
U n iversity o f A lb erta

NEURAL NETW ORK APPROACH FOR NONLINEAR DYNAM ICS
PREDICTION AND FEATURE EXTRACTION

by

Ovidiu Voitcu ©

A thesis subm itted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Applied Mathematics

Departm ent of M athematical and Statistical Sciences

Edmonton, Alberta

Fall, 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-96035-8
Our file Notre reference
ISBN: 0-612-96035-8

The author has granted a non­
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To Claudia

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENT

I would like to thank my supervisor Dr. Yau Shu Wong for his support and for providing

me with the opportunity to acquire mathematical modelling, computing, and practical problem

solving skills, by proposing the present research topic. I also wish to thank Dr. Peter Minev, Dr.

Yanping Lin, Dr. Henry van Roessel, Dr. Chongqing Ru, and Dr. Jianhong Wu for accepting to

be members of my Ph.D. examination committee and for taking the time to read my thesis. Many

thanks to Dr. Wong, Dr. Minev, Dr. Lin, Dr. Wu, Dr. B. H. K. Lee, and Dr. Abel Cadenillas

for generously supporting me with letters of reference for scholarship and job applications.

This work is supported by the Natural Sciences and Engineering Research Council of Canada.

I wish to thank Dr. Thomas W. Strganac and the Aeroelasticity Group at the Texas A & M

University for making their test data available and Dr. Liping Liu for providing the computer

code for numerically generating test signals. I also wish to thank Dr. B. H. K. Lee of the National

Research Council of Canada for providing us with the test signals for the cavity oscillations. I

would like to thank my colleagues Dr. Cristina Popescu and Dr. Liping Liu for their useful

exchange of information in approaching this research topic from different technical perspectives.

Many thanks to Dr. Hongtao Yang for sharing this thesis format with his colleagues.

Finally, I could never find enough words to thank my life partner and best friend Claudia

Caia for standing by me and offering me the gift of her love throughout this challenging period of

my life. Her kindness and understanding gave me more strength to overcome countless obstacles.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 In trod u ction 1

1.1 Prediction of Nonlinear Oscillations ... 1

1.2 Connectionism Versus Symbolism .. 3

1.3 Applications of Neural N e tw o rk s ... 5

1.4 Original Contributions .. 9

2 A rtificial N eural N etw orks (A N N s) 13

2.1 M athematical Representation of ANNs .. 13

2.2 ANN Training .. 16

2.3 The Universal Approximation Property of A N N s .. 21

3 M ain C ontribution 26

3.1 Time Series Models .. 26

3.2 The Proposed Approach .. 29

3.3 Implementation for ANN P re d ic t io n ... 33

3.4 Dynamical Systems Perspective ... 42

4 C ase S tu d ies 57

4.1 Test Cases ... 58

4.2 Choice of Methods and Parameters ... 62

4.3 Prediction A c c u ra c y .. 65

4.4 Robustness C o m p ariso n .. 68

5 Further A p p lications 90

5.1 Cavity O sc illa tio n s.. 90

5.2 Feature E x tra c t io n ... 95

6 C onclusions and Future D irections 99

B ibliography 102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

4.1 ANN Architecture and Training Param eters... 59

4.2 ANN MSP M e th o d s .. 62

4.3 Local Minimum and Local Maximum Points in the Test Signals................................. 63

4.4 Selection of Network I n p u t s .. 67

4.5 Time History -based Prediction Accuracy Scores (THPAS).. 68

4.6 Phase Portrait -based Prediction Accuracy Scores (PPPA S).................................... 69

4.7 Overall Prediction Accuracy Scores (OAPAS).. 70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Biological Neuron.. 13

2.2 Artificial Neuron... 13

2.3 Two Layer Feedforward ANN.. 15

3.1 Two Layer Feedforward ANN Used for Prediction... 30

3.2 The function ip(x) — ln{l + ex/ (l + e- 1)} (’— ’) ... 34

3.3 ANN Training Set with Lmax and Lmin Points (Test Signal S I).............................. 39

3.4 ACF for an ANN Training Set (Test Signal S3)... 40

3.5 F FT Plot of a Training Set (Test Signal S5)... 41

3.6 Test Signal (’— ’), and MSP (’- - ’) .. 41

3.7 Sample p ^ (a) and p ^ (b)... 42

3.8 MSP for m = 3 (’— ’), 4(’- -’), 5(’-.’), 6(’...’) ... 42

3.9 Phase plot for training set (left) and testing set (right)... 50

4.1 Test Signal S I.. 59

4.2 Test Signal S3.. 59

4.3 Test Signal S5.. 60

4.4 Training Sets: Time History and Phase Plot for SI, Time History for S2. 60

4.5 Training Sets: Time History and Phase P lot for S3, Time History for S4.. 60

4.6 Training Sets: Time History and Phase P lot for S5, Time History for S6.. 61

4.7 Test Signal S7.. 61

4.8 Training Sets: Time History and Phase P lot for S7, Time History for S8. 61

4.9 ACF plot for S1-S4... 64

4.10 ACF plot for S5-S8... 64

4.11 FFT plot for SI and S2... 65

4.12 FFT plot for S3 and S4... 65

4.13 FFT plot for S5 and S6... 66

4.14 FFT plot for S7 and S8... 66

4.15 SI (’— ’), MSP for SI (’- - ’), and MSP for S2 (’-.’), for M100.................................... 72

4.16 SI (’— ’), MSP for Si (’- - ’), and MSP for S2 (’-.’), for M101.................................... 72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.17 SI MSP for SI (’- and MSP for S2 for MHO...................................... 72

4.18 SI MSP for SI (’- and MSP for S2 for M i l l 72

4.19 SI MSP for SI (’- and MSP for S2 for M200...................................... 73

4.20 SI MSP for SI (’- and MSP for S2 for M201...................................... 73

4.21 SI MSP for SI (’- and MSP for S2 for M210...................................... 73

4.22 SI MSP for SI (’- and MSP for S2 for M211...................................... 73

4.23 SI MSP for SI (’- and MSP for S2 for M300...................................... 74

4.24 SI MSP for SI (’- and MSP for S2 for M301...................................... 74

4.25 SI MSP for SI (’- and MSP for S2 for M310...................................... 74

4.26 SI MSP for SI (’- and MSP for S2 for M311...................................... 74

4.27 S3 (’— ’), and MSP for S3 (’- for M100. For S4, the ANN training did not

converge.. 75

4.28 S3 MSP for S3 (’- and MSP for S4 for M101...................................... 75

4.29 S3 (’— ’), and MSP for S3 (’- for M110. For S4, the ANN training did not

converge.. 75

4.30 S3 MSP for S3 (’- and MSP for S4 for M i l l 75

4.31 S3 (’— ’), and MSP for S3 (’- for M200. For S4, the ANN training did not

converge.. 76

4.32 S3 MSP for S3 (’- and MSP for S4 for M201...................................... 76

4.33 S3 (’— ’), and MSP for S3 (’- for M210. For S4, the ANN training did not

converge.. 76

4.34 S3 MSP for S3 (’- and MSP for S4 for M211...................................... 76

4.35 S3 (’— ’), and MSP for S3 (’- for M300. For S4, the ANN training did not

converge.. 77

4.36 S3 MSP for S3 (’- and MSP for S4 for M301...................................... 77

4.37 S3 (’— ’), and MSP for S3 (’- for M310. For S4, the ANN training did not

converge.. 77

4.38 S3 MSP for S3 (’- and MSP for S4 for M311...................................... 77

4.39 S5 MSP for S5 (’- and MSP for S6 for M101...................................... 78

4.40 S5 (’— ’), and MSP for S5 (’- for M110. For S6, the ANN training did not

converge.. 78

4.41 S5 MSP for S5 (’- and MSP for S6 for M i l l 78

4.42 S5 MSP for S5 (’- and MSP for S6 for M201...................................... 78

4.43 S5 (’— ’), and MSP for S5 (’- for M210. For S6, the ANN training did not

converge.. 79

4.44 S5 MSP for S5 (’- and MSP for S6 for M211...................................... 79

4.45 S5- (’— ’), and MSP for S6 for M301. For S5, the ANN training did not

converge.. 79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.46 S5 MSP for S5 (’- and MSP for S6 for M311...................................... 79

4.47 S7 (’—’), and MSP for S7 (’- for M100. For S8, the ANN training did not

converge.. 80

4.48 S7 (’— 1’), MSP for S7 (’- and MSP for S8 for M101...................................... 80

4.49 S7 (’—’), and MSP for S7 (’- for MHO. For S8, the ANN training did not

converge.. 80

4.50 S7 (’— ’), and MSP for S7 (’- for M i l l . For S8, the ANN training did not

converge.. 80

4.51 S7 (’—’), and MSP for S7 (’- for M200. For S8, the ANN training did not

converge.. 81

4.52 S7 MSP for S7 (’- and MSP for S8 for M201...................................... 81

4.53 S7 (’— ’), and MSP for S7 (’- for M210. For S8, the ANN training did not

converge.. 81

4.54 S7 (’— ’), and MSP for S7 (’- for M211. For S8, the ANN training did not

converge.. 81

4.55 S7 (’— ’), and MSP for S7 (’- for M300. For S8, the ANN training did not

converge.. 82

4.56 S7 MSP for S7 (’- and MSP for S8 for M301...................................... 82

4.57 S7 (’— ’), and MSP for S7 (’- for M310. For S8, the ANN training did not

converge.. 82

4.58 S7 (’— ’). and MSP for S7 (’- for M311. For S8, the ANN training did not

converge.. 82

4.59 MSP of SI for n 0 = 6 x n%, 8 = 0.8(’...’), 0.9(’- 1.0(’- ’), 1.1(’-.’), 1.2(’- • 83

4.60 MSP of S2 for n 0 = <5 x n j, <5 = 0.8(’...’), 0.9(’- L 2(’' -’)■ For

M101 with 8 = 1.1, the ANN training did not converge.. 83

4.61 MSP of S3 for n 0 = 8 x n*0, 5 = 0.8(’...’), 0.9(’- 1.0(’- ’), 1.1(’-.’), 1.2(’- -’)■ - 83

4.62 MSP of S4 for n 0 = 8 x n*0, 8 = 0.8(’...’), 0.9(’- l-2(’- -’)• For

M101 with 8 — 1.1 and 1.2, the ANN training did not converge.................................. 83

4.63 MSP of S5 for n 0 = 8 x n*0, <5 = 0.8(’...’), 1.0(’- ’), l-2 (’- - ’)• For M101 with
5 = 0.9 and for M201 with 8 — 0.8 and 0.9, the ANN training did not converge. 84

4.64 MSP of S6 for no = 6 x n j, 8 = 0.9(’- 1.0(’- ’), 1.1(’-.’) only. 84

4.65 MSP of S6 for n0 = 8 x n j, 8 = 0.8(’...’), 1.0(’- ’), 1.2(’- - ’) only. 84

4.66 MSP of S7 for n 0 = <5 x ng, <5 = 0.8(’...’), 0.9(’- 1.0(’- ’), 1-1(’- .’), 1.2(’- - ’)• • 84

4.67 MSP of S8 for n Q = 8 x n%, 8 = 0.8(’...,)) 0.9(’- 1.0(’-*), 1.1(’-.’), l-2(’- - ’)• ■ 85

4.68 MSP of SI for n x = n \ + 8, 8 = 0(’— ’), 1(’- 2(’-.’), 3(’...’) 85

4.69 MSP of S2 for m = n \ + 8, 8 = 0(’— ’), 1(’- 2(’-.’), 3(’...’) 85

4.70 MSP of S3 for m = n \ + <5, 5 = 0(’— ’), 1(’- 2(’-.’), 3(’...’) 85

4.71 MSP of S4 for n x = n \ + <5, 8 = 0(’— ’), 1(’- 2(’--’). 3(’- ’) 86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.72 MSP of S5 for n x = n j + 5, 5 = 0(’— ’), 1(’- -’), 2(’-.’), 3(’...’) 86

4.73 MSP of S6 for n x = n*x + 5 ,S = 0(’— ’), 1(’- 2(’-.’), 3(’...’) 86

4.74 MSP of S7 for n x =n*x + S ,S = 0(’— ’), 1(’- -’), 2(’-.’), 3(’...’) 86

4.75 MSP of S8 for n x =n*x + 5 ,5 = 0(’— ’), 1(’- 2(’-.’), 3(’...’).................................... 87

4.76 MSP of SI for t x = t*x + 5 x n*0, 5 = -0 .2 (’...’), -0 .1 (’- 0.0(’- ’), 0.1(’- .’), 0.2(’-

-’) .. 87

4.77 MSP of S2 for t x = q + 5 x n*0, 6 ^ -0 .2 (’. J) , -0 .1 (’- 0.0(’~’), 0.1(’- .’), 0.2(’-

-’). For M101 with 5 = —0.1, the ANN training did not converge........................ 87

4.78 MSP of S2 for t x = t \ + 6 x n*0, 5 = - O .l f - 0.0(’- ’), 0.2(’- - ’) only.

For M101 with 5 = —0.1, the ANN training did not converge............................... 87

4.79 MSP of S3 for t x = q + 5 x n%, 5 = -0 .2 (’...’), -0 .1 (’- 0.0(’- ’), 0.1(’-.’)»

-’) .. 88

4.80 MSP of S4 for t x = t*x + 6 x n*0, 5 = -0 .2 (’...’), -0 .1 (’- 0.0(’- ’), 0.2(’- - ’)• For

M101 and M201 with S = +0.1, the ANN training did not converge......................... 88

4.81 MSP of S5 for t x = t*x + 6 x n%, 5 = -0 .1 (’- 0.0(’- ’), 0.1(’-.’) only........................ 88

4.82 MSP of S5 for t x = t \ + 5 x n*Q, 5 = -0 .2 (,...,), 0.0(’- ’), 0.2(’- - ’) only. 88

4.83 MSP of S6 for t x = t\ + 5 x n*0, 5 = - 0 .2 (’...,)1 -0 .1 (’- 0.0(’- ’), 0.1(’-.’), 0.2(’-

-’) .. 89

4.84 MSP of S7 for t x = t \ + <5 x n*0, 5 = - 0 .2 (’...’), -0 .1 (’- 0.0(’- ’), 0.1(,-.’) I 0.2(’-

-’) .. 89

4.85 MSP of S8 for t x = t f + 5 x n*0, <5 = -0 .2 (’...’), -0 .1 (’- 0.0(’- ’), O.l(,-.0, 0.2(’-

-’) .. 89

5.1 First 2000 data points of S9 and S10... 91

5.2 FFT for S9 and S10, based on the first 2000 data points.. 92

5.3 FFT (truncated plot) for S9 and S10, based on the first 2000 d ata points.............. 92

5.4 ACF for S9 and S10, based on the first 2000 data points.. 93

5.5 FFT (sampling step = 1) for S9 and S10, based on the first 2000 d ata points. . 93

5.6 Correct signal (’— ’) and MSP (’- - ’) for S9 and S10... 94

5.7 FFT for S9 and the ANN-MSP, based on the observations at the moments t x +

1 , t i + n0.. 94

5.8 FFT for S9 and the ANN-MSP, based on the observations at the moments t x +

no + 1 , . . . , t x + 2no.. 94

5.9 FFT for S10 and the ANN-MSP, based on the observations at the moments t x +

1 , t x + 2no.. 95

5.10 Simulated two-mode signal (’— ’) and ANN prediction (’- - ’) 96

5.11 A Wavelet-ANN model for feature extraction... 96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.12 Training ((a),(b)) and testing ((c),(d)) relative errors when using 513 ((a),(c)) and

9 ((b),(d)) network inputs respectively, in the damping extraction problem. . . .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N om enclature

ew(t) current OSP error s(t) — yv (t)

ew(f) current MSP error s(t) — yw (t)

f the derivative function of / : R —» f t

1 the m-fold composition / o / o . . . o /

/[°1 the identity function, by definition

y(1)j f (2) TF of the 1st and 2nd layer, respectively

no number of network inputs

n \ number of neurons in the 1st layer of an ANN

s(t) current observation of the given time series

s(to + 1), s (ti) 1st and last training value, respectively

s(ti + 1), s fa) 1st and last value to be predicted, respectively

t current time step

wk'h’ w<iP weights of the 1st and 2nd layer, respectively

yw(f) current OSP, $ w (s(t — 1 s(i — no))

yw (t) current MSP, $ w (yw (t - 1) , . . . ,y w (t - n 0))

V w 2/w^(i) current output of the 1st and 2nd layer, respectively

E (w) mean squared OSP error (performance index)

$ w (x) the quantity $ w {x i , . . . , x no)

®w(f) the vector [cw (t), ew (t - 1) , . . . , ew(t - n 0 + 1)]T

ew(f) the vector [ew(£), ew(f — 1) , . . . , ew(f — n 0 + 1)]T

s(f) the vector [s(f), s(t — 1) , . . . , s(t — no + 1)}T

s ++(t) the vector [s(t):s(t — 1) , . . . , s(i — no)]T

w the vector of all weights of an ANN

w £ . the vector [wS x . « & > ■ • ■ > wix!fc0]
x generic vector [x\ , . . . , x no\T € R"°

y(t) the vector [y(t),y(t - 1) , . . . , y(t - n 0 + 1)]T

y w(t) the vector [yw(t), yw(t - 1) , . . . , yw (t - n 0 + 1)}T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

y w(f) the vector $ w(f), 2/w(f - 1) , . . . , j/w(f - n 0 + 1)]

y(w) the vector [yw (t 1 + l) , y w {h + 2) , . . . ,^ W(0)]T

No the set of positive integers

R the set of real numbers

w(x) the vector [$w(x) ,x ly. . . , :rno_ i]T
T the transpose operator

\\\f\\\c the sup-norm, su p { |/(x) |;x e R n°}, of /

llXll2 the Euclidean norm, ^ h l2} 1̂ 2, of x

llx l|oo the oo-norm, max{|x^|; 1 < h < no}, of x

ACF autocorrelation function

ANN artificial neural network

ALR adaptive LR

CLR constant LR

FFT Fast Fourier Transform

Lmax local maximum

Lmin local minimum

LR learning rate

LRGFNN locally recurrent globally feedforward ANN

LTMSP long-term MSP

MLFFNN multi-layer feed-forward ANN

MSAP multi-step-ahead prediction

MSP multi-step prediction

OSP one-step prediction

OAPAS overall PAS (average of THPAS and PPPAS)

PAS prediction accuracy score

PP phase portrait

PPPAS PP-based PAS

TF transfer function

TH time history

THPAS TH-based PAS

2LFFNN two-layer feed-forward ANN

2LFF1SNN 2LFFNN with sigmoidal TF in the 1st layer

2LFF1S2LNN 2LFF1SNN with linear TF in the 2nd layer

2LFF1S2SNN 2LFF1SNN with sigmoidal T F in the 2nd layer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Prediction of Nonlinear Oscillations

A wide variety of physical and economical phenomena can be modeled by nonlinear dynamical

systems1. Understanding nonlinear dynamics is im portant for predicting and controlling these

complex phenomena. A particularly interesting feature associated with nonlinear dynamics is

the occurrence of nonlinear oscillations. A stable oscillation may become a limit cycle oscillation

due to the change in system parameters. Furthermore, a limit cycle oscillation may lead to an

unstable oscillation in a later stage, and this may cause instability in the corresponding physical

system.

The study of nonlinear oscillations is im portant in nonlinear aeroelasticity [140], which is a

research field with great impact on aircraft safety. Aeroelasticity studies the mutual interaction

among inertial, elastic and aerodynamic forces. Aeroelastic phenomena occur in physical systems

such as suspension bridges, aircraft wings, etc. The complex aeroelastic response is governed by

a nonlinear dynamical system. The nonlinearities in the system can be due to the structural or

aerodynamic forces. One of the most im portant aspects in nonlinear aeroelasticity is to detect

limit cycle oscillations. These are sustained periodic oscillations with constant amplitude over

time for a given flight condition. It should be noted th a t limit cycle oscillations are undesirable

since they can cause structural fatigue and pilot fatigue. Predicting the onset, amplitude and

frequency of limit cycle oscillations (LCO) is an active research topic currently under develop­

ment [55, 57], An excellent review on nonlinear aeroelasticity can be found in [140]. Another

related topic is the prediction of oscillations in nonlinear flight dynamics. When information

on possibly unstable oscillations is provided to the pilot, certain controls may be activated in

order to ensure a safe cruising performance. It is clear th a t the ability to accurately predict and

1Versions of som e of th e discussions in th is chap ter have been published in [238, 239, 240, 241] or su b m itted

for pub lication in [241].

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

identify the occurrence of nonlinear oscillations is of crucial importance in many scientific and

engineering applications. Considerable efforts have been devoted to develop reliable methods for

such predictions.

In the investigation of nonlinear aeroelastic behaviours, mathematical and computational

techniques are frequently used. The describing function technique, the center manifold theory,

and more recently the point transformation method have been successfully applied to predict limit

cycle oscillations and other nonlinear responses of an aeroelastic system with structural nonlinear­

ities. Numerical techniques based on the Houbolt finite-difference scheme and the Runge-K utta

time-integration procedure are also commonly used to study the nonlinear motions affected by

structural nonlinearities [140, 151].

In these conventional approaches, a mathem atical model is first constructed, and the behavior

of the system under certain operating conditions is then predicted analytically or numerically as

a solution in the form of a trajectory of a nonlinear dynamical system [140, 151]. In general, the

m athematical model is represented as a set of partial differential and integral equations, and,

in order for the model to be useful, the system parameters have to be given. If there are some

uncertainties in developing the associated model or if some of the system parameters are not

known, this approach will be impossible to implement. Many models are too complex to be

solved analytically, therefore solving them numerically by computer implementation may be the

only option. When modelling complex phenomena, computer simulations may take many days

until a solution is determined, and the numerical algorithms used may not be robust due to errors

in measurement or in estimation of the system parameters. In addition, numerical results can

be incorrect if the algorithm fails to capture im portant features of the physical process modeled

[151]. Moreover, in some applications, such as the ground vibration test or the actual flight test

of an aircraft, only the dynamic response due to a given excitation is available. For such practical

problems, the recorded nonlinear behaviors are noisy, non-stationary and have high dimensional

dynamics. Hence, it is necessary to develop a prediction technique based only on the known

response data rather than mathematically modelling the underlying physical phenomenon. The­

oretical results suggest that, in principle, the positive limit set of a multidimensional trajectory

can be reconstructed even by only using information about its projection on one of its dimensions

[224].

In the present study, we propose to analyze the system dynamics based on the response data

instead of using mathematical modelling and numerical simulations. The proposed data mining

approach is based on a modern signal processing technique utilizing the power of artificial neural

networks (ANNs). The objective of our work is to predict the long-term behaviour, in particular

the asymptotic state, of a discrete-time nonlinear trajectory — which is usually one of the

components of a trajectory of a multidimensional dynamical system — based on the information

of a limited segment of its transient state. This amounts to predicting a set of future consecutive

observations th a t is several times the size of the known data set. The ability to predict the

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

asym ptotic response based on the limited information of a given initial dynamics, such as data

obtained from experiments, flight test or numerical simulation, could be im portant in practical

applications.

The proposed approach begins with modelling the known data set in terms of a nonlinear

mapping tha t describes the dependence of each data point (observation) in the time series

on a finite number of past consecutive observations. In other words, the time evolution up to

the present moment of the quantity th a t is of interest to us is modeled in terms of an input-

output relationship. An estimate of the first unknown data point can then be provided in

terms of known past consecutive observations, using the mapping <f>, a process referred to as

a one-step prediction (OSP). If this estimate is further employed in $ in order to generate

an estim ate for the next unknown d ata point, and so on, then we are dealing with a multi-

step prediction (MSP) process. In our study, the predicted data set is considerably larger tha t

the training set. Since predicted values — as opposed to actual observations — are applied

repeatedly into the mapping $ in order to generate the subsequent predictions, the main difficulty

when performing a long-term MSP (LTMSP) is the step-by-step propagation of prediction errors

[238, 239, 240, 259, 260], In implementing this method, no knowledge is required about the nature

or the intimate mechanisms of the phenomenon being investigated. It has been theoretically

proven th a t the asymptotic dynamics of a trajectory of a finite-dimensional nonlinear dynamical

system can always be reconstructed based on only one of its components, if the number of inputs

of the mapping is chosen to be sufficiently large [224].

In our study, $ is chosen to be the mapping th a t expresses the output of an artificial neural

network (ANN) in terms of its inputs. ANNs are information processing systems th a t originated

from an alternative approach to problem solving, the so-called connectionist approach.

1.2 Connectionism Versus Symbolism

Human beings tend to capture the knowledge about the real world into a set of discrete semantic

objects, or symbols, which they manipulate according to a set of formal rules. W hen confronted

with a real-life problem, our usual approach is to translate the problem into a set of concepts

connected in a certain manner, and then to formalize the path leading to the solution in terms

of an algorithm, a well defined recipe made of chronologically ordered operations th a t have to be

performed in order to obtain the desired result [85]. W hen solving certain problems th a t arise in

science and engineering, it is common to translate this algorithm into a computer program. The

exact series of steps to be performed has to be provided in advance to the computer, and the

data has to be in a precise, non-noisy format. Moreover, there is a clear correspondence between

the semantic objects and the machine hardware, in the sense th a t each object can be located in

a memory cell. Therefore, if a few memory locations are destroyed, the algorithm will crash [85].

It has been noticed th a t certain tasks, such as recognizing handwritten characters or a person’s

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

face, cannot be formalized in the above symbolic-algorithmic manner, perhaps because intuitive

knowledge cannot be captured in a set of discrete concepts which obey certain rules of grammar.

Therefore, an alternative approach is necessary in order to solve these problems. The recently

introduced connectionist approach is based on the idea th a t the functioning of the brain can

be viewed as the result of parallel and distributed information processing performed by many

interconnected simple subsystems — the neurons [85]. Hence the idea of creating information

processing systems th a t mimic some of the architectural features of the brain in the attem pt

to achieve some of its processing capabilities [61, 85, 86, 163]. These are the so-called artificial

neural networks (ANNs).

An ANN consists of interconnected simple processing elements, called artificial neurons, each

of which receives several real numbers as inputs and computes a single output. The output is

determined by a nonlinear function (transfer function) of a weighted sum of the inputs. The

strength of an ANN is provided by the arrangement of neurons and the manner in which they

are interconnected (the network architecture). The neurons are usually arranged in successive

layers [multi-layer feed-forward, (MLFF) architecture), such th a t the outputs of all neurons in

one layer are provided as inputs to each neuron of the next layer. The inputs to all neurons in

the first layer form the network input, while the outputs of all neurons in the last layer form the

network output. The last layer of neurons is called the output layer, while all the other layer

are generally referred to as hidden layers. The ANN output depends on the network inputs as

well as the inter-neuron connection strengths, or weights. They can be determined by a process

of learning (or training) from a set of examples of correct network outputs to given inputs (the

training set). The most common type of ANN training involves minimizing the mean-square

ANN output error over the training set using a nonlinear optimization procedure [86], Once

trained, the ANNs are capable of generalizing, th a t is, they can provide correct network outputs

for network inputs never experimented before. Neural networks are robust in the presence of

noise and hardware degradation [85]. Small changes in the ANN input or in a weight will not

dramatically affect a neuron’s output. Moreover, in an ANN there is no simple correspondence

between neurons and semantic objects. Rather, the information corresponding to a semantic

object is distributed throughout the network. I t has been said, therefore, tha t ANNs “operate

at a sub-symbolic level” [85].

Our choice of the mapping <f> is motivated by the proven fact that, in principle, any nonlinear

function can be approximated with any desired accuracy by the output of a two-layer feed­

forward ANN with a sigmoidal transfer function in the first layer (a 2LFF1SNN) and a linear

transfer function in the second layer (a 2LFF1S2LNN), provided th a t sufficiently many neurons

are available in the network’s hidden layer [31, 32, 33, 34, 53, 75, 77, 76, 96, 97, 105]. A sigmoidal

function is generally defined as a bounded function tha t has horizontal asymptotes at both —oo

and +oo, with the left-hand asymptote being lower than the right-hand asymptote. The universal

approximation property still holds for 2LFFlSNNs with continuous and monotone sigmoidal

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transfer function in the output layer (2LFPlS2SNNs) [27],

1.3 Applications of Neural Networks

The universal approximation property of ANNs basically states th a t a neural network can ac­

curately interpolate any nonlinear function based on a set of known values of the function.

Therefore the most common applications of ANNs comprise nonlinear function approximation

based on samples [29, 35, 40, 42, 64, 70, 82, 87, 99, 103, 117, 152, 162, 187, 223, 236, 261].

Moreover, ANNs are capable of approximating nonlinear mappings of complicated form arising

in real-life situations and which cannot be determined analytically, such as the variation of the

blood pressure of a patient as a function of his heart rate and his corporal acceleration [98], the

chemical oxygen demand in a certain area (used as an index of water pollution) as a function

of water tem perature, transparency, and dissolved oxygen concentration [115], etc. ANNs have

been used for identification of parameters in aerodynamic models [149], as well as in a radar point

source location problem to determine the position of a source in the scene given the outputs,

possibly corrupted by noise, of the array of receivers [253].

A particular type of function interpolation is the so-called pattern classification problem

[4, 6, 13, 64, 114, 191, 254], In th a t case, the network input is an encoding of the object to be

classified, and the single ANN output represents the class to which the input pattern belongs.

ANNs have been used for classification of nonlinear trajectories [102], mushrooms classification

into edible and poisonous based on 22 features [127], classification of Iris flowers into three

categories (subspecies) based on four or seven features [72, 217], diagnosis of heart diseases based

on analysis of the electrocardiographic signal [54, 62], diabetes diagnosis (positive/negative) [59,

104, 227], breast cancer diagnosis (benign/malignant lumps) based on nine cytological features

of the breast lump [54, 104, 136, 214], spike detection in epileptic electroencephalographic signals

[59], discrimination between mines and rocks in sonar images [237], etc.

A benchmark pattern classification for ANNs is the well-known X O R problem, whose difficulty

lies in the fact th a t there is no contiguity relationship between samples in the same class [5, 11,

12, 18, 54, 82, 120, 141, 184, 249]. The parity problem is an extension of the XOR problem, in

which the ANN input is a string of 0’s and l ’s and the output is 1 if the input contains an odd

number of l ’s and 0 otherwise [26, 54, 58, 83, 108, 157, 205, 214, 247, 252, 262, 265], In the

two spirals problem, the task is to correctly classify two sets of training points th a t lie on two

distinct spirals which twist three times around the origin and around each other in the plane

[45, 134, 227, 256, 265],

An application of ANNs in experimental high-energy physics consists in discriminating be­

tween patterns of collision in the large electron-positron collider into two classes: ’background

noise’ or ’potentially relevant event’ [12]. ANNs have also been used for prediction of developing

a postoperative spinal deformity called kyphosis, based on the age of the child, the number of

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vertebrae involved in the spinal operation, and the beginning of the range of the vertebrae in­

volved in the operation [233]. In economics applications, ANNs were proposed to detect target

companies of the Securities and Exchange Committee’s investigation of fraudulent financial re­

porting [135] or to predict the failure or survival of a set of credit unions based on five financial

variables [134],

Many pattern classification applications can be formulated as pattern recognition problems.

ANNs have successfully recognized typed numerical digits [120, 145, 262] and letters [58, 104, 106,

116,171,184, 205, 237], as well as handwritten numerical digits [60, 106, 180, 189] and characters

[145, 236]. This type of application is also referred to as character encoding. Neural networks have

also been used in different speech recognition applications [137], such as recognition of a spoken

vowel [237], word [127], or speaker identification [247]. Other applications include recognition of

faulty LED-display digits [127] or of promoters in DNA nucleotide strings [72], encoders, adders,

multiplexers, demultiplexers [54, 184, 205], etc.

ANNs have recently been used in aerospace industry applications, such as damage detection

[263], aerodynamic design [197], estimation of air-data parameters [201], detection of airframe ice

based on the dynamic response of the aircraft to known elevator inputs [111], estimation of the

strain on the vertical tail structure as a function of the lateral and normal acceleration measured

on several points on the empennage during various flight maneuvers [121], etc.

Automatic control devices are widely used in various machines, ranging from household appli­

ances to space shuttles. The goal is to manipulate a system so th a t it behaves in a desired fashion.

When designing a controller, an im portant preliminary step is to understand how the system will

respond to various stimuli. A m athematical model of the system has to be constructed. This can

be achieved either in a deductive manner, by studying in detail the physical process involved, or

can be inferred from a set of input-output data collected during a practical experiment with the

given system. The second approach is referred to as system identification [179].

Neural networks have been widely used in various nonlinear system identification applications

[3, 7, 28, 40, 175, 181, 251]. The typical setting is th a t of a discrete-time system [46, 155, 186,

196, 220, 249], given the fact th a t measurement of the inputs and outputs can only be taken

a t discrete time moments. ANNs may succeed where mainstream methods fail, especially in

the case of the so-called arbitrarily nonlinear systems [210], which do not have a finite-order

polynomial expansion. Therefore it is very difficult, if not impossible, to identify them using

nonlinear models based on finite-order polynomial expansions, such as the truncated Volterra

series [52, 67,132, 169, 267]. Neural nets have been used for approximation of stochastic processes

[234], for modelling the dynamics of a hydraulically controlled robot arm [93] or of processes in

a chemical reactor [266], such as distillation [272], etc.

Sometimes system identification is implemented as a component of the controller. This type

of applications is known as adaptive control [143, 144, 172, 173, 174], and is typically designed

for systems whose dynamics varies with time. By using the universal approximation capability,

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the adaptive controller based on ANNs can be designed without explicit knowledge of the sys­

tem dynamics [1, 70, 129, 195, 208, 219, 226], Applications of ANNs include nonlinear system

identification and adaptive control of mathematically simulated plants [150, 211], of anesthe­

sia and muscle relaxation [15], of processes inside a bioreactor [195], of a boat [192], and of a

truck-and-trailer backup system [12],

ANNs have recently been applied in flight control problems [69, 139, 146], Applications

in helicopter stabilization [65], adaptive control of antiair missiles [165], and active control of

aeroelastic response [16, 213] have been reported. The latter has the purpose of designing flutter

suppression control laws. A variation of adaptive control is adaptive filtering, which is concerned

with reducing the additive noise from a corrupted signal [153, 192], Simulation results show th a t

the neural filters with only a few hidden neurons consistently outperform the extended Kalman

filter for the simple nonlinear signals being investigated in [153].

The time series prediction capabilities of ANNs have been investigated by many researchers.

In most applications, the dependence of each data point x t+i of a nonlinear time series on a finite

number of past consecutive observations x t , x t~ i, ■ ■ Xt -no+i is modeled using a mapping <f>w

given by the output of a neural network. This mapping is then used to estimate unknown obser­

vations, taking only known data points as inputs. This process is known as one-step prediction

(OSP).

Various benchmark nonlinear time series have been used to investigate the OSP capabilities

of neural nets. The sunspots data set represents the time series of the average sunspot numbers

recorded every year since 1770 [9, 25, 51, 141, 177, 218, 255, 261, 269]. The Canadian Lynx time

series is a record of the annual fur returns at auction in London by the Hudson Bay Company

between 1821 and 1934 [269]. OSP of Brownian motion [107] and other mathematically generated

nonlinear time series [7, 14, 47, 167], especially chaotic time series [44, 45, 177], has also been

performed using ANNs. Of particular interest are OSP applications for the Mackey-Glass time

series [9, 38, 41, 62, 66, 94, 162, 166, 198, 209, 218, 261], for the Henon map [9, 41, 131], and for

the Lorenz-type time series [9, 66, 166, 202].

Economics applications include OSP of different financial time series [270], such as the raw

trading volume on the New York Stock Exchange [138], the Dow Jones Industrial Average [138,

177], the Korean stock m arket index [122], the stock trend for m ajor companies [117, 207], the

foreign currency exchange rate [25, 36, 264, 269], and the unemployment rate [90],

In meteorology, ANNs have been used for OSP of the tem perature distributions in various

locations around the world [74], the volume of rainfall in a certain region [115], different features

of solar activity [48], and the El Nino southern oscillation phenomenon, i.e., the sea surface

tem perature anomaly, the zonal pseudo wind stress anomaly, and the meridional pseudo wind

stress anomaly [156].

An im portant application of ANNs is in short-term, load forecasting (STLF) [41, 47, 51, 119,

221], which deals with predicting electric loads (or, in other words, electric power demands)

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for a period of hours, days, or weeks, in order to adapt energy generation to energy demand.

