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Chapter 1

Introduction

1.1 Prediction of Nonlinear Oscillations

A wide variety of physical and economical phenomena can be modeled by nonlinear dynamical 

systems1. Understanding nonlinear dynamics is im portant for predicting and controlling these 

complex phenomena. A particularly interesting feature associated with nonlinear dynamics is 

the occurrence of nonlinear oscillations. A stable oscillation may become a limit cycle oscillation 

due to  the change in system parameters. Furthermore, a limit cycle oscillation may lead to  an 

unstable oscillation in a later stage, and this may cause instability in the corresponding physical 

system.

The study of nonlinear oscillations is im portant in nonlinear aeroelasticity [140], which is a 

research field with great impact on aircraft safety. Aeroelasticity studies the mutual interaction 

among inertial, elastic and aerodynamic forces. Aeroelastic phenomena occur in physical systems 

such as suspension bridges, aircraft wings, etc. The complex aeroelastic response is governed by 

a nonlinear dynamical system. The nonlinearities in the system can be due to the structural or 

aerodynamic forces. One of the most im portant aspects in nonlinear aeroelasticity is to detect 

limit cycle oscillations. These are sustained periodic oscillations with constant amplitude over 

time for a given flight condition. It should be noted th a t limit cycle oscillations are undesirable 

since they can cause structural fatigue and pilot fatigue. Predicting the onset, amplitude and 

frequency of limit cycle oscillations (LCO) is an active research topic currently under develop­

ment [55, 57], An excellent review on nonlinear aeroelasticity can be found in [140]. Another 

related topic is the prediction of oscillations in nonlinear flight dynamics. When information 

on possibly unstable oscillations is provided to the pilot, certain controls may be activated in 

order to  ensure a safe cruising performance. It is clear th a t the ability to  accurately predict and

1Versions of som e of th e  discussions in  th is  chap ter have been published in [238, 239, 240, 241] or su b m itted  

for pub lication  in [241].

1
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identify the occurrence of nonlinear oscillations is of crucial importance in many scientific and 

engineering applications. Considerable efforts have been devoted to develop reliable methods for 

such predictions.

In the investigation of nonlinear aeroelastic behaviours, mathematical and computational 

techniques are frequently used. The describing function technique, the center manifold theory, 

and more recently the point transformation method have been successfully applied to  predict limit 

cycle oscillations and other nonlinear responses of an aeroelastic system with structural nonlinear­

ities. Numerical techniques based on the Houbolt finite-difference scheme and the Runge-K utta 

time-integration procedure are also commonly used to  study the nonlinear motions affected by 

structural nonlinearities [140, 151].

In these conventional approaches, a mathem atical model is first constructed, and the behavior 

of the system under certain operating conditions is then predicted analytically or numerically as 

a solution in the form of a trajectory of a nonlinear dynamical system [140, 151]. In general, the 

m athematical model is represented as a set of partial differential and integral equations, and, 

in order for the model to be useful, the system parameters have to be given. If there are some 

uncertainties in developing the associated model or if some of the system parameters are not 

known, this approach will be impossible to implement. Many models are too complex to be 

solved analytically, therefore solving them  numerically by computer implementation may be the 

only option. When modelling complex phenomena, computer simulations may take many days 

until a solution is determined, and the numerical algorithms used may not be robust due to  errors 

in measurement or in estimation of the system parameters. In addition, numerical results can 

be incorrect if the algorithm fails to  capture im portant features of the physical process modeled 

[151]. Moreover, in some applications, such as the ground vibration test or the actual flight test 

of an aircraft, only the dynamic response due to  a given excitation is available. For such practical 

problems, the recorded nonlinear behaviors are noisy, non-stationary and have high dimensional 

dynamics. Hence, it is necessary to develop a prediction technique based only on the known 

response data  rather than mathematically modelling the underlying physical phenomenon. The­

oretical results suggest that, in principle, the positive limit set of a multidimensional trajectory 

can be reconstructed even by only using information about its projection on one of its dimensions 

[224].

In the present study, we propose to analyze the system dynamics based on the response data  

instead of using mathematical modelling and numerical simulations. The proposed data  mining 

approach is based on a modern signal processing technique utilizing the power of artificial neural 

networks (ANNs). The objective of our work is to predict the long-term behaviour, in particular 

the asymptotic state, of a discrete-time nonlinear trajectory — which is usually one of the 

components of a trajectory of a multidimensional dynamical system — based on the information 

of a limited segment of its transient state. This amounts to predicting a set of future consecutive 

observations th a t is several times the size of the known data  set. The ability to predict the
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asym ptotic response based on the limited information of a given initial dynamics, such as data 

obtained from experiments, flight test or numerical simulation, could be im portant in practical 

applications.

The proposed approach begins with modelling the known data set in terms of a nonlinear 

mapping tha t describes the dependence of each data point (observation) in the time series 

on a finite number of past consecutive observations. In other words, the time evolution up to 

the present moment of the quantity th a t is of interest to us is modeled in terms of an input- 

output relationship. An estimate of the first unknown data point can then be provided in 

terms of known past consecutive observations, using the mapping <f>, a process referred to  as 

a one-step prediction (OSP). If this estimate is further employed in $  in order to generate 

an estim ate for the next unknown d ata  point, and so on, then we are dealing with a multi- 

step prediction (MSP) process. In our study, the predicted data set is considerably larger tha t 

the training set. Since predicted values — as opposed to actual observations —  are applied 

repeatedly into the mapping $  in order to  generate the subsequent predictions, the main difficulty 

when performing a long-term MSP (LTMSP) is the step-by-step propagation of prediction errors 

[238, 239, 240, 259, 260], In implementing this method, no knowledge is required about the nature 

or the intimate mechanisms of the phenomenon being investigated. It has been theoretically 

proven th a t the asymptotic dynamics of a trajectory of a finite-dimensional nonlinear dynamical 

system can always be reconstructed based on only one of its components, if the number of inputs 

of the mapping is chosen to be sufficiently large [224].

In our study, $  is chosen to be the mapping th a t expresses the output of an artificial neural 

network (ANN) in terms of its inputs. ANNs are information processing systems th a t originated 

from an alternative approach to problem solving, the so-called connectionist approach.

1.2 Connectionism Versus Symbolism

Human beings tend to  capture the knowledge about the real world into a set of discrete semantic 

objects, or symbols, which they manipulate according to  a set of formal rules. W hen confronted 

with a real-life problem, our usual approach is to translate the problem into a set of concepts 

connected in a certain manner, and then to formalize the path leading to the solution in terms 

of an algorithm, a well defined recipe made of chronologically ordered operations th a t have to  be 

performed in order to obtain the desired result [85]. W hen solving certain problems th a t arise in 

science and engineering, it is common to translate this algorithm into a computer program. The 

exact series of steps to be performed has to be provided in advance to  the computer, and the 

data has to be in a precise, non-noisy format. Moreover, there is a clear correspondence between 

the semantic objects and the machine hardware, in the sense th a t each object can be located in 

a memory cell. Therefore, if a few memory locations are destroyed, the algorithm will crash [85].

It has been noticed th a t certain tasks, such as recognizing handwritten characters or a person’s
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face, cannot be formalized in the above symbolic-algorithmic manner, perhaps because intuitive 

knowledge cannot be captured in a set of discrete concepts which obey certain rules of grammar. 

Therefore, an alternative approach is necessary in order to solve these problems. The recently 

introduced connectionist approach is based on the idea th a t the functioning of the brain can 

be viewed as the result of parallel and distributed information processing performed by many 

interconnected simple subsystems — the neurons [85]. Hence the idea of creating information 

processing systems th a t mimic some of the architectural features of the brain in the attem pt 

to achieve some of its processing capabilities [61, 85, 86, 163]. These are the so-called artificial 

neural networks (ANNs).

An ANN consists of interconnected simple processing elements, called artificial neurons, each 

of which receives several real numbers as inputs and computes a single output. The output is 

determined by a nonlinear function (transfer function) of a weighted sum of the inputs. The 

strength of an ANN is provided by the arrangement of neurons and the manner in which they 

are interconnected (the network architecture). The neurons are usually arranged in successive 

layers [multi-layer feed-forward, (MLFF) architecture), such th a t the outputs of all neurons in 

one layer are provided as inputs to  each neuron of the next layer. The inputs to  all neurons in 

the first layer form the network input, while the outputs of all neurons in the last layer form the 

network output. The last layer of neurons is called the output layer, while all the other layer 

are generally referred to  as hidden layers. The ANN output depends on the network inputs as 

well as the inter-neuron connection strengths, or weights. They can be determined by a process 

of learning (or training) from a set of examples of correct network outputs to  given inputs (the 

training set). The most common type of ANN training involves minimizing the mean-square 

ANN output error over the training set using a nonlinear optimization procedure [86], Once 

trained, the ANNs are capable of generalizing, th a t is, they can provide correct network outputs 

for network inputs never experimented before. Neural networks are robust in the presence of 

noise and hardware degradation [85]. Small changes in the ANN input or in a weight will not 

dramatically affect a neuron’s output. Moreover, in an ANN there is no simple correspondence 

between neurons and semantic objects. Rather, the information corresponding to  a semantic 

object is distributed throughout the network. I t has been said, therefore, tha t ANNs “operate 

at a sub-symbolic level” [85].

Our choice of the mapping <f> is motivated by the proven fact that, in principle, any nonlinear 

function can be approximated with any desired accuracy by the output of a two-layer feed­

forward ANN with a sigmoidal transfer function in the first layer (a 2LFF1SNN) and a linear 

transfer function in the second layer (a 2LFF1S2LNN), provided th a t sufficiently many neurons 

are available in the network’s hidden layer [31, 32, 33, 34, 53, 75, 77, 76, 96, 97, 105]. A sigmoidal 

function  is generally defined as a bounded function tha t has horizontal asymptotes at both  —oo 

and +oo, with the left-hand asymptote being lower than the right-hand asymptote. The universal 

approximation property still holds for 2LFFlSNNs with continuous and monotone sigmoidal
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transfer function in the output layer (2LFPlS2SNNs) [27],

1.3 Applications of Neural Networks

The universal approximation property of ANNs basically states th a t a neural network can ac­

curately interpolate any nonlinear function based on a set of known values of the function. 

Therefore the most common applications of ANNs comprise nonlinear function approximation 

based on samples [29, 35, 40, 42, 64, 70, 82, 87, 99, 103, 117, 152, 162, 187, 223, 236, 261]. 

Moreover, ANNs are capable of approximating nonlinear mappings of complicated form arising 

in real-life situations and which cannot be determined analytically, such as the variation of the 

blood pressure of a patient as a function of his heart rate and his corporal acceleration [98], the 

chemical oxygen demand in a certain area (used as an index of water pollution) as a function 

of water tem perature, transparency, and dissolved oxygen concentration [115], etc. ANNs have 

been used for identification of parameters in aerodynamic models [149], as well as in a radar point 

source location problem to determine the position of a source in the scene given the outputs, 

possibly corrupted by noise, of the array of receivers [253].

A particular type of function interpolation is the so-called pattern classification problem 

[4, 6, 13, 64, 114, 191, 254], In th a t case, the network input is an encoding of the object to be 

classified, and the single ANN output represents the class to  which the input pattern  belongs. 

ANNs have been used for classification of nonlinear trajectories [102], mushrooms classification 

into edible and poisonous based on 22 features [127], classification of Iris flowers into three 

categories (subspecies) based on four or seven features [72, 217], diagnosis of heart diseases based 

on analysis of the electrocardiographic signal [54, 62], diabetes diagnosis (positive/negative) [59, 

104, 227], breast cancer diagnosis (benign/malignant lumps) based on nine cytological features 

of the breast lump [54, 104, 136, 214], spike detection in epileptic electroencephalographic signals 

[59], discrimination between mines and rocks in sonar images [237], etc.

A benchmark pattern  classification for ANNs is the well-known X O R  problem, whose difficulty 

lies in the fact th a t there is no contiguity relationship between samples in the same class [5, 11, 

12, 18, 54, 82, 120, 141, 184, 249]. The parity problem is an extension of the XOR problem, in 

which the ANN input is a string of 0’s and l ’s and the output is 1 if the input contains an odd 

number of l ’s and 0 otherwise [26, 54, 58, 83, 108, 157, 205, 214, 247, 252, 262, 265], In the 

two spirals problem, the task is to correctly classify two sets of training points th a t lie on two 

distinct spirals which twist three times around the origin and around each other in the plane 

[45, 134, 227, 256, 265],

An application of ANNs in experimental high-energy physics consists in discriminating be­

tween patterns of collision in the large electron-positron collider into two classes: ’background 

noise’ or ’potentially relevant event’ [12]. ANNs have also been used for prediction of developing 

a postoperative spinal deformity called kyphosis, based on the age of the child, the number of
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vertebrae involved in the spinal operation, and the beginning of the range of the vertebrae in­

volved in the  operation [233]. In economics applications, ANNs were proposed to detect target 

companies of the Securities and Exchange Committee’s investigation of fraudulent financial re­

porting [135] or to  predict the failure or survival of a set of credit unions based on five financial 

variables [134],

Many pattern  classification applications can be formulated as pattern recognition problems. 

ANNs have successfully recognized typed numerical digits [120, 145, 262] and letters [58, 104, 106, 

116,171,184, 205, 237], as well as handwritten numerical digits [60, 106, 180, 189] and characters 

[145, 236]. This type of application is also referred to  as character encoding. Neural networks have 

also been used in different speech recognition applications [137], such as recognition of a spoken 

vowel [237], word [127], or speaker identification [247]. Other applications include recognition of 

faulty LED-display digits [127] or of promoters in DNA nucleotide strings [72], encoders, adders, 

multiplexers, demultiplexers [54, 184, 205], etc.

ANNs have recently been used in aerospace industry applications, such as damage detection 

[263], aerodynamic design [197], estimation of air-data parameters [201], detection of airframe ice 

based on the dynamic response of the aircraft to known elevator inputs [111], estimation of the 

strain on the vertical tail structure as a function of the lateral and normal acceleration measured 

on several points on the empennage during various flight maneuvers [121], etc.

Automatic control devices are widely used in various machines, ranging from household appli­

ances to space shuttles. The goal is to manipulate a system so th a t it behaves in a desired fashion. 

When designing a controller, an im portant preliminary step is to understand how the system will 

respond to various stimuli. A m athematical model of the system has to  be constructed. This can 

be achieved either in a deductive manner, by studying in detail the physical process involved, or 

can be inferred from a set of input-output data  collected during a practical experiment with the 

given system. The second approach is referred to  as system identification [179].

Neural networks have been widely used in various nonlinear system identification applications 

[3, 7, 28, 40, 175, 181, 251]. The typical setting is th a t of a discrete-time system [46, 155, 186, 

196, 220, 249], given the fact th a t measurement of the inputs and outputs can only be taken 

a t discrete time moments. ANNs may succeed where mainstream methods fail, especially in 

the case of the so-called arbitrarily nonlinear systems [210], which do not have a finite-order 

polynomial expansion. Therefore it is very difficult, if not impossible, to identify them using 

nonlinear models based on finite-order polynomial expansions, such as the truncated Volterra 

series [52, 67,132, 169, 267]. Neural nets have been used for approximation of stochastic processes 

[234], for modelling the dynamics of a hydraulically controlled robot arm [93] or of processes in 

a chemical reactor [266], such as distillation [272], etc.

Sometimes system identification is implemented as a component of the controller. This type 

of applications is known as adaptive control [143, 144, 172, 173, 174], and is typically designed 

for systems whose dynamics varies with time. By using the universal approximation capability,
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the adaptive controller based on ANNs can be designed without explicit knowledge of the sys­

tem dynamics [1, 70, 129, 195, 208, 219, 226], Applications of ANNs include nonlinear system 

identification and adaptive control of mathematically simulated plants [150, 211], of anesthe­

sia and muscle relaxation [15], of processes inside a bioreactor [195], of a boat [192], and of a 

truck-and-trailer backup system [12],

ANNs have recently been applied in flight control problems [69, 139, 146], Applications 

in helicopter stabilization [65], adaptive control of antiair missiles [165], and active control of 

aeroelastic response [16, 213] have been reported. The latter has the purpose of designing flutter 

suppression control laws. A variation of adaptive control is adaptive filtering, which is concerned 

with reducing the additive noise from a corrupted signal [153, 192], Simulation results show th a t 

the neural filters with only a few hidden neurons consistently outperform the extended Kalman 

filter for the simple nonlinear signals being investigated in [153].

The time series prediction capabilities of ANNs have been investigated by many researchers. 

In most applications, the dependence of each data point x t+i of a nonlinear time series on a finite 

number of past consecutive observations x t , x t~ i, ■ ■ Xt -no+i is modeled using a mapping <f>w 

given by the output of a neural network. This mapping is then used to  estimate unknown obser­

vations, taking only known data points as inputs. This process is known as one-step prediction 

(OSP).

Various benchmark nonlinear time series have been used to investigate the OSP capabilities 

of neural nets. The sunspots data set represents the time series of the average sunspot numbers 

recorded every year since 1770 [9, 25, 51, 141, 177, 218, 255, 261, 269]. The Canadian Lynx time 

series is a record of the annual fur returns at auction in London by the Hudson Bay Company 

between 1821 and 1934 [269]. OSP of Brownian motion [107] and other mathematically generated 

nonlinear time series [7, 14, 47, 167], especially chaotic time series [44, 45, 177], has also been 

performed using ANNs. Of particular interest are OSP applications for the Mackey-Glass time 

series [9, 38, 41, 62, 66, 94, 162, 166, 198, 209, 218, 261], for the Henon map [9, 41, 131], and for 

the Lorenz-type time series [9, 66, 166, 202].

Economics applications include OSP of different financial time series [270], such as the raw 

trading volume on the New York Stock Exchange [138], the Dow Jones Industrial Average [138, 

177], the Korean stock m arket index [122], the stock trend for m ajor companies [117, 207], the 

foreign currency exchange rate [25, 36, 264, 269], and the unemployment rate [90],

In meteorology, ANNs have been used for OSP of the tem perature distributions in various 

locations around the world [74], the volume of rainfall in a certain region [115], different features 

of solar activity [48], and the El Nino southern oscillation phenomenon, i.e., the sea surface 

tem perature anomaly, the zonal pseudo wind stress anomaly, and the meridional pseudo wind 

stress anomaly [156].

An im portant application of ANNs is in short-term, load forecasting (STLF) [41, 47, 51, 119, 

221], which deals with predicting electric loads (or, in other words, electric power demands)
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for a period of hours, days, or weeks, in order to  adapt energy generation to energy demand. 

STLF plays a significant role in the real-time control and the security functions of an energy 

management system. Forecast error in load predictions results in increased operation costs.

Other OSP applications involve speech signals [10, 91, 159, 160, 158, 232], building electricity 

and water usage in an institutional building [25], measurements from a Laser system [25, 177], 

the external sound level of an autom atic transmission system with application in fault detection 

[2], etc.

When forecasting observations further away in the future is necesary, a multi-step-ahead 

prediction (M SAP) process is used in most applications. In a MSAP process, the data  point x t+d, 

situated d steps ahead in the future, is predicted directly based on a finite number of present and 

past consecutive observations x t , £ t - i ,  • • x t-n 0+i> using a mapping $ w given by the output 

of a neural network. An MSAP process can only be used for short-term time series prediction. 

As the lag d increases, the dependence of x t+d on the present and past consecutive observations 

becomes more complex, and thus more difficult to  model based on the limited available data  set.

ANNs have been used to perform MSAP for various mathematically generated nonlinear time 

series [188, 272], such as the Mackey-Glass time series [19, 38, 115, 122, 166, 202], the Lorentz 

time series [166], etc. MSAP of a nonlinear time series th a t models a steam generator (widely 

encountered in nuclear power plants) [188] has also been reported. Short-term MSAP of the 

traffic volume has been performed, with applications in traffic flow control [123],

ANNs have been applied for MSAP of the sunspot time series [78, 203, 244] and the Nile 

flow level (cubic metres/day) [8], The latter is one of the longest recorded time series of a 

natural phenomenon. It has been noted th a t preprocessing such as differencing the output 

(which accentuates the noise), subtracting the seasonal average, or taking the discrete Fourier 

series, could lead to  worse results than  the basic method with no preprocessing [8].

In a so-called multi-step prediction (MSP) process, the data  point xt+d is predicted based on 

a finite number of present and past consecutive observations, in a sequence of d steps. A mapping 

$ w, given by the output of an ANN, first provides an estimate (prediction) x t+i of the unknown 

data point x t+i, taking as inputs the known values x t , x t - i ,  . . . ,  x t—n0+i- The values x t+1 , x t: 

Xt~i,  • • x t-n 0+ 2  are then used as inputs in <i?w in order to generate a prediction &t+ 2  f°r x t+2 -

By repeating the process d times, an estimate Xt+d of x t+d is eventually computed.

The reported MSP applications of ANNs are very few, and are only concerned with short­

term  prediction of time series. Short-term MSP of the Nile flow level [8], the sunspots time series 

[255], and of chaotic time series [44], such as the Mackey-Glass [62, 166] or Lorentz time series 

[166], has been reported. However, we have no knowledge of any long-term MSP application of 

ANNs so far.

Nonlinear dynamical systems applications of ANNs for small-scale problems have also been 

reported. ANNs have been used for learning continuous-time oscillatory trajectories [178, 206], 

or in the trajectory generation problem (designing a dynamical system whose terminal behavior
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emulates a prespecified spatio-temporal pattern independently of its initial conditions) [268] or 

trajectory modulation problem (designing systems th a t control the trajectory generation process 

by means of external inputs) [268]. Various other uses of ANNs in solving practical problems 

include image processing applications [118, 216], such as image filtering and segmentation [162], 

binary image storage [109], grammatical inference [63, 147,148, 248], approximately solving linear 

systems of algebraic equations in real time [43], etc.

1.4 Original Contributions

The research presented in this study is an interdisciplinary one, and it covers several m ajor fields 

such as mathematics, statistics, computing science and engineering. Our problem focuses on 

the LTMSP of nonlinear time series. The field of nonlinear time series analysis is still a poorly 

developed research field, most of the work having been done since the 1980’s [68]. The general 

field of time series analysis has been dealing mainly with linear models, which are now well 

understood [215]. For nonlinear models, however, theoretical analysis is difficult, hence their 

understanding is in general incomplete. In addition, time series forecasting mainly deals with 

OSP, due to the theoretical tractability of this process. To predict da ta  points further in the 

future, MSAP is usually the method of choice. Though still theoretically tractable, this method 

requires a much more complicated analysis [30, 84, 95, 113, 176, 228], and the results obtained 

are not suitable for practical use if longer-term prediction is required. The so-called one step 

plug-in method, or MSP (in our nomenclature), is considered to  be undesirable, due to  the step- 

by-step error propagation and to the difficulty of performing any theoretical analysis. Therefore 

long-term prediction of nonlinear time series has not been well studied.

The field of ANNs is very new, most of the work having been done since 1990. The over­

whelming m ajority of ANN applications are dealing with nonlinear function approximation, pat­

tern classification, and OSP of time series. The common feature of these applications is tha t 

they can be formulated as interpolation problems. Namely, an ANN is used to approximate 

a nonlinear function on a certain domain by generalizing from a set of function values. Most 

of the theoretical analysis of ANN behavior and most of the tools in the ANN field have been 

designed for interpolative applications. Very few authors have attem pted to  perform MSP using 

ANNs, and most published results are limited to  short-term  prediction. Long-term MSP cannot 

be formulated as an interpolation problem, and new tools are needed in order to approach this 

problem. Redundancy in the ANN param eters is much more im portant in this new context, 

and the additional problems of insufficient training data  and recursive error propagation make 

LTMSP a very difficult task. To the best of our knowledge, our work is one of the first extensive 

investigations in this new research direction.

The idea of using ANNs to forecast the asymptotic behavior of nonlinear dynamics is quite 

new. To predict the frequency and amplitude of the LCO of an aircraft wing, Denegri and
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Johnson (2001) [57] trained a three-layer ANN to output these two values when given the Mach 

number of the desired flight condition, and the values of some parameters resulted from the 

linear flutter analysis [55, 56]. Our method (whose development started  in 1999) uses a different 

approach, namely training an ANN based on the known transient data  set and subsequently 

using the neural network to reconstruct the asymptotic state by a MSP process. Our approach 

to LTMSP using ANNs has been successful for a certain class of problems. We have designed 

several novel ANN architectures, with features th a t control the error propagation in the MSP 

process, which have proven to be capable of providing accurate predictions of nonlinear oscillatory 

motions arising in aeroelasticity [238, 239, 240, 259, 260],

The practical implementation of ANNs for a given problem is not as straightforward as the 

elegant theoretical results [31, 32, 33, 34, 53, 75, 76, 77, 96, 97, 105] might suggest. Cybenko [53] 

notes th a t the number of neurons necessary in most practical problems is most likely astronom­

ically high, due to  the so-called curse of dimensionality. Using many neurons is computationally 

expensive to the point th a t solving the problem may become unfeasible. Hornik [96] observes 

th a t not all transfer functions th a t satisfy the theoretical requirements for the universal approx­

imation will perform equally well in practical problems. Due to  the complicated shape of the 

error surfaces, the ANN training often converges to a local minimum, which may not be a solu­

tion of the given problem. Since in MSP applications the use of global optimization algorithms 

(genetic, annealing) is prohibitive because of the large number of param eters (ANN weights) to 

be estimated, one is forced to employ point-by-point nonlinear optimization algorithms, which 

depend heavily on the initial guess on the weight values. How to determine good initial values 

of the network weights for ANN training is still an unsolved problem.

Given these practical difficulties, we are interested in developing a technique for extracting 

the maximum information from the training set using a minimum number of hidden neurons. 

This would reduce the training time and provide better generalization capabilities and robust­

ness in the presence of noise, as a consequence of having fewer degrees-of-freedom in the system. 

