H, 4methanesulfonylphenyl H-2, H-6), 7.81-7.90 (m, 4H, 4-methanesulfonylphenyl H-3, H-5; 4-methoxyphenyl H-2, H-6), 8.51 (dd, $J_{5.6}$ = 4.9 Hz, $J_{4.6}$ = 2.4 Hz, 1H, pyridinyl H-6), 8.57 (d, $J_{2,4}$ = 2.4 Hz, 1H, pyridinyl H-2). Anal. (C₂₄H₁₉NO₅S): C, H, N.

Preparation of 3-(4-Methanesulfonylphenyl)-1-

phenylprop-2-yn-1-one (9w) and 3-(4-Methanesulfonylphenyl)-1-(4-

methoxyphenyl)prop-2-yn-1-one (9x). To a stirred solution of the 1.3diarylprop-2-yn-1-one (91 or 9p, 0.54 mmol) in 1,4-dioxane (10 mL) at 0 °C, a 50% w/v aqueous solution of Oxone® (1.62 mmol) was added drop wise, and the reaction mixture was stirred at 25 °C for 4–5 h. The reaction mixture was diluted with water (10 mL), extracted with EtOAc (2 x 20 mL), washed successively with brine solution and water (10 mL each), the organic organic phase was separated, and dried (Na₂SO₄). Removal of the solvent in vacuo gave a crude oil which was purified by silica gel column chromatography using hexaneethyl acetate (1:3, v/v) as eluent to afford the respective title compound 9w or 9x in 60–85% yield. Some physical and spectroscopic data for 9w and 9x are listed below.

3-(4-Methanesulfonylphenyl)-1phenylprop-2-yn-1-one (9w). The product was obtained as a pale yellow solid by oxidation of 91 in the presence of aqueous Oxone® solution (0.11 g, 74%): mp 111-113 °C; IR (film): 2206 (C=C), 1605 (C=O), 1320, 1139 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 3.06 (s, 3H, SO₂CH₃), 7.53-7.71 (m, phenyl H-3, H-4, H-5), 7.86 (d, J = 8.5 Hz, 2H, 4methanesulfonylphenyl H-2, H-6), 8.01 J8.5 Hz, 2H, (d, =4methanesulfonylphenyl H-3, H-5), 8.20-8.23 (m, 2H, phenyl H-2, H-6). Anal. $(C_{16}H_{12}O_3S): C, H.$

3-(4-Methanesulfonylphenyl)-1-(4methoxyphenyl)prop-2-yn-1-one (9x). The product was obtained as a pale yellow solid by oxidation of **9p** in the presence of aqueous Oxone® solution (0.11 g, 66.3%): mp 157-159 °C; IR (film): 2206 (C=C), 1604 (C=O), 1320, 1140 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 3.10 (s, 3H, SO₂CH₃), 3.90 (s, 3H, OCH_3), 7.00 (d, J = 8.8 Hz, 2H, 4methoxyphenyl H-3, H-5), 7.84 (d, J =8.5 Hz, 2H, 4-methanesulfonylphenyl H-2, H-6), 8.01 (d, J = 8.5 Hz, 2H, methanesulfonylphenyl H-3, H-5), 8.17 (d, J = 8.8 Hz 4-methoxyphenyl H-2, H-6). Anal. $(C_{17}H_{14}O_4S)$: C, H.

Pyridin-3-yl Preparation of or Pyridin-4-yl-pyran-2-ones (13c-f). To a stirred solution of either the pyridin-3-yl or pyridin-4-ylacetic acid ester (1.0 mmol) in CH₂Cl₂ (10 mL) was added NaH (95% dry powder, 1.1 mmol). A solution of the respective 1,3-diarylprop-2-yn-1-one (9w-x, 1.0 mmol) in CH_2Cl_2 (10 mL) was added slowly, and the reaction mixture was allowed to stir at 25 °C for 1 h. Removal of the solvent in vacuo gave a residue that was purified by silica gel column chromatography using hexane–ethyl acetate (1:3, v/v) as

eluent to afford the respective title product **13c-f** in 24–46% yield. Some physical and spectroscopic data for **13c-f** are listed below.

4-(4-Methanesulfonylphenyl)-6phenyl-3-pyridin-3-yl-pyran-2-one

(13c). The product was obtained as yellow solid by the condensation of 9w with the pyridin-3-ylacetic acid ester in presence of NaH (0.15 g, 38.2%): mp 235–237 °C; IR (film): 1690 (C=O), 1313, 1152 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 3.06 (s, 3H, SO₂CH₃), 6.82 (s, 1H, pyranone H-5), 7.24 (dd, $J_{4.5} = 7.0$ Hz, $J_{5,6} = 4.9$ Hz, 1H, pyridinyl H-5), 7.29 (d, J = 8.5 Hz, 2H, 4methanesulfonylphenyl H-2, H-6), 7.41-7.50 (m, 3H, phenyl H-3, H-4, H-5), 7.71 (dd, $J_{4.5} = 7.0$ Hz, $J_{4.6} = 2.4$ Hz, 1H, pyridinyl H-4), 7.88 (d, J = 8.5 Hz, 2H, 4-methanesulfonylphenyl H-3, H-5), 7.92-7.94 (m, 2H, phenyl H-2, H-6), 8.28 (dd, $J_{5,6}$ = 4.9 Hz, $J_{4,6}$ = 2.4 Hz, 1H, pyridinyl H-6), 8.48 (d, J_{2,4} = 2.4 Hz, 1H, pyridinyl H-2). Anal. (C₂₃H₁₇NO₄S): C, H, N.

6-(4-Methoxyphenyl)-4-(4methanesulfonylphenyl)-3-pyridin-3-

yl-pyran-2-one (13d). The product was obtained as a yellow solid by the condensation of 9x with the pyridin-3ylacetic acid ester in the presence of NaH (0.18 g, 42.3%): mp 242–244 °C; IR (film): 1703 (C=O), 1306, 1165 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 3.05 (s, 3H, SO₂CH₃), 3.89 (s, 3H OCH₃), 6.70 (s, 1H, pyranone H-5), 7.00 (d, J = 8.8 Hz, 2H, 4-methoxyphenyl H-3, H-5), 7.25 (dd, $J_{4,5} = 7.9$ Hz, $J_{5,6} = 5.2$ Hz, 1H, pyridinyl H-5), 7.38 (d, J = 8.2 Hz, 2H, 4-methanesulfonylphenyl H-2, H-6), 7.75 (dd, $J_{4,5} = 7.9$ Hz, $J_{4,6} = 1.8$ Hz, 1H, pyridinyl H-4), 7.86–7.91 (m, 4H, 4methanesulfonylphenyl H-3, H-5; 4methoxyphenyl H-2, H-6), 8.27 (dd, $J_{5,6}$ = 5.2 Hz, $J_{4,6}$ = 1.8 Hz, 1H, pyridinyl H-6), 8.49 (d, $J_{2,4}$ = 1.8 Hz, 1H, pyridinyl H-2). Anal. (C₂₄H₁₉NO₅S): C, H, N.

4-(4-Methanesulfonylphenyl)-6phenyl-3-pyridin-4-yl-pyran-2-one

(13e). The product was obtained as a yellow solid by the condensation of 9x with the pyridin-4-ylacetic acid ester in the presence of NaH (0.09 g, 22.4%): mp 255–257 °C; IR (film): 1712 (C=O), 1320, 1152 (SO₂) cm^{-1} ; ¹H NMR $(CDCl_3)$: δ 3.07 (s, 3H, SO₂CH₃), 6.80 (s, 1H, pyranone H-5), 7.11 (d, $J_{2,3} = J_{5,6} =$ 5.5 Hz, 2H, pyridinyl H-3, H-5), 7.39 (d, J = 8.2 Hz, 2H, 4-methanesulfonylphenyl H-2, H-6), 7.44–7.53 (m, 3H, phenyl H-3, H-4, H-5), 7.89 (d, J = 8.2 Hz, 2H, 4methanesulfonylphenyl H-3, H-5), 7.92-7.95 (m, 2H, phenyl H-2, H-6), 8.50 (d, $J_{2,3} = J_{5,6} = 5.5$ Hz, 2H, pyridinyl H-2, H-6). Anal. (C₂₃H₁₇NO₄S): C, H, N.

6-(4-Methoxyphenyl)-4-(4methanesulfonylphenyl)-3-pyridin-4-

yl-pyran-2-one (13f). The product was obtained as a yellow solid by the condensation of 9x with the pyridin-4ylacetic acid ester in the presence of NaH (0.17 g, 41.3%): mp 240–242 °C; IR (film): 1716 (C=O), 1320, 1145 (SO₂) cm⁻¹; ¹H NMR (CDCl₃): δ 3.06 (s, 3H, SO₂CH₃), 3.90 (s, 3H OCH₃), 6.69 (s, 1H, pyranone H-5), 6.98 (d, J = 8.5 Hz, 2H, 4-methoxyphenyl H-3, H-5), 7.13 (d, $J_{2,3} = J_{5,6} = 5.5$ Hz, 2H, pyridinyl H-3, H-5), 7.38 (d, J = 8.2 Hz, 2H, 4methanesulfonylphenyl H-2, H-6), 7.85-7.93 (m, 4H, 4-methanesulfonylphenyl H-3, H-5; 4-methoxyphenyl H-2, H-6), 8.49 (d, $J_{2,3} = J_{5,6} = 5.5$ Hz, 2H, pyridinyl H-2, H-6). Anal. $(C_{24}H_{19}NO_5S): C, H, N.$

Preparation of 4-Azidophenylacetic acid (15). To an ice cold solution of 4aminophenylacetic acid (14, 2.0 g, 13.2 mmol) in conc. HCl (20 mL) was added an aqueous solution of NaNO₂ (13.3 mmol, 0.92 g in 70 mL water) slowly with stirring. After 15 min, an aqueous solution of NaN₃ (132 mmol, 8.6 g in 200 mL of water) was added at 0 °C over a period of 15 min after which the reaction mixture was stirred at 25 °C for 15-20 min. The reaction mixture was extracted with EtOAc (3 x 20 mL), the organic phase was separated, dried over Na₂SO₄, and the solvent was removed in vacuo to give brown crystals of 15. (2.2 g, 94%): mp 86-88 °C; IR (film): 2119 (N₃), 1710 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 3.62 (s, 2H, CH_2CO), 6.98 (d, J = 8.8 Hz, 2H, 4azidophenyl H-3, H-5), 7.29 (d, J = 8.8Hz, 2H, azidophenyl H-2, H-6). Anal. $(C_8H_7N_3O_2): C, H, N.$

Preparation of Ethyl-4azidophenylacetate (16). To a stirred solution of 4-azidophenylacetic acid (15, 1.0 g, 5.6 mmol) in conc. H_2SO_4 (1.1 mL) was added ethanol (5.2 mL of 95%) and the reaction mixture was refluxed at 70-75 °C for 3-4 h. The reaction mixture was diluted with EtOAc (15 mL) and NaHCO₃ (1 g), was added, filtered and the organic fraction was dried (Na₂SO₄). The EtOAc fraction was evaporated to give a brownish oil (1 g, 87%): IR (film): 2131 (N₃), 1739 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 1.23 (t, J = 7.0 Hz, 3H, COCH₂CH₃), 3.59 (s, 2H, CH₂CO), 4.12 $(q, J = 7.0 \text{ Hz}, 2H, \text{COC}H_2\text{CH}_3), 6.98 \text{ (d.)}$ J = 8.8 Hz, 2H, 4-azidophenyl H-3, H-5), 7.24 (d, J = 8.8 Hz, 2H, azidophenyl H-2, H-6). Anal. (C₁₀H₁₁N₃O₂): C, H, N.

