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ABSTRACT

In this thesis, we will discuss the optimal estimators with R-estimation and
testing methods in linear model. First, we will review the classical analysis of
linear model and introduce the results obtained previously with the R-estimation
and testing methods. Then we will give definitions to influence functions for esti-
mators and for tests and derive them. The optimality criteria will be given both
for estimation and testing. After that we will give the solutions for the optimal-
ity problem in general, for Hampel-type optimality problem and for Huber-type
optimality problem. Finally, we will show the numerical results for estimation

and testing for several estiraators.



CHAR “ER 1
INTRODUCTION

1.1 Linczar Model and Classical Analysis of it.

The linear medel is one of the most widely used models. It has received great
attention both in theory and in practice. Many statisticians have developed the
theory of estimation and testing of linear hypotheses in linear models, and applied
the results to solve practical probiems.

Generally we consider the following linear model.

Let {(zi,yi): ¢ =1,...n} be a sequence of independent identically distributed

random variables such that
yi=z70+e i=1,...n (1.1.1)
where
Yi € IR"
z; € IR? ,
0 € Q CIR? is a p ~ vector of unknown parameters,

e; € IR is the ith error,
or in matrix form

Y=X0+e (1.1.2)

where

It is assumed that Q is open and convex and that e; is independent of z;
and has distribution function G(e) and density g(e) with respect to Lebesgue
measure.

Let H(z) be the distribution function of z;, with density h(z) with respect to
Lebesgue measure. If we denote by fg(z,y) the joint density of (z;,y;) then,

fo(z,y) = g(y — =7 6)h(z). (1.1.3)

1
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In the usual formalization, we consider a linear model in which z;,...z, are
fixed constants and y3,...,Yn are observations.
In the linear model the most important problems are the estimation ol param-
eters and the testing of linear hypotheses.
Classical estimation and testing theories are based on the well-known method
of =13 Squares which was introduced by Legendre and Gauss at the beginning
. steenth century. The Least Squares estimate (Trs)n of 6 is defined to be
tho 6 which minimizes o
D(9) =) (vi—zi6)*. (1.1.4)

=1

That is
D((TLs)») = min{D{6)|6 = Q} .

Some of the assumptions which are made about the error ¢; in the classical
analysis are listed below
1) E(e)=0 t=1,...,n
2) e1,...en are independent identically normally distributed i.e. ej,...,en ~ iid.
N(0,0?)

Huber (1981) and Hampel et al (1986) and many other statisticians have found
that when the above assumptions are violated then the LS method will have a
poor perforraance. This means the classical analysis is not robust against de-
partures from these assumptions. So people prefer the robust methods which
behave well under the circumstances that the above assumptions hold or are
slightly violated.

In general the testing problem for linear model is to test the linear hypothesis

8(0)=0 j=g+1,...,p (1.1.5)

where £441,...4, are (p — ¢) linearly independent linear estimable functions and
0<g<p.

Through a transformation of the. parameters we can reduce this hypothesis to

H:Gq+1=...=6‘,=0. (1.1.6)
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Let w be the subspace of 2 obtained by imposing the condition Hy. Thean the
classical critical region for testing this hypothesis is

{D* > Fi-ap—gn—p} (1.1.7)

where

o _ Ty = 2T (T)n) = (v = =T (Ta)a)*}/(2 — 9)
7= Z?:l(yl' - z?(Tﬂ)n)z/(n - P) (11.8)

and (Tp), and (T,), are the LS estimates of 8 in the full and reduced model,

respectively.

We can see that the classical testing procedure also depends on the Least
Squares estimates in the full and reduced model. So, e Least Squares esti-
mates, it is not robust, either.

Because of the lack of robustness of classical estimation and testing procedures
people want better alternatives - robust procedures in the linear model.

Since the 196(s several robust methods have been introduced and developed.
They are the maximum likelihood type or M-estimation method, the rank-based
or R-estimation method, and linear combination of order statistics or L-estimation
method.

Any estimator T}, defined by a minimum problem of the form

n
> p(zi, Tn) = min! (1.1.9)
i=1
or by an explicit equation
n
Y (2, Ta) = 0 (1.1.10)
=1

where p is an arbitrary function, ¥(z,8) = $p(z,0), is called an M-estimator.
An M-estimator T, for the linear model is defined by the equation

> n(zi, (yi — 2T Ta)/0))z: =0 (1.1.11)

=1

where function 7 satisfies some regularity conditions.



An L-estimator T, is of the form

n
T, =Y aib(z() (1.1.12)
i=1
where weights a; = f(:/_:' 1)/n dM(u) , h is some function and z(; is the i-th order
statistic. L-estimator T, for linear model is defined by Bassett and Koenker
(1982) to satisfy a minimum problem

min P, ,-—z'-TT,, 1.1.13
T,.ellR’Z (v ) (1.1.13)

=1
where P,(u) = eut+4(1~¢€)u™, 0 <€ < l,and ut,u” are the positive and negative
parts of u, respectively.

In this article we will focus on the estimation and testing problems only with

R-estimation method.

1.2 R-estimation and testing of linear hypotheses based on it.

1.2.1 R-estimation

Let zi,...Zm and y1,...,yn be two independent samples from distributions
F(z) and F(z — A), respectively. Let R; be the rank of z; in the combined
sample with size m +n. Let a; = a(é) (i = 1,...,m +n) be given scores, then a

rank test of A = 0 against A > 0 is based on the test statistic

Smp == f:a(R,-) . (1.2.1.1)

$==1

Generally we assume that the scores a; are generated by a score function J as

follows:
i

a; = J(m) , (1.2.1.2)

or
a; = J(——2—) (1.2.1.3
T mn+17 2:1.8)

or

i/(m+n)

a; = (m +n) J(t)dt . (1.2.1.4)

(i-1)/(m+n)



We also assume that

> ai=0. (1.2.1.5)

So the corresponding requirement for J in (1.2.1.4) is

/ 'yt = o, (1.2.1.6)
0

Definition 1.2.1:

An R-estimator of location is defined as T, = Ta(z1,...,2,) when T, is chosen
in order that (1.2.1.1) becomes as close to zero as possible when computed from
samples z;,...z, and 2T, — z;,...,2T, — z,.

This definition is for the one-sample case. It means that in (1.2.1.1) if we let
m = n and replace each y; by 2T, — z; then we can obtain the R-estimator of
location by solving the equation S,, = 0. The idea behind this definition is
this: From the original sample z,,...,7, we can construct a mirror image by
replacing each z; by T, — (z;—T,). We choose T, such that the test can’t detect
any shift, i.e. S,n =0.

Similarly the definition of R-estimator of shift A,, , in two-sample case requires
(1.2.1.1) to be as close to zero as possible when computed from samples z;,...zn

and y1 —Apmpy---yYn — Ap n-

1.2.2 R-estimation of parameters in linear models
In 1963 Lehmann considered the analysis of variance techniques with R-estimation
method. The model he discussed is

i=1,...,1I

Yij = pi + €ij { Yni=n } (1.2.2.1)
J

i=1,...,
with several observations per cell. The e;; are independent identically distributed

continuous random variables with density f satisfying

"~ F(z)dz < o (1.2.2.2)

—00
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and o2 = Var(e;;) < co. He derived a robust method to estimate the parameters
and to test the linear hypothesis.

In 1971 Juretkovs generalized Lehmann’s results to the génera.l linear model.
Later Jaeckel (1972) simplified Juretkovd’s work and made the results more us-
able. Hettmansperger and McKean (1977) developed the testing theory with
Jaeckel’s estimation method.

The model considered by Jaeckel, Hettmansperger and McKean is the same as

(1.1.1), but has more restrictions to error term and can be written as

p—-1
yi=00+ Yy i +ei i=1...,n, (1.2.2.3)
=1
ie.
yi=0o+al0+e; i=1,...,n
where

z; € IR?™! are fixed constants for i =1,...,n

e; are i.i.d continuous random variables with density

[= <]
g such that / ¢?ds and o® = Var(e;) are finite
~00
feQ cRF
or in matrix form
Y=01+X0+e. (1.2.2.4)

In the Least Squares estimation we define frs to be the 8 = (000) € Q which
minimizes .
D)= (vi— 6o —zi6)" . (1.2.2.5)
i=1
If we denote
ei(0) =y; — 6o — x,;To , (1.2.2.6)

then

D) = i e2(6) . (1.2.2.7)

i=1
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From the robustness point of view, the trouble with the classical method is that it
places too much weight on the extreme residuals when the data contains outliers
or has a distribution with heavier tail than normal.