STLF plays a significant role in the real-time control and the security functions of an energy

management system. Forecast error in load predictions results in increased operation costs.

Other OSP applications involve speech signals [10, 91, 159, 160, 158, 232], building electricity

and water usage in an institutional building [25], measurements from a Laser system [25, 177],

the external sound level of an autom atic transmission system with application in fault detection

[2], etc.

When forecasting observations further away in the future is necesary, a multi-step-ahead

prediction (M SAP) process is used in most applications. In a MSAP process, the data point x t+d,

situated d steps ahead in the future, is predicted directly based on a finite number of present and

past consecutive observations x t , £ t - i , • • x t-n 0+i> using a mapping $ w given by the output

of a neural network. An MSAP process can only be used for short-term time series prediction.

As the lag d increases, the dependence of x t+d on the present and past consecutive observations

becomes more complex, and thus more difficult to model based on the limited available data set.

ANNs have been used to perform MSAP for various mathematically generated nonlinear time

series [188, 272], such as the Mackey-Glass time series [19, 38, 115, 122, 166, 202], the Lorentz

time series [166], etc. MSAP of a nonlinear time series th a t models a steam generator (widely

encountered in nuclear power plants) [188] has also been reported. Short-term MSAP of the

traffic volume has been performed, with applications in traffic flow control [123],

ANNs have been applied for MSAP of the sunspot time series [78, 203, 244] and the Nile

flow level (cubic metres/day) [8], The latter is one of the longest recorded time series of a

natural phenomenon. It has been noted th a t preprocessing such as differencing the output

(which accentuates the noise), subtracting the seasonal average, or taking the discrete Fourier

series, could lead to worse results than the basic method with no preprocessing [8].

In a so-called multi-step prediction (MSP) process, the data point xt+d is predicted based on

a finite number of present and past consecutive observations, in a sequence of d steps. A mapping

$ w, given by the output of an ANN, first provides an estimate (prediction) x t+i of the unknown

data point x t+i, taking as inputs the known values x t , x t - i , . . . , x t—n0+i- The values x t+1 , x t:

Xt~i, • • x t-n 0+ 2 are then used as inputs in <i?w in order to generate a prediction &t+ 2 f°r x t+2 -

By repeating the process d times, an estimate Xt+d of x t+d is eventually computed.

The reported MSP applications of ANNs are very few, and are only concerned with short­

term prediction of time series. Short-term MSP of the Nile flow level [8], the sunspots time series

[255], and of chaotic time series [44], such as the Mackey-Glass [62, 166] or Lorentz time series

[166], has been reported. However, we have no knowledge of any long-term MSP application of

ANNs so far.

Nonlinear dynamical systems applications of ANNs for small-scale problems have also been

reported. ANNs have been used for learning continuous-time oscillatory trajectories [178, 206],

or in the trajectory generation problem (designing a dynamical system whose terminal behavior

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

emulates a prespecified spatio-temporal pattern independently of its initial conditions) [268] or

trajectory modulation problem (designing systems th a t control the trajectory generation process

by means of external inputs) [268]. Various other uses of ANNs in solving practical problems

include image processing applications [118, 216], such as image filtering and segmentation [162],

binary image storage [109], grammatical inference [63, 147,148, 248], approximately solving linear

systems of algebraic equations in real time [43], etc.

1.4 Original Contributions

The research presented in this study is an interdisciplinary one, and it covers several m ajor fields

such as mathematics, statistics, computing science and engineering. Our problem focuses on

the LTMSP of nonlinear time series. The field of nonlinear time series analysis is still a poorly

developed research field, most of the work having been done since the 1980’s [68]. The general

field of time series analysis has been dealing mainly with linear models, which are now well

understood [215]. For nonlinear models, however, theoretical analysis is difficult, hence their

understanding is in general incomplete. In addition, time series forecasting mainly deals with

OSP, due to the theoretical tractability of this process. To predict da ta points further in the

future, MSAP is usually the method of choice. Though still theoretically tractable, this method

requires a much more complicated analysis [30, 84, 95, 113, 176, 228], and the results obtained

are not suitable for practical use if longer-term prediction is required. The so-called one step

plug-in method, or MSP (in our nomenclature), is considered to be undesirable, due to the step-

by-step error propagation and to the difficulty of performing any theoretical analysis. Therefore

long-term prediction of nonlinear time series has not been well studied.

The field of ANNs is very new, most of the work having been done since 1990. The over­

whelming m ajority of ANN applications are dealing with nonlinear function approximation, pat­

tern classification, and OSP of time series. The common feature of these applications is tha t

they can be formulated as interpolation problems. Namely, an ANN is used to approximate

a nonlinear function on a certain domain by generalizing from a set of function values. Most

of the theoretical analysis of ANN behavior and most of the tools in the ANN field have been

designed for interpolative applications. Very few authors have attem pted to perform MSP using

ANNs, and most published results are limited to short-term prediction. Long-term MSP cannot

be formulated as an interpolation problem, and new tools are needed in order to approach this

problem. Redundancy in the ANN param eters is much more im portant in this new context,

and the additional problems of insufficient training data and recursive error propagation make

LTMSP a very difficult task. To the best of our knowledge, our work is one of the first extensive

investigations in this new research direction.

The idea of using ANNs to forecast the asymptotic behavior of nonlinear dynamics is quite

new. To predict the frequency and amplitude of the LCO of an aircraft wing, Denegri and

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Johnson (2001) [57] trained a three-layer ANN to output these two values when given the Mach

number of the desired flight condition, and the values of some parameters resulted from the

linear flutter analysis [55, 56]. Our method (whose development started in 1999) uses a different

approach, namely training an ANN based on the known transient data set and subsequently

using the neural network to reconstruct the asymptotic state by a MSP process. Our approach

to LTMSP using ANNs has been successful for a certain class of problems. We have designed

several novel ANN architectures, with features th a t control the error propagation in the MSP

process, which have proven to be capable of providing accurate predictions of nonlinear oscillatory

motions arising in aeroelasticity [238, 239, 240, 259, 260],

The practical implementation of ANNs for a given problem is not as straightforward as the

elegant theoretical results [31, 32, 33, 34, 53, 75, 76, 77, 96, 97, 105] might suggest. Cybenko [53]

notes th a t the number of neurons necessary in most practical problems is most likely astronom­

ically high, due to the so-called curse of dimensionality. Using many neurons is computationally

expensive to the point th a t solving the problem may become unfeasible. Hornik [96] observes

th a t not all transfer functions th a t satisfy the theoretical requirements for the universal approx­

imation will perform equally well in practical problems. Due to the complicated shape of the

error surfaces, the ANN training often converges to a local minimum, which may not be a solu­

tion of the given problem. Since in MSP applications the use of global optimization algorithms

(genetic, annealing) is prohibitive because of the large number of param eters (ANN weights) to

be estimated, one is forced to employ point-by-point nonlinear optimization algorithms, which

depend heavily on the initial guess on the weight values. How to determine good initial values

of the network weights for ANN training is still an unsolved problem.

Given these practical difficulties, we are interested in developing a technique for extracting

the maximum information from the training set using a minimum number of hidden neurons.

This would reduce the training time and provide better generalization capabilities and robust­

ness in the presence of noise, as a consequence of having fewer degrees-of-freedom in the system.

The successful ANN architectures previously proposed [238, 239, 240, 259, 260] involved either

some kind of weight scaling or using a scaled sigmoidal transfer function in the output layer.

In the present study we investigate the effect of these two architectural features on the ANN

MSP performance under neuron scarcity conditions. Various ANN architectural features, weight

initialization procedures, and different choices of learning rate are compared. Our investigation

presented here has clearly dem onstrated th a t the ANN training using an adaptive learning rate

often does not converge when the training set is noisy, and therefore a constant learning rate

should be used. Initializing the first-layer weights with normalized segments of the training set

has proved to lead to a much better prediction accuracy than a random weight initialization,

when few hidden neurons are used. Moreover, normalizing the second-layer weights provides

great robustness in the presence of noise. This constitutes a significant architectural and training

alteration of the classical 2LFF1S2LNN typically used in interpolative-type applications (includ-

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ing OSP and MSAP). Indiscriminately applying the standard ANN methodology to LTMSP

applications leads to a poor prediction performance.

How to choose an appropriate number of ANN inputs and neurons for a given application

is a crucial issue in the field of ANNs. Choosing the number of inputs is quite straightforward

in the context of pattern recognition and function interpolation in general, where the input and

output spaces have a clear physical meaning. In OSP or MSAP, typically a few inputs are

sufficient in order to provide an accurate prediction, since no error propagation is involved. In

the case of MSP, we expect th a t more redundancy is needed in order to compensate for the

recursive error propagation. In order to estimate the optimum number of neurons in an ANN,

various empirical formulas [61] and criteria based on information theory [61, 71, 170] have been

proposed. However, all these estimates have been developed in the context of interpolative-type

applications, and therefore are not relevant to our MSP problem. We have proposed methods

for consistently choosing appropriate values for the ANN inputs and hidden neurons in a given

application of the type considered in tis study [240]. A stopping criterion for the ANN training,

specific to this type of applications, has also been designed [238, 239],

The developed neural networks have been tested on both real-life experimental data and

numerically simulated data sets describing the oscillatory motions of a two-degree-of-freedom

nonlinear aeroelastic system. Once a long-term prediction of a trajectory is achieved, different

features, such as damping and frequency components, may be extracted from the predicted signal,

using an ANN in conjunction with a wavelet decomposition module. We developed a feature

extraction method tha t greatly improves the computational efficiency of the ANN module in

such applications [238, 239]. We were also able to correctly predict the dynamic interaction in

a complex cavity flow problem, but further research is needed to improve the accuracy of these

predictions.

This thesis is organized as follows. An overview of ANN architectures, training algorithms,

and the universal approximation results, is presented in Chapter 2. In Chapter 3, the main

research contribution of this study is presented. A review of time series analysis methods is

provided in Section 3.1, followed by a detailed presentation of the proposed approach to long­

term prediction of nonlinear oscilaltions using ANNs (in Section 3.2). The implementation of

the proposed method is presented in Section 3.3, while in Section 3.4 a rudim entary theoretical

justification of the proposed approach is discussed. More specifically, it is proven that, under

certain conditions, the asymptotic state of the ANN-generated long-term prediction is close

to the asymptotic state of the trajectory to be predicted. In Chapter 4, 12 combinations of

architectural and training algorithm features are compared based on 8 test cases, in order to

assess which combination robustly extracts the most information from the known data set using

the minimum number of neurons. The stability of the best two methods w ith respect to variations

in the number of inputs, hiddden layer neurons, and training data points is investigated. Further

applications of the proposed approach are reported in Chapter 5. Conclusions and future research

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

directions are provided in Chapter 6.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Artificial Neural Networks

(A N N s)

2.1 M athem atical Representation of A N N s

In a biological neuron (see Fig.2.1), the electrical signals are carried through the dendrites into

the cell body, where they are summed and thresholded, and the resulting signal is sent through

the axon out to a dendrite of another cell [86]. Similarly, an artificial neuron (see Fig.2.2) receives

the inputs aq, X2 , ■ ■ x no (real numbers), which are weighted by w\, W2 , . . . , wno (the neuron’s

weights), then a bias wo is added, resulting in the net input v = wo + w \X\ + .. .w noxno. Note

th a t the bias can be viewed as a particular weight corresponding to a constant input equal to 1.

For simplicity, the term “weights” will be used for wo as well as for w \, W2 , ■ ■ wno.

DENDRITES

AXONCELL
BODY

Figure 2.1: Biological Neuron.

WEIGHTS
Wq(BIAS)

SUMMER

INPUTS

TRANSFER
FUNCTION

V f y
NET I OUTPUT

Figure 2.2: Artificial Neuron.

A transfer function (TF) /(•) performs the thresholding and yields the output y = f (v)

of the artificial neuron. The transfer function is chosen according to the requirements of the

problem that has to be solved. Common transfer functions used in applications are f (v) =

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v, f (v) = tanh(u), f (v) = [1 + exp(—u)]- 1 , f (v) = H(v) (Heaviside’s unit step function),

f (v) = ln (l + |u|)sgn(u) [61, 86], staircase functions [216], cubic spline functions [236], hysteresis-

type functions [250], etc. Parameter-dependent transfer functions can also be used, for instance

f a<p(v) = atanh(/3u) (where a , f3 represent the amplitude and slope of the sigmoid, respectively)

[49, 230],

The artificial neuron described above is the classical type of neuron proposed by McCulloch

and P itts [164] in their 1943 paper tha t laid the foundation for the field of artificial neural

networks. Since then, various types of artificial neurons have been introduced, many of them

representing significant alterations of the classical architecture. For instance, Cotter [50] proposed

an artificial neuron of the type:

f m g / no \ 1 -1

1 + e x p (~ H Z W lo ,k o * k o I f >

10 = 1 V feo = l / J

due to the universal approximation property of linear combinations of such mappings, accord­

ing to the Stone-Weierstrass theorem. Chiang and Fu [37] proposed a so-called multi-threshold

quadratic sigmoidal neuron, for which the output

" / \ 2 / \ 1 ̂ — ̂/ no \ I n o \
(2.2) y — <(1 + exp W o + W k o x ko] - (#0 + ° k o x ko

K k 0 —l J V fco=l)

depends on the weights wq, . . . , wno as well as on the thresholds do, ■ ■ ■, dno. There has also

been considerable interest in experimenting with the so-called high-order neurons, in which the

net input v is a polynomial of degree larger th a t one in the inputs x \ , . . . , x no [24, 83, 126, 127,

177, 189, 200, 254, 270, 271], Most of these neuron architectures cannot be justified biologically

anymore, bu t they are rather serving some specific purposes. We have studied various types of

neurons, but have not yet observed any significant performance improvement compared to the

classical neuron architecture. Therefore, in accord with the parsimony principle (everything else

being equal, a simple model is usually preferable [68]), we have mainly used the classical neuron

structure in our study.

The neurons are connected to each other in various ways. Each neuron can receive inputs

from outside the network, from other neurons, or from itself. The output of a neuron can be fed

as input to other neurons, or to itself, or to the outside. Each connection has its corresponding

strength, or weight . A widely used ANN architecture is the multi-layer feedforward (MLFF)

architecture, in which the neurons are arranged in successive layers. The outputs y ^ \ 1 < h < ni

of all neurons in each layer I are fed as inputs to each neuron in the next layer I + 1. Thus, the

output of the fc-th neuron in layer l + l (1 < k < ni+1) has the expression

(2.3) ^ +1) = f ^ { ^ +1)} = / (^) + . . . }

where w w \ are the weights of tha t neuron. Traditionally, for each layer I, the same

transfer function (■) is applied to all neurons in th a t layer. The inputs Xh. — y^ \ 1 < h < no

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to all neurons in the first layer (forming the network input x = y ^) are propagated forward

through the successive layers of neurons. The outputs yh = 1 < h < of all neurons in

the last layer L (the output layer) are considered to form the network output y = yHO. Clearly,

the network output depends on the ANN input as well as on the values of all network weights

(stored into the vector w): y = y(x, w). A two-layer (L = 2) feedforward ANN (a 2LFFNN) is

represented in Fig.2.3.

w

Figure 2.3: Two Layer Feedforward ANN.

There is a wide variety of ANN architectures [61, 8 6], Here we discuss several im portant

examples. For instance, some authors have proposed ANNs with architectures inspired from

the classical mathematical and computational methods. Cotter [50] proposed architectures tha t

implement classes of functions for which the Stone-Weierstrass density theorem is applicable,

while Wang and Lin [251] and Tsitouras [231] proposed MLFF ANNs performing the Runge-

K u tta time-marching procedure.

Recently there has been considerable interest in the field of radial basis function (RBF)

networks [2, 19, 38, 39, 45, 81, 146, 2 1 0 , 212, 217, 225]. The output of a RBF neuron th a t

receives the input x = [x\ , . . . ,x no] G R n° is defined by y = ip(\\x. — c |[2) ([[• j12 is the Euclidean

norm), where c G R n° is a so-called center, and ip ’■ [0, 00) —> [0,oo) is usually a continuously

differentiable decreasing function. The most commonly used functions are ipa (x) — exp(—x 2/ a 2)

(Gaussian function), ipa (x) = (a2 + x 2)~ 1̂ 2 (inverse m ultiquadratic function), B-spline functions

[210], -0(1 lx lI2) = (no — ||x |I2)exp(— ||x | | |/2) , for x G R ”° (the Mexican Hat function, very

popular in wavelet applications) [94], etc. I t has been proved th a t the output of a two-layer RBF

network with linear transfer function in the output layer (and a single output neuron)

ni
(2.4) y = ^ 2 wkli p (\ \ x - c k l \\2)

ki — 1

can approximate any nonlinear function of no variables with any accuracy, provided tha t suffi­

ciently many RBF neurons (that is, sufficiently many centres) are available.

In certain types of applications, such as system identification, adaptive control, time series

prediction, etc, the ANN receives as input a vector x(£) G R n° and generates the output y (t) G

R nL, at each discrete time step t G Z+. If the ou tput of at least one neuron at time t is fed as

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

one of the inputs of some neuron in a previous (or in the same) layer, at a later time t + d, then

the ANN belongs to the class of recurrent networks. An im portant feature of the network is the

existence of a feedback connection.

A classical example of a recurrent ANN is the Elm an network [63, 128], which is a 2LFFNN

to which feedback connections from the hidden layer to the input have been added, in the sense

that, at each time step t, every neuron in the hidden layer receives as inputs both the external

input x(f) and the outputs of all hidden neurons at step t — 1 , i.e., the vector y ^ (t — 1). Thus,

the output of each hidden neuron at step t has the expression:

(n 0 n \ "j

W£iio + Y W k l k o X k0 {t) + Y ^ k l n o + l Y h ^ ~ X) (

fe0=l h= l '

for 1 < fci < n \. A particular Elman-type ANN for which w ^ no+li = 0 except when = k\ (i.e.,

each hidden neuron only has a feedback connection with itself) is the diagonal recurrent neural

network (DRNN) [129]. This network belongs to a class of reccurrent ANNs called the locally

recurrent globally feedforward (LRGF) networks, which are MLFF networks for which feedback

connections from each neuron to itself are added. For instance, the neuron proposed by Frasconi,

Gori, and Soda [232] generates its output y(t) by receiving the external vectors x (f) , x (t — 1),

. . . , x (t — d) and its own past outputs y(t — 1), . . . , y(t — d), as inputs:

{ n o d d

:
k —l h —0 h—1)

If rc„0 +i }f, = 0, V7i, we obtain the output of a time-delay neuron. Time-delay neural networks

(TDNN) [46, 122, 137, 243, 245, 246] are not LRGFNNs. The neurons do not have recurrent

connections, but only a memory of past inputs they received.

Poddar and Unnikrishnan [211, 232] proposed a LRGFNN where to each classical-style neuron

is attached a memory neuron. At each moment t, the output yk \ t) of the Zc-th neuron in the Z-th

layer (1 < k < n{) and the output z ^ \ t) of its attached memory neuron have the expressions:

{
n i - i n i - i

Y + Y wiS n , -

= “ I V t * - !) + (! - - !)

where G [0,1], VZ, k. There are many other types of ANN architectures (self-organizing maps

[8 6 , 111], Hopfield ANNs [17, 8 6 , 112], Grossberg ANNs [8 6]), but we are not concerned with

them in the present study.

(2 .6) y(t) = / EE wkthx k(t - h) + ^ w no+i>hy{t - h)

2.2 A N N Training

One of the main issues when working with neural networks is to determine acceptable values for

the weight parameters such th a t the network can successfully perform a specific task. A neural

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

network “learns” to perform a certain task during the process called network training. In general,

an initial guess of the weight values is first set, then the weights are iteratively updated according

to a certain formula called the learning rule [8 6], until a given stopping criterion is met. There

are several types of neural network learning. In a supervised learning, the network is provided

with a set of examples of network inputs and the corresponding correct outputs (target outputs),

called training set: (x (l) ,y (l)} , (x (2),y(2)}, . . . , {x(M), y(M)}. In a reinforcement learning

process, for each of the sample inputs x (l) , x(2), . . . , x(M), no target output is given, but the

network receives a grade (a measure of its performance) for its corresponding output. In an

unsupervised learning, the weights are modified according to the network inputs only (no target

outputs are given), by performing a certain clustering operation on the set of input patterns [8 6].

Since the target outputs to sample inputs are available in our study, the ANN learning th a t is

relevant to our study is the supervised learning.

Among the supervised learning rules, the most im portant one is the performance learning

method, in which the network weights are iteratively adjusted in order to optimize the network

performance. Let the mean squared output error over the training set:

1 M M

(2 .8) E{w) d= — Y l|e(m,w)||^ = — Y M 171) ~ y (* (mX ™)\\l
m~ 1 m=\

define the performance index, which is small when the network performs well and large when the

network performs poorly. In the above equation, y(x(m), w) is the network output correspond­

ing to the input x(m) and weights w , and e(m ,w) = y(m) — y (x (m),w) is the output error

corresponding to the m -th training pattern. E(-) is a nonnegative functional on R " w, where nw

is the number of ANN weights.

Alternative error measures have been used by some authors, for instance

M

(2.9) E(w) d̂ f — Y L (y (m),y (x (m), w)),
m = l

for an ANN with a single output, contained in [0,1], where L : [0,1] x [0,1] —> R

(2 .1 0) L (x ,y) =f x ln + (1 - a;) In

is known as the entropic loss (where, by definition, 01n(0) = 01n(0/0) = 0) [92, 180].

The minimization of the performance index can be performed by using any nonlinear opti­

mization algorithm. The most widely used optimization methods are the gradient-based, point-

by-point algorithms. In a MLFFNN, the gradient V-E(w) of the mean-squared error (2.8) is

usually computed by the so-called backpropagation algorithm. If { x (l) ,y (l)} , (x (2),y(2)} , . . . ,

{x (M),y(M)} is the training set, we define:

(2 .1 1) y ^ (TO) ^ (TO)i y o \ m) =f 1, 1 < m < M , 1 < I < L.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First, the ANN inputs are ’propagated forwards’, namely for 1 < k < til , 1 < I < L : we have:

ni~ l
(2 .1 2) v f (m) =f y% \m) d= / (,)(4 °(m)), z f (m) {m)).

i=o

For simplicity, we write e(m) instead of e(m , w) in (2.8) and we define

til n L

(2.13) E (m) =f ||e (m)||i = K (m) | 2 = ^ \yh(m) - ^ !)(m)|2.def
||e (m j | | 2 =

ft=l h=l

Then the output errors are ’propagated backwards’:

r\ (X/) / \(m)
r\ J7» / \ —j— 1

(2.15) 4 ° (m) =f " ..(O'r i = zk \ m) Y wY k1] 5h +1) (m)i 1 < k < n h l < l < L - \ .
d v l \ m) h=1

The gradient components are then computed by the formula:

OE 1 x—>
(2-16) /T W = T f Y 4 ° (TO) ^ _1)(m)= 1 < ^ 0 < j < m - 1 , 1 < l < L.

®Wk,j m=l

An initial guess wo for the weight vector w is set, and the weights are iteratively updated:

w new = w old + d new (where the vector d new can have different expressions, depending on the

method being used) until E (w) becomes sufficiently small. At each iteration, a sweep of the

training set is performed and g new =f VJ5(wold), H new =f V 2 £ (w old) can be computed. When
de fusing the steepest descent algorithm we define d new = —a “ wgnew, where a “ w is the current

step size, or the learning rate (which can be kept constant or can be adjusted at each iteration).

In Newton’s method, d new =f — (H new)_ 1 gnew. In order to accelerate convergence, the so-called

steepest descent method with momentum [8 6 , 190, 229] can be used, where d new =f -ynewd oid —

(1 — 7 new)a^,ewg new, with 0 < ynew < 1 , However, there is no clear way of choosing the value of
.ynew^

When using the conjugate gradient (CG) algorithm, dnew =f a"ewp new, where pnew =f —g new

at the beginning of training. Subsequently, a t each iteration: p new =f —gnew - f / 3 newp old, where

/?new can be chosen in different ways [8 6 , 193]:

II n ew 112 _ - .n ew - .o ld | | „ n e w | |2
(2.17) /?new = iis T?-,,, a (Polak-Ribiere), /3new = g (Fletcher-Reeves).

IIS Il2 llg II2

The search direction has to be periodically reset to p new = —g new in order for the conjugate

gradient method to converge when minimizing a non-quadratic functional [8 6].

Different variations of Newton’s m ethod are used by different authors [131, 214]. A widely

used modified Newton-type method for error functions E(m) = ||e(w) |[2 (where the vector

e(w) =f [e(l, w), e(2, w) , . . . ,e(M , w)]r e R M is the output error vector for the M training

patterns) is the Levenberg-Marquardt (LM) algorithm [8 6 , 87]. If /„ w is the n w-dimensional

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

identity m atrix, and J(w) is the M x nw-type matrix with elements {9e(m, w)/dw ; 1 < m <

M , w component of w}, then the LM algorithm defines

(2.18) d new d= [Jr (wold)J (w old) + /rnew/ nw] - 1 J T (wold)e(w old),

where ^ new is an adjustable parameter. The main drawback of the Newton-type algorithms is

th a t they involve the calculation of the Hessian m atrix and of the solution of a linear system,

operations which are computationally expensive. Training methods based on the use of the

Extended Kalm an Filter (EKF) have also been proposed [45, 217, 223], but they are beyond the

scope of this study.

A well-known disadvantage of the point-by-point optimization algorithms is th a t in general

the vector w converges to a local minimum Wq of E (w) th a t is close to the initial guess Wo- If

E (Wq) is small enough for our purposes then w j may be an acceptable weight vector for our

ANN. However, in general, E (w j) may not be small enough, and the training has to be restarted

with a different initial guess. The practical difficulty is th a t there is no clear way of setting a

good initial guess w 0. Traditionally, the ANN weights are initialized with small random values,

but other options may also be considered. A few authors have started to investigate consistent

ways of choosing the initial guess for ANN training [99, 256], However, this type of research

is still in the infant stage. In our study, we propose a method for weight initialization for our

particular class of problems, tha t greatly improves the accuracy and robustness of the ANN.

In order to overcome the problem of converging to local minima, global optimization methods,

such as the genetic algorithm [80, 130, 161, 168, 177, 221], or the simulated annealing algorithm

[42, 73, 235], have been proposed. These algorithms perform a search of the entire input space

rather than a local search (around an initial guess) like the classical algorithms. They are

guaranteed to ’eventually’ converge to the global minimum of the function to be optimized.

However, due to the ’curse of dimensionality’, these methods require an astronomically long time

to converge if the dimension of the search space is large. Most applications of these methods

in the literature are reported for dimensions of the input space of the order of tens, while in

our experiments the search space has a dimension (which is, actually, the to ta l number of ANN

weights) of the order of hundreds or even thousands. Therefore the use of these methods is

impractical in our study.

An im portant question th a t arises in practice is when to term inate the ANN training. The

network must learn the training set (x (l) , y (l)} , (x (2) ,y (2)}, . . . , (x (M), y(M)} up to a level

that would allow it to correctly generalize, i.e., to provide a correct ou tput y to a previously

“unseen” input x from the same domain as the input patterns. One can regard the training

set as a set of samples of a continuous function $ o n a certain region D £ R n°. T hat is,

y(m) = # (x (m)), 1 < m < M . The function # represents the desired input-output relationship

that would make it possible for the ANN to correctly perform a specific task. In most practical

situations, there is a lower bound 8 for the desired level of accuracy of the training set learning.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

At this level of accuracy, the ANN has extracted all the information about the underlying pattern

th a t generated them. If the network training is continued beyond this point, then, the lower

the training error becomes (i.e., the more accurately the training patterns are learned), the poorer

the ANN’s generalization performance becomes. The reason is th a t the network starts to learn

features of the particular samples (x (l) , y (l)} , (x(2),y(2)} , . . . , {x(M), y (M) } taken from the

function # , th a t are not relevant to the general pattern $ anymore. This phenomenon, known

as overfitting, occurs often in ANN practice [4, 8 6 , 117]. The problem of avoiding overfitting is

still an open problem.

The overfitting phenomenon suggests tha t there is a tradeoff in ANN training between how

well the network learns the training patterns and how accurately it can generalize to the unseen

inputs. Several methods have been proposed to improve the generalization performance of ANNs.

A widely used method is to add noise in the input and/or output training prototypes [23,199, 247]

or in the weight param eters [171]. Another method, the so-called target smoothing, involves

convoluting the target function with a noise probability density function [199], A widely used

approach is to define the performance index as a sum of two functionals

(2.19) E{w) = E err(w) + AFreg(w), A > 0

where E eir(w) is a measure of the training error (usually the mean squared error) and E ve&{w) is

a regularization term th a t is designed to improve the generalization performance of the ANN [61].

The weight decay approach to generalization improvement involves choosing JSreg(w) =f 11w |11

[142]. In the error regularization approach, we define E leg(w) ||V X y(x , w) | | 2 [199]. The

weight smoothing approach reported in [106] is given by

■w{1)fcq-i(2 .2 0) £ r e g (w) = f £ [w k J - '
fc= 1 j-2

for a 2 LFFNN. Bishop [2 0] proposed using (for an L-layer FFNN) the curvature-driven smoothing,

where

d e f ^ ^ ^ \ d 2 y W
(2.21) E reg (w)d=f

m— 1 k= 1 j=2
- Q ^ r (x (m) ,w)

Drucker and Cun [60] proposed a m ethod called the double backpropagation, in which:

no
def ’(2 .2 2) £ reg(w) l ! f] r

j= i

M n r a (L)

J 2] C efc(m >W)~777~ (X(m)’ W)
,m= 1 k = l

2

Note that the param eter A in (2.19) reflects the relative weight of the two terms in the

total error function. The practical difficulty when using such a method is th a t there is no

clear way of choosing an acceptable value of A in a given application. If A is too small, the

regularization term will have no effect, while if A is too large, all weights may converge to zero

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[64]. Basically, penalty terms tend to create additional local minima in the error surface, which

makes training even more difficult. In our experiments, we do not use any regularization term

in the error function. However, the idea from (2.20), that smoothing the ANN weights improves

generalization, is applied in a different fashion, namely by explicitly scaling the weights in the

ANN output function rather than in the error function, which makes it unnecessary to choose

an appropriate value for a parameter such as A from (2.19).

A disadvantage of using gradient-type optimization algorithms based on the error backprop-

agation is that the ANN training usually takes a long time. In order to accelerate convergence,

various improvements to the classical optimization approach in ANN training have been proposed

[114], such as dynamical adaptation of the learning rate, dynamic adaptation of the weight ad­

justments (e.g., a momentum term, weight decay), etc. The weight extrapolation approach [114]

provides, at each training iteration, estimates for the values of all ANN weights, that are further

refined by the current weight update. Layer-by-layer optimization methods [66 , 262] combine

gradient computation with solving linear systems in order to determine appropriate values for

the ANN weights.

2.3 The Universal Approximation Property o f A N N s

Applications on approximating a nonlinear function / : R n° —► R by the output of a MLFFNN

have been widely investigated during the last 15 years. More specifically, for every x in a subset

of R"°, the value / (x) is approximated by the output y(x, w) of a certain MLFFNN with a

single neuron in the output layer (SMLFFNN, for brevity). Various authors have tried to answer

the following questions. What classes of functions can be approximated by the output of a

SMLFFNN ? What transfer functions should be used in each layer ? How many neurons are

required in each of the hidden layers ?

In most cases, two-layer feed-forward (2LFF) networks with a single output neuron (S2LFFNNs),

with sigmoidal transfer function in the hidden layer and linear transfer function in the output

layer (S2LFFlS2LNNs) are considered. In general, if x\, £2, • •., x no are the inputs of a 2LFFNN

with rii neurons in the first (hidden) layer and n2 neurons in the second (output) layer, then the

ANN output has the expression

{ « i / n 0 \ 1

+ E «$/<» (« s + E j | , 1 < i < na.

Let N ’[no,ni,ri2 ', be the class of functions N[no, n i , n2; ; w] : R"° —> R n=

defined by (2.23), that express the output y(2) of a 2LFFNN in terms of its inputs. Note that

(2 241 w =f fm(12 w (1) w (1) ?«(2) v >(2) n,(2) ,„(2)]T
v / lw l,0i * * ■ “ a , n o ? ^ 2 , 0 ’ ’ ’ * w nx,no'> * " 1 , 0 > * * • Wl,n i ? ^ 2 , 0 ? * * • Wri2 ,n\\

is the vector of all ANN weights ([-]T is the transpose operator). Denote by J\f[no, * ,n 2; fW]

the set of all functions implemented by such an ANN with an arbitrarily large number of hidden

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

neurons [96]:
OO

(2.25) Ar[n0,* ,n 2; / (1), / (2)] = [J A/"[n0 ,n i ,n 2; / (1), / (2)]
7 H = 1

A function o(-) is called a (generalized) sigmoidal function (or a squashing function) if

(2.26) —oo < lim o(x) < lim o(x) < +oo.
X —+— OC X — t + O O

Note that a(-) is not necessarily continuous or monotone. Examples of sigmoidal functions are

[34, 77]: a(x) = tanh(x) (the hyperbolic tangent squasher), a(x) — H(x) (Heaviside’s unit step

function), a(x) = lsig(x) = 1/[1 + exp(—a:)] = [1 + tanh(x)] /2 (the logistic sigmoid),

(2.27) cr(x) = <

0 , x < —7r/2

} 1~ cos^ .± .3.7rZ22 ; —tt/2 < x < 7r/ 2 (the cosine squasher [77]).

1, x > 7r/2

Most approximation results state that, under certain assumptions on the function o(-), the

set N[no, *, 1; o, I] (I (x) — x,Vx) is dense in some metric space (T, p) of real-valued functions

defined on some subset of R"°. In most cases T is a space of continuous or Lp-integrable

functions, and the metric p is usually (but not always) generated by some norm || • || on T,

namely p (f ,g) = \\f — £(||, V/, g € T . The density of Af[no, *, 1; cr, 7] in {!F,p) is equivalent to

saying that any function in T can be approximated (in the metric p) with any desired accuracy

by a function in A/"[no,*, 1; cr,/] . In other words, any function in T can be approximated (in

the metric p) with any desired accuracy by a function given by the output of a 2LFF1S2LNN,

provided that sufficiently many neurons in the hidden layer are available:

(2.28) V / € T , Ve > 0 3ni (/ , e), 3 w (/, e) : p {N[n0, n i (/ , e), 1; o, /; w (/, e)], /) < e.

Various approximation results have been proved by Cybenko (1989) [53], Hornik, Stinch-

combe, and White (1989) [97], Funahashi (1989) [75], Ito (1991) [105], Hornik (1991) [96], Gallant

and White (1992,1998) [77, 76], etc. Chen, Chen, and Liu (1993) generalized the classical approx­

imation results [31, 32, 33, 34], They showed that, if cr is a bounded sigmoid, then Jd[no, *, 1; cr, I]

is dense in the space

(2.29) C (R no) d= { / e C(R"°); 3 lim / (x) < oo}| | x | | 2->oo
with respect to the ||| ■ |||c norm. For n0 = 1, Chen, Chen, and Liu proved that A/"[l, *, 1; a,I] is

dense in the space

(2.30) { / e (^(R1); lim f(x), lim f (x) exist and are finite} D C(R 1).
X - + - O C X — > + OC

In particular, J\f[n0,*, l;<r,i] is dense in C (K), for any compact K C R"°. Also, if cr(-) is a

sigmoid, a 6 L^C(R), then f f [n o ,* ,l ;o ,I] is dense in LP(K), for any compact K C R"°, with

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

respect to the Lp norm

(2.31) !ll/lllpd= (^ _ I /W I P) , l < p < o o , Hl/llloo d= esssu p { |/(x) |;x € K } .

Most of the classical approximation results were proven assuming that the sigmoid a(-) is ei­

ther continuous (Cybenko [53]) or non-decreasing (Hornik, Stinchcombe, and White [97]), or a

particular class of sigmoids was used (the cosine squasher, Gallant and White [77]). Ito [105]

proved that, for some particular types of sigmoids, including the Heaviside unit step fucntion,

J\f[no, *, 1; <?,I} is dense with respect to the ||| • |||c norm in the space of rapidly decreasing

continuous functions:

(2.32) (/ 6 C(Rno); lim . . .®j£°/(x)| < oo.Vfci,. . . kno e Z+, Vx £ R n°I l |x | | -+ o o
Since in the present work a 2LFF1SNN with first-layer transfer function a(x) = tanh(x) is

used in all experiments, the approximation theorem relevant to this study is Cybenko’s result

[53]:

T heorem 2 .3 .1 . If K C R ”° is a compact set and a is a continuous sigmoid, then J\f[no, *, 1; cr, I]

is dense in C(K):

(2.33) V f £ C (K) , V e > 0 3 n i(/,e) , 3 w (/,e) : |||N [n0 ,n i(/ ,e) , l;<x,7; w (/ , e)] - / | | [c < e [53].

