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Abstract

Controller performance monitoring forms the backbone of any automa­

tion system and hence an integral part of process control software. This 

work deals with some practical issues relating to computation of perfor­

mance monitoring tools. A method is devised to automatically detect In­

tegrated White Noise (IWN) type disturbance in a system and compute a 

performance metric for such cases. A performance metric to measure the 

set-point tracking performance of a controller is also defined.

The conventional performance indices give a good estimate of the con­

troller performance, but fail to tell the benefits of improving the perfor­

mance. A methodology is developed to integrate controller performance 

and the economic impact of improving the performance via the Economic 

Performance Index (EPI).

Presence of stiction in control valve induces oscillations in the system and 

cause poor performance. A novel method to quantify stiction using a two- 

parameter stiction model also is presented in this work.
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1
Introduction

The concept of Control Performance Monitoring and Assessment is well 
defined and it's importance is clearly stated in a recent work by Jelali 
(2006)."Control performance monitoring /  assessment (CPM/CPA) is an impor­
tant asset-management technology to maintain highly efficient operation perfor­
mance of automation systems in production plants. The term monitoring means 
the action of watching out for changes in a statistic that reflects the control per­
formance over time. The term assessment refers to the action of evaluating a 
statistic that reflects control performance at a certain point in time". This study 
presents different aspects of control performance monitoring and assess­
ment. Performance assessment is examined from two different perspec­
tiv es^  a conventional performance metric and from an economic point of 
view, i.e. the economic impact of improved performance monitoring. The 
second part of this study focuses on the diagnosis aspect of performance 
monitoring. In particular, the common cause of oscillations in closed loop 
systems, detection and quantification of valve stiction, which cause poor 
performance.

1.1 Performance Monitoring and Assessment

In a typical continuous process industry, there are thousands of control 
loops. Keeping track of the performance of each and every loop is an

1
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Sec. 1.1 Performance Monitoring and Assessment 2

uphill task. It is known that 60% of the control loops have performance 
problem (Bialkowski (1993), Ender (1993), Rinehart and Jury (1997)). The 
various performance assessment tools developed over the last decade and 
a half provide a good measure of the controller performance. The most 
notable work is by Harris (1989) who applied time-series analysis to find 
the controller invariant term from routine operating data and used it as a 
benchmark to assess the closed-loop performance. This benchmark, known 
as the Minimum Variance Control (M V C ) benchmark, provides the lower 
bound of process variance (hence upper bound for controller performance). 
The corresponding performance index is known as the Harris Index. Huang 
et al. (1997) and Huang and Shah (1999) later developed an efficient, sta­
ble filtering and correlation (F C O R ) method to estimate this M V C  bench­
mark and extended this to the multivariate case

Desborough and Harris (1993); Stanfelj et al. (1993) and Huang et al. 
(2000) also extended the M V C  benchmarking concept to feedback /  feed­
forward control loops. Tyler and Morari (1995); Tyler and Morari (1996) 
and Lynch and Dumont (1996) modified the Harris Index and extended 
it to unstable and nonminimum-phase system. In the work by Harris et 
al. (1996), Huang et al. (1997), Huang and Shah (1998), Huang and Shah 
(1999), Ko and Edgar (2001), McNabb and Qin (2003) and McNabb and 
Qin (2005) the concept of Harris index has been applied to multi-input 
multi-output (M IM O ) systems.

Although M V C  is a very convenient performance assessment bench­
mark and can be calculated with minimum process knowledge (knowl­
edge of Process time delay) and closed loop data, it is not a target that 
most of the industrial controllers try to achieve. This is because, M V C  

often generates large control moves which have undesirable effect on the 
actuator and may pose safety issues. Therefore, Harris Index also better 
known as the Performance Index (P I), based on the M V C  benchmark is 
generally used as a good first stage assessment tool, i.e. feedback con­
trollers that shows performance close to M V C  (high PI) do not require 
further analysis, but controllers that perform poorly with respect to M V C  
benchmark need to be examined further although they may not necessar­
ily be providing poor controller. To obtain a measure of the real or practi­
cal performance of such controllers a further analysis of the performance 
limitations and comparison to the more practical benchmarks is required.
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Sec. 1.2 Economics 3

The Relative Performance Index, R P I  (Gao et a l (2003), Huang and 
Shah (1999)) which is based on user defined benchmarks is a more prac­
tical performance assessment tool. Details of R P I  are given in chapter 
2. Chapter 2 also discusses practical issues related to R P I  calculations in 
presence of Integrated White Noise (IW N ) type disturbance in the system. 
I W N  as discussed in chapter 2 is commonly encountered in real systems; 
and it poses variability issues in R P I  and solutions of these aspects are 
detailed in chapter 2.

Chapter 3 gives a brief introduction to the difference between, stochas­
tic and deterministic performance monitoring. It also talks about short­
comings of presently used technique of calculating R P I  for servo (set- 
point tracking) problems. A new method to calculate R P I  for servo prob­
lems is presented therein..

1.2 Economics

Chapter 4 gives a different perspective to the problem of Controller Perfor­
mance Monitoring. It provides a measure of economic impact and a new 
performance metric, titled Economic Performance Index (E P I ) is intro­
duced. In an industrial setting the final decisions are based on economics. 
Any project that gets a go-ahead has to first pass the economic test. This 
holds true for any projects related to Process Control or Advanced Process 
Control as well. There has been some work done in the past on economic 
benefit analysis of implementing Advanced Control Systems by Muske 
(2003) and Bauer and Craig (2006). This work presents a methodology to 
extend the idea of economic performance assessment to day-to-day per­
formance monitoring of controllers. A performance index is developed 
which gives a dual measure of the controller performance: it's present 
performance and the economic benefits of improving the performance to 
some desired level.

1.3 Oscillations in control loop

The last part of this thesis deals with the diagnosis of poor controller per­
formance and in particular the presence of non-linearities in control loops. 
The presence of a non-linearity in a control loop often leads to oscillations

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 1.3 Oscillations in control loop 4

in a control loop and hence poor performance. These non-linearities can 
be due to: (1) Valve non-linearity, due to stiction, deadband and hystere­
sis; (2) the presence of non-linear external oscillations, and/or (3) non- 
linearity in the process.

About 30% of the oscillations in control loops are due to valve prob­
lems (e.g. the presence of static friction or stiction). Therefore, detection 
and quantification of stiction in control valves is an important issue in the 
process industry. There are several stiction detection methods (Choud- 
hury et al. (2004c), Choudhury et al. (2004b), Horch (1999), Singhal and 
Salsbury (2005), Stenman et al. (2003), Srinivasan et al. (2005a), Srinivasan 
et al. (2005b)) available. However quantifying stiction still remains a chal­
lenge. Choudhury et al. (2004b), Srinivasan et al. (2005a) and Srinivasan et 
al. (2005b) have tried to quantify stiction, but in all these methods stiction 
is modelled as a one-parameter model (the one-parameter stiction model 
proposed by Stenman et al. (2003), which is not the correct way to model 
stiction phenomenon. These issues are explored explained in more detail 
in chapter 5. A novel method to quantify stiction is also proposed in chap­
ter 5.

Chapter 6 gives some concluding remarks about the entire study fol­
lowed by suggestions on future work.

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Relative Performance Index and 
Integrated White Noise

2.1 Relative Performance Index {RPI)

R P I, (Gao et al. (2003), Huang and Shah (1999)) based on a user-defined 
benchmark gives a more practical measure of process performance. The 
benchmark can be in terms of desired closed-loop dynamics, such as settling­
time, overshoot, decay-ratio etc. or even a historical performance.

Settling time benchmark: Settling time for a controller is a time period over 
which the process variable returns to the set point after a disturbance. Per­
formance measure with settling time as benchmark is a comparison of the 
actual settling time a controller takes to what is desired. This idea is widely 
used in single loop performance assessment. R P Istime ( Gao et al. (2003))is 
defined as

desired settling time performance _  (1 + hi2 +  h22 +  •••) _  ^  
sUrnc actual settling time performace (1 +  <7i2 +  g22 +  •••)

where g i,g2, ••• are the closed loop impulse response coefficients calculated 
using the present data and h , h 2, ■■■ are the closed loop impulse response 
coefficients of the desired dynamics (with user-defined settling time). The

5
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Sec. 2.1 Relative Performance Index (RPI) 6

implied assumption here is the system is Linear Time Invariant (L T I ). The 
computational aspect of estimating h[s and g[s are discussed in more detail 
in section 3.1. In this work R P I3time is used as the performance indicator 
and henceforth is referred simply as R P I.

It is observed that in presence of Integrated White Noise (IW N )  type 
disturbance, i.e. when the noise model is an integrator (N  — 1/s), the R P I  

fluctuates, even if the controller tuning and the process model fidelity re­
main the same. This is clear from figure 2.1 which shows R P I  of a system 
with I W N  type disturbance, over 10 different data segments. High vari­
ation in R P I  can be clearly noticed. This leaves a very uncertain picture 
about the actual controller performance and also hurts the credibility of 
the performance metric.