The successful ANN architectures previously proposed [238, 239, 240, 259, 260] involved either 

some kind of weight scaling or using a scaled sigmoidal transfer function in the output layer. 

In the present study we investigate the effect of these two architectural features on the ANN 

MSP performance under neuron scarcity conditions. Various ANN architectural features, weight 

initialization procedures, and different choices of learning rate are compared. Our investigation 

presented here has clearly dem onstrated th a t the ANN training using an adaptive learning rate 

often does not converge when the training set is noisy, and therefore a constant learning rate 

should be used. Initializing the first-layer weights with normalized segments of the training set 

has proved to lead to a much better prediction accuracy than  a random  weight initialization, 

when few hidden neurons are used. Moreover, normalizing the second-layer weights provides 

great robustness in the presence of noise. This constitutes a significant architectural and training 

alteration of the classical 2LFF1S2LNN typically used in interpolative-type applications (includ-
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ing OSP and MSAP). Indiscriminately applying the standard ANN methodology to LTMSP 

applications leads to a poor prediction performance.

How to choose an appropriate number of ANN inputs and neurons for a given application 

is a crucial issue in the field of ANNs. Choosing the number of inputs is quite straightforward 

in the context of pattern recognition and function interpolation in general, where the input and 

output spaces have a clear physical meaning. In OSP or MSAP, typically a few inputs are 

sufficient in order to provide an accurate prediction, since no error propagation is involved. In 

the case of MSP, we expect th a t more redundancy is needed in order to compensate for the 

recursive error propagation. In order to  estimate the optimum number of neurons in an ANN, 

various empirical formulas [61] and criteria based on information theory [61, 71, 170] have been 

proposed. However, all these estimates have been developed in the context of interpolative-type 

applications, and therefore are not relevant to our MSP problem. We have proposed methods 

for consistently choosing appropriate values for the ANN inputs and hidden neurons in a given 

application of the type considered in tis study [240]. A stopping criterion for the ANN training, 

specific to this type of applications, has also been designed [238, 239],

The developed neural networks have been tested on both real-life experimental data  and 

numerically simulated data  sets describing the oscillatory motions of a two-degree-of-freedom 

nonlinear aeroelastic system. Once a long-term prediction of a trajectory is achieved, different 

features, such as damping and frequency components, may be extracted from the predicted signal, 

using an ANN in conjunction with a wavelet decomposition module. We developed a feature 

extraction method tha t greatly improves the computational efficiency of the ANN module in 

such applications [238, 239]. We were also able to correctly predict the dynamic interaction in 

a complex cavity flow problem, but further research is needed to improve the accuracy of these 

predictions.

This thesis is organized as follows. An overview of ANN architectures, training algorithms, 

and the universal approximation results, is presented in Chapter 2. In Chapter 3, the main 

research contribution of this study is presented. A review of time series analysis methods is 

provided in Section 3.1, followed by a detailed presentation of the proposed approach to  long­

term  prediction of nonlinear oscilaltions using ANNs (in Section 3.2). The implementation of 

the proposed method is presented in Section 3.3, while in Section 3.4 a rudim entary theoretical 

justification of the proposed approach is discussed. More specifically, it is proven that, under 

certain conditions, the asymptotic state of the ANN-generated long-term prediction is close 

to the asymptotic state of the trajectory  to  be predicted. In Chapter 4, 12 combinations of 

architectural and training algorithm features are compared based on 8 test cases, in order to 

assess which combination robustly extracts the most information from the known data  set using 

the minimum number of neurons. The stability of the best two methods w ith respect to variations 

in the number of inputs, hiddden layer neurons, and training data  points is investigated. Further 

applications of the proposed approach are reported in Chapter 5. Conclusions and future research
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directions are provided in Chapter 6.
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Chapter 2

Artificial Neural Networks 

(A N N s)

2.1 M athem atical Representation of A N N s

In a biological neuron (see Fig.2.1), the electrical signals are carried through the dendrites into 

the cell body, where they are summed and thresholded, and the resulting signal is sent through 

the axon out to  a dendrite of another cell [86]. Similarly, an artificial neuron (see Fig.2.2) receives 

the inputs aq, X2 , ■ ■ x no (real numbers), which are weighted by w\,  W2 , . . . ,  wno (the neuron’s 

weights), then a bias wo is added, resulting in the net input v = wo +  w \X\ + .. .w noxno. Note 

th a t the bias can be viewed as a particular weight corresponding to a constant input equal to 1. 

For simplicity, the term  “weights” will be used for wo as well as for w \, W2 , ■ ■ wno.

DENDRITES

AXONCELL
BODY

Figure 2.1: Biological Neuron.

WEIGHTS
Wq(BIAS)

SUMMER

INPUTS

TRANSFER
FUNCTION

V f y
NET I OUTPUT

Figure 2.2: Artificial Neuron.

A transfer function (TF) /(•) performs the thresholding and yields the output y = f (v)  

of the artificial neuron. The transfer function is chosen according to  the requirements of the 

problem that has to be solved. Common transfer functions used in applications are f ( v )  =

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



v, f ( v)  =  tanh(u), f ( v ) =  [1 +  exp(—u)]- 1 , f ( v)  =  H(v)  (Heaviside’s unit step function), 

f ( v )  = ln (l +  |u|)sgn(u) [61, 86], staircase functions [216], cubic spline functions [236], hysteresis- 

type functions [250], etc. Parameter-dependent transfer functions can also be used, for instance 

f a<p(v) = atanh(/3u) (where a , f3 represent the amplitude and slope of the sigmoid, respectively) 

[49, 230],

The artificial neuron described above is the classical type of neuron proposed by McCulloch 

and P itts  [164] in their 1943 paper tha t laid the foundation for the field of artificial neural 

networks. Since then, various types of artificial neurons have been introduced, many of them 

representing significant alterations of the classical architecture. For instance, Cotter [50] proposed 

an artificial neuron of the type:

f m g  /  no \  1 -1

1  +  e x p  (  ~  H Z  W lo ,k o * k o  I f  >

10 =  1 V feo =  l  /  J

due to  the universal approximation property of linear combinations of such mappings, accord­

ing to  the Stone-Weierstrass theorem. Chiang and Fu [37] proposed a so-called multi-threshold 

quadratic sigmoidal neuron, for which the output

" /  \ 2 / \ 1  ̂ — ̂/  no \  I  n o \
(2.2) y — <( 1 +  exp W o  +  W k o x ko ] -  ( #0 +  ° k o x ko

K k 0 —l  J  V fco=l )

depends on the weights wq, . . . ,  wno as well as on the thresholds do, ■ ■ ■, dno. There has also 

been considerable interest in experimenting with the so-called high-order neurons, in which the 

net input v is a polynomial of degree larger th a t one in the inputs x \ ,  . . . ,  x no [24, 83, 126, 127, 

177, 189, 200, 254, 270, 271], Most of these neuron architectures cannot be justified biologically 

anymore, bu t they are rather serving some specific purposes. We have studied various types of 

neurons, but have not yet observed any significant performance improvement compared to the 

classical neuron architecture. Therefore, in accord with the parsimony principle (everything else 

being equal, a simple model is usually preferable [68]), we have mainly used the classical neuron 

structure in our study.

The neurons are connected to each other in various ways. Each neuron can receive inputs 

from outside the network, from other neurons, or from itself. The output of a neuron can be fed 

as input to other neurons, or to itself, or to  the outside. Each connection has its corresponding 

strength, or weight . A widely used ANN architecture is the multi-layer feedforward (MLFF) 

architecture, in which the neurons are arranged in successive layers. The outputs y ^ \  1 < h < ni 

of all neurons in each layer I are fed as inputs to each neuron in the next layer I + 1. Thus, the 

output of the fc-th neuron in layer l + l  (1 <  k < ni+1 ) has the expression

(2.3) ^ +1) =  f ^  { ^ +1)} =  / ( ^ )  + . . .  }

where w w \ are the weights of tha t neuron. Traditionally, for each layer I, the same 

transfer function (■) is applied to  all neurons in th a t layer. The inputs Xh. — y^ \  1 < h < no
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to  all neurons in the first layer (forming the network input x  =  y ^ )  are propagated forward 

through the  successive layers of neurons. The outputs yh =  1 <  h < of all neurons in

the last layer L  (the output layer) are considered to  form the network output y  =  yHO. Clearly, 

the network output depends on the ANN input as well as on the values of all network weights 

(stored into the vector w): y  =  y(x, w). A two-layer (L =  2) feedforward ANN (a 2LFFNN) is 

represented in Fig.2.3.

w

Figure 2.3: Two Layer Feedforward ANN.

There is a wide variety of ANN architectures [61, 8 6 ], Here we discuss several im portant 

examples. For instance, some authors have proposed ANNs with architectures inspired from 

the classical mathematical and computational methods. Cotter [50] proposed architectures tha t 

implement classes of functions for which the Stone-Weierstrass density theorem is applicable, 

while Wang and Lin [251] and Tsitouras [231] proposed MLFF ANNs performing the Runge- 

K u tta  time-marching procedure.

Recently there has been considerable interest in the field of radial basis function (RBF) 

networks [2, 19, 38, 39, 45, 81, 146, 2 1 0 , 212, 217, 225]. The output of a RBF neuron th a t 

receives the input x  =  [x\ , . . .  ,x no] G R n° is defined by y = ip(\\x. — c |[2 ) ([[ • j12  is the Euclidean 

norm), where c G R n° is a so-called center, and ip ’■ [0, 00) —> [0,oo) is usually a continuously 

differentiable decreasing function. The most commonly used functions are ipa (x) — exp(—x 2/ a 2) 

(Gaussian function), ipa (x) =  (a2 + x 2)~ 1̂ 2 (inverse m ultiquadratic function), B-spline functions 

[210], -0(1 lx lI2) =  (no — ||x |I2 )exp(— ||x | | |/2 ) ,  for x  G R ”° (the Mexican Hat function, very 

popular in wavelet applications) [94], etc. I t has been proved th a t the output of a two-layer RBF 

network with linear transfer function in the output layer (and a single output neuron)

ni
(2.4) y = ^ 2  wkli p ( \ \ x - c k l \\2)

ki — 1

can approximate any nonlinear function of no variables with any accuracy, provided tha t suffi­

ciently many RBF neurons (that is, sufficiently many centres) are available.

In certain types of applications, such as system identification, adaptive control, time series 

prediction, etc, the ANN receives as input a vector x(£) G R n° and generates the output y (t) G 

R nL, at each discrete time step t G Z+. If the ou tput of at least one neuron at time t  is fed as
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one of the inputs of some neuron in a previous (or in the same) layer, at a later time t + d, then 

the ANN belongs to the class of recurrent networks. An im portant feature of the network is the 

existence of a feedback connection.

A classical example of a recurrent ANN is the Elm an network [63, 128], which is a 2LFFNN 

to which feedback connections from the hidden layer to the input have been added, in the sense 

that, at each time step t, every neuron in the hidden layer receives as inputs both the external 

input x(f) and the outputs of all hidden neurons at step t  — 1 , i.e., the vector y ^ ( t  — 1 ). Thus, 

the output of each hidden neuron at step t has the expression:

( n 0 n \  "j

W£iio + Y  W k l k o X k0 {t ) + Y  ^ k l n o + l Y h ^  ~  X) (

fe0=l h= l '

for 1 <  fci <  n \. A particular Elman-type ANN for which w ^ no+li =  0 except when = k\ (i.e., 

each hidden neuron only has a feedback connection with itself) is the diagonal recurrent neural 

network (DRNN) [129]. This network belongs to  a class of reccurrent ANNs called the locally 

recurrent globally feedforward (LRGF) networks, which are MLFF networks for which feedback 

connections from each neuron to itself are added. For instance, the neuron proposed by Frasconi, 

Gori, and Soda [232] generates its output y(t) by receiving the external vectors x ( f) ,  x (t — 1),

. . . ,  x ( t  — d) and its own past outputs y(t — 1 ), . . . ,  y(t — d), as inputs:

{ n o  d d

:
k —l h —0 h—1 )

If rc„0 +i }f, =  0, V7i, we obtain the output of a time-delay neuron. Time-delay neural networks

(TDNN) [46, 122, 137, 243, 245, 246] are not LRGFNNs. The neurons do not have recurrent

connections, but only a memory of past inputs they received.

Poddar and Unnikrishnan [211, 232] proposed a LRGFNN where to each classical-style neuron 

is attached a memory neuron. At each moment t, the output yk \ t )  of the Zc-th neuron in the Z-th 

layer ( 1  < k < n{) and the output z ^ \ t )  of its attached memory neuron have the expressions:

{
n i - i  n i - i

Y  + Y  wiS n , -  

=  “ I V t *  -  !) +  (! -  -  !)

where G [0,1], VZ, k. There are many other types of ANN architectures (self-organizing maps 

[8 6 , 111], Hopfield ANNs [17, 8 6 , 112], Grossberg ANNs [8 6 ]), but we are not concerned with 

them  in the present study.

(2 .6 ) y(t) =  /  EE wkthx k(t -  h) +  ^ w no+i>hy{t -  h)

2.2 A N N  Training

One of the main issues when working with neural networks is to  determine acceptable values for 

the weight parameters such th a t the network can successfully perform a specific task. A neural
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network “learns” to perform a certain task during the process called network training. In general, 

an initial guess of the weight values is first set, then the weights are iteratively updated according 

to a certain formula called the learning rule [8 6 ], until a given stopping criterion is met. There 

are several types of neural network learning. In a supervised learning, the network is provided 

with a set of examples of network inputs and the corresponding correct outputs (target outputs), 

called training set: (x ( l) ,y ( l)} ,  (x (2),y(2)}, . . . ,  {x(M ), y(M )}. In a reinforcement learning 

process, for each of the sample inputs x ( l) , x(2), . . . ,  x(M ), no target output is given, but the 

network receives a grade (a measure of its performance) for its corresponding output. In an 

unsupervised learning, the weights are modified according to the network inputs only (no target 

outputs are given), by performing a certain clustering operation on the set of input patterns [8 6 ]. 

Since the target outputs to sample inputs are available in our study, the ANN learning th a t is 

relevant to our study is the supervised learning.

Among the supervised learning rules, the most im portant one is the performance learning 

method, in which the network weights are iteratively adjusted in order to  optimize the network 

performance. Let the mean squared output error over the training set:

1 M  M

(2 .8 ) E{w) d=  —  Y  l|e(m,w)||^ =  —  Y  M 171) ~  y ( * (mX ™)\\l
m~ 1 m=\

define the performance index, which is small when the network performs well and large when the 

network performs poorly. In the above equation, y(x(m ), w) is the network output correspond­

ing to the input x(m ) and weights w , and e(m ,w ) =  y(m ) — y (x (m ),w ) is the output error 

corresponding to  the m -th training pattern. E(-) is a nonnegative functional on R " w, where nw 

is the number of ANN weights.

Alternative error measures have been used by some authors, for instance

M

(2.9) E(w) d̂ f —  Y  L (y (m ),y (x (m ),  w)),
m = l

for an ANN with a single output, contained in [0,1], where L  : [0,1 ] x [0,1] —> R

(2 .1 0 ) L (x ,y )  =f x ln  +  ( 1  -  a;) In

is known as the entropic loss (where, by definition, 01n(0) =  01n(0/0) =  0) [92, 180].

The minimization of the performance index can be performed by using any nonlinear opti­

mization algorithm. The most widely used optimization methods are the gradient-based, point- 

by-point algorithms. In a MLFFNN, the gradient V-E(w) of the mean-squared error (2.8) is 

usually computed by the so-called backpropagation algorithm. If { x (l) ,y ( l)} , (x (2),y(2)} , . . . ,  

{x (M ),y(M )} is the training set, we define:

(2 .1 1 ) y ^ ( TO) ^ (TO)i y o \ m ) =f 1, 1 <  m  < M , 1  <  I < L.
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First, the ANN inputs are ’propagated forwards’, namely for 1 <  k <  til , 1 < I < L : we have:

ni~ l
(2 .1 2 ) v f ( m )  =f y% \m ) d=  / (,)(4 °(m )), z f  (m) {m )).

i=o

For simplicity, we write e(m) instead of e(m , w) in (2.8) and we define

til  n L

(2.13) E (m ) =f ||e (m )||i =  K ( m ) | 2  =  ^  \yh(m) -  ^ !)(m )|2.def
||e (m j | | 2  =

ft=l h=l

Then the output errors are ’propagated backwards’:

r\ (X/) / \(m)
r\ J7» / \ —j— 1

(2.15) 4 ° ( m ) =f " ..(O'r i  =  zk \ m ) Y  wY k1] 5h +1) (m )i 1  < k < n h l < l < L - \ .
d v l \ m )  h=1

The gradient components are then computed by the formula:

OE 1 x—>
(2-16) /T W  =  T f Y  4 ° ( TO) ^ _1)(m )= 1 <  ^ 0  <  j  < m - 1 , 1 < l < L.

®Wk,j m=l

An initial guess wo for the weight vector w  is set, and the weights are iteratively updated: 

w new =  w old +  d new (where the vector d new can have different expressions, depending on the 

method being used) until E (w) becomes sufficiently small. At each iteration, a sweep of the 

training set is performed and g new =f VJ5(wold), H new =f V 2 £ (w old) can be computed. When
de fusing the steepest descent algorithm we define d new =  —a “ wgnew, where a “ w is the current 

step size, or the learning rate (which can be kept constant or can be adjusted at each iteration). 

In Newton’s method, d new =f — (H new)_ 1 gnew. In order to accelerate convergence, the so-called 

steepest descent method with momentum  [8 6 , 190, 229] can be used, where d new =f -ynewd oid — 

(1 — 7 new)a^,ewg new, with 0 <  ynew <  1 , However, there is no clear way of choosing the value of
.ynew^

When using the conjugate gradient (CG) algorithm, dnew =f a"ewp new, where pnew =f —g new 

at the beginning of training. Subsequently, a t each iteration: p new =f —gnew - f / 3 newp old, where 

/?new can be chosen in different ways [8 6 , 193]:

II n ew  112 _  - .n ew  - .o ld  | | „ n e w | |2
(2.17) /?new =  iis  T?-,,, a  (Polak-Ribiere), /3new =   g  (Fletcher-Reeves).

IIS Il2 llg II2

The search direction has to  be periodically reset to p new =  —g new in order for the conjugate 

gradient method to converge when minimizing a non-quadratic functional [8 6 ].

Different variations of Newton’s m ethod are used by different authors [131, 214]. A widely 

used modified Newton-type method for error functions E(m) =  ||e(w ) |[2 (where the vector 

e(w ) =f [e(l, w), e(2, w ) , . . .  ,e(M , w)]r  e  R M is the output error vector for the M  training 

patterns) is the Levenberg-Marquardt (LM) algorithm [8 6 , 87]. If /„ w is the n w-dimensional
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identity m atrix, and J(w ) is the M  x nw-type matrix with elements {9e(m, w )/dw ; 1 < m  < 

M , w component of w}, then the LM algorithm defines

(2.18) d new d=  [Jr (wold)J (w old) +  /rnew/ nw] - 1 J T (wold)e(w old),

where ^ new is an adjustable parameter. The main drawback of the Newton-type algorithms is 

th a t they involve the calculation of the Hessian m atrix and of the solution of a linear system, 

operations which are computationally expensive. Training methods based on the use of the 

Extended Kalm an Filter (EKF) have also been proposed [45, 217, 223], but they are beyond the 

scope of this study.

A well-known disadvantage of the point-by-point optimization algorithms is th a t in general 

the vector w  converges to  a local minimum Wq of E (w) th a t is close to the initial guess Wo- If 

E (Wq) is small enough for our purposes then w j may be an acceptable weight vector for our 

ANN. However, in general, E (w j) may not be small enough, and the training has to  be restarted 

with a different initial guess. The practical difficulty is th a t there is no clear way of setting a 

good initial guess w 0. Traditionally, the ANN weights are initialized with small random values, 

but other options may also be considered. A few authors have started  to  investigate consistent 

ways of choosing the initial guess for ANN training [99, 256], However, this type of research 

is still in the infant stage. In our study, we propose a method for weight initialization for our 

particular class of problems, tha t greatly improves the accuracy and robustness of the ANN.

In order to overcome the problem of converging to  local minima, global optimization methods, 

such as the genetic algorithm [80, 130, 161, 168, 177, 221], or the simulated annealing algorithm 

[42, 73, 235], have been proposed. These algorithms perform a search of the entire input space 

rather than a local search (around an initial guess) like the classical algorithms. They are 

guaranteed to ’eventually’ converge to the global minimum of the function to be optimized. 

However, due to the ’curse of dimensionality’, these methods require an astronomically long time 

to  converge if the dimension of the search space is large. Most applications of these methods 

in the literature are reported for dimensions of the input space of the order of tens, while in 

our experiments the search space has a dimension (which is, actually, the to ta l number of ANN 

weights) of the order of hundreds or even thousands. Therefore the use of these methods is 

impractical in our study.

An im portant question th a t arises in practice is when to  term inate the ANN training. The 

network must learn the training set (x ( l) ,  y (l)} , (x ( 2 ) ,y ( 2 )}, . . . ,  (x (M ), y(M )} up to  a level 

that would allow it to  correctly generalize, i.e., to provide a correct ou tput y  to a previously 

“unseen” input x  from the same domain as the input patterns. One can regard the training 

set as a set of samples of a continuous function $  o n a  certain region D  £ R n°. T hat is, 

y(m ) =  # (x (m )), 1 < m  < M . The function #  represents the desired input-output relationship 

that would make it possible for the ANN to correctly perform a specific task. In most practical 

situations, there is a lower bound 8 for the desired level of accuracy of the training set learning.
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At this level of accuracy, the ANN has extracted all the information about the underlying pattern 

#  th a t generated them. If the network training is continued beyond this point, then, the lower 

the training error becomes (i.e., the more accurately the training patterns are learned), the poorer 

the ANN’s generalization performance becomes. The reason is th a t the network starts to learn 

features of the particular samples (x ( l) ,  y (l)} , (x(2),y(2)} , . . . ,  {x(M ), y ( M) }  taken from the 

function # ,  th a t are not relevant to  the general pattern  $  anymore. This phenomenon, known 

as overfitting, occurs often in ANN practice [4, 8 6 , 117]. The problem of avoiding overfitting is 

still an open problem.

The overfitting phenomenon suggests tha t there is a tradeoff in ANN training between how 

well the network learns the training patterns and how accurately it can generalize to  the unseen 

inputs. Several methods have been proposed to improve the generalization performance of ANNs. 

A widely used method is to  add noise in the input and/or output training prototypes [23,199, 247] 

or in the weight param eters [171]. Another method, the so-called target smoothing, involves 

convoluting the target function with a noise probability density function [199], A widely used 

approach is to define the performance index as a sum of two functionals

(2.19) E{w) =  E err(w) +  AFreg(w), A > 0

where E eir(w) is a measure of the training error (usually the mean squared error) and E ve&{w) is 

a regularization term  th a t is designed to improve the generalization performance of the ANN [61]. 

The weight decay approach to generalization improvement involves choosing JSreg(w) =f 11w |11 

[142]. In the error regularization approach, we define E leg(w) ||V X y(x , w ) | | 2  [199]. The 

weight smoothing approach reported in [106] is given by

■w{1)fcq-i(2 .2 0 )  £ r e g ( w )  = f £  [w k J  -  '
fc= 1 j-2

for a 2 LFFNN. Bishop [2 0 ] proposed using (for an L-layer FFNN) the curvature-driven smoothing, 

where

d e f ^ ^ ^ \ d 2 y W
(2.21) E reg (w )d=f

m— 1 k= 1 j=2
- Q ^ r  ( x ( m ) ,w )

Drucker and Cun [60] proposed a m ethod called the double backpropagation, in which:

no
def ’(2 .2 2 ) £ reg(w ) l ! f ] r

j= i

M  n r  a  (L )

J 2  ] C  efc(m >W)~777~ (X(m )’ W)
,m= 1 k = l

2

Note that the param eter A in (2.19) reflects the relative weight of the two terms in the 

total error function. The practical difficulty when using such a method is th a t there is no 

clear way of choosing an acceptable value of A in a given application. If A is too small, the 

regularization term  will have no effect, while if A is too large, all weights may converge to  zero
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[64]. Basically, penalty terms tend to create additional local minima in the error surface, which 

makes training even more difficult. In our experiments, we do not use any regularization term 

in the error function. However, the idea from (2.20), that smoothing the ANN weights improves 

generalization, is applied in a different fashion, namely by explicitly scaling the weights in the 

ANN output function rather than in the error function, which makes it unnecessary to choose 

an appropriate value for a parameter such as A from (2.19).

A disadvantage of using gradient-type optimization algorithms based on the error backprop- 

agation is that the ANN training usually takes a long time. In order to accelerate convergence, 

various improvements to the classical optimization approach in ANN training have been proposed 

[114], such as dynamical adaptation of the learning rate, dynamic adaptation of the weight ad­

justments (e.g., a momentum term, weight decay), etc. The weight extrapolation approach [114] 

provides, at each training iteration, estimates for the values of all ANN weights, that are further 

refined by the current weight update. Layer-by-layer optimization methods [66 , 262] combine 

gradient computation with solving linear systems in order to determine appropriate values for 

the ANN weights.

2.3 The Universal Approximation Property o f A N N s

Applications on approximating a nonlinear function /  : R n° —► R  by the output of a MLFFNN 

have been widely investigated during the last 15 years. More specifically, for every x  in a subset 

of R"°, the value / ( x )  is approximated by the output y(x, w ) of a certain MLFFNN with a 

single neuron in the output layer (SMLFFNN, for brevity). Various authors have tried to answer 

the following questions. What classes of functions can be approximated by the output of a 

SMLFFNN ? What transfer functions should be used in each layer ? How many neurons are 

required in each of the hidden layers ?