In other words, any continuous function on a compact K in R ”° can be uniformly ap­

proximated to any desired degree of accuracy by the mapping that provides the output of a

2LFF1S2LNN in terms of the ANN inputs, if sufficiently many neurons are used in the first

(hidden) layer. In practice, the function / £ C (K) is interpolated by the ANN from a finite set

of known values of / in points of K (which constitute the training set for the neural network).

The network weights w (/, e) are determined by training the ANN based on the set of known

values of f . At the end of training, the ANN should be capable of interpolating the function /

on K with accuracy at most e.

Funahashi [75] proved that, if a is a function that is nonconstant, bounded, increasing, and

continuous, then VX > 2, \ /K compact in R ”°, any function in C (K) can be uniformly approxi­

mated with any accuracy by the output of a X-layer FFNN with a linear transfer function in the

output layer and with a as the transfer function in all hidden layers. It is possible that in some

cases a X-layer ANN might perform a good approximation with less computational cost, that is,

using less neurons, and thus less ANN weights, than a 2LFFNN.

Denote by Bn° the Borel field of R ”° , and by M.n° the set of all Borel measurable functions

from R n° to R. Hornik, Stinchcombe, and White [97] proved that, if er is a non-decreasing

sigmoid and fi is any probability (or finite) measure on (R"°, Bn°), then Af[no, *, 1; cr, I] is dense

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in M n° with respect to the metric

(2.34) d= i n f { e > 0 ;M{x : | / (x) - 9 (x)| > e} < e j , Vf,g £ M n°.

Note that pM(/, g) is small if and only if there is a small probability that / and g differ significantly,

and g) — 0 if and only if / and g are ^-equivalent, i.e., p{x. : / (x) — <?(x)} — 1 .

Several authors have investigated the approximation of the derivatives of a mapping by 2LFF

ANNs. Hornik [96] proved that if a £ Cm(R) has all its derivatives up to order m bounded,

then Vff compact in R n°, any function in C m(K) can be approximated in any Lp norm, 1 <

p < oo, together with all its derivatives up to order m, with any accuracy, by some function in

Af[no, *, 1; cr, I}. Gallant and White [76] showed that, when a 2LFFNN is trained by a least-square

minimization to approximate an unknown mapping, then it will automatically approximate the

derivatives of that mapping as well (up to a certain degree m, depending on the regularity of

a). It is remarkable that we do not have to explicitly provide the values of those derivatives as

targets in the ANN training.

Castro, Mantas, and Benitez [27] proved that, if a is a non-decreasing sigmoid and (j) is a

strictly increasing, continuous sigmoid, then M[no, * ,n 2;u, (j>] is dense in the set of Borel mea­

surable functions defined on some compact K £ R™° with values in [R{cj))]n2, where R{4>) is the

range of <p (which is an interval, or the whole R). Hence, the universal approximation property

of ANNs holds even if the transfer function of the second layer is a sigmoid.

As pointed out by Hornik, Stinchcombe, and White [97], the functions encountered in prac­

tical applications are in general Borel measurable, therefore the approximation results for Borel

measurable functions are sufficient to justify the use of ANNs in practical problems. Hornik [96]

observed that, since the conditions that need to be imposed on <r in order to achieve universal

approximation are quite weak, it must be the MLFF architecture itself rather than the choice of

the transfer functions that provides the ANNs with the universal approximation property. He

also notes that, even though in principle one can use a large class of transfer functions, not all

functions will perform equally well in specific practical problems.

Basically, the above results state that a nonlinear function can be approximated to any desired

accuracy by the output of a 2LFFNN provided that sufficiently many neurons are available in the

network’s hidden layer. However, Cybenko [53] notes that the number of neurons necessary in

most practical problems is likely astronomically high, due to the so-called curse of dimensionality.

In a practical approximation problem, it is also necessary that there are sufficiently many training

examples for the ANN, and that they are well distributed in the domain D £ R n° on which the

unknown function is defined. Unfortunately, we may not have control over how well the training

examples are distributed inside D in some applications. The best distribution of the interpolation

points is closely related to the curvature of the function to be approximated, which is unknown.

The next best solution is to have a lot of interpolation points uniformly distributed in D. Note

that, for the experiments performed in the present study, the training data set is not very large

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(containing only a few oscillation cycles), therefore we cannot count on this situation to occur

either. In our study, we find a means for effectively extracting information from the training set

for a given number of neurons. Hence, for a given application, fewer neurons will be necessary.

As for the distribution of training examples, we propose a criterion to assess, for our class of

applications, whether the training set is appropriate or not. These issues will be discussed in

detail in the following chapters.

In general, how to choose the number of ANN inputs and the number of hidden layer neurons

for a given application is still an unsolved problem. Having too few param eters (weights) in the

network leads to poor generalization because the ANN system is less complex than the unknown

mapping hence the mapping cannot be learned. Too many parameters implies th a t the ANN

system is more complex than the unknown mapping # . Consequently, the mapping $ may not

be uniquely determined by its samples because the ANN has too many degrees of freedom.

Different types of constructive and destructive algorithms have been designed to optimize the

complexity of a neural network. Constructive algorithms [26, 40, 79, 104, 191, 214] iteratively

increment the number of neurons in a certain layer. The ANN is first trained with a single neuron

in the respective layer. If the performance index is not small enough, then a neuron is added to

the working layer and its weights are trained while the other ANN weights are kept frozen. The

process is repeated until the value of the performance index, or of other relevant quantities (such

as, for instance, different types of information criteria) is small enough. Destructive algorithms

(or pruning algorithms) [51, 64, 223, 227] start by training a network with a lot of neurons,

and then different neurons or weights are deleted based on their ’im portance’, or ’relevance’ for

the network (given by a certain ’relevance’ index, defined in most cases based on some kind of

statistical reasoning). We have not experimented w ith these methods in the present study, but

they could constitute interesting subjects for further research.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

M ain Contribution

Suppose we know a set of consecutive terms of a time series s (l) , s(2), . . s(t) . .., s (ti) (where t

are discrete moments of time). These could represent, for instance, measurements a t equal time

intervals taken from a process th a t is continuous in time. We wish to predict s(t\ + 1), s(fi + 2),

. . . , s (t2), for f2 much larger than tj.. In this study, we assume th a t the time series arises from

a model representing a nonlinear dynamical system. Moreover, the system is self-excited, which

implies tha t no external forcing is imposed after t = f i .

3.1 Time Series M odels

In order to define the context of our main contribution in this study, a brief review of the time

series models developed up to this moment will be performed in this section. An excellent

review of time series analysis methods has been performed by Fan and Yao (2003) [6 8]. In time

series analysis, the discrete-time trajectory {s(t)} t is viewed as the realization of a stochastic

process { X t }t, and the goal is to determine the probability law th a t governs a segment of the

observed data s(to + 1), s(to + 2), . . . , s (ti) (for some t 0 < t%), in order to forecast the unknown

observations s(tj + 1), s(ti + 2), . . . [6 8 , 215]. Since the number of known observations is always

finite, there are infinitely many stochastic processes th a t can generate the same observed data set

[6 8]. Therefore the usual approach is to search for the probability law in a specified family (the

modelling stage), and then to select a member in th a t family th a t best fits the known da ta set

(the estimation stage). W hen the probability law is specified up to a finite number of param eters

to be determined, we are dealing with a parametric model W hen there are an infinite number of

parameters or if the form of the probability law is not completely specified, we are dealing with a

nonparametric model [6 8]. A detailed presentation of time series analysis methods is beyond the

scope of this study. We will only point out some issues tha t are relevant to our approach. The

application of some classical time series models to the prediction problem tackled in this study

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is reported in detail in [194, 258, 259, 260].

A stochastic process {et }t for which Vt: E(et) = 0, Var(et) = a 1 < oo, and Cov(et, es) = 0 for

s ^ t, is called white noise (denote {et }t ~ WN(0,cr2)). A special case of a white noise process

is a sequence {et}t of independent and identically distributed random variables with E(et) = 0

and Var(et) = <r2 < oo Vt. We denote such a stochastic process by {et}f ~ IID(0, cr2) [6 8].

The most widely used param etric model in time series analysis is the so-called autoregressive

moving average (ARMA) model

p <t

(3.1) X t — ^ 2 ah X t-h + + ^ 2 bjet~j
h -1 j= 1

where {e«}t ~ WN(0, cr2) and ah, hj are parameters to be estimated by statistical methods based

on the known observations [6 8].. Once the parameters have been determined, a prediction for

the observation at the next time moment can be generated [6 8 , 215]. If ah = 0 V/i in (3.1), we

obtain a moving average (MA) model, while if bj = 0 Vj, we are dealing w ith an autoregressive

(AR) model. Note tha t such models are representative for the time domain approach, which

describes the structure of a time series in terms of the dependence of the current observation on

the past observations. There is also a frequency domain approach, which describes the underlying

dynamics in terms of the systematic sinusoidal variations present in the d a ta [215], and which

has not been investigated in our study.

Sometimes it is necessary to differentiate the time series (that is, to replace the original data

set by the sequence of the differences between each observation and the previous one), in order

to remove some time trends (such as a steady increase in mean, for instance). When an ARMA

model is fit to the d times differentiated d ata set, the predictions for the subsequent observations

of the original time series can be generated by integrating d times the predicted values for the

differentiated series. This is referred to as an autoregressive integrated moving average (ARIMA)

process [6 8].

Despite its excellent theoretical tractability, the main shortcoming of the ARIMA model is its

linear nature, which makes it unable to model time series w ith underlying nonlinear structure.

Nonlinear time series models have been developed for th a t purpose. However, this is still a poorly

developed research field with most of the work done since the 1980’s. In this section we only

point out some issues relevant to our research topic.

A popular nonlinear time series model, which is introduced to capture the volatility of financial

time series, is the generalized autoregressive conditional heteroscedastic (GARCH) model:

p q

(3.2) X t = at et , cr2 = a 0 +] 2 ahX?_h + J 2
h=1 j= l

where {et}t ~ IID (0 ,1), and ah > 0, bj > 0 [6 8]. If bj = 0 Vj, we obtain the autoregressive

conditional heteroscedastic (ARCH) model. The threshold autoregressive (TAR) model performs

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a piecewise linear approximation of the data, the division of the state space being dependent on

a threshold variable X t-d (for some d > 1):

k (Vi

(3.3) = \ ai’° + 5 Z
i=l I h = 1

where I a P) is the characteristic function of the set At, {et }t ~ IID (0 ,1), cr* > 0, and {Aj}j

forms a partition of R [6 8]. The TAR model is not as well understood as the ARIMA model. A

bilinear model has the form:
p q p Q

(3.4) X t — T a ^X t-h + + V"' bj€t-j + V C h,jX t-h^t-j
h =1 j =1 h=l j =1

where (et}t ~ IID (0,tr2). This model is capable of capturing occasional outbursts in time series,

which might be useful for modelling seismological data [6 8].

Even though param etric models are powerful tools when the models are correctly specified,

the main difficulty lies in the choice of the specified model for a given time series. In order to

improve the accuracy of the approximation, models of a more general form need to be constructed.

One of the most general models is the saturated (full) nonparametric model:

(3.5) X t = f (X t- ! , • • . , X t- p) + er(Xt_ i , .. . , X t- p)et

where {et }t ~ IID (0 ,1) and et is independent of X t~h, h > 1 [6 8]. The function /(•) is the

autoregressive function, while cr(-) is the conditional variance function. Though modelling biases

are reduced by using this type of model, the estimation of the autoregressive function (by methods

such as multivariate local polynomial regression, spline interpolation, etc [6 8]) is not feasible due

to the ’curse of dimensionality’. Therefore nonparametric models with particular forms of the

autoregressive function have been developed [6 8].

The functional coefficient model (FAR) has the form:

p

(3.6) X t = f h(X t- d) X t- h + cr(Xt_ d)et
h —l

for some d > 1, where {et }t ~ IID (0 ,1) and et is independent of X t~h, h > 1, Vt. If, instead

of X t-d , each fh(-) takes as argument a linear combination of past observations, then we obtain

the adaptive functional coefficient autoregresssive model [6 8]. A param etric version of the FAR

model is given by the exponential autoregressive (EXPAR) model:

p

(3.7) X t = + (Ph + Ih X t-d) ex p (-0 iX t2_ d)}X t_h + et
h =1

proposed by Ozaki, where 0* > 0 [6 8]. Ozaki showed th a t the EXPAR model is capable of captur­

ing complex nonlinear phenomena such as amplitude-dependent frequency, jum p phenomena and

limit cycles. The model was subsequently extended by replacing the coefficients 7 h by Hermite-

type polynomials in X t~d [8 8 , 89, 182, 183]. This particular model has been applied to data

28

lA i {X t - d) + VFiCt

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sets used in our study, and its advantages and disadvantages are reported in [194, 258, 259, 260].

Several other nonparametric models include additive models, two-term interaction models, etc

[68].

3.2 The Proposed Approach

In our approach, we are modelling a segment s(to + 1), s(to + 2), . . . , s (ii) (for some to < ^i) of

the known d ata set using a nonlinear mapping 4>w given by the output of an ANN (w denotes

the vector of all ANN weights). It has been proven that, for all practical purposes, a nonlinear

function can be interpolated from examples of known values, with any desired accuracy, by

the mapping th a t gives the output of a two-layer feed-forward ANN w ith a sigmoidal transfer

function in the first layer (a 2LFF1SNN) and a linear transfer function in the second layer (a

2LFF1S2LNN), provided tha t sufficiently many neurons are available in the network’s hidden

layer (see Theorem 2.3.1) [31, 32, 33, 34, 53, 75, 76, 77, 96, 97, 105], A sigmoidal function is a

bounded function with horizontal asymptotes at both —oo and +oo, with the left-hand asymptote

being lower than the right-hand asymptote. In this study, we use f ^ (x) = a(x) = tanh(rr)

as the transfer function in the first layer. The universal approximation property still holds

for 2LFFlSNNs with continuous and monotone sigmoidal transfer function in the output layer

(2LFPlS2SNNs) [27],

We are implicitly assuming that, for no sufficiently large, there exists a mapping $ = # no

th a t models sufficiently well the entire trajectory, i.e.,

(3.8) s(t) = $ (s (t - l) , . . . , s (t — n o))+ e(t), Vt > n 0 + 1

with the modelling error

(3.9) Soo d= sup{ |e(t)|;f > n 0 + 1}

being sufficiently small. In other words, we are assuming th a t the dynamics of the given trajectory

can be accurately described by the dependence of each current observation on a fin ite number

of past observations.

For no sufficiently large, we are attem pting to approximate the mapping # in (3.8) by a

mapping $ w € Af[no, *, l;cr, / ^] (see equation (2.28)). If the number n \ of the hidden neurons

is sufficiently large, this should be possible in light of the universal approximation property of

ANNs. All we need is to have sufficiently many examples of the correct input-output pairs

(3.10) | { s(t - 1) =f [s(t - 1) , . . . , s (t - n0)]T, s(t) } ; t0 + l < t < h j

for ANN training. The pairs form the training set for our application. <f>w is the mapping th a t

provides the output (t) of a 2LFF1SNN as a function of its n 0 inputs. The outputs of the

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w„

s(t 1)

Figure 3.1: Two Layer Feedforward ANN Used for Prediction.

first and second layer of such an ANN (represented in Fig.3.1, with f W (x) = tanh(x)) at each

time step t, are respectively:

(n o 1
(3.11) , (!)M (*) = tanh I w (̂ 0 + J 2 \kos{t - k 0) \ , 1 < h < m

I fco=l J

ni
(3.12) y {w (t) = / (2) < ^o2) + E

l fei=i

where w denotes the vector of all ANN weights w j^ feo, , Wq2\ 1 < ki < n \, 0 < ko < no-

An appropriate w has to be determined such th a t the errors

(3.13) ew(t) == s(t) - $ w (s(t - 1) , . . . , s (t - n 0)), t 0 + l < t < t i

are sufficiently small. The ANN weights for which $ w correctly models the training set are

determined by minimizing the mean-squared error (the performance index):

t lI
(3.14) £(w) = E K *) - < M s (t - i))] 2

t=to + l

by using a nonlinear optimization algorithm. This constitutes the ANN training process. In our

study, the conjugate gradient method was applied. At every discrete time step t, the value

(3.15) yw (t) d= $ w(s(f - 1) , . . . , s(t - n 0))

is called the one-step prediction (OSP) for s(t), and the value

(3.16) ew(i) =f s(t) - yw (t)

is called the one-step prediction error (OSE) a t step t.

Once w has been determined, an estim ate for s (ti + 1) will be given by:

(3.17) yw (ti + 1) d= $ w(s(fi), s (ti - 1) , . . . , s(t\ - n 0 + 1))

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If the correct value s{t\ + 1) becomes available before the moment t = t \ + 2, the value s{t\ + 2)

can be estimated by a OSP process in the same manner:

(3.18) s(t i + 2) « yw(ti + 2) d= $ w(s(ti + 1), s(ti - n0 + 2))

Otherwise, the previously predicted value yw(ti + 1) has to be used in order to predict s(t\ + 2):

(3.19) s(fi + 2) « yw(fi + 2) =f $ w (yw {ti + 1), s(*i), s(fi - 1) , . . . , s (t i - n0 + 2))

Similarly, s(ti + 3) will be estimated by:

(3.20) yw (h + 3) =f $ w(j/w(fi + 2), yw (ti + 1), s (f i) , . . . , s (h - n0 + 3))

and so forth. The process described in (3.19) and (3.20) is referred to as a multi-step for recursive)

prediction (MSP). Since we are assuming that only a limited transient data set is known and

that the subsequent values s{t\ + 1), s(ti + 2), . . . never become available through measurement

during the forecasting process, the OSP formula cannot be used to estimate these unknown

values. Instead, at each step t > t i + 1, the value s(t) will be estimated by its MSP:

(3.21) y„(t) =f $w(£w(i - !) , • • • > Vw(t - n0))

where

(3.22) yw {t) d= s(t), h - n0 + 1 < t < h .

At every step t, the value

(3.23) ew (t) = s(t) - yw (t)

defines the multi-step prediction error (MSE). Note that one of the main difficulties in performing

a MSP process is to control the propagation of the prediction errors. The errors are due to the

past predicted values being used in order to generate the current prediction.

The multi-step-ahead prediction (MSAP) method has been somewhat investigated in the sta­

tistical literature [30, 84, 95, 113, 176, 228]. It involves, at each time step t, predicting s(t i + d)

in terms of the known values s(ti), s(ti — 1), . . . , s(ti — no + 1) (for some fixed d > 1):

(3.24) i/w(fi + d) = f $ w(s(fi), s(fi - 1) , . . . , s (ti - n0 + 1)).

For <1 = 1, the MSAP becomes an OSP process. In contrast to this method, what we call MSP is

also known as one-step plug-in method. It is known in the statistical literature that, for a given

d > 1, a MSAP as in (3.24) provides a more accurate prediction than using d times a MSP (or

’one-step plug-in’) process as in (3.21). Note that the target outputs when training the ANN to

perform a MSAP as in (3.24) are s(to + d), . . . , s(ti). Since sufficient data points are needed for

network training, it follows that the lag d has to be much smaller than ti — to (<f < t i - to)-

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In addition, the farthest observation in the future th a t can be predicted is s(fi + d), where

fi + d -C 2ti - to- In our applications, our goal is to predict the unknown values s(ti + 1), ..

s(f2), where t2 is considerably larger than ti. Hence, in order to estimate the value of s(t2), some

kind of ’plug-in’ still needs to be performed, at least t2 — 2ti + to times (that is, several hundreds

of times, in our experiments). In addition, the mapping # <d> that models the dependence of

s(t + d) on s(t), s(t — 1), . . s(t — no +1) , becomes more complicated as d increases. Hence, while

the known data set s (l) , . . . , s(fi) (where t \ is of the order of hundreds) might be sufficient for

the ANN to accurately approximate the mapping $ <1:>, it might not be sufficient to approximate

the mapping <§<10>, for instance. Since in our experiments the known data set is quite limited,

we used d — 1 (and hence a MSP process) in all cases.

Takens [224] proved that for a compact manifold M of dimension m, a smooth function (an

observable) 7 : M —> R, a dynamical system 4>: R+ x M —> M., and a point xo € M , there

exists (a countable intersection of open dense sets) C'̂ ,;Xo C R + such that, for any h £ CV)Xo,

there is a smooth embedding of M into R 2m+1 bijeetively mapping the w-limit set w(xo) ==f

(x £ M ; 3 tn —> 00 with <f>tn (xo) —> x} to the set of limit points of the sequence

f T1
(3.25) | [7 (<£(„+o)fc(xo)) , 7 (<£(n+l)fc(xo)) , • ■ • , 7 (<̂ (n+2m)fc(xo))] ,

which implies (when 7 — 7ri, the projection on the first component) that we can reconstruct

the u> limit set of an m-dimensional trajectory by using only the information about one of its

m components. In some of our experiments, the transient state of only one component of an

8-dimensional aeroelastic system is provided as training set to the neural network. The ANN

accurately predicts the limit cycle oscillations on that component even though the 8 first-order

nonlinear ODEs are coupled and the other 7 components of the dynamics are not provided

[140, 151]. Note that, in order to reconstruct the limit set a;(xo), appropriate values for the

time lag h and the embedding dimension m have to be chosen. However, no explicit formulas

for computing m and h are available. The information on m and h is usually unavailable for

practical problems. Moreover, Takens’ theory is applied to a noise-free condition, while for many

applications we are interested in data corrupted by noise. The proposed neural network predictor

is developed so that it is capable of dealing with noisy data.

In the present thesis we concentrate on predicting a particular class of signals, namely oscil­

latory signals. More specifically, the signals we consider have the following poperties:

P .l . For every r > 0 sufficiently large, the mean value s(r) of {s(t); 1 < t < r } is close to

zero, and r 1—> s(r) is an approximately constant mapping. If the mean is not close to zero, then

the signal can be rescaled.

P.2. {s (t) ; t > 1} is an oscillatory signal, i.e., there are sufficiently many moments tm such

that s(tm)s(tm — 1) < 0, with tm - 1 < t m, Vro.

P.3. There are sufficiently many such points tm between to + 1 and fi , i.e., the known data

set contains sufficiently many oscillation cycles.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P .4 . tm — tm ~i 3 > 1, Vm, i.e, there are sufficiently many sample points per oscillation cycle.

In general it would be good to have 50-100 points per oscillation cycle.

P.5. max{|s(t)|; 1 < t < fi} « 1. The available d ata set is finite, and thus bounded. Thus

the amplitude can be rescaled t o w l .

3.3 Im plem entation for A N N Prediction

In this section, we will provide details concerning the implementation of LTMSP using ANNs1.

In the next chapter, the test results using the proposed procedure will be reported.

A 2LFF1SNN architecture, represented in Fig.3.1, is used in our study. The first layer TF is

chosen to be the hyperboilc tangent sigmoid f ^ (x) = cr(x) = tanh(x) in all experiments. This is

the most common choice for TF in ANN applications, due to the smoothness and monotonicity

properties of tanh(-), which facilitate the gradient-based network training. The outputs of the

first layer of this type of ANN are given by

{ no

- fco)

fco = l

for 1 < ki < n \ .

The most common choice of the second-layer TF is / (2) (a;) = x. Most universal approximation

results have been proven for such a 2LFF1S2LNN [31, 32, 33, 34, 53, 75, 76, 77, 96, 97, 105]. The

network output in that case is given by

m
(3-27) y {2\ t) = w (o] +] T

ki~l

where y ^ kl{t), 1 < k\ < n i, are given by (3.26). This is the classical 2LFFNN used in most

applications.

As mentioned before, the universal approximation property still holds for 2LFFlSNNs with

continuous and monotone sigmoidal transfer function (such as tanh(-)) in the output layer

(2LFF1 S2SNNs) [27]. Therefore an alternative choice for the second-layer TF could be f^2\ x) —

tanh(a;). Since the amplitude of the limit cycle of a given trajectory might be larger than 1, a

scaling is introduced so that the ANN is capable of accurately reconstructing this asymptotic

state. Hence, f^2\ x) = ip (w ^) tanh(a:) is proposed as TF in the second layer, where is an

output scaling parameter that will be determined by ANN training, and

(3.28) ^ (x) H f in ^i + _ 5 l

1 Versions of som e of th e discussions in th is section have been published in [238, 239 , 240, 241] or su b m itted
for publication in [241].

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-3

Figure 3.2: The function i[>(x) = ln {l + ex/ (l + e *)} (’— ’)•

n i

W;(a)./1)
'fex

The ANN output in that case will be

(3.29) y £] (t) = 4>{w{z)) tanh j w (2) +
{ k \—1)

Note that rp(x) > max{:c, 0}, Vx, and ift(-) has y = 0, y = x as asymptotes at -o o , +oo

respectively (see Fig.3.2). ip (w ^) is used instead of simply to keep the scaling constant

positive throughout the ANN training. Clearly, the vector w will contain the extra parameter

w in that case. In addition, ip'(x) « 1 for most positive values of x , hence w ^ will vary

linearly during network training [240].

The hyperbolic tangent sigmoid is expected to have a noise reduction effect in feature extrac­

tion [86], hence by using such a transfer function in the output layer rather than a linear function,

we are hoping to achieve a better robustness for applications to noisy data. Our experiments

have shown that this does indeed happen. The initial value of in all experiments (when this

type of TF was used) was set to ip~l (l).

A 2LFF1S2LNN with scaled weights in the second layer is used in some experiments. Namely,

all , 1 < k\ < ni, are replaced by

(3.30) d-

The ANN output in that case will be

Til

(3.31) y<g\t) = w o2)+
1p(w^) w (2)

fci

f c l = \ i + E

Note that is again a scaling parameter used to adjust the magnitude of the ANN output

in order to make it possible for limit cycles of large amplitude to be predicted. Since by (3.26)

we have \y^ kl (f)| < 1, it follows, by the Cauchy inequality, that:

-i 2

(3.32) y™ \t) -w , (2)

<
E k

k1= 1
(2) |
&1 I

n i
i + E

i
w :

2 —

711 n i 2

E i 2 E w iS
k i ~ l k-i = 1

i + E
A i= l

W
(2) '

< Til-

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hence

(3.33) \y^ (t) \ < | 4 2) | + V V 3))V ^ -

If was mising, the ANN output would be unable to predict limit cycles of amplitude

larger than |u;q2̂ I + %/aT- The vector w now contains the parameter w^3\ and the initial value

of is set to V>- 1(1).

By normalizing the weights in the second layer, we expect to improve the ANN robustness with

respect to the noise and to variations in different parameters such as the number of inputs and

the number of hidden neurons. Since the second-layer weight updates during network training are

interdependent, these weights cannot vary wildly. It is well known that one of the features that

provides the power of ANNs is the redundancy in the system parameters. However, in practice,

redundancy also leads to overfitting and poor generalization due to the existence of many degrees-

of-freedom in the system. One possible way to reconcile these two sides of redundancy could be

the weight normalization.

The ANN training performs the minimization of the mean-square OSP error over the training

set, given by (3.14) in Section 3.2, using a Fletcher-Reeves conjugate gradient algorithm, as

described in Section 2.2. F irst an initial guess w 0 for the weight vector w is set. At each training

iteration, a sweep of the training set is performed and gnew =f V E (w old) is computed using

the current weight vector w old. The current search direction is computed: p new = — g new +

{! | s new 111 / 11 goId | ! | } pold, and finally the weights are updated: w new = w old + ctwp new, where a w

is the current step size, or the learning rate (LR), which can be constant or adjusted at each

iteration. The search direction was set to pnew = —gnew a t the beginning of training and after

every 1 0 0 iterations, in order to accelerate the convergence of the conjugate gradient method

The gradient of the performance index at each training iteration is computed as follows. The

performance index can be viewed as a sum:

[86].

(3.34) E(w) = ^ E(w , t), where E (w ,t)
t=t O + X

and therefore

VU(w) = ^ 2 Vf?(w, t), where Vi?(w, t)
t=t0+i

and yw (t) — (t) is given by

(3.36) y £ \ t) = ^ (t c (3))^ w ^ } +
fci=i

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where y ^ k (f), 1 < &i < n i, are given by (3.26). The argument of ip (the net input to the second

layer) will be denoted by v „ \ t) . We define Vv(*) =f (1 — r) + Ttp(x), \fx £ R , Vr S [0,1], so

th a t ipi(x) — ip(x) and i>a(x) = 1. For ip(x) — x, £ — 0, £ = 0 in (3.36), we obtain (3.27); for

ip{x) = x, £ = 0, C = 1) we get (3.31); and for ip(x) = tanh (s), £ = 1, (= 0, we obtain (3.29).

At each training iteration, the scaled weights are first computed:

(3.37)
(2)

w,(2,sc) def fcx def
7,(2)

(2)
fci

/ n i
' 1 + C E

hi= 1

1 < fci < m .

W,(2)

Then, for every t, f0 + 1 < f < t i , the values of v ^ ki(f), y ^ ki(t), 1 < kx < m , Uw^t), y™\t),

and ew(t) = s(t) — y ^ \ t) are calculated according to (3.26) and (3.36). The following quantities

are then computed using the backpropagation algorithm:

(3.38)
d E (w ,t) —2ew(t) d E (w , t) _ d E (w ,t)
d y ^ (t) h - t 0 d v ^ \ t) d y ^ \ t)

(3 3 9) ^ g (w ,f) _ d E (w ,t) (3) (2,sc) 0Jg(w ,t) _ 01S(w,t) (i)

where cr(o:) = tanh(x). Then the gradient components of E (w ,t) are computed as follows.

d E (w ,t) _ d E (w , t) dE (v/,t) __ d E (w ,t)

 ̂ ̂ dw k l 0 f r 'w k W ’ M x!feo

Note that, for 1 < k\ < n \ \

s(t - ko), l < k o < n0,

(3.41)

or, equivalently:

(3.42)

dwiS
E

L/u=i

U),(2)
&i

7*(2)

^ (I r = { ^ c (^ (3))j/w,)feI W r(2) - [* i2) w - 4 2)] 4 ? } •
ki

Hence

(3.43)

Finally:

(3.44)

d E (w ,t) _ d E (w ,t) d E (w ,t) _ d E (w ,t) dvffi(t)

9wq2) d v £ \ t) ’ d w ^ d v £ \ t) d w ^

d E (w ,t) _ d E (w ,t) ^ (w ^) (2) d E (w , t) ^ (w ^)

^ (3) d y g \ t) 1 j <?ui2)(f) ^ (3))
- wo2)

Designing a good stopping criterion for the network training process is of utm ost importance

in ANN applications. The purpose of training is for the network to learn the training patterns,

in other words to make the performance index E (w) small. However, the learning of the training

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

examples is desirable to the extent to which it helps the ANN to accurately generalize. If E (w)

becomes smaller than a certain threshold, the ANN will s ta rt to learn features th a t are specific

to the training set and are not relevant anymore for the general pattern from which the training

examples were drawn. This threshold is heavily problem-dependent and there is no clear way to

estim ate it. In our study we use a stopping criterion tha t is specific to our MSP problem. At

each iteration, after the weight update has been performed, the current MSP vector

(3.45) y (w new) = [yw-e» (h + 1), (ti + 2) , . . . , (f2)]T

is computed. The ANN training is stopped when the distance between two consecutive MSP-

generated signals

,« i n new def ||y (w new) - y (w o W) | | 2

<3'46) 9 ~ ---------- V T T T ---------

becomes small and almost constant during many training iterations. If this does not happen,

then we say th a t the ANN training does not converge [238, 239]. In our experiments, the value

of E{w new) is usually around 0.01 and the value of pnew is of the order of 10~ 4 by the time the

ANN training converges.

As mentioned above, the LR can be constant or adaptive. For a given test case, if a constant

learning ra te (CLR) is used, its value is chosen as follows. S tarting with an initial value of 1.5,

decrement the CLR with 0.1 at a time and start the ANN training. Then the CLR is chosen to

be 1/10 of the maximum value for which the ANN training remains stable during the first 1000

iterations.

In the case of an adaptive LR (ALR) a w, the training is performed as follows. At each

iteration, after the weight update, a w is multiplied by £w — 1 . 1 if i? (w new) < i?(w old), and

divided by Cw otherwise. In order for a w not to decay to zero, a constant lower bound d w for

a w is set to 10~6. At the beginning of training, a w is set to d w. To avoid a heavy oscillatory

behavior of the learning rate, an adaptive upper bound for a w is initialized. Then, whenever

a w decreases, a* is divided by = 1.001, otherwise it remains unchanged. As a result, both a w

and eventually stabilize at the same value [238, 239], We select the initial value of a ^ as

follows. Starting with 0.1, increment the initial with 0.1 a t a tim e and s ta rt the ANN training.

Choose the minimum upper bound for which the ALR has a t least one oscillation within the first

1000 training iterations. Using an ALR is expected to increase the sensitivity of the ANN to

noise in the training signal, due to the fact th a t an ALR search algorithm is more versatile than

one using a CLR, and therefore makes it possible for the ANN to learn the noise immediately,

thus corrupting the underlying pattern.

The standard approach to weight initialization for training is to set the weights to small

random values. It is easy to see th a t w — 0 is a steady state for the ANN training process. If

the training is started with zero initial weights, the gradient of the performance index is zero,

and hence the weight updates are zero. Therefore w new = 0 a t every training iteration. In some

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of our experiments we will initialize all , k% ^ 0 , feo ^ 0 with random numbers uniformly

distributed in [—0.01, +0.01], while all the other weights will be initially set to zero. This is, in

fact, sufficient to ensure a nonzero gradient at the beginning of training. In other experiments,

wk^k0 ̂ 1 ^ 0 , ^ ^ 0 , are initially set to

(3 471 w W •= S{h ~ kl ~ h +1}(0 .4 1) k i , k o ' no >
E [S (*X - fci - h 0 + l)] 2

/lO = l

while all the other weights are initialized by zero. The reason for doing th a t will be explained

in the following. It was noticed in practice that, if the network training is performed with zero

initial weights in the first layer (and nonzero initial weights in the second layer), then each vector

Wj.^. has an oscillatory profile at the end of training. Moreover, the main oscillation frequency

is close to the one corresponding to the training signal. This phenomenon could be explained by

the fact tha t

*> H ; o

for to + 1 < t < t i , 1 < k\ < m , 1 < ko < no- In the steepest descent optimization algorithm,

for instance, the weight update at each iteration is proportional to V-E(w), and for each t, the

gradient components corresponding to the weights of a first-layer neuron k \ are proportional to

the inputs s(t — ko). Therefore, it is not surprising th a t w j^ . has an oscillatory profile. In the

conjugate gradient algorithm, the current weight update depends on a linear combination of the

gradient of the performance index a t several past iterations, but the above proportionality still

holds.

This observation leads to the idea tha t one might be able to speed up the ANN training by

initializing the vectors with segments of the training set, thus incorporating an oscillation

in the weights from the very beginning of the training. In our experiments, however, we did not

notice any significant improvement in the training speed when such a weight initialization was

used, but a clear improvement in prediction accuracy and robustness was observed. The division

of each segment by its squared Euclidian norm (’normalization’) was done in order to prevent the

net input u ^ fci (t) of each hidden neuron from being large in absolute value, which would then

lead to the phenomenon of saturation. Since the derivative of tanh(-) is close to zero even for

|m| close to 2, the derivatives of the performance index E (w) with respect to the weights of the

corresponding neuron would be close to zero. Consequently, the weights would never be updated

by the gradient-based ANN training algorithm.

Once the network architecture and the training algorithm are determined, the remaining

im portant consideration is to choose the correct number of network inputs no and the number of

neurons in the hidden layer n i for a given task. In the present study, we propose various methods

th a t provide estimates for Hq and n\. These methods are extensions of those we proposed in [240].

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

0

1
106 159 207 252

Figure 3.3: ANN Training Set with Lmax and Lmin Points (Test Signal SI).

Since ANNs are robust with respect to variations in the number of inputs and in the number of

neurons, rough estimates for these quantities should be sufficient.