1

0.8
CL
DC

0.6

0.4

0.2

0

Figure 2.1: RPI variation for a system with IW N type disturbance

The fluctuating metric is a result of changing disturbance, but R P I  
does not differentiate between the changing disturbance m odel and con­
troller tuning. Therefore the measure proposed in equation 2.1 does not 
correctly evaluate controller performance. In this chapter a method of 
computing R P I  in presence of I W N  type disturbance in suggested. This 
new metric is able to handle the problem of fluctuating disturbance. The

Deviation of RPI 
from mean value

Actual RPI

Mean RPI

I

2 3 4 5 6 7 8 9  10
Data Segments
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Sec. 2.2 Detecting Integrated White Noise ( I WN)  type disturbance 7

treatment of this problem is divided in two parts:

• Detecting the presence of IW N  type disturbance in the system.

• Computing R P I  for such cases.

The next section details a technique to detect I W N  type disturbance in 
a closed loop system and a methodology for automatic detection is also 
presented.

2.2 Detecting Integrated White Noise ( IWN)  type 
disturbance

Consider a closed loop system shown in figure 2.2. The closed loop trans­
fer function is given by

Figure 2.2: A closed loop system

TQ  , N  
V t~  l  +  T Q y s p + l  +  T Q at ( )

where N  is the disturbance model, T is the process model and Q is the 
controller. If there is no set-point activity (ysp =  0) then

N
y‘ =  T + t q “* <2-3)

Consider a simple case when T  and Q are given by

nn K e 6S
T  =  T— —W (2-4)

('TS  +  1)

Q =  K C(  1 + ^ )  (2-5)
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Sec. 2.2 Detecting Integrated White Noise ( I WN)  type disturbance 8

i.e. a PI controller. The closed loop transfer function (Tci) for any noise 
model N  can be written as

N

r p  _  ( _____ T I S ( T S  + X)______ A N  ( J

d \ ( r s  + 1 )n a  +  K K ce'es(TlS +  1)J  V '

Next consider two cases: one where the disturbance model N  is an inte­
grator, N  =  1/s, i.e. a system with IW N  type disturbance and second 
when N  — 1, i.e. system with white noise type disturbance.

Case 1: N  — -
-------------------  S

T i _ , Tjs(tS +  1)
(rs +  l)r/s +  K K ce~8s(Tis +  1) J s

rp _  _____________ T l( r s  -\- 1 )_____________  . .

d  (t s  + l)r/s +  K K ce'^ fa s  +  1)
The steady state response (s = 0) for this system is

Case 2: N  =  1
(2-8)

T  = ________T jsjrs +  1)________
d  (t s  +  l)r/s +  K K ce'es(riS +  1)

The steady state response for this case is

Td — 0 (2.10)

Thus in general, the steady state response of a system with IW N  type 
disturbance is a non-zero value, while it tends to zero for a pure white 
noise type disturbance. Figure 2.3 shows this result via the frequency re­
sponse curves for equations 2.7 and 2.9 for a process listed below. The 
plots are generated using M A T  LA B  with process model(T) and controller (Q) 
explicitly defined as

Op-1 0s
T  =  — ----- (2.11)

25s + 1

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 2.3 Automatic detecting of IWN type disturbance 9

° = °'83(1+2k) (2'12)
and noise model N  — 1 /s  or 1 for IW N  or white noise type disturbance, 
respectively.

—o- - White Noise
_ iwn

o
COco
Q .<0
£
s-c
©3O’
£

frequency/Hz

Figure 2.3: Frequency response of a system with process and controller defined 
by equations 2.11 and 2.12. Two cases, with and without the presence of IW N are 
considered

Figure 2.3 shows the frequency response curves for the two cases. The 
steady state value the for the case when N  — 1 j s  is clearly non zero, while 
it tends towards zero for N  =  1. The next section details the application 
of this concept in detecting the presence of IW N  type disturbance in a 
system.

2.3 Automatic detecting of IWN type disturbance

The computational aspects of Performance Assessment are carried out in 
a digital computer using discrete data, hence from here-on we will con­
sider the discrete time version of the above equations. However mixed 
notations are used in some of the equations for easier understanding and 
presentation of the concept.
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Sec. 2.3 Automatic detecting of IWN type disturbance 10

Consider a closed-loop system (equation 2.3) with IW N  type distur­
bance, i.e. N  — \  or (for the discrete-time case)

1/A
Vt = 1 +  TQ at

where, A = 1 — q . Differencing equation 2.13

(2.13)

Ayt =  Vt~ Vt-i

A I T T fg “ *
or

A yt -
1

;at (2.14)
1 +  TQ

Figure 2.4 shows the frequency response for the two systems represented 
by equation 2.13 & 2.14.

12

10

8

4

2

0
■1-210' 10

frequency / Hz

Figure 2.4: frequency-response of normal (equation 2.13) and differenced (equa­
tion 2.14) system with IWN type disturbance,

Now consider a system with white noise type disturbance

1
Vt ~  1 +  T Q at 

then differencing equation 2.15 gives

(2.15)
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A yt 1 +  TQ

Figure 2.5 shows the frequency response plots for two systems.

(2.16)

e—e-®

10
frequency /  Hz

Figure 2.5: frequency-response of normal (equation 2.15) and differenced (equa­
tion 2.16) system with white noise type disturbance

The difference in the nature of the two plots is clearly visible. For the 
system with white noise type disturbance, as shown in figure 2.5, the two 
plots (frequency response of y  and A y) are very similar; the steady state 
responses tend to zero in both cases. In the case of IW N  type disturbance, 
figure 2.4, the steady state response for yt tends to a non-zero value while 
for Ayt it tends to zero. Hence, by looking at the frequency response plots 
of the normal and the differenced system (yt and Ayt) it is possible to say 
whether a system has IW N  type disturbance or not.

Plotting frequency response curves for a large number of control loops 
in a typical plant is very tedious, hence automation of the proposed tech­
nique is very important. In the next section an index called Low Frequency 
Amplitude Ratio (LF A R ), is defined based on which the IW N  detection 
technique can be automated.
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2.3.1 Low Frequency Amplitude Ratio

Define,

a SS(yt)
LF A R  S S (A y t) (2'17)

where, SS (y t) is the steady state response for yt, and SS (A yt) is the steady 
state response for Ayt

It should be noted that steady state response here means frequency re­
sponse at a very low frequency. The 'O' frequency is practically unavailable 
from process data. It should be noticed that L F A R  for systems with IW N  
type disturbance is generally high while for systems with white noise type 
disturbance it is low (see figure 2.4 and 2.5).

Now there are two issues:

• What is the critical value of LF AR, above which a system can be said 
to have I W N  type disturbance.

• Is pure integrator ever encountered in real life ?

Addressing the second question first, pure IW N  type disturbance is 
generated if the disturbance model (N) is a pure integrator, i.e.

* - !
s

or, in discrete domain

N  ■ 1

but this is rarely encountered in real life. What is more commonly encoun­
tered is

N  =  ^ — ^ T (2.18)
1 -  aq l

where (1 — a) is the normalizing factor. As a  —> 1, N  —> pure integrator.
Figure 2.6 shows the variation of L F A R  with a  for the closed loop sys­

tem having the transfer function:

T  = ----   e 6s
100s + 1
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Q — K c ( l̂ +

where 6 =  30 and Q is a simple P I  controller designed using IM C  

tunning strategy. Clearly, L F A R  increases as a  increases.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’a1

Figure 2.6: LFAR variation with changing noise model

Figure 2.7 shows L F A R  variation with a  for varying ® ratio. |  ratio is 
the controllability factor. It can be seen that if a  is fixed, L F A R  changes for 
different systems. But in general, for high a  values, L F A R  is very high. 
It should be noted that for a  > 0.9 the increase in LF A R  is quite steep. 
Flence, a  — 0.9 is the critical value above which systems can be treated as 
having IW N  type disturbance. Based on this, a critical threshold value of 
LF AR, L F A R critiCai is adopted as:

LFARcriUcal =  14 (2.19)

Hence for any system if LF A R  >  L F A R criUcai then the system is con­
sidered to have IW N  type disturbance, otherwise it does not have IW N  

type disturbance.

2.4 RPI in presence of IWN type disturbance

As shown in section 2.1 R P I  has high fluctuations in presence of IW N  
type disturbance. This section will now present a modified R P I  as calcu­
lated in the presence of IW N  type disturbance.
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Figure 2.7: I , F A R , (0 / t  increases as (0:0.1:!))

R P I  based on differenced data and defined as R P I' is found to be sta­
ble in presence of I W N  type disturbance. Consider a system with IW N  

type disturbance with no set-point activity. Equation 2.13 describes this 
system, while equation 2.14 represents the differenced system. R P I' rep­
resents the controller performance excluding the effect of the IW N  type 
disturbance.

