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ABSTRACT Power converter design evaluation by means of real-time simulation techniques is prevalent,
although it is mostly restricted to simple power semiconductor switch models that exclude device-level physical
details. In this work, the nonlinear high-order electro-thermal model of the Insulated-gate bipolar transistor
(IGBT) is developed and then deployed onto the heterogeneous digital hardware for real-time implementation.
As the complexity of the nonlinear behavioral model (NBM) of the IGBT poses a significant computational
burden on real-time hardware emulation, machine learning (ML) methodology is utilized so that the trained
model can reproduce the characteristics of its original counterpart as much as possible and then it is implemented
on the Adaptive Compute Acceleration Platform (ACAP), which composes of the processing system (PS),
programmable logic (PL), and Artificial Intelligent Engine (AIE). The vector multiplication feature of the AIE
caters to mathematical operations of the ML-based model particularly well and consequently enables it to be
executed in real-time with remarkable speedup over the original model with which matrix inversion is otherwise
mandatory. Finally, the validation for real-time device-level results and system-level results of a multi-converter
system is provided by SaberRDr and MATLAB/Simulinkr.

INDEX TERMS Adaptive Compute Acceleration Platform (ACAP), AI Engine (AIE), Artificial neural network
(ANN), Field-Programmable Gate Array (FPGA), Insulated-Gate Bipolar Transistor (IGBT), machine learning
(ML), power electronic converters, real-time systems.

LIST OF ABBREVIATIONS
ACAP Adaptive Compute Acceleration Platform
AIE AI Engine
ANN Artificial Neural Network
APU Application Processing Unit
BRAM Block RAM
FPGA Field-Programmable Gate Arrays
IGBT Insulated Gate Bipolar Transistor
MAE Mean Absolute Error
ML Machine Learning
NBM Nonlinear Behavioral Model
NN Neural Network
NoC Network on Chip
PL Programmable Logic
PS Processing System
ReLU Rectified Linear Unit
SIMD Single Instruction Multiple Data

I. INTRODUCTION

Power electronic converters have been playing a significant
role in power supply systems in many domains, such as rail
transportation [1], electric vehicles [2], and ship power sys-
tems [3]. The Insulated-gate bipolar transistor (IGBT) is now
one of the most important and extensively used power semi-
conductor switches in the aforementioned applications for its
advantages and characteristics, such as large capacity, simple
driving, easy protection, and high switching frequency.

There is a growing volume of literature that establishes
the system-level simulation of these converter-based systems
for their design and performance evaluations [4]–[6], where
most of them are based on detailed modeling or average
value modeling, which suffices for the testing and verifica-
tion of system-level converter functions such as frequency
regulation and voltage adjustment. When an in-depth study
is required for a comprehensive electro-thermal transient
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analysis, the device-level modeling is compulsory [7], as it
reveals the transient performance of the power semiconductor
switch, so that the transient voltage, current, and thermal
stresses can be monitored accurately for real converter design
evaluation [8].

Various device-level IGBT models have been developed
and widely used in the past for power converter simulation
[9], [10], such as the analytical model, and the nonlinear be-
havioral model (NBM). However, the modeling complexity
due to the inclusion of device transients poses a significant
challenge accompanied by a high chance of numerical di-
vergence. This often results in a short simulation duration
that is even insufficient for the system to reach its steady
state, especially in commercial simulation tools such as
PSpicer, MultisimTM, and SaberRDr. Therefore, hardware
acceleration using FPGA has been adopted for medium-
scale power converters where a dramatic speedup over CPU
was attained [11], [12]. In addition, [13] implements the
device-level simulation of the IGBT model using the parallel
algorithm on GPU, which also significantly improves the
simulation efficiency. Real-time simulation [14] is playing an
increasingly vital role in the development and testing stages
of power electronics and requires the model to be updated
strictly within the corresponding simulation time-step, but
the nonlinear property of the device model determines that
real-time execution can hardly be met due to a Newton-based
iterative solution of a high-order matrix equation. As a result,
both hardware acceleration and algorithm optimization are
necessary to achieve that goal.