In most cases, two-layer feed-forward (2LFF) networks with a single output neuron (S2LFFNNs), 

with sigmoidal transfer function in the hidden layer and linear transfer function in the output 

layer (S2LFFlS2LNNs) are considered. In general, if x\,  £2, • •., x no are the inputs of a 2LFFNN 

with rii neurons in the first (hidden) layer and n2 neurons in the second (output) layer, then the 

ANN output has the expression

{ « i  /  n 0 \  1

+ E  «$/<» ( « s + E  j  | , 1 < i < na.

Let N ’[no,ni,ri2 ', be the class of functions N[no, n i , n2; ; w] : R"° —> R n=

defined by (2.23), that express the output y(2) of a 2LFFNN in terms of its inputs. Note that

(2 241 w  =f fm(12 w (1) w (1) ?«(2) v >(2) n,(2) ,„(2) ]T
v  /  lw l,0i  * * ■ “ a , n o ?  ^ 2 , 0 ’ ’ ’ * w nx,no'> * " 1 , 0  > * * • Wl,n i  ? ^ 2 , 0 ?  * * • Wri2 ,n\\

is the vector of all ANN weights ([-]T is the transpose operator). Denote by J\f[no, * ,n 2; fW ]  

the set of all functions implemented by such an ANN with an arbitrarily large number of hidden

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



neurons [96]:
OO

(2.25) Ar[n0,* ,n 2; / (1), / (2)] =  [ J  A/"[n0 ,n i ,n 2; / (1), / (2)]
7 H  =  1

A function o(-) is called a (generalized) sigmoidal function (or a squashing function) if

(2.26) —oo < lim o(x) < lim o(x)  <  +oo.
X —+— OC X — t + O O

Note that a(-) is not necessarily continuous or monotone. Examples of sigmoidal functions are 

[34, 77]: a(x)  =  tanh(x) (the hyperbolic tangent squasher), a(x)  — H(x)  (Heaviside’s unit step 

function), a(x)  =  lsig(x) =  1/[1  +  exp(—a:)] =  [1 +  tanh(x) ] /2  (the logistic sigmoid),

(2.27) cr(x) =  <

0 , x  <  —7r/2

} 1~ cos^ .± .3.7rZ22 ; —tt/2  < x  < 7r/ 2  (the cosine squasher [77]).

1, x  >  7r/2

Most approximation results state that, under certain assumptions on the function o(-), the 

set N[no, *, 1; o, I] (I (x ) — x,Vx) is dense in some metric space (T, p) of real-valued functions 

defined on some subset of R"°. In most cases T  is a space of continuous or Lp-integrable 

functions, and the metric p is usually (but not always) generated by some norm || • || on T,  

namely p (f ,g )  =  \\f — £(||, V/, g € T .  The density of Af[no, *, 1; cr, 7] in {!F,p) is equivalent to 

saying that any function in T  can be approximated (in the metric p) with any desired accuracy 

by a function in A/"[no,*, 1; cr,/] . In other words, any function in T  can be approximated (in 

the metric p) with any desired accuracy by a function given by the output of a 2LFF1S2LNN, 

provided that sufficiently many neurons in the hidden layer are available:

(2.28) V / € T ,  Ve >  0 3ni ( / ,  e), 3 w (/, e) : p {N[n0, n i ( / ,  e), 1; o, /; w (/,  e)], / )  <  e.

Various approximation results have been proved by Cybenko (1989) [53], Hornik, Stinch- 

combe, and White (1989) [97], Funahashi (1989) [75], Ito (1991) [105], Hornik (1991) [96], Gallant 

and White (1992,1998) [77, 76], etc. Chen, Chen, and Liu (1993) generalized the classical approx­

imation results [31, 32, 33, 34], They showed that, if cr is a bounded sigmoid, then Jd[no, *, 1; cr, I]

is dense in the space

(2.29) C (R no) d=  { /  e  C(R"°); 3 lim / ( x )  <  oo}| | x | | 2->oo
with respect to the ||| ■ |||c  norm. For n0 =  1, Chen, Chen, and Liu proved that A/"[l, *, 1; a,I] is 

dense in the space

(2.30) { /  e  (^(R1); lim f(x ),  lim f (x )  exist and are finite} D C(R 1).
X - + - O C  X — > +  OC

In particular, J\f[n0,*, l;<r,i] is dense in C (K ),  for any compact K  C R"°. Also, if cr(-) is a 

sigmoid, a  6  L^C(R), then f f [n o ,* ,l ;o ,I ]  is dense in LP(K ),  for any compact K  C R"°, with
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respect to the Lp norm

(2.31) !ll/lllpd=  (^ _ I /W I P)  , l < p < o o ,  Hl/llloo d=  esssu p { |/(x ) |;x  € K } .

Most of the classical approximation results were proven assuming that the sigmoid a(-) is ei­

ther continuous (Cybenko [53]) or non-decreasing (Hornik, Stinchcombe, and White [97]), or a 

particular class of sigmoids was used (the cosine squasher, Gallant and White [77]). Ito [105] 

proved that, for some particular types of sigmoids, including the Heaviside unit step fucntion, 

J\f[no, *, 1; <?,I} is dense with respect to the ||| • |||c  norm in the space of rapidly decreasing 

continuous functions:

(2.32) ( /  6 C(Rno); lim . . .®j£°/(x)| <  oo.Vfci,. . .  kno e Z+, Vx £ R n°I  l |x | | -+ o o
Since in the present work a 2LFF1SNN with first-layer transfer function a(x) =  tanh(x) is 

used in all experiments, the approximation theorem relevant to this study is Cybenko’s result 

[53]:

T heorem  2 .3 .1 . If K  C R ”° is a compact set and a  is a continuous sigmoid, then J\f[no, *, 1; cr, I] 

is dense in C(K):

(2.33) V f £ C ( K ) ,  V e > 0  3 n i( /,e ) , 3 w (/,e ) : |||N [n0 ,n i( / ,e ) ,  l;<x,7; w ( / , e ) ] - / | | [ c  <  e [53].

In other words, any continuous function on a compact K  in R ”° can be uniformly ap­

proximated to any desired degree of accuracy by the mapping that provides the output of a 

2LFF1S2LNN in terms of the ANN inputs, if sufficiently many neurons are used in the first 

(hidden) layer. In practice, the function /  £ C (K )  is interpolated by the ANN from a finite set 

of known values of /  in points of K  (which constitute the training set for the neural network). 

The network weights w  (/, e) are determined by training the ANN based on the set of known 

values of f .  At the end of training, the ANN should be capable of interpolating the function /  

on K  with accuracy at most e.

Funahashi [75] proved that, if a  is a function that is nonconstant, bounded, increasing, and 

continuous, then VX >  2, \ /K  compact in R ”°, any function in C (K )  can be uniformly approxi­

mated with any accuracy by the output of a X-layer FFNN with a linear transfer function in the 

output layer and with a  as the transfer function in all hidden layers. It is possible that in some 

cases a X-layer ANN might perform a good approximation with less computational cost, that is, 

using less neurons, and thus less ANN weights, than a 2LFFNN.

Denote by Bn° the Borel field of R ”° , and by M.n° the set of all Borel measurable functions 

from R n° to R. Hornik, Stinchcombe, and White [97] proved that, if er is a non-decreasing 

sigmoid and fi is any probability (or finite) measure on (R"°, Bn°), then Af[no, *, 1; cr, I] is dense
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in M n° with respect to the metric

(2.34) d= i n f { e > 0 ;M{x : | / ( x ) - 9 (x)| > e} <  e j ,  Vf,g  £ M n°.

Note that pM(/, g) is small if and only if there is a small probability that /  and g differ significantly, 

and g) — 0 if and only if /  and g are ^-equivalent, i.e., p{x. : / ( x )  — <?(x)} — 1 .

Several authors have investigated the approximation of the derivatives of a mapping by 2LFF 

ANNs. Hornik [96] proved that if a £ Cm(R) has all its derivatives up to order m  bounded, 

then Vff compact in R n°, any function in C m(K)  can be approximated in any Lp norm, 1 <  

p <  oo, together with all its derivatives up to order m, with any accuracy, by some function in 

Af[no, *, 1; cr, I}. Gallant and White [76] showed that, when a 2LFFNN is trained by a least-square 

minimization to approximate an unknown mapping, then it will automatically approximate the 

derivatives of that mapping as well (up to a certain degree m, depending on the regularity of 

a). It is remarkable that we do not have to explicitly provide the values of those derivatives as 

targets in the ANN training.

Castro, Mantas, and Benitez [27] proved that, if a  is a non-decreasing sigmoid and (j) is a 

strictly increasing, continuous sigmoid, then M[no, * ,n 2;u, (j>] is dense in the set of Borel mea­

surable functions defined on some compact K  £ R™° with values in [R{cj))]n2, where R{4>) is the 

range of <p (which is an interval, or the whole R ). Hence, the universal approximation property 

of ANNs holds even if the transfer function of the second layer is a sigmoid.

As pointed out by Hornik, Stinchcombe, and White [97], the functions encountered in prac­

tical applications are in general Borel measurable, therefore the approximation results for Borel 

measurable functions are sufficient to justify the use of ANNs in practical problems. Hornik [96] 

observed that, since the conditions that need to be imposed on <r in order to achieve universal 

approximation are quite weak, it must be the MLFF architecture itself rather than the choice of 

the transfer functions that provides the ANNs with the universal approximation property. He 

also notes that, even though in principle one can use a large class of transfer functions, not all 

functions will perform equally well in specific practical problems.

Basically, the above results state that a nonlinear function can be approximated to any desired 

accuracy by the output of a 2LFFNN provided that sufficiently many neurons are available in the 

network’s hidden layer. However, Cybenko [53] notes that the number of neurons necessary in 

most practical problems is likely astronomically high, due to the so-called curse of dimensionality. 

In a practical approximation problem, it is also necessary that there are sufficiently many training 

examples for the ANN, and that they are well distributed in the domain D £  R n° on which the 

unknown function is defined. Unfortunately, we may not have control over how well the training 

examples are distributed inside D  in some applications. The best distribution of the interpolation 

points is closely related to the curvature of the function to be approximated, which is unknown. 

The next best solution is to have a lot of interpolation points uniformly distributed in D. Note 

that, for the experiments performed in the present study, the training data set is not very large

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(containing only a few oscillation cycles), therefore we cannot count on this situation to  occur 

either. In  our study, we find a means for effectively extracting information from the training set 

for a given number of neurons. Hence, for a given application, fewer neurons will be necessary. 

As for the distribution of training examples, we propose a criterion to assess, for our class of 

applications, whether the training set is appropriate or not. These issues will be discussed in 

detail in the following chapters.

In general, how to choose the number of ANN inputs and the number of hidden layer neurons 

for a given application is still an unsolved problem. Having too few param eters (weights) in the 

network leads to poor generalization because the ANN system is less complex than  the unknown 

mapping hence the mapping cannot be learned. Too many parameters implies th a t the ANN 

system is more complex than the unknown mapping # .  Consequently, the mapping $  may not 

be uniquely determined by its samples because the ANN has too many degrees of freedom.

Different types of constructive and destructive algorithms have been designed to optimize the 

complexity of a neural network. Constructive algorithms [26, 40, 79, 104, 191, 214] iteratively 

increment the number of neurons in a certain layer. The ANN is first trained with a single neuron 

in the respective layer. If the performance index is not small enough, then  a neuron is added to 

the working layer and its weights are trained while the other ANN weights are kept frozen. The 

process is repeated until the value of the performance index, or of other relevant quantities (such 

as, for instance, different types of information criteria) is small enough. Destructive algorithms 

(or pruning algorithms) [51, 64, 223, 227] start by training a network with a lot of neurons, 

and then different neurons or weights are deleted based on their ’im portance’, or ’relevance’ for 

the network (given by a certain ’relevance’ index, defined in most cases based on some kind of 

statistical reasoning). We have not experimented w ith these methods in the present study, but 

they could constitute interesting subjects for further research.
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Chapter 3

M ain Contribution

Suppose we know a set of consecutive terms of a time series s (l) , s(2), . . s(t) . .., s (ti)  (where t 

are discrete moments of time). These could represent, for instance, measurements a t equal time 

intervals taken from a process th a t is continuous in time. We wish to  predict s(t\ + 1), s(fi +  2),

. . . ,  s (t2), for f2  much larger than tj.. In this study, we assume th a t the time series arises from 

a model representing a nonlinear dynamical system. Moreover, the system is self-excited, which 

implies tha t no external forcing is imposed after t =  f i .

3.1 Time Series M odels

In order to define the context of our main contribution in this study, a brief review of the time 

series models developed up to this moment will be performed in this section. An excellent 

review of time series analysis methods has been performed by Fan and Yao (2003) [6 8 ]. In time 

series analysis, the discrete-time trajectory  {s(t)} t is viewed as the realization of a stochastic 

process { X t }t, and the goal is to  determine the probability law th a t governs a segment of the 

observed data s(to + 1 ), s(to +  2 ), . . . ,  s ( ti)  (for some t 0 < t%), in order to  forecast the unknown 

observations s(tj +  1 ), s(ti + 2 ), . . .  [6 8 , 215]. Since the number of known observations is always 

finite, there are infinitely many stochastic processes th a t can generate the same observed data  set 

[6 8 ]. Therefore the usual approach is to  search for the probability law in a specified family (the 

modelling stage), and then to select a member in th a t family th a t best fits the known da ta  set 

(the estimation stage). W hen the probability law is specified up to  a finite number of param eters 

to be determined, we are dealing with a parametric model W hen there are an infinite number of 

parameters or if the form of the probability law is not completely specified, we are dealing with a 

nonparametric model [6 8 ]. A detailed presentation of time series analysis methods is beyond the 

scope of this study. We will only point out some issues tha t are relevant to  our approach. The 

application of some classical time series models to  the prediction problem tackled in this study
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is reported in detail in [194, 258, 259, 260].

A stochastic process {et }t  for which Vt: E(et) =  0, Var(et ) =  a 1 < oo, and Cov(et, es) =  0 for 

s ^  t, is called white noise (denote {et }t  ~  WN(0,cr2)). A special case of a white noise process 

is a sequence {et}t of independent and identically distributed random variables with E(et ) =  0 

and Var(et ) =  <r2  <  oo Vt. We denote such a stochastic process by {et}f ~  IID(0, cr2) [6 8 ].

The most widely used param etric model in time series analysis is the so-called autoregressive 

moving average (ARMA) model

p  <t

(3.1) X t — ^ 2  ah X t-h  +  +  ^ 2  bjet~j
h -1 j= 1

where {e«}t ~  WN(0, cr2) and ah, hj are parameters to be estimated by statistical methods based 

on the known observations [6 8 ].. Once the parameters have been determined, a prediction for 

the observation at the next time moment can be generated [6 8 , 215]. If ah =  0 V/i in (3.1), we 

obtain a moving average (MA) model, while if bj =  0 Vj, we are dealing w ith an autoregressive 

(AR) model. Note tha t such models are representative for the time domain approach, which 

describes the structure of a time series in terms of the dependence of the current observation on 

the past observations. There is also a frequency domain approach, which describes the underlying 

dynamics in terms of the systematic sinusoidal variations present in the d a ta  [215], and which 

has not been investigated in our study.

Sometimes it is necessary to  differentiate the time series (that is, to replace the original data  

set by the sequence of the differences between each observation and the previous one), in order 

to remove some time trends (such as a steady increase in mean, for instance). When an ARMA 

model is fit to the d times differentiated d ata  set, the predictions for the subsequent observations 

of the original time series can be generated by integrating d times the predicted values for the 

differentiated series. This is referred to  as an autoregressive integrated moving average (ARIMA) 

process [6 8 ].

Despite its excellent theoretical tractability, the main shortcoming of the ARIMA model is its 

linear nature, which makes it unable to  model time series w ith underlying nonlinear structure. 

Nonlinear time series models have been developed for th a t purpose. However, this is still a poorly 

developed research field with most of the work done since the 1980’s. In this section we only 

point out some issues relevant to our research topic.

A popular nonlinear time series model, which is introduced to capture the volatility of financial 

time series, is the generalized autoregressive conditional heteroscedastic (GARCH) model:

p  q

(3.2) X t =  at et , cr2  =  a 0  +  ] 2  ahX?_h +  J 2
h=1 j= l

where {et}t ~  IID (0 ,1), and ah > 0, bj > 0 [6 8 ]. If bj =  0 Vj, we obtain the autoregressive 

conditional heteroscedastic (ARCH) model. The threshold autoregressive (TAR) model performs
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a piecewise linear approximation of the data, the division of the state  space being dependent on 

a threshold variable X t-d  (for some d > 1 ):

k  (  Vi

(3.3) =  \  ai’° + 5 Z
i=l I h =  1

where I a P )  is the characteristic function of the set At, {et }t ~  IID (0 ,1), cr* >  0, and {Aj}j 

forms a partition of R  [6 8 ]. The TAR model is not as well understood as the ARIMA model. A 

bilinear model has the form:
p q p  Q

(3.4) X t — T  a ^X t-h  +  +  V"' bj€t-j  + V  C h,jX t-h^t-j
h =1 j =1 h=l j =1

where (et}t ~  IID (0,tr2). This model is capable of capturing occasional outbursts in time series, 

which might be useful for modelling seismological data  [6 8 ].

Even though param etric models are powerful tools when the models are correctly specified, 

the main difficulty lies in the choice of the specified model for a  given time series. In order to 

improve the accuracy of the approximation, models of a more general form need to be constructed. 

One of the most general models is the saturated (full) nonparametric model:

(3.5) X t =  f ( X t- ! ,  • • . , X t- p) +  er(Xt_ i , .. . , X t- p)et

where {et }t ~  IID (0 ,1) and et is independent of X t~h, h > 1 [6 8 ]. The function /(•) is the 

autoregressive function, while cr(-) is the conditional variance function. Though modelling biases 

are reduced by using this type of model, the estimation of the autoregressive function (by methods 

such as multivariate local polynomial regression, spline interpolation, etc [6 8 ]) is not feasible due 

to the ’curse of dimensionality’. Therefore nonparametric models with particular forms of the 

autoregressive function have been developed [6 8 ].

The functional coefficient model (FAR)  has the form:

p

(3.6) X t =  f h(X t- d ) X t- h +  cr(Xt_ d)et
h —l

for some d > 1, where {et }t ~  IID (0 ,1) and et is independent of X t~h, h > 1, Vt. If, instead 

of X t-d ,  each fh(-) takes as argument a linear combination of past observations, then we obtain 

the adaptive functional coefficient autoregresssive model [6 8 ]. A param etric version of the FAR 

model is given by the exponential autoregressive (EXPAR) model:

p

(3.7) X t =  +  (Ph + Ih X t-d )  ex p (-0 iX t2_ d)}X t_h +  et
h =1

proposed by Ozaki, where 0* >  0 [6 8 ]. Ozaki showed th a t the EXPAR model is capable of captur­

ing complex nonlinear phenomena such as amplitude-dependent frequency, jum p phenomena and 

limit cycles. The model was subsequently extended by replacing the coefficients 7 h by Hermite- 

type polynomials in X t~d [8 8 , 89, 182, 183]. This particular model has been applied to data
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sets used in  our study, and its advantages and disadvantages are reported in [194, 258, 259, 260]. 

Several other nonparametric models include additive models, two-term interaction models, etc 

[68].

3.2 The Proposed Approach

In our approach, we are modelling a segment s(to +  1), s(to +  2), . . . ,  s ( ii)  (for some to <  ^i) of 

the known d ata  set using a nonlinear mapping 4>w given by the output of an ANN (w denotes 

the vector of all ANN weights). It has been proven that, for all practical purposes, a nonlinear 

function can be interpolated from examples of known values, with any desired accuracy, by 

the mapping th a t gives the output of a two-layer feed-forward ANN w ith a sigmoidal transfer 

function in the first layer (a 2LFF1SNN) and a linear transfer function in the second layer (a 

2LFF1S2LNN), provided tha t sufficiently many neurons are available in the network’s hidden 

layer (see Theorem 2.3.1) [31, 32, 33, 34, 53, 75, 76, 77, 96, 97, 105], A sigmoidal function is a 

bounded function with horizontal asymptotes at both —oo and +oo, with the left-hand asymptote 

being lower than  the right-hand asymptote. In this study, we use f ^ ( x )  =  a(x) =  tanh(rr) 

as the transfer function in the first layer. The universal approximation property still holds 

for 2LFFlSNNs with continuous and monotone sigmoidal transfer function in the output layer 

(2LFPlS2SNNs) [27],

We are implicitly assuming that, for no sufficiently large, there exists a  mapping $  =  # no 

th a t models sufficiently well the entire trajectory, i.e.,

(3.8) s(t) =  $ ( s ( t - l ) , . . . , s ( t  — n o ))+  e(t), Vt >  n 0  +  1  

with the modelling error

(3.9) Soo d=  sup{ |e(t)|;f >  n 0  +  1}

being sufficiently small. In  other words, we are assuming th a t the dynamics of the given trajectory 

can be accurately described by the dependence of each current observation on a fin ite  number 

of past observations.

For no sufficiently large, we are attem pting to approximate the mapping #  in (3.8) by a 

mapping $ w € Af[no, *, l;cr, / ^ ]  (see equation (2.28)). If the number n \  of the hidden neurons 

is sufficiently large, this should be possible in light of the universal approximation property of 

ANNs. All we need is to  have sufficiently many examples of the correct input-output pairs

(3.10) |  { s(t -  1) =f [s(t - 1 ) , . . . ,  s ( t -  n0)]T, s(t) } ; t0 +  l < t  < h  j

for ANN training. The pairs form the training set for our application. <f>w is the mapping th a t 

provides the output (t) of a 2LFF1SNN as a function of its n 0  inputs. The outputs of the
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w„

s(t 1)

Figure 3.1: Two Layer Feedforward ANN Used for Prediction.

first and second layer of such an ANN (represented in Fig.3.1, with f W ( x )  = tanh(x)) at each 

time step t, are respectively:

( n o  1
(3.11) , ( ! )M  (*) =  tanh I w (̂ 0 + J 2  \kos{t - k 0) \ ,  1  < h < m  

I fco=l J

ni
(3.12) y {w ( t )  =  / (2) < ^o2) +  E

l  fei=i

where w  denotes the vector of all ANN weights w j^ feo, , Wq2\  1 <  ki < n \, 0 <  ko < no-

An appropriate w  has to be determined such th a t the errors

(3.13) ew(t) == s(t) -  $ w (s(t -  1 ) , . . . ,  s ( t -  n 0)), t 0 + l  < t  < t i

are sufficiently small. The ANN weights for which $ w correctly models the training set are

determined by minimizing the mean-squared error (the performance index):

t lI
(3.14) £(w) = E  K * ) - < M s ( t - i ) ) ] 2

t=to + l

by using a nonlinear optimization algorithm. This constitutes the ANN training process. In our 

study, the conjugate gradient method was applied. At every discrete time step t, the value

(3.15) yw (t) d=  $ w(s(f -  1 ) , . . . ,  s(t -  n 0))

is called the one-step prediction (OSP) for s(t), and the value

(3.16) ew(i) =f s(t) -  yw (t)

is called the one-step prediction error (OSE) a t step t.

Once w  has been determined, an estim ate for s (ti  +  1 ) will be given by:

(3.17) yw (ti +  1 ) d=  $ w(s(fi), s (ti -  1 ) , . . . ,  s(t\  - n 0  +  1 ))
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If the correct value s{t\ +  1) becomes available before the moment t  =  t \  +  2, the value s{t\ +  2) 

can be estimated by a OSP process in the same manner:

(3.18) s(t i +  2) «  yw(ti +  2) d=  $ w(s(ti +  1), s(ti -  n0 +  2))

Otherwise, the previously predicted value yw(ti + 1 )  has to be used in order to predict s(t\  +  2):

(3.19) s(fi +  2) «  yw(fi +  2) =f $ w (yw {ti +  1), s(*i), s(fi -  1 ) , . . . ,  s ( t i -  n0 +  2)) 

Similarly, s(ti +  3) will be estimated by:

(3.20) yw (h  +  3) =f $ w(j/w(fi +  2), yw (ti +  1), s ( f i ) , . . . ,  s (h  -  n0 +  3))

and so forth. The process described in (3.19) and (3.20) is referred to as a multi-step for recursive) 

prediction (MSP). Since we are assuming that only a limited transient data set is known and 

that the subsequent values s{t\ + 1), s(ti  +  2 ), . . .  never become available through measurement 

during the forecasting process, the OSP formula cannot be used to estimate these unknown 

values. Instead, at each step t >  t i  +  1, the value s(t) will be estimated by its MSP:

(3.21) y„(t)  =f $w(£w(i - ! ) , • • • >  Vw(t -  n0))

where

(3.22) yw {t) d=  s(t), h  -  n0 +  1 <  t  <  h .

At every step t, the value

(3.23) ew (t) =  s(t) -  yw (t)

defines the multi-step prediction error (MSE). Note that one of the main difficulties in performing 

a MSP process is to control the propagation of the prediction errors. The errors are due to the 

past predicted values being used in order to generate the current prediction.

The multi-step-ahead prediction (MSAP) method has been somewhat investigated in the sta­

tistical literature [30, 84, 95, 113, 176, 228]. It involves, at each time step t, predicting s( t i  +  d) 

in terms of the known values s(ti), s(ti  — 1), . . . ,  s(ti  — no +  1) (for some fixed d >  1):

(3.24) i/w(fi +  d) = f $ w(s(fi), s(fi -  1 ) , . . . ,  s (ti  -  n0 +  1)).