To solve this problem Jaeckel defined a function for any Z = (z1,...2,)7

n

Dy(2) = o(Ri(2))= (1.2.2.8)

=1
where R;(Z) is the rank of 2; among z,...z,.
To ensure that Dy is translation invariant (i.e. Dj(Z 4+ C1) = Dy(Z) for any

constant C) and convex it is required that

n

> a(i)=0 (1.2.2.9)
=1
and
a1) < ... <a(n). (1.2.2.10)

With (1.2.2.9) we can easily see that D ;(Z+C1) = D;(Z) holds for any constant
C. So Dj(Y —6p1 — X0) does not depend on intercept 6. In later discussion
we will use the model (1.2.2.3) rather than (1.1.1). Dy can also be expressed as

n n

Dy(Z)=) a(R(2))x =Y ali)z (1.2.2.11)

i=1 =1
where z(;y are the ordered residuals. Using D;(Y — X6) as a dispersion measure

of residuals we get a function of 6

DY — X8) = zn: a(Ri(Y — X8))(y; — z706) (1.2.2.12)

=]

=Y a(i)(ye — {9

=1

where R;(Y —X6) is the rank of y.-—:c,TG among ¥ —mlTo, veryYn—226 and Yi) —
:v%';)O are the ordered residuals. Now with (1.2.2.9) and (1.2.2.10) we try to prove
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that Dj(Z) is nonnegative and a convex function of 8. Let Z = (z1,...,2a)" be

a vector and £ be the index of the first positive a(i). Then

n

Dy(Z) =) a(i)zs) = Y a(i)(z) — 20) 2 0 (1.2.2.13)

i=1 i=1
since every term in the sum is nonnegative. To prove Dj(Y — X0) is a convex

function of § we need to show that for any ¢', 6" and 0 <t <1 the inequality
tDy(Y - X6')+(1—t)Ds(Y — X6"y > Dy(Y - X8 +(1-1)8")) (1.22.14)

holds. Let P;(i), P;(i) and Ps() be some permutations of1,...,nand Yp,,Yp,,Yp,,
Xp,,Xp,, Xp, are the matrices formed by Yp,(s), sz(,-) s YPy (i) XPl(i)’ sz(,') and

X py(i), respectively. Siuce
tDs(Y - X6+ (1 -t)Ds(Y - X0")—-Dy(Y - X(t6' + (1 — t)8"))

n n
=t Z a()Yp,5) — Xg(i)ol] +(1-1¢) Z a(8)[Yp,) —~ Xli”;(i)oul

i=1 i=1
n

- z a(?)[Ypy() — X},’a(i)((l —4)6")]

i=1

=t 3 a@O(Yew — Yre) — (XF ) — Xpa)F']

i=1

+(1~1)Y @) (Yre — Yrum) = (XB o = Xp@)0']

i=1
= tD|(Yr, - Vo) — (XE, — XE)0') + (L - )Ds[(Ye, — Yr) = (XF, — X£,)6"] 2 0
due to the nonnegativity of Dj(Z) we have the convexity of Dy. We need to
mention here that the formula (1.2.2.12) is reasonable because of an easily seen
fact that with probability 1 there will be no ties in the ranks.
Hettmasperger and McKean added the symmetry of the scores

a(i)=—-an+1-i) i=1,...,n.

This assumption is not necessary in general and is natural only when the e; are
symmetrically distributed. If not specified, we assume that the error term e; are

symmetrically distributed in our later discussion.
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Let § be the robust estimator of @ in the linear model with the R-estimation
method. That is, 8 is defined to be the § which minimizes Jaeckel's dispersion

measure, i.e.

D(Y — X8) = min{D (Y — X6)| 6 € Q"

where Q' C IR?~!. The value of § can be obtained by solving a group of equations
n
> (@i —z;)e(Ri(Y — X0)) =0 j=1,...,p—1
i=1

where z; = n"1Y 1 z;; and R;(Y — X0) is the rank of y; — 270 among y; —
z76,...,y, —zT4.

The above equations are solved in the sense that the value of # makes Yoy (zij—
z;)a(Ri(Y — X 5)) as close to zero as possible. Jaeckel (1972) showed that the
solutions ‘are not necessarily unique, but that the diameter of the solution set
goes to zero in probability as n — co. Hettmansperger and McKean (1976) have
developed several successful algorithms to handle this numerical problem.

To estimate 8, after 8 it is recommended by Hettmansperger and McKean to

use

8o = medi<ici<n{(€i +€;)/2}

when e; are symmetrically distributed and to use (by Aubuchon and Hettmansperger
(1989))

50 = medlS;Sn{E;}

in the absence of symmetry. Here, € = y; — (X 5), in both cases.

As at (1.2.1.2),(1.2.1.4) we take scores in the form

7
n+1

a; = J( ) i=1,...,n,

or

ifn
a,-=n/ J@t)ydt i=1,...,n.
J(@(i-1)/n
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Very common and simple scores are the sign scores

omsn(cr-})
ali) = (n-z;-l —%) ’

05 (s-3).

Policello and Hettmansperger (1976) proposed a mixture of sign and Wilcoxon

Wilcoxon scores

and normal scores

scores in which €/2 of the residuals at each end are given sign scores and the

remaining (1 — ¢€) in the middle receive Wilcoxon scores.

1.2.3 Testing of linear hypotheses based on R-estimation

In 1976 McKean and Hettmansperger proposed using Jaeckel’s dispersion mea-
sure to test linear hypotheses in the linear model. Since under the condition
(1.2.2.9) Jaeckel’s dispersion measure does not depend on intercept any more, we
need only consider testing of linear hypotheses of slopes. Generally we consider
testing Hy: Gop=...=0p—1 =0 where 0 <¢<p-—1

Let DY be as follows:

* = Dy(Y ~ X8,,) — D;(Y — Xbp)

where 5‘,, and 59 are the parameter estimates under reduced and full model with

R-estimation, respectively. Then they found that

2rDy%
A2

— x:-q_l in distribution under Hy

where

r=- [ J0E ON (G Nt

1
A= / J2(t)dt .
0
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In the case of asymmetric errors some work has been done. Koul, Sievers, and
McKean (1987) and later McKean and Sievers (1989) considered the linear model
with skewed errors and gave their method of estimat on and testing hypotheses.
Aubuchon and Hettmansperger (1989) proposed a way of using Wilcoxon scores
to estimate parameters and to test linear hypotheses in the linear model.

A lot of work has been done by many statisticians on the problems of estimating
parameters and testing hypotheses with R-estimation in the linear model. Some
of them are Adichie (1967, 1978), Aubuchon(1982), Draper (1981, 1988), Hodges
and Lehmann (1963), Puri and Sen (1969).

Some people have done their research work on the performance of some specified
score functions. The problem of determining optimal score functions for general
linear model still remains.

In this article we try to give our answers to the above question. Hampel et
al (1986) once discussed this problem in M-estimation. Now we extend it to R-
estimation. In Chapter 2, we will discuss R-estimation in the linear model and
optimality criteria in estimation. In Chapter 3 we will construct a test statistic,
find its asymptotic distribution and discuss the optimality criteria in testing. In
Chapter 4 we will give solutions to all above optimality problems. At last in

Chapter 5 we will show some numerical study results.
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CHAPTER 2
ESTIMATION IN THE LINEAR MODEL

2.1 Definition of influence function for estimators

Later in this chapter we will use the influence function as a tool. Now we give
its definition and some of the properties.

Consider a parametric model (X,A,{Fs : 6 € Q}) where X is a complete
separable metric space, A is the g-algebra generated by the topology, and {Fp :
8 € Q} is a family of distributions on th: measurable space {X,A} and Q is a

convex subset of IR? for some integer p.
Let z;,...,Zn be n independent and identically distributed observations in X

and let {T, : n € IN} be a sequence of estimators of § such that:

(1) Tu(z1,...s2n) = Tn(Fn)
where F, is the empirical distribution.