Machine learning (ML) has begun to be employed in
power systems and power converters to reduce the com-
putational burden of conventional models [15], [16], and
various neural networks (NNs) including gate recurrent unit
(GRU) [17] and recurrent neural networks (RNN) [18] are
utilized to train models and obtain accurate results and im-
prove the simulation efficiency. As a novel and time-saving
approach, ML can also be applied to the study of circuit
transients by learning a specific dataset and configuring the
NN to create the design-compliant models [19]. However,
this approach has yet to be explored for power electronics
device simulations. In this paper, the ML methodology is
adopted for avoiding high-dimensional matrix equations that
are challenging to solve by traditional methods.

Compared to the conventional FPGA, the VersalTM Adap-
tive Compute Acceleration Platform (ACAP) from Xilinxr

has an innovative design in terms of hardware architec-
ture, which combines Adaptable Engines, Scalar Engines,
Intelligent Engines, and Network on Chip (NoC) to provide
powerful heterogeneous acceleration for a wide range of
applications [20]. As the most critical and innovative part of
ACAP, the AI Engine (AIE) is a highly optimized processor
with many features, such as the Single Instruction Multiple
Data (SIMD) vector unit, and Very Long Instruction Word
(VLIW) function that can be used in the field of real-time
emulation to solve the data-intensive computing issues.

In this work, the IGBT electro-thermal NBM has been im-

plemented and evaluated on the VersalTM ACAP’s processing
system (PS), programmable logic (PL), and AIE, separately.
The ML-based model is proposed to accommodate the SIMD
vector processing feature of the ACAP, specifically, the adop-
tion of the NN enables faster matrix calculations to replace
the complex iterative matrix inversion in the transient simula-
tion process. The ML model is realized through learning from
the dataset of IGBT NBM, and the AIE SIMD vector unit
provides intrinsics [21] to make the model emulation more
efficient before being implemented on the ACAP. Finally, the
simulation results of a multi-converter system are verified by
MATLAB/Simulinkr.

This paper is organized as follows: Section II introduces
the IGBT device-level nonlinear behavioral electro-thermal
model. In Section III, the VersalTM ACAP architecture in-
cluding PS, PL, and AIE is introduced, and the implementa-
tion and performances of the NBM in these three domains
are also presented. The machine learning model, training
methodology, and vectorized implementation are described
in Section IV. Section V shows the validation of the ML
model and hardware simulation results, and Section VI pro-
vides the conclusion.

II. NONLINEAR BEHAVIORAL ELECTRO-THERMAL
DEVICE-LEVEL MODELING OF IGBT
A. IGBT NONLINEAR BEHAVIORAL MODEL
The nonlinear behavioral model [22] of an IGBT with its
inherent anti-parallel diode is shown in Fig. 1 (a). According
to definition,

i(t) = C
dv(t)

dt
, (1)

a capacitor can be discretized by Backward Euler as:∫ t

t−∆t

i(t) dt = C[v(t)− v(t−∆t)], (2)

i(t) =
C

∆t
v(t)− C

∆t
v(t−∆t)

=
C

∆t
v(t) + Iceq ,

(3)

where ∆t is the time-step. The equivalent conductance is
defined as GCeq = C

∆t , and the equivalent current source
Iceq=- C

∆tv(t − ∆t). Consequently, for capacitor Cge, the
conductance GCge and current source iCgeeq are given as:

GCge =
Cge

∆t
, (4)

iCgeeq = −GCge · vCge(t−∆t). (5)

The discretized forms of nonlinear capacitors Ccg and Cce

are identical, for example:

Ccg =

{
(Ccgo · (1 +

vCcg
vCgo

)−m), vCcg > 0

Ccgo, vCcg ≤ 0.
(6)
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where m is the Miller capacitance exponent coefficient,
which is set to 0.5 by default, and Ccgo is the fixed capac-
itance, given in Appendix A.