For <1 =  1, the MSAP becomes an OSP process. In contrast to this method, what we call MSP is 

also known as one-step plug-in method. It is known in the statistical literature that, for a given 

d >  1, a MSAP as in (3.24) provides a more accurate prediction than using d times a MSP (or 

’one-step plug-in’) process as in (3.21). Note that the target outputs when training the ANN to 

perform a MSAP as in (3.24) are s(to +  d), . . . ,  s(ti).  Since sufficient data points are needed for 

network training, it follows that the lag d has to be much smaller than ti  — to (<f <  t i -  to)-
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In addition, the farthest observation in the future th a t can be predicted is s(fi +  d), where 

fi +  d -C 2ti -  to- In our applications, our goal is to predict the unknown values s(ti  +  1), .. 

s(f2), where t2 is considerably larger than ti. Hence, in order to estimate the value of s(t2), some 

kind of ’plug-in’ still needs to be performed, at least t2 — 2ti +  to times (that is, several hundreds 

of times, in our experiments). In addition, the mapping # <d> that models the dependence of 

s(t +  d) on s(t), s(t — 1), . . s(t — no +1) ,  becomes more complicated as d increases. Hence, while 

the known data set s (l) , . . . ,  s(fi) (where t \  is of the order of hundreds) might be sufficient for 

the ANN to accurately approximate the mapping $ <1:>, it might not be sufficient to approximate 

the mapping <§<10>, for instance. Since in our experiments the known data set is quite limited, 

we used d — 1 (and hence a MSP process) in all cases.

Takens [224] proved that for a compact manifold M  of dimension m, a smooth function (an 

observable) 7  : M  —> R, a dynamical system 4>: R+ x M  —> M., and a point xo € M ,  there 

exists (a countable intersection of open dense sets) C'̂ ,;Xo C  R + such that, for any h £ CV)Xo, 

there is a smooth embedding of M  into R 2m+1 bijeetively mapping the w-limit set w(xo) ==f 

(x  £ M  ; 3 tn —> 00 with <f>tn (xo) —> x} to the set of limit points of the sequence

f T1
(3.25) |  [7 (<£(„+o)fc(xo)) , 7  (<£(n+l)fc(xo)) , • ■ • , 7 (<̂ (n+2m)fc(xo))] ,

which implies (when 7  — 7ri, the projection on the first component) that we can reconstruct 

the u> limit set of an m-dimensional trajectory by using only the information about one of its 

m components. In some of our experiments, the transient state of only one component of an 

8-dimensional aeroelastic system is provided as training set to the neural network. The ANN 

accurately predicts the limit cycle oscillations on that component even though the 8 first-order 

nonlinear ODEs are coupled and the other 7 components of the dynamics are not provided 

[140, 151]. Note that, in order to reconstruct the limit set a;(xo), appropriate values for the 

time lag h and the embedding dimension m  have to be chosen. However, no explicit formulas 

for computing m  and h are available. The information on m  and h is usually unavailable for 

practical problems. Moreover, Takens’ theory is applied to a noise-free condition, while for many 

applications we are interested in data corrupted by noise. The proposed neural network predictor 

is developed so that it is capable of dealing with noisy data.

In the present thesis we concentrate on predicting a particular class of signals, namely oscil­

latory signals. More specifically, the signals we consider have the following poperties:

P .l . For every r  >  0 sufficiently large, the mean value s(r) of {s(t); 1 <  t <  r }  is close to 

zero, and r 1—> s(r) is an approximately constant mapping. If the mean is not close to zero, then 

the signal can be rescaled.

P.2. {s ( t ) ; t  >  1} is an oscillatory signal, i.e., there are sufficiently many moments tm such 

that s(tm)s(tm — 1) <  0, with tm - 1 <  t m, Vro.

P.3. There are sufficiently many such points tm between to +  1 and fi , i.e., the known data 

set contains sufficiently many oscillation cycles.
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P .4 . tm — tm ~i 3 > 1, Vm, i.e, there are sufficiently many sample points per oscillation cycle. 

In general it would be good to have 50-100 points per oscillation cycle.

P.5. max{|s(t)|; 1 < t <  fi}  «  1. The available d ata set is finite, and thus bounded. Thus 

the amplitude can be rescaled t o w l .

3.3 Im plem entation for A N N  Prediction

In this section, we will provide details concerning the implementation of LTMSP using ANNs1. 

In the next chapter, the test results using the proposed procedure will be reported.

A 2LFF1SNN architecture, represented in Fig.3.1, is used in our study. The first layer TF is 

chosen to be the hyperboilc tangent sigmoid f ^ ( x )  =  cr(x) =  tanh(x) in all experiments. This is 

the most common choice for TF in ANN applications, due to the smoothness and monotonicity 

properties of tanh(-), which facilitate the gradient-based network training. The outputs of the 

first layer of this type of ANN are given by

{ no

-  fco)

fco =  l

for 1 <  ki <  n \ .

The most common choice of the second-layer TF is / ( 2) (a;) =  x. Most universal approximation 

results have been proven for such a 2LFF1S2LNN [31, 32, 33, 34, 53, 75, 76, 77, 96, 97, 105]. The 

network output in that case is given by

m
(3-27) y {2\ t )  =  w (o ] +  ] T

ki~l

where y ^ kl{t), 1 <  k\ <  n i, are given by (3.26). This is the classical 2LFFNN used in most 

applications.

As mentioned before, the universal approximation property still holds for 2LFFlSNNs with 

continuous and monotone sigmoidal transfer function (such as tanh(-)) in the output layer 

(2LFF1 S2SNNs) [27]. Therefore an alternative choice for the second-layer TF could be f^2\ x )  — 

tanh(a;). Since the amplitude of the limit cycle of a given trajectory might be larger than 1, a 

scaling is introduced so that the ANN is capable of accurately reconstructing this asymptotic 

state. Hence, f^2\ x )  =  ip (w ^)  tanh(a:) is proposed as TF in the second layer, where is an 

output scaling parameter that will be determined by ANN training, and

(3.28) ^ (x) H f in ^i  +  _ 5 l

1 Versions of som e of th e  discussions in  th is  section have been published in [238, 239 , 240, 241] or su b m itted  
for publication  in  [241].
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-3

Figure 3.2: The function i[>(x) =  ln {l +  ex/ ( l  +  e *)} (’— ’)•

n  i

W;(a )./1)
'fex

The ANN output in that case will be

(3.29) y £ ] (t) =  4>{w{z)) tanh j w (2) +
{  k \—1 )

Note that rp(x) >  max{:c, 0}, Vx, and ift(-) has y  =  0, y =  x  as asymptotes at -o o , +oo 

respectively (see Fig.3.2). ip (w ^)  is used instead of simply to keep the scaling constant 

positive throughout the ANN training. Clearly, the vector w  will contain the extra parameter 

w in that case. In addition, ip'(x) «  1 for most positive values of x , hence w ^  will vary 

linearly during network training [240].

The hyperbolic tangent sigmoid is expected to have a noise reduction effect in feature extrac­

tion [86], hence by using such a transfer function in the output layer rather than a linear function, 

we are hoping to achieve a better robustness for applications to noisy data. Our experiments 

have shown that this does indeed happen. The initial value of in all experiments (when this 

type of TF was used) was set to ip~l (l).

A 2LFF1S2LNN with scaled weights in the second layer is used in some experiments. Namely, 

all , 1 <  k\ <  ni, are replaced by

(3.30) d-  

The ANN output in that case will be

Til

(3.31) y<g\t) =  w  o2)+
1p(w^)  w (2 )

fci

f c l = \  i +  E

Note that is again a scaling parameter used to adjust the magnitude of the ANN output

in order to make it possible for limit cycles of large amplitude to be predicted. Since by (3.26) 

we have \y^ kl (f)| <  1, it follows, by the Cauchy inequality, that:

-i 2

(3.32) y™ \t)  -w , (2 )

<
E  k

k1= 1
(2 ) | 
&1 I

n  i
i +  E

i
w :

2 —

711 n i 2

E  i 2 E w iS
k i ~ l k-i = 1

i +  E
A i= l

W
( 2 ) '

<  Til-
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Hence

(3.33) \y^ ( t) \  < | 4 2) | + V V 3))V ^ -

If was mising, the ANN output would be unable to predict limit cycles of amplitude

larger than |u;q2̂ I +  %/aT- The vector w  now contains the parameter w^3\  and the initial value 

of is set to V>- 1(1).

By normalizing the weights in the second layer, we expect to improve the ANN robustness with 

respect to the noise and to variations in different parameters such as the number of inputs and 

the number of hidden neurons. Since the second-layer weight updates during network training are 

interdependent, these weights cannot vary wildly. It is well known that one of the features that 

provides the power of ANNs is the redundancy in the system parameters. However, in practice, 

redundancy also leads to overfitting and poor generalization due to the existence of many degrees- 

of-freedom in the system. One possible way to reconcile these two sides of redundancy could be 

the weight normalization.

The ANN training performs the minimization of the mean-square OSP error over the training 

set, given by (3.14) in Section 3.2, using a Fletcher-Reeves conjugate gradient algorithm, as 

described in Section 2.2. F irst an  initial guess w 0  for the weight vector w  is set. At each training 

iteration, a sweep of the training set is performed and gnew =f V E ( w old) is computed using 

the current weight vector w old. The current search direction is computed: p new =  — g new +  

{! | s new 111 / 11 goId | ! | } pold, and finally the weights are updated: w new =  w old +  ctwp new, where a w 

is the current step size, or the learning rate (LR), which can be constant or adjusted at each 

iteration. The search direction was set to pnew =  —gnew a t the beginning of training and after 

every 1 0 0  iterations, in order to accelerate the convergence of the conjugate gradient method

The gradient of the performance index at each training iteration is computed as follows. The 

performance index can be viewed as a sum:

[86].

(3.34) E(w) =  ^  E(w , t), where E (w ,t)
t=t O + X

and therefore

VU(w) =  ^ 2  Vf?(w, t), where Vi?(w, t)
t=t0+i

and yw (t) — (t) is given by

(3.36) y £ \ t )  =  ^ ( t c (3))^  w ^ } +
fci=i
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where y ^ k (f), 1 <  &i <  n i, are given by (3.26). The argument of ip (the net input to the second 

layer) will be denoted by v „ \ t ) .  We define Vv(*) =f (1 — r)  +  Ttp(x), \fx £ R , Vr S [0,1], so 

th a t ipi(x) — ip(x) and i>a(x) =  1. For ip(x) — x, £ — 0, £ =  0 in (3.36), we obtain (3.27); for 

ip{x) =  x, £ =  0, C =  1) we get (3.31); and for ip(x) =  tanh (s), £ =  1, (  =  0, we obtain (3.29).

At each training iteration, the scaled weights are first computed:

(3.37)
(2 )

w,(2,sc) def fcx def
7,(2)

(2 )
fci

/ n  i
' 1  +  C E

hi= 1

1  <  fci <  m .

W,(2 )

Then, for every t, f0  +  1 <  f <  t i ,  the values of v ^ ki(f), y ^ ki(t), 1 <  kx <  m , Uw^t), y™\t), 

and ew(t) =  s(t) — y ^ \ t )  are calculated according to  (3.26) and (3.36). The following quantities 

are then computed using the backpropagation algorithm:

(3.38)
d E (w ,t )  —2ew(t) d E (w , t ) _  d E (w ,t )
d y ^  (t) h - t 0 d v ^ \ t )  d y ^ \ t )

(3 3 9 ) ^ g (w ,f )  _  d E (w ,t )  (3) (2,sc) 0Jg(w ,t) _  01S(w,t) (i)

where cr(o:) =  tanh(x). Then the gradient components of E (w ,t )  are computed as follows. 

d E (w ,t )  _  d E (w , t ) dE (v/,t)  __ d E (w ,t)

 ̂  ̂ dw k l  0  f r 'w k W ’ M x!feo

Note that, for 1 <  k\ < n \ \

s(t -  ko), l < k o <  n0,

(3.41)

or, equivalently:

(3.42)

dwiS
E

L/u=i

U),(2 )
&i

7*(2)

^ ( I r  =  { ^ c ( ^ (3) )j/w,)feI W r(2) -  [* i2) w  -  4 2)] 4 ? }  •
ki

Hence

(3.43) 

Finally:

(3.44)

d E (w ,t )  _  d E (w ,t )  d E (w ,t)  _  d E (w ,t )  dvffi(t) 

9wq2) d v £ \ t )  ’ d w ^  d v £ \ t )  d w ^

d E (w ,t )  _  d E (w ,t)  ^ ( w ^ )  (2) d E ( w , t ) ^ ( w ^ )

^ (3) d y g \ t )  1 j <?ui2)(f) ^ (3))
-  wo2)

Designing a good stopping criterion for the network training process is of utm ost importance 

in ANN applications. The purpose of training is for the network to learn the training patterns, 

in other words to make the performance index E (w )  small. However, the learning of the training
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examples is desirable to the extent to which it helps the ANN to accurately generalize. If E (w) 

becomes smaller than  a certain threshold, the ANN will s ta rt to  learn features th a t are specific 

to the training set and are not relevant anymore for the general pattern  from which the training 

examples were drawn. This threshold is heavily problem-dependent and there is no clear way to 

estim ate it. In our study we use a stopping criterion tha t is specific to our MSP problem. At 

each iteration, after the weight update has been performed, the current MSP vector

(3.45) y (w new) =  [yw-e» (h  +  1), (ti +  2 ) , . . . ,  (f2)]T

is computed. The ANN training is stopped when the distance between two consecutive MSP- 

generated signals

,« i n  new def ||y (w new) -  y (w o W ) | | 2

<3'46) 9 ~ ---------- V T T T ---------

becomes small and almost constant during many training iterations. If this does not happen, 

then we say th a t the ANN training does not converge [238, 239]. In our experiments, the value 

of E{w new) is usually around 0.01 and the value of pnew is of the order of 10~ 4  by the time the 

ANN training converges.

As mentioned above, the LR can be constant or adaptive. For a given test case, if a constant 

learning ra te  (CLR) is used, its value is chosen as follows. S tarting with an initial value of 1.5, 

decrement the CLR with 0.1 at a time and start the ANN training. Then the CLR is chosen to 

be 1/10 of the maximum value for which the ANN training remains stable during the first 1000 

iterations.

In the case of an adaptive LR (ALR) a w, the training is performed as follows. At each 

iteration, after the weight update, a w is multiplied by £w — 1 . 1  if i? (w new) <  i?(w old), and 

divided by Cw otherwise. In order for a w not to decay to zero, a constant lower bound d w for 

a w is set to  10~6. At the beginning of training, a w is set to  d w. To avoid a heavy oscillatory 

behavior of the learning rate, an adaptive upper bound for a w is initialized. Then, whenever 

a w decreases, a* is divided by =  1.001, otherwise it remains unchanged. As a result, both a w 

and eventually stabilize at the same value [238, 239], We select the initial value of a ^  as 

follows. Starting with 0.1, increment the initial with 0.1 a t a tim e and s ta rt the ANN training. 

Choose the minimum upper bound for which the ALR has a t least one oscillation within the first 

1000 training iterations. Using an ALR is expected to increase the sensitivity of the ANN to 

noise in the training signal, due to the fact th a t an ALR search algorithm is more versatile than  

one using a CLR, and therefore makes it possible for the ANN to learn the noise immediately, 

thus corrupting the underlying pattern.

The standard approach to weight initialization for training is to set the weights to  small 

random values. It is easy to  see th a t w  — 0 is a steady state  for the ANN training process. If 

the training is started  with zero initial weights, the gradient of the performance index is zero, 

and hence the weight updates are zero. Therefore w new =  0 a t every training iteration. In some
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of our experiments we will initialize all , k% ^  0 , feo ^  0  with random numbers uniformly 

distributed in [—0.01, +0.01], while all the other weights will be initially set to zero. This is, in 

fact, sufficient to  ensure a nonzero gradient at the beginning of training. In other experiments, 

wk^k0 ̂ 1 ^ 0 , ^ ^  0 , are initially set to

(3 471 w W  •= S{h  ~ kl ~ h  +1}( 0 .4 1 ) k i , k o  ' no >
E  [S (*X -  fci -  h 0 +  l ) ] 2

/lO =  l

while all the other weights are initialized by zero. The reason for doing th a t will be explained 

in the following. It was noticed in practice that, if the network training is performed with zero 

initial weights in the first layer (and nonzero initial weights in the second layer), then each vector 

Wj.^. has an oscillatory profile at the end of training. Moreover, the main oscillation frequency 

is close to  the one corresponding to the training signal. This phenomenon could be explained by 

the fact tha t

*> H ;  o

for to +  1 <  t  < t i ,  1 <  k\ < m , 1 <  ko <  no- In the steepest descent optimization algorithm, 

for instance, the weight update at each iteration is proportional to  V-E(w), and for each t, the 

gradient components corresponding to the weights of a first-layer neuron k \ are proportional to 

the inputs s(t — ko). Therefore, it is not surprising th a t w j^ . has an oscillatory profile. In  the 

conjugate gradient algorithm, the current weight update depends on a linear combination of the 

gradient of the performance index a t several past iterations, but the above proportionality still 

holds.

This observation leads to  the idea tha t one might be able to  speed up the ANN training by 

initializing the vectors with segments of the training set, thus incorporating an oscillation 

in the weights from the very beginning of the training. In our experiments, however, we did not 

notice any significant improvement in the training speed when such a weight initialization was 

used, but a clear improvement in prediction accuracy and robustness was observed. The division 

of each segment by its squared Euclidian norm (’normalization’) was done in order to  prevent the 

net input u ^ fci (t) of each hidden neuron from being large in absolute value, which would then 

lead to  the phenomenon of saturation. Since the derivative of tanh(-) is close to  zero even for 

|m| close to 2, the derivatives of the performance index E (w) with respect to  the weights of the 

corresponding neuron would be close to  zero. Consequently, the weights would never be updated 

by the gradient-based ANN training algorithm.

Once the network architecture and the training algorithm are determined, the remaining 

im portant consideration is to choose the correct number of network inputs no and the number of 

neurons in the hidden layer n i for a given task. In the present study, we propose various methods 

th a t provide estimates for Hq and n\.  These methods are extensions of those we proposed in [240].
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Figure 3.3: ANN Training Set with Lmax and Lmin Points (Test Signal SI).

Since ANNs are robust with respect to variations in the number of inputs and in the number of 

neurons, rough estimates for these quantities should be sufficient.

The main idea when estimating no is that we want the ANN inputs to span over an entire 

oscillation cycle. A first estimate of no could therefore be obtained by dividing the number of 

training points f i —to by the number of oscillation cycles observed in the training set, thus obtain­

ing an empirical estimate of the average number of sample points per cycle [240]. Alternatively, 

we could choose no to be the average length of an oscillation cycle, namely the average distance 

between consecutive local minimum (Lmin) — or local maximum (Lmax) — points throughout 

the training set. For example, in Fig.3.3, t \ miIi =  53, t2min == 159, t \ mm — 252 are the Lmin 

points, while £kmax =  106, t \ max =  207 are the Lmax points. The distances between consecutive 

Lmin points are djmm =  t \ mm — =  106, =  t | mm — t \ min — 93, while the distance be­
tween consecutive Lmax points is d \max =  i|max_^Lmax _  iqi .  The average distance between the 

consecutive Lmin points is thus aLmin =  100 (rounded off to the closest integer), while the average 

distance between the consecutive Lmax points is aLmax =  101. The average of these two quanti­

ties, oavg — 101, could be an empirical estimate, denoted by riomp, of no- Note that the following 

vectors are defined: tLmin d=  [^ min, ^ min, ^ min]T =  [53,159,252]T, dLmin d=  [d\min, d l milt]T =  

[106,93]t , tLmax d=  [ t \max,t%max}T =  [106,207]T, dLmax d=  [d\max) T =  [101]T.

An alternative way of determining an appropriate value for no is to compute, for 0 <  h <  

t \  — to — 1, an estimate of the autocorrelation function (ACF) [68 , 215]:

£  [s(t +  h) -  s][s(t) -  s\ tl
(3.49) p{h) =   , where s =  ,- ■■_ ■ ■■ ^  s(t).

£  [ s ( t ) - s ] 2 1 r° t=t0+i
t = t  o + l

According to Fan and Yao (citing Box and Jenkins) [68], in order for the estimates to be accurate 

it is necessary to have t \  — to >  50 — which is always satisfied in our case studies. Moreover, 

since the estimates become inaccurate for larger h because of the lack of enough observations, it 

has been proposed that only the values of p(h) for 0 <  h < (ti — to)/4 be used [68].

Note that the ACF is a measure of the linear dependence of s(t) on s(t — h) for different lags 

h [68 , 215]. In our experiments, the function p(-) has an oscillatory profile, as in Fig.3.4, and 

|/5(h) | is typically a nondecreasing function of h. The value of h for which the first peak of p(h) 

is achieved provides an estimate ngcf of the lag h for which the positive correlation between s(t)
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and s(t  — h), t >  0, is maximum. For instance, in Fig.3.4, the first peak is achieved for h — 43, 

hence n%cl — 43 is an estimate of the necessary number of ANN inputs. The vertical bar marks 

the point h — {ti — fo)/4.
An estimate of the number of network inputs can also be obtained as follows. Compute the 

Fast Fourier Transform (FFT) of the training set assuming the sampling step to be 1. Detect the 

lowest frequency zq that has an energy close to the maximum energy of all Fourier modes in the 

decomposition. Compute nf* =  1/zq (rounding off to an integer value). This is an estimate of 

the number of sample points contained in the oscillation period T\ of the lowest frequency mode 

with high energy. For instance, in Fig.3.5, zq =  0.0105 does not have the highest energy, but it is 

the lowest frequency that has an energy close to the highest one in the decomposition. Therefore 

we take n® =  1 /iq  ~  95 as an estimate of the number of network inputs necessary for working 

with this signal.

In the next chapter, we show that the estimates ngmp, ng®, and n®1, are close to each other for 

each test case (see Table 4.4). Hence, the “final” estimate n®n of no could be chosen to be either 

the maximum nJJ1®* of the three types of estimates, or their average nQVg, possibly rounded up to 

the closest multiple of 10, etc. Our choice of n*n for each test case will be reported in Table 4.4.

It was noticed in practice that quantitative pointwise prediction error measures do not provide 

a good description of the MSP accuracy. Even when a small phase shift between the correct signal 

and the predicted signal is present, the values of the pointwise error could be of the same order as 

the amplitude of the given signal. Therefore we need to establish qualitative criteria for assessing 

the prediction accuracy. An obvious way is to determine the degree of superposition between the 

time histories (THs) of the correct signal and the predicted signal by visual inspection. Additional 

insight can be obtained by plotting x(t) vs. x(t — d) — where t  spans over a complete oscillation 

cycle — for both the correct signal and the predicted signal, for different lags d =  1 , 2 , etc, and 

assessing the degree of superposition between the two graphs for each time lag. Since we are only 

interested in accurately reconstructing the asymptotic state of the signal (the limit cycle, in our 

test cases), we could plot no graphs for each test case, namely for 1 <  d <  no, £2 — ^0 <  t  <  t .̂ 

Due to space limitations, throughout this thesis we will only plot the phase portraits (PPs) for 

selected lags d. For instance, in Fig.3.6, the superposition of the THs of the test signal and the 

ANN-generated MSP is illustrated, as well as the superposition between the PPs corresponding

<

- 1
280

h

Figure 3.4: ACF for an ANN Training Set (Test Signal S3).
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COMPLETE DETAIL
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v v

Figure 3.5: F F T  Plot of a Training Set (Test Signal S5).

to d =  3.
Having chosen the number of inputs no, the necessary number of ANN hidden neurons n \ 

needs to be estimated. In the present study we propose an extension of the method presented 

earlier in [240]. In [240] we proposed performing the ANN training for different numbers of hidden

neurons n\ — 1, 2, 3 , __  This process could be parallelized in order to reduce the computation

time. Let w^” 1) be the weights obtained when training an ANN with m  hidden neurons using 

the given signal, and

' jy (w [ni]) y  (w [ni~ 1]) ||g
(3.50) [ni] def

s/t* - t i

for each n i >  1, where y(w ) is defined in (3.45). In general, the distance p ^  first decreases 

as n \ increases, then it becomes smaller and approximately constant with respect to n i (see 

Fig.3.7(a)). This indicates th a t the ANN prediction is stable. In order to visualize the overall 

trend, pM can be averaged over q consecutive values of ri\, obtaining a distance pg\ One can start 

with q — 1, 2, etc., until the graph of pj^ becomes relatively smooth. The value h i is selected 

which corresponds to the point where the decreasing trend of pj^ stops, and h i +  q is chosen as 

the number of hidden neurons. For instance, in Fig.3.7(b), p ^  is considered (for q =  5) and the 

decreasing trend of p ^  stops a t h i =  29. Therefore the number of hidden neurons is chosen to 

be n i =  29 +  5 =  34.

In fact, we are mainly interested in the asymptotic state of the predicted signal, regardless of 

the shifts between MSPs corresponding to different numbers of hidden neurons. In  Fig.3.8 it is 

apparent tha t the P Ps of the MSP stabilize much sooner than  the THs as the number of hidden 

neurons is increased. Therefore an alternative choice for n i could be the value h i  for which the

0.8 0.8

X

- 0.9 !—̂ -o.s1—
1000— 0.9283 400 600 800 0.8

t x(t—3)

Figure 3.6: Test Signal (’—’), and MSP (’- -’).
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Figure 3.7: Sample pM (a) and (b).

P Ps of y  (wfrei_Dl), y (wl" 1 £)+1l), . . . ,  y  (w^ni *1), y (wtniJ) are overlapping for each lag d, 

1 <  d < no (for some integer D  >  0).

3.4 Dynam ical System s Perspective

In this section, we present a theoretical justification of our proposed approach to LTMSP of 

nonlinear trajectories using ANNs. We are providing a reason why we expect our method to 

work. We will show that the MSP dynamical response is close to the response of the original 

dynamical system when certain conditions are satisfied. More specifically, we compute an upper 

bound on the distance between the cu-limit set of the given trajectory {s ( t) \ t  > 1} and the u>- 

limit set of the trajectory generated by MSP using an ANN trained based on a segment of the 

transient state of {s(t); t  > 1}.