Figure 2.8 shows R P I  of a system with IW N  type disturbance, over 
10 different data segments. High variation in R P I  can be clearly noticed. 
Figure 2.9 shows R P I  for the system calculated using differenced data, i.e. 
R P I'. R P I' is clearly much stable. The closed loop data is generated using 
the same SIMULINK block as shown in figure 2.2, with

1
- e 6s

100s +  1

Q — K C{1 -\-----)
Tl

N  =  1
1 -  q-
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2  
- 0.8
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0.4 
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0

Figure 2.8: RPI variation for a system with IWN type disturbance

1 

0.8 

l o ,
Q.o:

0.4 

0.2 

0

Figure 2.9: RPI' variation for a system with IW N type disturbance

In general, when computing R P I, it should be checked if the system 
has IW N  type disturbance, and in that case R P I' should be reported in­
stead of R P I. Figure 2.10 shows a logic flow diagram showing all the steps 
to be followed before computing R P I  or R P I' for a system.

1 2 3 4 5 6 7 8 9  10
Data Section

1 2 3 4 5 6 7 8 9  10
Data Section
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Start for loop T

Calculate LFAR;

No Yes

Calculate RPI{  using 
Differenced data

Calculate RPIt using 
Normal data

Report RPI{Report RPI{

Stop

Figure 2.10: Logic-Flow Diagram for RPI computation

2.5 Simulation Examples

This section presents a simulation case that demonstrates the application 
of the concepts developed in the previous sections. Data is generated us­
ing the same S IM U L IN K  block diagram shown in figure 2.2, with

T  =  —— — —  e -30s 
100s + 1

Q, =  i.25 ( i  +  - j i j )

the simulation is run for 180000 seconds and the data is sampled at a rate 
of 10 seconds. The system has white noise type disturbance for the first
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50000 seconds and I W N  type disturbance is introduced thereafter. After 
120000 seconds the controller, Q is changed (depicting a change in con­
troller tunning) to

« ’  = 4 ( 1 + 55l )
Figure 2.11 shows the data generated. The generated data is divided 

into 17 segments each with 1000 points each. The system is supposed to 
reach steady state after the first 1000 samples, hence the first 1000 samples 
are not considered for further analysis. Table 2.1 lists the LFAR, R P I  (cal­
culated using normal data) and R P I'  (calculated using differenced data) 
values for each of the 17 data segments. The desired settling time is speci­
fied as 50 seconds, i.e. 5 samples.

3a-3o(0<0
®o
2

CL

1 1 1 ! 1 ! 1
1 t

Wh|te Noise ; i  i  Qi ; : Qa i

ffiMUlif fmBjf JSrafT B?i f ygii
! w  i |n If ' ' !  '  i

i i i i i i i
2000 4000 6000 8000 10000 12000 14000 16000 18000

samples

Figure 2.11: Simulated Data

Figure 2.12 shows LFAR, R P I  calculated using the normal data and 
RPReported calculated as per the logic shown in figure 2.10 for all the data 
segments. R P I  computed using the normal data shows significant vari­
ation after the 4th segment. The change in controller tunning is also not 
easily detected. It can be seen that R P Ireported calculated as per the logic 
shown in the figure 2.10 is more stable and more importantly the change 
in controller tunning can be noticed. It should be noted that L F A R  fails to 
detect I W N  type disturbance in the last segment (17th) of the data, LF A R
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Table 2.1: LFAR, RPI and RPI' estimates for the simulated data segments
Data Segment LFAR RPI RPI'

1 7.34 0.97 0.98
2 8.2 0.98 0.98
3 7.38 0.97 0.98
4 5.19 0.92 0.97
5 33.35 0.34 0.95
6 22.96 0.4 0.97
7 71.68 0.18 0.94
8 42.75 0.27 0.95
9 104.19 0.15 0.96
10 26.06 0.4 0.95
11 47.72 0.26 0.96
12 34.23 0.41 0.59
13 17.78 0.43 0.45
14 20.83 0.75 0.57
15 20.57 0.76 0.58
16 33.64 0.47 0.52
17 9.55 0.65 0.48

value is less than 14, see table 2.1. Hence the R P I  reported for the last 
segment is the R P I  calculated using normal closed loop data, not R P I' 
(calculated using the differenced data).

In figure 2.12 R P I  for segments 5 - 11 is low in general suggesting 
low performance. But it is known here that for the first 11 segments the 
process model does not change and the controller tunning is the same. 
The only thing that changes is the nature of the noise. As pointed out 
in Hugo (2006), the changing performance metric (R P I) is solely the result 
of the changing disturbance, which is not the correct representation of the 
controller performance. The controller is doing the best it can. R P I' which 
represents the performance excluding the effect of IW N  type disturbance, 
correctly represents the controller performance during this time.
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2.6 Summary

The present work presents a new measure to tackle IW N  type distur­
bances in a control loop in the context of control loop performance mon­
itoring and assessment. The immediate impact of such disturbances on 
relative performance index (R P I) is shown through simulation case stud­
ies. A method has been proposed to automatically detect presence of IW N  
in a system using LF AR, Low Frequency Amplitude Ratio, which is based 
on the frequency response of the system.

A modification is suggested in the way R P I  is calculated for systems 
with IW N  type disturbance. The proposed scheme has been verified on 
simulation data.
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Relative Performance Index in 
presence of High set-point Activity

The previous chapter talked about R P I  calculations in a regulatory control 
environment. The set-point activity was assumed to be negligible. In the 
present chapter the focus is on controller performance monitoring during 
high set-point activity. Eriksson and Isaksson (1994) and Swanda and Se- 
borg (1999) have shown that it is desirable to have a separate assessment 
of performance during set-point changes. Thornhill et al. (2003) demon­
strated through experimental and industrial examples why the perfor­
mance during set-point changes differs from the regulatory performance 
during operation at a constant set-point.

The main contribution of this chapter is to give an insight into the dif­
ference between performance assessment during set-point tracking and 
regulatory cases. It also presents a method to compute R P I  during high 
set-point activity that gives a proper measure of the controller perfor­
mance in a setpoint tracking mode. The method presented is tested suc­
cessfully on an industrial case study where it is shown that the conven­
tional way to calculate R P I  gives incorrect results while the proposed 
method gives a correct measure of performance.

21
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3.1 Introduction

Consider equation 3.1

T Q  .. , N
Vt ~  1 +  T Q Vsp+ 1 +  T Q at

(3.1)

if there is no set point activity (ysp — 0), then the first term in equation 3.1 
can be omitted, i.e.

the R P I  calculations are then based on the simple Autoregressive (AR) 
model fit to the process output (yt).

R P I  can be calculated using the impulse response coefficients of the fitted 
AR model. In cases where the set-point activity is not negligible the first 
term in equation 3.1 cannot be neglected.

Therefore fitting an AR model to equation 3.3 and computing R P I  
based on this equation would not differentiate between the regulatory or 
tracking performance. To accurately determine the main mode of con­
troller performance and thus obtain a measure of its performance it is pro­
posed to fit a B  J  model to equation 3.1, i.e.

In the presence of high setpoint activity the main function of a con­
troller is to track the setpoint. Hence R P I  calculations should be based on 
the transfer function P\. This is defined as R P Iservo.

(AR)yt =  at

1 N
(3.2)err* -  ysp V t ~ 1 +  T Q VsP 1 +  T Q at

which can be written as

(3.3)

B  C
yt =  -pVsp +  -pO* (3.4)

or

Vt =  PlVsp +  P20t (3.5)
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3.1.1 R P I s e r v o  Computation

Conventionally, R P I  is based on impulse response of the regulatory trans­
fer function. In case of step-point tracking the tracking performance is 
compared to the desired settling time.

Ideally, the output should exactly match the input, but it is not practi­
cally possible due to constraints like, deadtime. For a given desired set­
tling time, T settiing ,

Pdesired (3.6)
TsS +  1

is the desired closed loop transfer function, where rs =  T sem ng / 4. Fig­
ure 3.1(a) shows the step input and desired (benchmark) output response. 
For R P Iserv0 calculation, this desired output should be compared to the 
actual step-response out put of the system.

The benchmark here is the minimum deviation from the input, i.e.

N

benchmark =  ^ (ft*  — s*)2
*=o

where, hi is the step response coefficient of the desired closed loop system, 
equation 3.6, and s, is the step-input [0,1,1,1,1,...]. Figure 3.1(b) shows the 
benchmark deviation.

0.8

0.6

0.4

0.2
I

a)

“ step response ~ step input

20 40 60 80 100
time

(b)

-- — deviation

0.8

0.6

0.4

0.2

100
time

Figure 3.1: (a) Benchmark Step-response (b) Benchmark deviation
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Therefore R P I  for servo problems, R P Iservo can be defined as

o p r  A si)
serv° E f=0( f t - ^ ) 2

(3.7)

where, hi and gi are the step response coefficients of the desired and the ac­
tual transfer functions between yt and ysp, respectively and s* =  [ 0 , 1 , 1 , 1 , .

3.2 Industrial case study

Figure 3.2(a) shows flow loop data of an industrial controller. The data is 
sampled at 15 seconds. Figure 3.2(b) shows the first-half of the data, with 
high oscillations. The flow control valve was known to have an actuator 
problem during this time. Figure 3.2(c) shows the data after the actuator 
problem had been fixed.