Similar to Cge, the conductance could be calculated as
GCcg = Ccg

∆t , and the equivalent current source as:

iCcgeq =
qCcg (t)− qCcg (t−∆t)

∆t
−GCcg · vCcg (t),

(7)
where qCcg is the charge.
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FIGURE 1: (a) High-order IGBT nonlinear equivalent cir-
cuit; (b) equivalent thermal network.

Since the IGBT has three operating states: OFF state,
linear, and saturation regions, the metal-oxide-semiconductor
field-effect transistor (MOSFET) is adopted for model de-
scription, and its equivalent current imos can be formulated
by three segments, namely

imos =


0, (vCge < Vth) & (vd ≤ 0)

a2 · v(z+1)
d − b2 · v(z+2)

d , vd < (y ·∆vCge)
1
x

∆v2
Cge

(a1+b1∆vCge ) , others,

(8)
where a1, a2, b1, b2, x, y and z are coefficients, vCge and vd
are the voltages over capacitor Cge and imos, respectively,
Vth is the IGBT channel threshold voltage, and ∆VCge is
defined as

∆vCge = vCge − Vth. (9)

consequently, the conductanceGmosvd and transconductance
Gmosvcge resulting from the discretization of the component
can be derived by taking partial derivatives of vd and vCge ,
respectively, and each operation state has a different form.

1) ON state
Under ON state, i.e. vd is less than the value of (y ·∆vCge)

1
x ,

the conductance and transconductance are expressed by the
following equations

Gmosvd =
∂imos

∂vd
= a2(z + 1) · vzd − b2(z + 2) · v(z+1)

d ,

(10)

Gmosvcge =
∂imos

∂vCge
=

∂a2

∂vCge
· v(z+1)

d − ∂b2
∂vCge

· v(z+2)
d .

(11)

2) Transient state
Under the transient stage, the conductance Gmosvd is zero,
and the transconductance can be derived as

Gmosvcge =
2∆vCge

(a1 + b1∆vCge)
−

b1∆v2
Cge

(a1 + b1∆vCge)
2
.

(12)

3) OFF state
When the IGBT is OFF, bothGmosvd andGmosvcge are zero.

Taking the different forms of Gmosvd into consideration,
the companion current of imos can be calculated by

Imoseq = imos −Gmosvd · vd −Gmosvcge · VCge .
(13)

The tail current Itail occurs when the IGBT is being turned
off, and it can be estimated using the formula below

Itail =

{
0, Vtail

Rtail
< imos

( Vtail
Rtail

− imos) · irat, others,
(14)

where irat is a fixed current.
Finally, all subunits are combined and expressed as

GIGBT · vIGBT = IIGBTeq, (15)

where GIGBT is the 5× 5 admittance matrix, vIGBT is the
IGBT node voltage, and IIGBTeq is the companion current.

B. DIODE NONLINEAR BEHAVIORAL MODEL
The nonlinear behavioral power diode model is demonstrated
in the right part of Fig. 1 (a). The relationship between diode
static current Id and its junction voltage is expressed by

Id = Is · [e(
Vj
Vb

) − 1], (16)

where Is is the leakage current, Vb is the junction barrier
potential, and Vj is the static junction voltage.

The nonlinear diode (NLD) conductance Gj and the com-
panion current Ijeq are

Gj =
∂Id
∂Vj

=
Is
Vb
e
Vj
Vb , (17)

Ijeq = Id −Gj · Vj . (18)
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FIGURE 2: (a) Architecture of ACAP; (b) AI Engine array; (c) AI Engine tile; (d) AI Engine architecture.