General Procedure for the Synthesis of 3-(4-Azidophenyl)-6-(4-methoxy, ethoxy, or methylsulfanylphenyl)-4phenylpyran-2-ones (17a-c). To a stirred solution of 16 (0.22 g, 1.7 mmol) in CH₂Cl₂ (10 mL) was added NaH (95%) dry powder, 1.9 mmol). The 1,3diarylprop-2-yn-1-one (9e-g, 1.7 mmol) in CH₂Cl₂ (10 mL) was added slowly, and the reaction mixture was allowed to stir at 25 °C for 1 h. Removal of the solvent in vacuo gave a residue that was purified by silica gel column chromatography using hexane-ethyl acetate (3:1, v/v) as eluent to afford the respective product 17a-c in 28-33% yield. Some physical and spectroscopic data for 17a-c are listed below.

3-(4-Azidophenyl)-6-(4-

methoxyphenyl)-4-phenylpyran-2-one (17a). The product was obtained as orange crystals by the condensation of 9e with 16 in presence of NaH (0.20 g,30.7%): mp 184–186 °C; IR (film): 2112, 2105 (N₃), 1716 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 3.89 (s, 3H, OCH₃), 6.73 (s, 1H, pyranone H-5), 6.88 (d, J = 8.5 Hz, 2H, 4-azidophenyl H-3, H-5), 6.97 (d, J =8.8 Hz, 2H, methoxyphenyl H-3, H-5), 7.17-7.21 (m, 4H, 4-azidophenyl H-2, H-6; phenyl H-2, H-6), 7.26-7.31 (m, 3H, phenyl H-3, H-4, H-5), 7.85 (d, J = 8.8Hz, 2H, 4-methoxyphenyl H-2, H-6); ¹³C NMR (CDCl₃): δ 55.5 (OCH₃), 103.5 (pyranone C-5), 114.4 (4-methoxyphenyl C-3, C-5), 118.6 (4-azidophenyl H-3, H-5), 120.8 (pyranone C-3), 123.8 (4methoxyphenyl C-1), 127.3 (phenyl C-3, C-5), 128.5, 128.6 and 128.7 (phenyl C-4. 4-methoxyphenyl C-2, C-6; 4azidophenyl C-2, C-6), 130.7 (4azidophenyl C-4), 132.4 (4-phenyl C-2, C-6), 137.9 (phenyl C-1), 139.1 (4azidophenyl C-1), 153.2 (pyranone C-4), 158.5 (4-methoxyphenyl C-4), 161.7 (pyranone C-6), 162.6 (pyranone C-2). Anal. $(C_{24}H_{17}N_3O_3)$: C, H, N.

3-(4-Azidophenyl)-6-(4ethoxyphenyl)-4-phenylpyran-2-one

(17b). The product was obtained as a orange solid by the condensation of 9f with 16 in the presence of NaH (0.24 g,35.6%): mp 169-171 °C; IR (film): 2119, 2109 (N₃), 1709 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 1.35 (t, J = 7.0 Hz, 3H, OCH_2CH_3), 3.98 (q, J = 7.0 Hz, 2H, OCH₂CH₃), 6.64 (s, 1H, pyranone H-5), 6.75 (d, J = 8.8 Hz, 2H, ethoxyphenyl H-3, H-5), 6.88 (d, J = 8.5 Hz, 2H, 4azidophenyl H-3, H-5), 7.06-7.12 (m, 4H, 4-azidophenyl H-2, H-6; phenyl H-2, H-6), 7.14-7.24 (m, 3H, phenyl H-3, H-4, H-5), 7.74 (d, J = 8.8 Hz, 2H, 4ethoxyphenyl H-2, H-6); ¹³C NMR $(CDCl_3): \delta 14.7 (OCH_2CH_3), 63.7$ (OCH₂CH₃), 103.4 (pyranone C-5), 114.8 (4-ethoxyphenyl C-3, C-5), 118.6 (4azidophenyl H-3, H-5), 120.7 (pyranone C-3), 123.6 (4-ethoxyphenyl C-1), 127.3 (phenyl C-3, C-5), 128.4, 128.6 and 128.7 (phenyl C-4, 4-ethoxyphenyl C-2, C-6; 4-azidophenyl C-2, C-6), 130.7 (4azidophenyl C-4), 132.4 (4-phenyl C-2, C-6), 137.9 (phenyl C-1), 139.1 (4azidophenyl C-1), 153.2 (pyranone C-4), 158.6 (4-ethoxyphenyl C-4), 161.2 (pyranone C-6), 162.6 (pyranone C-2). Anal. $(C_{25}H_{19}N_3O_3)$: C, H, N.

3-(4-Azidophenyl)-6-(4-

methylsulfanylphenyl)-4-phenylpyran-2-one (17c). The product was obtained as a pale yellow solid by the condensation of 9g with 16 in the presence of NaH (0.23 g, 33.6%): mp 170–172 °C; IR (film): 2112, 2106 (N₃), 1709 (C=O) cm⁻¹; ¹H NMR (CDCl₃): δ 2.55 (s, 3H, SCH₃), 6.79 (s, 1H, pyranone H-5), 6.88 (d, J = 8.5 Hz, 2H, 4-azidophenyl H-3, H-5), 7.15-7.20 (m, 4H, 4-azidophenyl H-2, H-6; phenyl H-2, H-6), 7.21-7.32 (m, 5H, 4-methylsulfanylphenyl H-3, H-5; phenyl H-3, H-4, H-5), 7.80 (d, J = 8.8Hz, 2H, 4-methylsulfanylphenyl H-2, H-6); ${}^{13}C$ NMR (CDCl₃): δ 15.1 (SCH₃), 104.2 (pyranone C-5), 118.6 (4azidophenyl C-3, C-5), 121.6 (pyranone C-3), 125.8 (4-methylsulfanylphenyl C-3, C-5), 127.5 (4-methylsulfanylphenyl C-1), 127.3 (phenyl C-3, C-5), 128.5, 128.5 and 128.8 (phenyl C-4. 4methylsulfanylphenyl C-2, C-6: 4azidophenyl C-2, C-6), 130.5 (4azidophenyl C-4), 132.4 (4-phenyl C-2, C-6), 137.7 (phenyl C-1), 139.2 (4azidophenyl 142.8 (4-C-1), methylsulfanylphenyl C-4), 152.9 (pyranone C-4), 158.1 (pyranone C-6), 162.5 (pyranone C-2). Anal. $(C_{24}H_{17}N_3O_2S): C, H, N.$

Cyclooxygenase Inhibition Studies. The ability of the test compounds 12, 13 and 17 to inhibit ovine COX-1 and COX-2 ((IC₅₀ values, μ M) was determined using an enzyme immuno assay (EIA) kit (catalog number 560101, Cayman Chemical, Ann Arbor, MI, U.S.A.) according to the manufacturer's instructions. Cyclooxygenase catalyzes the first step in the biosynthesis of arachidonic acid (AA) to PGH_2 . $PGF_{2\alpha}$, produced from PGH₂ by reduction with stannous chloride, is measured bv (ACETM immunoassay enzyme competitive EIA). Stock solutions of test compounds were dissolved in a minimum volume of DMSO. Briefly, to a series of supplied reaction buffer solutions (960 µl, 0.1 M Tris-HCl pH 8.0 containing 5 mM EDTA and 2 mM phenol) with either COX-1 or COX-2 (10 µl) enzyme in the presence of heme (10 μ l) were added 10 µl of various concentrations of test drug solutions (0.001, 0.1, 1, 10, 50 and 100 μ M in a final volume of 1 ml). These solutions were incubated for a period of 5 min at 37 °C after which 10 μ l of AA (100 μ M) solution were added and the COX reaction was stopped by the addition of 50 µl of 1 M HCl after 2 min. $PGF_{2\alpha}$, produced from PGH_2 by reduction with stannous chloride was measured by enzyme immunoassay. This assay is based on the competition between PGs and a PG-acetylcholinesterase conjugate (PG tracer) for a limited amount of PG antiserum. The amount of PG tracer that is able to bind to the PG antiserum is inverselv proportional to the concentration of PGs in the wells since the concentration of PG tracer is held constant while the concentration of PGs varies. This antibody-PG complex binds a mouse anti-rabbit monoclonal to that had been previously antibody attached to the well. The plate is washed to remove any unbound reagents and then Ellman's reagent, which contains the substrate to acetylcholine esterase, is added to the well. The product of this enzymatic reaction produces a distinct yellow color that absorbs at 405 nm. The intensity of this color, determined spectrophotometrically, is proportional to the amount of PG tracer bound to the well, which is inversely proportional to the amount of PGs present in the well during the incubation: Absorbance α [Bound PG Tracer] α 1/PGs. Percent inhibition was calculated by the comparison of compound-treated to various control incubations. The concentration of the test compound causing 50% inhibition (IC₅₀, μ M) was calculated from the concentrationinhibition response curve (duplicate determinations).

Antiinflammatory Assay. The test compounds were evaluated using the in vivo rat carrageenan-induced foot paw edema model reported previously.^{39,40}

Analgesic Assay. Analgesic activity was determined using the 4% sodium chloride-induced writhing (abdominal constriction) assay as described previously.⁴¹

Molecular Modeling (Docking) Studies. Docking experiments were performed using Insight II software Version 2000.1 (Accelrys Inc.) running on a Silicon Graphics Octane 2 R14000A workstation. The coordinates for the Xray crystal structure of the enzyme COX-2 were obtained from the RCSB Protein Data Bank and hydrogens were added. The ligand molecules were constructed using the Builder module and energy minimized for 1000 iterations reaching a convergence of 0.01 kcal/mol Å. The docking experiment on COX-2 was carried out by superimposing the energy minimized ligand on SC-558 in the PDB file 1cx2 after which SC-558 was deleted. The resulting ligand-enzyme complex was subjected to docking using the Affinity command in the Docking module of Insight II after defining subsets of the enzyme such that residues within 10 Å of the ligand were allowed to relax, while the remainder of the enzyme residues were fixed. The consistent valence force field (CVFF) or extensible systematic force field (ESFF) was employed for all docking purposes. The ligand-enzyme assembly was then subjected to a molecular dynamics (MD) simulation using the Discover module Version 2.98 at a constant temperature of 300 K with a 200 step equilibration for over 5000 iterations and a time step of 1

fs using a distance dependent dielectric constant 4r. The optimal binding orientation of the ligand-enzyme assembly obtained after docking was further minimized for 1000 iterations using the conjugate gradient method until a convergence of 0.001 kcal/mol Å was reached after which Eintermolecular (kcal/mol) ligand-enzyme of the assembly was evaluated.