(2) There exists a functional T on a certain subset of the space of all probability
distributions into IR such that Th(zs..,...,zn) — T(F) in probability when
n — oo and the observations are distributed according to F. Generally, T;, =
T.

(3) We assume that the estimator T' is Fisher consistent: T(Fp)=8 V8 € Q.

Definition 2.1.1:
Let 6, be the distribution which puts mass 1 at the point z € X. Then, the

influence function of a functional T at a distribution F is given by
IF(z,T,F)= li{%{(T((l —€)F +¢eb;) — T(F))/e} .
The above influence function usually can be obtained by simple calculation as
(1 e)F +£0)|
de ¢ el gz
Under some regularity conditions, we have
/ IF(z,T, F)dF(z) = 0 2.1.1)

12
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and
V(T(F,) — T(F)) — N(0,V(T, F)) (2.1.2)

where V(T, F) = [ IF(z,T,F)-IF(z,T,F)TdF(z). Now we outline the derivation
of (2.1.1) and (2.1.2) in one dimensional case. Let T(F) Be defined on a class
F of distribution functions and T be Gateaux differentiable. Then by definition
there exists a function 1 r(2) such that for all G € F,

. T((1-€e)F+eG)-T(F
lim (@=¢) 1e )= T(F) _ / ¥r(2)dG(z) . (2.1.3)
By putting G = 6§, we have
IF(z,F,T) = yr(z) . (2.1.4)
Putting G = F gives
/ IF(=, F, T)dF(z) = 0. (2.1.5)
Let £(¢) = T((1 — €)F + €G). By Taylor expansion we have
2
£(1) = £(0) + €'(0)elemr + g"(n)fz-|,=1 for0<n<1, (2.1.6)
le.
T(G) = T(F) + / IF(z, F,T)dG(z) + remainder . 2.1.7)

By substituting the empirical distribution F, for G we obtain
VA(T(Fa) = T(F)) = /& / IF(z, F,T)dFa(c) + remainder
1 n
=% 2 IF(z;,F,T) + remainder . (2.1.8)
=

The first term on the right-hand side is asymptotically normal by Central Limit
Theorem. It is often true that the remaining terms are asymptotically negligible.

So /n(T(F,) — T(F)) is asymptotically normal with mean 0 and variance

V(T, F) = / IF(s,T, F)?dF(z). (2.1.9)
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In multidimensional case we need more conditions.

2.2. Influence function of slopes.

We consider the linear model (1.2.2.3), i.e.
yi=06p+z70+e i=1,...,n (2.2.1)

with assumptions that z; and e; are independent. z; has distribution fucntion
H(z) and density h(z), and e; has distribution function G(e) and density g(e)
such that [ g%dz and ¢ = Var(e;) are finite. So the joint density of (z:, ¥i)
is

fo(z,y) = g(y — 278 — 6p)h(z) (2.2.2)
In the following part of this section, we consider z,,...,Z. as constants and
Y1,...,YUn as observations. We are going to use the dispersion function Dj that

Jaeckel, Hettmansperger and McKean used

DJ(Y - 901 - XTO) = DJ(Y - XTa)
= i a(Ry(Y ~ XT8))(yi — zi'6) (2.2.3)

=1

where R;(Y — X79) is the rank of y; — 276 among y1 —z76,...,yn —zT6. Also,

the scores need to be monotone and symmetric:

a(l) £...<a(n),

a(i) =—a(n+1-14) i=1,...,n. (2.2.4)
The scores are chosen in the following form

i/n
a(i) = n/ J@dt i=1,...,n (2.2.5)
(i-1)/n

where J is a monotone function and we require that

/ Tyt =0 (2.2.6)
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be satisfied.
Let 6y, and 6, be the true value of 6, and 9, respectively. Then we have

Yi = Oos + 2] 0s +¢; . (2.2.7)

We estimate 0, through

% 2": a(Ry(Y — XT6))(zi—7)=0. (2.2.8)

i=1
In this chapter finally we will use the joint influence function of slopes and
intercept to discuss the optimal scores in estimation. First we need to derive the
influence function of slopes.
Let E, ¢ be the empirical distribution of y; —279,...,yn — 2T so that Ri(Y —
XT) =nE, ¢(y; — z76) and then (2.2.8) becomes

1 2,,: n / P dt(ai —7) = 0. (2.2.9)

e A R HO R

Let H, be the design measure, i.e., the distribution function defined by
#of zi’s in V Cc IRP?

H, (V)= ~ (2.2.10)
and G, be the empirical distribution function of e. Then we have
Fa(z,e) = (Gn X Hyp)(z,€) . (2.2.11)
From (2.2.7) we have
Yi — 20 =080, + 270, +¢; — 278
= Ogs + 27 (04 — 8) +¢; . (2.2.12)
So (2.2.9) becomes
En,o(00.+zT(0.—0)+c)
/ n / J($)dt)(z — pa, )dFa(z,€) = O (2.2.13)
En,0(900+3T(00—0)+e)—‘,1,
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where pp, = [ zdHa(z) =Z. By definition

1
Eno(t) = ~I{yi - z76 <t}
1 n
== EM: I{80s + 2T (8. — 0) +€; < t}

= -1]—; Xn: I{e,- <t-— 90: - 3gT(ot - 0)} : (2'2'14)

=1

Note that I{e; < t — 8o, — z7 (6. — 0)} is a random variable with mean G{t —

6o — 27 (6. — 0)} and variance
G(t — Oou — 77 (8. — 0))[1 — G(t — Bos — 7 (64 — 6))] < 1/4,

so that

1 . 1 n
Enot) == 3 G(t ~ 0.~ (6. = 0)) = = 3 % (2.2.15)
i=l] i=1

where we have EZ; =0, Var(Z;) < 1/4. By Law of Large Numbers

1 n
= Z Z; — 0 in probability as n — oo .

i=1

So (2.2.15) becomes

Ena(t) — / G(t ~ b0s — 7(6. — ))dHn(z) = = Z — 0 in probabilitiy

i=1

asn—oo If H, X Hasn— o0, i.e. H, — H in distribution, we have
Ena(t) — / G(t — 8. — =7 (6, — 8))dH(z) in probability . (2.2.16)
Then
Eao(80s +2T(6s — 0) +€) — / Gle+(z - 2)T (0 —O)dH(z)  (22.17)
and the limiting form of (2.2.13) should be

/J[/ G(e + (z — 2)T(6« — 8))dH(2)|(z — pn)dF(z,e) =0 (2.2.18)
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with F(z,e) = H(z)G(e). Under Fo(z,e) = Ho(z)Go(e), Fisher consistency re-
quires

0, = 8(Fp)

and by (2.2.18) the defining equation for § = §(F) is

/ gl / G(e+ (= — 2)T(6(F) — 6(F)))dH(2)|(z — pu)dF(z,0) =0. (2.2.19)

Put
Ye,z, F) = / Gle+(z — 2)T(8(Fs) — O(F)))dH (=) . (2.2.20)

Then (2.2.19) is
/ J(ee,x, F))(z — pn)dF(z,e) = 0 . (2.2.21)

To get the influence function, we replace F' by

Fy=(1=MNF, + \F,

= (1 - A)GOHQ + AG1 H;
in (2.2.21) and define 8(Fy) implicitly. Then
, d
IF(U,V,Go,Ho, J) = d—A-e(F,\)lGl’:o)‘:—'_:}?lg‘v . (2.2.22)

We have

be,a, F3) = (1= 3) [ Gole+ (& = &) (0(F) - B(F)))Hal(2)
+ A / Gi(e+ (z — 2)T(8(Fo) — 6(Fr)))dHi(z) .  (2.2.23)

Put § = &-6(F))|r=0, then

%e(e,x, F\)|a=o = —/Go(e)dHO(z)
+ / go(e + (z — 2)T(B(Fo) — 6(F3))|xmo(~(z — 2)T6)dHo(z)