C. IGBT ELECTRO-THERMAL MODEL
As given in Fig. 1 (b), the process in which the power
loss causes semiconductor junction temperature rise can be
modeled by the R-C pairs as an equivalent electro-thermal
network [23] which is generally expressed as

Zth =
N∑
i=1

Rth(i)(1− e
− t
τi ), (19)

Cth(i) =
τi

Rth(i)
, (20)

where Rth(i) and τi are constants. The power loss of the
IGBT Ploss is numerically equal to the input current of the
transient thermal impedance equivalent circuit. On the other
hand, the terminal voltage of the current source can be taken
as the semiconductor’s junction temperature Tj ,

Tj(t) =
4∑

i=1

Ploss(t) + Ici(t−∆t)

Gci +R−1
th(i)

+ Te, (21)

where Te stands for the ambient temperature,Gci=∆t/2Cth(i),
and Ici is the capacitor history current.

III. IGBT NBM IMPLEMENTATION ON ACAP
VersalTM devices are the first ACAP based on the TSMC 7
nm FinFET process technology of Xilinxr. Fig. 2 (a) depicts
the architecture of ACAP, which consists of a scalar engine
(PS), an adaptable engine (PL), and an intelligent engine, all
of which are connected together via a series of high-speed
and integrated horizontal and vertical paths NoC to achieve
remarkable performance and meet design timing, speed, and
logic utilization requirements.

A. IGBT DESIGNS ON ACAP
1) AI Engine: As shown in Fig. 2 (b), the AIE array is the
top-level hierarchy of the AIE architecture, which integrates
a two-dimensional array of AIE tiles. The AIE array interface
enables the AIE to communicate with the rest of the VersalTM

device through the NoC or directly to the PL. The AIE tile ar-
chitecture is shown in Fig. 2 (c), where each tile includes one
tile interconnect module which handles AXI4 input/output,

a memory module, and an engine, which can access up to 4
memory modules in four directions. The AIE, shown in Fig. 2
(d), is a highly-optimized processor that supports both fixed-
point and floating-point precision and is organized as an array
of AIE tiles, which can contain up to 400 tiles on the VC1902
device used in this work.

The AIE programming flow is carried out in two phases
with the Vitisr integrated design environment: kernel pro-
gramming and graph programming. A kernel describes a spe-
cific computing process running on a single AIE tile where
C/C++ code is used for programming, and a C++ framework
is provided by Xilinx to create graphs from kernels that
contain declarations for the graph nodes and connections. A
graph will instantiate and connect the kernels using buffers
and streams, and also describe the data transfer between the
AIE array and the rest of the ACAP device.

Fig. 3 shows the dataflow graph and kernels of the
NBM implementation, which is achieved by 5 AIE kernels
(pre_cal, diode, igbt_on, igbt_off , and igbt_transient),
connections, and different types of buffer, where the data
transfer between kernels is memory-to-memory and the
transmission of data between kernels and PL is stream-to-
memory or memory-to-stream. First, the node voltage of
the IGBT is sent as input to the first kernel pre_cal for
parameters precalculation, the second kernel diode computes
the parameters of the diode, and the third to fifth kernels
igbt_on, igbt_off , and igbt_transient are designed to per-
form IGBT nonlinear functions in the ON state, OFF state,
and transient state, respectively, and finally, the outputs make
up the admittance matrix in (15).

2) PS: As shown in the scalar engine part of Fig. 2
(a), the Application Processing Unit (APU) is based on
the ARM Cortex-A72 processor core to provide general-
purpose computing in a standard programming environment
[24], which is chosen for IGBT NBM computation since it
offers higher capabilities and a high clock frequency of up
to 1700MHz. The OpenCL and the Xilinx Runtime (XRT)
methodology are adopted for software programming, which
enables multiple kernels to be executed concurrently with
initialized command queue and thus is highly efficient in
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performance.
3) PL: PL is an extensible structure that enables the cre-