The main idea when estimating no is that we want the ANN inputs to span over an entire

oscillation cycle. A first estimate of no could therefore be obtained by dividing the number of

training points f i —to by the number of oscillation cycles observed in the training set, thus obtain­

ing an empirical estimate of the average number of sample points per cycle [240]. Alternatively,

we could choose no to be the average length of an oscillation cycle, namely the average distance

between consecutive local minimum (Lmin) — or local maximum (Lmax) — points throughout

the training set. For example, in Fig.3.3, t \ miIi = 53, t2min == 159, t \ mm — 252 are the Lmin

points, while £kmax = 106, t \ max = 207 are the Lmax points. The distances between consecutive

Lmin points are djmm = t \ mm — = 106, = t | mm — t \ min — 93, while the distance be­
tween consecutive Lmax points is d \max = i|max_^Lmax _ iqi . The average distance between the

consecutive Lmin points is thus aLmin = 100 (rounded off to the closest integer), while the average

distance between the consecutive Lmax points is aLmax = 101. The average of these two quanti­

ties, oavg — 101, could be an empirical estimate, denoted by riomp, of no- Note that the following

vectors are defined: tLmin d= [^ min, ^ min, ^ min]T = [53,159,252]T, dLmin d= [d\min, d l milt]T =

[106,93]t , tLmax d= [t \max,t%max}T = [106,207]T, dLmax d= [d\max) T = [101]T.

An alternative way of determining an appropriate value for no is to compute, for 0 < h <

t \ — to — 1, an estimate of the autocorrelation function (ACF) [68 , 215]:

£ [s(t + h) - s][s(t) - s\ tl
(3.49) p{h) = , where s = ,- ■■_ ■ ■■ ^ s(t).

£ [s (t) - s] 2 1 r° t=t0+i
t = t o + l

According to Fan and Yao (citing Box and Jenkins) [68], in order for the estimates to be accurate

it is necessary to have t \ — to > 50 — which is always satisfied in our case studies. Moreover,

since the estimates become inaccurate for larger h because of the lack of enough observations, it

has been proposed that only the values of p(h) for 0 < h < (ti — to)/4 be used [68].

Note that the ACF is a measure of the linear dependence of s(t) on s(t — h) for different lags

h [68 , 215]. In our experiments, the function p(-) has an oscillatory profile, as in Fig.3.4, and

|/5(h) | is typically a nondecreasing function of h. The value of h for which the first peak of p(h)

is achieved provides an estimate ngcf of the lag h for which the positive correlation between s(t)

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and s(t — h), t > 0, is maximum. For instance, in Fig.3.4, the first peak is achieved for h — 43,

hence n%cl — 43 is an estimate of the necessary number of ANN inputs. The vertical bar marks

the point h — {ti — fo)/4.
An estimate of the number of network inputs can also be obtained as follows. Compute the

Fast Fourier Transform (FFT) of the training set assuming the sampling step to be 1. Detect the

lowest frequency zq that has an energy close to the maximum energy of all Fourier modes in the

decomposition. Compute nf* = 1/zq (rounding off to an integer value). This is an estimate of

the number of sample points contained in the oscillation period T\ of the lowest frequency mode

with high energy. For instance, in Fig.3.5, zq = 0.0105 does not have the highest energy, but it is

the lowest frequency that has an energy close to the highest one in the decomposition. Therefore

we take n® = 1 /iq ~ 95 as an estimate of the number of network inputs necessary for working

with this signal.

In the next chapter, we show that the estimates ngmp, ng®, and n®1, are close to each other for

each test case (see Table 4.4). Hence, the “final” estimate n®n of no could be chosen to be either

the maximum nJJ1®* of the three types of estimates, or their average nQVg, possibly rounded up to

the closest multiple of 10, etc. Our choice of n*n for each test case will be reported in Table 4.4.

It was noticed in practice that quantitative pointwise prediction error measures do not provide

a good description of the MSP accuracy. Even when a small phase shift between the correct signal

and the predicted signal is present, the values of the pointwise error could be of the same order as

the amplitude of the given signal. Therefore we need to establish qualitative criteria for assessing

the prediction accuracy. An obvious way is to determine the degree of superposition between the

time histories (THs) of the correct signal and the predicted signal by visual inspection. Additional

insight can be obtained by plotting x(t) vs. x(t — d) — where t spans over a complete oscillation

cycle — for both the correct signal and the predicted signal, for different lags d = 1 , 2 , etc, and

assessing the degree of superposition between the two graphs for each time lag. Since we are only

interested in accurately reconstructing the asymptotic state of the signal (the limit cycle, in our

test cases), we could plot no graphs for each test case, namely for 1 < d < no, £2 — ^0 < t < t .̂

Due to space limitations, throughout this thesis we will only plot the phase portraits (PPs) for

selected lags d. For instance, in Fig.3.6, the superposition of the THs of the test signal and the

ANN-generated MSP is illustrated, as well as the superposition between the PPs corresponding

<

- 1
280

h

Figure 3.4: ACF for an ANN Training Set (Test Signal S3).

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

COMPLETE DETAIL

0.5 0.0105
v v

Figure 3.5: F F T Plot of a Training Set (Test Signal S5).

to d = 3.
Having chosen the number of inputs no, the necessary number of ANN hidden neurons n \

needs to be estimated. In the present study we propose an extension of the method presented

earlier in [240]. In [240] we proposed performing the ANN training for different numbers of hidden

neurons n\ — 1, 2, 3 , __ This process could be parallelized in order to reduce the computation

time. Let w^” 1) be the weights obtained when training an ANN with m hidden neurons using

the given signal, and

' jy (w [ni]) y (w [ni~ 1]) ||g
(3.50) [ni] def

s/t* - t i

for each n i > 1, where y(w) is defined in (3.45). In general, the distance p ^ first decreases

as n \ increases, then it becomes smaller and approximately constant with respect to n i (see

Fig.3.7(a)). This indicates th a t the ANN prediction is stable. In order to visualize the overall

trend, pM can be averaged over q consecutive values of ri\, obtaining a distance pg\ One can start

with q — 1, 2, etc., until the graph of pj^ becomes relatively smooth. The value h i is selected

which corresponds to the point where the decreasing trend of pj^ stops, and h i + q is chosen as

the number of hidden neurons. For instance, in Fig.3.7(b), p ^ is considered (for q = 5) and the

decreasing trend of p ^ stops a t h i = 29. Therefore the number of hidden neurons is chosen to

be n i = 29 + 5 = 34.

In fact, we are mainly interested in the asymptotic state of the predicted signal, regardless of

the shifts between MSPs corresponding to different numbers of hidden neurons. In Fig.3.8 it is

apparent tha t the P Ps of the MSP stabilize much sooner than the THs as the number of hidden

neurons is increased. Therefore an alternative choice for n i could be the value h i for which the

0.8 0.8

X

- 0.9 !—̂ -o.s1—
1000— 0.9283 400 600 800 0.8

t x(t—3)

Figure 3.6: Test Signal (’—’), and MSP (’- -’).

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 10 20 30 40 50 60
rv

0 10 20 30 40 50 60

Figure 3.7: Sample pM (a) and (b).

P Ps of y (wfrei_Dl), y (wl" 1 £)+1l), . . . , y (w^ni *1), y (wtniJ) are overlapping for each lag d,

1 < d < no (for some integer D > 0).

3.4 Dynam ical System s Perspective

In this section, we present a theoretical justification of our proposed approach to LTMSP of

nonlinear trajectories using ANNs. We are providing a reason why we expect our method to

work. We will show that the MSP dynamical response is close to the response of the original

dynamical system when certain conditions are satisfied. More specifically, we compute an upper

bound on the distance between the cu-limit set of the given trajectory {s (t) \ t > 1} and the u>-

limit set of the trajectory generated by MSP using an ANN trained based on a segment of the

transient state of {s(t); t > 1}.

N otation 3.4.1. Denote by {e^; 1 < h < no} the canonical basis in R n°. For every h, 1 < h <

no: = [0 ,... , 0 ,1 , 0 , . . . , 0]T G R n°, where the A-th component is equal to 1.

N otation 3.4.2. Denote by dhf the partial derivative with respect to the A-th variable of a

differentiable mapping / : R ”° —> R.

N otation 3.4.3. Denote by C°(Rn;R m) the set of all continuous mappings f : R ” —» R m, and

by C'o(R”;R m) the subset of all bounded mappings in C°(Rn;R m).

N otation 3.4.4. Denote by C'fe(R ";R m) the set of all mappings / : R ” —> R m that have

continuously differentiable partial derivatives of order up to k. Denote by Cq (Rn; Rm) the

1.1

—' -1.1L
1000 - 1.1960 1.1

t x(t—3)

Figure 3.8: MSP for m = 3 4(’- 5(’-.’), 6 (’...’).

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

subset of bounded functions in C k(R"; R m) for which all partial derivatives of order up to k are

bounded.

N o ta tio n 3 .4 .5 . Denote by C°°(Rn;R m) the set of all infinitely differentiable mappings / :

R" —> R™. Denote by Co°(R”; R m) the subset of bounded functions in C°°(R n; R m) for which

all partial derivatives are bounded.

N otation 3.4.6. For m £ No, denote by f ^ the m-fold composition / o / o . . . o / of a function

/ : R ” —> R". By definition, is the identity function.

Definition 3.4.1. Define the (open) ball of center x and radius r with respect to the oo-norm

on R no by (x ,r) {x e Rn°; ||x - x||oo < r}, Vx £ R"'0, Vr > 0.

Definition 3.4.2. Define the closed ball of center x and radius r with respect to the oo-norm

on R ”° by J3oo(x,r) = f {x £ R n°; ||x - x||oo < r}, Vx e Rn°, Vr > 0.

Definition 3.4.3. Define the right shift operator shr : R ”° —► R ”° asshr(x) =f \0 ,x i , . . . , x„0_i]T,

Vx £ R"°.

Lemma 3.4.1. shr(-) is a linear mapping and ||shr(x)||oo < IMloo, Vx £ R"°.

Proof. The linearity of shr(-) is obvious. Moreover, Vx £ Rn°, we have:

(3.51) jjshr(x)||oo = max \xh\ < max = H x ^ .
l < h < n o ~ l l< h < n o

□

Definition 3.4.4. Given the mapping $ w : R n° —> R, define the mapping # w : R n° —> R n° by

$ w(x) d= $ w(x)ei + shr(x) = [$w(x),®i, .. . ,a;no_i]T, Vx £ R n°.

Definition 3.4.5. Given the mapping $: R ”° —> R in (3.8), define the mapping # : R n° —> R ”°

by # (x) = $ (x)d + shr(x) = [§ (x) ,x i , . . . ,x no_i]T, Vx £ R n°.

Definition 3.4.6. A mapping : R ”° —> R is said to be a Lipschitz mapping if 3A(4>) > 0 such

that |$ (x) — $ (x) | < A(4>) ||x — x||oo, Vx,x e R n°.

Definition 3.4.7. A mapping # : R"° —> Rn° is said to be a Lipschitz mapping if 3A(#) > 0

such that ||$ (x) - $(x)||oo < A(<&) ||x - x||oo, V x,x e R n°.

Definition 3.4.8. Given a mapping $: X -» X , a subset Y C X is said to be forward # -

invariant if # (F) c Y.

Assum ption 3.4.1. Throughout this section, we assume that the mapping <3>w : R n° —► R is

given by the output of a 2LFFNN:

(3.52) * . W « / < » | « ^ + E " ’?)/ (1>(’»fS + E Vx e R"u.

with f ^ (x) = tanh(x), and f ^ (x) = x or f ^ (x) = ctanh(a;) (c > 0).

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P r o p o s i t i o n 3 .4 .1 . /W G C §°(R ;R), with | | | / (1)| | | c = 1, i l | / (1)| | | c = 1, a n d f & e C °°(R ;R),

with / (2) G C g°(R ;R), | | | / (2)|||c = 1 (if f {2\ x) = x) or | | | / (2)|||c = c (if f (2){x) = ctanh(x),

c > 0) respectively.

Proof. Follows immediately from Assumption 3.4.1, since d ta,nh.(x)/ d x = 1 — tanh2(x). □

L em m a 3 .4 .2 . If / G Cft(R;R), then \ f(x) - f (x) \ < | | | / | | | c p -£ ||o o , V x ,x G R.

Proof. Follows immediately from the mean value formula in R. □

i « (^1 f ry\ *0 / - \
Proposition 3.4.2. $ w is a Lipschitz mapping, with A(4>w) = | | | / (2^|||c X) Nfc I £ \wk h\-

k = i /i= i

Proof. Follows immediately from Assumption 3.4.1 and Lemma 3.4.2, taking into account that

Hl/Wlllc = 1, as shown by Proposition 3.4.1. □

Proposition 3.4.3. |||<9ft$w|||c < | | | / (2)|||c J2 \w£l\ , 1 < h < n 0.
k=I

Proof. Follows immediately from Assumption 3.4.1 and Lemma 3.4.2, taking into account that

| | | / (1>|||c — 1) as shown by Proposition 3.4.1. □

Proposition 3.4.4. |ew(f) — ew(f)| < A(4>w) ||ew(f — l)||oo, Vt > fi + 1.

Proof. By Proposition 3.4.2: |ew(t) - e w(t)| = |j/w(f) ~I/w(f)| = |$w (s(f - 1)) - $w(yw(f - 1))| <
A($w)j|s(f - 1) - y w (f - 1)||oo = A(<E>w)||ew(t — l)||oo. □

Proposition 3.4.5. |||$ w|||c < M$w) | | | / (2)|||c | | ^ 2)| + £ kfe2)| | -

Proof. Follows immediately from (3.52) and Lemma 3.4.2, taking into account that /® (0) — 0
for our choices of and that | | | / ^ | | | c = 1, as shown by Proposition 3.4.1. □

Proposition 3.4.6. $ w is a Lipschitz mapping with A (#w) =f m ax{l, A(4>w)}.

Proof. By Definition 3.4.4, Lemma 3.4.1, and Proposition 3.4.2, V x,x G R"° we have:

||<# w(x) - # w(x)||00 = m a x {|$ w(x) - $ w (x) | , | | s h r (x - x) | |00} <
(3.53)

< m ax{A($w)||x - x ^ , ||x - x||oo} = m ax{l, A($w)} ||x - xlloo.

□

Proposition 3.4.7. | |$ w(x)||oo < m ax{|$w (x)|, IM I^} < max{Ju (fw), M U } , Vx G R"°.

Proof. Follows immediately from Definition 3.4.4, Lemma 3.4.1, and Proposition 3.4.5. □

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proposition 3.4.8. If ||x||oo < R (for some R > 0) then

(3.54) |M x) | < | | | / (2)|| |c | k 2)| + « E l - i 2) l | <

where (i(R) = tanh(^(i?)) < 1 with

(3.55) v{R) =f max j | u ^ | + i ? E I ’ 1 - k - H l| '

Proof. Follows immediately from (3.52) and Lemma 3.4.2, taking into account th a t (0) = 0

for our choices of f ^ 2\ n

Proposition 3.4.9. If R > p(4>w) then H x ^ < R=> |$ w(x)| < R.

Proof. Follows immediately from Proposition 3.4.8. □

Proposition 3.4.10. If R > p($w) then HxHoo < R => ^ ^ ' (x) ^ < R, Vm > 0. In other

words, $Jj^(E7) C U, Vm > 0, where U = i?oo(0, R).

Proof. Follows immediately from Propositions 3.4.7 and 3.4.8. □

Proposition 3.4.11. shr[noI(x) = 0 e R " ° , Vx€ R"°.

Proof. Follows immediately from Definition 3.4.3. □

Proposition 3.4.12. 4>^(x) = ^ (x)} e/j, Vm > no.
h = l 1 }

Proof. By Definitions 3.4.4 and 3.4.3, we have:

$ H (x) = 4>w {< I> M (x)} - { ^ “1](x) } ei + shr { $ t ' 1](x)} =

(3.56) = <f>w { $ £ r 1](x)} e i + shr { $ w { $ ^ “ 2](x)} e i + s h r { * M (x) } } =

= { # ^ - 1](x)} e i + # w { $ ^ _ 2](x)} e 2 + s h r t2] { $! ^ - 2](x)} , etc.

In general, for 1 < k < min{m, no}, we have:

k
(3.57) $ H (x) = E $ w (x) } e h + shrW { * N - *](x)} .

h = 1

The proof is concluded by setting k = no for m > no and using Proposition 3.4.11. □

Proposition 3.4.13. If R > p(4>w), then HxHoo < R =>• ^ ^ (x) ^ < p(4?w) < R, Vm > no-
In particular, H x ^ < R =4> ^ ^ ' (x) ! ^ < p(4>w) < R, Vj > 1.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof. By Proposition 3.4.12, for m > no, we have:

(3.58) I I ^ M H o o = ™ fno |®w •

Since m — h > m — no > 0 for 1 < h < no, by Proposition 3.4.10, it follows that

(3.59) < R, V/i. hence max
— ' l < h < n 0

according to Proposition 3.4.8. □

Definition 3.4.9. The sequence {y{t); t > t i} C R n° is said to be an orbit of $: R"° —> R"°

if y(t) = # (y (i - 1)), Vt > ti + 1 [22, 148].

P rop osition 3 .4 .14 . (3.21) and (3.22) are equivalent to y w(f) = $ w(yw(f — 1)), Vt > ti + 1,

y w(ti) =f s(fi). In other words, the sequence {yw(t);t > t i} C R n° generated by MSP is an

orbit of $ w [148].

Proof Follows immediately from Definition 3.4.4. □

N otation 3.4 .7 . For any set U in a topological space X , denote by U the closure of U (the

smallest closed set tha t includes U).

Definition 3.4 .10 . Let X be a compact space and $: X —> X a continuous mapping. A

compact set C C X is an attractor for $, if there exists an open set U D C, such th a t $(£7) C U

and C = Dj>o 4&[jil(t/) [2 2],

Proposition 3.4 .15 . Let X be a compact space and # : X —» X a continuous mapping. If

C — r i j > 0 3?^(^0 is an attractor for # (U open, U D C, #(£7) c U), then the forward orbit of

any point x e U converges to C [22]: V open V D C 3 jv Vj > j v (x) £ V.

Proof Provided in [22]. □

Definition 3.4 .11 . Let X be a compact space and <1? : X —> X a continuous mapping. An open

set U C X , w ith U compact, is called a trapping region for if &(U) C U [22].

Proposition 3.4 .16 . Let X be a compact space and # : X —> X a continuous function. If U is

a trapping region for # , then the compact set C = f f)j>o $ ^ (^) is an attractor for 4> [2 2],

Theorem 3 .4 .1 . Consider the compact space X = Boo(0,R + 1), where R > / /($ w), and the

continuous mapping : X —> X . The set U — £oo(0 ,R) c X is a trapping region for

In consequence, Cw°' d= f] j> 0 {U) is an attractor for

Proof. Follows immediately from Proposition 3.4.13. □

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D efin ition 3.4.12. Define the w-limit set of s(ti) (denoted by Lo(s(ti))) the set of all s e R n° for

which there exists a sequence {tm;m > 0 } (fm —► oo for m —> oo) such th a t lim ||s (tm)— s||oo — 0
T f l—*-00

[22].

D efin ition 3.4.13. Define the w-limit set of s(£i) with respect to # w (denoted by ww(s(fi)))

the set of all s € R"° for which there exists a sequence {tm; m > 0} (tm —s- oo far m -> oo) such

that lim ||# |]H (s(ti)) — s||oo = 0 .m—* oo

P ro p o sitio n 3 .4 .17 . Let X be a topological space, # : X —> X a continuous mapping, and

x € X . Then cu*(x) (the tn-limit set of x with respect to 4>) is closed and ^-invariant [22]. If X

is compact, then tu^(x) is nonempty.

Proof. See [22], If X is compact, then the sequence {#b1(x); j > o} c X admits a convergent

subsequence, and thus w#(x) ^ 0. □

D efin ition 3 .4 .14. Define the distance between the point x € R ”° and the closed set F C R n°

by doo(x, F) =f in fd lx -y llo o jy e F}.

P rop osition 3 .4 .18. c?oo(x, C) = sup{doo(x, V)\ V open, V D C), Vx € R n°, VC compact.

Proof. For any open V D C, we have V D V D C and therefore doo(x ,C) = inf{ ||x — y||oo;y €

C} > inf{ ||x - y ||oo;y € V } = doo(x, F). Hence doo(x,C) > sup{doo(x, V); V open, V D C}.

Now, for every e > 0, we have C C U ye c B ^ i y , e). Since C is compact, there is a finite

subcovering of C, i.e., 3{y&; 1 < k < N } c C such tha t C C UitLi B 00(yk, e) = Vd The set

is open, with Ve = UfcLi ■S0o(yfe) e) compact. For every z € V£ 3k, 1 < k < N , such th a t

z € Boo(yfc,e), i.e., ||z — yfc||oo < e. Then, by the triangle inequality, we have: doo(x,C) <

||x - yfelloo < ||x - z||oo + ||z - yfclloo < ||x - z||oo + e. By taking the infimum over z £ V£,

we obtain doo(x, C) < doo(x, K) + e < sup{dO0 (x, F); V open, V D C} + e. Since this formula

holds for any e > 0, it follows tha t doo(x, C) < sup{doo(x, V); V open, V D C}, and the proof is

complete. □

Proposition 3.4.19. For IV > 0, consider the sequence {XTO;m > 0} and its subsequences

{X h-i+ jN ', j > 0), 1 < h < N . Let {X mk; fc > 0} be a subsequence of {X TO;m > 0}. In other

words, { m k > 0} C N , m k —> oo for k —► oo. Then 3h, 1 < h < N , 3{ jn; n > 0} such th a t

{X ^_ 1+j nAr;n > 0 } is a subsequence of { X mk;k > 0 }.

Proof. Vfc > 0, define hk , j k € N (uniquely determined) by m k = h k — 1 + j kN , 1 < hk < N .

In other words, jk = m k div N (the integer division quotient), and hk — 1 = m*, mod IV

(the residual). Now, {hk;k > 0} C N is a bounded sequence, hence (by Cesaro’s lemma) it

has a convergent (that is, constant) subsequence hkn = h, Vn > 0, 1 < h < N . Note th a t

{kn;n > 0} C N , kn -+ oo for n oo. Hence m kn = h - 1 + j knN , and j kn —> oo as n —> oo

because n —> oo => kn oo =$• m kn —■> oo. Denote j kn by j n and the proof is complete. □

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T h e o re m 3 .4 .2 . Let R be sufficiently large such tha t

(3.60) R > f i (® w), ^ - 1](s (t i)) £ J 7 = 5 o o M , l < h < n Q.

Then ww(s(ti)) C C ^ 1.

Proof. By (3.60) and by Theorem 3.4.1 and Proposition 3.4.15, all sequences

(3.61) j # 13' " 01 (# S ~ 1](s (ti))) = > 0 } , 1 < h < n0

converge to Cw0̂ . By choosing an arbitrary s € u>w(s(fi)), there exists a subsequence {iTO; m > 0}

(im —> oo for m —► oo) such that

(3.62) lim
771— *CQ

^ | ml(s (t i)) - s = 0 .

By proposition 3.4.19 (with N = no), 3h, 1 < h < no, 3 { jm;m > 0} (jm —> oo for m —> oo) such

th a t | $ ^ _ 1+3mno^(s(ti)); m > 0 j is a subsequence of j# S H (s (f i)) ; m > 0 j . Hence:

(3.63) lim | | # ^ - 1+^ no](s (t l)) _ s |
m —> o o 11 I

Fix a small 6 > 0. Then 3me such that

0 .

(3.64) 1+3 m”°Hs (^i)) ~ s| < 0, Vm > mg

Let V be an open set tha t includes C'w0̂ . Then, by Theorem 3.4.1 and Proposition 3.4.15,

3m y > me such th a t # , [h - l+ j m n o] (s(ti)) € V C V, Vm > m y . Hence

< 6, Vm > m y.(3.65) d oo (s ,F)< * £ - 1+*"n°l(s(i1)) - s

Since doc(s, V) < 6 holds for any open V D Cw0 ,̂ by Proposition 3.4.18, it follows that

(3.66) doo (s, C £ o]) - sup {doo(s, F); V open, V D } < 0.

Hence d^, ^s, (7w0̂ < 0 for any 6 > 0. For 0 —> 0, we obtain doo ^s, Cw°^ = 0, or equivalently,

s £ Cw°l Since s £ ww(s(fi)) was arbitrary, it follows that ww(s(ti)) C C w °\ and the proof is

complete. □

D efin itio n 3.4.15. The sequence (x(t); t > t i} C R ”° is said to be a b-pseudoorbit of :

R"° —> R ”° (for some b > 0), if ||x(t) - *3?(x(t - l))||oo < b , Vf > t i + 1 [22, 148].

Lemma 3.4.3. x(t) — 4?w(x(f — 1)) = [x(t) — $ w(x(t — l))]e l 5 Vf > no, V{x(t); t > no} C R n°.

Proof. Follows immediately from Definition 3.4.4. □

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D e fin itio n 3 .4 .16 . Given the sequence {s(i);£ > h } C R"° and the mapping # w : R"° -+ R "°,

bZ = m ax{||s(t)—# w(s(t—l))||oo;*o+l < t < h } , V* d=Sf s u p { ||s (t) -# w (s(t-l)) ||o o ; t > ti + 1},
or equivalently: max{|ew(t)|; t o + 1 < t < ti} , b^ =f sup{|ew(£)|; t > t \ + 1}.

Remark 3.4.1. There is no guarantee th a t 6 ^ is finite. This issue will be clarified in the following.

D efin itio n 3 .4 .17 . Given {s(f);f > f i } c R no: s+ + (f) d= [s(t),s(t - 1 s (t - n0)]T G R n°,

(3.67) A d= sup nun ||s++(f) - s + + (r) ||
t>ti+ l *o+l<r<ti

L em m a 3 .4 .4 . ||s+ + (f) - s++(r) | |oc = m ax{||s(f) - s(t)||oo, ||s(f — 1) - s (r - l)||oo}-

Proof. Obvious. □

P ro p o s itio n 3 .4 .20 . < Pf, + (1 + A(3>W))A.

Proof. For any t > t \ + 1, let r t = arg min ||s+ + (f) - s+ + (r) | |00. Then, by Proposition

3.4.6, Definitions 3.4.16, 3.4.17, and Lemma 3.4.4, we have: ||s(£) — # w(s(f — l))||oo < ||s(f) —

s(Tt)||oo + |js(rt) - $ w(s(rt - 1)) [J oo + ||# w (s(rt - 1)) - $ w(s (£ - l))||oo < ||s(£) - s (r t)||oo + b% +

A($w)||s (t—1)—s(rt —l)||oo < &w+(1 + A ($ W)) m ax{||s(f) - s (rt)||oo, ||s (t - 1) - s (rt - 1) |U } =

b« + (1 + A ($w)) ||s++(*) - S+ + (rt)IU < K + (1 + A (#W))A. □

P ro p o s itio n 3 .4 .21 . If A < oo (or equivalently, if the trajectory {s(t); t > t \ + 1} is bounded)

then 6 ^ < oo and { s(t);t > t i + 1 } is a 6 ^-pseudoorbit of # w-

Proof. Follows immediately from Definitions 3.4.15, 3.4.16 and Proposition 3.4.20. □

Remark 3.4.2. In all our experiments, it has been observed that, once the ANN has been trained

(and b!£ is very small), then P% is also very small. In other words, the OSP is very accurate

throughout the entire trajectory.

D e fin itio n 3 .4 .18 . Define =f m ax { ||$ w(s(t — 1)) — # (s (f - l))||oo;£o + 1 < t < ti} , and

*==:f m ax { ||$ w(s(f — 1)) — # (s (t — l)) ||o o ;t > fi + 1}, where # is the mapping in (3.8) and $

is the mapping given by Definition 3.4.5.

P ro p o s itio n 3 .4 .22 . &£<&£ + e ^ .

Proof. By Definitions 3.4.16 and 3.4.18, for every t, to + 1 < t < t i , we have: | | # w(s(f — 1)) —

4>(s(f - l))||oo < ||$ w (s(t - 1)) - s(f)||oo + ||s(f) - $ (s(£ - l))||oo < b Z + eoo- □

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s(tQ+1) to s(tj) s^+1) to s(t2)
0.8

0.8
s(t—7) s(t—7)

Figure 3.9: Phase plot for training set (left) and testing set (right).

_ £i _
P ro p o s itio n 3 .4 .23 . If $ S C °(R no; R), then Ve > 0, 3<5w(e) > 0 Vx e |J Soo (s(t — 1), <5w(e)):

£—io+ 1

| |$ w(x) - #(x)||oo < + eoo + e.

Proof. Since $ w(-)> ^(')> II ' ||oo are continuous, it follows th a t the mapping x n- ||<£w(x) -

#(x)||oo is continuous, which proves the proposition. □

D efin itio n 3 .4 .19 . For a given e > 0, let Sw (e) be the maximum <5w(e) satisfying Proposition

3.4.23. Let £w d= {e > 0; 5w(e) > A } and ew d= inf £w .

P ro p o s itio n 3 .4 .24 . If $ € C °(R no; R) and £w is nonempty, then < 6 (£ + 2 ? ^ + ew-

Proof. Let e 6 £w, th a t is, 3<5w(e) > A. For any t > t i+ 1 , let rt — arg min ||s+ + (t) — s+ + (r) ||
t o + l < T < t l

Then, by Lemma 3.4.4, we have: ||s(t — 1) — s(rt — l)||oo < l|s+ + (t) — s+ + (r t) | | 0 0 < A < dw(e).

Hence s(t — 1) € Boo (s(rt — 1), <5w(e)), and by Proposition 3.4.23 it follows tha t | |# w (s(t — 1)) —

(s (t - l)) | |o o < &w + goo + e- Hence | | s (f) - $ w(s (t - l)) ||o o < ||s(t) - # (s (f - l)) | |o o + | |^ (s (t -

1)) — $ w(s(t — l))||oo ^ Coo + "P Soo + C. □

Remark 3.4.3. Both Propositions 3.4.20 and 3.4.24 imply th a t the OSP throughout the given

trajectory is accurate (i.e., is small) if A is small. In particular, if A is small then most likely

£w will be nonempty. A small A means th a t the successive oscillation cycles stay close to each

other, as in Fig.3.9. This happens, for instance, when the given trajectory converges to a limit

cycle. If the ANN training set is close enough to the limit cycle of the given trajectory, then the

successive oscillation cycles are actually closer and closer to each other, and therefore A is small.

D efin itio n 3 .4 .20 . We say th a t # has the shadowing property, if Ve > 0, 36(e) > 0 V{x(t); t >

t \} , a 6 (e)-pseudoorbit of <&, 3{z£jX(.)(t);f > ti} an orbit of # such th a t ||z£>x(.)(f) -x (f) ||o o < e

Vf > t i . In other words, the corrupted trajectories are “shadowed” by the real trajectories [148].

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P ro p o s it io n 3.4.25. The mapping 4?w has the shadowing property [148]. In other words,

Ve > 0, 36w(e) 0 V"fx(f) 5 ij V 'f :} a (e]_|3senclooi'bit of , 3 }s5£iXp^(t), f V f 1 } an orbit of

such th a t ||z£5X(.)(t) - x(t)||oo < e Vt > fy.

Remark 3.4.4. According to Lin et.al. [148], it has been proven that, for all practical purposes,

analog ANNs (i.e., ANNs whose inputs and outputs can each take values in an interval) do have

the shadowing property.

Definition 3.4.21. For every e > 0, let J9w(e) be the set of all 6 w(e) in Proposition 3.4.25, and

let 6 w(e) ==f supi5w(e).

Remark 3.4.5. In general, the mapping e h-> fewfy) is expected to be increasing [148].

Definition 3.4.22. Let £w d= j e > 0; bw (e) > and ew =f inf £w.

Proposition 3.4.26. + 2/i(<3>w) € £w, b„ e jBw ^6 ^ + 2/x($w)^ . Hence the set £w is

nonempty and ew < 6 ^ + 2 p ($ w). Also:

(3.68) ew = inf ̂ = inf | ^ w 0 0 ,6^ + 2 p ($ w) | .

Proof. We show th a t e = 5^ + 2p(4>w) and 6 w(e) = 6 ^ satisfy the property given in Proposition

3.4.25. For any 6 w(e)-pseudoorbit (x (f);f > tx} of 4?w, choose the orbit (y (f) ; t > fi} of $ w for

which y (fi) = f x (ti) . We show th a t ||y (t) — x(t)||oo < e Vf > t \ . Note th a t, by the choice of

{y (t) ;t > ti} , we have ||y (ti + l) - x (f i + l) | | 0 0 = \y(h + l) - x { t i + l) |, ||y (f i + 2) - x (t i + 2) | | O0 =

max{|t/(fi + 2) — x (t \ + 2)|, \y{t\ + 1) — x(t\ + 1)j}, etc. In general, Vf > fy + 1:

(3.69) |jy(f) x (t)ij0o = max. {\y(t — j + 1) - x (t - j + 1)|;1 < j < m in{t - fy, n0}}

where all t —j + 1 > t \ + 1 . On the other hand, Vf > fy + 1: |y(t) —x (t)| < |y(t) - $ w(x(t —1))| +

|$ w(x(t - 1)) - x (t)| < \y(t)\ + |$ w(x(t - 1))| + M e) = |^w (y (t - 1))| + |$w (x (t - 1))| + b%<

2/r($w) + 6 ^ = e. Hence |y(t — j + 1) — x(t — j + 1)| < e, 1 < j < min{t — fi, no}, and therefore

]|y(t) - x (t) | | 0 0 < e, Vf > t i + 1. Together with ||y (ti) — x (t i) | | 0 0 — 0, this completes the

proof. □

Theorem 3.4.3. Let R be sufficiently large such that, for 1 < h < uq:

(3.70) R > / i($ w), ^ - 1](s(ti)) e U , M (s (t! + h - l) , b % + 2 p ($ w)) c U

where U — J3oo(fy R). Then

(3-71) doc (s, C t o]) < ew, Vs € iv(s{h)).

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof. Let e G £w, e < fi^+ 2 /i($ w). By Definition 3.4.22, bw (e) > and by Proposition 3.4.21,

it follows th a t {s(f);t > t i } is a 6 w(e)-pseudoorbit of # w. By Proposition 3.4.25, 3{ze,s(.)(t);£ >

t i } an orbit of # w such tha t

(3.72) ||ze,s(.)(f) - s(t)||oo < e, Vt > t x.

In particular:

(3.73) ||z£iS(.)(ti + h - 1) - s (ti + h - l)||oo < e, 1 < h < n 0.

In other words, z£jS(.)(fi + h - 1) e Boo(s(fi + h — 1), e), 1 < h < no- Since we have chosen

e < b ^ + 2 /i($w), by (3.70) it follows that, for 1 < h < no:

(3.74) z£)S(.)(ti + h — 1) G Boo(s(ti + h — 1), e) C Boo (s (£i + h — 1), b^ + 2/z($w)^ C U.

By writing (3.72) for t = £j + h — 1 + jno , 1 < h < no, J > 0, we obtain:

(3.75) | | $ { r % , s(.)(fi + h - 1)) - s (ti + h - 1 + jno)||oo < e.

where

(3.76) Ze,s(-)(^i + h, - 1) G U, 1 < h < no-

Let s G o;(s(tx)), then there exists a subsequence {im\m > 0} (tm -* oo for m -* oo) such

tha t

(3.77) lim ||s(£m) sjloo — 0.
m —* o o

According to Proposition 3.4.19 (with N = n 0), 3fi, 1 < fi < no, 3 { jm; m > 0} (Jm —> oo for

m —> oo) such th a t {s(ti + fi — 1 + j mno);m > 0} is a subsequence of (s(fm) ;m > 0}. Hence, by

(3.77):

(3.78) lim ||s (ti + fi - 1 + j mn 0) - s | | o o = 0.m —*oo

Select a small 9 > 0. Then 3mg such tha t

(3.79) ||s (ti + fi - 1 + j mn0) - slloo < 9, Vm > mg.

By (3.75), we also have

(3.80) | |# ^ ’n”°](z£)S(.)(ti + fi - 1)) - s (t i + fi - 1 + j mn 0)||oo < e, Vm > 0

and, by (3.76), Theorem 3.4.1 and Proposition 3.4.15, it follows th a t all #w°^-orbits starting in

z<r,s(.)(ti + fi — 1) converge to the attractor

Let V be an open set th a t includes (7w0̂ . Then 3m y > mg such th a t

(3.81) ®Em7iolK s (.)(ti + f i - l)) e P c F , Vm > m v .

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By (3.79) and (3.80) and the triangle inequality, we obtain

(3.82) doo(s, V) < | |$ ^ m"o](ze,s(.)(ix + h - l)) ~ s||oo < e + 0, Vm > m 9.