Supporting Information on Elemental Analysis Data is Available in Appendix 4.1.

5.6.0.0. References

- Fu, J.Y.; Masferrer, J. L.; Seibert, K.; Raz, A.; Needleman, P. The induction and suppression of prostaglandin H₂ synthase (cyclooxygenase) in human monocytes. J. Biol. Chem. 1990, 265, 16737-16740.
- (2) Xie, W. L.; Chipman, J. G.; Robertson, D. L.; Erikson, R. L.; Simmons, D. L. Expression of mitogen-responsive gene encoding prostaglandin synthesis is regulated by mRNA splicing. *Proc. Natl. Acad. Sci. U.S.A.* 1991, 88, 2692–2696.
- (3) Vane, J. R.; Bakhle, Y. S.; Botting, R. M. Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 1998, 38, 97-120.
- (4) Bombardier, C.; Laine, L.; Reicin, A.; Shapiro, D.; Burgos-Vargas, R.; Davis, B.; Day, R.; Ferraz, M. B.; Hawkey, C. J.; Hochberg, M. C.; Kvien, T. K.; Schnitzer, T. J. Group comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis.

N. Engl. J. Med. **2000**, 343, 1520–1528.

- (5) Silverstein, F. E.; Faich, G.; Goldstein, J. L.; Simon, L. S.; Pincus, T.; Whelton, A.; Makuch, R.; Eisen, G.; Agrawal, N. M.; Stenson, W. F.; Burr, A. M.; Zhao, W. W.; Kent, J. D.; Lefkowith, J. B.; Verburg, K. M.;. Geis, G. S. Gastrointestinal toxicity with celecoxib vs nonsteroidal antiinflammatory osteoarthritis drugs for and rheumatoid arthritis: the CLASS study: a randomized controlled trial. JAMA 2000, 284, 1247-1255.
- (6) Subbaramaiah, K.; Dannenberg, A. J. Cyclooxygenase-2: a molecular target for cancer prevention and treatment. *Trends Pharmacol. Sci.* 2003, 24, 96– 102.
- (7) Fujita, H.; Koshida, K.; Keller, E. T.; Takahashi, Y.; Yoshimito, T.; Namiki, M.; Mizokami, A. Cyclooxygenase-2 promotes prostate cancer progression. *Prostate* 2002, 53, 232–240.
- (8) Xiang, Z.; Ho, L.; Yemul, S.; Zhao, Z.; Qing, W.; Pompl, P.; Kelley, K.; Dang, A.; Qing, W.; Teplow, D,; Pasinetti, G. M. Cyclooxygenase-2 promotes amyloid plaque deposition in a mouse model of Alzheimer's disease neuropathology. Gene Expr. 2002, 10, 271–278.
- (9) Teismann, P.; Tieu, K.; Choi, D. K.; Wu, D. C.; Naini, A.; Hunot, S.; Vila, M.; Jackson-Lewis, V.; Przedborski, S. Cyclooxygenase-2 is instrumental in Parkinson's disease neurodegeneration. *Proc.*

Natl. Acad. Sci. U S A. **2003**, *100*, 5473–5478.

- (10) Talley, J. J. Selective inhibitors of cyclooxygenase-2 (COX-2). *Prog. Med. Chem. Res.* 1999, 36, 201–234.
- T.D.; Talley, J. J.; (11)Penning, Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G.D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.; Isakson, P. C. **Synthesis** and biological evaluation of 1.5the diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-(SCyl]benzenesulfonamide 58635, celecoxib). J. Med. Chem.
- **1997**, 40, 1347–1365. (12)Prasit, P.; Wang, Z.; Brideau, C.; Chan, C. C.; Charleson, S.; Cromlish, W.; Ethier, D.; Evans, J. F.; Ford-Hutchinson, A. W.; Gauthier, J. Y.; Gordon, R.; Guay, J.; Gresser, M.; Kargman, S.; Kennedy, B.; Leblanc, Y.; Leger, S.; Mancini, J.; O'Neill, G. P.; Ouellet, M.; Percival, M. D.; Perrier, H.; Riendeau, D.; Rodger, I.; Zamboni, R.; Boyce, S.; Rupniak, N.; Forrest, M.; Visco, D.; Patrick, D. The discovery of rofecoxib, [MK 966, VIOXX[®], 4-(4'-methylsulfonylphenyl)-3phenyl-2(5H)-furanone], an orally cyclooxygenase-2 active

inhibitor. Bioorg. Med. Chem. Lett. 1999, 9, 1773–1778.

- (13) Talley, J. J.; Brown, D. L.; Carter, J. S.; Graneto, M. J.; Koboldt, C. M.; Masferrer, J. L.; Perkins, W. E.; Rogers, R. S.; Shaffer, A. F.; Zhang, Y. Y.; Zweifel, B. S.; Seibert, K. 4-[5-Methyl-3-phenylisoxazol-4-yl]-benzenesulfonamide, valdecoxib: a potent and selective inhibitor of COX-2. J. Med. Chem. 2000, 43, 775-777.
- (14)Friesen, R. W.; Brideau, C.; Chan, C. C.; Charleson, S.; Deschenes, D.; Dube, D.; Ethier, D.; Fortin, R.; Gauthier, J. Y.; Girard, Y.; Gordon, R.; Greig, G. M.; Riendeau, D.; Savoie, C.; Wang, Z.; Wong, E.; Visco, D.; Xu, L. J.; Young, R. N. 2-Pyridinyl-3-(4methylsulfonyl)phenylpyridines: selective and orally active cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett. 1998, 8, 2777-2782.
- (15)Riendeau, D.; Percival, M. D.; Brideau, C.; Charleson, S.; Dube, D.; Ethier, D.; Falgueyret, J. P.; Friesen, R. W.; Gordon, R.; Greig, G.; Guay, J.; Mancini, J.; Ouellet, M.; Wong, E.; Xu, L.; Boyce, S.; Visco, D.; Girard, Y.; Prasit, P.; Zamboni, R.; Rodger, I. W.; Gresser, M.; Ford-Hutchinson, A. W.; Young, R. N.; Chan, C. C. Etoricoxib (MK-0663): preclinical profile and comparison with other agents that selectively inhibit cyclooxygenase-2. J. Pharmacol. Exp. Ther. 2001, 296, 558-566.
- (16) Marrison, L. R.; Dickinson, J. M.; Fairlamb, I. J. Bioactive 4-
substituted-6-methyl-2-pyrones with promising cytotoxicity against A2780 and K562 cell lines. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 3509–3513.

- (17) Marrison, L. R.; Dickinson, J. M.; Fairlamb, I. J. Suzuki crosscoupling approaches to the synthesis of bioactive 3substituted and 5-substituted-4methoxy-6-methyl-2-pyrones. *Bioorg. Med. Chem. Lett.* 2003, 13, 2667–2671.
- (18)Tummino, P. J.; Prasad, J. V.; Ferguson, D.; Nouhan, C.: Graham, N.; Domagala, J. M.; Ellsworth, E.; Gajda, C.; Hagen, S. E.; Lunney, E. A.; Para, K. S.; Tait, B. D.; Pavlovsky, A.; Erickson, J. W.; Gracheck, S.; McQuade, T. J.; Hupe, D. J. Discovery and optimization of nonpeptide HIV-1 protease inhibitors. Bioorg. Med. Chem. 1996, 4, 1401-1410.
- (19) Rao, P. N. P.; Amini, A.; Li, H.; Habeeb, A. G.; Knaus, E. E. Design, synthesis and biological evaluation of 6-substituted-3-(4methanesulfonylphenyl)-4phenylpyran-2-ones: a novel class of diarylheterocyclic selective cyclooxygenase-2 inhibitors J. Med. Chem. 2003, 46, 4872– 4882.
- (20) Li, C. S.; Lau, C. K.; Therien, M.; Prasit, P. Pyrones as inhibitors of cyclooxygenase-2. World Patent WO 02/02547, 10 January, 2002, CA 136: 85758.
- (21) Crespo, C; Isabel, M.; Mayorga,
 J.; Miguel, J.; Pueyo, S. L. 4Phenylpyran-2-one derivatives.
 World Patent WO 03/006451 A1,

23 January, **2003**, CA 138: 122549.

- (22) Baddar, F. G.; Al-Hajjar, F. H.; El-Rayyes, N. R. Acetylenic ketones I. Reaction of aroylphenylacetylenes with compounds containing an active methylene group. J. Heterocyl. Chem. 1976, 13, 195-203.
- (23) Henry, W. P.; Hughes, R. P. Organic synthesis using carbon monoxide. regiospecific cobaltmediated synthesis of 2H-pyran-2-ones. J. Am. Chem. Soc. 1986, 108, 7862-7864.
- (24) Hirano, K.; Minakata, S.; Komatsu, M. Unusual fluorescent properties of novel fluorophores, 6-aryl-3,4-diphenyl-α-pyrone derivatives. *Bull. Chem. Soc. Jpn.* 2001, 74, 1567–1575.
- Mahrwald, R.; Quint, S. TiCl₄-mediated nucleophilic substitution of propargylic esters. *Tetrahedron* 2000, 56, 7463–7468.
- (26) Chowdhury, C.; Kundu, N. G. Studies on copper(I) catalysed cross-coupling reactions: a convenient and facile method for the synthesis of diversely substituted α,β -acetylenic ketones. *Tetrahedron* **1999**, *55*, 7011–7016.
- (27)Habeeb, A. G.; Rao, P. N. P.; Knaus, E. E. Design and synthesis celecoxib and of rofecoxib analogues selective as cvclooxygenase-2 (COX-2) inhibitors: replacement of sulfonamide and methylsulfonyl pharmacophores by an azido bioisostere. J. Med. Chem. 2001, 44, 3039-3042.
- (28) Rahim, M. A.; Rao, P. N. P.; Knaus, E. E. Isomeric acetoxy

analogues of rofecoxib: a novel class of highly potent and selective cyclooxygenase-2 inhibitors. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 2753–2756.