ation of a wide range of conceivable functions. It consists
of DSP engines, configurable logic blocks, Configuration
RAM, and Block RAM (BRAM), which can be configured
together to create numerous types of hardware functionalities
including accelerators, processors, functional pipeline units,
and peripherals [24]. As shown in the left part of Fig. 3, PL
establishes connections between PS, NoC, AIE, high-density
I/O buffers, and components instantiated within the PL. In
the IGBT NBM design, the GMIO port is used to connect
external memory mapped to or from the global memory,
which accesses DDR memory directly with a bandwidth
throughput of 3200 MB/s. The connections and configuration
of the PL elements are captured in the Vivador design suite
and the Vitisr unified software platform toolchain using a
programmable device image.

B. COMPARISON OF NBM IMPLEMENTATIONS ON
THREE DOMAINS
Fig. 4 shows the setup of the hardware platform Xilinx
VersalTM VCK190 board with the ACAP device XCVC1902.
The IGBT NBM is implemented on the PS, PL, and AIE of
the ACAP, respectively, for a comprehensive evaluation of
different design schemes. When the simulation duration is
0.05s, the actual execution time for the simulation is 0.042s
on the PS. Then the real-time ratio could be expressed as
0.05s
0.042s = 1.19, which indicates that for a single IGBT, the
simulation speed is slightly faster than real-time. However,
the simulation of a power converter with many IGBTs slows
down significantly due to the inadequate scalability of PS.

Table 1 lists the latency and resource utilization of NBM
implementation on AIE and PL. While the PL has the
advantages of numerous resources and customizability to
support the simulation of systems with multiple IGBTs, a
heavy data dependency of the NBM restricts parallelism
and ultimately leads to high latency. The AIE has highly
optimized processors and a data stream frequency of 1GHz
for efficient parallel processing. The AIE scalar processor

Power LEDsPower LEDs
USB-typeC 

connector

USB-typeC 

connector

Power 

switch

Power 

switch

SD 

card

SD 

card

Ethernet connectorEthernet connector

ACAP XCVC1902 + Heatsink + FanACAP XCVC1902 + Heatsink + Fan

FIGURE 4: Xilinxr VCK190 board setup.

has an excellent performance on fixed-point data processing
but is not ideal for floating-point data required by NBM, as
shown in Table 1. To accelerate the computing process, the
ML strategy and AIE Vector Unit are adopted, as the adapted
vectorized data type and SIMD features enable the IGBT NN
model to be processed simultaneously.

TABLE 1: NBM implementation in AIE and PL

Part Latency Resource Utilization

AIE Scalar Unit 10.946µs AIE Tiles 5 1.25%
Kernels 5 -

PL 3.37µs

BRAM 28 1.45%
URAM 0 0.00%

DSP 252 12.80%
LUT 52230 5.80%
FF 21306 1.18%

IV. ML MODELING AND REALIZATION OF NBM
Based on the NBM performance evaluation in the previous
section, it can be seen that the real-time performance is less
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than satisfactory. A machine learning-based co-simulation
technique is proposed to streamline the computational pro-
cedure while maintaining simulation accuracy.

A. SELECTION OF NEURAL NETWORK TOPOLOGY
Different neural networks such as convolutional neural net-
works (CNN), recurrent neural networks (RNN), and artifi-
cial neural networks (ANN) are novel trends in the realm of
machine learning, providing impetus for various applications.
Similarly, the NN methodology can be valuable in the field
of real-time simulation, as one of its benefits is that it can
take advantage of the numerical prediction property to derive
the corresponding output model by training on specific data,
thus avoiding the extensive computations caused by iterations
during transient states.

In Fig. 5 (a), an elementary version of the neural network
is depicted, with a multilayer structure formed by certain
neurons, notably the input layer, the hidden layer, and the
output layer, each node in the upper layer is linked to all the
nodes in the next layer. The mathematical expression is

Y = f(X ·W + b) = f(
n∑

i=1

XiWi + b), (22)

where X is the input, n is the number of neurons, Y is the
output, W is the weight, and b is the bias.