(a)
140

SetpointProcess Output

130

120

110

100
2000 3000 4000 5000 6000

Samples
7000 8000 90001000

122135

120
130

118

116
125

114

112120.
1000 2000 3000 4000

Samples
1000 2000

Samples
3000

Figure 3.2: (a) Industrial Flow Loop Data (b) First half of the data, before the 
problem was fixed (c) Second half of the data, after the problem was fixed
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A B J  model of the order of [3,3,3,3,1] is fitted to the first and the second 
half of the data, see equations 3.8 and 3.9.

6.32z_1 — 12.71z~2 +  6.45-2T3 1 -  0.83*-1 -  0.65^“2 + 0 .73z-3
Vt,before -  1 _  1 6 1 z- i  +  o.890-2 _  0.232"3 Vsp+1 -  1.722”1 + 0.87z-2 -  0.014z-3 °*

(3.8)

0.34^_1 + 0.38*-2 -  0.37^3 , 1 -  0.61Z"1 -  0.53z-2 +  0.55*-3 _
Vt,after -  1 _  g 602_i _  0.08;*-2 +  0.02z~3 Vsp+1 -  1.442-1 +  0.68z~2 -  O.OI2 - 3  °*

(3.9)
Figure 3.3 shows the model prediction (infinite horizon) and the ac­

tual output for the first and the second half of the flow loop data. The 
model predictions for the second half show a 75% fit which confirms a 
good model quality. For the second half the model quality is not good (5% 
fit). The main reason for this is the presence of non-linearity in the system 
(actuator problem).

 Measured Output Model Prediction
(a)

135
Fit: 5.033%

130

125

120

0 200 400 600 800 1000
117

Fit: 75.35%

116

115

114

113
600200 400 800 1000

Samples

Figure 3.3: Predicted and the Actual output for (a) First half and (b) Second half 
of the flow-loop data
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The step response of Pi and the deviations, for the two cases is very 
distinct, as shown in figure 3.4. More importantly, the impulse responses 
of P2 is almost the same, suggesting that the regulatory performance re­
mains unchanged,see figure 3.5.

— Before After

Figure 3.4: (a) Step-response of Pi for the 'Before and After’ cases (b) Deviation 
from step-input for 'Before and After' cases

Table 5.1 lists R P I  and R P Iserv0 for first and the second half of the flow 
loop data. The desired settling time is 60 seconds. R P I  fails to distin­
guish between the performance under the two different scenarios while, 
R P Iserv0 clearly shows the difference. The low R P Iservo value for the sec­
ond half of the data is mainly due to the low value of the desired settling 
time of 60 seconds (which was originally used in the plant). For the de­
sired settling time of 120 seconds, the R P Iservo for the first and the second 
half of the data is 0.0053 and 1.36 respectively.
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Figure 3.5: Impulse-response of P2 for Before and After Case 

Table 3.1: R P I and R P Iservofor Before and After case
BEFORE AFTER

R P I 0.70 0.73
RPIservo 0.0035 0.36

3.3 Summary

This chapter defines a new Relative Performance Index (R P Iservo) for cases 
when set-point activity is high. The new Index is successfully tested on 
an industrial data set, where it is shown that for cases with high set-point 
activity the normal R P I  does not show the correct controller performance, 
whereas R P Iservo gives a better measure of control performance.

One possible drawback of the proposed method is the estimation of a 
B  J  model, which can be time consuming and certainly hard to automate.

after
before .

\
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4
Economic Impact of Performance 

Monitoring

The basic purpose of a controller is to regulate the process such that the 
process variable tracks the set-point or regulates the loop well in the pres­
ence of disturbances. The main objective in tracking or regulatory control 
is that the process variable should avoid large fluctuations or variability in 
the control error. Controller performance metrics, such as P I, R P I, R P I' 
and R P Iservo, indicate the performance level of the controller in regulat­
ing or setpoint tracking. However, they do not provide information on 
the economic impact of the control loop and the effect the process vari­
able has on the overall system. Thus, although an important tool, these 
performance indices by themselves do not give complete information.

For example, a controller with a very low PI may not be very impor­
tant economically, while a second controller with relatively better PI may 
be economically very critical, thus a small change in its performance may 
result in huge financial gains. Therefore, although the first controller de­
mands more attention based on poorer performance, it should be consid­
ered as economically less critical than the second controller. Hence a per­
formance metric that combines the performance index with an economic 
indicator would be helpful in prioritizing the controller monitoring task.

The main contribution of the present work is to give a general method-

28
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ology for computing an index which incorporates controller performance 
and the economic impact the process variable has on the overall system. 
This index is defined as Economic Performance Index (E P I ).

4.1 Introduction

Previous studies on Economic Performance Assessment deal mainly with 
cost-benefit analysis of implementing advanced process control systems. 
In the work by Bauer and Craig (2006), a methodology is proposed for eco­
nomic assessment of the Advanced Process Control projects. It is stated 
that most of the direct financial gains from APC are the steady-state gains,
i.e. from steady-state optimization. The dynamic control gains are indi­
rect, in the sense that good dynamic control reduces the variability around 
the operating point, hence allowing closer operation to the optimal point. 
It is assumed that the variance in the system can be reduced by a fixed 
amount of 35-50 % through improved control. The work by Muske (2003) 
introduces the idea of potential reduction in process variance. This poten­
tial reduction is based on benchmark control strategies, such as Minimum 
Variance Control and Internal Model Control. The emphasis here is on 
cost-benefit analysis of implementing advanced control system.

In the present work, an attempt is made to extend the idea of economic 
performance assessment as a tool to monitor the day to day performance 
of the controller. The rest of the chapter is organized as follows. Section 2 
summarizes the basic concept of economic gains through variance reduc­
tion and introduces the idea of an economic performance index. An indus­
trial example is given in section 3 and section 4 summarizes the findings.

4.2 Economic gains through Variance Reduction

High variance in process variables is never desired. Apart from poor con­
trol, this also limits the operating point well below/above the constraint. 
Hence if the variability in the process variable is reduced the operating 
point can be moved closer to the constraint, which is generally more eco­
nomical. Figure 4.1 illustrates this idea.

The first 5000 points in figure 4.1 represent the actual process output of 
an industrial level loop. Clearly a high standard deviation (aactuai =  4.1) is

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 4.2 Economic gains through Variance Reduction 30

observed; hence the operating point is well above the process constraint. 
Once the variability is reduced, the operating point can be shifted closer to 
the economically optimal operating constraint without violating the qual­
ity constraint. The second half of the data samples 5000 onwards shows 
a simulated time-series assuming 50% reduction in the standard devia­
tion {(j1ptimal =  2.05). This change in the operating point can be easily 
translated into economic benefit. This is evident also from the distribution 
curves of the process variable before and after the variance is reduced.

Assuming that the present operating point (set point), ppresent is such 
that the process is within ±3-sigma limit of the constraints, i.e. the process 
meets quality constraints 99.5% of the time, the maximum possible change 
in the operating point (set point) for the illustrative example is given by:

O p p o r t u n i t y  =  Ppresent Poptimal =  3 X ((Tpresent &optimal) (4.1)

The controller performance index (PI)  is given by

0-2

?? =  (4.2)
Qpresent

Therefore the change in operating point is

opportunity =  Zopresent x (1 -  y/rj) (4.3)

The Economic Performance Indicator (EPI) can then be defined as

E P I  — D  x (opportunity)

or,

E P I  =  ZDOpresent X (1 -  y/fj) (4.4)

where, D is the $ gain per unit time period for a unit change in operating 
point. The gain may be due to several reasons such as, increased produc­
tivity or, increased throughput, etc.

It should be noted that it may not be possible to change the operating 
points in all the cases, e.g. the set-point of an inner loop in a cascade 
system. The set-point or the operating point to this loop is given by the 
output of the master controller; hence it cannot be changed. The reduction

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 4.2 Economic gains through Variance Reduction 31

optimal

actual

Figure 4.1: Reduced variance allows us to move the set-point (operating-point) 
closer to the process constraint, making the process operation more economical
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in variability of the process variable in this case cannot be directly related 
to economic benefits, unless it occurs through the outer loop.

A level controller in a sump or storage has a different role to play. The 
objective there is not to reduce variance in the actual level, but rather have 
the level serve as a buffer to absorb upstream disturbances and in doing 
so experience higher variability in the level to ensure steady flow out of 
the sump/storage. In such cases also, the change in operating point is not 
relevant and thus it cannot be directly translated into economic benefits. 
However variability from other loops may be transferred to such buffer 
loops. In this respect an increase in variability in such loops may be an 
indication of reduced variability elsewhere resulting in economic benefits.

Therefore, classification of the control loops falls into the two main cat­
egories, namely

• Movable Operating Point {MOP)

• Immovable Operating Point {IOP)

The next section presents a methodology for online implementation of this 
technique.

4.3 Implementation Methodology

Equation 4.3 gives the opportunity with respect to the minimum variance 
control strategy, i.e. the potential change in the operating point if mini­
mum variance control strategy is applied to the system. Operating at min­
imum variance induces fairly erratic controller action and that may not be 
desirable. Therefore typically operating under minimum variance control 
is not desirable. For this reason a de-tuning or correction factor A is intro­
duced. Therefore the real opportunity (real change in operating point) is A 
times the actual opportunity.

opportunityreca =  A x {opportunity) (4.5)

Hence E P I  is given by

E P I  — 3AD^present  ̂ (I \/v ) (4.6)

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 4.4 Industrial Case Study 33

Table 4.1 shows a summary of the various stages involved in calculat­
ing the E P I .  The figures shown in the table are hypothetical. The E P I  is 
calculated using the PI and the user defined correction factor (A). D, the $ 
gain per unit opportunity is process dependent.