+ / Gi(e)dH (z)
= (G1 — Go)(e) — go(e)(z — pm,) 76 . (2.2.24)
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In (2.2.21) replacing F by Fj, then taking the derivative w.r.t. A and evaluating

at A =0 give
d
0= / Ptle, 2, Fo)l b, 2, Fa)lamo(z = o) dFu(2, €
d
O ELCOER.S CEPPRELICD

+ [ Ttete, 2, Foll@ — wa (P~ o))

= [ F1GaleM(Gr - Go)©) = ez = i) E)(@ = wre)dFo(, )

- / T[Go( ikt — nito)dFo(z, €)

+ [ J1Go(eN(e - pro)dFi(z,€) = [ H(Gole))e ~ n)iFu(z,e)

Since [(z — pH,)dHo(z) = 0 and [ J(Go(e))dGo(e) = 0, putting Co = [(z —

BHo )@ — k1) dHo(z), we get

=— / J'(Go(e))g2(e)de - Cob

+ / J(Go(€))dG(e) - / (& - pme)dHr(z)

so that
. [ J(Go(e))dG(e) 1
= TTColeai(e)de e T )

From (2.2.22) we get the influence function of slopes

J(Go(u))
J J'(Go(e))g5(e)de

IF(u,v,Go, Ho,J) = Co (V= 1)

where

L1
yH°=/$dHo= hm ;Z:‘B,’

n—o0

Co = [ (e~ e~ uro)TdHo(e)
= lm .11; 3 (@i = z)(ei ~ )7

=1

(2.2.25)

(2.2.26)
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2.3 Joint influence function of slopes and intercept.

From the above section we know that the model is
y="06+z 0 +e. (2.3.1)
Eq,¢ is the empirical distribution function of y; — z76,...y, — 276 and
En6(t) — / G(t — 8ox — 2T(6. — 6))dH(z) in probability .
Let G*(t) = [ G(t — 2T (6. — 6))dH(z), then
y—270~0y =0p. — 0o+ 25 (0. —0) + ¢ (2.3.2)

distributed as G*(t — (6« — 6o)).
Suppose we have observations y; —z78 —6g,...,yn — T8 — 6y from distribution
G*(t — (6ox — 6p)). We construct their mirror images 2(fos — 8) — (y1 — 278 -
60);--+,2(00s — 00) — (yn — zT6 — 6;). Let M,(z) be the empirical distribution

function of the combined samples just obtained. Then
1
My(2)= -2—[G*(z — (Bos — 60)) +1 — G*(—3(60x — 6p) — 2)] . (2.3.3)

Let R; = rank of y; — :z::fPG -8 = 2nM,(yi — 279 — 6o). So the R -estimator of
0o is defined by the equation

0= %Xn:b(R,-)

=1
=/b(R,-)an(a:,e)
M, (y—=7 6—60)
= / on( K(t)dt)dFu(z, ¢) (2.3.4)
Mn(y—zT0-00)— 5=

where 5(i) = 2n f(t/_ 217; jan K(t)dt and K(t) has the same properties as J(t). If we
select b(i) as Wilcoxon score, i.e. K(t) = (¢t —1)/2, we will get the 8 recom-

mended by Hettmansperger and McKean

8o = medigici<n{(@ +€;)/2}
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as shown in chapter 1.

If we select b(i) as sign score, i.e. K(t) = {1’

-1,
8o proposed by Aubuchon and Hettmansperger

v IV
O N[

then we get the
?

B =
v Vv

50 = medls,'s,; {3,} .

Here, &; = y; — (X8); in both cases.

Let n — oo, then 8p. — 6p — 0 in probability and so
M,(2) = -;—[G"(z-—(ﬂo,.-—90))+1—G"‘(—3(90.-—00)—z)] A %[G*(z)+1—G*(—z)] .
Thus,
Ma(y—270-b0) = H[G*(y—aT0-00) +1~G*(~y+570+60)| £ 5l(e,2,00,0,F),
i.e. from the definition of G*(t)
le,z,60,60,F) = /G(e + 80x — Op + (z — 2)T(6, — 8))dH(2) + 1
- / Gl—e—0Ops + 60— (z+2)T (0. —O)dH . (23.5)
Then 6, can be defined from the equation
0= / K[38(e, 00,6, F)ldF (z,¢) . (2.3.6)

To get the influence function, we replace F' by
Fy= (1= NFy + \F}
= (1 \)GoHo + \G1 H; .
Then
€(e, 00,8, F3) = (1 — ,\)[/ Gole + 6o(Fo) — Bo(F)
+ (z — 2)T(6(Fo) — O(F3)))dHo(z)~
~ [ Gol—e = 6u(Eo) + 60(F) = (& + 217 (OFs) ~ HCEAD)Ho()]

420 Gale + 80(Fo) = Ba(3) + (= = )7 (0(F) ~ H(FR ) (2)

- / Gy (—e — Oo(Fo) + 60(F2)
— (z + 2)T(8(Fy) — (F»)))dHi(2)] - (2.3.7)
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Express P
6o = 7 fo(Fa)a=o

. d
g = zj\-e(F,\)l,\;-o .

By calculation we have

de(ea Z, 0070,F)\)|
pt

- <0 = —(Go(e) — Go(—¢€)) + go(e)[—bo — (z — pr,)T6)]

— go(—€)[~60 — (= + p#1,)76] + Gi(e) — Ga(—e)
= Gi(e) ~ Go(e) + Go(—e) — G1(—e) = [go(e) + go(—e)}fo
— (90(e)(@ — pr1s)” + go(—e)(@ + p1)T)6 - (2.3.8)

Taking derivatives w.r.t. A in the equation
0= / K[-;—é(e,a:,ao,a, F)ldFa(, ) (2.3.9)
and evaluating at A = 0 give

0= /K'[—;—Z(e, z, 90, 0, Fo)]%lg:o%dFo(w, e)

+ /K[%E(e,m,Go,G,Fo)]d(Fl — Fy)(z,€)

=3 [ K13(Go(e) + 1= Go— (=& T hmodFoz, )
+ [ K5(Gole)+1 - Go = (~0)Jd(F: ~ Fo)(z,e)

= 5 [ K5(Go(e) +1 = Go(~o)I(G1 — Ga)(e) + (Go ~ Gr)(e)
— (go(e) + yo(—e)éo - 290(-6)#11;.,&]‘1%(6)
+ / K[%(Go(e) + 1= Go(—e))Jd(F — Fo)(z,e) . (2.3.10)

If Gy is symmetric, Go(e) =1 — Go(—e). From (2.3.10) we have

0= / K'(Go(e))[G‘("e) +21 =~ Cile) dGo(e) - / K'(Go(e))Go(e)dGo(e)

- A(K,Go)by — A(K,Go)uF 0 + / K(Go(e))dG1(e) - / K(Go(e))dGo(e)
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where A(K,Go) = [K'(Go(e))gd(e)de. Putting Gi = 64, H1 = by, through

calculation we have

0 = K(Go(u)) — A(K, Go)[I[Fs,(u, v, Go, Ho, J, K) + pF1, IFo(u, v, Go, Ho, J)] ,

SO
IFs,(u,v, Gy, Ho, J, K) = —pt;, IFe(u, v, Go, Ho, J) +

The joint infiuence function of 6 and 6 is
IF= ()
o)J(G"o(u)) + K(Go(v))

_ <_F‘Ho o (v—pH “A(R,Go) )
- R C (v = mo)

AJ,Go) = / 7'(Go(e))gd(e)de

A(K, Go) = / K'(Go(e))gl(e)de .

where

W.l.o.g. we can assume that

pH, =0,
then (2.3.12) is simplified to be

K(Go(w)
IF = (J(Go("))c—l ) :

AiJGoi

2.4 Optimality criteria in estimation

K(Go(u))
A(K,Go)

(2.3.11)

(2.3.12)

(2.3.13)

(2.3.14)

In this section we will discuss the optimality criteria in linear estimation.

From section 2.1 we know that ( 0190) is asymptotically normal with the covari-

ance matrix

V(Go, Ho, J, K) = / IF - IFTdFy(u,v) .