N otation 3.4.1. Denote by {e^; 1 < h <  no} the canonical basis in R n°. For every h, 1 < h < 

no: =  [0 ,... , 0 ,1 , 0 , . . . , 0]T G R n°, where the A-th component is equal to 1.

N otation 3.4.2. Denote by dhf  the partial derivative with respect to the A-th variable of a 

differentiable mapping /  : R ”° —> R.

N otation 3.4.3. Denote by C°(Rn;R m) the set of all continuous mappings f  : R ” —» R m, and 

by C'o(R”;R m) the subset of all bounded mappings in C°(Rn;R m).

N otation 3.4.4. Denote by C'fe(R ";R m) the set of all mappings /  : R ” —> R m that have 

continuously differentiable partial derivatives of order up to k. Denote by Cq (Rn; Rm) the

1.1

—' -1.1L 
1000 - 1.1960 1.1

t x(t—3)

Figure 3.8: MSP for m  =  3 4(’- 5(’-.’), 6 (’...’).
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subset of bounded functions in C k(R"; R m) for which all partial derivatives of order up to k are 

bounded.

N o ta tio n  3 .4 .5 . Denote by C°°(Rn;R m) the set of all infinitely differentiable mappings /  : 

R" —> R™. Denote by Co°(R”; R m) the subset of bounded functions in C°°(R n; R m) for which 

all partial derivatives are bounded.

N otation  3.4.6. For m  £  No, denote by f ^  the m-fold composition /  o /  o . . .  o /  of a function 

/  : R ” —> R". By definition, is the identity function.

Definition 3.4.1. Define the (open) ball of center x  and radius r with respect to the oo-norm 

on R no by (x ,r) {x  e  Rn°; ||x -  x||oo < r}, Vx £  R"'0, Vr >  0.

Definition 3.4.2. Define the closed ball of center x and radius r  with respect to the oo-norm

on R ”° by J3oo(x,r) = f {x £  R n°; ||x -  x||oo < r},  Vx e  Rn°, Vr > 0.

Definition 3.4.3. Define the right shift operator shr : R ”° —► R ”° asshr(x) =f \0 ,x i , . . . ,  x„0_i]T, 

Vx £  R"°.

Lemma 3.4.1. shr(-) is a linear mapping and ||shr(x)||oo < IMloo, Vx £  R"°.

Proof. The linearity of shr(-) is obvious. Moreover, Vx £ Rn°, we have:

(3.51) jjshr(x)||oo =  max \xh\ <  max =  H x ^ .
l < h < n o ~ l  l< h < n o

□

Definition 3.4.4. Given the mapping $ w : R n° —> R, define the mapping # w : R n° —> R n° by 

$ w(x) d=  $ w(x)ei +  shr(x) =  [$w(x),®i, .. .  ,a;no_i]T, Vx £ R n°.

Definition 3.4.5. Given the mapping $  : R ”° —> R  in (3.8), define the mapping #  : R n° —> R ”°

by # (x ) =  $ (x )d  +  shr(x) =  [§ (x ) ,x i , . . .  ,x no_i]T, Vx £ R n°.

Definition 3.4.6. A mapping : R ”° —> R  is said to be a Lipschitz mapping if 3A(4>) >  0 such 

that |$ (x) — $ (x ) | <  A(4>) ||x — x||oo, Vx,x e  R n°.

Definition 3.4.7. A mapping #  : R"° —> Rn° is said to be a Lipschitz mapping if 3A(#) >  0 

such that ||$ (x )  -  $(x)||oo <  A(<&) ||x  -  x||oo, V x,x e  R n°.

Definition 3.4.8. Given a mapping $  : X  -» X ,  a subset Y  C X  is said to be forward # -  

invariant if # (F )  c  Y.

Assum ption 3.4.1. Throughout this section, we assume that the mapping <3>w : R n° —► R  is 

given by the output of a 2LFFNN:

(3.52) * . W « / < » | « ^  +  E " ’? )/ (1>( ’»fS +  E  Vx e  R"u.

with f ^ ( x )  =  tanh(x), and f ^ ( x )  =  x  or f ^ ( x )  =  ctanh(a;) (c > 0).
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P r o p o s i t i o n  3 .4 .1 .  /W  G C §°(R ;R ), with | | | / (1)| | | c  =  1, i l | / (1)| | | c  =  1, a n d  f &  e  C °°(R ;R ), 

with / (2) G C g°(R ;R ), | | | / (2)|||c  =  1 (if f {2\ x )  = x) or | | | / (2)|||c  =  c (if f (2){x) =  ctanh(x), 

c >  0) respectively.

Proof. Follows immediately from Assumption 3.4.1, since d ta,nh.(x)/ d x  =  1 — tanh2(x). □

L em m a  3 .4 .2 . If /  G Cft(R;R ), then \ f(x )  -  f (x ) \  < | | | / | | | c  p  -£ ||o o , V x ,x  G R.

Proof. Follows immediately from the mean value formula in R. □

i « ( ^1 f ry\ *0 / - \
Proposition 3.4.2. $ w is a Lipschitz mapping, with A(4>w) =  | | | / (2^|||c X) Nfc I £  \wk h\-

k = i  /i= i

Proof. Follows immediately from Assumption 3.4.1 and Lemma 3.4.2, taking into account that

Hl/Wlllc =  1, as shown by Proposition 3.4.1. □

Proposition 3.4.3. |||<9ft$w|||c  <  | | | / (2)|||c  J2 \w£l\ ,  1 <  h < n 0.
k=I

Proof. Follows immediately from Assumption 3.4.1 and Lemma 3.4.2, taking into account that 

| | | / (1>|||c — 1) as shown by Proposition 3.4.1. □

Proposition 3.4.4. |ew(f) — ew(f)| < A(4>w) ||ew(f — l)||oo, Vt >  fi +  1.

Proof. By Proposition 3.4.2: |ew( t ) - e w(t)| = |j/w(f) ~I/w(f)| = |$w (s(f - 1)) -  $w(yw(f - 1))| < 
A($w)j|s(f -  1) - y w (f -  1)||oo =  A(<E>w)||ew(t — l)||oo. □

Proposition 3.4.5. |||$ w|||c  <  M$w) | | | / (2)|||c  | | ^ 2)| +  £  kfe2)| | -

Proof. Follows immediately from (3.52) and Lemma 3.4.2, taking into account that /® (0 )  — 0
for our choices of and that | | | / ^ | | | c  =  1, as shown by Proposition 3.4.1. □

Proposition 3.4.6. $ w is a Lipschitz mapping with A (#w) =f m ax{l, A(4>w)}.

Proof. By Definition 3.4.4, Lemma 3.4.1, and Proposition 3.4.2, V x,x G R"° we have:

||<# w( x ) - # w(x)||00 =  m a x {|$ w( x ) - $ w ( x ) | , | | s h r ( x - x ) | |00} <
(3.53)

<  m ax{A($w)||x  -  x ^ ,  ||x  -  x||oo} =  m ax{l, A($w)} ||x  -  xlloo.

□

Proposition 3.4.7. | |$ w(x)||oo <  m ax{|$w (x)|, IM I^} <  max{Ju ( fw), M U } ,  Vx G R"°. 

Proof. Follows immediately from Definition 3.4.4, Lemma 3.4.1, and Proposition 3.4.5. □
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Proposition 3.4.8. If ||x||oo < R  (for some R  > 0) then

(3.54) |M x ) |  <  | | | / (2)|| |c  | k 2)| +  « E l - i 2 ) l |  <

where (i(R) =  tanh(^(i?)) <  1 with

(3.55) v{R) =f max j | u ^ |  + i ? E  I ’ 1  -  k -  H l| '

Proof. Follows immediately from (3.52) and Lemma 3.4.2, taking into account th a t (0) =  0 

for our choices of f ^ 2\  n

Proposition 3.4.9. If R  > p(4>w) then H x ^  < R=> |$ w(x)| < R.

Proof. Follows immediately from Proposition 3.4.8. □

Proposition 3.4.10. If R  > p($w) then HxHoo <  R  => ^ ^ ' ( x ) ^  < R, Vm >  0. In  other 

words, $Jj^(E7) C  U, Vm >  0, where U =  i?oo(0, R).

Proof. Follows immediately from Propositions 3.4.7 and 3.4.8. □

Proposition 3.4.11. shr[noI(x) =  0 e R " ° ,  Vx€  R"°.

Proof. Follows immediately from Definition 3.4.3. □

Proposition 3.4.12. 4>^(x) =  ^  (x)} e/j, Vm >  no.
h = l  1 }

Proof. By Definitions 3.4.4 and 3.4.3, we have:

$ H (x )  =  4>w {< I> M (x)}  -  { ^ “1]( x ) } ei +  shr { $ t ' 1](x)} =

(3.56) =  <f>w { $ £ r 1](x)} e i +  shr { $ w { $ ^ “ 2](x)} e i +  s h r  { * M ( x ) } }  =

=  { # ^ - 1](x)} e i +  # w { $ ^ _ 2](x)} e 2  +  s h r t2] { $ ! ^ - 2](x)} , etc.

In general, for 1 <  k < min{m, no}, we have:

k
(3.57) $ H ( x )  =  E $ w ( x ) }  e h + shrW  { * N - * ](x)} .

h = 1

The proof is concluded by setting k  =  no for m  >  no and using Proposition 3.4.11. □

Proposition 3.4.13. If R  >  p(4>w), then HxHoo <  R  =>• ^ ^ ( x ) ^  <  p(4?w) <  R,  Vm >  no-
In particular, H x ^  < R  =4> ^ ^ ' ( x ) ! ^  < p(4>w) < R,  Vj > 1.
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Proof. By Proposition 3.4.12, for m  > no, we have:

(3.58) I I ^ M H o o  =  ™ fno |®w •

Since m  — h > m  — no >  0 for 1 <  h < no, by Proposition 3.4.10, it follows that

(3.59) <  R,  V/i. hence max
— ' l < h < n 0

according to Proposition 3.4.8. □

Definition 3.4.9. The sequence {y{t); t  >  t i}  C  R n° is said to be an orbit of $  : R"° —> R"° 

if y(t)  =  # ( y ( i  -  1)), Vt >  ti +  1 [22, 148].

P rop osition  3 .4 .14 . (3.21) and (3.22) are equivalent to y w(f) =  $ w(yw(f — 1)), Vt >  ti +  1, 

y w(ti) =f s(fi). In other words, the sequence {yw(t);t >  t i}  C  R n° generated by MSP is an 

orbit of $ w [148].

Proof Follows immediately from Definition 3.4.4. □

N otation 3.4 .7 . For any set U in a topological space X , denote by U the closure of U (the 

smallest closed set tha t includes U).

Definition 3.4 .10 . Let X  be a compact space and $  : X  —> X  a continuous mapping. A 

compact set C  C  X  is an attractor for $ ,  if there exists an open set U D C, such th a t $(£7) C  U 

and C  =  Dj>o 4&[jil(t/) [2 2 ],

Proposition 3.4 .15 . Let X  be a  compact space and #  : X  —» X  a continuous mapping. If

C  — r i j > 0  3?^(^0  is an attractor for #  (U open, U D C, #(£7) c  U), then the forward orbit of

any point x  e  U converges to C  [22]: V open V  D C  3 jv  Vj >  j v  (x) £ V.

Proof Provided in [22]. □

Definition 3.4 .11 . Let X  be a compact space and <1? : X  —> X  a continuous mapping. An open 

set U C X ,  w ith U compact, is called a trapping region for if &(U) C  U [22].

Proposition 3.4 .16 . Let X  be a compact space and #  : X  —> X  a continuous function. If U is 

a trapping region for # ,  then the compact set C  = f f)j>o $ ^ ( ^ )  is an attractor for 4> [2 2 ],

Theorem  3 .4 .1 . Consider the compact space X  =  Boo(0,R + 1), where R  > / /($ w), and the 

continuous mapping : X  —> X . The set U — £oo(0 ,R )  c  X  is a trapping region for 

In consequence, Cw°' d=  f ] j> 0  {U) is an attractor for

Proof. Follows immediately from Proposition 3.4.13. □
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D efin ition  3.4.12. Define the w-limit set of s(ti) (denoted by Lo(s(ti))) the set of all s e  R n° for

which there exists a sequence {tm;m  > 0 } (fm —► oo for m  —> oo) such th a t lim ||s (tm)— s||oo — 0
T f l—*-00

[22].

D efin ition  3.4.13. Define the w-limit set of s(£i) with respect to # w (denoted by ww(s(fi))) 

the set of all s € R"° for which there exists a sequence {tm; m >  0} (tm —s- oo far m  -> oo) such 

that lim ||# |]H (s(ti)) — s||oo =  0 .m—* oo

P ro p o sitio n  3 .4 .17 . Let X  be a topological space, #  : X  —> X  a continuous mapping, and 

x  € X .  Then cu*(x) (the tn-limit set of x  with respect to 4>) is closed and ^-invariant [22]. If X  

is compact, then tu^(x) is nonempty.

Proof. See [22], If X  is compact, then the sequence {#b1(x ); j  >  o} c  X  admits a convergent 

subsequence, and thus w#(x) ^  0. □

D efin ition  3 .4 .14. Define the distance between the point x  €  R ”° and the closed set F  C  R n°

by doo(x, F ) =f in fd lx -y llo o jy  e  F}.

P rop osition  3 .4 .18. c?oo(x, C) =  sup{doo(x, V)\ V  open, V  D C ), Vx €  R n°, VC compact.

Proof. For any open V  D  C, we have V  D  V  D  C  and therefore doo(x ,C ) =  inf{ ||x  — y||oo;y  € 

C} >  inf{ ||x  -  y ||oo;y € V }  = doo(x, F ). Hence doo(x,C) >  sup{doo(x, V); V  open, V  D  C}. 

Now, for every e > 0, we have C  C  U ye c  B ^ i y ,  e). Since C  is compact, there is a finite 

subcovering of C, i.e., 3{y&; 1 <  k < N }  c  C  such tha t C  C  UitLi B 00(yk, e) =  Vd The set 

is open, with Ve =  UfcLi ■S0o(yfe) e) compact. For every z  €  V£ 3k, 1 < k < N ,  such th a t 

z € Boo(yfc,e), i.e., ||z  — yfc||oo <  e. Then, by the triangle inequality, we have: doo(x,C) <  

||x  -  yfelloo <  ||x  -  z||oo +  ||z -  yfclloo <  ||x  -  z||oo +  e. By taking the infimum over z £ V£, 

we obtain doo(x, C) <  doo(x, K ) +  e <  sup{dO0 (x, F ); V open, V D C} +  e. Since this formula 

holds for any e >  0, it follows tha t doo(x, C) <  sup{doo(x, V); V  open, V  D  C}, and the proof is 

complete. □

Proposition 3.4.19. For IV >  0, consider the sequence {XTO;m  >  0} and its subsequences 

{X h-i+ jN ', j  >  0), 1 <  h < N .  Let {X mk; fc >  0} be a subsequence of {X TO;m  >  0}. In other 

words, { m k >  0} C  N , m k —> oo for k —► oo. Then 3h, 1 <  h < N ,  3{ jn; n  >  0} such th a t 

{X ^_ 1+j nAr;n  >  0 } is a subsequence of { X mk;k  > 0 }.

Proof. Vfc >  0, define hk , j k € N  (uniquely determined) by m k = h k — 1 +  j kN ,  1 <  hk < N .  

In other words, jk  =  m k div N  (the integer division quotient), and hk — 1 =  m*, mod IV 

(the residual). Now, {hk;k  >  0} C  N  is a bounded sequence, hence (by Cesaro’s lemma) it 

has a convergent (that is, constant) subsequence hkn = h, Vn >  0, 1 <  h < N .  Note th a t 

{kn;n  > 0} C  N , kn -+ oo for n  oo. Hence m kn = h  -  1 +  j knN ,  and j kn —> oo as n  —> oo 

because n —> oo => kn oo =$• m kn —■> oo. Denote j kn by j n and the proof is complete. □
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T h e o re m  3 .4 .2 . Let R  be sufficiently large such tha t

(3.60) R > f i ( ®  w), ^ - 1]( s ( t i ) ) £ J 7  =  5 o o M ,  l < h < n Q.

Then ww(s(ti)) C C ^ 1.

Proof. By (3.60) and by Theorem 3.4.1 and Proposition 3.4.15, all sequences

(3.61) j # 13' " 01 ( # S ~ 1](s (ti)) )  =  > 0 } ,  1  <  h < n0

converge to  Cw0̂ . By choosing an arbitrary s  € u>w(s(fi)), there exists a subsequence {iTO; m  > 0} 

(im —> oo for m  —► oo) such that

(3.62) lim
771— *CQ

^ | ml( s ( t i ) ) - s =  0 .

By proposition 3.4.19 (with N  =  no), 3h, 1 < h < no, 3 { jm;m  > 0} (jm —> oo for m  —> oo) such 

th a t | $ ^ _ 1+3mno^(s(ti)); m > 0 j  is a subsequence of j# S H (s (f i) ) ;  m  >  0 j .  Hence:

(3.63) lim | | # ^ - 1+^ no](s (t l ) ) _ s |
m —> o o  11 I

Fix a small 6 > 0. Then 3me such that

0 .

(3.64) 1+3 m”°Hs (^i)) ~  s| < 0,  Vm >  mg

Let V  be an open set tha t includes C'w0̂ . Then, by Theorem 3.4.1 and Proposition 3.4.15,

3m y >  me such th a t # , [ h - l+ j m n o ] (s(ti)) € V  C  V, Vm >  m y .  Hence

< 6, Vm >  m y.(3.65) d oo (s ,F )<  * £ - 1+*"n°l(s(i1) ) - s  

Since doc(s, V) < 6  holds for any open V  D Cw0 ,̂ by Proposition 3.4.18, it follows that

(3.66) doo (s, C £ o]) -  sup {doo(s, F); V open, V D }  <  0.

Hence d^, ^s, (7w0̂  <  0 for any 6 >  0. For 0 —> 0, we obtain doo ^s, Cw°^ =  0, or equivalently, 

s £ Cw°l Since s £ ww(s(fi)) was arbitrary, it follows that ww(s(ti)) C  C w °\ and the proof is 

complete. □

D efin itio n  3.4.15. The sequence (x(t); t  >  t i}  C  R ”° is said to be a b-pseudoorbit of : 

R"° —> R ”° (for some b >  0), if ||x(t) -  *3?(x(t -  l))||oo < b ,  Vf >  t i  +  1 [22, 148].

Lemma 3.4.3. x(t) — 4?w(x(f — 1)) =  [x(t) — $ w(x(t — l))]e l 5  Vf >  no, V{x(t); t  >  no} C  R n°.

Proof. Follows immediately from Definition 3.4.4. □
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D e fin itio n  3 .4 .16 . Given the sequence {s(i);£ >  h }  C R"° and the mapping # w : R"° -+ R "°, 

bZ =  m ax{||s(t)—# w(s(t—l))||oo;*o+l <  t  <  h } ,  V* d=Sf s u p { ||s ( t ) -# w (s(t-l)) ||o o ; t >  ti +  1}, 
or equivalently: max{|ew(t)|; t o +  1 < t  < ti} , b^  =f sup{|ew(£)|; t > t \  +  1}.

Remark  3.4.1. There is no guarantee th a t 6 ^  is finite. This issue will be clarified in the following.

D efin itio n  3 .4 .17 . Given {s(f);f > f i } c R no: s+ + (f) d=  [s(t),s(t -  1 s ( t -  n0)]T G R n°,

(3.67) A d=  sup nun ||s++(f) - s + + ( r ) ||
t>ti+ l *o+l<r<ti

L em m a  3 .4 .4 . ||s+ + (f) -  s++( r ) | |oc =  m ax{||s(f) -  s(t)||oo, ||s(f — 1) -  s ( r  -  l)||oo}- 

Proof. Obvious. □

P ro p o s itio n  3 .4 .20 . < Pf, +  (1 +  A(3>W))A.

Proof. For any t  > t \  +  1, let r t =  arg min ||s+ + (f) -  s+ + ( r ) | |00. Then, by Proposition 

3.4.6, Definitions 3.4.16, 3.4.17, and Lemma 3.4.4, we have: ||s(£) — # w(s(f — l))||oo <  ||s(f) — 

s(Tt)||oo +  |js(rt ) -  $ w(s(rt -  1 )) [ J oo +  ||# w (s(rt - 1 )) -  $ w(s (£ -  l))||oo <  ||s(£) - s ( r t )||oo +  b% +  

A($w)||s ( t—1)—s(rt —l)||oo <  &w+( 1 + A ($ W)) m ax{||s(f) -  s (rt )||oo, ||s (t -  1 ) -  s (rt -  1 ) |U }  =  

b« + (1 +  A ($w)) ||s++(*) -  S+ + (rt )IU  <  K  +  (1 +  A (#W))A. □

P ro p o s itio n  3 .4 .21 . If A <  oo (or equivalently, if the trajectory {s(t); t  >  t \  +  1} is bounded) 

then 6 ^  <  oo and { s(t);t > t i +  1 } is a 6 ^-pseudoorbit of # w-

Proof. Follows immediately from Definitions 3.4.15, 3.4.16 and Proposition 3.4.20. □

Remark 3.4.2. In all our experiments, it has been observed that, once the ANN has been trained 

(and b!£ is very small), then P% is also very small. In  other words, the OSP is very accurate 

throughout the entire trajectory.

D e fin itio n  3 .4 .18 . Define =f m ax { ||$ w(s(t — 1)) — # (s ( f  -  l))||oo;£o +  1 <  t  <  ti} , and 

*==:f m ax { ||$ w(s(f — 1)) — # ( s (t — l)) ||o o ;t >  fi +  1}, where #  is the mapping in (3.8) and $  

is the mapping given by Definition 3.4.5.

P ro p o s itio n  3 .4 .22 . &£<&£ + e ^ .

Proof. By Definitions 3.4.16 and 3.4.18, for every t, to +  1 <  t  < t i ,  we have: | | # w(s(f — 1 )) — 

4>(s(f -  l))||oo < ||$ w (s(t -  1)) -  s(f)||oo +  ||s(f) -  $ (s(£  -  l))||oo < b Z  + eoo- □
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s(tQ+1) to s(tj) s^+1) to s(t2)
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0.8
s(t—7) s(t—7)

Figure 3.9: Phase plot for training set (left) and testing set (right).

_ £i _
P ro p o s itio n  3 .4 .23 . If $  S C °(R no; R ), then Ve >  0, 3<5w(e) >  0 Vx e  |J  Soo (s(t — 1), <5w(e)):

£—io+ 1

| |$ w(x) -  #(x)||oo <  + eoo +  e.

Proof. Since $ w(-)> ^(')> II ' ||oo are continuous, it follows th a t the mapping x  n- ||<£w(x) -  

#(x)||oo is continuous, which proves the proposition. □

D efin itio n  3 .4 .19 . For a given e >  0, let Sw (e) be the maximum <5w(e) satisfying Proposition 

3.4.23. Let £w d=  {e >  0; 5w(e) >  A } and ew d=  inf £w .

P ro p o s itio n  3 .4 .24 . If $  € C °(R no; R ) and £w is nonempty, then < 6 (£ +  2 ? ^  +  ew-

Proof. Let e 6  £w, th a t is, 3<5w(e) >  A. For any t > t i+ 1 , let rt — arg min ||s+ + (t) — s+ + (r) ||
t o  +  l < T < t l

Then, by Lemma 3.4.4, we have: ||s(t — 1) — s(rt — l)||oo <  l|s+ + (t) — s+ + (r t ) | | 0 0  <  A < dw(e). 

Hence s(t — 1) € Boo (s(rt — 1), <5w(e)), and by Proposition 3.4.23 it follows tha t | |# w (s(t — 1)) — 

# ( s ( t - l ) ) | |o o  <  &w +  goo +  e- Hence | | s ( f ) - $ w(s ( t - l) ) ||o o  <  ||s(t) - # ( s ( f - l ) ) | |o o  +  | |^ ( s ( t -  

1 )) — $ w(s(t — l))||oo ^  Coo +  "P Soo +  C. □

Remark 3.4.3. Both Propositions 3.4.20 and 3.4.24 imply th a t the OSP throughout the given 

trajectory is accurate (i.e., is small) if A is small. In particular, if A is small then  most likely 

£w will be nonempty. A small A means th a t the successive oscillation cycles stay close to each 

other, as in Fig.3.9. This happens, for instance, when the given trajectory  converges to a limit 

cycle. If the ANN training set is close enough to the limit cycle of the given trajectory, then the 

successive oscillation cycles are actually closer and closer to each other, and therefore A is small.

D efin itio n  3 .4 .20 . We say th a t #  has the shadowing property, if Ve >  0, 36(e) >  0 V{x(t); t > 

t \} ,  a 6 (e)-pseudoorbit of <&, 3{z£jX(.)(t);f > ti}  an orbit of #  such th a t ||z£>x(.)(f) -x (f) ||o o  <  e 

Vf >  t i .  In other words, the corrupted trajectories are “shadowed” by the real trajectories [148].
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P ro p o s it io n  3.4.25. The mapping 4?w has the shadowing property [148]. In other words, 

Ve > 0, 36w(e) 0 V"fx(f) 5 ij V 'f :} a (e]_|3senclooi'bit of , 3 }s5£iXp^(t), f V f 1 } an orbit of

such th a t ||z£5X(.)(t) -  x(t)||oo <  e Vt >  fy.

Remark 3.4.4. According to Lin et.al. [148], it has been proven that, for all practical purposes, 

analog ANNs (i.e., ANNs whose inputs and outputs can each take values in an interval) do have 

the shadowing property.

Definition 3.4.21. For every e >  0, let J9w(e) be the set of all 6 w(e) in Proposition 3.4.25, and 

let 6 w(e) ==f supi5w(e).

Remark 3.4.5. In general, the mapping e h-> fewfy) is expected to be increasing [148].

Definition 3.4.22. Let £w d=  j e  >  0; bw (e) > and ew =f inf £w.