Table 4.1: E P I  Computation
Controller
Tag P I Opresent

Opportunity
A

Real
opportunity D E P I

A 0.1 4.9 10 0.5 5 $1000 $5000

The next section presents the application of the above concepts to an 
industrial example. The example considered here is located at the primary 
oil-sands extraction plant at the SUNCOR oil-sands extraction facility in 
Fort McMurray, Alberta Canada.

4.4 Industrial Case Study

4.4.1 Oil-Sands Extraction Process: An Overview

Extraction is the process whereby oil or bitumen is removed from the oil 
sand. The oil sand extraction process can be divided into 3 main stages, 
namely: Slurry Preparation, Primary Extraction and Secondary Extraction.

Slurry Preparation

Slurry preparation is the first step in the oil sand extraction process. The 
mined tar sands from the mines are fed into tumblers where the bigger 
chunks are crushed. It then goes into conditioning drums where oil sand 
is mixed with hot water and caustic soda. Heat is used in the hot water 
treatment to reduce the viscosity or thickness of the bitumen. Caustic soda 
helps the attachment of bitumen to the air in the froth formation while re­
leasing it from the sand particles. It essentially helps "clean" the bitumen 
off the sand. The bitumen then forms small globules that are important 
in the formation of froth. The slurry passes through a series of vibrating 
screens that separate and reject any rocks or clumps of clay still in the 
slurry. It is then pumped into separation tanks.
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Primary Extraction

Primary separation occurs mainly in the separation cells. The primary 
separation cell allows the oil sand slurry to settle out into various layers. 
The most important of these layers is the bitumen froth layer which rises 
to the top. The sand (or tailings) sinks to the bottom. The tailings are fur­
ther processed to extract some more bitumen and then are pumped into 
tailings ponds. The middle layer (called middlings) consists of bitumen, 
clay and water. The middlings remain suspended between the sand and 
the bitumen froth until it is drawn off and put through the second separa­
tion vessel called scavenger floatation cell. The scavenger cells extract the 
remaining bitumen from the middlings.

Secondary Extraction

Bitumen from primary extraction is mixed with a diluent, that thins the 
bitumen froth so that its density becomes lower than water in the froth. 
This mixture is then passed through a set of centrifuges where a further 
separation between bitumen and sand occurs. Adding diluent decreases 
the viscosity and aids in the speed of separation. The bitumen froth re­
mains in the middle, while the clay, water and sand are thrown to the 
sides of the centrifuge. The water, sand and clay mixture are pumped out 
as tailings into the tailings pond. Meanwhile, the bitumen is run through 
a diluent recovery unit to remove the diluent and sent on to upgrading. 
The recovered naphtha is returned to the extraction process.

4.5 Plant Description

In this section a brief introduction about plant 3, line 6, which is the pri­
mary extraction plant at the SUNCOR facility in Fort McMurray, is given. 
Figure 4.2 shows a schematic of the plant. The process can be summarized 
in the following steps:

•  The separation cell receives the feed (oil-sand slurry) from feed dis­
tributor.

• The overflow from the separation cell is froth, which is mainly bitu­
men and air.
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• The middlings are fine sand particles with traces of bitumen in it.

•  The tailings consist of mainly coarser sand particles.

• The forth from the sep-cell goes to the deaerator, where air is sepa­
rated from froth, before being pumped to the storage tank and then 
to secondary extraction.

• The middlings from the sep-cell are pumped to scavenger floatation 
cells, where further separation takes place and the froth is pumped 
back as sep-cell feed.

• The tailings from sep-cell are pumped to the tailings pump house 
where after further separation the tailings are pumped into the tail­
ings pond. The tailings stream from floatation cells also joins the tails 
stream from sep-cell.

Table 4.2 shows list of the critical control loops in line 6 along with 
the economic category they fall into. These controllers are also marked in 
figure 4.2

Table 4.2: List of critical controller in line 6 along with the economic category
Controller Tag Description Category
A Froth underwash flow controller IOP
B Middlings flow controller IOP
C PEW addition to sep-cell IOP
D PEW addition to tails to maintain density IOP
E Sep-cell interface level MOP
F Froth launder level controller IOP
G Scavenger cell level controller MOP
H Deaerator level controller MOP

4.6 Economic Analysis of MOP controllers

Table 4.3 summarizes the possible shifts in operating point of each of the 
MOP controller and the economic benefits associated with them. The $ 
figures have been scaled for confidential reasons.

The detailed explanation about the calculation of the dollar benefits for 
each of the MOP controller is given below.
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Figure 4.2: Schematic of Line 6 in plant 3 at Suncor Extraction Plant
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Table 4.3: Summary of Economic benefits for M OP controllers
Controller
Tag PI Opresent A

Real
opportunity D EPI $ Gains/year

E 0.31 4.8 0.5 3.19 667 $ 2,131 $ 777,839
G 0.93 2.6 0.5 0.14 667 $93 $ 34,084
H 0.26 9.5 0.5 7.0 700 $ 8,183 $ 2,986,795

E: Separation Cell interface level

Controller 'E' controls the interface, (interface between the froth and mid­
dlings), level in the separation cell. This level plays a critical role in both 
froth recovery, and quality. High interface level means higher residence 
time for oil-sand slurry in the sep-cell, hence higher recovery. However 
very high interface level causes a large amount of sand (fines) to enter into 
the overflow stream, thus affecting the quality of the product (froth). If 
the interface level is low, large amount of bitumen is lost in the tails, thus 
reducing the recovery.

The ideal operating condition is to maintain the interface level as close 
as possible to the high level mark. The high level mark is the level at which 
a significant quantity of sand (fines) starts to enter the overflow stream. 
Figure 4.3 shows the effect of changing the operating point graphically.

A (recovery)

Figure 4.3: Change in operating level directly relates to the economic gains 

The following empirical relationship between % recovery and % level
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has been established by Suncor personnel

y =  1.3a: +  32 (4.7)

where y is the % recovery and x is % level. This expression is used to 
tabulate Economic benefits in tables 4.4 and 4.5.

Table 4.4: E: Economic benefits
Increase in bitumen recovery/ unit increase in level 1.3%
Average bitumen processed per day 1000 barrels
Gain per unit increase in level (D ) $667
Performance Index 0.31
p̂resent 4.8

Opportunity 6.39
Correction factor (A) 0.5
Real opportunity 3.19
E P I $ 2,132
Potential $ gain per year $ 778,227

G: Scavenger floatation cells level

Middlings from the sep-cells are pumped into the scavenger floatation 
cells where further separation occurs. The level here plays the same role as 
that in sep-cell. Table 4.5 summarizes calculation of the economic benefit 
associated with controller 'G'.

Table 4.5: G: Economic benefits
Increase in bitumen recovery/ unit increase in level 1.3%
Average bitumen processed per day 1000 barrels
Gain per unit increase in level (D) $667
Performance Index 0.93
Gpresent 2.62
Opportunity 0.28
Correction factor (A) 0.5
Real opportunity 0.14
E P I $93
Potential $ gain per year $ 34,101
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H: Deaerator Level Controller

Froth from the sep-cell has a lot of air in it and hence cannot be pumped 
easily, as it causes cavitation. Therefore separation of air from froth is 
required before it can be pumped to the Inter Stage Tank. Steam is used 
to separate air from froth. In the deaerator, steam comes in direct contact 
with the froth; air separates and is vented out to the atmosphere.

Controller 'H' controls the level of froth in the deaerator. The direct 
benefit of better level control here comes from the fact that lower the level 
in deaerator, more steam is lost. Figure 4.4 shows the deaerator with the 
high level and low level marked as 80% and 20% respectively. It is known 
that at 20% absolute level, all the steam is lost and at 80%, no steam is 
lost. It is also known that steam loss varies linearly with the level. Hence, 
steam saving /  unit increase in level can be calculated as

steam saving /  unit increase in level =1.67

Vo# to 
Atmosphere

son froth

STEAM

1ST

Figure 4.4: Deaerator schematic showing the upper and lower bounds of the level
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Figure 4.5 graphically demonstrates the effect of shifting the operating 
level closer to the high level mark. The economic benefit calculations are 
summarizes in table 4.6.

100%

Figure 4.5: Change in deaerator level directly relates to the change in steam loss

Table 4.6: H: Economic benefits
Steam saving /  unit increase in level 1.67%
Average steam flow per day 1000 Mlb
Gain per unit increase in level (D) $700
Performance Index 0.26
Opresent 9.5
Opportunity 14
Correction factor (A) 0.5
Real opportunity 7
E P I $ 8,183
Potential $ gain per year $ 2,986,795

4.7 Summary

The concept of Economic Performance Indicator developed in this work 
compliments the current Performance Indices. The E P I  gives dual in­
formation, the present controller performance and the potential economic
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impact of improved control on the overall system. Hence, E P I  is the cor­
rect representation of the controller health in the context of the system as 
a whole. This idea is demonstrated using an industrial example. The E P I  

computed is based on the Performance Index (PI) of the controllers. Con­
trollers 'E' and 'H' have almost the same level of regulatory performance 
but E P I  shows that maintaining controller 'H' is far more critical com­
pared to controller 'E'.