- (29) Kurumbail, R. G.; Stevens, A. M.; Gierse, J. K; McDonald, J. J.; Stegeman, R. A.; Pak J. Y.; Gildehaus, D.; Miyashiro, J. M.; Penning, T. D.; Seibert, K.; Isakson, P. C.; Stallings, W. C. Structural basis for selective inhibition of cyclooxygenase-2 by antiinflammatory agents. *Nature* 1996, 384, 644–648.
- (30) Wong, E.; Bayly, C.; Waterman, H. L.; Riendeau, D.; Mancini, J. A. Conversion of prostaglandin G/H synthase-1 into an enzyme sensitive to PGHS-2-selective inhibitors by a double His⁵¹³→ Arg and Ile⁵²³ →Val mutation. J. Biol. Chem. 1997, 272, 9280-9286.
- Greig, G. M.; Francis, D. A.; (31) Falgueyret, J. P.; Ouellet, M. M.; Percival, M. D.; Roy, P.; Bayly, C.; Mancini, J. A.; O'Neill, G. P. The interaction of arginine 106 of human prostaglandin G/H synthase-2 with inhibitors is not a universal component of inhibition mediated by nonsteroidal antiinflammatory drugs. Mol. Pharmacol. 1997, 52, 829-838.
- (32) Hood, W. F.; Gierse, J. K.; Isakson, P. C.; Kiefer, J. R.; Kurumbail, R.G.; Seibert, K.; Monahan, J. B. Characterization of celecoxib and valdecoxib binding to cyclooxygenase. *Mol. Pharmacol.* 2003, 63, 870–877.
- (33) Jiang, B.; Si, Y.G. Alkynylation of carbonyl compounds with terminal acetylenes promoted by

ZnCl₂ and Et₃N: simple, mild and efficient preparation of propargylic alcohols. *Tetrahedron Lett.* **2002**, *43*, 8323–8325.

- Kundu, Pal, (34)N. G.; M.: Chowdhury, C. A highly simplified approach for the β -aryl substituted synthesis of conjugated acetylenic ketones mediated through palladiumcopper catalysis. J. Chem. Res. **1995**, *1*, 101–123.
- (35) Stiegman, A. E.; Graham, E.; Perry, K. J.; Khundkar, L. R.; Cheng, L. T.; Perry, J. W. The electronic structure and secondorder nonlinear optical properties of donor-acceptor acetylenes: a detailed investigation of structureproperty relationships. J. Am. Chem. Soc. 1991, 113, 7658-7666.
- (36) Coan, S. B.; Becker, E. I. Synthesis of unsymmetrical 1,3diphenyl-2-propanones. J. Am. Chem. Soc. 1954, 76, 501–503.
- (37) Corse, J. W.; Jones, R. G.; Soper, Q, P.; Whitehead, C. W.; Behrens, O. K. Biosynthesis of penicillins. V. substituted phenylacetic acid derivatives as penicillin precursors. J. Am. Chem. Soc. 1948, 70, 2837–2843.
- (38) Noyce, D.S.; DeBruin, K. E. Kinetics and mechanism of the acid-catalyzed hydration of phenylbenzoylacetylene. J. Am. Chem. Soc. 1968, 90, 372–377.
- (39) Winter, C. A.; Risley, E. A.; W.; Carrageenan-Nuss. G. induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proc. Soc. Exp. Biol. Med. 1962, 111, 544-552.

- (40) Kumar, P.; Knaus, E. E. Synthesis and antiinflammatory activity of N-substituted dihydropyridyl acetic acids, esters and amides. Drug Design Del. 1987, 2, 145–149.
- (41) Fukawa, K.; Kawano, O.; Hibi, M.; Misaka, N.; Ohba, S.; Hatanaka, Y. Method for evaluating analgesic agents in rats. J. Pharmacol. Methods 1980, 4, 251-259.

Appendix 4.1:

Cmpd	Empirical Formula	Calculated		Found				
		C	Н	N	С	Н	N	
8c	C ₁₇ H ₁₆ O	86.40	6.82	-	86.02	6.95	-	
8f	$C_{17}H_{16}O_2$	80.93	6.39	_	80.62	6.03	_	
8g	$C_{16}H_{14}OS$	75.55	5.55	_	75.72	5.18		
8i	$C_{16}H_{13}FO_2$	74.99	5.11	_	74.63	5.32		
8j	C ₁₇ H ₁₅ FO ₂	75.54	5.59	-	75.21	5.86	_	
8k	C ₁₆ H ₁₃ FOS	70.56	4.81	-	70.42	4.66	_	
81	$C_{16}H_{14}OS$	75.55	5.55	_	75.26	5.21	_	
8m	C ₁₇ H ₁₆ OS	76.08	6.01	-	75.82	5.95	_	
8n	$C_{18}H_{18}OS$	76.56	6.42	_	76.23	6.66	—	
80	C ₁₇ H ₁₃ F ₃ OS	63.34	4.06	-	63.54	4.36		
8p	$C_{17}H_{16}O_2S$	71.80	5.67	-	71.91	5.29		
8q	$C_{18}H_{18}O_2S$	72.45	6.28	_	72.09	6.08	-	
8r	C ₁₆ H ₁₃ FOS.1/4H ₂ O	69.48	4.88	_	69.85	4.81		
8 s	$C_{17}H_{16}O_3S_2$	61.42	4.85	_	61.22	4.82	-	
8t	C ₁₄ H ₁₁ NO	80.36	5.30	6.69	80.59	5.66	6.53	
8u	C ₁₅ H ₁₃ NO ₂	75.30	5.48	5.85	75.29	5.52	5.82	
9c	C ₁₇ H ₁₄ O	87.15	6.02		86.82	6.05	_	
9d	C ₁₆ H ₉ F ₃ O	70.08	3.31	_	69.83	3.14	_	
9g	C ₁₆ H ₁₂ OS	76.16	4.79		76.09	4.57	_	

Elemental Analysis for Compounds 8, 9, 11, 12, 13 and 17.

9i	$C_{16}H_{11}FO_2$	75.58	4.36		75.57	4.33	
9j	$C_{17}H_{13}FO_2$	76.11	4.88	_	76.23	4.62	_
9k	C ₁₆ H ₁₁ FOS	71.09	4.10		71.34	4.33	-
91	C ₁₆ H ₁₂ OS	76.16	4.79	-	76.55	4.46	_
9m	C ₁₇ H ₁₄ OS	76.66	5.30		76.85	5.21	
9n	C ₁₈ H ₁₆ OS.1/2 H ₂ O	74.63	5.87		75.16	6.03	_
90	C ₁₇ H ₁₁ F ₃ OS	63.74	3.46		63.42	3.74	_
9p	$C_{17}H_{14}O_2S$	72.31	5.00		72.58	4.96	_
9q	$\mathrm{C_{18}H_{16}O_2S}$	72.94	5.44	_	72.66	5.27	_
9r	C ₁₆ H ₁₁ FOS	71.09	4.10	-	71.39	4.14	
9t	$C_{17}H_{14}O_3S_2$	61.79	4.27		61.41	4.52	_
9u	C ₁₄ H ₉ NO	81.14	4.38	6.76	81.44	4.66	6.68
9v	C ₁₅ H ₁₅ NO ₂	75.94	4.67	5.90	76.05	4.54	5.93
9w	$\mathrm{C_{16}H_{12}O_{3}S}$	67.59	4.25	_	67.22	4.50	_
9x	$\mathrm{C}_{17}\mathrm{H}_{14}\mathrm{O}_{4}\mathrm{S}$	64.95	4.49	-	64.58	4.38	_
11a	C ₂₄ H ₁₈ O ₂ S.1/4 H ₂ O	76.80	4.93		76.94	4.78	
11b	$C_{25}H_{20}O_2S$	78.09	5.24		78.41	5.14	
11c	$C_{26}H_{22}O_2S.3/4H_2O$	75.72	5.70	_	75.98	5.38	_
11d	C ₂₅ H ₁₇ F ₃ O ₂ S.1/4 H ₂ C) 67.77	3.89	_	67.61	3.90	_
11e	$C_{25}H_{20}O_{3}S$	75.34	5.35		75.21	4.97	_
11f	$\mathrm{C_{26}H_{22}O_{3}S}$	75.34	5.35		75.46	5.62	_
11g	C ₂₄ H ₁₇ FO ₂ S	74.21	4.41	_	74.42	4.21	

11h	$C_{25}H_{19}FO_3S$	71.75	4.58		71.51	4.47	—
11i	$C_{26}H_{21}FO_3S$	78.09	5.24	_	78.33	5.61	-
11j	$C_{24}H_{18}O_2S$	77.81	4.90	-	77.53	4.80	-
11k	$C_{24}H_{18}O_2S$	77.81	4.90 -		77.45	4.77	_
111	$C_{25}H_{20}O_2S$	78.09	5.24	_	78.25	5.14	_
11m	$C_{26}H_{22}O_2S.1/4$ H_2O	77.41	5.58	_	77.58	5.38	-
11n	$C_{25}H_{17}F_{3}O_{2}S$	68.48	3.91	_	68.12	3.82	_
110	$C_{25}H_{20}O_{3}S$	74.97	5.03	-	74.88	5.13	_
11p	$C_{26}H_{22}O_3S$	75.34	5.35	_	75.62	5.21	_
11q	$C_{24}H_{17}FO_2S$	74.21	4.41	-	74.23	4.70	
11r	$\mathrm{C}_{25}\mathrm{H}_{19}\mathrm{FO}_{3}\mathrm{S}$	71.75	4.58		71.48	4.51	-
11s	$C_{26}H_{21}FO_3S$	78.09	5.24	·	77.71	4.85	_
11t	C ₂₄ H ₁₇ NO ₄ S.1/2 H ₂ O	67.85	4.24	3.29	67.91	3.98	3.24
12a	$C_{24}H_{18}O_4S$	71.62	4.51	_	71.46	4.37	-
12b	$C_{25}H_{20}O_4S$	72.09	4.84	-	72.23	5.15	_
12c	$C_{26}H_{22}O_4S$	72.54	5.15	-	72.21	5.32	_
12d	$C_{25}H_{17}F_{3}O_{4}S$	63.82	3.64	-	63.55	3.82	_
12e 12f	$\begin{array}{c} C_{25}H_{20}O_5S\\ C_{26}H_{22}O_5S\end{array}$	69.43 69.94	4.66 4.97		69.05 69.73	4.36 4.61	_
12g	$C_{24}H_{17}FO_4S$	68.56	4.08	_	68.22	4.40	_
12h	C ₂₅ H ₁₉ FO ₅ S	66.66	4.25	_	66.37	4.16	_
12i	$\mathrm{C_{26}H_{21}FO_5S}$	67.23	4.56		67.28	4.67	_
12j	$C_{24}H_{18}O_4S$	71.62	4.51		71.34	4.41	_