Fig. 5 (b) represents the general mathematical model of
NN, where the input variables from x to xi are multiplied
with the weight matrix W and summed with the bias value
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b. Finally, the activation function serves as a nonlinear map-
ping, limiting the amplitude of the output to a specific range.
Common activation functions include Sigmoid, Tanh, and
rectified linear unit (ReLU) [25], of which ReLU is the most
popular type in machine learning compared to the Sigmoid
and Tanh functions since ReLU has only a linear relationship
and its computation is faster than the other, which needs to
perform exponential operations.

In this work, ANN is chosen as the IGBT NBM transient
state machine learning model because it has the feature of
fitting the intermediate data curve by the first and last data
only, which avoids the problem of computational iterations
in traditional electromagnetic transient (EMT) models, and
its high parallelism and low execution delay can match the
criteria of transient simulation.

B. DATA COLLECTION AND TRAINING METHODOLOGY
One crucial part of ML training of devices is the selection
of the dataset since it will influence the accuracy of the
training results and the generality of the model. For the IGBT
Siemens BSM300GA160D, rated 1600V, 300A in this work,
where the parameters are provided in Appendix A, the dataset
is extracted from the MATLAB simulation results of the
IGBT NBM, and both the turn-on and turn-off data during
the transient state should be of concern.

The corresponding IGBT NBM ANN model has 5 input
variables including the initial and last status of the transient
state voltage Vstart, Vend, current Istart, Iend, and gate signal
Vg . All these data are normalized to (-1,1) using min-max
normalization, which allows for easier data processing and
better training performance.

The mean absolute error (MAE) is used to measure the
accuracy of the training model:

MAE =
n∑

i=1

|yprei − yi|
n

, (23)

where n is the total number of the output, yi is ith originate
value from the dataset, and the yprei is the corresponding
output of the ANN model. The Adam optimization algorithm
is adopted as the training methodology in this work to min-
imize the error [26]. Fig. 6 shows the MAE of the IGBT
ANN model, which presents the error reduction during the
training process. The training epoch is selected as 1000 to
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reduce error, and the hidden layer size is set to 32 to improve
the efficiency of the AIE vector code since the size of the
accumulator is a multiple of 8-bit. Since the MAE of one
hidden layer is not significantly distinct from that of two
hidden layers, it is used to achieve optimal performance.

C. MATRIX MULTIPLICATION IMPLEMENTATION WITH
AIE
From the previous part of this section and the mathematical
expression, the input variables need to be multiplied by the
weight and summed by bias, which could be seen as the
matrix multiplication and addition for the hidden layer and
output layer. Some changes are performed to the matrix size
that has no impact on the outcome to make the operations
adaptable for the AIE vectorized code, for example, for the
hidden layer, the size of the weight matrix W is 32 × 8, the
input matrix X is 8× 1, and the bias matrix b is 32× 1.

The column-based matrix multiplication is implemented
using vectorized AIE code, where the vector data types pack
multiple scalar data elements into a wider vector. In this case,
both the AIE API and intrinsics are employed to increase
design productivity. The AIE API, which is implemented as a
C++ header-only library and offers types and operations that
are converted into effective low-level intrinsics, is a portable
programming interface for accelerators. In the meantime, the
vector data types and the MAC intrinsics [21] are deployed
for application-level programming in this work.

There are two solutions based on AIE floating-point intrin-
sics to implement the matrix multiplication; the first strategy
is to perform the multiplication with fpmul and then add
it with the bias matrix to the accumulator using fpmac.
Another methodology, the more efficient way presented in
this paper, is to apply fpmac intrinsic only as shown in Fig.
7 (a). Firstly, the bias matrix b is loaded to the accumulator,
then the weight matrix W is stored at several accumula-
tors by column, and each column in the weight matrix is
multiplied by the corresponding row of the input matrix X,
where the fpmac intrinsic is applied to perform both the
matrix multiplication and addition, the full IGBT ANN AIE
vectorized matrix calculation is shown in Fig. 7 (b).