As discussed above, E P I  is dependent on the present controller per­
formance and can be easily automated, thus making it easy to implement. 
The proposed scheme can be summarized in the following steps:

1. Classify the controllers as MOP or IOP.

2. Compute Performance Indices for each of the MOP controllers and 
identify applicable constraints and room to change operating points.

3. Based on the PI, compute the opportunity for each of the MOP con­
trollers.

4. E P I  can then be computed based on process knowledge.
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Quantification of Valve Stiction

A control valve is one of the few or occasionally the only moving part in a 
control loop, and therefore it is most prone to mechanical problems. This 
chapter deals with one such very common control valve problem, stiction. 
Figure 5.1 shows a cross section of a spring-diaphragm valve (which is 
most widely used in process industry). The purpose of packing in the 
valve is to make sure the fluid does not leak into the stem section of the 
valve, which may cause safety issues. Over-time due to wear and tear, 
high static friction develops between these packings and the wall of the 
valve. This high static-friction or STICTION hinders the smooth move­
ment of the valve stem.

High static-friction or stiction in control valves is a major cause of oscil­
lations in control loops, which result in poor performance. This may lead 
to higher rejection or off-spec products which means considerable amount 
of economic loss. Therefore, the correct diagnosis of stiction is important. 
There are several methods for detecting stiction, (Taha et al. (1996), Wallen 
(1997), Horch and Isaksson (1998), Choudhury et al. (2004c), Choudhury 
et al. (2004b), Horch (1999), Singhal and Salsbury (2005), Stenman et al. 
(2003), Srinivasan et al. (2005a), Srinivasan et al. (2005b)), but quantifica­
tion of stiction still remains a challenge.

Earlier work by Choudhury et al. (2004b) quantifies stiction by fitting 
an ellipse to the process output (pv)- controller output (op) plot and the

42
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Figure 5.1: Cross Section of a spring-diaphragm valve

maximum width of the ellipse is reported as 'apparent stiction'. Recently, 
Srinivasan et al. (2005a) introduced another approach where they exploited 
the fact that the presence of stiction has distinct qualitative shapes or pat­
tern in the controller output, op and the controller variable, pv signals. 
They have applied a pattern recognition technique using Dynamic Time 
Warping (D T W ) on the pv and op data. First, the test patterns (for both op 
and pv) are generated using the zero crossing data from the raw signals. 
Then these test patterns are compared to the actual signal. If stiction is con­
firmed then the maximum peak-to-peak amplitude is reported as stiction. 
However, the maximum peak-to-peak amplitude is just the magnitude of 
limit cycle and cannot be attributed to real stiction. Another disadvantage 
with this approach is the apriori knowledge of the patterns in the op and pv 
due to stiction. The patterns described therein m ay not be always due to 
stiction. Some of those patterns in the pv and op signals may arise simply 
due to the presence of a tightly tuned controller or an oscillatory distur­
bance. In addition to these, asymmetric stiction, which is not uncommon, 
cannot be detected and quantified using this approach.

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 5.1 Why use a two parameter Model of Stiction? 44

In another method proposed by Srinivasan et al. (2005b), a Hammer- 
stein model identification approach is explored. A general structure of a 
Hammerstein model is shown in figure 5.2. The non-linear part of the 
Hammerstein model is described by a single parameter stiction model 
(Stenman et al. (2003)).

Non-linear part (Valve stiction model) --------- * Linear Part (Process Model)

Hammerstein Model

Figure 5.2: General Structure of a Hammerstein Model

It has been observed that the single parameter stiction model does not 
depict the true stiction behavior ( Choudhury et al. (2004a)) as discussed 
in section 2. In this study, the proposed approach uses a two parameter 
stiction model proposed by Choudhury et al. (2004a) to model the non­
linear component of the Hammerstein model.

The rest of the chapter is organized as follows: In the next section a 
brief discussion of the two parameter stiction model is provided. This is 
followed by an example demonstrating the importance of slip-jump, J, 
in loop dynamics. Then the proposed method is presented followed by 
simulation, experimental and industrial results.

5.1 Why use a two parameter Model of Stiction?

This section briefly discusses the adequacy of a two parameter stiction 
model for closed loop simulation of stiction. Also, the limitations of the 
one parameter stiction model proposed by Stenman et al. (2003) and used 
in Srinivasan et al. (2005b) are briefly discussed. Before discussing the data- 
driven stiction models, a case of an industrial example where a valve was 
sticky is presented in order to find the right pattern of stiction present in a 
valve operating under closed loop control configuration.
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5.1.1 An industrial control loop with a sticky valve

Consider a level control loop which controls the level of condensate in the 
outlet of a turbine by manipulating the flow rate of the liquid condensate. 
The control valve of this loop is confirmed to have stiction. In total 8640 
samples for each tag were collected at a sampling rate of 5 s. Figure 5.3 
shows a portion of the normalized data. The left panel shows time trends 
for level (pv), the controller output (op) which is also the valve demand, 
and valve position (mv) which can be taken to be the same as the conden­
sate flow rate. The plots in the right panel show the characteristics pv-op 
and mv-op plots. The bottom figure clearly indicates both the stickband 
plus deadband and the slip jump effects. The slip jump is large and visible 
from the bottom figure especially when the valve is moving in a down­
ward direction. It is marked as 'A' in the figure. The pv-op plot does not 
show the jump behavior clearly because the process dynamics (i.e., the 
transfer function between mv and pv) destroys the pattern. The pattern 
shown in the actual valve position (mv) vs. controller output (op) can be 
taken as a typical signature of valve stiction because it clearly shows the 
deadband plus stickband and the slip-jump. Similar patterns can be found 
in many industrial control valves suffering from stiction.

5.1.2 One-parameter stiction model

A simple one parameter stiction model was proposed by Stenman et al. 
(2003). The model can be mathematically expressed by the following equa­
tion

Where, x(t) and x(t-l) are the valve output (stem position) at time T  and

stiction band. For details of this stiction model, interested readers are re­
ferred to Stenman et al. (2003).

x (t — 1 ) , i f  | x(t) — d \ <d  
u(t) otherwise

't-1' respectively, u(t) is the controller output at time 't' and 'd' is the valve
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Figure 5.3: Normalized industrial flow loop data, the line with circles is pv and 
m v, the thin line is op

5.1.3 Two-parameter stiction model

A two parameter model proposed by Choudhury et al. (2004a) captures the 
stiction phenomenon successfully. The two parameters are: S  (Stickband + 
Deadband) and J  (Slip-jump). For details on this stiction model interested 
readers are referred to Choudhury et al. (2004a).

5.1.4 Comparison between one-parameter and two param­
eter stiction model

Figure 5.4(a) shows a typical valve output (mv), vs. controller output (op) 
plot for the one parameter stiction model described in Stenman et al. (2003) 
and Srinivasan et al. (2005b) while Figure 5.4(b) shows the same plot for 
the two parameter stiction model proposed in Choudhury et al. (2004a). 
Figure 5.4(a) is clearly different from the pattern of stiction shown in Fig­
ure 5.3. It suffices to say that the one parameter stiction model does not
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capture the true characteristic of stiction. Indeed it should not be called a 
stiction model, rather it should be defined as a quantization or a staircase 
function. On the other hand, the plot for two parameter stiction model 
(Figure 5.4(b)) clearly matches with the pattern in Figure 5.3. Thus the two 
parameter stiction model is able to adequately capture the characteristic 
of valve stiction (Choudhury et al. (2004a).

controller output, op controller output, op
(a) (b)

Figure 5.4: (a) mv-opfor one parameter model Cd') (b)mv-opfor two parameter 
model (S, J)

5.2 Issues in quantifying stiction

5.2.1 Effect of controller dynamics and process dynamics 
on apparent stiction

Earlier work by Choudhury et al. (2004b) and Choudhury et al. (2005) quan­
tifies stiction by fitting an ellipse to the pv-op plot and the maximum width 
of the ellipse is reported as 'apparent stiction'. Stiction is reported as 'ap­
parent' because the estimate includes the effect of the process and con­
troller dynamics. The following simulation example demonstrates the ef­
fect of the controller tuning on the estimation of apparent stiction.

Figure 5.5 shows the simulink block diagram used for generating stic-
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tion data. The process model is

The controller is implemented in the following form:

C (s) =  Jfe ( i  +  (5.2)

The reset time, t j , is fixed at 1 sec and the gain,Xc, is varied.The Stiction 
parameters 'stickband+deadband', S  and 'slip jump', J  are fixed at 3 and 
1, respectively. Three cases, K c = 0.05, 0.10 and 0.15, are considered and 
1024 samples are generated for each case.