Since d ^ s , V) < e + 6 holds for any open V D C w °\ by Proposition 3.4.18, it follows th a t

(3.83) doo (s, = sup |doo(s, V); V open, V D j < e + 0

and the above inequality holds for any 6 > 0. Hence, we conclude tha t

(3.84) d ^ < e, Vs G w (s(ti)).

The above equation holds for any e G £w, e < b „ + 2 /i($w). Using Proposition 3.4.26 and taking

the infimum over e G £w fl 0, + 2/z($w) j , we obtain:

(3.85) d ^ (s ,C j£ °^ < ew, Vs G w (s(ti)).

□

D e fin itio n 3 .4 .23 . Let A be a compact space and § : J - » X a continuous mapping. A closed,

non-empty, forward ^-invariant subset Y C X is called a minimal set for 4?, if it contains no

proper closed, non-empty, forward ^-invariant subset [2 2].

P ro p o s it io n 3 .4 .27 . Let AT be a compact space and $: X - > X a continuous mapping. Y C X

is a minimal set for $ if and only if to&(y) = Y , Vy G Y [22].

Remark 3.4.6. A periodic orbit is a minimal set [22].

P ro p o s it io n 3 .4 .28 . Let A be a compact space and $: X - * X a continuous mapping. Then

X contains a minimal set for $ [22].

Proof. Provided in [22], □

P ro p o s it io n 3 .4 .29 . Let # : R "° —> R ra° be a continuous mapping, and U C A an open set,

with U compact. Then # ({ /) C &(U).

Proof. For every y G $ ([/) , there exists a sequence {x„; n > 0 } c U c U such th a t $ (x „) —> y

as n —> oo. Since U is compact, it follows th a t there is a convergent subsequence {xni!; k > 0},

x nfc —► x (for some x G U) as k —> oo. Hence, by the continuity of # : 3>(x„fc) —» # (x) as k —* oo.

On the other hand 4>(xni.) -> y as k —► oo. Hence y = # (x) where x G U. In conclusion,

y € #(U). □

L em m a 3 .4 .5 . p) A j c p| Aj, for any family of sets { A j \ j > 0} in R n°.
j>o j >o

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof. For every x G f | A j , there exists a sequence { x n ; n > 0} C f | A j such th a t x „ —> x as
j> 0 j >o ___

n —> oo. It follows that, Vj, { x „ ; n > 0} C A j and x „ —s- x as n - » oo. Hence x G A j, Vj, which

implies th a t x £ f] A j . d
j > o

P r o p o s i t i o n 3 .4 .3 0 . Let X C R " ° be a compact space, $: X —> X a continuous mapping,

U C X (with U compact) a trapping region for and C f l j> o $ ^ (^ 0 the corresponding

attracto r for # . Then C = r b o ^ ' W) -

Proof Note th a t C — C because C is compact, and # ({ /) c U since U is a trapping region for

$. By applying Lemma 3.4.5 and Proposition 3.4.29, we obtain:

c = C = p | *M(t7) C f) c f) # w (17) c f) ^ +1](£/) -

(3.86) j -° J-° *-° j -°
= f l {$([/)} C f (= ^

i> o j>o

It then follows th a t all inclusions in the above equation are actually equalities. In particular, the

conclusion of the proposition follows. □

P ro p o s itio n 3.4 .31. is forward 3>w-invariant: 4»w |C w ° ' | C Cw0 .̂

Proof. By Proposition 3.4.10, $ W(I7) C U. Hence, we have:

{ C ^ } = $ w n ^ nol(t/) > C f l $ w { $ b n o] (t 7) j =

(3.87) l ^ ° J

= f l # wno] C f l # | T](^) = C 'M .
j> 0 j>0

□

P rop osition 3 .4 .32 . Cw0̂ contains a minimal set for <&w.

Proof. Apply Proposition 3.4.28 for X = and $ = $ w, given that is compact and

{ C i- 1} C d £ °]. □

D efin ition 3 .4 .24 . Let X be a topological space and $: X - * I a continuous mapping. For

every x € X , define the positive semiorbit starting from x: d + (x) =f { # ^ (x) ; j > l } [22].

N otation 3 .4 .8 . For every x G R n°, denote by 0 + (x) the positive semiorbit starting from x

with respect to the mapping # w, namely 0 + (x) d= {* {£ (x); j > l } .

D efin itio n 3.4 .25 . A subset A c N Is said to be relatively dense, if there exists k ^ > 0 such

th a t { n ,n + 1 , . . . , n + k ^ } n A 0, Vn G N [22],

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D e fin itio n 3 .4 .26. Let X be a topological space and 4? : X —* X . A point x € X is said to be

almost periodic, if for any neighbourhood U of x, the set { j € N; #M (x) G 17} is relatively dense

[22]. In other words: MU 3ku Vn 3jn,ku € { n ,n + I , . . . ,n + ku} ' # ^ n'*wl(x) £ JJ,

Proposition 3.4.33. Let X be a compact Hausdorff space, # : X —> X a continuous mapping,

and x G X . Then 0+(x) is minimal for # if and only if x is almost periodic [22].

Proof. Provided in [22]. □

Proposition 3.4.34. If c ljH = &£(x), where x G R ”° is almost periodic, then Cw0̂ is minimal,

(7w0' — ww(s(ti)), and

(3 .8 8) doo (s,cuw(s(ti))) < ew , Vs G w(s(ti)).

Proof. Apply Definition 3.4.23, Theorems 3.4.2, 3.4.3, and Propositions 3.4.33, 3.4.17. □

Remark 3.4.7. Proposition 3.4.34 states th a t every point in the w-limit set of the given trajectory

is situated at a distance at most ew from the w-limit set of the trajectory generated by MSP using

the proposed ANN, where ew is the sm a lle s t e for which the la rg e s t 6 w(e) (in the shadowing

property of # w) is larger than the maximum OSP error throughout the given trajectory.

Remark 3.4.8. The mapping e h-> bw (e) depends on the form of $ w(x) = # (w , x) (given by the

ANN architecture) and on the particular value of w (the ANN weights). In practice it might

very well happen that, in some cases, a very small (and thus, unattainable) bw (e) (desired OSP

accuracy throughout the trajectory) may be required for a relatively large (and thus, useless) e.

Estimating the mapping e i-> 6 w(e) for a given 4»w could constitute a very interesting subject for

further research.

Remark 3.4.9. In most experiments, the asymptotic state of the given trajectory is a limit cycle.

It has been noticed experimentally th a t the MSP generated by the ANN also converges to a limit

cycle whose frequency is close to the frequency of the limit cycle of the given trajectory. In tha t

case, Proposition 3.4.34 states th a t the limit cycle of the signal predicted by the ANN is close to

the (unknown) limit cycle of the given trajectory.

Remark 3.4.10. In our experiments, the ANN training minimized the mean-squared OSP error

over the training set, given by (3.14). We have also attem pted to perform a version of ANN

training consisting in minimizing the mean-squared MSP error over the training set:

(3.89) £ (w) ™ _ 1 _ S T [S(t) - 4 » w { $ N ° - I](s(io))}'
t=t0+l

by using the real time recurrent learning (RTRL) algorithm [10, 91, 158, 159, 160]. The MSP

accuracy in the testing phase (after training) was at most as good as the accuracy obtained by

OSP-based training. However, the MSP-based training time was much longer than the OSP-based

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

training time, due to the fact th a t the former training type involves much more computations

than the latter. I t is not clear th a t MSP-based training will provide a better approximation for

the mapping $ in (3.8). Even though towards the end of training (s(fo)) become close

to s(t — 1), the differences ew(t — 1) =f s (t — 1) — #w ~to_1 '(s(to)) (that is, the input noise during

training), for consecutive values of f, are highly correlated. In addition, a problem with the MSP-

based training may be tha t the ANN is actually trained to perform an accurate MSP starting

from the point s(to), while in the testing phase it has to predict the portion of the trajectory

starting from the point s(£i). This problem could be addressed by redefining the error function

as

(3.90) • £ , E [»M - { g t r |(B(T - 1)) }]* .
T — t o + 1 t = T

A fast training algorithm needs to be designed in tha t case, since the number of term s in the

error function has grown from t \ — to to (ti — to){h — fo + l) /2 . Further research is needed in

order to thoroughly investigate this approach.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Case Studies

As mentioned in the previous sections, the practical implementation of ANNs for a given problem

is not as straightforward as the elegant theoretical results might suggest. Cybenko [53] notes th a t

the number of neurons necessary in most practical problems is likely astronomically high, due

to the so-called curse of dimensionality. Using many neurons is computationally expensive to

the point th a t solving the problem may become unfeasible. Hornik [96] observes tha t not all

transfer functions th a t satisfy the theoretical requirements for the universal approximation will

perform equally well in practical problems. Due to the complicated shape of the error surfaces,

the ANN training often converges to a local minimum, which may not be a solution of the given

problem. Since in MSP applications the use of global optimization algorithms (genetic, annealing)

is prohibitive because of the large number of parameters (ANN weights) to be estimated, one is

forced to employ point-by-point nonlinear optimization algorithms, which depend heavily on the

initial guess on the weight values. How to determine good initial values of the network weights

for ANN training is still an unsolved problem.

Given these practical difficulties, we are interested in finding a means of extracting maximum

information from the training set using a minimum number of hidden neurons. This would

reduce training time and provide better generalization capabilities and robustness to noise, as a

consequence of having few degrees-of-freedom in the system. The successful ANN architectures

previously proposed [238, 239, 240, 259, 260] involved either some kind of weight scaling or using

a scaled sigmoidal transfer function in the output layer. In the present study we will investigate,

among other things, the effect of these two architectural features on the ANN MSP performance

under neuron scarcity conditions. In all, 12 LTMSP methods using ANNs will be compared,

based on their performance on 8 test cases1.

1A version of p a r t of th e m ate ria l p resented in th is chap ter has been su b m itted for pub lication in [241, 242].

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 Test Cases

The test signals SI, S3, S5 are obtained from numerically solving an aeroelastic model with

structural nonlinearities. The governing equations for a self-excited two-degree-of-freedom airfoil

oscillating in pitch and plunge can be expressed as [140, 151]:

(+ x ^ + 2C t§;(+ (§ ;) 2 G(() = - ~ C L(r),

— + o . + 2 y r ^ a + j A f (a) = j 'C jw O) ,
r l U* (U *y n u r l

where £ denotes the plunging displacement (positive downwards), a is the pitch angle about the

elastic axis (positive nose up), G(£) and M (a) are the nonlinear plunge and pitch stiffness terms,

respectively, and G l(t) , Cm (t) are the lift and moment coefficients due to the aerodynamic

forces. For a subsonic flow, C x(r) and Cm {t) can be expressed by the integral formulas in [140].

The structural nonlinearities are represented by G(£) and M {a). In the case of a cubic spring:

(4.2) M (a) = (io + fliot -I- /?2c? + /?3®̂ >

where /30, /?i, fh, / ? 3 are constants. For a freeplay model:

(4.3) M (a) =

Mo + a — a f if a < a /

M q + M f (a — a /) if a f < a < a / + S

M q + a — a / + S(M f — 1) if a > a / + 5

where Mo, M /, a / and 5 are constants. Here we give the expression for M (a) in the pitch degree

of freedom. Similar expressions for G(£) in the plunge motion can be w ritten by replacing a with

£ [140, 151],

The solution of the above integro-differential equations can be obtained by solving a reformu­

lated system of ordinary differential equations in R 8 [140]. The system param eters are chosen

such tha t the resulting aeroelastic response — numerically generated by using a fourth-order

Runge-K utta time integration scheme [151] with respect to the non-dimensional time r (defined

as in [140]) — corresponds to a limit cycle oscillation. The signals SI, S3, S5 (see Figs.4.1-4.3)

represent the time history of the pitch motion for the aeroelastic system, scaled to amplitude « 1 ,

for different values of the system parameters. SI was generated by using cubic stiffness terms in

both the pitch and plunge degrees of freedom, while in S3 and S5 the structural nonlinearity is

represented by a freeplay model in the pitch degree-of-freedom and a linear spring in the plunge

degree-of-freedom [238, 239]. Signals S2, S4, S6 are obtained by contam inating SI, S3, S5 respec­

tively with additive noise normally distributed with mean zero and signal-to-noise ratio equal to

5.

In Figs.4.4-4.6, the time histories of both the clean and noisy training set are represented for

each test case. The left-hand and right-hand limits are to ~ + 1 and t \ respectively, while the

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SI S2 S3 S4 S5 S6 S7 S8

n 0 1 0 0 1 0 0 50 50 90 90 2 0 2 0

ni 2 2 2 3 2 3 2 3

to — ng 50 50 0 0 0 0 175 175

t i 273 325 282 325 380 380 300 305

Table 4.1: ANN Architecture and Training Parameters.

-0.9
1000800400

Figure 4.1: Test Signal SI.

600200

vertical bar is a t to + 1- Note th a t the number no of ANN inputs is always chosen to be roughly

equal to the length of an oscillation cycle in the training set. The values of to, t i , and no are also

recorded in Table 4.1. The phase plots of the clean training sets (s(f) vs. s(t — d), fo + 1 < t < fi,

for selected lags d) are also illustrated in Figs.4.4-4.6. The small circle corresponds to the first

data point [s(to — d + 1), s(fo + 1)] G R 2.

Unlike the simulated data sets S1-S6, the signals S7-S8 represent experimental data recorded

in a wind tunnel experiment reported by Ko, Strganac, Kurdila, et. al. The da ta is available

at h ttp ://aerounix .tam u.edu/aeroel/ and the details of the experiment are described in [21, 124,

125,132,133, 222]. In these experiments, a wing with a control surface is mounted to allow plunge

(h) and pitch (a) motions about the elastic axis. The motion of the system can be described by

the following model:

(4.4)

In the above system, m w is the mass of the wing, m r is the to ta l mass of the wing and its

support structure, x a is the nondimensional distance between the center of mass and the elastic

n%T m w x ab ' h ' Ch o ' h, ' kh 0 h ' —L '
+ + =

TnyyXab la a 0 ca a o ?r & a
. M .

1

0

1
0 200 400 600 800 1000

Figure 4.2: Test Signal S3.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://aerounix.tamu.edu/aeroel/

0.9

-0.9 20001200 1600800

Figure 4.3: Test Signal S5.

400

S1 S1 S2
0.80.8

x

- 0.!
0.8 151 325151

t x(t-20)
Figure 4.4: Training Sets: Time History and Phase P lot for SI, Time History for S2.

axis of the wing, I a is the mass moment of inertia about the elastic axis, ch, ca are the plunge

and pitch structural damping coefficients respectively, fc/,, ka are the structural stiffnesses for

the plunge and pitch motion respectively, L and M are the aerodynamic lift and moment about

the elastic axis. The nonlinearity in the sytem is provided by the torsional stiffness, which

is approximated in polynomial form as: ka (a) = kao + ka ia + kQ2a 2 + ka3ot3 + ka4a 4 + . . .

[21, 124, 125, 132, 133, 222].

The signal S7 (see Fig.4.7) represents the time history of the pitch motion and was obtained

by selecting every 10th point of the pitch signal in the file DN04J.DAT and scaling the resulting

data set to amplitude « 1 [238, 239]. Signal S8 is obtained by contaminating S7 with additive

noise normally distributed with mean zero and signal-to-noise ratio equal to 5. In Fig.4.8, the

time histories of both the clean and noisy training set are illustrated. The left-hand and right-

hand limits indicate to — no + 1 and t \ respectively, and the vertical bar is a t to + 1. The values

S3 S3 S4
0.8 0.8 0.9

-0.9,
325

x(t-3)1 t
Figure 4.5: Training Sets: Time History and Phase P lot for S3, Time History for S4.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S5 S5 S6
0.80.80.8

x

- 0.8
380 -?, 380

x(t—7) tt

Figure 4.6: Training Sets: Time History and Phase P lot for S5, Time History for S6 .

- 1.2
1000800400 600200

Figure 4.7: Test Signal S7.

of to, f i, and no are also recorded in Table 4.1. The phase plot of the clean training set is also

illustrated in Fig.4.8.

The PPs of the training sets show that, for the m ajority of the test signals, the successive

oscillation cycles are close together. Hence, it is expected th a t the trajectory converges to a limit

cycle in each case. Therefore, A in Propositions 3.4.20 and 3.4.24 is expected to be small, and it

follows th a t will be small after ANN training, i.e., the OSP throughout the given trajectory

will be accurate (see Remark 3.4.3). Then, by Remark 3.4.5, it is expected that ew in Definition

3.4.22 will be small. In other words, by Proposition 3.4.34, it is expected that the w-limit set

of the MSP will be close to the tu-limit set of the given trajectory. The only exception are the

signals Sl-2, for which we cannot draw any conclusion from the inspection of the training set.

The given trajectory might very well exhibit a divergent oscillation instead of a limit cycle in

those cases.

S7 S7 S8
1 1

x

300 -1.2 305
x(t—3)t t

Figure 4.8: Training Sets: Time History and Phase P lo t for S7, Time History for S8 .

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Feature of Interest Digit 0 1 2 3

2nd Layer Transf. Fct. 1 st N /A Linear Linear Scal.Tanh.

Second Layer Weights 1 st N /A Unsealed Scaled Unsealed

Init w {2) w (2} w (1} n u t. w0 ,w ki ,w kiQ 2 nd All Zero All Zero N /A N /A

In it' w£fco ’ fe° ^ 0 2 nd Sig.Segm. Random N /A N /A

Learning Rate Type 3rd Adaptive Constant N /A N /A

Table 4.2: ANN MSP Methods

4.2 Choice of M ethods and Parameters

Twelve LTMSP methods are presented, and each LTMSP method will be identified by a code

number consisting of three digits. The significance of each digit will be explained in the following.

The first digit in the method code is ’1’ if a classical 2LFF1S2LNN with f ^ (x) — tanh(x)

is used. The ANN output in that case is given by (3.26) and (3.27) (see Fig.3.1). The first digit

is set to ’2’ if a 2LFF1S2LNN with scaled weights in the second layer is used. The ANN output

in th a t case will be given by (3.31). The first digit in the m ethod’s code is ’3’ if a 2LFF1S2SNN

with f (2\ x) = ip (w ^) tanh(x) is used. The ANN output in th a t case will be given by (3.29).

The second digit is T if all k\ ^ 0,fco ^ 0 are initialized with random numbers

uniformly distributed in [—0.01,+0.01], while all the other weights are initially set to zero. The

second digit is ’0 ’ if w^uka , f c i ^ 0 ,fco^ 0 are initially set to normalized segments of the training

set, as in (3.47), while all the other weights are initialized by zero.

The third digit is ’1’ if the learning rate (LR) is kept constant during ANN training, and ’0’

if the LR is adaptive, i.e., is updated at each training iteration. The appropriate values for the

constant LR (CLR) or the initial value of the adaptive upper bound on the adaptive LR (ALR)

are chosen as described in Section 3.3.

A summary of the methods used is presented in Table 4.2, where for each feature of the ANN

MSP method, the digit in the m ethod’s code relevant to tha t feature is indicated, as well as

the significance of each value th a t the respective digit may take. For example, M110 refers to a

2LFF1SNN with linear T F in the second layer, in which no scaling is employed for the second-

layer weights. Moreover, random numbers are used to initialize the first-layer weights and an

adaptive learning ra te is adopted in training. It should be noted th a t M110 is actually one of

the most commonly used networks in the ANN literature.

For each case study, the number of ANN inputs n 0 needs to be chosen. To do that, we will

follow the procedure described in Section 3.3. F irst, an empirical estim ate ne0mp is computed

based on the average distance between consecutive Lmax (or Lmin) points in the training set.

In each case, the vector of consecutive Lmax points t Lmax, the vector of the distances between

consecutive Lmax points dLmax, and the average distance between consecutive Lmax points

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sig Type Components of t Components of d a

SI Lmin 53, 159, 252 106, 93 1 0 0

SI Lmax 106, 207 1 0 1 1 0 1

S2 Lmin 50, 140, 250 90, 110 1 0 0

S2 Lmax 100, 205, 295 105, 90 98

S3 Lmin 108, 153, 196, 242 45, 43, 46 45

S4 Lmin 108, 153, 197, 242, 283 45, 44, 45, 41 44

S5 Lmax 114, 208, 292, 376 94, 84, 84 87

S6 Lmax 113, 208, 291, 375 95, 83, 84 87

S7 Lmin 204, 221, 238, 257, 277, 297 17, 17, 19, 20, 20 19

S7 Lmax 195, 213, 230, 247, 267, 287 18, 17, 17, 20, 20 18

S8 Lmin 203, 222, 237, 257, 276, 296 19, 15, 20, 19, 20 19

S8 Lmax 195, 213, 230, 248, 268, 287 18, 17, 18, 20, 19 18

Table 4.3: Local Minimum and Local Maximum Points in the Test Signals.

aLmax, can be defined. The same can be done for the Lmin points. For each test signal, the type

of local extremum points considered (Lmin or Lmax), the components of t Lmm and /or t Lmax,

the components of d Lmin and /o r d Lmax, and the averages a Lmm and /or aLmax, are reported in

Table 4.3. The values of the estimate riQmp of no obtained in each case are reported in Table

4.4. Note tha t ragmP average of a Lmin and «Ijmax if both Lmax and Lmin points have been

considered, and ngmp = a Lmm (or nomp = aLmax, respectively) if only Lmin points (or Lmax

points, respectively) have been considered. A more detailed explanation will be provided in the

following.

For SI and S2, the entire known data set s (l) , s(2), . . . , s(fi), was used to calculate ngmp,

and both the Lmin and Lmax points in the da ta set were considered. For these test cases,
nemp _ | aLmm _|_ flLmaxj j 2 _ por g3 and S4, due to the more complicated profile of the training

set, which contains a high-frequency component, only the last 4 (and 5, respectively) consecutive

Lmin points in the training set have been used to compute riomp, which in these cases is equal to

aLmin. For the same reason, in the case of S5 and S6 , only the last 4 consecutive Lmax points in

the training set have been used to compute nQmp, which in these cases is equal to aLmax. The test

signals S7 and S8 (see Fig.4.7) initially exhibit an oscillation of lower frequency than the one of

the segment used for ANN training. Actually, the oscillation frequency increases with the time

starting from t = 111 up to approximately t = 190. Therefore only the data points s(190), s(191),

■ •., s(£x) (where t\ — 300 and 305, respectively) were used to compute ne0mp Both the Lmin and

Lmax points in the data set were considered, therefore again rigmp = (aLmin + aLmax) /2 for S7
and S8 .

Next, the value of ngcf for each test case needs to be computed. The estimate of the ACF in

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S1 S2 S3 S4

O<

1

0

1
27168

1

0

1
3230 81

1

0

1
2800 70

1

0

1
32381

S5

O<

1

0

1
3780 95

Figure 4.9: ACF plot for S1-S4.

S6 S7
1

0

1
3780 95

1

0

1
1090 28

S8
1

0

1
1140 29

Figure 4.10: ACF plot for S5-S8.

each case was computed as in (3.49), and the functions are plotted in Figs.4.9-4.10. The dashed

vertical bar in all graphs marks the lag h = (fi — to)/4, up to which the ACF estimates are

expected to be accurate. The values of n gcf (i.e., the value of h for which the first peak of 7 (h)

is achieved) for each test case are reported in Table 4.4. For S1-S6, the entire known d ata set

s (l) , s(2), . . . , s(ti) , was used to calculate ngcf, while for S7 and S8 only the data points s(190),

s(191), . . . , s(fi) were used, for the same reasons as mentioned above.

Finally, the estimate n® was calculated. In each case, the FFT of the training set was

computed, assuming the sampling step to be 1. The graphs are shown in Figs.4.11-4.14. The

dashed vertical bar marks the lowest frequency v\ th a t has an energy close to the maximum

energy of all Fourier modes in the decomposition. The values of n® = 1/zq for each test case

are reported in Table 4.4. For S1-S6, the entire known data set s (l) , s(2), . . . , s (ti) , was used to

calculate n®, while for S7 and S8 again only the da ta points s(190), s(191), . . . , s (ti) were used.

The values of = max {ng”®, n ^ , n® } and ngVg — (ngmp + ngcf + n®) /3 , as well as our

final choice n®n of the number of ANN inputs, are also reported in Table 4.4. The value of n®n

was obtained, in general, by rounding off 71™“ and ngVg (which had similar values) to the closest

multiple of 10. For S3 and S4, due to the more complicated profile of the signals, we rounded

off the estimates to 50 ANN inputs instead of 40. The values of the final number of ANN inputs

chosen in each case (no = n®") are also reported in Table 4.1.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S1-COMPLETE
43 f

S1-DETAIL S2-COMPLETE S2-DETAIL
43

f
61 61 — *-

I
i*

1

* 1 #*i *

0
!

f 0 0
1
i *

0,5 0.011 0.5 0.0092

S3-COMPLETE

Figure 4.11: FFT plot for SI and S2.

S3-DETAIL S4-COMPLETE S4-DETAIL

1 ,* * *%*

0.0248 0.0246

Figure 4.12: F FT plot for S3 and S4.

For each test case, the selection of the number of hidden neurons m is described in the

following. Starting from n \ — 2, increment n \ until a t least one of the 12 methods provides a

good MSP of the given signal using n \ neurons in the hidden layer. In general, we observed

th a t 2 hidden neurons were sufficient for the clean signals while 3 hidden neurons were necessary

for predicting the noisy signals. The only exception is the noisy signal S2, for which 2 hidden

neurons were sufficient, due to the existence of a clear low-frequency oscillation th a t makes it

easy for the ANN to separate the noise from the underlying clean signal. Once n \ is fixed for the

current test case, each of the 1 2 methods is applied to the signal using n i neurons in the hidden

layer. The values of n \ are recorded in Table 4.1.

4.3 Prediction Accuracy

The THs and the phase plots for selected lags d based on the ANN-generated MSPs for the 96

test cases are shown in Figs.4.15-4.58 at the end of this chapter. The prediction performance of

the 12 ANN MSP methods is compared in the following manner. For each test case, the MSP

result generated by the ANN after the end of training is investigated. The prediction accuracies

are compared based on the TH and P P overlapping, respectively. A prediction accuracy score

(PAS) between 0 and 10 is assigned to each test case. The test cases th a t provide the best MSP

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S5-C0MPLETE
47 r

S5-DETAIL

0.5 0.0105

S6-COMPLETE
46

0
0.5

S6-DETAIL

0.0105

Figure 4.13: FFT plot for S5 and S6 .

S7-COMPLETE S7-DETAIL S8-COMPLETE

0.0541

44

0
0.50

S8-DETAIL
4 4 1--------*r

m m
0.0517

Figure 4.14: F FT plot for S7 and S8 .

based on TH overlapping, of all 96 test cases, will receive a TH-based PAS (THPAS) of 10, the

next best ones a score of 9, etc. Similarly, the test cases th a t provide the best MSP based on

PP overlapping receive a PP-based PAS (PPPAS) of 10, the next best ones a score of 9, etc.

The test cases for which the ANN training did not converge at all (hence no MSP was provided)

received a PAS of 0. The THPAS and PPPAS were averaged for each test case, generating an

overall PAS (OAPAS) in each case. The THPAS, PPPAS, and OAPAS values are recorded in

Tables 4.5, 4.6, and 4.7 respectively. In the columns labeled ’Clean’ and ’Noisy’, the average

PASs over all clean (SI, S3, S5, S7) and noisy (S2, S4, S6 , S8) signals respectively, are reported.

In the column ’Diff’, the differences between these averages are shown, providing a measure of

the sensitivity to noise of each ANN MSP method. The column ’All’ reports the overall average

PASs over all 8 signals for each of the 12 methods. It was noticed in our experiments that, even

though for a particular test signal the THs may be perfectly matched while the P Ps are not,

or viceversa, both prediction accuracy criteria reveal the same average behavior of the different

ANN MSP methods.

From Table 4.7, it is obvious th a t for the MXX0 methods, involving an ALR, the ANN

training is almost always unstable when performed on S4-S6 and S8 . In two cases, even if the

training is stable, the MSP accuracy is very poor (OAPAS=2) for these methods. As it can be

seen from the ’Diff’ column, the MXX0 methods are very sensitive to noise in the training signal,

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SI S2 S3 S4 S5 S6 S7 S8

t l 1 1 1 1 1 1 190 190

tp 273 325 282 325 380 380 300 305

1 0 1 99 45 44 87 87 19 19
nttcfn 0 98 94 43 42 90 91 18 18
r,fftn 0 91 109 40 41 95 95 18 19

„ m a xn 0 1 0 1 109 45 44 95 95 19 19

T7aVgTJq 97 1 0 1 43 42 91 91 18 19

n 0 1 0 0 1 0 0 50 50 90 90 2 0 2 0

Table 4.4: Selection of Network Inputs

which is not surprising since an ALR search algorithm is more versatile than one using a CLR,

and therefore makes it possible for the ANN to learn the noise immediately, thus destroying the

underlying pattern. Even in the case of the clean freeplay signal S5, the ANN training failed to

converge for most MXXO methods. S5 is particularly difficult to predict due to the very short

transient d ata set and to its complicated profile. In addition, S3 and S5 (and thus S4, S6 as well)

contain numerical errors due to the fact th a t they have been generated by using a fourth-order

Runge-K utta time-integration scheme in a system with a nonsmooth nonlinearity [151].

Obviously, the MX01 methods exhibit a better behaviour than the other methods. In partic­

ular, for the test signal S8 , they are the only ones for which the ANN training converges. Signal

S8 is considered to be the most difficult to predict, because it represents real-life measurement

data contaminated by measurement noise as well as by mathematically generated additive noise.

The MX01 methods provide excellent predictions in this case. Overall, considering all 12 test

cases, MX01 also provide more accurate predictions. M201 and M101 have practically the same

performance (OAPAS«8.5) and they are both robust (in addition, M201 is less sensitive to noise

than M101). M301 provides an OAPAS~7 but its behaviour is less consistent throughout the 12

test cases.

It is interesting to note th a t M301 is the only method out of the 12 considered for which the

ANN training is unstable in the case of a clean signal (S5) while it becomes stable when noise

is introduced (S6). For all the other methods, the training either converges for both the clean

and the noisy signal, or it does not converge for both signals, or it converges for the clean signal

but not for the noisy signal. It is well known that, for the interpolative applications, adding

noise in the ANN input and/or output training prototypes actually improves the generalization

performance of the network [247]. Multi-step prediction, however, is more than an interpolation

problem. In order to provide an accurate LTMSP, a good interpolation as well as little sensitivity

of the ANN output with respect to variations in the inputs is required. I t seems that, due to the

additional sigmoidal transfer function, th a t limits the damage caused by noise, the ANN is able

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SI S2 S3 S4 S5 S6 S7 S8 Clean Noisy Diff All

M l 00 7 8 9 0 0 0 8 0 6 . 0 0 2 . 0 0 4.00 4.00

M101 1 0 7 1 0 7 1 0 1 0 1 0 1 0 1 0 . 0 0 8.50 1.50 9.25

MHO 7 7 9 0 3 0 8 0 6.75 1.75 5.00 4.25

M i l l 7 8 1 0 5 6 6 9 0 8 . 0 0 4.75 3.25 6.38

M200 7 8 9 0 0 0 8 0 6 . 0 0 2 . 0 0 4.00 4.00

M201 1 0 8 1 0 1 0 1 0 1 0 1 0 1 0 1 0 . 0 0 9.50 0.50 9.75

M210 6 7 9 0 3 0 8 0 6.50 1.75 4.75 4.13

M211 7 8 8 5 3 1 0 9 0 6.75 5.75 1 . 0 0 6.25

M300 7 8 1 0 0 0 0 8 0 6.25 2 . 0 0 4.25 4.13

M301 1 0 8 8 7 0 6 8 1 0 6.50 7.75 -1.25 7.13

M310 7 7 1 0 0 0 0 9 0 6.50 1.75 4.75 4.13

M311 7 7 1 0 5 4 6 1 0 0 7.75 4.50 3.25 6.13

Table 4.5: Time History -based Prediction Accuracy Scores (THPAS).

to improve its generalization capabilities. In the cases of S5 and S6 , the additive noise actually

helps the ANN training to converge to a not-so-bad solution, by compensating for the numerical

errors already present in the signal.

MX11 provide practically the same (OAPAS«5.75) prediction accuracy. M i l l and M311 are

less sensitive to noise as MXXO, but much more sensitive than MX01. M211 is as robust in the

presence of noise as M201. As one would expect, normalizing the weights in the second layer

provides robustness with respect to the noise and to variations in the ANN parameters.

4.4 Robustness Comparison

In the previous section, it has been shown th a t the MSP methods M101 and M201 provide the

best prediction accuracy. In this section, we compare the stability of the two methods with

respect to the variations in the number of inputs no, the hidden neurons m , and the endpoint

t\ of the training set. First of all, by varying no or n i, the number of parameters (weights) in

the neural network varies. This will affect the distribution of information in the network and

will result in different ANN models. When t \ changes, the size of the training set (hence the

amount of available information) changes, as well as the starting point of the MSP process. It is

known that for a nonlinear time series the expected OSP accuracy (and hence the expected MSP

accuracy) depends on time, unlike the case of linear time series [6 8]. Due to the nonlinear nature

of the considered signals, the dependence of the ANN-generated MSP on n 0 and t% is expected
to be nonlinear.

For each of the two methods applied to the 8 test signals, each of the three parameters of

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SI S2 S3 S4 S5 S6 S7 S8 Clean Noisy Diff All

M l 00 7 6 6 0 0 0 1 0 0 5.75 1.50 4.25 3.63

M101 9 6 6 6 7 7 1 0 1 0 8 . 0 0 7.25 0.75 7.63

m h o 9 6 6 0 1 0 1 0 0 6.50 1.50 5.00 4.00

M i l l 7 6 6 5 3 7 1 0 0 6.50 4.50 2 . 0 0 5.50

M200 8 6 6 0 0 0 1 0 0 6 . 0 0 1.50 4.50 3.75

M201 9 6 6 6 7 7 1 0 1 0 8 . 0 0 7.25 0.75 7.63

M210 3 6 6 0 1 0 1 0 0 5.00 1.50 3.50 3.25

M211 4 6 6 5 1 7 1 0 0 5.25 4.50 0.75 4.88

M300 4 5 6 0 0 0 1 0 0 5.00 1.25 3.75 3.13

M301 9 5 6 6 0 7 1 0 1 0 6.25 7.00 -0.75 6.63

M310 4 5 6 0 0 0 1 0 0 5.00 1.25 3.75 3.13

M311 4 5 6 5 3 7 1 0 0 5.75 4.25 1.50 5.00

Table 4.6: Phase Portrait -based Prediction Accuracy Scores (PPPAS).

interest was varied while keeping the other two constant. The degree of variability of the MSPs

caused by the variation of each param eter was assessed by inspecting both the THs and the PPs

of the predicted signals. The goal is to determine which of the two methods M101 and M201

more robustly extracts information from the training set using the minimum number of hidden

neurons. It must be noted tha t this is a borderline situation, since the minimum number of

neurons is used in the ANN. The more hidden neurons there are in the ANN, the more robust it

becomes with respect to variations in no, n x, and t x. It has been noticed tha t even when using

hundreds of hidden neurons, overfitting does not occur when this type of weight initialization is

used in combination with a constant learning rate in ANN training.