Proposition 3.4.26. +  2/i(<3>w) € £w, b„ e  jBw ^6 ^  +  2/x($w)^ . Hence the set £w is

nonempty and ew <  6 ^  +  2 p ($ w). Also:

(3.68) ew =  inf ̂  =  inf | ^ w 0  0 ,6^  +  2 p ($ w) | .

Proof. We show th a t e =  5^ +  2p(4>w) and 6 w(e) =  6 ^  satisfy the property given in Proposition 

3.4.25. For any 6 w(e)-pseudoorbit (x (f);f  >  tx} of 4?w, choose the orbit (y ( f ) ; t  >  fi} of $ w for 

which y (fi)  = f x (ti) . We show th a t ||y (t) — x(t)||oo <  e Vf >  t \ .  Note th a t, by the choice of 

{y (t) ;t >  ti} , we have ||y (ti +  l ) - x ( f i  +  l ) | | 0 0  =  \y(h + l ) - x { t i +  l) |,  ||y (f i +  2 ) - x ( t i + 2 ) | | O0 =  

max{|t/(fi +  2) — x ( t \  +  2)|, \y{t\ +  1) — x( t\  +  1)j}, etc. In general, Vf >  fy +  1:

(3.69) |jy(f) x (t)ij0o =  max. {\y(t — j  + 1) -  x ( t  -  j  +  1)|;1 < j <  m in{t -  fy, n0}}

where all t  —j  +  1 >  t \  + 1 . On the other hand, Vf >  fy +  1: |y(t) —x ( t )| <  |y(t) -  $ w(x(t —1))| +  

|$ w(x(t -  1 )) -  x (t)| <  \y(t)\ + |$ w(x(t -  1 ))| +  M e )  =  |^w (y (t -  1 ))| +  |$w (x (t -  1 ))| + b%< 

2/r($w) +  6 ^  =  e. Hence |y(t — j  +  1) — x(t — j  +  1)| <  e, 1 < j  < min{t — fi, no}, and therefore 

]|y(t) -  x ( t ) | | 0 0  <  e, Vf > t i  +  1. Together with ||y ( ti)  — x ( t i ) | | 0 0  — 0, this completes the 

proof. □

Theorem 3.4.3. Let R  be sufficiently large such that, for 1 < h < uq:

(3.70) R  > / i($ w), ^ - 1](s(ti)) e U ,  M  (s (t!  + h - l ) , b %  + 2 p ($ w))  c  U 

where U — J3oo(fy R). Then

(3-71) doc (s, C t o])  < ew, Vs € iv(s{h)).
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Proof. Let e G £w, e < fi^+ 2 /i($ w). By Definition 3.4.22, bw (e) > and by Proposition 3.4.21, 

it follows th a t {s(f);t >  t i }  is a 6 w(e)-pseudoorbit of # w. By Proposition 3.4.25, 3{ze,s(.)(t);£ >  

t i }  an orbit of # w such tha t

(3.72) ||ze,s(.)(f) -  s(t)||oo <  e, Vt >  t x.

In particular:

(3.73) ||z£iS(.)(ti + h -  1) -  s (ti + h -  l)||oo <  e, 1 <  h < n 0.

In other words, z£jS(.)(fi +  h -  1) e  Boo(s(fi +  h — 1), e), 1 <  h < no- Since we have chosen

e < b ^  + 2 /i($w), by (3.70) it follows that, for 1 <  h < no:

(3.74) z£)S(.)(ti +  h — 1) G Boo(s(ti +  h — 1), e) C Boo ( s (£i +  h — 1), b^  +  2/z($w)^ C U.

By writing (3.72) for t =  £j +  h — 1 +  jno , 1 < h < no, J >  0, we obtain:

(3.75) | | $ { r % , s(.)(fi +  h -  1)) -  s ( ti +  h -  1 +  jno)||oo <  e.

where

(3.76) Ze,s(-)(^i +  h, -  1) G U, 1 < h < no-

Let s G o;(s(tx)), then there exists a subsequence {im\m  >  0} (tm -* oo for m  -*  oo) such 

tha t

(3.77) lim ||s(£m) sjloo — 0.
m —* o o

According to  Proposition 3.4.19 (with N  =  n 0), 3fi, 1 <  fi < no, 3 { jm; m  > 0} (Jm —> oo for 

m  —> oo) such th a t {s(ti  +  fi — 1 +  j mno);m >  0} is a subsequence of (s(fm) ;m  > 0}. Hence, by

(3.77):

(3.78) lim ||s (ti +  fi -  1 + j mn 0 ) - s | | o o  =  0.m —*oo

Select a small 9 > 0. Then 3mg such tha t

(3.79) ||s (ti +  fi -  1 +  j mn0) -  slloo <  9, Vm >  mg.

By (3.75), we also have

(3.80) | |# ^ ’n”°](z£)S(.)(ti +  fi -  1)) - s ( t i  +  fi -  1  +  j mn 0)||oo <  e, Vm >  0

and, by (3.76), Theorem 3.4.1 and Proposition 3.4.15, it follows th a t all #w°^-orbits starting in 

z<r,s(.)(ti +  fi — 1 ) converge to the attractor

Let V  be an open set th a t includes (7w0̂ . Then 3m y  > mg such th a t

(3.81) ®Em7iolK s (.)(ti +  f i - l ) ) e P c F ,  Vm >  m v .

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



By (3.79) and (3.80) and the triangle inequality, we obtain

(3.82) doo(s, V) <  | |$ ^ m"o](ze,s(.)(ix + h - l ) ) ~  s||oo < e  + 0, Vm >  m 9.

Since d ^ s ,  V) < e + 6 holds for any open V  D C w °\  by Proposition 3.4.18, it follows th a t

(3.83) doo (s, =  sup |doo(s, V); V  open, V  D j  <  e +  0

and the above inequality holds for any 6 > 0. Hence, we conclude tha t

(3.84) d ^  <  e, Vs G w (s(ti)).

The above equation holds for any e G £w, e < b „  +  2 /i($w). Using Proposition 3.4.26 and taking

the infimum over e G £w fl 0, +  2/z($w) j , we obtain:

(3.85) d ^  (s ,C j£ °^  < ew, Vs G w (s(ti)).

□

D e fin itio n  3 .4 .23 . Let A  be a compact space and § :  J - » X a  continuous mapping. A closed, 

non-empty, forward ^-invariant subset Y  C X  is called a minimal set for 4?, if it contains no 

proper closed, non-empty, forward ^-invariant subset [2 2 ].

P ro p o s it io n  3 .4 .27 . Let AT be a compact space and $ : X - > X a  continuous mapping. Y  C X

is a minimal set for $  if and only if to&(y) =  Y ,  Vy G Y  [22].

Remark 3.4.6. A periodic orbit is a minimal set [22].

P ro p o s it io n  3 .4 .28 . Let A  be a compact space and $ : X - * X a  continuous mapping. Then 

X  contains a minimal set for $  [22].

Proof. Provided in [22], □

P ro p o s it io n  3 .4 .29 . Let #  : R "° —> R ra° be a continuous mapping, and U C A  an open set,

with U compact. Then # ({ /) C  &(U).

Proof. For every y G $ ( [ /) ,  there exists a sequence {x„; n > 0 } c U c U  such th a t $ (x „ )  —> y  

as n  —> oo. Since U is compact, it follows th a t there is a convergent subsequence {xni!; k > 0}, 

x nfc —► x  (for some x  G U) as k —> oo. Hence, by the continuity of # :  3>(x„fc) —» # (x )  as k —* oo. 

On the other hand 4>(xni.) -> y as k —► oo. Hence y  =  # (x )  where x  G U. In  conclusion,

y € #(U). □

L em m a  3 .4 .5 . p) A j  c  p| Aj,  for any family of sets { A j \ j  > 0} in R n°.
j>o j >o
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Proof. For every x  G f |  A j ,  there exists a sequence { x n ; n  > 0} C  f |  A j  such th a t x „  —> x  as
j> 0  j >o ___

n  —> oo. It follows that, Vj, { x „ ; n >  0} C  A j  and x „  —s- x  as n  - »  oo. Hence x  G A j,  Vj, which

implies th a t x £  f] A j .  d
j >  o

P r o p o s i t i o n  3 .4 .3 0 .  Let X  C R " °  be a compact space, $  : X  —> X  a continuous mapping,

U C X  (with U compact) a trapping region for and C  f l j> o $ ^ ( ^ 0  the corresponding

attracto r for # .  Then C  =  r b o ^ ' W ) -

Proof Note th a t C — C  because C  is compact, and # ({ /) c  U since U is a trapping region for

$ .  By applying Lemma 3.4.5 and Proposition 3.4.29, we obtain:

c  =  C =  p |  *M(t7) C f )  c  f )  # w (17) c  f )  ^ +1](£/) -

(3.86) j -°  J-°  *-° j -°
=  f l  {$([/)}  C f (  =  ^

i> o j>o

It then follows th a t all inclusions in the above equation are actually equalities. In particular, the 

conclusion of the proposition follows. □

P ro p o s itio n  3.4 .31. is forward 3>w-invariant: 4»w |C w ° ' | C Cw0 .̂

Proof. By Proposition 3.4.10, $ W(I7) C U. Hence, we have:

{ C ^ }  = $ w  n  ^ nol(t/) > C f l  $ w  { $ b n o ] ( t 7 ) j  =

(3.87) l ^ °  J

=  f l  # wno] C f l  # | T ](^) =  C 'M .
j> 0  j>0

□

P rop osition  3 .4 .32 . Cw0̂ contains a minimal set for <&w.

Proof. Apply Proposition 3.4.28 for X  =  and $  =  $ w, given that is compact and 

{ C i- 1}  C  d £ ° ]. □

D efin ition  3 .4 .24 . Let X  be a topological space and $ : X - * I a  continuous mapping. For 

every x  € X ,  define the positive semiorbit starting from x: d + (x) =f { # ^ (x ) ;  j  >  l }  [22].

N otation  3 .4 .8 . For every x  G R n°, denote by 0 + (x )  the positive semiorbit starting from x  

with respect to the mapping # w, namely 0 + (x )  d=  {* {£ (x ); j  >  l } .

D efin itio n  3.4 .25 . A subset A  c  N  Is said to be relatively dense, if there exists k ^  > 0 such 

th a t { n ,n +  1 , . . .  , n  +  k ^ }  n  A  0, Vn G N  [22],
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D e fin itio n  3 .4 .26. Let X  be a topological space and 4? : X  —* X .  A point x  € X  is said to be 

almost periodic, if for any neighbourhood U of x, the set { j  € N; #M (x) G 17} is relatively dense 

[22]. In other words: MU 3ku  Vn 3jn,ku € { n ,n  + I , . . .  ,n  + ku} '  # ^ n'*wl(x) £ JJ,

Proposition 3.4.33. Let X  be a compact Hausdorff space, #  : X  —> X  a continuous mapping, 

and x  G X . Then 0+(x) is minimal for #  if and only if x is almost periodic [22].

Proof. Provided in [22]. □

Proposition 3.4.34. If c ljH  =  &£(x), where x G R ”° is almost periodic, then Cw0̂ is minimal, 

(7w0' — ww(s(ti)), and

(3 .8 8 ) doo (s,cuw(s(ti))) < ew , Vs G w(s(ti)).

Proof. Apply Definition 3.4.23, Theorems 3.4.2, 3.4.3, and Propositions 3.4.33, 3.4.17. □

Remark 3.4.7. Proposition 3.4.34 states th a t every point in the w-limit set of the given trajectory 

is situated at a distance at most ew from the w-limit set of the trajectory generated by MSP using 

the proposed ANN, where ew is the sm a lle s t e for which the la rg e s t 6 w(e) (in the shadowing 

property of # w) is larger than the maximum OSP error throughout the given trajectory.

Remark 3.4.8. The mapping e h-> bw (e) depends on the form of $ w(x) =  # (w , x) (given by the 

ANN architecture) and on the particular value of w  (the ANN weights). In practice it might 

very well happen that, in some cases, a very small (and thus, unattainable) bw (e) (desired OSP 

accuracy throughout the trajectory) may be required for a relatively large (and thus, useless) e. 

Estimating the mapping e i-> 6 w(e) for a given 4»w could constitute a very interesting subject for 

further research.

Remark 3.4.9. In most experiments, the asymptotic state of the given trajectory is a limit cycle. 

It has been noticed experimentally th a t the MSP generated by the ANN also converges to  a limit 

cycle whose frequency is close to the frequency of the limit cycle of the given trajectory. In  tha t 

case, Proposition 3.4.34 states th a t the limit cycle of the signal predicted by the ANN is close to 

the (unknown) limit cycle of the given trajectory.

Remark 3.4.10. In our experiments, the ANN training minimized the mean-squared OSP error 

over the training set, given by (3.14). We have also attem pted to  perform a version of ANN 

training consisting in minimizing the mean-squared MSP error over the training set:

(3.89) £ (w ) ™  _ 1 _  S T  [S( t ) - 4 » w { $ N ° - I](s(io))}'
t=t0+l

by using the real time recurrent learning (RTRL)  algorithm [10, 91, 158, 159, 160]. The MSP 

accuracy in the testing phase (after training) was at most as good as the accuracy obtained by 

OSP-based training. However, the MSP-based training time was much longer than  the OSP-based
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training time, due to the fact th a t the former training type involves much more computations 

than  the latter. I t is not clear th a t MSP-based training will provide a better approximation for 

the mapping $  in (3.8). Even though towards the end of training (s(fo)) become close

to s(t  — 1 ), the differences ew(t — 1 ) =f s (t — 1 ) — #w ~to_1 '(s(to)) (that is, the input noise during 

training), for consecutive values of f, are highly correlated. In addition, a problem with the MSP- 

based training may be tha t the ANN is actually trained to perform an accurate MSP starting 

from the point s(to), while in the testing phase it has to predict the portion of the trajectory 

starting from the point s(£i). This problem could be addressed by redefining the error function 

as

(3.90) • £  ,  E  [»M -  { g t r |(B(T -  1 ) ) } ]* .
T —  t o + 1  t = T

A fast training algorithm needs to be designed in tha t case, since the number of term s in the 

error function has grown from t \  — to to (ti — to){h  — fo +  l) /2 .  Further research is needed in 

order to  thoroughly investigate this approach.
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Chapter 4

Case Studies

As mentioned in the previous sections, the practical implementation of ANNs for a given problem 

is not as straightforward as the elegant theoretical results might suggest. Cybenko [53] notes th a t 

the number of neurons necessary in most practical problems is likely astronomically high, due 

to the so-called curse of dimensionality. Using many neurons is computationally expensive to 

the point th a t solving the problem may become unfeasible. Hornik [96] observes tha t not all 

transfer functions th a t satisfy the theoretical requirements for the universal approximation will 

perform equally well in practical problems. Due to the complicated shape of the error surfaces, 

the ANN training often converges to  a local minimum, which may not be a  solution of the given 

problem. Since in MSP applications the use of global optimization algorithms (genetic, annealing) 

is prohibitive because of the large number of parameters (ANN weights) to  be estimated, one is 

forced to employ point-by-point nonlinear optimization algorithms, which depend heavily on the 

initial guess on the weight values. How to determine good initial values of the network weights 

for ANN training is still an unsolved problem.

Given these practical difficulties, we are interested in finding a means of extracting maximum 

information from the training set using a minimum number of hidden neurons. This would 

reduce training time and provide better generalization capabilities and robustness to  noise, as a 

consequence of having few degrees-of-freedom in the system. The successful ANN architectures 

previously proposed [238, 239, 240, 259, 260] involved either some kind of weight scaling or using 

a scaled sigmoidal transfer function in the output layer. In the present study we will investigate, 

among other things, the effect of these two architectural features on the ANN MSP performance 

under neuron scarcity conditions. In  all, 12 LTMSP methods using ANNs will be compared, 

based on their performance on 8  test cases1.

1A version of p a r t  of th e  m ate ria l p resented  in th is  chap ter has been su b m itted  for pub lication  in [241, 242].
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4.1 Test Cases

The test signals SI, S3, S5 are obtained from numerically solving an aeroelastic model with 

structural nonlinearities. The governing equations for a self-excited two-degree-of-freedom airfoil 

oscillating in pitch and plunge can be expressed as [140, 151]:

(  + x ^  + 2C t§;( + ( § ; ) 2 G(() = - ~ C L(r),

— +  o .  +  2 y r ^ a  +  j A f ( a )  =  j 'C jw O ) ,
r l  U* (U *y n u r l

where £ denotes the plunging displacement (positive downwards), a  is the pitch angle about the 

elastic axis (positive nose up), G(£) and M (a )  are the nonlinear plunge and pitch stiffness terms, 

respectively, and G l( t ) ,  Cm (t ) are the lift and moment coefficients due to  the aerodynamic 

forces. For a subsonic flow, C x(r) and Cm {t ) can be expressed by the integral formulas in [140]. 

The structural nonlinearities are represented by G(£) and M {a).  In the case of a cubic spring:

(4.2) M (a) =  (io +  fliot -I- /?2c? +  /?3®̂ >

where /30, /?i, fh,  / ? 3  are constants. For a freeplay model:

(4.3) M (a )  =

Mo + a  — a f  if a  < a /

M q + M f (a  — a / )  if a f  < a  < a /  + S

M q + a  — a /  + S(M f  — 1) if a  > a /  + 5

where Mo, M /, a /  and 5 are constants. Here we give the expression for M (a )  in the pitch degree 

of freedom. Similar expressions for G(£) in the plunge motion can be w ritten by replacing a  with 

£ [140, 151],

The solution of the above integro-differential equations can be obtained by solving a reformu­

lated system of ordinary differential equations in R 8  [140]. The system param eters are chosen 

such tha t the resulting aeroelastic response — numerically generated by using a fourth-order 

Runge-K utta time integration scheme [151] with respect to the non-dimensional time r  (defined 

as in [140]) — corresponds to a limit cycle oscillation. The signals SI, S3, S5 (see Figs.4.1-4.3) 

represent the time history of the pitch motion for the aeroelastic system, scaled to amplitude « 1 , 

for different values of the system parameters. SI was generated by using cubic stiffness terms in 

both the pitch and plunge degrees of freedom, while in S3 and S5 the structural nonlinearity is 

represented by a freeplay model in the pitch degree-of-freedom and a linear spring in the plunge 

degree-of-freedom [238, 239]. Signals S2, S4, S6  are obtained by contam inating SI, S3, S5 respec­

tively with additive noise normally distributed with mean zero and signal-to-noise ratio equal to 

5.

In Figs.4.4-4.6, the time histories of both the clean and noisy training set are represented for 

each test case. The left-hand and right-hand limits are to ~  +  1 and t \  respectively, while the

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



SI S2 S3 S4 S5 S6 S7 S8

n 0 1 0 0 1 0 0 50 50 90 90 2 0 2 0

ni 2 2 2 3 2 3 2 3

to — ng 50 50 0 0 0 0 175 175

t i 273 325 282 325 380 380 300 305

Table 4.1: ANN Architecture and Training Parameters.

-0.9
1000800400

Figure 4.1: Test Signal SI.

600200

vertical bar is a t to +  1- Note th a t the number no of ANN inputs is always chosen to be roughly 

equal to the length of an oscillation cycle in the training set. The values of to, t i ,  and no are also 

recorded in Table 4.1. The phase plots of the clean training sets (s(f) vs. s(t — d), fo +  1 <  t <  fi, 

for selected lags d) are also illustrated in Figs.4.4-4.6. The small circle corresponds to the first 

data  point [s(to — d +  1), s(fo +  1)] G R 2.

Unlike the simulated data  sets S1-S6, the signals S7-S8 represent experimental data recorded 

in a wind tunnel experiment reported by Ko, Strganac, Kurdila, et. al. The da ta  is available 

at h ttp ://aerounix .tam u.edu/aeroel/ and the details of the experiment are described in [21, 124, 

125,132,133, 222]. In these experiments, a wing with a control surface is mounted to  allow plunge 

(h) and pitch (a) motions about the elastic axis. The motion of the system can be described by 

the following model:

(4.4)

In the above system, m w  is the mass of the wing, m r  is the to ta l mass of the wing and its 

support structure, x a is the nondimensional distance between the center of mass and the elastic

n%T m w x ab ' h ' Ch o '  h, ' kh 0 h ' —L  '
+ + =

TnyyXab la a 0  ca a o ?r & a
.  M  .

1

0

1
0 200 400 600 800 1000

Figure 4.2: Test Signal S3.
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-0.9 20001200 1600800

Figure 4.3: Test Signal S5.

400

S1 S1 S2
0.80.8

x

- 0.!
0.8 151 325151

t x(t-20)
Figure 4.4: Training Sets: Time History and Phase P lot for SI, Time History for S2.

axis of the wing, I a is the mass moment of inertia about the elastic axis, ch, ca are the plunge 

and pitch structural damping coefficients respectively, fc/,, ka are the structural stiffnesses for 

the plunge and pitch motion respectively, L  and M  are the aerodynamic lift and moment about 

the elastic axis. The nonlinearity in the sytem is provided by the torsional stiffness, which 

is approximated in polynomial form as: ka (a ) =  kao + ka ia  + kQ2a 2 +  ka3ot3 +  ka4a 4 +  . . .  

[21, 124, 125, 132, 133, 222].

The signal S7 (see Fig.4.7) represents the time history of the pitch motion and was obtained 

by selecting every 10th point of the pitch signal in the file DN04J.DAT and scaling the resulting 

data  set to amplitude « 1  [238, 239]. Signal S8  is obtained by contaminating S7 with additive 

noise normally distributed with mean zero and signal-to-noise ratio equal to 5. In Fig.4.8, the 

time histories of both  the clean and noisy training set are illustrated. The left-hand and right- 

hand limits indicate to — no +  1 and t \  respectively, and the vertical bar is a t to +  1. The values

S3 S3 S4
0.8 0.8 0.9

-0.9,
325

x(t-3)1 t
Figure 4.5: Training Sets: Time History and Phase P lot for S3, Time History for S4.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



S5 S5 S6
0.80.80.8

x

- 0.8
380 -?, 380

x(t—7) tt

Figure 4.6: Training Sets: Time History and Phase P lot for S5, Time History for S6 .

- 1.2
1000800400 600200

Figure 4.7: Test Signal S7.

of to, f i, and no are also recorded in Table 4.1. The phase plot of the clean training set is also 

illustrated in Fig.4.8.

The PPs of the training sets show that, for the m ajority of the test signals, the successive 

oscillation cycles are close together. Hence, it is expected th a t the trajectory  converges to  a limit 

cycle in each case. Therefore, A in Propositions 3.4.20 and 3.4.24 is expected to be small, and it 

follows th a t will be small after ANN training, i.e., the OSP throughout the given trajectory 

will be accurate (see Remark 3.4.3). Then, by Remark 3.4.5, it is expected that ew in Definition 

3.4.22 will be small. In other words, by Proposition 3.4.34, it is expected that the w-limit set 

of the MSP will be close to  the tu-limit set of the given trajectory. The only exception are the 

signals Sl-2, for which we cannot draw any conclusion from the inspection of the training set. 

The given trajectory might very well exhibit a divergent oscillation instead of a limit cycle in 

those cases.

S7 S7 S8
1 1

x

300 -1.2 305
x(t—3)t t

Figure 4.8: Training Sets: Time History and Phase P lo t for S7, Time History for S8 .
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Feature of Interest Digit 0 1 2 3

2nd Layer Transf. Fct. 1 st N /A Linear Linear Scal.Tanh.

Second Layer Weights 1 st N /A Unsealed Scaled Unsealed

Init w {2) w (2} w (1} n u t. w0 ,w ki ,w kiQ 2 nd All Zero All Zero N /A N /A

In it' w£fco ’ fe° ^ 0 2 nd Sig.Segm. Random N /A N /A

Learning Rate Type 3rd Adaptive Constant N /A N /A

Table 4.2: ANN MSP Methods

4.2 Choice of M ethods and Parameters

Twelve LTMSP methods are presented, and each LTMSP method will be identified by a code 

number consisting of three digits. The significance of each digit will be explained in the following.

The first digit in the method code is ’1’ if a classical 2LFF1S2LNN with f ^ ( x )  — tanh(x) 

is used. The ANN output in that case is given by (3.26) and (3.27) (see Fig.3.1). The first digit 

is set to  ’2’ if a 2LFF1S2LNN with scaled weights in the second layer is used. The ANN output 

in th a t case will be given by (3.31). The first digit in the m ethod’s code is ’3’ if a  2LFF1S2SNN 

with f ( 2\ x )  = ip (w ^ )  tanh(x) is used. The ANN output in th a t case will be given by (3.29).

The second digit is T  if all k\  ^  0,fco ^  0 are initialized with random numbers

uniformly distributed in [—0.01,+0.01], while all the other weights are initially set to zero. The 

second digit is ’0 ’ if w^uka , f c i ^ 0 ,fco^ 0  are initially set to  normalized segments of the training 

set, as in (3.47), while all the other weights are initialized by zero.

The third digit is ’1’ if the learning rate (LR) is kept constant during ANN training, and ’0’ 

if the LR is adaptive, i.e., is updated at each training iteration. The appropriate values for the 

constant LR (CLR) or the initial value of the adaptive upper bound on the adaptive LR (ALR) 

are chosen as described in Section 3.3.

A summary of the methods used is presented in Table 4.2, where for each feature of the ANN 

MSP method, the digit in the m ethod’s code relevant to tha t feature is indicated, as well as 

the significance of each value th a t the respective digit may take. For example, M110 refers to  a 

2LFF1SNN with linear T F  in the second layer, in which no scaling is employed for the second- 

layer weights. Moreover, random numbers are used to  initialize the first-layer weights and an 

adaptive learning ra te is adopted in training. It should be noted th a t M110 is actually one of 

the most commonly used networks in the ANN literature.