V. EMULATION RESULTS AND DISCUSSION
A. IGBT ANN MODEL VALIDATION AND PERFORMANCE
Fig. 8 gives the ANN model training results compared with
the offline device-level (100 ns time-step) simulation tool
SaberRDr, where Fig. 8 (a) is the IGBT transient current and
voltage of the turn-on state and Fig. 8 (b) is the turn-off state.
Fig. 8 (c) and (d) show the IGBT junction temperature at 200
A and 333 A, where the latter needs an additional cooling
system. Table 2 shows the latency and resource consumption
of different parts of the ANN model implemented in AIE.
A comparison of matrix multiplication implementations on
different hardware platforms is given in Table 3, for the same
size matrix multiplication, AIE is 2.6 times faster than CPU
and more than 28 times faster than FPGA.

TABLE 2: IGBT ANN model performance in AIE

Part Latency Size Resource
Hidden layer 136 ns [32× 8]× [8× 1]+ [32× 1] 0.5%
Output layer 1706 ns [80× 32]× [32× 1] + [80× 1] 0.5%

ReLU 68 ns [32× 1] 0.25%

TABLE 3: Comparison of matrix multiplications on different
hardware

Hardware Type Platform Size Latency

AI Engine VersalTM VCK190 [32× 8]× [8× 1]+ [32× 1] 136 ns
FPGA Zynqr ZCU106 [32× 8]× [8× 1]+ [32× 1] 3860 ns
CPU Intelr CoreTM i7 [32× 8]× [8× 1]+ [32× 1] 360 ns

B. REAL-TIME SYSTEM-LEVEL EMULATION RESULTS
The case study system is presented in Fig. 9, where Fig.
9 (a) shows the 2-level VSC converter. For the DC side,
as shown in Fig. 9 (b), there are 4 kinds of load circuits,
namely half-bridge load, buck load, boost load, and full-
bridge load, and Fig. 9 (c) presents the control diagram. The
system parameters are given in Appendix B. The emulation
of the system is implemented on the Xilinx VersalTM ACAP
XCVC1902, where the time-step is 5 µs. Table 4 provides
the hardware resources consumption and the latency of the
different parts of the system.

Fig. 10 demonstrates the simulation results of the case
study system with the AC side fault F at 0.4 s as shown
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TABLE 4: Resources consumption of a VSC converter

Part Latency BRAM DSP FF LUT URAM
Control 4280 ns 0.21% 0.51% 0.20% 0.40% 0
Solver 8900 ns 0.10% 0.20% 0.28% 0.62% 0

Converter 1510 ns 0.41% 0.46% 0.24% 0.51% 0

in Fig. 9 (a). In Fig. 10 (a), before the AC side fault, the
power of the grid varied in the range of approximately 600
kW to 900 kW; and it quickly drops to about 50 kW when
the fault occurs. Then after 0.1 s, the grid power is gradually
restored. Fig. 10 (b) displays the power of the full-bridge
and half-bridge load, which both decrease from their original
power at fault, and increase to peak at 0.5 s, then reinstate at
0.6 s. Fig. 10 (c) is the power of the buck load and has the
same trend as the previous figures while the value drops to 0
when the fault happens. Fig. 10 (d) is the boost load power
and the power remains steady before the fault, and the value
changes from about -124 kW to -110 kW between 0.4 s to
0.5 s, and recovery to the original value after 0.1 s. Fig. 10
(e) and (f) is the voltage on the DC side and AC side. Fig. 11
gives the junction temperature of an IGBT in the simulation
of the whole system. In Fig. 11 (a), with Cooling System
1 which has the insufficient capacity as given in Appendix
A, the junction temperature reaches about 220◦ at the steady
state. Fig. 11 (b) shows that with a decent capacity, such as
Cooling System 2, the temperature remains below 70◦ even
though the fault occurred.