(2.4.1)
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Using (2.3.14) we have

IF? IF,, -IFT
. T _ ) o (]
Ig-IF (IF,; -IFf  IFy-IF] )
K?(Go K(G J(G -
_ ( 'A"'H{,c;‘o __((_L%LA J?G: A(& °G: vICq 1)

K(Go(1)) J(Go(u)) ~—1 JHGo(w)) =1, Tr—1
A(J,Go)A(K,Go Cov —H Go Cy vviCy

SO
fl K3*(z)dz T
—Lr(m 0
V(GO) HO, J, K) = A W&o fl J’(t)dt . (2.4.2)
0 LN C;t

Let V(Gy, Ho) be the group of matrices which contains all the V(Gg, Ho, J, K)
for all score functions J and K. For any two matrices V1,V; € V(Go, Ho), we
say Vi < V, if Vo — V4 is positive semidefinite. We define V to be the minimum
in V(Go, Ho) if V< W for any W € V(Go, Hp). So the optimal score functions
J and K are the ones which minimize V(Gy,Ho, J,K) in V(Go, Ho).

Since Cp is a positive semidefinit~ matrix, it is easy to see that the optimal J
and K are those which minimize

fy PP@ds , fy Ki(z)ds
A2(J,Go) 1 TAE(K, Ga)

, respectively ,

or equivalently maximize

A%(J,Go) A%(K, Go)
1 and —
Jy J?(z)dz Jo K*(z)dz

, respectively .

We can also consider the optimality problems in the following two ways in
which J(t) and K(t) result in the same.
The first one is called Hampel-type problem. It minimizes the variance subject

to a bound on influence function, i.e.

Jy J*(z)dz
A2(J, Go)

minimize

under the condition

sl
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for given b. In the above problems it is assumed that G is known.

The second is the Huber-type problem. The optimal score function will min-
imize the maximum variance, as the unknown Go varies over a given class of
distribution functions. We will discuss this later in Chapter 4.

The solutions for all the three kinds of optimality problems will be given in
Chapter 4.
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CHAPTER 3
HYPOTHESIS TESTING IN THE LINEAR MODEL
3.1. Definition of influence function for tests
In this chapter we will derive the influence functions of tests and then use them.
So at first we need to give its definition. The influence function for tesis is an
extension of that for estimates.

Suppose we have a hypothesis H; where
Hy:6=90,.

Consider a sequence of tests for testing H; which depend on the observations only
through a sequernice of test statistics {T, : n € N}. Assume that T)s satisfy the
conditions (1) and (2) in section 2.1. Then we can define the influence function

for tests.

Definition 3.1.1:
Let 6. be the distribution which puts mass 1 at point £ € X. Then, the
influence function of the test defined by the test statistic T at Fy, is

IFyest(2, T, Feo,) = }i{‘ré(T((l —&)Fp, +€6;) — T(Fy,))/e . (3.1.1)

3.2. Definition and influence function of test statistic
In this section we will define a test statistic with the dispersion measure Dj

given by Jaeckel to test hypothesis
Ho . oq+1 = el = 0])"’1 = 0 . (3.2.1)

Let w be the subspace of £ C IRP™! obtained by imposing the condition Hp.

Then we can define our test statistic.

Definition 3.2.1.
Let (Ta)n and (Ti,)n be the R-estimators of @ in the model  and w respectively,

ie.

D;(Y — X(Ta)n) = min{D(Y — X6)|6 € 2}
DY — X(Tw)n) = min{D(Y — X0)|0 € w} .

25
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A test statistic D, is defined by
2
D2(21.-TnyY1,-- -1 ¥n) = =[Ds(Y — XT(T,)n) - Di(Y = XT(Ta)s)] - (3:2.2)

Comparing (1.1.8) and (3.2.2) we can see some similarity between classical and
robust test statistic.
Notation: For any vector z € IRP~! denote by # the vector (£(1),- .., %(g),0,- -1 0)T.

From subsection 1.2.2 we know that (Ti,)n and (), fulfill the equations

n

> a(Ri(&))&E: —Zi) =0 (3.2.3)
1=1
Z a(R;(e:))(zi —F) = 0. (3.2.4)

where & = yi — 7 (Tw)n and (Tu)n = (Tw)n)ays -+ - ((Tw)n)(g)s 05 - - - ,0)T.
Let D, T, , Tq be the functionals corresponding to Dy, (Tw)n, and (Ta)n-
Then from (2.2.3), (2.2.17) and (3.2.2) we have

D*(F) =2 / J((e, &, F))(y — 3TT,(F))dF — 2 / J(l(e,z, F))(y — =T Ta(F))dF
where
be,,F) = [ (e + (&= AT (T(ED) ~ Tu(F))H(2)

e, F) = [ Gle+ (o= 2) (TaF) = Ta(F))dH(:)
and T, To fulfill
[ t(e,2, )G - iz, =0 (3.26)

/ I (e, s, F))(z — pr)dF(z,e) =0 . (3.2.7)

When we discuss Hampel-type optimality problem in testing in Chapter 4 we
will try to find a kind of score function which maximizes the asymptotic power,
subject to a bound on the influence function of the test statistic. So we need to

calculate the influence functions of T,,, Tg and D under H,.



27

Theorem 3.2.1. Th= influence functions of the functionals 1., Tq, and D under

Hy are as follows:

(1) IF(u,v, T, F5, J) = SGEAC-1 ¥ - i) (3.2.8)
2 IF(u,v,Ta, F5,7) = SERC (v — pn) (3.2.9)
(3) IF(u,v,D,F5J)= 22((v - um)T(C7* - C7)(v - pe)/?  (3.2.10)
where

Co= [(z - (e -y} (z)

Co= [(& - fin)(& - i) aH (z)
and

51 _ (6'01-11 0
Gt = (0

where (C~'o)11 is the upper-left cornzr of Co, a q x g matrix and A(J,G) =
— [ J(G(u))g'(v)du under (3.2.12).

Notation: Under the null hypothesis § = § = (61,...,64,0,...,00T. F; is the
distribution function under the null hypothesis.

In this theorem we assume that J" exist and J'(t) exist and is continuous on
(0,1) and that

lim J'(G(e))g*(e)e = 0 (3.2.11)
lim J(G(e))g(e) =0. (3.2.12)

Proof: We have for the model

y=00s +270, +¢.



Then from the definition of D and (3.2.6), (3.2.7) we get
D*(F) =2 / J(2(e, 3, FYNET(Tu(Fy) — Tu(F)) + €)dF
=2 [ J(t(er2, P (Tl ) ~ TulF)) + )IF

=2 [ J(t(e, 5, P)EHTFS) = Tu(FD +€)IF

~2 [ J(e(e, o PYYWETFS) = TulEY) + 2)aF

With the same method in Section 2.2 we can get

IF (@09, Tor B ) = G (7 = )

IF((4,v, T, F5,J) = ‘;(5(‘6‘;’)) D) 0=y — pgr)
which are the results in (1) and (2).
Now we derive the influence function of D at the null hypothesis.
Let Fy =(1— X)F3+ AF and
TP =B I (R) = £
Fo(F) = STEY | () = £33
Then we have
dD? (F,\)

-2 [ J(t(e, 5, Fr))uF, Tu(FA)F
+2 [ 7(8(e, 5, P, (TuF) ~ To(F)) + €ld(Fs = Fy)

+2 [ 7006, P (um, - ) (Tl F5) ~ Tl FA)NAF

(3.2.13)

=2 [ ete, 8, Y ZERTNE, (T(Fs) — TulF) + By

-2 [ (t(e.s Py B By 0 (5 - T(E) + cldp

+2 [ (t(e, 2, g, TulF)dEy
-2 [ J(t(e,, B (TulFp) ~ TulF) + €JdCFs = Fy

=2 [ J(t(e,, B (s, = par) (Tl F3) = Tl BNAES

dD*(F))

;=0 =0,

(3.2.14)
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and

PD(Fy) de(e z, F,‘))2 (e, z, Fy)

o oo = 2 [ rrGen e ), - (He

+2 [ (e ))[‘#"—‘%ﬁ;&l NP 22 VIR

-4 [ =R,

_ df(e T F,\)
d\

+a [ e Hep

~ 4 [ JGWHILLF) ~ Ta(FIAE: - ). (3:2.15)