For each case study, the number of ANN inputs n 0  needs to be chosen. To do that, we will 

follow the procedure described in Section 3.3. F irst, an empirical estim ate ne0mp is computed 

based on the average distance between consecutive Lmax (or Lmin) points in the training set. 

In each case, the vector of consecutive Lmax points t Lmax, the vector of the distances between 

consecutive Lmax points dLmax, and the average distance between consecutive Lmax points
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Sig Type Components of t Components of d a

SI Lmin 53, 159, 252 106, 93 1 0 0

SI Lmax 106, 207 1 0 1 1 0 1

S2 Lmin 50, 140, 250 90, 110 1 0 0

S2 Lmax 100, 205, 295 105, 90 98

S3 Lmin 108, 153, 196, 242 45, 43, 46 45

S4 Lmin 108, 153, 197, 242, 283 45, 44, 45, 41 44

S5 Lmax 114, 208, 292, 376 94, 84, 84 87

S6 Lmax 113, 208, 291, 375 95, 83, 84 87

S7 Lmin 204, 221, 238, 257, 277, 297 17, 17, 19, 20, 20 19

S7 Lmax 195, 213, 230, 247, 267, 287 18, 17, 17, 20, 20 18

S8 Lmin 203, 222, 237, 257, 276, 296 19, 15, 20, 19, 20 19

S8 Lmax 195, 213, 230, 248, 268, 287 18, 17, 18, 20, 19 18

Table 4.3: Local Minimum and Local Maximum Points in the Test Signals.

aLmax, can be defined. The same can be done for the Lmin points. For each test signal, the type 

of local extremum points considered (Lmin or Lmax), the components of t Lmm and /or t Lmax, 

the components of d Lmin and /o r d Lmax, and the averages a Lmm and /or aLmax, are reported in 

Table 4.3. The values of the estimate riQmp of no obtained in each case are reported in Table 

4.4. Note tha t ragmP average of a Lmin and «Ijmax if both Lmax and Lmin points have been 

considered, and ngmp =  a Lmm (or nomp =  aLmax, respectively) if only Lmin points (or Lmax 

points, respectively) have been considered. A more detailed explanation will be provided in the 

following.

For SI and S2, the entire known data  set s ( l) ,  s(2), . . . ,  s(fi), was used to calculate ngmp, 

and both the Lmin and Lmax points in the da ta  set were considered. For these test cases, 
nemp _  | aLmm _|_ flLmaxj j 2 _ por g3  and S4, due to  the more complicated profile of the training 

set, which contains a high-frequency component, only the last 4 (and 5, respectively) consecutive 

Lmin points in the training set have been used to  compute riomp, which in these cases is equal to 

aLmin. For the same reason, in the case of S5 and S6 , only the last 4 consecutive Lmax points in 

the training set have been used to  compute nQmp, which in these cases is equal to aLmax. The test 

signals S7 and S8  (see Fig.4.7) initially exhibit an oscillation of lower frequency than  the one of 

the segment used for ANN training. Actually, the oscillation frequency increases with the time 

starting from t =  111 up to approximately t  =  190. Therefore only the data points s(190), s(191), 

■ •., s(£x) (where t\  — 300 and 305, respectively) were used to compute ne0mp Both the Lmin and 

Lmax points in the data  set were considered, therefore again rigmp =  (aLmin +  aLmax) /2  for S7 
and S8 .

Next, the value of ngcf for each test case needs to  be computed. The estimate of the ACF in
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Figure 4.9: ACF plot for S1-S4. 
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1
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1
1140 29

Figure 4.10: ACF plot for S5-S8.

each case was computed as in (3.49), and the functions are plotted in Figs.4.9-4.10. The dashed 

vertical bar in all graphs marks the lag h  =  (fi — to )/4, up to  which the ACF estimates are 

expected to  be accurate. The values of n gcf (i.e., the value of h for which the first peak of 7 (h) 

is achieved) for each test case are reported in Table 4.4. For S1-S6, the entire known d ata  set 

s ( l) , s(2), . . . ,  s(ti) , was used to calculate ngcf, while for S7 and S8 only the data  points s(190), 

s(191), . . . ,  s(fi) were used, for the same reasons as mentioned above.

Finally, the estimate n® was calculated. In each case, the FFT  of the training set was 

computed, assuming the sampling step to  be 1. The graphs are shown in Figs.4.11-4.14. The 

dashed vertical bar marks the lowest frequency v\ th a t has an energy close to the maximum 

energy of all Fourier modes in the decomposition. The values of n® =  1/zq for each test case 

are reported in Table 4.4. For S1-S6, the entire known data  set s ( l) , s(2), . . . ,  s (ti) , was used to 

calculate n®, while for S7 and S8 again only the da ta  points s(190), s(191), . . . ,  s (ti)  were used.

The values of =  max {ng”®, n ^ ,  n® } and ngVg — (ngmp +  ngcf +  n® ) /3 , as well as our 

final choice n®n of the number of ANN inputs, are also reported in Table 4.4. The value of n®n 

was obtained, in general, by rounding off 71™“  and ngVg (which had similar values) to the closest 

multiple of 10. For S3 and S4, due to the more complicated profile of the signals, we rounded 

off the estimates to 50 ANN inputs instead of 40. The values of the final number of ANN inputs 

chosen in each case (no =  n®") are also reported in Table 4.1.
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Figure 4.11: FFT  plot for SI and S2. 
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Figure 4.12: F FT  plot for S3 and S4.

For each test case, the selection of the number of hidden neurons m  is described in the 

following. Starting from n \ — 2, increment n \ until a t least one of the 12 methods provides a 

good MSP of the given signal using n \ neurons in the hidden layer. In general, we observed 

th a t 2 hidden neurons were sufficient for the clean signals while 3 hidden neurons were necessary 

for predicting the noisy signals. The only exception is the noisy signal S2, for which 2 hidden 

neurons were sufficient, due to the existence of a clear low-frequency oscillation th a t makes it 

easy for the ANN to separate the noise from the underlying clean signal. Once n \ is fixed for the 

current test case, each of the 1 2  methods is applied to the signal using n i neurons in the hidden 

layer. The values of n \ are recorded in Table 4.1.

4.3 Prediction Accuracy

The THs and the phase plots for selected lags d  based on the ANN-generated MSPs for the 96 

test cases are shown in Figs.4.15-4.58 at the end of this chapter. The prediction performance of 

the 12 ANN MSP methods is compared in the following manner. For each test case, the MSP 

result generated by the ANN after the end of training is investigated. The prediction accuracies 

are compared based on the TH and P P  overlapping, respectively. A prediction accuracy score 

(PAS) between 0 and 10 is assigned to each test case. The test cases th a t provide the best MSP
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Figure 4.13: FFT  plot for S5 and S6 .
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Figure 4.14: F FT  plot for S7 and S8 .

based on TH overlapping, of all 96 test cases, will receive a TH-based PAS (THPAS) of 10, the 

next best ones a score of 9, etc. Similarly, the test cases th a t provide the best MSP based on 

PP  overlapping receive a PP-based PAS (PPPAS) of 10, the next best ones a score of 9, etc. 

The test cases for which the ANN training did not converge at all (hence no MSP was provided) 

received a PAS of 0. The THPAS and PPPAS were averaged for each test case, generating an 

overall PAS (OAPAS) in each case. The THPAS, PPPAS, and OAPAS values are recorded in 

Tables 4.5, 4.6, and 4.7 respectively. In the columns labeled ’Clean’ and ’Noisy’, the average 

PASs over all clean (SI, S3, S5, S7) and noisy (S2, S4, S6 , S8 ) signals respectively, are reported. 

In the column ’Diff’, the differences between these averages are shown, providing a measure of 

the sensitivity to noise of each ANN MSP method. The column ’All’ reports the overall average 

PASs over all 8  signals for each of the 12 methods. It was noticed in our experiments that, even 

though for a particular test signal the THs may be perfectly matched while the P Ps are not, 

or viceversa, both  prediction accuracy criteria reveal the same average behavior of the different 

ANN MSP methods.

From Table 4.7, it is obvious th a t for the MXX0 methods, involving an ALR, the ANN 

training is almost always unstable when performed on S4-S6 and S8 . In two cases, even if the 

training is stable, the MSP accuracy is very poor (OAPAS=2) for these methods. As it can be 

seen from the ’Diff’ column, the MXX0 methods are very sensitive to  noise in the training signal,
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SI S2 S3 S4 S5 S6 S7 S8

t l 1 1 1 1 1 1 190 190

tp 273 325 282 325 380 380 300 305

1 0 1 99 45 44 87 87 19 19
nttcfn 0 98 94 43 42 90 91 18 18
r,fftn 0 91 109 40 41 95 95 18 19

„ m a xn 0 1 0 1 109 45 44 95 95 19 19

T7aVgTJq 97 1 0 1 43 42 91 91 18 19

n 0 1 0 0 1 0 0 50 50 90 90 2 0 2 0

Table 4.4: Selection of Network Inputs

which is not surprising since an ALR search algorithm is more versatile than  one using a CLR, 

and therefore makes it possible for the ANN to learn the noise immediately, thus destroying the 

underlying pattern. Even in the case of the clean freeplay signal S5, the ANN training failed to 

converge for most MXXO methods. S5 is particularly difficult to  predict due to  the very short 

transient d ata  set and to  its complicated profile. In addition, S3 and S5 (and thus S4, S6  as well) 

contain numerical errors due to the fact th a t they have been generated by using a fourth-order 

Runge-K utta time-integration scheme in a system with a nonsmooth nonlinearity [151].

Obviously, the MX01 methods exhibit a better behaviour than  the other methods. In partic­

ular, for the test signal S8 , they are the only ones for which the ANN training converges. Signal 

S8  is considered to be the most difficult to predict, because it represents real-life measurement 

data contaminated by measurement noise as well as by mathematically generated additive noise. 

The MX01 methods provide excellent predictions in this case. Overall, considering all 12 test 

cases, MX01 also provide more accurate predictions. M201 and M101 have practically the same 

performance (OAPAS«8.5) and they are both robust (in addition, M201 is less sensitive to noise 

than  M101). M301 provides an OAPAS~7 but its behaviour is less consistent throughout the 12 

test cases.

It is interesting to note th a t M301 is the only method out of the 12 considered for which the 

ANN training is unstable in the case of a clean signal (S5) while it becomes stable when noise 

is introduced (S6 ). For all the other methods, the training either converges for both the clean 

and the noisy signal, or it does not converge for both signals, or it converges for the clean signal 

but not for the noisy signal. It is well known that, for the interpolative applications, adding 

noise in the ANN input and/or output training prototypes actually improves the generalization 

performance of the network [247]. Multi-step prediction, however, is more than  an interpolation 

problem. In order to provide an accurate LTMSP, a good interpolation as well as little sensitivity 

of the ANN output with respect to  variations in the inputs is required. I t seems that, due to the 

additional sigmoidal transfer function, th a t limits the damage caused by noise, the ANN is able
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SI S2 S3 S4 S5 S6 S7 S8 Clean Noisy Diff All

M l 00 7 8 9 0 0 0 8 0 6 . 0 0 2 . 0 0 4.00 4.00

M101 1 0 7 1 0 7 1 0 1 0 1 0 1 0 1 0 . 0 0 8.50 1.50 9.25

MHO 7 7 9 0 3 0 8 0 6.75 1.75 5.00 4.25

M i l l 7 8 1 0 5 6 6 9 0 8 . 0 0 4.75 3.25 6.38

M200 7 8 9 0 0 0 8 0 6 . 0 0 2 . 0 0 4.00 4.00

M201 1 0 8 1 0 1 0 1 0 1 0 1 0 1 0 1 0 . 0 0 9.50 0.50 9.75

M210 6 7 9 0 3 0 8 0 6.50 1.75 4.75 4.13

M211 7 8 8 5 3 1 0 9 0 6.75 5.75 1 . 0 0 6.25

M300 7 8 1 0 0 0 0 8 0 6.25 2 . 0 0 4.25 4.13

M301 1 0 8 8 7 0 6 8 1 0 6.50 7.75 -1.25 7.13

M310 7 7 1 0 0 0 0 9 0 6.50 1.75 4.75 4.13

M311 7 7 1 0 5 4 6 1 0 0 7.75 4.50 3.25 6.13

Table 4.5: Time History -based Prediction Accuracy Scores (THPAS).

to improve its generalization capabilities. In the cases of S5 and S6 , the additive noise actually 

helps the ANN training to converge to a not-so-bad solution, by compensating for the numerical 

errors already present in the signal.

MX11 provide practically the same (OAPAS«5.75) prediction accuracy. M i l l  and M311 are 

less sensitive to noise as MXXO, but much more sensitive than  MX01. M211 is as robust in the 

presence of noise as M201. As one would expect, normalizing the weights in the second layer 

provides robustness with respect to the noise and to  variations in the ANN parameters.

4.4 Robustness Comparison

In the previous section, it has been shown th a t the MSP methods M101 and M201 provide the 

best prediction accuracy. In this section, we compare the stability of the two methods with 

respect to the variations in the number of inputs no, the hidden neurons m , and the endpoint 

t\  of the training set. First of all, by varying no or n i, the number of parameters (weights) in 

the neural network varies. This will affect the distribution of information in the network and 

will result in different ANN models. When t \  changes, the size of the training set (hence the 

amount of available information) changes, as well as the starting point of the MSP process. It is 

known that for a nonlinear time series the expected OSP accuracy (and hence the expected MSP 

accuracy) depends on time, unlike the case of linear time series [6 8 ]. Due to  the nonlinear nature 

of the considered signals, the dependence of the ANN-generated MSP on n 0  and t% is expected 
to be nonlinear.

For each of the two methods applied to the 8  test signals, each of the three parameters of
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SI S2 S3 S4 S5 S6 S7 S8 Clean Noisy Diff All

M l 00 7 6 6 0 0 0 1 0 0 5.75 1.50 4.25 3.63

M101 9 6 6 6 7 7 1 0 1 0 8 . 0 0 7.25 0.75 7.63

m h o 9 6 6 0 1 0 1 0 0 6.50 1.50 5.00 4.00

M i l l 7 6 6 5 3 7 1 0 0 6.50 4.50 2 . 0 0 5.50

M200 8 6 6 0 0 0 1 0 0 6 . 0 0 1.50 4.50 3.75

M201 9 6 6 6 7 7 1 0 1 0 8 . 0 0 7.25 0.75 7.63

M210 3 6 6 0 1 0 1 0 0 5.00 1.50 3.50 3.25

M211 4 6 6 5 1 7 1 0 0 5.25 4.50 0.75 4.88

M300 4 5 6 0 0 0 1 0 0 5.00 1.25 3.75 3.13

M301 9 5 6 6 0 7 1 0 1 0 6.25 7.00 -0.75 6.63

M310 4 5 6 0 0 0 1 0 0 5.00 1.25 3.75 3.13

M311 4 5 6 5 3 7 1 0 0 5.75 4.25 1.50 5.00

Table 4.6: Phase Portrait -based Prediction Accuracy Scores (PPPAS).

interest was varied while keeping the other two constant. The degree of variability of the MSPs 

caused by the variation of each param eter was assessed by inspecting both the THs and the PPs 

of the predicted signals. The goal is to determine which of the two methods M101 and M201 

more robustly extracts information from the training set using the minimum number of hidden 

neurons. It must be noted tha t this is a borderline situation, since the minimum number of 

neurons is used in the ANN. The more hidden neurons there are in the ANN, the more robust it 

becomes with respect to  variations in no, n x, and t x. It has been noticed tha t even when using 

hundreds of hidden neurons, overfitting does not occur when this type of weight initialization is 

used in combination with a constant learning rate in ANN training.

For each test case, the THs of the last two oscillation cycles of the ANN-generated MSPs, as 

well as the P Ps for selected lags, for both M101 and M201, are displayed in Figs.4.59-4.85. Let 

Hq, n*, t \  be the values of no, n i, t x respectively used in the first part of this study, in which 

the prediction accuracies of the 12 methods were compared. In the robustness analysis, we vary 

the three param eters as follows. For n i =  n\ and t x — t | :  n 0  — 0.8 x riQ, 0.9 x rag, ng, 1.1 x ng, 

1.2 x ng (see Figs.4.59-4.67). For n 0  =  ng and t x =  t*: n x — nx, n* +  1, n \  +  2 , nx +  3 (see 

Figs.4.68-4.75). For n 0  =  ng and n x -  n*: t x = t* -  0.2 x ng, t* -  0.1 x ng, t*, t \  +  0.1 x ng, 

t* +  0.2 x ng (see Figs.4.76-4.85). In most experiments it was noticed that, for each test signal, 

as one of the 3 param eters is varied, the MSP results corresponding to  different values of tha t 

parameter are more or less shifted in time with respect to each other, but they all exhibit a 

limit cycle with the same profile. The P Ps of the predicted signals do not vary significantly as 

the parameter changes. In most cases, M101 and M201 behave identically when a param eter is 
varied.
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SI S2 S3 S4 S5 S6 S7 S8 Cln. Nsy. Dif. All

M100 7.0 7.0 7.5 0 . 0 0 . 0 0 . 0 9.0 0 . 0 5.88 1.75 4.13 3.81

M101 9.5 6.5 8 . 0 6.5 8.5 8.5 1 0 . 0 1 0 . 0 9.00 7.88 1.13 8.44

MHO 8 . 0 6.5 7.5 0 . 0 2 . 0 0 . 0 9.0 0 . 0 6.63 1.63 5.00 4.13

M i l l 7.0 7.0 8 . 0 5.0 4.5 6.5 9.5 0 . 0 7.25 4.63 2.63 5.94

M200 7.5 7.0 7.5 0 . 0 0 . 0 0 . 0 9.0 0 . 0 6 . 0 0 1.75 4.25 3.88

M201 9.5 7.0 8 . 0 8 . 0 8.5 8.5 1 0 . 0 1 0 . 0 9.00 8.38 0.63 8.69

M210 4.5 6.5 7.5 0 . 0 2 . 0 0 . 0 9.0 0 . 0 5.75 1.63 4.13 3.69

M211 5.5 7.0 7.0 5.0 2 . 0 8.5 9.5 0 . 0 6 . 0 0 5.13 0 . 8 8 5.56

M300 5.5 6.5 8 . 0 0 . 0 0 . 0 0 . 0 9.0 0 . 0 5.63 1.63 4.00 3.63

M301 9.5 6.5 7.0 6.5 0 . 0 6.5 9.0 1 0 . 0 6.38 7.38 - 1 . 0 0 6 . 8 8

M310 5.5 6 . 0 8 . 0 0 . 0 0 . 0 0 . 0 9.5 0 . 0 5.75 1.50 4.25 3.63

M311 5.5 6 . 0 8 . 0 5.0 3.5 6.5 1 0 . 0 0 . 0 6.75 4.38 2.38 5.56

Table 4.7: Overall Prediction Accuracy Scores (OAPAS).

There are exceptions from this stable behaviour, which will be discussed below. In some 

cases, M201 exhibits much better stability than M101 when a param eter of interest is varied. This 

phenomenon occurs for S8  when no is varied (see Fig.4.67), for S4 when n x is varied (see Fig.4.71), 

and for S3 (see Fig.4.79) and S6  (see Fig.4.83) when t x is varied. In four cases (S2: no =  1.1 x nj: 

see Fig.4.60, S4: no =  1.1 x ng and no =  1.2 x rejj: see Fig.4.62, S2: t x = t* — 0.1 x ng: see 

Fig.4.78), M201 provides a stable prediction while the ANN training for M101 does not converge 

at all. In two cases (S4: t x — t x +  0.1 x ng, S5: n 0  =  0.9 x ng), the ANN training did not 

converge for either of M101, M201. For S6  when no — 0.8 x ng (see Fig.4.65), for S2 when 

h  =  -  0.2 x nQ (see Fig.4.77), and for S5 when t x = t* + 0.2 x ng (see Fig.4.82), both M101

and M201 provided equally inaccurate predictions (in the last case, M201 actually performed a 

little worse than  M101). The only case when M201 clearly performed worse than  M101 was for 

S5: no =  0.8 x ng (see Fig.4.63), when the network training for M201 did not converge, while 

M101 did provide an acceptable prediction.

From the above results, it is obvious th a t the MSP depends nonlinearly on n0  and t x, which is 

to be expected since the test signals exhibit nonlinear dynamics. The stability of both methods 

with respect to  t x is slightly better than  with respect to no- W hen only n 0  is varied, the 

nonlinear mapping $  th a t models the dependence of s(t) on the past Uq observations throughout 

the training set is expected to change dramatically. When only t x is varied, the mapping $  to 

be approximated by <3>w remains the same, while only the amount of training d ata  is changed. 

Since t x is altered by no more than  20% of an oscillation cycle, the mapping $ w obtained by 

least-square optimization cannot vary too much. Thus, the contribution of 20% of an oscillation 

cycle is small when errors are averaged over the entire training set. W hat may vary significantly
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with i |  is the so-called ’predictability’ — the conditional variance of the OSP error ew(fi +  1) 

[6 8 ] — a t the moment t x, variation caused by the nonlinear nature of the time series. In the 

case of a nonlinear time series, the above quantity is difficult, if not impossible, to estimate. A 

possible solution would be to consider all MSP signals starting in every moment throughout the 

last known oscillation cycle: t \  — no +  1, . . . ,  fi, rather than  only the MSP signal starting at the 

monment t i  (as in (3.21), (3.22)):

(4.5) y « h>(t) =  (y <h>(t -  1)), Vt >  h  — h + 2 , y<h>(h - h  +  1) d=  s(h - h  + 1 )

for 1  <  h < uq. Overall, it is clear enough that, under neuron scarcity constraints, M201 is much 

more robust than  M1.01 with respect to variations in the number of network inputs and hidden 

neurons, as well as with respect to variations in the endpoint of the training set.

It should be noticed in practice th a t an ANN with more hidden neurons exhibits better 

stability with respect to variations in m , no, and t \  than  an ANN with fewer hidden neurons. 

More specifically, suppose t \  and no are fixed. If the ANN training converges for some n{ and 

also for some n f 1  n[, then the second ANN will be more stable with respect to variations in 

m , no, and t i  th an  the first ANN. This phenomenon is due to  the redundant information storage 

in an ANN. The more redundancy there is in the network, the more stable it is with respect 

to variations in the different parameters of the method. Our experiments demonstrate that, 

even though the performance of some of the the discussed methods may improve if more hidden 

neurons are used [259], the method tha t robustly extracts the most information from the known 

data set using the smallest number of hidden neurons is the one using second-layer weight scaling, 

signal-related weight initialization and a constant learning ra te in network training (M201).
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Figure 4.15: SI MSP for SI (’- and MSP for S2 for M100.
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Figure 4.16: SI MSP for SI (’- and MSP for S2 for M101.
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Figure 4.17: SI MSP for SI (’- and MSP for S2 for M110.
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Figure 4.18: S i MSP for SI (’- and MSP for S2 for M il l .
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Figure 4.19: SI MSP for SI (’- and MSP for S2 for M200.
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Figure 4.20: SI MSP for SI (’- and MSP for S2 for M201.
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Figure 4.21: SI MSP for SI (’- and MSP for S2 for M210.
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Figure 4.22: SI !'), MSP for SI (’- and MSP for S2 for M211.
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Figure 4.23: SI MSP for SI (’- and MSP for S2 for M300.
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Figure 4.24: SI MSP for SI (’- and MSP for S2  for M301.
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Figure 4.25: SI (’—’)> MSP for SI (’- and MSP for S2 for M310.
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Figure 4.26: SI MSP for SI (’- and MSP for S2 for M311.
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Figure 4.27: S3 (’— ’), and MSP for S3 (’- for M100. For S4, the ANN training did not 

converge.
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Figure 4.28: S3 MSP for S3 (’- and MSP for S4 for M101.
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Figure 4.29: S3 (’— ’), and MSP for S3 (’- for MHO. For S4, the ANN training did not 

converge.
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Figure 4.30: S3 MSP for S3 (’- and MSP for S4 for M i l l .
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Figure 4.31: S3 (’—’), and MSP for S3 (’- for M200. For S4, the ANN training did not 

converge.
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Figure 4.32: S3 MSP for S3 (’- and MSP for S4 for M201.
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Figure 4.33: S3 (’—’), and MSP for S3 (’- for M210. For S4, the ANN training did not 

converge.
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Figure 4.34: S3 MSP for S3 (’- and MSP for S4 for M211.
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Figure 4.35: S3 (’— ’), and MSP for S3 (’- for M300. For S4, the ANN training did not 

converge.
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Figure 4.36: S3 MSP for S3 (’- and MSP for S4 for M301.
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Figure 4.37: S3 (’— ’), and MSP for S3 (’- for M310. For S4, the ANN training did not 

converge.
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Figure 4.38: S3 MSP for S3 (’- and MSP for S4 for M311.
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Figure 4.39: S5 MSP for S5 (’- and MSP for S6  for M101.
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Figure 4.40: S5 (’— ’), and MSP for S5 (’- for MHO. For S6 , the ANN training did not 

converge.
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Figure 4.41: S5 MSP for S5 (’- and MSP for S6  for M i l l .
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Figure 4.42: S5 MSP for S5 (’- and MSP for S6  for M201.
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Figure 4.43: S5 (’—’), and MSP for S5 (’- for M210. For S6 , the ANN training did not 

converge.
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Figure 4.44: S5 MSP for S5 (’- and MSP for S6  for M211.
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Figure 4.45: S5 (’— ’), and MSP for S6  for M301. For S5, the ANN training did not 

converge.
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Figure 4.46: S5 MSP for S5 (’- and MSP for S6  for M311.
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Figure 4.47: S7 (’— ’), and MSP for S7 (’- for M100. For S8 , the ANN training did not 

converge.
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Figure 4.48: S7 MSP for S7 (’- and MSP for S8  for M101.
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Figure 4.49: S7 (’— ’), and MSP for S7 (’- for M110. For S8 , the ANN training did not 

converge.
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Figure 4.50: S7 (’— ’), and MSP for S7 (’- for M i l l .  For S8 , the ANN training did not 

converge.
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Figure 4.51: S7 (’—’), and MSP for S7 (’- for M200. For S8 , the ANN training did not 

converge.
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Figure 4.52: S7 MSP for S7 (’- and MSP for S8  for M201.
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Figure 4.53: S7 (’— ’), and MSP for S7 (’- for M210. For S8 , the ANN training did not 

converge.
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Figure 4.54: S7 (’—’), and MSP for S7 (’- for M211. For S8 , the ANN training did not 

converge.
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Figure 4.55: S7 (’— ’), and MSP for S7 (’- for M300. For S8 , the ANN training did not 

converge.
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Figure 4.56: S7 (’—>), MSP for S7 (’- and MSP for S8  for M301.
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Figure 4.57: S7 (’— ’), and MSP for S7 (’- for M310. For S8 , the ANN training did not

converge.
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Figure 4.58: S7 (’— ’), and MSP for S7 (’- for M311. For S8 , the ANN training did not 

converge.
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Figure 4.59: MSP of SI for n0 = 8 x ng, 8 =  0.8(’...’), 0.9(’- 1-1(5-.5), 1.2(’-
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Figure 4.60: MSP of S2 for n0 = 8 x n*0, 8 = 0.8(’...’), 0.9(’- 1.0(’- ’), l . l ( V ) ,  l-2 f-  -’)■ For