I  LStep Discrete Transfer FenStiction BlockPI controller

Noise

Outt 0ut1

Figure 5.5: Simulink block diagram used for generating stiction data

Figure 5.6 shows the pv-op plot and the fitted ellipse for the three cases. 
The apparent stiction reported are: for K c = 0.05, 0.10 and 0.15, the es­
timated apparent stiction are 5.79, 3.06 and 1.62, respectively. Ideally, it 
should be same because the same amount of stiction was used for all cases 
(5=3 and J= 1). A similar effect of the process dynamics can also be ob­
served on the value of apparent stiction. Hence the width of the ellipse in 
the pv-op plot termed as 'apparent stiction' cannot be taken as an accurate 
estimate of stiction.

5.2.2 The importance of quantifying Slip-Jump ( J )

Describing function analysis performed in Choudhury et al. (2004a) sug­
gests that for processes without any integrator, limit cycles in a control
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Figure 5.6: m v — op plot and fitted ellipse (a) K c = 0.05 (b) K c = 0.10 (c) K c =
0.15

loop may occur only in the presence of slip-jump (J) for the case of a sticky 
valve. Moreover, the amplitude and frequency of the limit cycles depend 
significantly on the slip-jump (J). The following simulation results show 
the effect of J  on the amplitudes and frequencies of the limit cycles.

The system considered here is the same as in Section 5.2.1. In order to 
observe the impact of J  clearly, the controller parameters are chosen as K c 
= 0.15 and 77 = 0.15 sec.
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Figure 5.7 shows the variation of the frequency and amplitude of limit 
cycles with slip jump (J) keeping S  constant (5 =  6 ). For each case, 1024 
points were collected. No oscillations are observed for the case when there 
is no slip-jump, i.e. <7=0. Periods of oscillation (Tp) are 250 s, 111 s and 72 
s for values of J =  1, 3 and 6 , respectively. From this simulation study, 
it is clear that both amplitude and frequency of limit cycles increase with 
the increase of J. Therefore, the estimation of J  is as important as the 
estimation of S.

® -0.5

0.5

-0.5

500 700 900 10000 100 200 300 400 600 800
time/s

Figure 5.7: (a) J=0, no oscillations detected (b) J=l, Tp=250, amplitude=0.20 (c) 
J=3, Tp= l l l ,  amplitude=0.60 (d) J=6, Tp=72, amplitude=1.20.
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5.3 M ethodology for simultaneous Estimation of 
S  and J

Figure 5.8 shows the detailed flow chart of the procedure for estimating 
'S' and 'J'. This is an iterative optimization procedure to identify both 
the stiction model parameters and the process model simultaneously. The 
controller output data (op) is supplied to the two parameter stiction model 
to obtain the actual valve output or valve-postion data, (vo), for a fixed 
value of S  and J. Then, the predicted valve output, vo, and the process 
output data, (pv), are used to identify the process model using Akaike's 
Information Criteria (AIC). The procedure is repeated for various values 
of S  and J  obtained from a two dimensional grid search. The value of S 
and J  that gives minimum mean square error for the controlled process 
variable (pv) is reported as stiction. Other global search methods such as 
Simulated Annealing were also tried but resulted in higher computational 
time. The details of the algorithm are as follows:

• Import process ouput, pv and the controller output, op.

• Check for non-linearity in the system. In this work the bicoherence 
based method proposed by Choudhury et al. (2002) is used for non- 
linearity detection.

•  Choose a value for (St, J*) from a two dimensional grid of S  and J.

• Use the controller output, op, data and the two-parameter stiction 
model with chosen (Si, Ji) to compute the valve output, vo. This is 
the non-linear part of the Hammerstein model.

• Identify the process model (linear part of the Hammerstein model) 
using the valve output, vo, and the process output, pv.

• Then the process output is predicted (pv) using the identified pro­
cess model and the computed valve output, vo.

• Compute the Mean Squared Error between the predicted and the ac­
tual process output

N

M SE(SU Ji) =  Y ,(pv i  -  m ')2 (5.3)
i—l
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• M S E  is computed for all the points in the grid of S  and J. The value 
(Sm, Jm)f for which M S E  is minimum, is reported as stiction.

C  S ta rt J

Im port data  
(Q P,PV)

C hoose (St , JJ) 
from th e  grid

Construct a two  
dim ensional grid  (S„  J J

C heck for the presence 
o f  non-linearity

G enerate ‘va lve’ output based  
on jS / > end the Stiction M odel

Identity th e  process M odel 
using AIC criterion

N O  y  Is th e YES
*-------- <CProcess M o d e l ----- ►

y R n o w n ? /

1
Predict th e  output using  
K h own/i dentlfled m odel

Com pute M ean Square 
Error(MSEQS„ J,))

S T s  the M S E \/  * j  \  NOy S  com puted y  _____
\  for all points /

y o n  Grid

_____________________ Y  Y E S _______________

J m)  = {(5,., JJ): M SE(^, , J[) is  m inim um )

* ......
Report Stiction (S „ , J„)

Figure 5.8: Logic flow diagram of the proposed method

The following important points should be considered in the implemen­
tation of the method:

o The prediction, using the identified or known model and the valve 
output, is done using a one-step-ahead predictor. The purpose of us­
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ing one-step-ahead predictor is that this makes the overall procedure 
less dependent on the process model, estimation of which is of less 
interest for this case.

• There is a possibility that for a particular value of (S , J) the com­
puted valve output may be saturated. In this case the identification 
of the linear part of the Hammerstein model would be difficult be­
cause the input signal would not be persistently exciting. This may 
result in erroneous results. Therefore, before using the valve output 
(vo) for the identification of the process model, the signal should be 
examined for possible saturation.

5.4 Results from Simulation Studies

All simulations were performed using the same system described in Sec­
tion 5.2.1. The controller gain, K c = 0.15 and tj = 1 are fixed. Two scenarios 
are considered here. First, when the process model is known i.e. the linear 
component of the Hammerstein model is known. Second, when the linear 
part of the Hammerstein model is unknown and estimated along with the 
nonlinear part.

Table 5.1 shows the estimation results using the proposed method. It is 
assumed that the process model is known. The estimated values are close 
to the actual values.

Table 5.1: Comparison of actual and estimated S and J (known model case)
s J

Actual Estimated Actual Estimated
1 1 0 0

1 1 1 1

4 4 2 2

6 6 4 3.5
8 8 8 8

8 8 1 0 1 0

1 0 8 2 0

Table 5.2 shows the estimation results when an external disturbance 
is added to the system with sticky valve. A sinusoidal input with a fre­
quency of 1  rad/sec and amplitude of 1 is used as external disturbance.
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The process model is assumed to be known. The estimation is exact in 
most cases. This indicates that the proposed method is able to quantify 
stiction even in presence of external oscillations.

Table 5.2: Comparison of actual and estimated S and J in the presence of external 
oscillations (known model)_____________________________

s J
Actual Estimated Actual Estimated

1 1 1 1
4 4 2 2
6 6 4 4.5
10 10 5 5
12 12 4 4
12 13 0 1

In Table 5.3 estimation results are shown when the data is corrupted 
by noise (random noise with zero mean). Signal to noise ratio (SN R ) is 
computed as the ratio of the variance of the noise free signal to variance of 
the noise. For this the value of S  and J  are fixed to 6  and 4 respectively and 
the data is simulated with different noise levels in the system. The results 
show that the method is relatively insensitive to the presence of noise, and 
therefore it should work well when applied to real process data.

Table 5.3: Prediction in presence of noise (S = 6 and J = 4) (known model)
S N R Estimated (S) Estimated (J)

1 0 0 6 3.5
50 6 4
25 6 4

12.5 6 4
1 0 6 3.5

Table 5.4 shows the results for the case when it is assumed that the 
process model is not known. The algorithm was not supplied with the 
process model. For all cases, S  has been estimated correctly except when 
S < J  (S — 4, J  =  8 ). But such cases, where J  >  S, are rarely encountered 
in real life. Slip-jump is also estimated correctly for most cases.
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Table 5.4: Comparison of actual and estimated S and J, unknown model case
s J

Actual Estimated Actual Estimated
1 1 0 0.5
4 4 2 2
6 6 4 4

1 0 1 0 1 0 7.5
1 0 1 0 8 8
1 0 1 0 2 2
4 2 8 8

5.5 Results from Pilot Plant Experiments

For the verification of the proposed method, data was generated using a 
laboratory scale setup of a tank system in the Computer Process Control 
Laboratory in the Department of Chemical and Materials Engineering at 
the University of Alberta. Data is generated for two control loops: flow 
and level(cascade) control.

5.5.1 Flow Control Loop:

The schematic of the process is shown in Figure 5.9. First of all, the con­
trol valve was checked for possible presence of stiction using the so called 
bump test or the valve travel test and it was found to be stiction free. 
Then the two-parameter stiction model was used to introduce valve stic­
tion within the software as shown in Figure 5.9.