)?Ia=oledFy

ouiTu(Fy)
Ix=on Ta(F;)ledF;

de(e z, F)\)l o :‘E‘;(_e:i%_l_’a_) Iamoled(F} — F)

We kow
ffe,,F3) = (1= 3) [ Gle+ (e = 27 (Ta(Fs) ~ Ta(F)H(:)
+A / Gi(e + (v — 2T (Tr(F;) — Ta(F)))dHi(2)

Then by calculation we get

=0 = (G1 — G)(e) — g(e)(z ~ pr)TTa(Fj) (3.2.16)

“‘dz——"e(;;’ ) Ix=0 = 2¢(e)(z — pu)TTa(Fj5) + g'(e) f ((z — 2)TTa(F;))*dH(2)

— g(e)(z — pu)TTa(F;)

—2g1(€)(z — pr, ) Ta(F) - (3.2.17)
Similarly we have
ﬂ%ﬂh— = (G1 = G)(e) — ¢(e)(& ~ jin )" Tu( F) (3.2.18)
and
&4(e, &, F))

e e = 20(e)(& = ) "TulFD) + 9(6) (@~ HTLFAE(E)
- 9(e)(@ — i) T F)
—~291(e)(& — jirn, ) Tl F) - (3.2.19)
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Taking (3.2.11), (3.2.12) (3.2.16) - (3.2.19) into (3.2.15) gives

LDE) o = 27 (G NEE - [ TGN el
[ = i) AFD? = (= — ) TalF5)1Fe(2)
=2400,6) (1@ - p) TalF)* - (& = i) TalF)IdH (=) .

By L’Hopital’s rule, we get

dD(F:\) _ oy DY) = D(Fy)
'— ,{l—»o A
— (i_’oD (FI\))I/2

= [A(J,G) / (= — pr)TTa(F5))? — (& — ) "L ()1 dH ()2

So

IF(u,v,D, F;, J) = [A(J,G) / (& — i) IF (v, T, F, )
- (& - @n)" - IF(u,v Tw,Fa,J))z]dH(x)]lﬂ

= 128D [ p) i v = )

~ (& - )"0 (v — in))|dH (z)]'/*
= TGy _ (057 - E)(v = 2

VA, )

(3.2.20)

This completes the proof.

3.3. Asymptotic distribution of the test statistic
Let F) = (1—A)F;+AF,. We first perform an expansion of the functional D2.
Following von Mises (1947), we get

dD2(Fy) 1d2D*(F))

) —[a=0 + ORIV [x=0 + remainder. (3.3.1)

D*(Ry) = DX(F;) + 22
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With the same calculation as in the proof of Theorem 3.2.1 we obtain

D?(F\)|x=0 =0
dDz(FA)l =0
dx =0

d2D?(F))

— =0 =2 / J'G(e))g*(e)de / [(z — pa)  Ta(Fy))?
— (8 - am)T - Tu(F3))dH

e 1(e))? -1 _ A=1
= 245, Y IGO0 - C e, ~ )

= ——A(«i ) [ / J(G(e))(z — pr)TdR)(C;! — Co )] / J(G(e))(z — pu)dF]
(3.3.2)

where the second equality comes from (2.2.25). So we get

DHE) =751 H(E(ONe - k) dRNCs - G5 [ HG(e)(& - wi)dFi)
+ remainder . (3.3.3)

Put Fy = F,, = empirical distribution functions. We get (under H,)

1

2 _ .2 -
nD;, = nD*(F,) = yYORE)

[VI6)Cy! — Ct)V ()] + remainder  (3.3.4)

where V,,(6) = -\% S a(Ri(e))(zi—7) and e; = y;—z76. The above derivation
is not meant to be rigorous. We tried to find the main part of nD? and will
show the remainder is asymptotically negligible, i.e. the main part of nD2 has
the same asymptotic distribution as nD32.

Next theorem given by Hettmansperger and McKean (1976) shows that
1
nA(J,G)D2 / J2(t)dt
0

and
VIONC - Ga®) [ T

have the same asymptotic distribution x:_q_l under Hj.
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Theorem 3.3.1. Under the null hypothesis
1

nA(J,G)D?/ / J2(t)dt
0

and

1
VGG - CWa @) [ T
0
are asymptotically distributed as x2_,_;.
Further also from Hettmansperger and McKean (1976) we have

Theorem 3.3.2. Under the sequence of alternatives
H, :0j=n'%A,- Jj=q+1,...,p-1

where A = (A1,...,0,-1)T the test statistic nA(J,G)D3 /f0 J2(t)dt has the

asymptotic distribution Xp—q-1(772) with noncentrality paramter

A
2 _ANLG)_ o

2 [T J2(t)dt at1 - Bp-1) Oz
0

Apt

where Ca2,1 comes from Cy:

”~ T -1
22,1 = C’22 - 012011 C’12 .

3.4 Optimality criteria in testing

The optimality criteria for a robust test can be stated as follows:

Consider a class ID of tests depending on the observations only through a test
statistic Dyp(21,..-,Zn,Y1,..-,Yn). Then we can try to find the optimal score
function which maximizes the asymptotic power within ID. If we consider the
maeximizing problem under the side condition of a bound on the inflvence function
of the test statistic at the null hypothesis, it is the Hampel-type optimality
problem. We can also consider the problem of maximizing the minimum power,

as Go varies over a specified class. That is the Huber-type optimality problem.
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Let the test statistic F be
1
E? = A(J, G’)Dz// Jz(t)dt . (3.4.1)
0

Then we have from section 3.3 that E? has the asymptotic distribution X:-q—1(7l2)

with

A +1
A%(J,G) !
P 2t (Agp1 .- Dpy)C : 3.4.2
1 2f01J2(t)dt( g+1 -+ Bp—1)Ca21 N (3.4.2)
p—1

under the sequence of alternatives
Hy:6; =n'%A,- j=q+1,...,p—1.
Also from Theorem 3.2.1 we have

IF(u,v, B, Fy, J) = 28Ny _ oyt = Gtyv — pn)]2 . (3.43)

vV fo JA(t)dt

We can write IF' as a product of two factors, namely the influence of residual

(IR) and the influence of position (IP):
IF(u,v,E, F5,J) = IR(u, E, F3, J)IP(v, E, F;) (3.44)
where )
IR, B, F5, 7) = G|/ Taty’
0

IP(v,E,F3) = [(v — ur)"(Cy" = G )(v — um)]'/2.
Since the asymptotic power is a monotone increasing function of the ncncentrality
parameter nZ, the optimal problems become ones of maximizing 72.

Generally we can consider

2
ma.ximizeAl(J’ G) . (3.4.5)
fo J2dt
In Hampel-type problem we try to find J which
2
ma.ximize-'é—(—'é-g-2 (3.4.5)

Jo Jdt
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under the condition

sup GO <b. (3.4.6)
v [ T(t)dt

In Huber-type problem which will be discussed in Chapter 4 we want to find J
which maximizes the minimum n? as the unknown Gy varies over a given class

of distribution functions.
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CHAPTER 4
OPTIMAL SCORE FUNCTIONS
In this chapter we will give solutions to all the optimality problems mentioned
above. First we will consider the general case, then Hampel-type problem in
estimation, Hampel-type problem in testing, and at least Huber-type problem in

both estimation and testing.

4.1. Optimal score function in general

In this case the optimality problem is to find J which

£(1,6)

maximize T
fo J2dt

(4.1.1)

We can standardize J so that fol J2(t)dt = 1. Then the optimality problem

becomes
maximize( / T(G(w))g' (u)du)? (4.1.2)
under the condition )
/ Jit)dt=1. (4.1.3)
0
Throughout this chapter we assume that g satisfies the following condition
g'(w) .
-2 / inu>0. 4.1.4
9(u) t14)
By the Cauchy-Schwarz inequality we can easily find out that
1) = $(G )/ VI® @1
where ¢ = -—% and I(G) = [ (%)ZdG is the optimal score function in this

problem.