12k	$\mathrm{C}_{24}\mathrm{H}_{18}\mathrm{O}_{4}\mathrm{S}$	71.62	4.51	-	71.58	4.26	_
121	$C_{25}H_{20}O_4S$	72.09	4.84		72.18	4.55	_
12m	$\mathrm{C}_{26}\mathrm{H}_{22}\mathrm{O}_4\mathrm{S}$	72.54	5.15		72.68	5.29	
12n	$C_{25}H_{17}F_3O_4S.1/4H_2O$	63.16	3.68		63.22	3.49	_
120	$C_{25}H_{20}O_5S$	69.43	4.66	_	69.53	4.31	_
12p	$C_{26}H_{22}O_5S$	69.94	4.97	-	69.70	4.71	
12q	C ₂₄ H ₁₇ FO ₄ S	68.56	4.08	-	68.50	3.94	_
12r	C ₂₅ H ₁₉ FO ₅ S	66.66	4.25	-	66.28	4.51	_
12s	$C_{26}H_{21}FO_5S$	67.23	4.56	_	67.00	4.27	
12t	$C_{25}H_{20}O_4S_2$	67.78	5.12		67.35	5.14	-
12u	$C_{25}H_{19}FO_4S_2$	64.36	4.10	_	64.52	4.28	_
12v	C ₂₄ H ₁₇ NO ₆ S	64.42	3.83	3.13	64.25	3.82	3.18
12w	C ₂₄ H ₁₉ NO ₄ S.1/2 H ₂ O	67.53	4.69	3.28	67.28	4.48	2.98
12x	$C_{24}H_{18}O_5S$	68.88	4.34	_	68.59	4.21	_
12y	C ₂₅ H ₂₀ O ₄ S ₂ .3/4 H ₂ O	64.92	4.65	_	64.99	4.40	-
1 3 a	C ₂₃ H ₁₇ NO ₄ S.1/4 H ₂ O	67.65	4.29	3.43	67.64	4.14	3.31
13b	C ₂₄ H ₁₉ NO ₅ S	66.50	4.42	3.23	66.17	4.28	3.14
13c	$C_{23}H_{17}NO_4S$	68.47	4.25	3.47	68.39	4.17	3.22
13d	$C_{24}H_{19}NO_5S$	66.50	4.42	3.23	66.32	4.59	3.09
13e	C ₂₃ H ₁₇ NO ₄ S	68.47	4.25	3.47	68.10	4.21	3.13
13f	C ₂₄ H ₁₉ NO ₅ S	66.50	4.42	3.23	66.43	4.25	3.34
15	$C_8H_7N_3O_2$	54.24	3.98	23.72	54.02	3.62	23.54
16	$C_{10}H_{11}N_3O_2$	58.53	5.40	20.48	58.65	5.21	20.35

17a	$C_{24}H_{17}N_3O_3$	72.90	4.33	10.63 72.99	4.19	10.50
17b	$C_{25}H_{19}N_3O_3$	73.34	4.68	10.26 73.36	4.46	9.95
17c	$C_{24}H_{17}N_3O_2S$	70.05	4.16	10.21 69.99	3.86	10.00

6.0.0.0. GENERAL DISCUSSION AND CONCLUSIONS

Since the discovery of the inducible isoform of the enzyme cyclooxygenase-2 (COX-2), researchers across the globe have focused their attention in developing compounds that inhibit COX-2 enzyme selectively, in the hope of developing NSAIDs with a reduced side effect profile. Central ring templates pharmacophore such as diarylheterocycles have been verv successful as selective COX-2 inhibitors. A common structural feature of these diarylheterocycles is the presence of 1,2diaryl substitution on a central 4-, 5-, or 6-membered central ring system. Structure-activity relationship (SAR) studies have shown that a -SO₂Me, -SO₂NH₂ or -F substituent at the paraposition of a phenyl ring provides optimal COX-2 selectivity, inhibitory potency and oral activity.¹ Accordingly, we have designed, synthesized and evaluated novel classes of tricyclic ring templates such as (i) 1,1-dihalo-2,3diphenylcyclopropanes, (ii) 6-alkyl-, alkoxy- or alkylthio-3,4-diphenylpyran-2-ones. and (iii) substituted-3,4,6triphenylpyran-2-ones. These novel ring templates. when appropriately functionalized, exhibit COX-2 selectivity and inhibitory potency along with in vivo antiinflammatory-analgesic activity.

6.1.0.0. Design, syntheses, and evaluation of novel 1,1-dihalo-2,3diphenylcyclopropanes as potential cyclooxygenase-2 (COX-2) inhibitors with antiinflammatory-analgesic activity

A group of (Z) and (E)-1,1dihalo-2-(4-substituted-phenyl)-3phenylcyclopropanes [(Z)-1, (E)-2] stereoisomers having a variety of substituents (H, Br, Cl, F, NO₂, SO₂Me) at the para-position of the C-2 phenyl ring in conjunction with either two chloro or bromo substituents at C-1 were synthesized and evaluated in vitro as potential selective COX-2 inhibitors, and in vivo as antiinflammatory-analgesic agents. The title (Z) or (E)-1,1dihalocyclopropanes were prepared in vields by the addition good of dihalocarbenes (:CX₂), to various stilbenes. The dihalocarbenes were generated in situ either from reaction of a trihalomethane (CHX₃) in the presence of a base and a phase transfer catalyst, or from organomercurial reagents.²⁻⁴

Biological evaluations for this class of compounds revealed that they exhibit good antiinflammatory-analgesic activity, but weak inhibitory activity against the cyclooxygenase isozymes. The para- NO_2 substituted (E)-isomer exhibited moderate in vitro COX-2 selectivity (COX-2 IC₅₀ = 80.5μ M; COX-1 IC₅₀ = 278.8 μ M; Selectivity Index = 3.5). In a rat carrageenaninduced antiinflammatory assay, the potency order with respect to variation in substituents at the para-position of the C-2 phenyl ring for the (Z) series of compounds was NO₂ > MeSO₂ \approx H \geq Cl, and for the (E) series of compounds was $H \ge MeSO_2 > Cl \approx Br$. The most active

antiinflammatory agent (E)-1,1-dibromo-2-(4-methanesulfonylphenyl)-3-

phenylcyclopropane (3) exhibited 45 and 37% reduction in inflammation at 3 and 5 h post drug administration, respectively relative to the reference drug celecoxib for a 50 mg/kg oral dose (80 and 58% reduction in inflammation at 3 and 5 h post drug administration for a 50 mg/ kg oral dose). In a 4% NaCl-induced writhing assay, good analgesic activity exhibited by this group of was compounds. The presence of a Cl or SO₂Me substituents at the *para*-position generally provided superior analgesic activity. The most active analgesic (E)-1,1-dichloro-2-(4compound methanesulfonvlphenvl)-3-

phenylcyclopropane (4) exhibited 72 and 77% inhibition of writhing at 30 and 60 min post drug administration (50 mg/kg ip route).

Molecular modeling studies for some of the compounds in this series showed that (E)-1,1-dihalo-2-(4substituted-phenyl)-3-

phenylcyclopropanes (2) generally bind more favourably within the COX-2 active site compared to the (Z)-isomers. This explains the inactive nature of (Z)isomers as COX inhibitors.⁵

In conclusion, the results of this investigation shows that (i) a 3membered cyclopropane ring can serve as a potential ring template in the design of tricyclic COX-2 inhibitors that exhibit in vivo antiinflammatory-analgesic activity and that (ii) the COX-2 binding interaction is governed by steric and electronic properties at the *para*-position on the C-2 phenyl ring, (iii) molecular modeling studies for this class of compounds reveal that favorable binding interaction within the COX-2 active site may be obtained by placing appropriate dihalo substituents at the C-1 position of the cyclopropane ring.

6.2.0.0. Design, synthesis and biological evaluation of 6-alkyl-, alkoxy- or alkylthio-substituted-3-(4methanesulfonylphenyl)-4-

phenylpyran-2-ones: A novel class of diarylheterocyclic selective cyclooxygenase-2 inhibitors

A group of 3-(4methanesulfonylphenyl)-4-phenylpyran-2-ones (5) possessing a central sixmembered lactone (pyran-2-one) ring was designed as a novel COX-2 selective central ring template. The substituent at the C-6 position of the central lactone was varied (alkyl, alkoxy and alkylthio) to determine their effect on in vitro COX-2 selectivity, inhibitory potency and in vivo antiinflammatory-analgesic activity.

The 3,4-diarylpyran-2-ones (5) were prepared in low to moderate yields (8–44%) by condensation of a 2-(4-methanesulfonylphenyl)-3-

phenylcycloprop-2-en-1-one with a pyridinium salt in the presence of the base triethylamine (Scheme 6.1). The

initial yilde compound that is formed in the reaction undergoes a spontaneous In vitro COX enzyme inhibition studies for the C-6 alkyl ($R^2 = Me$, Et, *i*-

Scheme 6.1: Reagents and conditions: (a) benzene, Et₃N, 25 °C, 16–18 h.

ring expansion reaction to produce the title compounds having a central sixmembered lactone ring (pyran-2-one).^{6,7} No other regioisomer was observed using the reaction conditions employed. ¹H NMR nuclear Overhauser enhancement (NOE) studies showed NOE interactions between H-5 and the 6-alkyl (R^2) , alkoxy (OR²), or alkylthio (SR²) moiety, and between H-5 and the C-4 o-phenyl hydrogens. This established the regiochemistry of the C-4 and C-5 phenyl rings. The starting material, 2-(4methanesulfonylphenyl)-3-

phenylcycloprop-2-en-1-one, was prepared using a one-pot reaction according to our previously reported procedure.⁸ Pr) subgroup of compounds (5) showed weak to good inhibitory activity, with 6methyl-3-(4-methanesulfonylphenyl)-4phenylpyran-2-one (6) showing the best combination of COX-2 inhibitory potency and selectivity (COX-2 $IC_{50} =$ $0.68 \ \mu M$; COX-1 IC₅₀ = 614.8 μM ; SI = 904). For this subgroup of compounds, a *p*-fluoro substituent on the C-4 phenyl $(R^1 = F)$, generally decreased COX-2 inhibitory potency and selectivity. For the C-6 alkoxy ($R^2 = OMe$, OEt, OPr-*i*, OBut, OBu-i, OCH₂-C₆H₄-4-Cl) subgroup, the COX-2 selectivity and potency may be dependent on the steric effect as a reduced COX-2 inhibitory potency and selectivity was observed with the introduction of a C-6 4-chlorobenzyloxy substituent ($R^2 = OCH_2 - C_6H_4 - 4 - CI$).