M101 with 8 =  1.1, the ANN training did not converge.
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Figure 4.61: MSP of S3 for n 0  =  8 x ng, 8 =  0.8(’...’), 0.9(’- 1.2(’- - ’)•
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Figure 4.62: MSP of S4 for n 0  =  8 x ng, <5 =  0.8(’...’), 0.9(’- 1.0(’- ’), 1 . 1.2(’- For

M101 with <5 =  1 . 1  and 1.2, the ANN training did not converge.
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Figure 4.63: MSP of S5 for n 0 = 6 x n ^ 5  = 0.8(’...’), 1.0(’- ’), l . l ( V ) ,  l-2(’- -’)• For M101 with 

5 — 0.9 and for M201 with S = 0.8 and 0.9, the ANN training did not converge.
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Figure 4.64: MSP of S6  for n 0 = 5 x n % , 5  =  0.9(’- 1.0(’- ’), 1.1(’- .’) only.
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Figure 4.65: MSP of S6  for no = 6 x n^, 5 =  0.8(’...’), 1.0(’- ’), 1.2(’- -’) only.
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Figure 4.66: MSP of S7 for n 0  =  S x  ng, d — 0.8(’...’), 0.9(’- 1.0(’- ’), 1 - - ’)•
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Figure 4.67: MSP of S8  for n 0  =  <5 x ng, 8 =  0.8(’...’), 0.9(’- 1.0(’- ’), 1 .1 (-.’), l-2(’- - ’)•
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Figure 4.68: MSP of SI for m  =  n\  +  S, S =  0(’—!'), ! ( ’- 2(’-.’), 3(’...’).
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Figure 4.69: MSP of S2 for m  = n \  +  <5, S =  0(’— ’), ! ( ’- 2 (V ) , 3(’...’).
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Figure 4.70: MSP of S3 for m  =  n \  +  5, 8 -  0(’— ’), ! ( ’- - ’)> 2(’-.’), 3(’...’).
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Figure 4.71: MSP of S4 for m  =  nf  +  5, 8 =  0(’— ’), 1(’- 2 (V ) , 3(’...’)
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Figure 4.72: MSP of S5 for m  =  n \  + 5, S =  0(’— ’), 1(’- 2(’-.’), 3(’...’)
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Figure 4.73: MSP of S6  for m  =  n\  +  5, S =  0(’— !'), 1(’- 2(’- .’), 3(’...’)
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Figure 4.74: MSP of S7 for m  =  n j +  <5, S =  0(’— ’), 1 (’- 2(’-.’), 3(’...’)
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Figure 4.75: MSP of S8  for m  =  n j +  M  =  0(’— ’), ! ( ’- 2 (V ),

M101

I I UW

M101 M201 M201

1 .2

-1 .2 L

1 .2

vs- >>
- 1  ?

i/'Jh r\iA Ti Hi i, 7 /11

- 1 .2 l
800 1000 -1 .2  1.2 800 1000 -1 .2  1.2 

t x(t—20) t x(t-20)

Figure 4.76: MSP of SI for h  = t$ + 5 x n*0, 5 =  —0.2(’...5), - 0 .1 ( ’- 0.0(’- ’), 0.1(’-.’), 0.2(’-
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Figure 4.77: MSP of S2 for t x =  t \  +  5 x n*0, 5 =  -0 .2 ( ’...’), -0 .1 ( ’- 0.0(’- ’), 0.1(’-.’), 0.2(’-

-’). For M101 with 5 =  —0.1, the ANN training did not converge.
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Figure 4.78: MSP of S2 for t x =  t* + 8 x  rifi, 8 =  -0 .1 ( ’- 0.0(’- ’), 0.1(’-.’), 0.2(’- -’) only. For

M101 with S ~  —0.1, the ANN training did not converge.
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Figure 4.79: MSP of S3 for h  =  t \  +  8 x n*0, 6 =  -0 .2 ( ’...’), -0 .1 ( ’- 0.0(’- ’), 0.1(’-.’), 0.2(’-

-’)•

M101 M101 M201 M201

Figure 4.80: MSP of S4 for t x = t \  +  <5 x n*Q, S = -0 .2 ( ’...’), - 0 .1 ( ’- 0.0(’- ’), 0.2(*- - ’)• For

M101 and M201 with 5 =  +0.1, the ANN training did not converge.
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Figure 4.81: MSP of S5 for t \  — t \  +  S x  n^, S =  —0.1(’- 0.0(’- ’)) 0.1(’-.’) only.
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Figure 4.82: MSP of S5 for h  =  t j  +  <5 x n j, <5 =  -0 .2 ( ’...’), 0.0(’- ’), 0.2(’- -’) only.
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Figure 4.83: MSP of S6  for U = t{ + 8 x  n*0, 8 =  -0 .2 ( ’...’), -0 .1 ( ’- 0.0(’- ’), 0.1 ( , - . ’ ) 5 0.2(’-
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Figure 4.84: MSP of S7 for h  = q  + 8 x  n^, 8 =  - 0 .2 ( ’...’), -0 .1 ( ’- 0.0(’- ’), 0.1(’-.’), 0.2(’-
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Figure 4.85: MSP of S8  for t x = q  +  <5 x n*0, 8 =  - 0 .2 ( ’...’), -0 .1 ( ’- 0.0(’- ’), 0.1(’-.’), 0.2(’-
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Chapter 5

Further Applications

5.1 Cavity Oscillations

Self-sustained oscillations over open cavities, such as weapons bays or automobile door gaps, have 

been extensively studied1. Recently there has been renewed interest in this type of phenomena, 

especially concerning the ability to  control the cavity oscillations [154, 204]. The mathematical 

formulation for the cavity model is complicated, and it requires the solution of Navier-Stokes 

equations. The corresponding dynamics is also complex since it may involve interaction due 

to different modes in the system. In this section, we investigate the MSP capabilities for this 

difficult problem. Consider the test signals S9 and S10, obtained by selecting the first column of 

the da ta  file M219D135.DAT and the 10-th column of the d ata  file M219D085.DAT respectively. 

These signals were scaled by a factor of 0.1 in order to obtain an  amplitude close to 1. The 

d ata  files are in public domain, and they have been reported in NATO publication [273]. In the 

following, we will assume tha t the first t \  =  2000 da ta  points of both  signals are known. These 

data  sets will be used for ANN training and are shown in Fig.5.1.

Both signals S9 and S10 contain more than  20000 da ta  points, and neither of the two trajecto­

ries converges to  a  limit cycle or a fixed point. The signals are bounded and have approximately 

constant mean and variance. S9 has a single dominant frequency while S10 exhibits three dom­

inant frequencies whose relative energies vary with time. The F F T  plots for the known da ta  

sets displayed in Fig.5.1 are provided in Figs.5.2-5.3, and are constructed by taking into account 

th a t both signals are sampled a t a rate of 6  kHz. I t is clear th a t there is one dominant mode 

at 492 Hz in S9 while the dynamics in S10 consists of three modes at 120 Hz, 360 Hz and 600 

Hz respectively. The goal of our experiment will be to  accurately reconstruct the dynamics 

corresponding to the dominant frequencies by performing a medium-term MSP using the M201 

predictor presented in the previous chapters. More specifically, if no is the chosen number of

1A version of p a r t  o f th e  m ateria l in th is  section has been su b m itted  for publication  in [242].
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Figure 5.1: F irst 2000 data  points of S9 and S10.

ANN inputs for a given signal, we will generate a d ata  set of length 2no (i.e., f2  =  fi +  2no) by 
MSP.

The first step of our prediction method is to choose the number of ANN inputs no- The time
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Figure 5.2: FFT  for S9 and S10, based on the first 2000 data  points.
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Figure 5.3: F FT  (truncated plot) for S9 and S10, based on the first 2000 data  points.

histories of the known d ata  sets do not exhibit any clear periodicity, especially in the case of S10. 

The significance of an “oscillation cycle” is not clear in tha t case. For S9, most of the successive 

Lmax (the same for Lmin) points are situated at an approximately constant distance of 12 points 

from each other. However, due to the complicated profile of the signal, choosing no =  12 is most 

likely not a good idea. Further insight into the periodicity properties of the two signals can be 

obtained by computing the ACF. The corresponding graphs are represented in Fig.5.4 for both 

signals. The vertical line marks the limit of reliability of the estimates for the ACF, as mentioned 

in Chapter 3 [6 8 ]. For both signals it has been noticed th a t each observation in the time series 

is correlated to  all past observations, and the correlation is stronger for S9 than  for S10. The 

ACF does not decay to zero as the lag increases. In the case of S10, the ACF becomes zero for 

h «  250, and subsequently increases again. The same happens for S9 a t h «  1100, but this value 

is beyond the reliability bound for ACF estimates, hence it is not clear whether it should be used 

at all. Finally, from the F FT  plots of the two training sets constructed based on a  sampling step 

equal to  unity (see Fig.5.5), estimates for the number of ANN inputs are given by 1.0/0.082 «  12 

and 1.0/0.02 «  50 for S9 and S10 respectively.

The results presented in the following were obtained by using the method M201 with n i =  2
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Figure 5.4: ACF for S9 and S10, based on the first 2000 d ata  points.
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Figure 5.5: F FT  (sampling step =  1) for S9 and S10, based on the first 2000 da ta  points.
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and no =  350 (for S9), no =  250 (for S10). The MSP generated after ANN training in each 

case is represented by the dashed line in Fig.5.6 . Obviously, the prediction is not accurate if we 

compare the THs of the correct and the predicted signal. However, from further investigation of 

the MSP results, it has been revealed th a t the proposed ANN approach is capable of predicting 

the system dynamics, in particular correctly predicting the mode interactions.

For S9, the F FT  spectra of the data  sets {s(fi + 1 ) ,..  .,s(ti +  no)} and {yw (ti + 1 ) ,..  .,yw(fi +  

no)} are compared, as well as the FFT  spectra of the da ta  sets ( s ( t i+ n o  +  l ) , . . .,s(fi+ 2no)}  and 

{yw(ti  +no +  l ) , . . .,yw(ii +  2no)}. For S10, the spectra of the d ata  sets {s(fi +  1),.. .,s(fi +  2no)} 

and {j/w(£i +  l)v  • - ,yw(h+2no)} are compared. The spectrum of the correct and predicted signal 

as well as their overlapping in each case are plotted in Figs.5.7-5.9.

For S9, the dynamical system is essentially governed by a  dominant mode at about 492 

Hz. Using the 2000 da ta  points as training set, although the predicted TH is not the same as 

the experimental signal as shown in Fig.5.6, the MSP has the same frequency as the correct 

signal. Moreover, the F F T  plots displayed in Figs.5.7-5.8 dem onstrate a good agreement for the 

frequency spectrum  although the frequency has been shifted to  about 497.14 Hz. The predicted 

profile for S10 as illustrated in Fig.5.6 seems to be unacceptable. However, by comparing the
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Figure 5.7: F FT  for S9 and the ANN-MSP, based on the observations at the moments t \  +  

l , . . . , t i + n 0.
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Figure 5.8: F F T  for S9 and the ANN-MSP, based on the observations a t the moments t% +  no +

1, . . .  , t i  + 2no-

F FT  plots for the predicted data  and the experimnental data, shown in Fig.5.9, it is interesting 

to observe th a t the ANN MSP results correctly predict the dynamics of the system. In  particular,
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Figure 5.9: F FT  for S10 and the ANN-MSP, based on the observations at the moments t x +  

1 , . . .  , t x 2 no-

the ANN is capable of forecasting the dynamics of mode interaction. Unlike the existence of three 

modes with the highest energy at 600 Hz as illustrated in Fig.5.3, the dynamics corresponding 

to th a t in Fig.5.9 has only two modes at 348 Hz and 588 Hz, and the largest amplitude is now 

located at 348 Hz.

Note th a t the results presented above are only preliminary results. Further work is necessary 

in order to improve the prediction accuracy for this highly complex problem. A preliminary 

preprocessing step, such as denoising and/or using a decomposition technique (for instance, the 

empirical mode decomposition (EMD),  proposed by Norden Huang [100, 101]), followed by an 

ANN prediction of each component signal, might lead to more accurate results. However, as the 

above results demonstrate, the proposed forecasting method has great potential in predicting the 

dynamics of complex models.

5.2 Feature Extraction

In addition to performing LTMSP, ANNs can be trained to extract im portant features from the 

predicted signal2. Wong et.al. [257] proposed a combined wavelet-ANN model for extracting 

damping coefficients and modal frequency values of simulated signals. Suppose we are given 

a t r ansient segment ( s ( l ) , . . .,s(£i)}, such as the 160 data  points (tx =  160) marked by the 

vertical line in Fig.5.10, sampled with step 1.0/128 from a signal s (r)  =  s x(r) +  S2 {r), S j (r) =  

Aj  exp (—ajr) sin ( f jT  + <f>j), j  =  1 ,2, where A x =  =  0.5, <f>i = <j>2 =  0, ax =  0.7, — 0.5,

f i  =  127r, / 2  =  8 7 r, and 4>i = 4>2 =  0 , represent the amplitudes, damping ratios, modal frequencies 

and phase angle respectively, associated with the two Fourier modes.

Clearly, it is difficult to extract the damping coefficients and frequency values directly from 

such a short transient data  set. In Fig.5.11 we present a wavelet-ANN model tha t can efficiently 

estimate the values of ax, U2 , f i ,  / 2 , when the transient signal { s ( l ) , . . .,s(£i)} is provided. F irst,

2 A version of th e  discussion presented  in  th is  section has been  published in [238, 239].
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Figure 5.10: Simulated two-mode signal (’— ’) and ANN prediction (’-

an ANN as presented in the previous chapters (M201, with no =  110, n i =  2) is trained using 

the transient da ta  set and subsequently predicts a long-term nonlinear behavior (s(f); t  > t \  + 1 } 

(represented by the dashed line in Fig.5.10). Then {s(t); t >  1} is fed into a  wavelet decomposition 

module, where the two-mode signal is decomposed into two single-mode signals {s i ( t ) ; t  >  1}, 

{s 2 (t);t >  1 }. The details are described in [257]. A simple way to  estimate the damping a 

and frequency /  for a single-mode signal is to train  a 2LFF1S2LNN to recognize the damping 

coefficients of damped sine waves e~aT sin ( / r )  for (a, / )  in some fixed bounded set [a*, a/] x [fi, / / ] .  

Then, given an arbitrary damped sine wave, its frequency /  can be easily determined by using 

the FFT. If it is found th a t /  € [fi, / / ] ,  then f  and a sampling of the sine wave are provided as 

the ANN input. The corresponding network output will then provide an estimate for a.

FFT

ANN

FFT

ANN

Figure 5.11: A Wavelet-ANN model for feature extraction.

In our experiments, a set of Q = 100 training pairs { (5 ^ \  / ^ ) ;  1 <  q < Q}, and a set 

of Q testing pairs {(a^9\  f ^ ) ;  1 <  q < Q}, uniformly distributed in [0 .1 ,4.1] x [3.0,9.0], were 

simultaneously generated. The damped sine wave e~aT s in ( /r ) ,  r  >  0 corresponding to each 

pair was sampled with step A t =  1.0/128, generating t2 ~  512 discrete points in each case: 

{s(q\ t ) ]  1 <  t  < f2} and { s ^ ( t) ;  1  <  t < t 2 ] respectively.

The 2LFFNN was trained to output an estim ated value y  for the damping coefficient a 

when receiving as inputs the value of /  and the 512 sample points of the given single-mode 

signal. At each training iteration, for every q — 1 , 2 the ANN receives the inputs / ^ ,  

»(«>(1 ), •••> s ^ ( t 2), and the network output y ^  approximates the correct output a^  (the 

corresponding damping coefficient). Thus, the ANN had 513 inputs and one output. In  the 

network implementation, 3 neurons were used in the hidden layer. The accuracy of the estimated
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value for a was measured by the relative output error \(a -  y) /a\. The network training consisted

in applying the conjugate gradient algorithm to minimize the mean squared relative output error 

over the Q — 100 training patterns (the performance index E r ) as a function of the 1546 network 

weights:

1422 iterations (4 hours on a Sun workstation, U ltra-10 model). Even though the network gave 

responses within 5% accuracy for all training data, 12% of the network responses in the testing 

phase were associated with large errors in the range of over 5% to 30% (see Fig.5.12(a),(c)). In

the corresponding signal: M [q\  r h ^ \  , r h ^ \  M^9\  M ^ \  r h ^  (4 local maximum and

4 local minimum values) as inputs. The neural network now has only nine inputs, three neurons 

in the hidden layer, and one output, and this reduces the number of weights to 34. The value of

(k e  Z) only determine the quotient fj^  =  f ^ / a ^ .

In  this case, the network training stopped after 1440 iterations, and the output errors for 

the training set were all within 5%, as shown in Fig.5.12(b). The training process took only 

seven minutes, and more accurate estimates for the damping values were obtained. As shown in 

Fig.5.12(d), 98% of the estimates were within 5% accuracy and only 2% had error in the range of 

10% to 15%. The result represents a significant improvement in both training time and output 

accuracy. To obtain all testing errors within 5%, additional training is required.

Clearly, the present wavelet-ANN approach can be extended to  a general n-mode signal. Our 

damping extraction method is an alternative approach to the one proposed by Johnson et.al.

[1 1 0 ], who applied the discrete wavelet transform on both the given signal and a dictionary 

of so-called “singlet functions” and performed correlation filtering to  determine which singlet, 

function best approximates the frequency and damping characteristics of the given signal a t a 

specific point in time. In our case, a dictionary of artificial neural networks trained to  output the 

damping of a single-mode signal for different frequency intervals could be built and used together 

with wavelet decomposition to provide real-time estimates of damping coefficients.

(5.1)

The training was stopped when \ / E r ( w )  <  0.015. In the testing phase, the relative output 

errors | ( d ^  -  y(q\ w )) / d ^ | ,  1 <  q < Q, are computed. The stopping criterion was reached after

order to  achieve a better testing performance, the training must be continued until \ / E r {w) -C

0.015.

A more efficient procedure for estimating a has been proposed, in which the network inputs 

consist of the value of and the first eight successive local maximum and minimum values of

has to be included in the network input, since the local maximum and minimum values by 

themselves

(5.2)
kit — arctan ( f j ^ )
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Figure 5.12: Training ((a),(b)) and testing ((c),(d)) relative errors when using 513 ((a),(c)) and 

9 ((b),(d)) network inputs respectively, in the damping extraction problem.
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Chapter 6

Conclusions and Future 

Directions

In this thesis, a new approach based on the use of artificial neural networks (ANNs) for long­

term  prediction of nonlinear oscillations arising from dynamical systems was proposed. An ANN 

is trained using a segment of the transient state of a signal, and the asymptotic state  of the 

trajectory is reconstructed by a multi-step prediction (MSP) process. The problem of a long-term 

MSP using ANNs has not yet been thoroughly investigated, since most of the ANN research deals 

mainly with interpolative problems. For an accurate MSP, it is essential to  construct a stable 

nonlinear mapping and to  overcome the problem of error propagation, especially given the fact 

tha t the known data  set is always corrupted by measurement noise. In fact, the present work 

points to  a novel research direction in the field of ANNs, for which new tools need to  be created 

in order to deal with aspects not encountered in interpolative applications.

In this study, an original MSP method using ANNs was designed, with special features th a t 

control the propagation of the prediction errors. The proposed predictor was tested on numer­

ically generated signals and real-life experimental data. Based on a detailed comparison of 12 

combinations of network architectures and training algorithms, it was found th a t the method 

tha t extracts the maximum amount of information from the training set using the minimum 

number of neurons, while providing the greatest robustness in the presence of signal noise and 

variations in the number of inputs, neurons, and in the endpoint of the training set, is the one 

using a two-layer feedforward ANN with normalized second layer weights, trained with a constant 

learning rate, and for which the first layer weights are initialized with normalized segments of the 

training signal. Guidelines for consistently choosing the number of network inputs and hidden 

neurons have also been reported.

A theoretical justification of the proposed approach is presented, showing that, under certain 

conditions, the w-limit sets of the original trajectory  and of the predicted signal are close to  each
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other. The theoretical analysis could be further refined by providing an estimate for the mapping 
e M e )  in Section 3.4, which depends only on the form of # w and on the values of the ANN 

weights. This could constitute a subject for further extensive theoretical research and would lead 

to  the possibility of providing a practically relevant bound on the accuracy of the ANN-generated 

prediction, tha t would be available at the end of network training.

As a further application of the proposed prediction approach, we dem onstrate th a t the devel­

oped ANN is capable of predicting the nonlinear dynamics for the complex cavity flows. More 

work is needed in order to refine the prediction, in particular to capture the dynamics in multi- 

mode interactions. A possible approach could be to decompose the complex nonlinear signal 

into a sum of nonlinear components (the empirical mode decomposition (EMD), proposed by 

Norden Huang [100, 101]), and to perform LTMSP of each component separately. The cavity 

flow also leads to  the general issue of finding better measures for the prediction accuracy. As 

already mentioned, the TH-based pointwise error is not a relevant measure since it could be 

large when the profile of the predicted signal is accurate but there is a phase shift between the 

MSP and the correct signal. An option worth investigating could be the following. For each 

lag d, 1  < d < no, plot s(t) vs. s(t  — d) and yw {t) vs. yw (t — d) for the last oscillation cycle 

(t2 — no + l < t <  £2 )- Interpolate between the consecutive points (s(t — d — 1), s(t — 1)) and 

(s(t — d), s(t)) (for example, by segments), obtaining a curve 7 *, : [<2 — no +  1, £2 ] —> R 2. Repeat 

the process for all points (yw (t — d — l ) ,y w(f — 1 )) and {ijm(t — d) , yw(i ) ) 5 obtaining another curve 

; [̂ 2 -  no +  1, *2] —» R2. A scalar measure of the area (in the plane) between the two curves 

could be defined in the form of an integral, in a similar manner to the area bounded by the graphs 

of two functions f , g  : [a, b] —» R  (for some a < b), defined as |/(£ ) — g(£)\d£. However, the 

generalization of this formula to  arbitrary, self-intersecting planar curves is not straightforward.

An ANN can be trained to extract the values of the damping coefficients from the predicted 

signal, when used in conjunction with a wavelet decomposition technique. A feature extraction 

method was designed, which dramatically improves the network training time when extracting the 

damping coefficient from a single-mode signal. Further work needs to  be done in order to extend 

the damping extraction method to  multi-mode signals without using a wavelet decomposition 

module.

In a parallel study at the University of Alberta, nonlinear time series models and the extended 

Kalman filter have also been used for providing long-term MSP of nonlinear oscillations [194, 258, 

259, 260]. The training sets necessary for those methods in order to  provide an accurate MSP 

are about 25% smaller than  those necessary using the ANN-based predictors. In nonlinear time 

series models, the model param eters are estim ated more sharply than  in the case of ANNs. T his, 

however, also causes these methods to be sensitive to  signal noise. In  the case of a  noisy signal, 

a denoising step is required before applying nonlinear time series models for long-term MSP. 

In using the extended Kalman filter, the form of the nonlinearity must be known beforehand. 

However, this information is usually not available in practical situations. Neural networks are
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robust with respect to noise and to variations in the parameters such as the number of inputs or 

neurons, or the values of the weights, due to the parallel and distributed storage and processing 

of information inside the ANNs. Thus, the parameters of the method do not need to  be estimated 

sharply. Moreover, no additional information about the underlying dynamics needs to  be provided 

to the ANNs. The shortcoming is tha t the ANNs need more training data  than  the nonlinear time 

series models in order to  accurately predict the same signal. In addition, tim e series models have 

the advantage of being better understood and theoretically tractable than  ANNs, even though 

the understanding is still incomplete for most nonlinear models. In a real-life application, all 
these three methods (nonlinear time series models, extended Kalman filter, and neural networks) 

could be used to provide a LTMSP. By comparing the MSP results, one could have a reasonable 

degree of confidence whether the prediction is correct.

The main assumption when using the proposed prediction approach is th a t the underlying 

dynamics of the given trajectory can be modeled by a finite-dimensional dynamical system, or at 

least can be accurately approximated by a finite-dimensional dynamics. Moreover, it is assumed 

th a t the training data set contains sufficient information of the nonlinear dynamical system. 

This constitutes the main limitation of the approach proposed in this study. The extension of 

this method to  the prediction of infinite-dymensional dynamics is not straightforward. Further 

research needs to be done in order to deal with this type of problems. In general, even though 

the results obtained in this study can be further refined, we conclude th a t ANNs prove to  be 

useful tools in long-term prediction of nonlinear trajectories and in feature extraction.
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