4.2. Optimal score function in Hampel-type problem in estimation

In Hample-type problem in estimation we consider the problem

i J3(t)dt

minimaize —m

(4.2.1)

35
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under the condition

J(GW), .
A(J,G)
for given b. We standardize J(t) so that A(J,G) = — [ J(G(u))£dG = }I(G) =
J (95'-)2dG. Then the optimality problem is to

sup | = < (4.2.2)

minimize / " Py (4.2.3)
under the condition
sup [J(G(u))| < b (4.2.4)
and
A(J,G) = —/J(G)g’du = %I(G) . (4.2.5)
We claim that
b if —cL(G7(2)) > b
Je(t) = —cL(G 1(t)) if Ic-q-(G’l(t))| <b (4.2.6)
—b —cL(G‘l(t)) < -—b

is the optimal score function in this problem where c is selected to satisfy con-

dition (4.2.5).
Proof: For any J satisfying conditions (4.2.4), (4.2.5) we have
g: 1 gl
/(J(G’) + c;}—)2 = / J2dt +2¢/J(G)g'du + ¢ /(;)ZdG
0
1
- / T2t + (¢ — Q)I(G) . (4.2.7)
0

So minimizing [, J?dt is equivalent to minimizing [(J(G) + c%'-)"’dG. We can

write
/ J(@) + c%)zDG = / (J(G) ~ (—c-"—'))2da
_ v oy
JAPRCON pact [, gy O - ()0

G) - (—c=))%dG . 2.
RGO ) (428)
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It can be seen that Jg(t) in (4.2.6) minimizes each of the three parts at the RHS
of (4.2.8). So it is the optimal score function.

4.3. Optimal score function in Hampel-type problem in testing

In this Hampel-type problem the optimal score function J will

A%(J,G)

maximize ————= 4.3.1
‘!;)1 szt ( )
under the condition
sup MUCO)N <b. (4.3.2)

v ()

We can standardize J so that fol J?(t)dt = 1. Then the optimality problem

becomes
ma,ximize(—‘/‘J(G’('z,c))g'(u)du)2 (4.3.3)
under the condition
sup |J(G(u))| £ b (4.3.4)
and .
/ JE(t)dt = 1. (4.3.5)
0

Since 1 = fol J3(t)dt < fol (sup |J(t)])2dt < b we should select b properly.

Next theorem will give us the solution.

Theorem 4.1.1. The score function
(b t> Gi(p1 ()

WGHO)VIE 1<t (D)
Jo(t) = { . @ . (4.3.6)
—pG VI -G (D) <t <l
- t < Gyt (WD)

where ¢ is determined by the equation

yr (D) v
5., HELPWEW+ B0 - GH DN =5 @3)
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is the optimal score function in the Hampel-type problem, given by (4.3.3) -
(4.3.5) above.

Proof: Jo(t) can also be written as

b u > Ko
_ ) c(u)//I(G) 0<u<K
HolGl)) = —cz/)(u)/\/\I(G') ~Kp<u _<f 0 (4.3.8)
—b u < —Kp
where Ko = ¢_1(@) and c is determined by
I ¥ .
T(é—)/o. c?P?(u)dG(u) + ¥*(1 - G(Xp)) = 5 (4.3.9)

Since functions J and g are symmetric we only need to discuss the positive parts
of these functions.
We get (4.3.8) and (4.3.9) in this way. First we predict that the optimal score

function is in the form

u > Ky

b
O ={ a1 2%,

for some Ky. We require J(G(u)) be continuous and satisfy fol J2(t)dt = 1 which
give Ko = gb“l(@) and (4.3.9). It is easy to see that when ¢ — 4o
the LHS of (4.3.9) — b > 1, and that when ¢ — 1, then LHS of (4.3.9)
< 73@7f0+°°(391)2dG = 3. Thus, we can find ¢ from (4.3.9). It is a trivial case
when b =1, then J(t) =1 because of fol J%(t)dt = 1. Then

+o00 Ky
- [ B(E@wdu = - A To(G(w))g'du + bg(Ko) (4.3.10)

and (4.3.9) is X ,
J3(G(u))dG(u) + b*(1 — G(Ky)) = 3 (4.3.11)

Now we try to prove the optimality of J,.
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Suppose we have a J(t) which reaches b at G{K1), i.e. J(G(K3)) =b. First
we consider the case Ky < K;. We can write J in the furm of

Jo(G(u)) + A(u) u € D; C (0,K,)
Jo(G(u)) - B(u) ue€ D2 C(0,Ky)

J(G(u)) = § Jo(G(u)) u € D3 C (0, Ko) (4.3.12)
b_C(u) u€ (KO’KI)
\b u > K]

where A, B,C are positive functions, D,, D3, D3 are mutually exclusive Lebesgue

measurable sets and D; UD;U D3 = (0,Kp). Then

—/J(G(u))g'du:-—/D JO(G(u))gdu-/D A(u)g'du—[) Jo(G(u))g'du
+ [ Buygdu— [ R(Gw)d - Yo(Ka) - o(Ko)

K,
+ j[ C(u)g'du — b(—g(K1))
Ko

K,
== [ (@) e+ by(Ko) - /D A(u)g'du
K

/ B(u)g'du + C(u)g'du . (4.3.13)
D, Ko

From [V J2(G(u))dG(u) = 1 we get
/ (J2(u) + 2406(G) + A2)dG + / (J2(G) — 2BJo(G) + BY)dG + / JH(G)dG
D D2 Ds

/ B = 2C + CV)dG + P (1 - G(K) =
Ko

N =

Using (4.3.11) to simplify we have
K,
/ 2By (G)dG + / 25Cda — 2 / AJo(G)dG
Dz Ko D,

K
= | A%*dG+ [ B%dG+ C*G>0. (4.3.14)
D, D, Ky

Since Jy is a non-decreasing function and Jo(G(Kp)) = b so we have

b S Jo(G(‘u)) for Ko S u S Kz . (4.3.15)
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Take Jo(G(u)) = —c%(u) for 0 < u < K, into (4.3.14) and use (4.3.15) we get

K,
/ Bg'du + Cq'du — Ag'du <0. (4.3.16)
Dz Ko Dl

Taking (4.3.16) into (4.3.13) gives
+o0 +co
0< (—/; J(G(u))g'du) < —A Jo(G(u))g'du . (4.3.17)

Similarly we can prove that when Ky > K; we still can get (4.3.17). Combining
both cases gives us the result.
With the same method used in the Hampel-type problem in estimation we can

prove the same result as above.

4.4. Optimal score function in Huber-type problem
In this section we will give solutions to Huber-type problem, i.e. minimax
problem for estimation and maximin problem for testing.

In estimation we know that under some conditions we have

Va(@, — 8,) ~ N(0,V4(G, J)) (4.4.1)
where
Vi(G,J) = Zf‘g%t—)CE '
A(J,G) = — / T(G(u))g' (w)du . (4.4.2)

We want to find the minimax J, i.e. that which minimizes the maximum vari-
ance V3(G,J) in estimation, or equivalently to find the maximin J that which
maximizes the minimum power in testing.

Let IP be a set of distribution functions . Then the minimax problem for
estimation, or maximin problem for testing is to find J, and G. € IP such that

. Lo St [y Tt
T Gelb A%(7,G) (] Ja(Gu(w)gu(u)du)?

With the minimax variance theory developed by Wiens we can solve this prrblem.

(4.4.3)
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Suppose IP is a group of distribution functions with location parameter and
Fisher informationfor location I(G) is minimized at & member G, symmetric
about 0. Assume that 0 < I(G,) < +00, so Go(u) has an absolutely continuous
density go(u), tending to zero as u — +oo (Huber, 1981). Assume also that
go(u) > 0 on 0 < Go(u) < 1. Put ¢o(u) = —%&(u) and assume that to(u)
is non-decreasing, absolutely continuous, with a piecewise continuous derivative
V().

Choose the score function

Jo(t) = %o(Gg* (2))/I(Go) (4.4.4)
and let ! og
V(G,J) = -A‘!‘%’—G% . (4.4.5)

By the result in section 4.1 we get
V(Go, Jo) < V(Go, J) for all J. (4.4.6)

If we also have
1

sup V(G, Jo) < V(Go, Jo) = (eh)

celP

(4.4.7)

then J, gives the minimax estimator of J. We give a condition for later use:
1
/ Ho(u)dG™(u) <1 for all G € IP with I(G) < o0, (4.4.8)
0

where Ho(u) = ¥}(Gg*(4))g0(Gg ' (1))/I(Go) for 0 < u < 1.
The following theorems given by Wiens (1990) will give us the optimal minimax

estimator of J.