The most active compound in this sub group was (7, COX-2 $IC_{50} = 0.10 \ \mu M$; COX-1 IC₅₀ = 288 μ M; SI = 2880), which possessed a C-6 ethoxy ($R^2 = OEt$) and a p-fluoro substituent on the C-4 phenyl ring $(R^1 = F)$. Among the C-6 alkylthio (MeS, EtS, n-PrS, i-PrS) subgroup, the COX-2 inhibitory potency was of the order EtS >> MeS > inactive *n*-PrS and *i*-PrS. The C-6 thioethyl compound (8) was a highly potent and selective COX-2 inhibitor (COX-2 $IC_{50} =$ $0.003 \ \mu\text{M}$; COX-1 IC₅₀ = 382.6 μM ; SI > 120,000) that was a much more potent and selective inhibitor than the reference drugs (celecoxib COX-2 IC₅₀ = 0.05μ M; SI = 401; rofecoxib COX-2 IC₅₀ = 0.43 μ M; SI > 1162).⁹

A molecular modeling (docking) study was carried out to investigate the binding interactions of (7) within the COX-2 active site.¹⁰ These docking studies showed that the COX-2 p-SO₂Me pharmacophore was oriented favourably within the COX-2 active site where it interacted with amino acids lining the COX-2 secondary pocket (His⁹⁰, Gln¹⁹², Arg⁵¹³, Phe⁵¹⁸, Val⁵²³ and Leu³⁵²). The p-SO₂Me was inserted deep inside the COX-2 secondary pocket with the Oatoms of SO₂Me forming a hydrogen bonding interaction with Phe⁵¹⁸. The central pyran-2-one ring was oriented towards the mouth of the channel (Tyr³⁵⁵ and Arg¹²⁰). The C-4 *p*-fluorophenyl ring was oriented towards a hydrophobic pocket made up of Trp³⁸⁷, Tyr³⁸⁵ and Tyr³⁴⁸). Interestingly, the C-6 ethoxy substituent was oriented towards a hydrophobic region comprised of Val³⁴⁹, Ile^{345} , Ser^{530} , Leu^{531} and Met^{535} . Therefore, for this class of compounds, the orientation of the p-SO₂Me pharmacophore was dependent on the substituent electronic and steric effects at the C-6 position of the central pyran-2one. A similar docking study of (7) within the COX-1 active site showed that the presence of a bulkier Ile (Val in COX-2) at position 523 prevents the access of COX-2 SO₂Me pharmacophore to a side pocket. This explains the potent COX-2 (IC₅₀ = 0.10μ M) and weak COX-1 (IC₅₀ = 288 μ M) inhibitory activity of (7). When a docking experiment was carried out for the most active compound (8, C-6 EtS), the binding interactions were similar to those observed for the C-6 ethoxy analog (7)within the COX-2 active site. The p-SO₂Me COX-2 pharmacophore was inserted deep inside within the COX-2 secondary pocket. The C=O of the central pyran-2-one forms a hydrogen bonding with Tyr^{355} at the mouth of the COX-2 channel. The C-6 SEt was oriented towards a hydrophobic pocket where the sulfur atom undergoes a weak hydrogen bonding interaction with the OH of Ser^{530} . studies have shown Recent the importance of Ser⁵³⁰ in the COX-2 inhibitory potency of diarylheterocyclic COX-2 inhibitors.¹¹ These docking experiments further confirm the role of C-6 substituents that induce the proper orientation of the p-SO₂Me pharmacophore within the COX-2 active site.

In vivo antiinflammatoryanalgesic screening for this pyran-2-one class of compounds showed that they wide range of activities. exhibit a Compound exhibited (7) good antiinflammatory activity at different time intervals (32 and 67% reduction in inflammation at 3 and 5 h post drug administration) for a 1 mg/kg oral dose, which parallels its potent in vitro COX-2 inhibitory activity (COX-2 $IC_{50} = 0.10$ μ M; SI = 2880). In contrast, the most

potent and selective COX-2 inhibitor (8, COX-2 IC₅₀ = 0.003 μ M; SI > 120,000) was a weak antiinflammatory agent (9 and 19.5% reduction in inflammation at 3 and 5 h post drug administration) for a 50 mg/kg oral dose. In a 4% NaCl-induced writhing assay, (7) exhibited good analgesic activity (42 and 75% inhibition in writhing at 30 and 60 min. respectively, post drug administration) for a 1 mg/kg intraperitoneal dose. The C-6 SEt compound (8) was the most active analgesic agent (exhibited 81 and 77% inhibition of writhing at 30 and 60 min. respectively, post drug administration) for a 50 mg/kg intraperitoneal dose.

In conclusion. qualitative structure-activity data acquired for this class of 6-alkyl-, alkoxy-, or alkylthiosubstituted-3-(4-methanesulfonylphenyl)-4-phenylpyran-2-ones have shown that (i) a six-membered lactone (pyran-2-one) ring serves as a suitable central ring template to design selective COX-2 inhibitors, (ii) the combined electronic and steric properties at the C-6 position of the central lactone ring modulates COX-2 inhibitory potency and selectivity by orienting the C-3 p-SO₂Me phenyl substituent to the vicinity of the secondary pocket within the COX-2 binding site, and (iii) for this class of compounds, the in vivo antiinflammatory activity was improved by the presence of a *p*-fluoro substituent on the C-4 phenyl ring.

6.3.0.0. Design, synthesis and structure-activity relationship (SAR) studies of 3,4,6-triphenylpyran-2-ones as selective cyclooxygenase-2 inhibitors

As an extension of our previous work¹⁰ we designed and synthesized a new group of regioisomeric 3,4,6-triphenylpyran-2-ones (9) that possessed

a p-SO₂Me pharmacophore at either the C-3 or C-4 phenyl ring of the central pyran-2-one, in conjunction with a C-6 psubstituted phenyl ring. For this class of compounds, SAR data were acquired in vitro (IC₅₀ values), to assess the effect of regioisomeric placement of the p-SO₂Me pharmacophore (at either C-3 or C-4 phenyl) and the role of *para*-substituted phenyl ring at the C-6 position of the central pyran-2-one, on COX-2 inhibitory selectivity. potency and In vivo antiinflammatory-analgesic activity was assessed using carrageenan-induced rat paw edema and 4% NaCl-induced abdominal assay animal models.

Synthesis of the title compounds was achieved by a series of reactions from the condensation starting of appropriately substituted phenylacetylenes various with **p**substituted benzaldehydes in the presence of n-BuLi to afford respective 1,3diarylprop-2-yn-1-ols,¹² which were subsequently oxidized to the respective The 1,3-diarylprop-2-yn-1-ones. final cyclization was achieved by reaction of the respective 1,3-diarylprop-2-

9, $R^1 = H$, SO₂Me, F; $R^2 = H$, Me, Et, CF₃, OMe, OEt, F, SMe; $R^3 = H$, SO₂Me, F, N₃

yn-1-one with the *para*-substitutedphenylacetic acid ester in the presence of a base (NaH or potassium-*t*-butoxide).

Oxone® oxidation afforded the respective title compounds (Scheme 6.2).

substituent at the *para*-position on the C-4 phenyl ring generally decreased COX-2

Scheme 6.2: Reagents and conditions: (a) THF, -78 °C, *n*-BuLi, and then at -78 °C to 25 °C over night; (b) acetone, MnO_2 , 25 °C, 4–5 h; (c) DMSO, NaH, 25 °C, 1 h; (d) 1,4-dioxane, aqueous Oxone®, 25 °C, 4–5 h.

The in vitro ability of this class of compounds to inhibit the enzymes COX-1 and COX-2 (IC₅₀ values) was evaluated, and the most potent and COX-2 selective compounds were evaluated in vivo to determine their antiinflammatory-analgesic activities.^{10,13,14} For the C-3 *p*-SO₂Me-phenyl regioisomers, varying the substituents at the para-position of the C-6 phenyl ring had a dramatic effect on COX-2 inhibitory potency and selectivity, with compound (10) possessing a C-6 para-methoxyphenyl substituent exhibiting excellent COX-2 inhibitory potency and selectivity (COX-2 $IC_{50} =$ 0.02 μ M; COX-1 IC₅₀ > 100 μ M; SI > 5000). Compound (10) was 3.5- and 25fold more potent than celecoxib (COX-2 $IC_{50} = 0.07 \ \mu M$; SI = 474) and rofecoxib (COX-2 IC₅₀ = 0.50 μ M; SI > 200), respectively. Introduction of a fluorine

inhibitory potency and selectivity. For this group of C-3 p-SO₂Me-phenylpyran-2-ones, the relative COX-2 inhibitory potency order was OMe > OEt > SMe > NH₂ > F > NO₂ > inactive H, Me, Et, CF₃ and OH.

The C-4 paramethanesulfonylphenyl regioisomer (11), which possesses a C-6 paramethoxyphenyl substituent, exhibited good COX-2 inhibitory potency (COX-2

 $IC_{50} = 0.45 \ \mu M$; SI = 70), but it was less potent and selective than the corresponding C-3 paramethanesulfonylphenyl regioisomer (10). of Replacement the C-6 **p**methoxyphenyl substituent with a pfluorophenyl substituent gave a highly potent COX-2 inhibitor (12, COX-2 IC_{50} = 0.07; SI = 157). Among the C-3 or C-4 pyridyl substituted pyran-2-ones, 3-(pyridin-4-yl)-4-(4-methanesulfonyl phenyl)-6-(4-methoxyphenyl)pyran-2one (13) exhibited the best combination of COX-2 inhibitory potency and selectivity (COX-2 IC₅₀ = 0.32 μ M; SI > 312.0).

Recently we exploited, for the first time, the amino acid Arg⁵¹³ to design selective COX-2 inhibitors having a dipolar azide (N₃) pharmacophore that can undergo an electrostatic (ion-ion) interaction with Arg⁵¹³ in the COX-2 2°pocket.¹⁵ Accordingly, we replaced the SO₂Me pharmacophore in the most potent and selective COX-2 inhibitors identified from the 3,4,6-triphenylpyran-2-ones investigated in this study with a dipolar azido bioisostere (14). In this regard, these compounds retained their COX-2 selectivity, but were less potent than their corresponding C-3 p-SO₂Mephenyl analogs, with (14) exhibiting good COX-2 inhibitory potency and selectivity (COX-2 IC₅₀ = 0.5 μ M; COX-1 IC₅₀ >

100 μ M; SI > 200) among this subgroup of compounds.