For each test case, the THs of the last two oscillation cycles of the ANN-generated MSPs, as

well as the P Ps for selected lags, for both M101 and M201, are displayed in Figs.4.59-4.85. Let

Hq, n*, t \ be the values of no, n i, t x respectively used in the first part of this study, in which

the prediction accuracies of the 12 methods were compared. In the robustness analysis, we vary

the three param eters as follows. For n i = n\ and t x — t | : n 0 — 0.8 x riQ, 0.9 x rag, ng, 1.1 x ng,

1.2 x ng (see Figs.4.59-4.67). For n 0 = ng and t x = t*: n x — nx, n* + 1, n \ + 2 , nx + 3 (see

Figs.4.68-4.75). For n 0 = ng and n x - n*: t x = t* - 0.2 x ng, t* - 0.1 x ng, t*, t \ + 0.1 x ng,

t* + 0.2 x ng (see Figs.4.76-4.85). In most experiments it was noticed that, for each test signal,

as one of the 3 param eters is varied, the MSP results corresponding to different values of tha t

parameter are more or less shifted in time with respect to each other, but they all exhibit a

limit cycle with the same profile. The P Ps of the predicted signals do not vary significantly as

the parameter changes. In most cases, M101 and M201 behave identically when a param eter is
varied.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SI S2 S3 S4 S5 S6 S7 S8 Cln. Nsy. Dif. All

M100 7.0 7.0 7.5 0 . 0 0 . 0 0 . 0 9.0 0 . 0 5.88 1.75 4.13 3.81

M101 9.5 6.5 8 . 0 6.5 8.5 8.5 1 0 . 0 1 0 . 0 9.00 7.88 1.13 8.44

MHO 8 . 0 6.5 7.5 0 . 0 2 . 0 0 . 0 9.0 0 . 0 6.63 1.63 5.00 4.13

M i l l 7.0 7.0 8 . 0 5.0 4.5 6.5 9.5 0 . 0 7.25 4.63 2.63 5.94

M200 7.5 7.0 7.5 0 . 0 0 . 0 0 . 0 9.0 0 . 0 6 . 0 0 1.75 4.25 3.88

M201 9.5 7.0 8 . 0 8 . 0 8.5 8.5 1 0 . 0 1 0 . 0 9.00 8.38 0.63 8.69

M210 4.5 6.5 7.5 0 . 0 2 . 0 0 . 0 9.0 0 . 0 5.75 1.63 4.13 3.69

M211 5.5 7.0 7.0 5.0 2 . 0 8.5 9.5 0 . 0 6 . 0 0 5.13 0 . 8 8 5.56

M300 5.5 6.5 8 . 0 0 . 0 0 . 0 0 . 0 9.0 0 . 0 5.63 1.63 4.00 3.63

M301 9.5 6.5 7.0 6.5 0 . 0 6.5 9.0 1 0 . 0 6.38 7.38 - 1 . 0 0 6 . 8 8

M310 5.5 6 . 0 8 . 0 0 . 0 0 . 0 0 . 0 9.5 0 . 0 5.75 1.50 4.25 3.63

M311 5.5 6 . 0 8 . 0 5.0 3.5 6.5 1 0 . 0 0 . 0 6.75 4.38 2.38 5.56

Table 4.7: Overall Prediction Accuracy Scores (OAPAS).

There are exceptions from this stable behaviour, which will be discussed below. In some

cases, M201 exhibits much better stability than M101 when a param eter of interest is varied. This

phenomenon occurs for S8 when no is varied (see Fig.4.67), for S4 when n x is varied (see Fig.4.71),

and for S3 (see Fig.4.79) and S6 (see Fig.4.83) when t x is varied. In four cases (S2: no = 1.1 x nj:

see Fig.4.60, S4: no = 1.1 x ng and no = 1.2 x rejj: see Fig.4.62, S2: t x = t* — 0.1 x ng: see

Fig.4.78), M201 provides a stable prediction while the ANN training for M101 does not converge

at all. In two cases (S4: t x — t x + 0.1 x ng, S5: n 0 = 0.9 x ng), the ANN training did not

converge for either of M101, M201. For S6 when no — 0.8 x ng (see Fig.4.65), for S2 when

h = - 0.2 x nQ (see Fig.4.77), and for S5 when t x = t* + 0.2 x ng (see Fig.4.82), both M101

and M201 provided equally inaccurate predictions (in the last case, M201 actually performed a

little worse than M101). The only case when M201 clearly performed worse than M101 was for

S5: no = 0.8 x ng (see Fig.4.63), when the network training for M201 did not converge, while

M101 did provide an acceptable prediction.

From the above results, it is obvious th a t the MSP depends nonlinearly on n0 and t x, which is

to be expected since the test signals exhibit nonlinear dynamics. The stability of both methods

with respect to t x is slightly better than with respect to no- W hen only n 0 is varied, the

nonlinear mapping $ th a t models the dependence of s(t) on the past Uq observations throughout

the training set is expected to change dramatically. When only t x is varied, the mapping $ to

be approximated by <3>w remains the same, while only the amount of training d ata is changed.

Since t x is altered by no more than 20% of an oscillation cycle, the mapping $ w obtained by

least-square optimization cannot vary too much. Thus, the contribution of 20% of an oscillation

cycle is small when errors are averaged over the entire training set. W hat may vary significantly

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with i | is the so-called ’predictability’ — the conditional variance of the OSP error ew(fi + 1)

[6 8] — a t the moment t x, variation caused by the nonlinear nature of the time series. In the

case of a nonlinear time series, the above quantity is difficult, if not impossible, to estimate. A

possible solution would be to consider all MSP signals starting in every moment throughout the

last known oscillation cycle: t \ — no + 1, . . . , fi, rather than only the MSP signal starting at the

monment t i (as in (3.21), (3.22)):

(4.5) y « h>(t) = (y <h>(t - 1)), Vt > h — h + 2 , y<h>(h - h + 1) d= s(h - h + 1)

for 1 < h < uq. Overall, it is clear enough that, under neuron scarcity constraints, M201 is much

more robust than M1.01 with respect to variations in the number of network inputs and hidden

neurons, as well as with respect to variations in the endpoint of the training set.

It should be noticed in practice th a t an ANN with more hidden neurons exhibits better

stability with respect to variations in m , no, and t \ than an ANN with fewer hidden neurons.

More specifically, suppose t \ and no are fixed. If the ANN training converges for some n{ and

also for some n f 1 n[, then the second ANN will be more stable with respect to variations in

m , no, and t i th an the first ANN. This phenomenon is due to the redundant information storage

in an ANN. The more redundancy there is in the network, the more stable it is with respect

to variations in the different parameters of the method. Our experiments demonstrate that,

even though the performance of some of the the discussed methods may improve if more hidden

neurons are used [259], the method tha t robustly extracts the most information from the known

data set using the smallest number of hidden neurons is the one using second-layer weight scaling,

signal-related weight initialization and a constant learning ra te in network training (M201).

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3
oo

—'- 1 .1 L
10 0 0 - 1.1

- 1 .1
1.3800600'274 400

x(t-2Q)t

Figure 4.15: SI MSP for SI (’- and MSP for S2 for M100.

1.31.3

oT“
2
I
><

800400 1000 - 1.1274 600
x(t-20)t

Figure 4.16: SI MSP for SI (’- and MSP for S2 for M101.

1.3
o

0

X
•1 .1 •—

274
—'- 1 .1 L
1000 - 1.1400 600 800

x(t-20)t

Figure 4.17: SI MSP for SI (’- and MSP for S2 for M110.

1.3
r y

0

■1 .1 L-
274

—'- 1 .1 L
1000 - 1.1400 600 800

t x(t-20)

Figure 4.18: S i MSP for SI (’- and MSP for S2 for M il l .

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3
oocj
2
I
x

— —1 1 —
1000 - 1.1

- 1 .1
600 800274 400

x(t-2Q)t

Figure 4.19: SI MSP for SI (’- and MSP for S2 for M200.

1.31.3

oC\J5
0

x
- 1 .1 —'- 1 .1 L-

1 0 0 0 - 1.1274 400 600 800 0 1.3
t x(t-20)

Figure 4.20: SI MSP for SI (’- and MSP for S2 for M201.

1.3 1.3
o

0

x
- 1 .1 —'- 1 .1 L

1000 - 1.1274 400 600 800 0 1.3
t x(t-20)

Figure 4.21: SI MSP for SI (’- and MSP for S2 for M210.

1.3

CJ
2
I 0 ■ 0

x

- 1 .1 —'—1 .1 L
1000 - 1.1274 400 600 800 0 1.3

t x(t-20)

Figure 4.22: SI !'), MSP for SI (’- and MSP for S2 for M211.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

oo
CO

 "I
1000 - 1.1

- 1 .1
800600274 400

x(t-20)t

Figure 4.23: SI MSP for SI (’- and MSP for S2 for M300.

1.3

o

0

■1 .1 •—
274 1.3800 1000 - 1.1600400

t x(t-20)

Figure 4.24: SI MSP for SI (’- and MSP for S2 for M301.

1.3

0

—'- 1 .1 *—
1 0 0 0 - 1 .1274 400 600 800 0 1.3

t x(t-20)

Figure 4.25: SI (’—’)> MSP for SI (’- and MSP for S2 for M310.

1.3

CO
0

1 .1 *—
274

— 1 - 1 .1 L
1000 - 1.1400 600 800 1.3

x(t-20)

Figure 4.26: SI MSP for SI (’- and MSP for S2 for M311.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.80.8

8

i

X
- 0 .!-0 .9

0 . 8600 800400283
x(t-3)t

Figure 4.27: S3 (’— ’), and MSP for S3 (’- for M100. For S4, the ANN training did not

converge.

0 . 80 . 8

o

X
J -0 .9 —

1 000-0 .9
-0 .9

0 . 8400 600 800283
x(t-3)t

Figure 4.28: S3 MSP for S3 (’- and MSP for S4 for M101.

0 . 8 0 . 8

o

2
i

x

-0 .9 L—'- 0 .9 1-
1 000-0 .9283 400 600 800 0 . 8

x(t-3)t

Figure 4.29: S3 (’— ’), and MSP for S3 (’- for MHO. For S4, the ANN training did not

converge.

0 . 8 0 . 8

T—

2
I

x

- 0 .! -J - 0 .9 L
OOO-O.i:83 400 600 800 0 . 8

t x(t—3)

Figure 4.30: S3 MSP for S3 (’- and MSP for S4 for M i l l .

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.80.8
oo
CM

!-0 .9
10 0 0 -0 .9

-0 .9
0 . 8600 800283 400

x(t-3)t

Figure 4.31: S3 (’—’), and MSP for S3 (’- for M200. For S4, the ANN training did not

converge.

0 . 80 . 8

o
CMS

x

L—'- 0 .9 1—
10 0 0 -0 .9

-0 .9
600 800 0 . 8283 400

x(t-3)t

Figure 4.32: S3 MSP for S3 (’- and MSP for S4 for M201.

0 . 8 0 . 8

o
CMS
I
><

■0.9 — s - 0 .9 L-
10 0 0 -0 .9283 400 600 800 0 . 8

x(t-3)t

Figure 4.33: S3 (’—’), and MSP for S3 (’- for M210. For S4, the ANN training did not

converge.

0 . 8

CM5
I

-0 .9

t.M i11 ! "

283

/ /
// / / //

V Vv ■wW
400 600 800 10 0 0 -0 .9 0 0.8

x(t-3)

Figure 4.34: S3 MSP for S3 (’- and MSP for S4 for M211.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.80.8

CO

- 0.1—0.9
0 . 8600 800283 400

x(t—3)t

Figure 4.35: S3 (’— ’), and MSP for S3 (’- for M300. For S4, the ANN training did not

converge.

0 . 80 . 8

x
-0 .9 l- j ~0 .9 l -

10 0 0 -0 .9 0 . 8283 400 600 800
x(t—3)t

Figure 4.36: S3 MSP for S3 (’- and MSP for S4 for M301.

0 . 8 0 . 8

co

-0 .9 ^ - o n 1-
1000-0 .9283 400 600 800 0 . 8

x(t—3)t

Figure 4.37: S3 (’— ’), and MSP for S3 (’- for M310. For S4, the ANN training did not

converge.

0 . 8 0 . 8

CO

Ifll

-0 .9
0 0 0 - 0 .!283 400 600 800 0 . 8

x(t-3)t

Figure 4.38: S3 MSP for S3 (’- and MSP for S4 for M311.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.90.9

o

x

0.92 0 0 0 - 116001 2 0 0
t

800
x(t-7)

Figure 4.39: S5 MSP for S5 (’- and MSP for S6 for M101.

0.90.9
o

X

0.91600 2 0 0 0 - 11 2 0 0
t

800
x(t—7)

Figure 4.40: S5 (’— ’), and MSP for S5 (’- for MHO. For S6 , the ANN training did not

converge.

0.90.9

s
I

x
0.9800 1 2 0 0

t
1600 2 0 0 0 - 1381

x(t—7)

Figure 4.41: S5 MSP for S5 (’- and MSP for S6 for M i l l .

0.9 0.9

0

— 1 - 1 L
2 0 0 0 - 1800 1 2 0 0 1600 0 0.9

t x(t—7)

Figure 4.42: S5 MSP for S5 (’- and MSP for S6 for M201.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.90.9
o

i
X

- 1
2 0 0 0 - 1 0.916001 2 0 0

t
800381

x(t-7)

Figure 4.43: S5 (’—’), and MSP for S5 (’- for M210. For S6 , the ANN training did not

converge.

0.90.9

CJ

- 1
0.92000 -11 2 0 0

t
1600800381

x(t-7)

Figure 4.44: S5 MSP for S5 (’- and MSP for S6 for M211.

0.90.9

oco

0.9800 1 2 0 0
t

1600 2 0 0 0 - 1381
x(t-7)

Figure 4.45: S5 (’— ’), and MSP for S6 for M301. For S5, the ANN training did not

converge.

0.9 0 .9

2
i

X

- 1
381 800 1 2 0 0

t
1600 2 0 0 0 - 1 0.9

x(t—7)

Figure 4.46: S5 MSP for S5 (’- and MSP for S6 for M311.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.21.2
oo
2 n1 'I'1
X

1 0 0 0 - ^ . 2
- 1 .;

1 . 2800550
x(t—3)t

Figure 4.47: S7 (’— ’), and MSP for S7 (’- for M100. For S8 , the ANN training did not

converge.

1 . 21 . 2

o

X

— 1 .2 *—
1000— 1.2

- 1 . 2
1 . 2800301 550

x(t-3)t

Figure 4.48: S7 MSP for S7 (’- and MSP for S8 for M101.

1 . 2

o

X
- 1 . 2 —J_ 1 2 <—

1000 - 1.2301 550 800 1 . 2
x(t-3)t

Figure 4.49: S7 (’— ’), and MSP for S7 (’- for M110. For S8 , the ANN training did not

converge.

1 . 2 1 . 2

2
I

X

- 1 .!
1000- 1.2550 800 1 . 2

t x(t-3)

Figure 4.50: S7 (’— ’), and MSP for S7 (’- for M i l l . For S8 , the ANN training did not

converge.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 0 0 0 - 1 . 2 0 1 .2
x(t-3)

Figure 4.51: S7 (’—’), and MSP for S7 (’- for M200. For S8 , the ANN training did not

converge.

1 . 2

o
CM
2
i
x

—'- 1 .2'—
1 0 0 0 —1 . 2

- 1 . 2
1 . 2800550301

x(i-3)t

Figure 4.52: S7 MSP for S7 (’- and MSP for S8 for M201.

1 . 21 . 2

o
i iiCM

2

x
- 1 . 2 —J- 1 .2'—

1000 - 1.2550 800 1 . 2301
x(t-3)t

Figure 4.53: S7 (’— ’), and MSP for S7 (’- for M210. For S8 , the ANN training did not

converge.

1 . 2

CM
2
I

- 1 .
550 800 1000 - 1.2 0 1.2

x(t-3)

Figure 4.54: S7 (’—’), and MSP for S7 (’- for M211. For S8 , the ANN training did not

converge.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.55: S7 (’— ’), and MSP for S7 (’- for M300. For S8 , the ANN training did not

converge.

1 . 2

om
2
i

x

— 1 .2 *—
1 0 0 0 - 1 . 2

- 1 . 2
800301 550

x(t-3)t

Figure 4.56: S7 (’—>), MSP for S7 (’- and MSP for S8 for M301.

1 . 2

o
CO
5
I

III
I III

X

- 1 . 2 —M .S'—
1 0 0 0 - 1 . 2301 550 800

x(t-3)t

Figure 4.57: S7 (’— ’), and MSP for S7 (’- for M310. For S8 , the ANN training did not

converge.

X

- 1 .;
1000 - 1.2550 800

t x(t-3)

Figure 4.58: S7 (’— ’), and MSP for S7 (’- for M311. For S8 , the ANN training did not

converge.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M101 M101 M201 M201

■ M H M H
800 1000 -1 .1 1.1 800 1000 -1.1 1.1

t x(t—20) t x(t—20)

Figure 4.59: MSP of SI for n0 = 8 x ng, 8 = 0.8(’...’), 0.9(’- 1-1(5-.5), 1.2(’-

M101 M101 M201 M201

1000 -1 .1 1.3 800
x(t—20)

1000 -1.1 1.3
x(t—20)

Figure 4.60: MSP of S2 for n0 = 8 x n*0, 8 = 0.8(’...’), 0.9(’- 1.0(’- ’), l . l (V) , l-2 f- -’)■ For

M101 with 8 = 1.1, the ANN training did not converge.

M101 M101 M201 M201

Figure 4.61: MSP of S3 for n 0 = 8 x ng, 8 = 0.8(’...’), 0.9(’- 1.2(’- - ’)•

M101 M101 M201 M201

0 .80 .8 0 .8 0 .8

- 0 .8 - 0 .8 - 0 .8 -0 .8
900 1000 - 0.8 0.8 900 1000 - 0.8 0 .8

! x(t—3) ! x(t-3)

Figure 4.62: MSP of S4 for n 0 = 8 x ng, <5 = 0.8(’...’), 0.9(’- 1.0(’- ’), 1 . 1.2(’- For

M101 with <5 = 1 . 1 and 1.2, the ANN training did not converge.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.63: MSP of S5 for n 0 = 6 x n ^ 5 = 0.8(’...’), 1.0(’- ’), l . l (V) , l-2(’- -’)• For M101 with

5 — 0.9 and for M201 with S = 0.8 and 0.9, the ANN training did not converge.

M101 M101 M201 M201

t x(t-7) t x{t-7)

Figure 4.64: MSP of S6 for n 0 = 5 x n % , 5 = 0.9(’- 1.0(’- ’), 1.1(’- .’) only.

M101 M101 M201 M201

1820 2000 -0 .8 0.8 1820 2000 -0 .8 0.8
t x(t—7) t x(t—7)

Figure 4.65: MSP of S6 for no = 6 x n^, 5 = 0.8(’...’), 1.0(’- ’), 1.2(’- -’) only.

M101 M101 M201 M201

960 1 000 -1 .1 1.1 960 1000 -1.1 1.1
t x(t—3) t x(t—3)

Figure 4.66: MSP of S7 for n 0 = S x ng, d — 0.8(’...’), 0.9(’- 1.0(’- ’), 1 - - ’)•

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M1Q1 M101 M201 M201

Figure 4.67: MSP of S8 for n 0 = <5 x ng, 8 = 0.8(’...’), 0.9(’- 1.0(’- ’), 1 .1 (-.’), l-2(’- - ’)•

M101 M101 M201 M2 0 1

- 1.1
1000 -1 .1 1.1 800

x(t—20)
1000 - 1.1 1.1

t x(t—20)

Figure 4.68: MSP of SI for m = n\ + S, S = 0(’—!'), ! (’- 2(’-.’), 3(’...’).

M101 M101 M201 M201
1 .2 1 .21 .2

800 1000 -1 1.2 800 1000 -1
x(t—20) x(t—20)

Figure 4.69: MSP of S2 for m = n \ + <5, S = 0(’— ’), ! (’- 2 (V) , 3(’...’).

M101 M101 M201 M201
0 .8

-0 .9

0.8 0.8 0.8

W ' -0.9 -0.9

fa a
W

f
'§

A H
i 1

-0,9
900 1000 -0 .9 0.8 900 1000 -0 .9 0.8

t x(t—3) t x(t-3)

Figure 4.70: MSP of S3 for m = n \ + 5, 8 - 0(’— ’), ! (’- - ’)> 2(’-.’), 3(’...’).

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

t x(t-3) t x(t—3)

Figure 4.71: MSP of S4 for m = nf + 5, 8 = 0(’— ’), 1(’- 2 (V) , 3(’...’)

M101 M101 M201 M201
0 .8 : 0 .80 .80 .8

x

- 1 -0 .8 L -
0.8 1820

— 1 -0 .8 L
2000 -0.8

-0 .8 -0 .8 L
2000 -0.8 0 .81820

t x(t—7) t x(t-7)

Figure 4.72: MSP of S5 for m = n \ + 5, S = 0(’— ’), 1(’- 2(’-.’), 3(’...’)

M101 M101 M201 M201

1820 2000 -0 .7 0.8 1820
t x(t—7)

2000 -0 .7 0.8
x(t-7)

Figure 4.73: MSP of S6 for m = n\ + 5, S = 0(’— !'), 1(’- 2(’- .’), 3(’...’)

M101 M101 M201 M201
1.1 ... " 1.1 1.1 1.1

'x

-1.1
i \ i \

-1 1
6

-̂ 1 1 -1 1
O

960 1000 -1 .1 1.1 '960 1000 -1.1 1.1
t x(t—3) t x(t—3)

Figure 4.74: MSP of S7 for m = n j + <5, S = 0(’— ’), 1 (’- 2(’-.’), 3(’...’)

8 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M101 M101 M201 M201

960 1000 -1 .1 1.1 960 1000 -1.1 1.1
t x(t-3) t x(t—3)

Figure 4.75: MSP of S8 for m = n j + M = 0(’— ’), ! (’- 2 (V),

M101

I I UW

M101 M201 M201

1 .2

-1 .2 L

1 .2

vs- >>
- 1 ?

i/'Jh r\iA Ti Hi i, 7 /11

- 1 .2 l
800 1000 -1 .2 1.2 800 1000 -1 .2 1.2

t x(t—20) t x(t-20)

Figure 4.76: MSP of SI for h = t$ + 5 x n*0, 5 = —0.2(’...5), - 0 .1 (’- 0.0(’- ’), 0.1(’-.’), 0.2(’-

M101 M101 M201 M201

- 1.1
800 1000 -1.1 1.3 800 1000 -1 .1 1.3

t x(t—20) t x(t—20)

Figure 4.77: MSP of S2 for t x = t \ + 5 x n*0, 5 = -0 .2 (’...’), -0 .1 (’- 0.0(’- ’), 0.1(’-.’), 0.2(’-

-’). For M101 with 5 = —0.1, the ANN training did not converge.

M101 M101 M201 M201

t x(t—20) t x(t—20)

Figure 4.78: MSP of S2 for t x = t* + 8 x rifi, 8 = -0 .1 (’- 0.0(’- ’), 0.1(’-.’), 0.2(’- -’) only. For

M101 with S ~ —0.1, the ANN training did not converge.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M101 M101 M201 M201
0 .80 .8 0 .80.8

x

— 1 -0 .9 L
1000 -0 .9

-0 .9 L-
0.8 900

-0 .9
0 .8900 1000

x(t-3) x(t-3)t

Figure 4.79: MSP of S3 for h = t \ + 8 x n*0, 6 = -0 .2 (’...’), -0 .1 (’- 0.0(’- ’), 0.1(’-.’), 0.2(’-

-’)•

M101 M101 M201 M201

Figure 4.80: MSP of S4 for t x = t \ + <5 x n*Q, S = -0 .2 (’...’), - 0 .1 (’- 0.0(’- ’), 0.2(*- - ’)• For

M101 and M201 with 5 = +0.1, the ANN training did not converge.

M101 M101 M201 M201

Figure 4.81: MSP of S5 for t \ — t \ + S x n^, S = —0.1(’- 0.0(’- ’)) 0.1(’-.’) only.

M101 M101 M201 M201

t x(t-7) t x(t—7)

Figure 4.82: MSP of S5 for h = t j + <5 x n j, <5 = -0 .2 (’...’), 0.0(’- ’), 0.2(’- -’) only.

8 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M101 M101 M201 M201
0.8

- 0 8
"1820 2000 -0 .8 0.8 1820 2000 -0 .8 0.8

t x(t—7) t x(t—7)

Figure 4.83: MSP of S6 for U = t{ + 8 x n*0, 8 = -0 .2 (’...’), -0 .1 (’- 0.0(’- ’), 0.1 (, - . ’) 5 0.2(’-

M101 M101 M201 M201
1.1

- 1.1

' n'.\ $’"/'•.Ay M
i'T>\# i \f/Av '

960 1000 -1 .1 1.1 960
t x(t-3)

1000 - 1.1 1.1
t x(t-3)

Figure 4.84: MSP of S7 for h = q + 8 x n^, 8 = - 0 .2 (’...’), -0 .1 (’- 0.0(’- ’), 0.1(’-.’), 0.2(’-

M101 M101 M201 M201

960 1000 -1 .1 1.1 960 1000 -1 .1 1.1
t x(t—3) t x(t—3)

Figure 4.85: MSP of S8 for t x = q + <5 x n*0, 8 = - 0 .2 (’...’), -0 .1 (’- 0.0(’- ’), 0.1(’-.’), 0.2(’-

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Further Applications

5.1 Cavity Oscillations

Self-sustained oscillations over open cavities, such as weapons bays or automobile door gaps, have

been extensively studied1. Recently there has been renewed interest in this type of phenomena,

especially concerning the ability to control the cavity oscillations [154, 204]. The mathematical

formulation for the cavity model is complicated, and it requires the solution of Navier-Stokes

equations. The corresponding dynamics is also complex since it may involve interaction due

to different modes in the system. In this section, we investigate the MSP capabilities for this

difficult problem. Consider the test signals S9 and S10, obtained by selecting the first column of

the da ta file M219D135.DAT and the 10-th column of the d ata file M219D085.DAT respectively.

These signals were scaled by a factor of 0.1 in order to obtain an amplitude close to 1. The

d ata files are in public domain, and they have been reported in NATO publication [273]. In the

following, we will assume tha t the first t \ = 2000 da ta points of both signals are known. These

data sets will be used for ANN training and are shown in Fig.5.1.

Both signals S9 and S10 contain more than 20000 da ta points, and neither of the two trajecto­

ries converges to a limit cycle or a fixed point. The signals are bounded and have approximately

constant mean and variance. S9 has a single dominant frequency while S10 exhibits three dom­

inant frequencies whose relative energies vary with time. The F F T plots for the known da ta

sets displayed in Fig.5.1 are provided in Figs.5.2-5.3, and are constructed by taking into account

th a t both signals are sampled a t a rate of 6 kHz. I t is clear th a t there is one dominant mode

at 492 Hz in S9 while the dynamics in S10 consists of three modes at 120 Hz, 360 Hz and 600

Hz respectively. The goal of our experiment will be to accurately reconstruct the dynamics

corresponding to the dominant frequencies by performing a medium-term MSP using the M201

predictor presented in the previous chapters. More specifically, if no is the chosen number of

1A version of p a r t o f th e m ateria l in th is section has been su b m itted for publication in [242].

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S 9

1.1

- 0.6
5 0 04 0 0200 3 0 0100

- 0.6
10009 0 08 0 06 0 0 7 0 0

- 0.6
1 0 0 1 1 1 0 0 1 2 0 0 1 3 0 0 1 4 0 0 1 5 0 0

1 . 1

20001 7 0 0 1 9 0 01 5 0 1 1 6 0 0 1 8 0 0

S 1 0

1 .9

5 0 0100 200 4 0 0

1 5 0 1 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

- 1

1100 1200 1 4 0 01 3 0 0 1 5 0 0

- 1 1-
1 5 0 1 1 6 0 0 1 7 0 0 1 8 0 0 1 9 0 0 2000

Figure 5.1: F irst 2000 data points of S9 and S10.

ANN inputs for a given signal, we will generate a d ata set of length 2no (i.e., f2 = fi + 2no) by
MSP.

The first step of our prediction method is to choose the number of ANN inputs no- The time

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S9 S10
0.030.04

30003000
vv

Figure 5.2: FFT for S9 and S10, based on the first 2000 data points.

S9 S10
0.04 0.03

v
210 492 792

v

Figure 5.3: F FT (truncated plot) for S9 and S10, based on the first 2000 data points.

histories of the known d ata sets do not exhibit any clear periodicity, especially in the case of S10.

The significance of an “oscillation cycle” is not clear in tha t case. For S9, most of the successive

Lmax (the same for Lmin) points are situated at an approximately constant distance of 12 points

from each other. However, due to the complicated profile of the signal, choosing no = 12 is most

likely not a good idea. Further insight into the periodicity properties of the two signals can be

obtained by computing the ACF. The corresponding graphs are represented in Fig.5.4 for both

signals. The vertical line marks the limit of reliability of the estimates for the ACF, as mentioned

in Chapter 3 [6 8]. For both signals it has been noticed th a t each observation in the time series

is correlated to all past observations, and the correlation is stronger for S9 than for S10. The

ACF does not decay to zero as the lag increases. In the case of S10, the ACF becomes zero for

h « 250, and subsequently increases again. The same happens for S9 a t h « 1100, but this value

is beyond the reliability bound for ACF estimates, hence it is not clear whether it should be used

at all. Finally, from the F FT plots of the two training sets constructed based on a sampling step

equal to unity (see Fig.5.5), estimates for the number of ANN inputs are given by 1.0/0.082 « 12

and 1.0/0.02 « 50 for S9 and S10 respectively.

The results presented in the following were obtained by using the method M201 with n i = 2

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S9 S10
1

0

1
19980 500

1

■C
0

19980 500
h h

Figure 5.4: ACF for S9 and S10, based on the first 2000 d ata points.

240

0

Figure 5.5: F FT (sampling step = 1) for S9 and S10, based on the first 2000 da ta points.

S9 S10

0.035 0.082 0.132
v

170

0
0.02 0.06 0.1

and no = 350 (for S9), no = 250 (for S10). The MSP generated after ANN training in each

case is represented by the dashed line in Fig.5.6 . Obviously, the prediction is not accurate if we

compare the THs of the correct and the predicted signal. However, from further investigation of

the MSP results, it has been revealed th a t the proposed ANN approach is capable of predicting

the system dynamics, in particular correctly predicting the mode interactions.

For S9, the F FT spectra of the data sets {s(fi + 1) ,.. .,s(ti + no)} and {yw (ti + 1) ,.. .,yw(fi +

no)} are compared, as well as the FFT spectra of the da ta sets (s (t i+ n o + l) , . . .,s(fi+ 2no)} and

{yw(ti +no + l) , . . .,yw(ii + 2no)}. For S10, the spectra of the d ata sets {s(fi + 1),.. .,s(fi + 2no)}

and {j/w(£i + l)v • - ,yw(h+2no)} are compared. The spectrum of the correct and predicted signal

as well as their overlapping in each case are plotted in Figs.5.7-5.9.

For S9, the dynamical system is essentially governed by a dominant mode at about 492

Hz. Using the 2000 da ta points as training set, although the predicted TH is not the same as

the experimental signal as shown in Fig.5.6, the MSP has the same frequency as the correct

signal. Moreover, the F F T plots displayed in Figs.5.7-5.8 dem onstrate a good agreement for the

frequency spectrum although the frequency has been shifted to about 497.14 Hz. The predicted

profile for S10 as illustrated in Fig.5.6 seems to be unacceptable. However, by comparing the

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- 0.6

o
CO

2001 2 7 0 0

- 0.8
2 0 0 1 2 1 2 5 2 2 5 0 2 3 7 5

Figure 5.6: Correct signal (’—’) and MSP (’- -’) for S9 and S10.

2 5 0 0

X 10
9

LL

0
497.140

x 10 S9&MSP

497.14
v

497.14
v

Figure 5.7: F FT for S9 and the ANN-MSP, based on the observations at the moments t \ +

l , . . . , t i + n 0.

x 10
9

>
LL

o
o 497.14

9

0
0 497.14

x 10 S9&MSP
9

0
0 497.14

Figure 5.8: F F T for S9 and the ANN-MSP, based on the observations a t the moments t% + no +

1, . . . , t i + 2no-

F FT plots for the predicted data and the experimnental data, shown in Fig.5.9, it is interesting

to observe th a t the ANN MSP results correctly predict the dynamics of the system. In particular,

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S10 MSP S10&MSP
0.0120.0120.012

348 588
v

348 588
v

348 588
v

Figure 5.9: F FT for S10 and the ANN-MSP, based on the observations at the moments t x +

1 , . . . , t x 2 no-

the ANN is capable of forecasting the dynamics of mode interaction. Unlike the existence of three

modes with the highest energy at 600 Hz as illustrated in Fig.5.3, the dynamics corresponding

to th a t in Fig.5.9 has only two modes at 348 Hz and 588 Hz, and the largest amplitude is now

located at 348 Hz.

Note th a t the results presented above are only preliminary results. Further work is necessary

in order to improve the prediction accuracy for this highly complex problem. A preliminary

preprocessing step, such as denoising and/or using a decomposition technique (for instance, the

empirical mode decomposition (EMD), proposed by Norden Huang [100, 101]), followed by an

ANN prediction of each component signal, might lead to more accurate results. However, as the

above results demonstrate, the proposed forecasting method has great potential in predicting the

dynamics of complex models.

5.2 Feature Extraction

In addition to performing LTMSP, ANNs can be trained to extract im portant features from the

predicted signal2. Wong et.al. [257] proposed a combined wavelet-ANN model for extracting

damping coefficients and modal frequency values of simulated signals. Suppose we are given

a t r ansient segment (s (l) , . . .,s(£i)}, such as the 160 data points (tx = 160) marked by the

vertical line in Fig.5.10, sampled with step 1.0/128 from a signal s (r) = s x(r) + S2 {r), S j (r) =

Aj exp (—ajr) sin (f jT + <f>j), j = 1 ,2, where A x = = 0.5, <f>i = <j>2 = 0, ax = 0.7, — 0.5,

f i = 127r, / 2 = 8 7 r, and 4>i = 4>2 = 0 , represent the amplitudes, damping ratios, modal frequencies

and phase angle respectively, associated with the two Fourier modes.

Clearly, it is difficult to extract the damping coefficients and frequency values directly from

such a short transient data set. In Fig.5.11 we present a wavelet-ANN model tha t can efficiently

estimate the values of ax, U2 , f i , / 2 , when the transient signal { s (l) , . . .,s(£i)} is provided. F irst,

2 A version of th e discussion presented in th is section has been published in [238, 239].

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

0

1
512256 3841281

Figure 5.10: Simulated two-mode signal (’— ’) and ANN prediction (’-

an ANN as presented in the previous chapters (M201, with no = 110, n i = 2) is trained using

the transient da ta set and subsequently predicts a long-term nonlinear behavior (s(f); t > t \ + 1 }

(represented by the dashed line in Fig.5.10). Then {s(t); t > 1} is fed into a wavelet decomposition

module, where the two-mode signal is decomposed into two single-mode signals {s i (t) ; t > 1},

{s 2 (t);t > 1 }. The details are described in [257]. A simple way to estimate the damping a

and frequency / for a single-mode signal is to train a 2LFF1S2LNN to recognize the damping

coefficients of damped sine waves e~aT sin (/ r) for (a, /) in some fixed bounded set [a*, a/] x [fi, / /] .

Then, given an arbitrary damped sine wave, its frequency / can be easily determined by using

the FFT. If it is found th a t / € [fi, / /] , then f and a sampling of the sine wave are provided as

the ANN input. The corresponding network output will then provide an estimate for a.

FFT

ANN

FFT

ANN

Figure 5.11: A Wavelet-ANN model for feature extraction.

In our experiments, a set of Q = 100 training pairs { (5 ^ \ / ^) ; 1 < q < Q}, and a set

of Q testing pairs {(a^9\ f ^) ; 1 < q < Q}, uniformly distributed in [0 .1 ,4.1] x [3.0,9.0], were

simultaneously generated. The damped sine wave e~aT s in (/r) , r > 0 corresponding to each

pair was sampled with step A t = 1.0/128, generating t2 ~ 512 discrete points in each case:

{s(q\ t)] 1 < t < f2} and { s ^ (t) ; 1 < t < t 2] respectively.

The 2LFFNN was trained to output an estim ated value y for the damping coefficient a

when receiving as inputs the value of / and the 512 sample points of the given single-mode

signal. At each training iteration, for every q — 1 , 2 the ANN receives the inputs / ^ ,

»(«>(1), •••> s ^ (t 2), and the network output y ^ approximates the correct output a^ (the

corresponding damping coefficient). Thus, the ANN had 513 inputs and one output. In the

network implementation, 3 neurons were used in the hidden layer. The accuracy of the estimated

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

value for a was measured by the relative output error \(a - y) /a\. The network training consisted

in applying the conjugate gradient algorithm to minimize the mean squared relative output error

over the Q — 100 training patterns (the performance index E r) as a function of the 1546 network

weights:

1422 iterations (4 hours on a Sun workstation, U ltra-10 model). Even though the network gave

responses within 5% accuracy for all training data, 12% of the network responses in the testing

phase were associated with large errors in the range of over 5% to 30% (see Fig.5.12(a),(c)). In

the corresponding signal: M [q\ r h ^ \ , r h ^ \ M^9\ M ^ \ r h ^ (4 local maximum and

4 local minimum values) as inputs. The neural network now has only nine inputs, three neurons

in the hidden layer, and one output, and this reduces the number of weights to 34. The value of

(k e Z) only determine the quotient fj^ = f ^ / a ^ .