In Fig. 12, the simulation results of the system are pre-
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FIGURE 9: Case study of the full system: (a) AC rectifier
part; (b) DC loads; (c) control diagram of 2-level VSC.

sented with the DC side half-bridge load circuit fault at
0.5 s and last for 2 seconds. Fig. 12 (a) shows the gird
power between 0 and 3.0 s, and it can be seen that the
power increases to about 95 kW at 0.5 s, and then returns
to its original value at 2.5 s. Fig. 10 (b) is the power of
the full-bridge and buck load, both of which do not change
considerably after the fault occurs. In Fig. 12 (c), the power
of the half-bridge load increases from its original value to
440 kW and becomes stable in the range of 390 kW to 420
kW, then restored after the fault ends at 2.5 s. Fig. 12 (d)
shows the DC side voltage, which originally varied between
approximately 950 V and 1040 V, and changed to between
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940 V and 1050 V after the fault occurred.

VI. CONCLUSION
Real-time emulation of a device-level nonlinear behavioral
model of IGBT is a challenging task due to its high compu-
tation burden arising from the need for an iterative solution
of device equations to obtain a convergent solution of every
nanosecond scale time-step. In this paper, a machine learning
strategy is proposed to tackle the IGBT nonlinear behavioral

electro-thermal model and demonstrated in a multi-converter
supply-load system case study. The model is implemented
on three main domains of a novel heterogeneous ACAP
hardware: PS, PL, and AIE, which are introduced in de-
tail in terms of functionality and features. The performance
evaluation results, covering latency and hardware resource
consumption, are provided separately. To make better utiliza-
tion of the VCK190 hardware platform and AIE characteris-
tics to achieve the requirements of real-time simulation, the
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IGBT ML-based model and NNs training methodology are
proposed, where the ANN model is adopted to convert the
complex computational iterative process of the transient state
into the simpler matrix operations. From results comparisons
with the conventional model in device-level emulation, the
error of the IGBT ML model is within 1%, and the real-
time requirement can be achieved with less resource con-

sumption. The system-level simulation results are given for
two different fault scenarios on both AC and DC sides and
validated by MATLAB/Simulinkr. The proposed modeling
and implementation strategies can be applied in the future for
real-time emulation of energy conversion systems in various
practical applications.

APPENDIX A
The parameters of the IGBT Siemens BSM300GA160D,
rated 1600V, 300A behavioral model:
Vt = 6.3 V, x = 0.974, y = 1.429, z = 0.369, a1 = 0.022, b1 =
0.004, a2 = 92.5129, b2 = 4.0188, rtail = 1 µΩ , Ctail = 10
F, irat = 0.05, Cgeo = 40 nF, Ccgo = 110 nF.

Cooling System 1: R1 = 2.1 K/kW, R2 = 9.2 K/kW, R3 =
42.6 K/kW, R4 = 6.3 K/kW, τ1 = 0.0008 s, τ2 = 0.013 s, τ3 =
0.05 s, τ4 = 0.063 s.

Cooling System 2: R1 = 1.33 K/kW, R2 = 7.05 K/kW, R3

= 5.23 K/kW, R4 = 2.8 K/kW, τ1 = 0.00147 s, τ2 = 0.034 s,
τ3 = 0.168 s, τ4 = 1.11 s.

APPENDIX B
The parameters of the case study system:
The grid voltage Vs = 490 V (L-L), 60 Hz; the transformer
1MVA, 25 kV /490 V ; Cdc = 0.0333 F ; the half-bridge load
400+j50 kV A; the buck load 250 kW , duty D = 0.55; the
boost supply Vboost = 500 V , duty D = 0.8; the full-bridge
load 200+j50 kV A.
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