The binding mode of compounds 10, 11 and 14 within the COX-2 active site was investigated by a series of molecular modeling (docking) studies. As expected, in case of the pyran-2-one regioisomers 10 and 11, the p-SO₂Me pharmacophore was interacting with the amino acid residues lining the COX-2 secondary pocket. However, due to the regiochemistry, the C-6 para-substitutedphenyl ring and the C=O of the central pyran-2-one ring were oriented in different regions within the COX-2 active site. In the case of 10, the C-6 pmethoxyphenyl ring was oriented towards a hydrophobic pocket close to the mouth of the COX-2 active site, and was within a van der Waal's contact range (distance ≈ 5 Å) of Ala⁵²⁷, Ser⁵³⁰, Leu⁵³¹, Met⁵³⁵, Ile³⁴⁵, Val³⁴⁹, and Leu³⁵⁹. In addition, the central 6-membered lactone (pyran-2-one) ring was located near the mouth of the COX-2 binding site such that, the central C=O of the lactone ring undergoes a weak hydrogen bonding interaction with the OH of Ser^{353} (distance = 2.91 Å). Therefore, the OMe substituent may be responsible for proper orientation of the C-3 p-SO₂Me-phenyl ring within the COX-2 secondary pocket (Gln¹⁹², Arg⁵¹³ and Phe⁵¹⁸). In contrast, the C-6 p-MeO-phenyl moiety of 11 was located near the mouth of the COX-2

binding site, and was surrounded by amino acid residues Met^{113} , Val^{116} , Arg^{120} , Val^{349} , Tyr^{355} , Phe^{357} and Leu^{359} , and the OMe substituent was much further removed from Met⁵³⁵ compared to the C-3 p-MeSO₂-phenyl regioisomer 10. In addition, a crucial hydrogen bonding interaction between the backbone of Phe⁵¹⁸ and one of the O-atoms of p-SO₂Me pharmacophore, seen within the COX-2 secondary pocket for 10, was not observed with 11. This may explain, the COX-2 potency higher inhibitory exhibited by **10** (COX-2 $IC_{50} = 0.02 \mu M$; SI > 5000) as compared to 11 (COX-2 $IC_{50} = 0.45 \ \mu M$; SI = 70). A docking experiment of the pyran-2-one 14, within the COX-2 active site, in which the SO₂Me pharmacophore was replaced by a linear azido (N₃) bioisostere, was similar to that of the respective C-3 para-MeSO₂-phenyl analog 10. As per our hypothesis, the dipolar azido group was interacting with secondary pocket amino acids (Phe⁵¹⁸, Arg⁵¹³ and His⁹⁰) and undergoes a favourable interaction with NH_2 (guanidino group) of Arg^{513} (ion-ion interaction). These observations show that the dipolar azido pharmacophore serves as a suitable bioisostere that undergoes electrostatic interaction with Arg⁵¹³ within the COX-2 secondary pocket.

In the in vivo carrageenan-rat paw edema assay, the most active oral antiinflammatory compound was 15 (COX-2 IC₅₀ = 0.05 μ M; S.I. > 2000) which, exhibited an ID₅₀ of 5.6 mg/kg and was more potent than the reference drug celecoxib (ID₅₀ = 10.8 mg/kg). In a rat model 4% NaCl-induced abdominal constriction assay, the 6-(4ethoxyphenyl)-3-(4-

methanesulfonylphenyl)-4-phenylpyran-2-one (15) exhibited good analgesic activity where a 5 mg/kg po dose reduced writhing by 58 and 75% at 30 and 60 min post drug administration.

In conclusion, the SAR data acquired for this class of 3,4,6triphenylpyran-2-ones have shown that (i) compounds exhibiting high COX-2 inhibitory potency and selectivity can be designed by appropriate placement of a p-SO₂Me pharmacophore on either a C-3 or C-4 phenyl ring, of the central the pyran-2-one ring, (ii) the C-3 p-MeSO₂regioisomer phenyl having an appropriately substituted C-6 phenyl ring, exhibits better binding affinity than the corresponding C-4 *p*-MeSO₂-phenyl regioisomer, (iii) COX-2 inhibitory potency and selectivity are sensitive to substituent electronic properties at the para-position of the C-6 phenyl ring where the C-6 p-MeO-phenyl (10) exhibits the best combination of potency and selectivity, and (iv) the linear azido (N_3) substituent is a suitable bioisostere to replace a traditional SO₂Me COX-2 pharmacophore.¹⁶

6.4.0.0. Molecular modeling studies of isomeric acetoxy analogs of rofecoxib

Aspirin (16) is a unique nonselective COX inhibitor due to its ability to acetylate the serine hydroxyl group in the COX binding site of COX-1 and COX-2. In this regard, aspirin is a 10- to 100-fold more potent inhibitor of COX-1

relative to COX-2.¹⁷ Some of aspirin's beneficial therapeutic effects can be attributed to acetylation of COX-2, while its antithrombotic and ulcerogenic effects are due to acetylation of COX-1. These observations were elegantly exploited in the design of the aspirin analog o-(acetoxyphenyl)hept-2-ynyl sulfide (APHS, 17) that selectively acetylated. and irreversibly inactivated, COX-2.¹⁸ Rofecoxib (18) is a highly potent and selective COX-2 inhibitor widely used clinically. As part of our ongoing program, we designed and synthesized a group of isomers possessing a 2-, 3- or 4acetoxy moiety on the C-3 phenyl substituent of rofecoxib (19a-c), that exhibited highly potent and selective, COX-2 inhibitory activity (Table 6.1).¹⁹

site, with the SO₂Me pharmacophore interacting with the secondary pocket amino acid residues (Phe⁵¹⁸, Arg⁵¹³, Gln¹⁹² and His⁹⁰) and the central lactone ring oriented towards the mouth of the COX-2 active site $(Tyr^{355} \text{ and } Arg^{120})$. The C-3 phenyl ring was oriented towards a hydrophobic pocket made up of Trp³⁸⁷, Tyr³⁸⁵ and Tyr³⁴⁸. As per our hypothesis, the acetoxy substituent of all three isomers 19a-c was oriented in the vicinity of Ser⁵³⁰. However, the orientation of the C-3 *p*-acetoxy substituent was different for all three isomers with respect to the distance between the carbon atom of the C=O (of the acetoxy substituent) and the OH of Ser⁵³⁰. The rofecoxib analog **19c**, which had a acetoxy substituent at the paraposition of the C-3 phenyl ring, was

Table 6.1: In vitro inhibition of COX-1 and COX-2 by 3-(2-, 3- and 4-acetoxyphenyl) analogs of rofecoxib (19a-c)

Compd	COX-1	COX-1	COX-2
	inhibition	inhibition	Selectivity
	IC ₅₀ , μΜ	IC ₅₀ , μΜ	Index
19a	> 100	0.0035	> 28,000
19b	> 100	0.0017	> 59,000
19c	> 100	0.0013	> 79,000

The potential of 19a-c to acetylate the COX-2 isozyme was studied by a series of docking experiments. These isomeric rofecoxib analogs bind in a similar way within the COX-2 active interacting very favourably within the COX-2 active site, with the C=O (of the *p*-acetoxy substituent) almost 5.76 Å away from *O*H of Ser⁵³⁰ (Figure 6.1). It was interesting to note that the *O*-atom of

the C=O(p-OAc) forms a hydrogen bond with the OH of Tyr³⁸⁵ (distance = 1.84 Å), which could potentially activate the Catom of the acetoxy moiety with respect to nucleophilic attack by the OH of Ser⁵³⁰ that may lead to a covalent acetylation of the COX-2 isozyme. This observation is consistent with the critical role of Tyr³⁸⁵ in the acetylation of Ser⁵³⁰ by aspirin in site.²⁰ COX binding the These observations, explain the potent and selective COX-2 inhibition (COX-2

6.5.0.0. Molecular modeling studies of celecoxib analogs

Development of the nonulcerogenic selective COX-2 inhibitor celecoxib (20), provided a significant advancement in the treatment of RA and OA. The SO_2NH_2 pharmacophore present in celecoxib is believed to induce COX-2 selectivity by insertion into the secondary pocket of the COX-2 binding site that is absent in COX-1. It has been reported

Figure 6.1: Docking of the rofecoxib analog (19c, ball and stick) in the active site of murine COX-2.

 $IC_{50} = 0.0013 \ \mu M$; SI > 79,000) exhibited by **19c**.

In conclusion, results of investigation show that this (i) incorporation of a 2-, 3-, or 4-OAc substituent on the C-3 phenyl ring of rofecoxib provides highly potent, and selective. COX-2 inhibitors, (ii) molecular modeling studies help in predicting the acetylating potential of the isomeric rofecoxib analogs, and (iii) the acetoxy compounds could serve as useful probes to study the function and catalytic activity of the COX-2 isozyme.

that replacement of His⁵¹³ in COX-1 by Arg⁵¹³ in COX-2 plays a key role in the hvdrogen-bond network of the COX-2 binding site. Access of ligands to the secondary-pocket of COX-2 is controlled by histidine (His⁹⁰), glutamine (Gln¹⁹²) and tyrosine (Tyr³⁵⁵)²¹, and interaction of Arg⁵¹³ with the bound drug is a requirement time-dependent for inhibition of COX-2.22 Recently we exploited, for the first time, the amino acid Arg⁵¹³ to design selective COX-2 inhibitors having a dipolar azide (N₃) pharmacophore that can undergo an electrostatic (ion-ion) interaction with Arg⁵¹³ in the COX-2 secondary pocket.¹⁵ Accordingly. we designed and

synthesized novel celecoxib analogs (21a and **21b**) in which the p-SO₂NH₂ pharmacophore was replaced by a novel dipolar sulfonylazide (SO_2N_3) pharmacophore that has the potential to *H*-bonding undergo dual (sulfonyl electrostatic oxygens) and (ion-ion) interactions (azido) with amino acid residues lining the secondary-pocket of the COX-2 binding site.

methylphenyl)-3-trifluoromethyl-1Hpyrazol-1-yl]benzenesulfonylazide (21a) docked in the active site of the murine COX-2 isozyme showed 21a binds in the center of the enzyme active site, with the phenylsulfonylazide moiety oriented towards the mouth of the COX-2 channel such that the SO_2N_3 group is in close proximity with Arg^{120} and Tyr^{355} (Figure 6.2). The linear N_3 group is involved in extensive electrostatic interaction with the side chains of Arg^{120} and Tyr^{355} . Llorens and coworkers have shown the importance of the perturbation of the hydrogen bonding network involving Arg^{120} , Glu^{524} , Tyr^{355} and His/Arg^{513} at the mouth of the channel by different ligands and their effect on COX inhibition.²¹ The SO₂N₃ terminal *N*-atom

A molecular modeling study of

analog

4-[5-(4-

the

celecoxib

Figure 6.2: Docking of the celecoxib analog (21a, ball and stick) in the active site of murine COX-2.

is located about 4.93 Å from the OH of Tyr³⁵⁵, a SO₂ O-atom of the SO₂N₃ substituent is about 4.30 Å away from the OH of Tyr³⁵⁵, and the C-5 phenyl ring is oriented toward Val⁵²³. The C-3 CF₃ substituent is oriented towards a hydrophobic pocket comprised of Leu³⁸⁴. Tyr³⁸⁵ and Trp³⁸⁷, and it is positioned about 3.32 Å from the OH of Tyr³⁸⁵ and about 4.92 Å from the OH of Ser^{530} . The N^2 -atom of the central pyrazole ring is about 5.88 Å away from the OH of Ser^{530} . have Recent studies shown the importance of ionic interactions involving the CO₂H group of NSAIDs

moiety of the SO_2N_3 substituent is interacting with Arg^{120} at the mouth of the primary binding site, like the CO_2H group of NSAIDs, rather than insertion into the secondary-pocket of the COX-2 isozyme near Val⁵²³ that is required for selective COX-2 inhibition.