In this case, the network training stopped after 1440 iterations, and the output errors for

the training set were all within 5%, as shown in Fig.5.12(b). The training process took only

seven minutes, and more accurate estimates for the damping values were obtained. As shown in

Fig.5.12(d), 98% of the estimates were within 5% accuracy and only 2% had error in the range of

10% to 15%. The result represents a significant improvement in both training time and output

accuracy. To obtain all testing errors within 5%, additional training is required.

Clearly, the present wavelet-ANN approach can be extended to a general n-mode signal. Our

damping extraction method is an alternative approach to the one proposed by Johnson et.al.

[1 1 0], who applied the discrete wavelet transform on both the given signal and a dictionary

of so-called “singlet functions” and performed correlation filtering to determine which singlet,

function best approximates the frequency and damping characteristics of the given signal a t a

specific point in time. In our case, a dictionary of artificial neural networks trained to output the

damping of a single-mode signal for different frequency intervals could be built and used together

with wavelet decomposition to provide real-time estimates of damping coefficients.

(5.1)

The training was stopped when \ / E r (w) < 0.015. In the testing phase, the relative output

errors | (d ^ - y(q\ w)) / d ^ | , 1 < q < Q, are computed. The stopping criterion was reached after

order to achieve a better testing performance, the training must be continued until \ / E r {w) -C

0.015.

A more efficient procedure for estimating a has been proposed, in which the network inputs

consist of the value of and the first eight successive local maximum and minimum values of

has to be included in the network input, since the local maximum and minimum values by

themselves

(5.2)
kit — arctan (f j ^)

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.050.05

0.040.04

co
DC
§ 0.03
DC

DC 0.03
DC
LU

<C 0.02
LU
DC

<5 0.02
LU
DC

0.01

10050 75100 257525 50

(a)

+ . +

0.01

(b)

+
+ + +

TRA IN IN G DATA TRA IN IN G DATA

0.3

0.25

DCo
DC
DC
LU

0.15

£ 0-1

0.05

. — -------1--------------------------- , , .. ----------------- 0.3 ■■■-..——■ r--— i— ■ " i1

(C) (d)

-h
0.25 -

t + +

+

CC 0 .2
O
cc
cc
LU
m 0.15 +

- 5 o 1CC 0.1

-4-+ + +

+ *

+ ++ + + + +

h+ +++ +++ + . -H- ■**- ++

0.05

0

"4" ~~̂~j—t—■ •+■
+ + + _± + + + +

+ + +

25 50 75
T E S T IN G DATA

100 25 50 75
T E S T IN G DATA

100

Figure 5.12: Training ((a),(b)) and testing ((c),(d)) relative errors when using 513 ((a),(c)) and

9 ((b),(d)) network inputs respectively, in the damping extraction problem.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusions and Future

Directions

In this thesis, a new approach based on the use of artificial neural networks (ANNs) for long­

term prediction of nonlinear oscillations arising from dynamical systems was proposed. An ANN

is trained using a segment of the transient state of a signal, and the asymptotic state of the

trajectory is reconstructed by a multi-step prediction (MSP) process. The problem of a long-term

MSP using ANNs has not yet been thoroughly investigated, since most of the ANN research deals

mainly with interpolative problems. For an accurate MSP, it is essential to construct a stable

nonlinear mapping and to overcome the problem of error propagation, especially given the fact

tha t the known data set is always corrupted by measurement noise. In fact, the present work

points to a novel research direction in the field of ANNs, for which new tools need to be created

in order to deal with aspects not encountered in interpolative applications.

In this study, an original MSP method using ANNs was designed, with special features th a t

control the propagation of the prediction errors. The proposed predictor was tested on numer­

ically generated signals and real-life experimental data. Based on a detailed comparison of 12

combinations of network architectures and training algorithms, it was found th a t the method

tha t extracts the maximum amount of information from the training set using the minimum

number of neurons, while providing the greatest robustness in the presence of signal noise and

variations in the number of inputs, neurons, and in the endpoint of the training set, is the one

using a two-layer feedforward ANN with normalized second layer weights, trained with a constant

learning rate, and for which the first layer weights are initialized with normalized segments of the

training signal. Guidelines for consistently choosing the number of network inputs and hidden

neurons have also been reported.

A theoretical justification of the proposed approach is presented, showing that, under certain

conditions, the w-limit sets of the original trajectory and of the predicted signal are close to each

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

other. The theoretical analysis could be further refined by providing an estimate for the mapping
e M e) in Section 3.4, which depends only on the form of # w and on the values of the ANN

weights. This could constitute a subject for further extensive theoretical research and would lead

to the possibility of providing a practically relevant bound on the accuracy of the ANN-generated

prediction, tha t would be available at the end of network training.

As a further application of the proposed prediction approach, we dem onstrate th a t the devel­

oped ANN is capable of predicting the nonlinear dynamics for the complex cavity flows. More

work is needed in order to refine the prediction, in particular to capture the dynamics in multi-

mode interactions. A possible approach could be to decompose the complex nonlinear signal

into a sum of nonlinear components (the empirical mode decomposition (EMD), proposed by

Norden Huang [100, 101]), and to perform LTMSP of each component separately. The cavity

flow also leads to the general issue of finding better measures for the prediction accuracy. As

already mentioned, the TH-based pointwise error is not a relevant measure since it could be

large when the profile of the predicted signal is accurate but there is a phase shift between the

MSP and the correct signal. An option worth investigating could be the following. For each

lag d, 1 < d < no, plot s(t) vs. s(t — d) and yw {t) vs. yw (t — d) for the last oscillation cycle

(t2 — no + l < t < £2)- Interpolate between the consecutive points (s(t — d — 1), s(t — 1)) and

(s(t — d), s(t)) (for example, by segments), obtaining a curve 7 *, : [<2 — no + 1, £2] —> R 2. Repeat

the process for all points (yw (t — d — l) ,y w(f — 1)) and {ijm(t — d) , yw(i)) 5 obtaining another curve

; [̂ 2 - no + 1, *2] —» R2. A scalar measure of the area (in the plane) between the two curves

could be defined in the form of an integral, in a similar manner to the area bounded by the graphs

of two functions f , g : [a, b] —» R (for some a < b), defined as |/(£) — g(£)\d£. However, the

generalization of this formula to arbitrary, self-intersecting planar curves is not straightforward.

An ANN can be trained to extract the values of the damping coefficients from the predicted

signal, when used in conjunction with a wavelet decomposition technique. A feature extraction

method was designed, which dramatically improves the network training time when extracting the

damping coefficient from a single-mode signal. Further work needs to be done in order to extend

the damping extraction method to multi-mode signals without using a wavelet decomposition

module.

In a parallel study at the University of Alberta, nonlinear time series models and the extended

Kalman filter have also been used for providing long-term MSP of nonlinear oscillations [194, 258,

259, 260]. The training sets necessary for those methods in order to provide an accurate MSP

are about 25% smaller than those necessary using the ANN-based predictors. In nonlinear time

series models, the model param eters are estim ated more sharply than in the case of ANNs. T his,

however, also causes these methods to be sensitive to signal noise. In the case of a noisy signal,

a denoising step is required before applying nonlinear time series models for long-term MSP.

In using the extended Kalman filter, the form of the nonlinearity must be known beforehand.

However, this information is usually not available in practical situations. Neural networks are

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

robust with respect to noise and to variations in the parameters such as the number of inputs or

neurons, or the values of the weights, due to the parallel and distributed storage and processing

of information inside the ANNs. Thus, the parameters of the method do not need to be estimated

sharply. Moreover, no additional information about the underlying dynamics needs to be provided

to the ANNs. The shortcoming is tha t the ANNs need more training data than the nonlinear time

series models in order to accurately predict the same signal. In addition, tim e series models have

the advantage of being better understood and theoretically tractable than ANNs, even though

the understanding is still incomplete for most nonlinear models. In a real-life application, all
these three methods (nonlinear time series models, extended Kalman filter, and neural networks)

could be used to provide a LTMSP. By comparing the MSP results, one could have a reasonable

degree of confidence whether the prediction is correct.

The main assumption when using the proposed prediction approach is th a t the underlying

dynamics of the given trajectory can be modeled by a finite-dimensional dynamical system, or at

least can be accurately approximated by a finite-dimensional dynamics. Moreover, it is assumed

th a t the training data set contains sufficient information of the nonlinear dynamical system.

This constitutes the main limitation of the approach proposed in this study. The extension of

this method to the prediction of infinite-dymensional dynamics is not straightforward. Further

research needs to be done in order to deal with this type of problems. In general, even though

the results obtained in this study can be further refined, we conclude th a t ANNs prove to be

useful tools in long-term prediction of nonlinear trajectories and in feature extraction.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] O. A d e t o n a , E. G a r c ia , a n d L. H. K e e l , A New Method for the Control of Discrete

Nonlinear Dynamic Systems Using Neural Networks, IEEE Trans. Neural Networks, Vol. 11,

No. 1, 2000, pp. 102-112.

[2] D. F. A k h m e to v , Y. D o t e , a n d S. J. O v a sk a , Fuzzy Neural Network with General Pa­

rameter Adaptation for Modeling of Nonlinear Time Series, IEEE Trans. Neural Networks,

Vol. 12, No. 1, 2001, pp. 148-152.

[3] A . A le s s a n d r i , M. S a n g u in e t i , a n d M. M a g g io r e , Optimization-Based Learning with

Bounded Error for Feedforward Neural Networks, IEEE Trans. Neural Networks, Vol. 13,

No. 2, 2002, pp. 261-272.

[4] S. I. A m a r i, N. M u r a t a , K. R. M u l l e r , M. F in k e , a n d H. H. Y a n g , Asymptotical

Statistical Theory of Overtraining and Cross- Validation, IEEE Trans. Neural Networks, Vol.

8 , No. 5, 1997, pp. 985-995.

[5] N. A m pazis, S. J . P e r a n t o n i s , a n d J. G . T a y l o r , Dynamics of Multilayer Networks in

the Vicinity of Temporary Minima, Neural Networks, Vol. 12, 1999, pp. 43-58.

[6] R. A n a n d , K. M e h r o r t a , C. K. M o h a n , S. R a n k a , Efficient Classification for Multi­

class Problems Using Modular Neural Networks, IEEE Trans. Neural Networks, Vol. 6 , No.

1, 1995, pp. 117-124.

[7] A . F . A t iy a , a n d A . G. P a r l o s , New Results on Recurrent Network Training: Unifying

the Algorithms and Accelerating Convergence, IEEE Trans. Neural Networks, Vol. 11, No.

3, 2000, pp. 697-709.

[8] A . F . A t iy a , S. M. E l- S h o u r a , S. I. S h a h e e n , a n d M. S. E l - S h e r i f , A Compari­

son Between Neural-Network Forecasting Techniques - Case Study: River Flow Forecasting,

IEEE Trans. Neural Networks, Vol. 10, No. 2, 1999, pp. 402-409.

[9] A . A u ssem , Dynamical Recurrent Neural Networks Toward Prediction and Modeling of

Dynamical Systems, Neurocomputing 28 (1999), pp. 207-232.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[1 0] J . B a l t e r s e e , a n d J. A. C h a m b ers , Nonlinear Adaptive Prediction of Speech with a

Pipelined Recurrent Neural Network, IEEE Trans. Signal Processing, Vol. 46, No. 8 , 1998,

pp. 2207-2216.

[1 1] E. B a r n a r d , Optimization for Training Neural Nets, IEEE Trans. Neural Networks, Vol.

3, No. 2, 1992, pp. 232-240.

[12] R. B a t t i t i , a n d G. T e c c h i o l l i , Training Neural Nets with the Reactive Tabu Search,

IEEE Trans. Neural Networks, Vol. 6 , No. 5, 1995, pp. 1185-1200.

[13] Y. B e n g io , P . S im a r d , a n d P . F r a s c o n i , Learning Long-Term Dependencies with Gra­

dient Descent is Difficult, IEEE Trans. Neural Networks, Vol. 5, No. 2, 1994, pp. 240-253.

[14] V. L. B e r a r d i , a n d G. P . Z h a n g , An Empirical Investigation of Bias and Variance

in Time Series Forecasting: Modeling Considerations and Error Evaluations, IEEE Trans.

Neural Networks, Vol. 14, No. 3, 2003, pp. 668-679.

[15] C. S. B e r g e r , Recursive Single-Layer Nets for Output Error Dynamic Models, IEEE Trans.

Neural Networks, Vol. 6 , No. 2, 1995, pp. 508-511.

[16] F . B e r n e l l i - Z a z z e r a , P . M a n t e g a z z a , G. M a z z o n i, a n d M . R e n d in a , Active Flutter

Suppression Using Recurrent Neural Networks, Journal of Guidance, Control, and Dynamics,

Vol. 23, No. 6 , 2000, pp. 1030-1036.

[17] S. B h a r i t k a r , a n d J . M. M e n d e l , The Hysteretic Hopfield Neural Network, IEEE Trans.

Neural Networks, Vol. 11, No. 4, 2000, pp. 879-888.

[18] M. B ia n c h in i, M. G o r i, a n d M. M a g g in i, On The Problem of Local Minima in Recurrent

Neural Networks, IEEE Trans. Neural Networks, Vol. 5, No. 2, 1994, pp. 167-177.

[19] S. A. B i l l i n g s , a n d X. H o n g , Dual-Orthogonal Radial Basis Function Networks for Non­

linear Time Series Prediction, Neural Networks 11 (1998), pp. 479-493.

[20] C . M . B ish o p , Curvature-Driven Smoothing: A Learning Algorithm for Feedforward Net­

works, IEEE Trans. Neural Networks, Vol. 4, No. 5, 1993, pp. 882-884.

[21] J . J. B l o c k , a n d T. W . S t r g a n a c , Applied Active Control for a Nonlinear Aeroelastic

Structure, Journal of Guidance, Control, and Dynamics, Vol. 21, No. 6 , 1998, pp. 838-845.

[22] M . B r in , a n d G. S t u c k , Introduction to Dynamical Systems, Cambridge University Press,

Cambridge, 2002.

[23] M. B u r g e r , a n d H. W . E n g l , Training Neural Networks with Noisy Data as an Ill-Posed

Problem, Advances in Computational Mathematics, Vol. 13, 2000, pp. 335-354.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[24] D . BURSHTEIN, Long-Term Attraction in Higher-Order Neural Networks, IEEE Trans. Neu­

ral Networks, Vol. 9, No. 1, 1998, pp. 42-50.

[25] L. C a o , Support Vector Machines Experts for Time Series Forecasting, Neurocomputing,

Vol. 51, 2003, pp. 321-339.

[26] G. C a s t e l l a n o , A. M. F a n e l l i , a n d M. P e l i l l o , An Iterative Pruning Algorithm for

Feedforward Neural Networks, IEEE Trans. Neural Networks, Vol. 9, No. 1, 1998, pp. 42-50.

[27] J . L . C a s t r o , C . J . M a n t a s , a n d J . M . B e n i t e z , Neural Networks with a Continuous

Squashing Function in the Output are Universal Approximators, Neural Networks, Vol. 13,

2000, pp. 561-563.

[28] H. A. C e c c a t o , H. D. N a v o n e , a n d H. W a e l b r o e k , Learning Persistent Dynamics

with Neural Networks, Neural Networks, Vol. 11, No. 1, 1998, pp. 145-151.

[29] D. S. C h e n , a n d R. C . J a i n , A Robust Back Propagation Learning Algorithm for Function

Approximation, IEEE Trans. Neural Networks, Vol. 5, No. 3, 1994, pp. 467-479.

[30] R . C h e n , A Nonparametric Multi-Step Prediction Estimator in Markovian Structures, Sta-

tistica Sinica, No. 6 , 1996, pp. 603-615.

[31] T . C h e n , A Unified Approach for Neural Network-like Approximation of Non-Linear Func­

tionals, Neural Networks, Vol. 11, 1998, pp. 981-983.

[32] T . C h e n , a n d H. C h e n , Approximation of Continuous Functionals by Neural Networks

with Application to Dynamic Systems, IEEE Trans. Neural Networks, Vol. 4, No. 6 , 1993,

pp. 910-918.

[33] T . C h e n , a n d H . C h en , Universal Approximation to Nonlinear Operators by Neural Net­

works with Arbitrary Activation Functions and Its Application to Dynamical Systems, IEEE

Trans. N eural Networks, Vol. 6, No. 4, 1995, pp. 911-917.

[34] T . C h e n , H. C h e n , a n d R . W. L i u , Approximation Capability in C (R ”) by Multilayer

Feedforward Networks and Related Problems, IEEE Trans. Neural Networks, Vol. 6 , No. 1,

1995, pp. 25-30.

[35] V. C h e r k a s s k y , D. G e h r i n g , a n d F. M u l i e r , Comparison of Adaptive Methods for

Function Estimation from Samples, IEEE Trans. Neural Networks, Vol. 7, No. 4, 1996, pp.

969-984.

[36] Y. M. C h e u n g , a n d L. X u, Independent Component Ordering in ICA Time Series Anal­

ysis, Neurocomputing, Vol. 41, 2001, pp. 145-152.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[37] C. C. C h i a n g , a n d H. C. Fu, Using Multithreshold Quadratic Sigmoidal Neurons to

Improve Classification Capability of Multilayer Perceptrons, IEEE Trans. Neural Networks,

Vol. 5, No. 3, 1994, pp. 516-519.

[38] E. S. C h n g , S. C h e n , a n d B. M u l g r e w , Gradient Radial Basis Function Networks for

Nonlinear and Nonstationary Time Series Prediction, IEEE Trans. Neural Networks, Vol.

7, No. 1, 1996, pp. 190-194.

[39] S. Y. C h o , a n d T. W . S. C h o w , Learning Parametric Specular Reflectance Model by

Radial Basis Function Network, IEEE Trans. Neural Networks, Vol. 11, No. 6 , 2000, pp.

1498-1503.

[40] C. H. C h o i , a n d J . Y. C h o i , Constructive Neural Networks with Piecewise Interpolation

Capabilities for Function Approximations, IEEE Trans. Neural Networks, Vol. 5, No. 6,1994,

pp. 936-944.

[41] T . C how , a n d C. T . L e u n g , Performance Enhancement Using Nonlinear Preprocessing,

IEEE Trans. Neural Networks, Vol. 7, No. 4, 1996, pp. 1039-1042.

[42] C. C. C h u a n g , S. F. S u , a n d C. C. H s i a o , The Annealing Robust Backpropagation

(ARBP) Learning Algorithm, IEEE Trans. Neural Networks, Vol. 11, No. 5, 2000, pp. 1067-

1077.

[43] A. C i c h o k i , AND R. U n b e h a u e n , Simplified Neural Networks for Solving Linear Least

Squares and Total Least Squares Problems in Real Time, IEEE Trans. Neural Networks,

Vol. 5, No. 6 , 1994, pp. 910-923.

[44] I. B. ClOCOlU, Time Series Analysis Using RBF Networks with FIR/HR Synapses, Neuro­

computing 20 (1998), pp. 57-66.

[45] I. B. ClOCOIU, RBF Networks Training Using a Dual Extended Kalman Filter, Neurocom­

puting 48 (2002), pp. 609-622.

[46] D. S. C l o u s e , C. L. G i l e s , B. G. H o r n e , a n d G. W . C o t t r e l l , Time-Delay Neural

Networks: Representation and Induction of Finite-State Machines, IEEE Trans. Neural

Networks, Vol. 8 , No. 5, 1997, pp. 1065-1070.

[47] J . T. C o n n o r , R. D. M a r t i n , a n d L. E. A t l a s , Recurrent Neural Networks and Robust

Time Series Prediction, IEEE Trans. Neural Networks, Vol. 5, No. 2, 1994, pp. 240-253.

[48] A. J . C o n w a y , K. P . M a c p h e r s q n , J. C. B r o w n , Delayed Time Series Predictions with

Neural Networks, Neurocomputing 18 (1998), pp. 81-89.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[49] E . M . C o r w in , A. M. L o g a r , a n d W . J. B . O ld h a m , An Iterative Method for Training

Multilayer Networks with Threshold Functions, IEEE Trans. Neural Networks, Vol. 5, No.

3, 1994, pp. 507-508.

[50] N. E . C o t t e r , The Stone- Weierstrass Theorem and Its Application to Neural Networks,

IEEE Trans. Neural Networks, Vol. 1, No. 4, 1990, pp. 290-295.

[51] M . C o t t r e l l , B . G i r a r d , Y . G i r a r d , M . M a n g e a s , a n d C . M u l l e r , Neural Modeling

for Time Series: A Statistical Stepwise Mehtod for Weight Elimination, IEEE Trans. Neural

Networks, Vol. 6 , No. 6 , 1995, pp. 1355-1364.

[52] P . E . CROUCH, Hamiltonian Realizations of Finite Volterra Series, in: Theory and Appli­

cations of Control Systems, eds. C. I. Byrnes and A. Lindquist, North-Holland, 1986, pp.

247-259.

[53] G . C y b e n k o , Approximation by Superpositions of a Sigmoidal Function, M athematics of

Control, Signals and Systems (1989) vol. 2 no. 4 : 303-314.

[54] R. D e L e o n e , R. C a p p a r u c c i a , a n d E. M e r e l l i , A Successive Overrelaxation Back-

propagation Algorithm for Neural-Network Training, IEEE Trans. Neural Networks, Vol. 9,

No. 3, 1998, pp. 381-388.

[55] C . M . D e n e g r i , J r ., Limit Cycle Oscillation Flight Test Results of a Fighter with External

Stores, Journal of Aircraft, Vol. 36, No. 5, 2000, pp. 761-769.

[56] C . M. D e n e g r i , J r ., a n d M. A. C u t c h i n s , Evaluation of Classical Flutter Analyses for

the Prediction of Limit Cycle Oscillations, AIAA-97-1021.

[57] C. M. D e n e g r i , J r . , a n d M. R. J o h n s o n , Limit Cycle Oscillation Prediction Using

Artificial Neural Networks, Journal of Guidance, Control, and Dynamics, Vol. 24, No. 5,

2001, pp. 887-895.

[58] M. Di M a r t i n o , S. F a n e l l i , a n d M. P r o t a s i , Exploring and Comparing the Best “Direct

Methods” for the Efficient Training of MLP-Networks, IEEE Trans. Neural Networks, Vol.

7, No. 6 , 1996, pp. 1497-1502.

[59] A. D o e r i n g , M. G a l i c k i , a n d H. W i t t e , Structure Optimization of Neural Networks

with the A*-Algorithm, IEEE Trans. Neural Networks, Vol. 8 , No. 6 , 1997, pp. 1434-1445.

[60] H. D r u c k e r , a n d Y. L. C u n , Improving Generalization Performance Using Double Back-

propagation, IEEE Trans. Neural Networks, Vol. 3, No. 6 , 1992, pp. 991-997.

[61] A. D u m i t r a §, Artificial Neural Network Design (romanian language), Odeon Publishing

House, Bucharest, Romania, 1997.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[62] R . J . D u r o , a n d J. S. R e y e s , Discrete-Time Backpropagation for Training Synaptic

Delay-Based Artificial Neural Networks, IEEE Trans. Neural Networks, Vol. 10, No. 4,1999,

pp. 779-789.

[63] J . L. E l m a n , Finding Structure in Time, Cognitive Science, No. 14, 1990, pp. 179-211.

[64] A. P . E n g e l b r e c h t , A New Pruning Heuristic Based on Variance Analysis of Sensitivity

Information, IEEE Trans. Neural Networks, Vol. 12, No. 6 , 2001, pp. 1386-1399.

[65] R . E n n s , a n d J . Si, Apache Helicopter Stabilization Using Neural Dynamic Programming,

Journal of Guidance, Control, and Dynamics, Vol. 25, No. 1, 2002, pp. 19-25.

[6 6] S. E r g e z i n g e r , a n d E. T h o m s e n , An Accelerated Learning Algorithm for Multilayer

Perceptions: Optimization Layer by Layer, IEEE Trans. Neural Networks, Vol. 6 , No. 1,

1995, pp. 31-42.

[67] S. Y. F a k h o u r i , a n d M. G. M y l r o i , Identification and Realisation of Multi-Dimensional

Kernels, in: Third IMA Conference in Control Theory, eds. J. E. Marshall, W. D. Collins,

C. J. Harris, and D. H. Owens, Academic Press, 1981, pp. 65-86.

[68] J. F a n , a n d Q. Y a o , Nonlinear Time Series - Nonparametric and Parametric Methods,

Springer-Verlag, New York, 2003.

[69] S. F e r r a r i , a n d R. F. S t e n g e l , Classical/Neural Synthesis of Nonlinear Control Sys­

tems, AIAA-200Q-4552, Proceedings of the 2000 AIAA Guidance, Navigation, and Control

Conference, Denver, CO, Aug. 14-17, 2000.

[70] S. F e r r a r i , a n d R. F . S t e n g e l , Algebraic Training of a Neural Network, Proceedings of

the 2001 American Control Conference, Arlington, VA, June 2001.

[71] D . B. F o g e l , An Information Criterion for Optimal Neural Network Selection, IEEE Trans.

Neural Networks, Vol. 2, No. 5, 1991, pp. 490-497.

[72] L. M. F u , H. H. H su, a n d J . C. P r i n c i p e , Incremental Backpropagation Learning Net­

works, IEEE Trans. Neural Networks, Vol. 7, No. 3, 1996, pp. 757-761.

[73] Y. F u k u o k a , H. M a t s u k i , H. M i n a m i t a n i , A. I s h i d a , A Modified Back-Propagation

Method to Avoid False Local Minima, Neural Networks, Vol. 11, 1998, pp. 1059-1072.

[74] G. E. F u l c h e r , a n d D. E. B r o w n , A Polynomial Network for Predicting Temperature

Distributions, IEEE Trans. Neural Networks, Vol. 5, No. 3, 1994, pp. 372-379.

[75] K. I. F u n a h a s h i , On the Approximate Realization of Continuous Mappings by Neural Net­

works, Neural Networks, Vol. 2, No. 3, 1989, pp. 183-192.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[76] A. R. G a l l a n t , a n d H. W h ite , On Learning the Derivatives of an Unknown Mapping

with Multilayer Feedforward Networks, Neural Networks, Vol. 5, 1992, pp. 129-138.

[77] A . R . G a l l a n t , a n d H . W h it e , There Exists a Neural Network that Does Not Make

Avoidable Mistakes, Proc. IEEE Int. Conf. Neural Networks, San Diego, CA, July 24-27,

1998, Vol. I, pp. 657-664.

[78] A. B. G e v a , ScaleNet - Multiscale Neural Network Architecture for Time Series Prediction,

IEEE Trans. Neural Networks, Vol. 9, No. 5, 1998, pp. 1471-1482.

[79] C. L. G ile s , D. C h e n , G. Z. S u n , H. H. C h e n , Y. C. L e e , a n d M. W . G o u d r e a u ,

Constructive Learning of Recurrent Neural Networks: Limitations of Recurrent Cascade

Correlation and A Simple Solution, IEEE Trans. Neural Networks, Vol. 6 , No. 4, 1995, pp.

829-835.

[80] D. E. G o l d b e r g , Genetic Algorithms in Search, Optimization, and Machine Learning,

Addison-Wesley, 1989.

[81] J . B. Gomm, a n d D. L. Y u, Selecting Radial Basis Function Network Centers with Recur­

sive Orthogonal Least Square Training, IEEE Trans. Neural Networks, Vol. 11, No. 2, 2000,

pp. 306-314.

[82] H. G u, a n d H. T a k a h a s h i, Towards More Practical Average Bounds on Supervised Learn­

ing, IEEE Trans. Neural Networks, Vol. 7, No. 4, 1996, pp. 953-968.

[83] M. G u l e r , A Model with an Intrinsic Property of Learning Higher Order Correlations,

Neural Networks, Vol. 14, 2001, pp. 495-504.

[84] M. Guo, Z. B ai a n d H. Z. An, Multi-Step Prediction for Nonlinear Autoregressive Models

Based on Empirical Distributions, Statistica Sinica, No. 9, 1999, pp. 559-570.

[85] K. G u r n e y , Neural Nets, www.shef.ac.uk /psychology/gurney/notes/, Online Course Notes.

[86] M . T . H a g a n , H . B . D e m u th , a n d M . B e a l e , Neural Network Design, PWS Publishing

Company, 1996.

[87] M . T . H a g a n , a n d M . B . M e n h a j , Training Feedforward Neural Networks with the Mar-

quardt Algorithm, IEEE Trans. Neural Networks, Vol. 5, No. 6 , 1994, pp. 989-993.

[8 8] V. H a g g a n , a n d T . O z a k i, Amplitude-Dependent Exponential AR Model Fitting for Non-

Linear Random Vibrations, in: Time Series, ed. O. D. Anderson, North-Holland, 1980, pp.

57-71.

[89] V. H a g g a n , a n d T. O z a k i , Modelling Nonlinear Random Vibrations Using an Amplitude-

Dependent Autoregressive Time Series Model, Biometrika, Vol. 6 8 , No. 1, 1981, pp. 189-196.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.shef.ac.uk/psychology/gurney/notes/

[90] J . V. H a n se n , a n d R. D . N e ls o n , Neural Networks and Traditional Time Series Methods:

A Sinergistic Combination in State Economic Forecasts, IEEE Trans. Neural Networks, Vol.

8 , No. 4, 1997, pp. 863-873.

[91] S. H a y k in , a n d L. Li, Nonlinear Adaptive Prediction of Nonstationary Signals, IEEE

Trans. Signal Processing, Vol. 43, No. 2, 1995, pp. 526-535.

[92] D . P . H e lm b o ld , J . K iv in e n , a n d M . K . W a r m u th , Relative Loss Bounds for Single

Neurons, IEEE Trans. Neural Networks, Vol. 10, No. 6 , 1999, pp. 1291-1304.

[93] K . H ir a sa w a , S. H. Kim , J . H u, J . M u r a ta , M . H a n , a n d C. Jin , Improvement

of Generalization Ability for Identifying Dynamical Systems by Using Universal Learning

Networks, Neural Networks, Vol. 14, 2001, pp. 1389-1404.

[94] C. C. H o lm e s , a n d B. K . M a l l i c k , Bayesian Wavelet Networks for Nonparametric

Regression, IEEE Trans. Neural Networks, Vol. 11, No. 1, 2000, pp. 27-35.

[95] X. H o n g , a n d S. A. B i l l i n g s , Time Series Multistep-Ahead Predictability Estimation and

Ranking, Journal of Forecasting, 18 (1999), pp. 139-149.

[96] K . H o r n ik , Approximation Capabilities of Multilayer Feedforward Networks, Neural Net­

works, Vol. 4, 1991, pp. 251-257.

[97] K . H o r n ik , M . S t in c h c o m b e , a n d H . W h ite , Multilayer Feedforward Networks are

Universal Approximators, Neural Networks, Vol. 2, No. 5, 1989, pp. 359-366.

[98] S. H o ss e in i, a n d C. J u t t e n , Maximum Likelihood Neural Approximation in Presence of

Additive Colored Noise, IEEE Trans. Neural Networks, Vol. 13, No. 1, 2002, pp. 117-131.

[99] T . C. R . H s ia o , C. W . L in , H . K . C h ia n g , Partial Least-Squares Algorithm for Weights

Initialization of Backpropagation Network, Neurocomputing, Vol. 50, 2003, pp. 237-247.

[100] N. E. H u a n g , Z. S h e n , a n d S. R . L o n g , A New View of Nonlinear Water Waves: The

Hilbert Spectrum, Annual Review of Fluid Mechanics, Vol. 31, 1999, pp. 417-457.

[101] N. E. H u a n g , Z. S h e n , S. R . L o n g , M. C. W u , H. H. S h ih , Q. Z h e n g , N. C. Y e n ,

C. C. T u n g , a n d H. H. L iu , The Empirical Mode Decomposition and the Hilbert Spectrum

for Nonlinear and Non-Stationary Time Series Analysis, R. Soc. Lond. Proc. Ser. A Math.

Phys. Eng. Sci., Vol. 454, No. 1971, 1998, pp.903-995.

[102] M . H u sk e n , a n d P . S t a g g e , Recurrent Neural Networks for Time Series Classification,

Neurocomputing, No. 50, 2003, pp. 223-235.

[103] J . N. H w a n g , S. R. L a y , M. M a e c h le r , R. D . M a r t in , a n d J. S c h m ie r t , Regres­

sion Modeling in Back-Propagation and Projection Pursuit Learning, IEEE Trans. Neural

Networks, Vol. 5, No. 3, 1994, pp. 342-353.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[104] M. M. I s l a m , a n d K. M u r a s e , A New Algorithm to Design Compact Two-Hidden-Layer

Artificial Neural Networks, Neural Networks, Vol. 14, 2001, pp. 1265-1278.

[105] Y. I t o , Representation of Functions by Superposition of a Step or Sigmoid Function and

Their Applications to Neural Network Theory, Neural Networks, Vol. 4, 1991, pp. 385-394.

[106] J . S. N. J e a n , a n d J. W a n g , Weight Smoothing to Improve Network Generalization,

IEEE Trans. Neural Networks, Vol. 5, No. 5, 1994, pp. 752-763.

[107] D . J i a n g , a n d J . W a n g , On-Line Learning of Dynamical Systems in the Presence of

Model Mismatch and Disturbances, IEEE Trans. Neural Networks, Vol. 11, No. 6 , 2000, pp.

178-183.

[108] K. C. Jim , C. L. G i le s , a n d B . G . H o r n e , An Analysis of Noise in Recurrent Neural

Networks: Convergence and Generalization, IEEE Trans. Neural Networks, Vol. 7, No. 6 ,

1996, pp. 1424-1438.

[109] L. J i n , a n d M. M. G u p t a , Stable Dynamic Backpropagation Learning in Recurrent Neural

Networks, IEEE Trans. Neural Networks, Vol. 10, No. 6 , 1999, pp. 1321-1334.

[110] J . D. J o h n s o n , J . Lu, A. P . D h a w a n , a n d R. L i n d , Real-Time Identification of Flut­

ter Boundaries Using the Discrete Wavelet Transform, Journal of Guidance, Control, and

Dynamics, Vol. 25, No. 2, 2002, pp. 334-339.

[111] M. D. J o h n s o n , a n d K. R o k h s a z , Using Artificial Neural Networks and Self-Organizing

Maps for Detection of Airframe Icing, Journal of Aircraft, Vol. 38, No. 2, 2001, pp. 224-230.

[112] J . C. J u a n g , Stability Analysis of Hopfield-Type Neural Networks, IEEE Trans. Neural

Networks, Vol. 10, No. 6 , 1999, pp. 1366-1374.

[113] P . V. K a b a i l a , Estimation Based on One Step Ahead Prediction Versus Estimation Based

on Multi-Step Ahead Prediction, Stochastics, Vol. 6 , 1981, pp. 43-55.

[114] S. V. K a m a r t h i , a n d S. PlTTNER, Accelerating Neural Network Training Using Weight

Extrapolations, Neural Networks, Vol. 12, 1999, pp. 1285-1299.

[115] P . P . K a n j i l a l , a n d D. N. B a n e r j e e , On the Application of Orthogonal Transformation

for the Design and Analysis of Feedforward Networks, IEEE Trans. Neural Networks, Vol.

6 , No. 5, 1995, pp. 1061-1070.

[116] D. A. K a r r a s , a n d S. J . P e r a n t o n i s , An Efficient Constrained Training Algorithm for

Feedforward Networks, IEEE Trans. Neural Networks, Vol. 6 , No. 6 , 1995, pp. 1420-1433.

[117] G. N. K a r y s t i n o s , a n d D. A. P a d o s , On Overfitting, Generalization, and Randomly

Expanded Training Sets, IEEE Trans. Neural Networks, Vol. 11, No. 5, 2000, pp. 1050-1057.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[118] P . K e r l ir z in , a n d P . R e f r e g ie r , Theoretical Investigation of the Robustness of Multi­

layer Perceptrons: Analysis of the Linear Case and Extension to Nonlinear Networks, IEEE

Trans. Neural Networks, Vol. 6 , No. 3, 1995, pp. 560-571.

[119] B . K e r m a n s h a h i , Recurrent Neural Network for Forecasting Next 10 Years Loads of Nine

Japanese Utilities, Neurocomputing, Vol. 23 (1998), pp. 125-133.

[120] C. K h u n a s a r a p h a n , K . V a n a p ip a t , a n d C. L u r s i n s a p , Weight Shifting Techniques

for Self-Recovery Neural Networks, IEEE Trans. Neural Networks, Vol. 5, No. 4, 1994, pp.