-t*l------------------- —
FV

Figure 5.9: Schematic for the Flow loop
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The signal from the flow controller (F C ) is supplied to the stiction 
model (with already known S  and J). The output of the stiction model is 
then provided to the flow control valve (FV).Figure 5.10 show the process 
output (pv) and the controller output (op) for the system for (S, J) =  (2,1 ). 
Clearly stiction introduces limit cycle behaviour in the loop. The results 
of stiction estimation are provided in Table 5.5. Two cases are considered 
for this loop. For both cases, estimated S  and J  are in relatively good 
agreement with the actual S  and J.

s.

000£
i

U_

5.7
300 400

t im e /s
(a)

500 600100

O
a5

1
8

200 300
t im e /s

(b )

Figure 5.10: Process output (flow rate, PV) and controller output (OP) for the 
flow control loop

5.5.2 Level Control Loop:

The schematic of the control loop is shown in figure 5.11. This is a cascaded 
loop. The level controller (L C ) signal acts like a set point for the flow con­
troller (FC). Process output (pv, the level) and the controller output (op) 
for (S, J) =  (1,1) are shown in Figure 5.12.Results of stiction estimation 
are summarized in Table 5.5. The method successfully quantifies S  and J.
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FV

Figure 5.11: Schematic of the cascaded level loop control

Table 5.5: Estimated S  and J  from experimental data
S J

Data Actual Estimated Actual Estimated
Flow Loop 1 1 1 1

2 2 1 1.5
Level Loop 1 1 1 1

2 1.5 1 0.5

5.6 Industrial Case Studies

This section summarizes the results of the proposed method on indus­
trial data. For each loop, the set point (sp), controlled output (pv) and 
controller out- put (op) data were available. The numerical results for all 
loops are provided in Table 5.6. The proposed method is applicable to any 
type of control loops as shown in the Table.

Table 5.6: Results for the Industrial Case studies
Estimated Stiction %

Loop No. Loop Type S J
1 Level 8 2

2 Flow 0.5 0.5
3 Temperature 1 1

4 Pressure 2 1

5 Composition 3 1

Loop 1 is the same level control loop described in section 5.1.1. The 
estimated S  and J  values are 8  and 2 respectively. This is verified using 
the valve positioner, m v (fortunately available in this case; but generally
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Figure 5.12: (a) Process output (Level, PV) (b) Level controller output (OP)

not available) and controller output, op. Figure 5.13 shows the (mv, op) for 
this case. The estimated J value matches well with the value seen in the 
plot. The S value is not exactly same but is close to the real value

Data for loop 2  is obtained from a flow control loop of a refinery. The 
sampling interval for this data was 15 second. Loop 3 is a temperature 
control loop on a furnace feed dryer system at Tech Cominco's mineral 
processing plant located in Trail, British Columbia, Canada. The temper­
ature of the dryer combustion chamber is controlled by manipulating the 
flow rate of natural gas to the combustion chamber. For this loop, data 
were collected at a sampling interval of 1 min and over a period of two 
days leading to a total of 2880 samples. Loop 4 data set had only 1500 data 
points collected at 2 0  s sampling intervals and corresponded to a pressure 
control loop in a refinery plant. Loop 5 describes a concentration control 
loop. The data set contains 1100 data points collected at 1 s sampling in­
tervals.
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S ~ 1 0

=> 68 Q.

controller output, op

Figure 5.13: mv-op plot for Industrial Level Loop (Loop 1).

5.7 Summary

In this work, the effect of controller dynamics on the apparent stiction and 
the impact of J on the frequency and amplitude of limit cycles due to 
stiction have been demonstrated using simulation examples. A method 
is proposed to simultaneously estimate both S  (stickband+deadband) and 
J  (slip-jump). The stiction model parameters and the process model are 
jointly identified using an optimization approach. The proposed method 
has been tested successfully on simulated, experimental and industrial 
data. The method needs only routine operating data from a control loop.
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Concluding Remarks and Future 

Directions

There has been extensive research done in the field of Process Monitoring 
and Assessment, in past decade and a half and various commercial process 
monitoring software tools are now available. Each toolbox has a different 
performance metric. In this work some practical issues related to Rela­
tive Performance Index (R P I ) have been discussed. It has been shown 
through simulation examples that in presence of IW N  type disturbance, 
R P I  varies even if the controller tuning and the process model fidelity 
remain the same. A two step approach is taken to solve this problem:

1. Detect presence of IW N  type disturbance in the system.

2. Calculate R P I  for such cases.

A new index, Low Frequency Amplitude Ratio, LF A R  is developed 
which can be used to automatically detect the presence of IW N  type dis­
turbance in a system. The LF A R  value calculated for a system is com­
pared to a critical LF A R  value, LFAR^mai- If LF AR >  LF A R criticai then 
the system is said to have IW N  type disturbance. The LF A R criticai value 
is user dependent. If the noise model is given by

— x  (6.1)
1 — aq  1
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then as a  —> 0, N —̂ Integrator. But in real life pure integrators are rarely 
encountered. So, it is up to the user to decide for what value of V  will 
the system be considered to have IW N  type disturbance. The LF A R criticai 
and hence the final analysis is highly sensitive to this choice of 'a'.

It is demonstrated through simulation studies that for cases with IW N  
type disturbance, R P I  computed based on the differenced data is rela­
tively very stable. It is also shown that the differencing exercise does not 
mask the real change in the system (such as change in controller tunning).

R P I  computation during set-point tracking is another issue with is 
dealt in this work. It has been shown through an industrial case study 
that the present way of computing R P I  does not give accurate perfor­
mance measure of a controller in a set-point tracking function. It is proved 
theoretically that the present way of computing R P I  has some drawback 
when dealing with set-point tracking problems. A novel method is pro­
posed to compute a performance metric for such cases. This method is 
based on fitting a B J  model to the process variable (pv) and then using 
step-response of the transfer function between process variable and the 
set-point to compute the performance metric. This metric is termed as 
R P IserV0. One possible problem with this technique is the issue of fitting a 
B J  model. This may be cumbersome in some cases.

Figure 6.1 is an extension of the logic flow diagram shown in chapter
1. The logic diagram shows the steps to calculate RPI. The logic is robust 
enough to handle the problem of varying R P I, (if the root-cause is the 
presence of IW N  type disturbance in the system). It also provides an au­
tomatic technique to compute R P I  for set-point tracking and regulatory 
control cases.

The economic impact analysis on better performance monitoring gives 
another dimension to the area of performance assessment and monitor­
ing. In this work, an index, Economic Performance Index (E P I)  has been 
developed. This index gives dual information, a measure of current con­
troller performance and the economic benefits of improving the perfor­
mance to a desired level. The concept of E P I  is based on the variabil­
ity reduction of the process output such that the operating point can be 
shifted closer to the constraint. This idea has been applied to an indus­
trial case study and the results as evaluated by industrial personnel are 
considered credible.
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Start

YesOscillation Diagnosis Is the signal oscillatory 1

N o
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High set-point activity ?
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Fit a BJ model

Calculate LFAR

Calculate RPI. N o
LFAR > LFAR,

Yes

Calculate RPI using 
Normal data

Calculate RPI' using 
Differenced dataReport RPIS

Report RPI Report RPI'

Stop

Figure 6.1: Logic Flow Diagram to Compute appropriate RPI

There are some issues /  drawbacks with the present technique of eval­
uating E P I. The method to calculate the E P I  does not take into account 
the loop interactions and variability transfer issues. In interacting loops, 
variance reduction in one process variable may effect the variance in the 
other loop. The method presented does not take this into account while 
computing the E P I. Another issue which is not considered in the present 
study is that variability reduction in the process output would mean in­
creasing the variance of the manipulated variable. There may be con­
straints on the manipulated variable and in the method presented, these 
constraints are not taken into account.
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A possible solution for this can be to first study the constraints on the 
manipulated variable(s) then taking them into account and work back­
wards to calculate the maximum allowed reduction in the variance of the 
process variable and then calculating the E P I  accordingly. Also comput­
ing E P I  in cases where the operating point cannot be changed, e.g. slave 
loop in a cascade system, still remains an open problem.

The last part of this work deals with quantification of stiction. The 
adequacy of two-parameter stiction model proposed by Choudhury et al. 
(2004a) over the one-parameter model, by Stenman et al. (2003) is estab­
lished through an industrial example. The importance of slip-jump is 
also established through a simulation example.

A novel method to quantify stiction using a two-parameter model has 
been proposed. The method has been successfully tested on simulated, ex­
perimental and industrial data sets. The method is based on the identifica­
tion of a hammerstein model. Therefore, in cases with no stiction present, 
the problem of persistent excited input signal comes in and the results can 
not be trusted. Therefore the first step before implementing this technique 
is to detect stiction using the stiction detection methods available in liter­
ature.

The stiction model used in this method in its slightly modified form 
can also handle asymmetric stiction. Therefore it is possible to extend the 
method to estimate parameters of asymmetric stiction model. The pro­
posed method can also be extended to cases when the plant model is non­
linear in itself. In such cases, to correctly estimate S  and J, knowledge of 
the presence and structure of the non-linearity is required.

The proposed method is found to be sensitive to the data set chosen 
for quantification, i.e. if data set is not chosen carefully, then the proposed 
technique may give misleading results. A method is needed to automati­
cally select the best representative data set from the available data.
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