In contrast, 3-[5-(4-methylphenyl)-3-trifluoromethylpyrazol-1-yl) benzenesulfonylazide (**21b**) whichhas a*meta*-SO₂N₃ substituent at the N¹phenyl ring, binds in the center of theactive site with the phenylsulfonyl azidemoiety oriented towards the secondary-

Figure 6.3 Docking of the celecoxib analog (21b, ball and stick) in the active site of murine COX-2.

with Arg¹²⁰ and its critical role in COX-1 inhibition.^{23,24} The in vitro COX inhibition data showing that **21a** is a selective COX-1 inhibitor (COX-1 IC₅₀ = 3.3 μ M; COX-2 IC₅₀ > 100 μ M) are consistent with this docking experiment which indicates that the dipolar N₃ pocket region of the COX-2 binding site (Figure 6.3). The terminal *N*-atom of the m-SO₂N₃ is inserted about 4.25 Å deep inside the entrance to the secondary-pocket of COX-2 (Val⁵²³) and about 5.20 Å removed (within electrostatic ion-ion interaction distance) from the NH₂ of Arg⁵¹³. A SO₂ oxygen atom of the SO₂N₃ 146

group is about 2.74 Å away (within *H*bonding distance) from the N*H*₂ of Arg⁵¹³. The C-3 C*F*₃ substituent is positioned about 5.63 Å from the N*H*₂ of Arg¹²⁰ and the N^2 -nitrogen atom of the central pyrazole ring is located about 3.11 Å from the O*H* of Tyr³⁵⁵. The center of the C-5 phenyl ring is about 5.87 Å from the OH of Ser⁵³⁰ with the Me group at the *para*-position orienting in a hydrophobic region surrounded by Leu³⁸⁴, Tyr³⁸⁵ and Trp³⁸⁷ binding affinity. Accordingly, **21b** was a selective COX-2 inhibitor (COX-2 IC₅₀ = 5.16 µM; COX-1 IC₅₀ > 100 µM) with a COX-2 selectivity index > 19.

Results of this molecular modeling (docking) studies showed that (i) the sulfonylazido (SO_2N_3) group COX-2 as suitable serves a pharmacophore in the design of selective COX-2 inhibitors, and (ii) when suitably placed, the SO₂N₃ group interacts within the secondary-pocket of the COX-2 isozyme where it can undergo both Hbonding via one of its SO₂ oxygen-atoms, and an electrostatic ion-ion interaction via its terminal azide nitrogen atom, with the guanidino NH_2 group of Arg^{513} .²⁵

6.6.0.0 Conclusions

A diverse variety of tricyclic COX-2 inhibitors belonging to the diarylcycloalkyl (1,1-dihalo-2,3-diphenyl cyclopropanes) and diarylheterocyclic [6alkyl-, alkoxy- or alkylthio-substituted-3-(4-methanesulfonylphenyl)-4-

phenylpyran-2-ones, substituted-3,4,6triphenylpyran-2-ones, 3,4diarylfuranones and 1,5-diarylpyrazoles) classes can be designed successfully using rational drug design concepts in conjunction with molecular modeling (docking) studies, chemical synthesis, and acquisition of the in vitro and in vivo structure-activity relationship (SAR) data.

6.7.0.0 REFERENCES

- Talley, J. J. Selective inhibitors of cyclooxygenase-2 (COX-2). Prog. Med. Chem. Res. 1999, 36, 201– 234.
- (2) Magarian, R.A.; Benjamin, E. J.; Synthesis of cyclopropyl analogs of stilbene and stilbenediol as possible antiestrogens. J. Pharm. Sci. 1975, 64, 1626–1632.
- (3) Sastry, J. S.; Haar, E. T.; Hamel, E.; Lin, C. M.; Magarian, R. A.; Day, B. W. Synthesis and biological evaluation of 1,1dichloro-2,3-diarylcyclopropanes as antitubulin and anti-breast cancer agents. *Bioorg. Med. Chem.* 1997, 5, 715-722.
- (4) Seyferth, D.; Lambert, R. L.; Halomethyl-metal compounds. XX. An improved synthesis of phenyl(tribromomethyl)mercury compounds. J. Organometal. Chem. 1969, 16, 21–26.
- (5) Rao, P. N. P.; Habeeb, A. G.; Knaus, E. E. Design, syntheses and evaluation of novel 1,1dihalo-2,3-diphenylcyclopropanes as potential cyclooxygenase-2 (COX-2) inhibitors with analgesic-antiinflammatory activity. Drug Dev. Res. 2002, 55, 79-90.
- (6) Hayashi, Y.; Nozaki, H. Reaction of sulphonium ylides with diphenylcyclopropenone. A new synthesis of 2-pyrones. *Tetrahedron*, 1971, 27, 3085– 3093.
- (7) Sasaki, T.; Kanematsu, K.; Kakehi, A. Formation of 1,3oxazine and 2-pyrone derivatives from the reaction of pyridinium ylides with

diphenylcyclopropenone. J. Org. Chem. 1971, 36, 2451–2453.

- (8) Li, H.; Rao, P. N. P.; Habeeb, A. Knaus, E. E. Design, G.; syntheses, and evaluation of 2,3diphenylcycloprop-2-en-1-ones and oxime derivatives as potential cyclooxygenase-2 (COX-2)inhibitors with analgesicantinflammatory activity. Drug Dev. Res. 2002, 57, 6-17.
- (9) Rao, P. N. P.; Amini, M.; Li, H.; Habeeb, A. G.; Knaus, E. E. 6-Alkyl, alkoxy, or alkylthiosubstituted 3-(4methanesulfonylphenyl)-4phenylpyran-2-ones: a novel class of diarylheterocyclic selective cyclooxygenase-2 inhibitors. *Bioorg. Med. Chem. Lett.* 2003, 13, 2205-2209.
- (10) Rao, P. N. P.; Amini, A.; Li, H.; Habeeb, A. G.; Knaus, E. E. Design, synthesis and biological evaluation of 6-substituted-3-(4methanesulfonylphenyl)-4phenylpyran-2-ones: a novel class of diarylheterocyclic selective cyclooxygenase-2 inhibitors J. Med. Chem. 2003, 46, 4872-4882.
- (11) Soliva, R.; Almansa, C.; Kalko, S. G.; Luque, F. J.; Orozco, M. Theoretical studies on the inhibition mechanism of cyclooxygenase-2. Is there a unique recognition site ? J. Med. Chem. 2003, 46, 1372-1382.
- (12) Mahrwald, R.; Quint, S. TiCl₄mediated nucleophilic substitution of propargylic esters. *Tetrahedron* 2000, 56, 7463-7468.
- (13) Kumar, P.; Knaus, E. E. Synthesis and antiinflammatory activity of *N*-substituted dihydropyridylacetic acids, esters

and amides. Drug Design Del. 1987, 2, 145–149.

- (14) Fukawa, K.; Kawano, O.; Hibi, M.; Misaka, N.; Ohba, S.; Hatanaka, Y. Method for evaluating analgesic agents in rats. J. Pharmacol. Methods 1980, 4, 251-259.
- (15) Habeeb, A. G.; Rao, P. N. P.; Knaus, E. E. Design and synthesis of celecoxib and rofecoxib analogues selective as cyclooxygenase-2 (COX-2) inhibitors: replacement of sulfonamide and methylsulfonyl pharmacophores by an azido bioisostere. J. Med. Chem. 2001, 44, 3039–3042.
- (16) Rao, P. N. P.; Uddin, J. M.; Knaus, E. E. Design, synthesis and structure-activity relationship (SAR) studies of 3,4,6triphenylpyran-2-ones as selective cyclooxygenase-2 inhibitors. J. Med. Chem. 2004, 47, 3972-3990.
- (17) Meade, E.A.; Smith, W. L.; DeWitt, D. L. Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal antiinflammatory drugs. J. Biol. Chem. 1993, 268, 6610--6614.
- (18) Kalgutkar, A.S.; Crews, B. C.; Rowlinson, S. W.; Garner, C.; Seibert, K.; Marnett, L. J. Aspirin-like molecules that covalently inactivate cyclooxygenase-2. Science 1998, 280, 1268-1270.
- (19) Rahim, M. A.; Rao, P. N. P.; Knaus, E. E. Isomeric acetoxy analogues of rofecoxib: a novel class of highly potent and selective cyclooxygenase-2

inhibitors. Bioorg. Med. Chem. Lett. 2002, 12, 2753-2756.

- (20) Hochgesang, G. P.; Rowlinson, S. W.; Marnett, L. J. Tyrosine-385 is critical for acetylation of cyclooxygenase-2 by aspirin. J. Am. Chem. Soc. 2000, 122, 6514– 6515.
- (21) Llorens, O.; Perez, J. L.; Palomer, A.; Mauleon, D. Structural basis of the dynamic mechanism of ligand binding to cyclooxygenase. *Bioorg. Med. Chem. Lett.* 1999, 9, 2779–2784.
- (22) Garavito, R. M.; DeWitt, D. L. The cyclooxygenase isoforms: structural insights into the conversion of arachidonic acid to prostaglandins. *Biochim. Biophys. Acta* 1999, 1441, 278–287.
- (23) Greig, G. M.; Francis, D. A.; Falgueyret, J. P.; Ouellet, M.; Percival, M. D.; Roy, P.; Bayly, C.; Mancini, J. A.; O'Neill, G. P. The interaction of arginine 106 of human prostaglandin G/H synthase-2 with inhibitors is not a universal component of inhibition mediated by nonsteroidal antiinflammatory drugs. *Mol. Pharmacol.* 1997, 52, 829–838.
- (24) Selinsky, B. S.; Gupta, K.; Sharkey, C. T.; Loll, P. J. Structural analysis of NSAID binding by prostaglandin H2 synthase: time-dependent and time-independent inhibitors elicit identical enzyme conformations. *Biochemistry* **2001**, 40, 5172– 5180.
- (25) Uddin, J. M.; Rao, P. N. P.; Knaus, E. E. Design and synthesis of novel celecoxib analogs as selective cyclooxygenase-2 (COX-2) inhibitors: replacement

of the sulfonamide pharmacophore by a sulfonylazide bioisostere. *Bioorg. Med. Chem.* **2003**, *11*, 5273–5280.