651-658.

[121] D. K im , a n d M. M a r c in ia k , Prediction of Vertical Tail Maneuver Loads Using Back­

propagation Neural Networks, Journal of Aircraft, Vol. 37, No. 3, 2000, pp. 526-530.

[122] S. S. K i m , Time Delay Recurrent Neural Network for Temporal Correlations and Predic­

tions, Neurocomputing, Vol. 20 (1998), pp. 253-263.

[123] H. R. K i r b y , S. M. W a t s o n , M. S. D o u g h e r t y , Should we use neural networks or

statistical models for short-term motorway traffic forecasting ?, International Journal of

Forecasting 13 (1997) : 43-50.

[124] J . K o, A. J . K u r d i l a , a n d T. W . S t r g a n a c , Nonlinear Control of a Prototypical Wing

Section with Torsional Nonlinearity, Journal of Guidance, Control, and Dynamics, Vol. 20,

No. 6 , 1997, pp. 1181-1189.

[125] J . K o, T . W . S t r g a n a c , a n d A. J. K u r d il a , Stability and Control of a Structurally

Nonlinear Aeroelastic System, Journal of Guidance, Control, and Dynamics, Vol. 21, No. 5,

1998, pp. 718-725.

[126] E . B . K o s m a t o p o u l o s , M. M. P o l y c a r p o u , M. A. C h r is t o d o u l o u , a n d P . A.

I o a n n o u , High-Order Neural Network Structures for Identification of Dynamical Systems,

IE E E Trans. Neural Networks, Vol. 6 , No. 2, 1995, pp. 422-431.

[127] A. K o w a l c z y k , a n d H. L. F e r r a , Developing Higher-Order Networks with Empirically

Selected Units, IEEE Trans. Neural Networks, Vol. 5, No. 5, 1994, pp. 698-711.

[128] S. C. K r e m e r , On the Computational Power of Elman-Style Recurrent Networks, IEEE

Trans. Neural Networks, Vol. 6 , No. 4, 1995, pp. 1000-1004.

[129] C. C. K u, AND K. Y. L ee, Diagonal Recurrent Neural Networks for Dynamic Systems

Control, IEEE Trans. Neural Networks, Vol. 6 , No. 1 , 1995, pp. 144-156.

[130] K . W . C. K u , M. W . M a k , a n d W . C. S i u , Adding Learning to Cellular Genetic

Algorithms for Training Recurrent Neural Networks, IEEE Trans. Neural Networks, Vol. 10,

No. 2, 1999, pp. 239-252.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[131] C . M . K u a n , A Recurrent Newton Algorithm and Its Convergence Properties, IEEE Trans.

Neural Networks, Vol. 6 , No. 3, 1995, pp. 779-783.

[132] A. J . K u r d i l a , R. J . P r a z e n i c a , O. R e d i n i o t i s , a n d T. W . S t r g a n a c , Multires­

olution Methods for Reducedr Order Models for Dynamical Systems, Journal of Guidance,

Control, and Dynamics, Vol. 24, No. 2, 2001, pp. 193-200.

[133] A. J . K u r d i l a , T. W . S t r g a n a c , J. L. J u n k i n s , J. K o, a n d M. R. A k e l l a , Nonlinear

Control Methods for High-Energy Limit-Cycle Oscillations, Journal of Guidance, Control,

and Dynamics, Vol. 24, No. 1, 2001, pp. 185-192.

[134] T. M. K w o n , a n d H. C h e n g , Contrast Enhancement for Backpropagation, IEEE Trans.

Neural Networks, Vol. 7, No. 2, 1996, pp. 515-523.

[135] T . M. K w o n , a n d E. H. F e r o z , A Multilayered Perceptron Approach to Prediction of

the SEC’s Investigation Targets, IEEE Trans. Neural Networks, Vol. 7, No. 5, 1996, pp.

1286-1290.

[136] M. M. L a m e g o , Adaptive Structures with Algebraic Loops, IEEE Trans. Neural Networks,

Vol. 12, No. 1, 2001, pp. 33-42.

[137] K. J . L a n g , G. E. H i n t o n , A Time-Delay Neural Network Architecture for Speech Recog­

nition, CMU-CS-88-152,1998.

[138] B. L e B a r o n , a n d A. S. W e i g e n d , A Bootstrap Evaluation of the Effect of Data Splitting

on Financial Time Series, IEEE Trans. Neural Networks, Vol. 9, No. 1, 1998, pp. 213-219.

[139] T. L ee, AND Y. K i m , Nonlinear Adaptive Flight Control Using Backstepping and Neural

Networks Controller, Journal of Guidance, Control, and Dynamics, Vol. 24, No. 4, 2001, pp.

675-682.

[140] B. H. K. L e e , S. J . P r i c e , a n d Y. S. W o n g , Nonlinear Aeroelastic Analysis of Airfoils:

Bifurcation and Chaos, Progress in Aerospace Sciences, Vol. 35, No. 3, 1999, pp. 205-334.

[141] C. S. L e u n g , A. C. T so i, a n d L. W . C h a n , Two Regularizers for Recursive Least

Squared Algorithms in Feedforward Multilayered Neural Networks, IEEE Trans. Neural Net­

works, Vol. 12, No. 6 , 2001, pp. 1314-1332.

[142] C. S. L e u n g , G. H. Y o u n g , J. S u m , a n d W . K. K a n , On the Regularization of For­

getting Recursive Least Square, IEEE Trans. Neural Networks, Vol. 10, No. 6 , 1999, pp.

1482-1486.

[143] A. U. L e v i n , a n d K. S. N a r e n d r a , Control of Nonlinear Dynamical Systems Using

Neural Networks: Controllability and Stabilization, IEEE Trans. Neural Networks, Vol. 4,

No. 2, 1993, pp. 192-206.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[144] A. U . L e v i n , a n d K. S. N a r e n d r a , Control of Nonlinear Dynamical Systems Using

Neural Networks - Part II: Observability, Identification, and Control, IEEE Trans. Neural

Networks, Vol. 7, No. 1, 1996, pp. 30-42.

[145] E . L e v i n , Hidden Control Neural Architecture Modeling of Nonlinear Time Varying Sys­

tems and Applications, IEEE Trans. Neural Networks, Vol. 4, No. 1, 1993, pp. 109-116.

[146] Y . Li, N. S u n d a r a r a j a n , a n d P . S a r a t c h a n d r a n , Stable Neuro-Flight-Controller

Using Fully Tuned Radial Basis Function Neural Networks, Journal of Guidance, Control,

and Dynamics, Vol. 24, No. 4, 2001, pp. 665-674.

[147] T . L i n , B. G. H o r n e , a n d C. L. G i l e s , How Embedded Memory in Recurrent Neural

Network Architectures Helps Learning Long- Term Temporal Dependencies Neural Networks,

Vol. 11, 1998, pp. 861-868.

[148] T . L i n , B. G. H o r n e , P e t e r T i n o , a n d C. L. G i l e s , Learning Long-Term Depen­

dencies in NARX Recurrent Neural Networks, IEEE Trans. Neural Networks, Vol. 7, No. 6 ,

1996, pp. 1329-1338.

[149] D. J . L i n s e , a n d R. F. S t e n g e l , Identification of Aerodynamic Coefficients Using Com­

putational Neural Networks, Journal of Guidance, Control, and Dynamics, Vol. 16, No. 6 ,

1993.

[150] G. P . Liu, V. K a d i r k a m a n a t h a n , S. A. B i l l i n g s , On-Line Identification of Nonlinear

Systems using Volterra Polynomial Basis Function Neural Networks, Neural Networks, Vol.

11, 1998, pp. 1645-1657.

[151] L. Liu, Mathematical Analysis in Nonlinear Aeroelasticity, Ph.D. Dissertation, D epart­

ment of M athematical and Statistical Sciences, University of Alberta, Edmonton, Alberta,

Canada, December 2001.

[152] J. T . L o, a n d D. B a s s u , Adaptive Multilayer Perceptrons With Long- and Short-Term

Memories, IEEE Trans. Neural Networks, Vol. 13, No. 1, 2002, pp. 22-33.

[153] J . T . H. L o, Synthetic Approach to Optimal Filtering, IEEE Trans. Neural Networks, Vol.

5, No. 5, 1994, pp. 803-811.

[154] B. L u k o v i c , P . O r k w i s , M. T u r n e r , a n d B. S e k a r , Effect of Cavity L /D Variations

on Neural Network-Based Deterministic Unsteadiness Source Terms, AIAA Paper 2002-

0857, Proceedings of the 40th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan

14-17, 2002.

[155] S. M a, AND C. Ji, Fast Training of Recurrent Networks Based on the EM Algorithm,

IEEE Trans. Neural Networks, Vol. 9, No. 1, 1998, pp. 11-26.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[156] O. M a a s , J . P . B o u la n g e r , a n d S. T h ir ia , Use of Neural Networks for Predictions

Using Time Series: Illustration with the El Nino Southern Oscillation Phenomenon, Neu­

rocomputing, Vol. 30, 2000, pp. 53-58.

[157] G . D . M a g o u la s , V . P . P la g ia n a k o s , a n d M . N . V r a h a t i s , Globally Convergent

Algorithms With Local Learning Rates, IEEE Trans. Neural Networks, Vol. 13, No. 3, 2002,

pp. 774-779.

[158] D. P . M a n d i c , a n d J. A. C h a m b e r s , Toward an Optimal PRNN-based Nonlinear Pre­

dictor, IEEE Trans. Neural Networks, Vol. 10, No. 6 , 1999, pp. 1435-1441.

[159] D . P . M a n d ic , a n d J. A. C h a m b e rs , Exploiting Inherent Relationships in RNN Archi­

tectures, Neural Networks, Vol. 12, 1999, pp. 1341-1345.

[160] D . P . M a n d ic , a n d J. A. C h a m b e rs , On the Choice of Parameters of the Cost Function

in Nested Modular RN N’s, IEEE Trans. Neural Networks, Vol. 11, No. 2, 2000, pp. 315-321.

[161] N. M a r c o , S. L a n t e r i , A Two-Level Parallelization Strategy for Genetic Algorithms

Applied to Optimum Shape Design, Parallel Computing, 26 (2000), pp. 377-397.

[162] J . L. M a r r o q u in , Measure Fields for Function Approximation, IEEE Trans. Neural Net­

works, Vol. 6 , No. 5, 1995, pp. 1081-1090.

[163] T . M a s t e r s , Practical Neural Network Recipes in C++, Academic Press, Boston, 1993.

[164] W . S. M c C u l l o c h , a n d W . P i t t s , A Logical Calculus of the Ideas Immanent in Nervous

Activity, Bulletin of Mathematical Biophysics, Vol. 5, 1943, pp. 115-133.

[165] M. B. M c F a r la n d , a n d A. J . C a l is e , Neural Networks and Adaptive Nonlinear Control

of Agile Antiair Missiles, Journal of Guidance, Control, and Dynamics, Vol. 23, No. 3, 2000,

pp. 547-553.

[166] J . M c N a m e s , Local Averaging Optimization for Chaotic Time Series Prediction, Neuro­

computing, Vol. 48, 2002, pp. 279-297.

[167] M . C. MEDEIROS, a n d A. V e i g a , A Hybrid Linear-Neural Model for Time-Series Fore­

casting, IEEE Trans. Neural Networks, Vol. 11, No. 6 , 2000, pp. 1402-1412.

[168] M. M i g n o t t e , C. C o l l e t , P . P e r e z , a n d P . B o u th e m y , Hybrid Genetic Optimiza­

tion and Statistical Model-Based Approach for the Classification of Shadow Shapes in Sonar

Imagery, IEEE Trans. P attern Analysis and Machine Intelligence, Vol. 22, No. 2, 2000, pp.
129-141.

[169] R. R. M o h le r , Nonlinear Systems, Vol. II, Applications to Bilinear Control, Prentice

Hall, 1991, pp. 93-113.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[170] N. M u r a t a , S. Y o s h iz a w a , a n d S. I. A m a r i , Network Information Criterion - Deter­

mining the Number of Hidden Units for an Artificial Neural Network Model, IEEE Trans.

Neural Networks, Vol. 5, No. 6 , 1994, pp. 865-871.

[171] A. F . M u r r a y a n d P . J . E d w a r d s , Enhanced MLP Performance and Fault Tolerance

Resulting from Synaptic Weight Noise During Training, IEEE Trans. Neural Networks, Vol.

5, No. 5, 1994, pp. 792-802.

[172] K . S. N a r e n d r a , a n d S. M u k h o p a d h y a y , Adaptive Control Using Neural Networks and

Approximate Models, IEEE Trans. Neural Networks, Vol. 8 No. 3, 1997, pp. 475-485.

[173] K . S. N a r e n d r a , a n d K. P a r t h a s a r a t h y , Identification and Control of Dynamical

Systems Using Neural Networks, IEEE Trans. Neural Networks, Vol. 1, No. 1, 1990, pp.

4-26.

[174] K. S. N a r e n d r a , a n d K. P a r t h a s a r a t h y , Gradient Methods for the Optimization of

Dynamical Systems Containing Neural Networks, IEEE Trans. Neural Networks, Vol. 2, No.

2, 1991, pp. 252-262.

[175] O. N e r r a n d , P . R o u s s e l - R a g o t , D. U r b a n i , L. P e r s o n n a z , a n d G. D r e y f u s ,

Training Recurrent Neural Networks: Why and How? An Illustration in Dynamical Process

Modeling, IEEE Trans. Neural Networks, Vol. 5, No. 2, 1994, pp. 178-183.

[176] A. N i e d e r l i n s k i , Error Convergence Rate for Multiple-Recursion RLS Estimation in Lin­

ear Multi-Step Prediction Models, Archives of Control Sciences, Vol. 4 (XL), No. 3-4, 1995,

pp. 173-201.

[177] N. Y . N i k o l a e v , a n d H i t o s h i I b a , Learning Polynomial Feedforward Neural Networks

by Genetic Programming and Backpropagation, IEEE Trans. Neural Networks, Vol. 14, No.

2, 2003, pp. 337-350.

[178] J . N i s h i i , A Learning Model for Oscillatory Networks, Neural Networks, Vol. 11, 1998, pp.

249-257.

[179] M. N o r g a a r d , Neural Networks for Modelling and Control of Dynamic Systems : A

Practitioner’s Handbook, Springer, Berlin, New York, 2000.

[180] S. H. O h, Improving the Error Backpropagation Algorithm with a Modified Error Function,

IEEE Trans. Neural Networks, Vol. 8 , No. 3, 1997, pp. 799-802.

[181] O. O l u r o t i m i , Recurrent Neural Network Training with Feedforward Complexity, IEEE

Trans. Neural Networks, Vol. 5, No. 2, 1994, pp. 185-197.

[182] T. O z a k i , Non-Linear Time Series Models for Non-Linear Random Vibrations, Journal of

Applied Probability, Vol. 17, 1980, pp. 84-93.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[183] T . O z a k i , The Statistical Analysis of Perturbed Limit Cycle Processes Using Non-Linear

Time Series Models, Journal of Time Series Analysis, Vol. 3, No. 1, 1982, pp. 29-40.

[184] R . P a r i s i , E. D. Di C l a u d i o , G. O r l a n d i , a n d B. D. R a o , A Generalized Learning

Paradigm Exploiting the Structure of Feedforward Neural Networks, IEEE Trans. Neural

Networks, Vol. 7, No. 6 , 1996, pp. 1450-1460.

[185] T . P a r i s i n i , a n d R. Z o p p o l i , Neural Networks for Feedback Feedforward Nonlinear Con­

trol Systems, IEEE Trans. Neural Networks, Vol. 5, No. 3, 1994, pp. 436-449.

[186] A. G . P a r l o s , K. T . C h o n g , a n d A. F . A t i y a , Application of the Recurrent Multilayer

Perceptron in Modeling Complex Process Dynamics, IEEE Trans. Neural Networks, Vol. 5,

No. 2, 1994, pp. 255-265.

[187] A. G. P a r l o s , B. F e r n a n d e z , A. F . A t i y a , J . M u t h u s a m i , a n d W . K. T s a i , An

Accelerated Learning Algorithm for Multilayer Perceptron Networks, IEEE Trans. Neural

Networks, Vol. 5, No. 3, 1994, pp. 493-497.

[188] A. G. P a r l o s , O. T . R a i s , a n d A. F. A t i y a , Multi-Step-Ahead Prediction Using Dy­

namic Recurrent Neural Networks, Neural Networks 13 (2000), pp. 765-786.

[189] S . J . P e r a n t o n i s , a n d P . J . G. L i s b o a , Translation, Rotation, and Scale-Invariant

Pattern Recognition by High-Order Neural Networks and Moment Classifiers, IEEE Trans.

Neural Networks, Vol. 3, No. 2, 1992, pp. 241-251.

[190] V. V. P h a n s a l k a r , a n d P . S . S a s t r y , Analysis of the Back-Propagation Algorithm with

Momentum, IEEE Trans. Neural Networks, Vol. 5, No. 3, 1994, pp. 505-506.

[191] D . S. P h a t a k , a n d I. K o r e n , Connectivity and Performance Tradeoffs in the Cascade

Correlation Learning Architecture, IEEE Trans. Neural Networks, Vol. 5, No. 6 , 1994, pp.

930-935.

[192] S. W . P i c h e , Steepest Descent Algorithms for Neural Network Controllers and Filters,

IEEE Trans. Neural Networks, Vol. 5, No. 2, 1994, pp. 198-212.

[193] E . P o l a k , Optimization - Algorithms and Consistent Approximations, Springer-Verlag,

New York 1997.

[194] C. P o p e s c u , a n d Y. S. W o n g , A Nonlinear Statistical Approach for Aeroelastic Response

Prediction, AIAA paper 2002-1281, Proceedings of the 43rd AIAA/ ASM E/ A SCE/ AHS/

ASC Structures, Structural Dynamics, and M aterials Conference, Denver, Colorado, Apr

22-25, 2002.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[195] G. V. P u s k o r i u s , a n d L. A. F e l d k a m p , Neurocontrol of Nonlinear Dynamical Systems

with Kalman Filter Trained Recurrent Networks, IEEE Trans. Neural Networks, Vol. 5, No.

2, 1994, pp. 279-297.

[196] S. Z. Q in, H. T . Su, a n d T . J . M c A v o y , Comparison of Four Neural Net Learning

Methods for Dynamic System Identification, IEEE Trans. Neural Networks, Vol. 3, No. 1,

1992, pp. 122-130.

[197] M. M. R ai, AND N. K. M a d a v a n , Aerodynamic Design Using Neural Networks, AIAA

Journal, Vol. 38, No. 1, 2000, pp. 173-182.

[198] V. R a m a m u r t i , a n d J. G h o s h , Structurally Adaptive Modular Networks for Nonstation-

ary Environments, IEEE Trans. Neural Networks, Vol. 10, No. 1, 1999, pp. 152-159.

[199] R. R e e d , R. J . M a r k s II, a n d S. O h, Similarities of Error Regularization, Sigmoid

Gain Scaling, Target Smoothing, and Training with Jitter, IEEE Trans. Neural Networks,

Vol. 6 , No. 3, 1995, pp. 152-159.

[200] K . R o h a n i , M. S. C h e n , a n d M. T . M a n r y , Neural Subnet Design by Direct Polynomial

Mapping, IEEE Trans. Neural Networks, Vol. 3, No. 6 , 1992, pp. 1024-1026.

[201] T . J . ROHLOFF, a n d I . C a t t o n , Fault Tolerance and Extrapolation Stability of a Neural

Network Air-Data Estimator, Journal of Aircraft, Vol. 36, No. 3, 1999, pp. 571-576.

[202] I. R o j a s , H. P o m a r e s , J. L. B e r n i e r , J. O r t e g a , B. P i n o , F. J . P e l a y o , A. P r i ­

e t o , Time Series Analysis Using Normalized PG-RBF Network With Regression Weights,

Neurocomputing, Vol. 42, 2002, pp. 267-285.

[203] Z. R o t h , a n d Y. B a r a m , Multidimensional Density Shaping by Sigmoids, IEEE Trans.

Neural Networks, Vol. 7, No. 5, 1996, pp. 1291-1298.

[204] C. W . R o w l e y , T . C o l o n i u s , a n d R. M. M u r r a y , Dynamical Models for Control of

Cavity Oscillations, AIAA Paper 2001-2126.

[205] P . R o y C h o w d h u r y , Y . P . S in g h , a n d R . A. C h a n s a r k a r , Dynamic Tunnelling Tech­

nique for Efficient Training of Multilayer Perceptrons, IEEE Trans. Neural Networks, Vol.

10, No. 1, 1999, pp. 48-55.

[206] A. Ruiz, D. H. O w e n s , a n d S. T o w n l e y , Existence, Learning, and Replication of

Periodic Motions in Recurrent Neural Networks, IEEE Trans. Neural Networks, Vol. 9, No.

4, 1998, pp. 651-661.

[207] E. W . S a a d , D. V. P r o k h o r o v , a n d D. C. W u n s c h , II, Comparative Study of Stock

Trend Prediction Using Time Delay, Recurrent and Probabilistic Neural Networks, IEEE

Trans. Neural Networks, Vol. 9, No. 6 , 1998, pp. 1456-1470.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[208] N. S a d e g h , A Perceptron Network for Functional Identification and Control of Nonlinear

Systems, IEEE Trans. Neural Networks, Vol. 4, No. 6 , 1993, pp. 982-988.

[209] M. S a l m e r q n , J . O r t e g a , C. G. P u n t o n e t , a n d A . P r i e t o , Improved R A N Sequen­

tial Prediction Using Orthogonal Techniques, Neurocomputing, 41, 2001, pp. 153-172.

[210] A . S a r a n l i , a n d B . B a y k a l , Complexity Reduction in Radial Basis Function (RBF)

Networks by Using Radial B-Spline Functions, Neurocomputing 18 (1998), pp. 183-194.

[211] P . S. S a s t r y , G. S a n t h a r a m , a n d K. P . U n n i k r i s h n a n , Memory Neuron Networks

for Identification and Control of Dynamical Systems, IEEE Trans. Neural Networks, Vol. 5,

No. 2, 1994, pp. 306-319.

[212] R. J . S c h i l l i n g , J . J . C a r r o l l , a n d A. F . A l - A j l o u n i , Approximation o f Nonlinear

Systems with Radial Basis Function Neural Networks, IEEE Trans. Neural Networks, Vol.

12, No. 1, 2001, pp. 1-15.

[213] R. C. S c o t t , a n d L. E . P a d o , Active Control of Wind-Tunnel Model Aeroelastic Re­

sponse Using Neural Networks, Journal of Guidance, Control, and Dynamics, Vol. 23, No.

6 , 2 0 0 0 , pp. 1100-1108.

[214] R . S e t io n o , a n d L. C . K . H u i, Use of a Quasi-Newton Method in a Feedforward Neural

Network Construction Algorithm, IEEE Trans. Neural Networks, Vol. 6 , No. 1, 1995, pp.

273-277.

[215] R. H. S h u m w a y , a n d D. S. S t o p f e r , Time Series Analysis and Its Applications,

Springer, New York, 2000.

[216] J . Si, a n d A. N. M i c h e l , Analysis and Synthesis o f a Class o f Discrete-Time Neural

Networks with Multilevel Threshold Neurons, IEEE Trans. Neural Networks, Vol. 6 , No. 1,

1995, pp. 105-116.

[217] D. S i m o n , Training Radial Basis Neural Networks with the Extended Kalman Filter, Neu­

rocomputing, Vol. 48, 2002, pp. 455-475.

[218] S. S o l t a n i , On the Use of the Wavelet Decomposition for Time Series Prediction, Neuro­

computing, 48, 2002, pp. 267-277.

[219] D. F . S p e c h t , A General Regression Neural Network, IEEE Trans. Neural Networks, Vol.

2, No. 6 , 1991, pp. 568-576.

[220] B. S r i n i v a s a n , U. R. P r a s a d , a n d N. J . R a o , Back Propagation Through Adjoints

for the Identification of Nonlinear Dynamic Systems Using Recurrent Neural Models, IEEE

Trans. Neural Networks, Vol. 5, No. 2, 1994, pp. 213-227.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[221] D. S e i n i v a s a n , Evolving Artificial Neural Networks for Short-Term Load Forecasting, Neu­

rocomputing, Vol. 23, 1998, pp. 265-276.

[222] T . W . S t r g a n a c , J . Ko, D. E. T h o m p s o n , a n d A. J . K u r d i l a , Identification and

Control of Lim it Cycle Oscillations in Aeroelastic Systems, Journal of Guidance, Control,

and Dynamics, Vol. 23, No. 6 , 2000, pp. 1127-1133.

[223] J . Sum , C. S. L e u n g , G . H. Y o u n g , a n d W . K . K a n , On the Kalman Filtering

Method in Neural Network Training and Pruning, IEEE Trans. Neural Networks, Vol. 10,

No. 1, 1999, pp. 161-166.

[224] F . T a k e n s , Detecting Strange Attractors in Turbulence, in: Dynamical Systems and Tur­

bulence - Warwick 1980, Lecture Notes in M athematics 898, Springer-Verlag, 1981, pp.

366-381.

[225] Y . T a n , J . W a n g , a n d J . M. Z u r a d a , Nonlinear Blind Source Separation Using a Radial

Basis Function Network, IEEE Trans. Neural Networks, Vol. 12, No. 1, 2001, pp. 124-134.

[226] K. T a n a k a , A n Approach to Stability Criteria of Neural-Network Control Systems, IEEE

Trans. Neural Networks, Vol. 7, No. 3, 1996, pp. 629-642.

[227] C. C. T e n g , a n d B. W . W a h , Automated Learning for Reducing the Configuration of

a Feedforward Neural Network, IEEE Trans. Neural Networks, Vol. 7, No. 5, 1996, pp.

1072-1085.

[228] G . C. T ia o a n d D. X u , Robustness of Maximum Likelihood Estimates fo r Multi-Step

Predictions: The Exponential Smoothing Case, Biometrika, Vol. 80, No. 3, 1993, pp. 623-

641.

[229] M. T o r i i , a n d M. T . H a g a n , Stability of Steepest Descent with M omentum for Quadratic

Functions, IEEE Trans. Neural Networks, Vol. 13, No. 3, 2002, pp. 752-756.

[230] E . T r e n t i n , Networks with Trainable Amplitude o f Activation Functions, Neural Networks,

Vol. 14, 2001, pp. 471-493.

[231] C. T s i t o u r a s , Neural Networks with Multidimensional Transfer Functions, IEEE Trans.

Neural Networks, Vol. 13, No. 1, 2002, pp. 222-228.

[232] A. C. Tsoi, a n d A. D. B a c k , Locally Recurrent Globally Feedforward Networks: A

Critical Review o f Architectures, IEEE Trans. Neural Networks, Vol. 5, No. 2, 1994, pp.

229-239.

[233] M. T s u j i t a n i , a n d T. K o s h i m i z u , Neural Discriminant Analysis, IEEE Trans. Neural

Networks, Vol. 11, No. 6 , 2000, pp. 1394-1400.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[234] C. T u r c h e t t i , M. C o n t i , P . C r i p p a , a n d S. O r c i o n i , On The Approximation of

Stochastic Processes by Approximate Identity Neural Networks, IEEE Trans. Neural Net­

works, Vol. 9, No. 6 , 1998, pp. 1069-1084.

[235] N. U e d a , a n d E. N a k a n o , Deterministic Annealing E M Algorithm, Neural Networks,

Vol. 11, 1998, pp. 271-282.

[236] L. VECCI, F . P i a z z a , a n d A. U n c i n i , Learning and Approximation Capabilities of Adap­

tive Spline Activation Function Neural Networks, Neural Networks, Vol. 11 (1998), pp. 259-

270.

[237] B. V e r m A, Fast Training of Multilayer Perceptrons, IEEE Trans. Neural Networks, Vol.

8 , No. 6 , 1997, pp. 1314-1320.

[238] O. V o i t c u , AND Y. S. W o n g , A Neural Network Approach for Nonlinear Aeroelastic

Analysis, AIAA paper 2002-1286, Proceedings of the 43rd AIA A/ ASM E/ ASCE/ AHS/

ASC Structures, Structural Dynamics, and Materials Conference, Denver, Colorado, Apr

22-25, 2002.

[239] O. V o i t c u , a n d Y. S. W o n g , Neural Network Approach fo r Nonlinear Aeroelastic Anal­

ysis, Journal of Guidance, Control and Dynamics, Vol. 26, No. 1, 2003, pp. 99-106.

[240] O . V o i t c u , a n d Y . S. WONG, A n Improved Neural Network Model fo r Nonlinear Aeroe­

lastic Analysis, AIAA paper 2003-1493, Proceedings of the 44th AIAA/ ASM E/ ASCE/

AHS Structures, S tructural Dynamics, and Materials Conference, Norfolk, Virginia, Apr

7-10, 2003.

[241] O . V o i t c u , a n d Y . S. WONG, Robust Feature Extraction Maximization by Neural N et­

works for Long-Term Prediction, subm itted to: N eurocom puting, 2004.

[242] O. V o i t c u , a n d Y. S. W o n g , On the Construction o f a Nonlinear Recursive Predictor,

subm itted to: Journal of Computational and Applied M athematics, 2004.

[243] A. W a i b e l , T. H a n a z a w a , G. H i n t o n , K. S h i k a n o , a n d K. J . L a n g , Phoneme

Recognition Using Time-Delay Neural Networks, IEEE Trans. Acoustic, Speech and Signal

Processing, Vol. 37, No. 3, 1989, pp. 328-339.

[244] H. W a k u y a , a n d J . M. Z u r a d a , Bi-Directional Computing Architecture fo r Time Series

Prediction, Neural Networks, Vol. 14, 2001, pp. 1307-1321.

[245] E. A. W a n , Temporal Backpropagation: A n Efficient Algorithm for Finite Impulse Re­

sponse Neural Networks.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[246] E . A . W an , Time Series Prediction by Using a Connectionist Network with Internal Delay

Lines, in: Time Series Prediction: Forecasting the Future and Understanding the Past,

eds. A. S. Weigend and N. A. Gershfeld, Santa Fe Institute for Studies in the Sciences of

Complexity, Proc. Vol. XV, Addison-Wesley, 1993.

[247] C. W a n g , a n d J. P r in c ip e , Training Neural Networks with Additive Noise in the Desired

Signal, IEEE Trans. Neural Networks, Vol. 10, No. 6 , 1999, pp. 1511-1516.

[248] D. L. W a n g , a n d B. Y u w o n o , Incremental Learning o f Complex Temporal Patterns,

IEEE Trans. Neural Networks, Vol. 7, No. 6 , 1996, pp. 1465-1481.

[249] G. J . W a n g , a n d C. C. C h en , A Fast Multilayer Neural-Network Training Algorithm

Based on the Layer-By-Layer Optimizing Procedures, IEEE Trans. Neural Networks, Vol. 7,

No. 3, 1996, pp. 768-775.

[250] L. W a n g , Discrete-Time Convergence Theory and Updating Rules for Neural Networks

with Energy Functions, IEEE Trans. Neural Networks, Vol. 8 , No. 2, 1997, pp. 445-447.

[251] Y. J . W a n g , a n d C. T . Lin, Runge-Kutta Neural Network for Identification of Dynamical

Systems in High Accuracy, IEEE Trans. Neural Networks, Vol. 9, No. 2, 1998, pp. 294-307.

[252] S. W e a v e r , L. B a ir d , a n d M . P o ly c a r p o u , Using Localizing Learning to Improve

Supervised Learning Algorithms, IEEE Trans. Neural Networks, Vol. 12, No. 5, 2001, pp.

1037-1045.

[253] A. R . W eb b , Functional Approximation by Feed-Forward Networks: A Least-Squares A p­

proach to Generalization, IEEE Trans. Neural Networks, Vol. 5, No. 3, 1994, pp. 363-371.

[254] D. M . W e b e r , a n d D. P . C a s a s e n t , The Extended Piecewise Quadratic Neural Network,

Neural Networks, Vol. 11, 1998, pp. 837-850.

[255] A. S. W e ig e n d , B. A. H u b e rm a n , D. E. R u m e lh a r t , Predicting the Future: A Connec­

tionist Approach, International Journal of Neural Systems, Vol. 1, No. 3 (1990), pp. 193-209.

[256] N. W e y m a e r e , a n d J . P . M a r t e n s , On the Initialization and Optimization of Multilayer

Perceptrons, IEEE Trans. Neural Networks, Vol. 5, No. 5, 1994, pp. 738-751.

[257] Y. S. W o n g , B. H. K. L e e , a n d T . K. S. W o n g , Parameter Extraction by Parallel

Neural Networks, Intelligent D ata Analysis, No. 5, 2001, pp.59-71.

[258] Y. S. W o n g , C. P o p e s c u , a n d O. V o it c u , Nonlinear Dynamic Prediction and Feature

Extraction, Proceedings of the 48th Annual Conference of Canadian Aeronautics and Space

Institute, Toronto, 2001, pp. 97-106.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[259] Y . S. W o n g , O . V o i t c u , a n d C. P o p e s c u , A n Expert Data Mining System for Flutter

Boundary Prediction, Proceedings of the 23th Congress of the International Council for

Aeronautical Sciences (ICAS), Toronto, Sep 8-13, 2002.

[260] Y . S. W o n g , O. V o i t c u , a n d C. P o p e s c u , Data Mining Approach for Nonlinear Dy­

namic Predictions, Proceedings of the Third International Workshop on Scientific Comput­

ing and Applications, City University of Hong Kong, Jan 6-9, 2003.

[261] J . Y. F . Y a m , a n d T. W . S. Chow , Extended Least Squares Based Algorithm for Training

Feedforward Networks, IEEE Trans. Neural Networks, Vol. 8 , No. 3, 1997, pp. 806-810.

[262] Y . Y a m a m o t o , a n d P . N. N i k i f o r u k , A New Supervised Learning Algorithm for Multi­

layered and Interconnected Neural Networks, IEEE Trans. Neural Networks, Vol. 11, No. 1,

2000, pp. 36-46.

[263] S . M . Y a n g , a n d G . S . L e e , Structural Damage Identification Using Pole/Zero Dynamics

in Neural Networks, AIAA Journal, Vol. 39, No. 9, 2001, pp. 1805-1807.

[264] J . Y ao , a n d C. L. T a n , A Case Study on Using Neural Networks to Perform Technical

Forecasting o f Forex, Neurocomputing 34 (2000), pp. 79-98.

[265] X. H. Y u, G. A. C h e n , a n d S. X. C h e n g , Dynamic Learning Rate Optimization of the

Backpropagation Algorithm, IEEE Trans. Neural Networks, Vol. 6 , No. 3, 1995, pp. 669-677.

[266] J . M. Z a m a r r e n o , a n d P . V e g a , State Space Neural Network: Properties and Applica­

tion, Neural Networks, Vol. 11, 1998, pp. 1099-1112.

[267] J . Z a r z y c k i , Orthogonal Ladder-Form Representations o f Nonlinear Prediction Filters of

the Volterra- Wiener Class, Theory and Applications of Nonlinear Control Systems, C. I.

Byrnes and A. Lindquist (editors), Elsevier Science Publishers B. V. (North-Holland), 1986,

pp.421-435.

[268] P . Z e g e r s , a n d M. K. S u n d a r e s h a n , Trajectory Generation and Modulation Using

Dynamic Neural Networks, IEEE Trans. Neural Networks, Vol. 14, No. 3, 2003, pp. 520-533.

[269] G. P . Z h a n g , Time Series Forecasting Using a Hybrid A R IM A and Neural Network Model,

Neurocomputing 50 (2003), pp. 159-175.

[270] M. Z h a n g , S. X u, AND J . F u l c h e r , Neuron-Adaptive Higher-Order Neural Network

Models fo r Automated Financial Data Modeling, IEEE Trans. Neural Networks, Vol. 13, No.

1, 2002, pp. 188-204.

[271] S. Z h a n g , X. Z h u , a n d L. H. Z o u , Second-Order Neural Nets for Constrained Opti­

mization, IEEE Trans. Neural Networks, Vol. 3, No. 6 , 1992, pp. 1021-1024.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[272] G. Z h o u , a n d J . Si, Advanced Neural-Network Training Algorithm with Reduced Com­

plexity Based on Jacobian Deficiency, IEEE Trans. Neural Networks, Vol. 9, No. 3, 1998,

pp. 448-453.

[273] Verification and Validation Data for Computational Unsteady Aerodynamics, North At­

lantic Treaty Organization Research and Technology Organization, NATO-RTO-TR26, Oc­

tober 2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