Theorem 4.4.1. Assume that R-estimator 5,, satisfles

Vi@, — 8.) = N(0,V4(G, J)) (4.4.9)
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with Vi(G,J) as in (4.4.1) for G € P. In order that (4.4.7) hold, it is sufficient
that 1o(u) be non-decreasing and that condition (4.4.8) hold.

If IP is any of the following three contamination classes of distribution functions,
the next theorem will give us the solution.

(1) e-contamination neighborhood:
Co(F) = {G| G = (1 —€)F + eH; F symmetric and fixed , H symmetric} .
(2) Kolmogorov neighborhood
K. (F) = {G| sup |G(u) — F(u)| < ¢, F symmetric and fixed} .
(3) Levy neighborhood
L. 5(F) = {G|F(u~6)—¢ < G(u) < F(u+8)+¢ for all u, F symmetric and fixed } .
Theorem 4.4.2. Suppose that F is strictly increasing on (—o0,0), with I(F) <

oo and —f'/f twice continuously differentiable. Then (4.4.7) holds for all above
three neighborhoods iff Gg is strongly unimodal.

If F =& in all neighborhoods above from the work by Jaeckel (1971), Collins
(1983), and Collins and Wiens (1989) we know that Gy is strongly unimodal.
Then we can select J, and G, in (4.4.3) as

G.(u) = Go(u) (4.4.10)

and

T.(t) = %o(GT1(£)/I(G.) - (4.4.11)
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CHAPTER 5
NUMERICAL STUDY

In the previous chapters we have discussed the estimation and testing problems
with R -estimation method in the linear model. In this chapter we will show
some numerical results, using simulated data.

Hettmansperger and McKean (1976) introduced an iterative algorithm to ac-
complish R-estimation method in the linear model. We will use their algorithm
to estimate the regression coefficients, then calculate the bias, variances and MSE
of the coefficients, and coverage probability of confidence intervals.

We want to attain 0.95 coverage probability, i.e. p=0.95. Let Z be the value

obtained from estimation

7 = { 1 if (?e confidence interval with p = 0.95 . (5.1)
0 if not

We try the same estimation n times, then we may get Z;,...,Z, having the

same distribution as Z. Let

n
pn — Z_""r:__ R (5.2)

Then Ep, = p, Varp, = 1’(—1’-‘:’2 By CLT /n(pn—p) ~ N(0,p(1-p)) as n — co.

If we want

~ — \/_'Pn | \/—s _
P(Ipﬂ —pl < 6) = \/Rl——p— m 6:

as n large enough we have

(\/—an Pl . __vme )~P(|
V(1 -p) \/ (1-p) \/ ,,(1_

where X ~ N(0,1). So 95% of confidence interval of p is (P — 1/ E2ii= n) .
Xo.975), P + 1/ B25R2) . X o75) where 1 — &(Xo.975) = 0.025

43
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The following tables show us the R-estimation results for four different scores

where the bias is estimated by

mm=(@‘@v, (5.3)
9o,

and variance and MSE of (000) are estimated by
Variance = __1_ (23—1(90' - 002 )
2:—1(0 - 9)

MSE = . ( Z,_l(ﬁo. - 90)2 Z?:;(af —z:)@ —j)tr)
n—-1\yrL, (90; - 90)(9 - 9) (8 - 8)(8: - )T

= = T
+( %0 ) (b (5.4)
60; — 0, 6; — 0.

respectively, where ?0- =iy, Bo; and 7= Ly 8;. In (54) we use the

unbiased estimates of variance and MSE to estimate them which is easy to be
proved. We can prove an equivalent statement: let zj,...,zn, and y1,...,¥n

be iid random samples with Ez; = u;, Ey; = po, Var(:c,) = 02, Var(y;) = o2,

1 if %
B((zi—pm)(y5—p2)) = 6ijpo10z where &ij = { o ifig.- Then 73 T (ei~

7)?, ;{—1- Y1y —7)?, and H%T Y i (zi —T)(yi —Y) are the unbiased estimates
of Var(z;), Var(y;), and Cov(z;,y;), respectively. We have the result since

E(— Z(m, -5 = E(n - z z?) — nE@E@)”

= n—-l

=n_1(d?+u? -G =a,

lg(y, 7) = E(n 1|=1
(‘72+ 2)"n 1 +3)
_ 2
=03,

44
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E(~ i T g(m —~Z)(vi-9) = _1_ T ;E(xiyi ~ 2§ — Tyi + TY)
= LS Blew) - ~2~ E@m)
n—14& Von-1
1 1 2
= ——7n(po102 + papi2) — ——7 -5 (npo102 + N p1ps2)
= po103.

In the tables below, P; represents the estimated coverage probability of confidence

interval obtained from asymptotic distribution. We know that, asymptotically
g ~ N(6,,var(8)). (5.5)

So the 95% of confidence interval for 8, is (’0\—-\/ var(@)-Xo.,,,,a+\/var(a)-Xo_m)
where 1 —&(X, ,,,) = 0.025. With this cc..fidence interval we can get Z,...,2Zn

having the same distribution as Z in (5.1). Then we define

= -3;-2 Z; . (5.6)

i=1
The width of this confidence interval is 2\/Var(§) « Xo.975. Similarity, P, rep-
resent the estimated coverage probability obtained by testing. From (3.4.1) we
know that E? has asymptotic distribution x2..,—; under the null hypothesis. We
construct 95% confidence interval by testing like this: 6 belongs to this confi-
dence interval iff the hypothesis that § — 6, = 0 is accepted by testing. Similarly

as above we can get Zi,...,Z, and define

1 n
P2 = ;I: Zl Z: . (5.7)
In this case we are unable to give the general expression to calculate the width

of confidence interval for 8..

45



Table 5.1 Results for model y =1+ z + e with e ~ N(0,1)

46

Py /95% CI P, Bias Variance Covariancd
Wiicoxon 0.95 0.94 (S oses) (o oogess) | -0.000120
(0.95-0.0427,
0.95+0.0427)
. 0.0273%6 0.029995
Sign 0.88 0.83 (_oooi106) | Coooorss) | -0-000463
(0.88-0.0637,
0.88-+0.0637)
0.015515 0.018924
Normal 0.94 0.95 (Zo00003) | (oooosss) | -0-000143
(0.94-0.0465,
0.94+0.0465)
. 0.017192 0.021356
Minimax 0.97 0.96 ( —0.001066 ) ( 0.000430 ) -0.000077
(0.97-0.0334,
1)

Table 5.2 Results for model y =1+ z + ¢ with e ~ 0.8N(0,1) 4+ 0.2N(0,9)

Py /95% CI P, Bias Variance Covariance
Wilcoxon 0.95 0.95 (_606%%)2%223) (g'ggggég) -0.000845
(0.95-0.0427,
0.95+0.0427)
: 0.004162 0.038172
Sign 0.90 0.83 ( 0000237 ) | Co.oooses) | -0-001063
(0.90-0.0588,
0.90+0.0588)
Normal 0.96 0.95 (’(')Oégtigo) (g'gggggg) -0.0000868
(0.96-0.0384,
0.96+0.0384)
Minimax 0.98 0.98 (oonoion) (g'ggégig) -0.000781
(0.98-0.0274,

1)
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In above tables we take n = 100 and use £ = 0.1 in the &-contaminated nor-
mal case for minimax estimates. With the same formula we can give confidence
interval for P;.

The results from tables strongly support our arguments that this robust R-
estimation method performs well both in the general case when e ~ N(0,1) and
in the case when outliers exists, i.e. when e ~ 0.8N(0,1) + 0.21V(0,9). Normal
and Wilcoxon scores perform well in both cases. Sign score gives the worst per-
formance in both cases because of its discontinuity. Normal score and minimax
score give the most accurate estimation results in this two cases, respectively.

The algorithm of Hettinansperger and MeKean gives much better estimation
results for slope parameters than for intercept. In both tables for each score we
have much larger bias (absolute value) and variance for intercept than for slope.

So further improvement is needed for more accurate estimation.
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