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Abstract 15 

The fermentation of plant foods detoxifies and eliminates compounds that are inherently present 16 

in grains and legumes and have antinutritive properties, including cyanogenic glycosides, vicine 17 

and convicine, phytate, phenolic compounds, immune-reactive proteins and fermentable 18 

oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs). Contemporary food 19 

production has partially replaced fermentation of plant foods by alternative processes for 20 

production of nutritious plant foods. This communication explores the question whether the 21 

conversion of noxious components in plants by food fermentations remains relevant in 22 

contemporary food production, or, more pointedly worded, whether food fermentations are an 23 

essential ex situ digestion step for agricultural societies. Noxious compounds in grains and legume 24 

seeds contribute to irritable bowel syndrome, non-celiac wheat intolerance, and food allergies. 25 

Food fermentations provide an effective unit operation to improve tolerance of plant foods to 26 

sensitive individuals. In addition, they are a source of viable and active microorganisms that may 27 

provide additional health benefits.  28 

Keywords. Food fermentations, Lactobacillus, sourdough, probiotics, fructans, FODMAP, 29 

amylase-trypsin inhibitor, phytate.  30 

31 
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Introduction 32 

The transition of groups of hunterer-gatherers to agricultural societies in the Neolithic Revolution 33 

about 14,000 years ago paved the way to modern civilization [1] and substantially impacted the 34 

human diet. Hunterer-gatherer diets included a high proportion of animal protein and diverse plants 35 

including fruits, vegetables and tubers. In contrast, the diet of agricultural societies relied on only 36 

few plant species, particularly cereals, legumes and oilseeds. Nutritional consequences of this 37 

transition include a reduced intake of protein and dietary fibre, a reduced supply of minerals, and 38 

increased exposure to anti-nutritive factors in seeds [2, 3]. The origin of food fermentations, which 39 

are defined as the preparation of foods or beverages by controlled microbial growth and enzymatic 40 

conversions [4], predates the origin of agriculture [5, 6]. The case was made that cereals were 41 

domesticated to enable fermentation of alcoholic beverages for rituals or festivities about 14,000 42 

years ago [5]. While this hypothesis is not undisputed, the knowledge on how to ferment cereals 43 

and legumes to improve the digestibility of grains and legumes, and to remove anti-nutritive 44 

compounds likely was a prerequisite for the Neolithic Revolution. Because fermented foods have 45 

unique sensory properties and are often deeply rooted in local culture, they have remained a staple 46 

in the human diet after the shift from artisanal to industrial food production in the last 150 years. 47 

However, alternative preservation methods including thermal processing or refrigeration, 48 

alternative separation and processing methods including extrusion or isolation of protein fractions, 49 

and simplified and accelerated fermentation methods e.g. in production of bread or soy sauce, have 50 

reduced the intake of fermented foods as well as the intake of live and active microbes. This 51 

communication explores whether the removal of anti-nutritive, pro-inflammatory or toxic 52 

compounds in cereals grains and legumes by traditional fermentation processes remains relevant 53 
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in contemporary human nutrition by improving the tolerance of sensitive individuals to legumes 54 

or cereal products.  55 

Are seeds meant to be eaten?  56 

Toxic, conditionally toxic or anti-nutritive components in grains and legumes. Plants are 57 

sessile organisms that cannot escape pathogens or predators and therefore employ chemical 58 

defenses against microbial pathogens and herbivores. These chemical defenses are termed 59 

phytoalexins or phytoanticipins depending on whether they are pre-formed in the plant 60 

(phytoanticipins) or produced after tissue damage by pathogen or herbivores attack (phytoalexins) 61 

[7, 8]. Phytoalexins and phytoanticipins include phenolic compounds and antifungal agents that 62 

receive attention as antioxidative food components, food preservatives and biological fungicides 63 

[9] but also include compounds that have antinutritive properties, or are outright toxic to humans. 64 

Compounds that protect plants against abiotic stress, e.g. raffinose-family oligosaccharides in 65 

legumes and fructans in cereals [10, 11], also result in adverse digestive symptoms. Toxic, 66 

conditionally toxic or antinutritive food components in plants (Table 1) were identified in the last 67 

century and are described only briefly [12–14]. 68 

Cyanogenic glucosides. Cyanogenic glucosides release cyanide after hydrolysis of the 69 

β-glucosidic bond [14]. Among edible parts of plants, the content of cyanogenic glucosides is high 70 

(0.5 – 4 g HCN /kg) in bitter tubers of cassava, lima beans, bitter almonds, and flaxseed. Chronic 71 

cyanide intoxication, leading to a disease termed konzo, is a consequence of improperly processed 72 

cassava and has repeatedly been observed in Africa in times of famine [15]. Comparable diseases 73 

are not reported from South American countries, where cassava originates; this may relate to the 74 

long tradition of safe preparation of cassava roots in South America, which reduces the likelihood 75 

of improper preparation even at times when food is scarce. 76 
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Vicine, convicine and favism. Faba beans contain the pyrimidine glucosides vicine and convicine, 77 

which constitute up to 2% of the dry weight of the beans. The aglycones are redox-reactive and 78 

have antifungal properties. During digestion, the aglycones are released through β-glucosidases 79 

from faba beans or intestinal microorganisms. The aglycones oxidize glutathione in vivo and cause 80 

hemolytic anemia termed favism in individuals with glucose-6-phosphate dehydrogenase 81 

deficiency [16]. Favism is more prevalent in countries where malaria occurs because the resistance 82 

of individuals with low glucose-6-phosphate dehydrogenase activity to malaria provides selective 83 

pressure for favism [16].  84 

Phytic acid. Phytic acid is the main storage compound for phosphorous and minerals in cereal and 85 

legume seeds; their phytate content ranges from 5 to 20 g / kg [13, 17]. Phytates are not hydrolysed 86 

in the monogastric digestive tract until digesta reach the large intestine. The complexes formed by 87 

phytic acid and divalent minerals including Ca2+, Zn2+ and iron are insoluble; hence, phytates 88 

reduce the bioavailability of minerals. In affluent countries, an adequate supply of Ca2+ and Zn2+ 89 

is warranted by animal products in the diet [18]. Ca2+ and Zn2+ deficiencies are more commonly 90 

observed in developing countries and complexation of dietary minerals by phytates in plant foods 91 

contributes to the mineral deficiency [18]. Iron-deficiency anemia is observed in developed as well 92 

as developing countries, particularly in young women [19]. Iron uptake from plant foods is not 93 

only impeded by complexation with phytate but also by complexation with tannins [19, 20].  94 

Phenolic compounds. Proanthocyanidins, gallotannins and ellagitannins, commonly referred to 95 

as tannins, are phenolic compounds that occur in a wide variety of plant foods. Their presence in 96 

cereals and legumes is dependent on the plant species and the cultivar [21]. For example, the 97 

content of proanthocyanidins and 3-deoxyanthocyanins in pea and sorghum varieties, respectively, 98 

is highly variable [22, 23]. Tannins impart bitter taste, reduce protein and starch digestibility by 99 
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inhibition of pancreatic enzymes, and reduce iron uptake [21, 23]. In affluent countries, the 100 

presence of tannins reduces the caloric content and the glycemic index of foods [24] while in 101 

countries with low food security, their presence reduces the supply of macro- and micronutrients.  102 

Enzyme inhibitors. Specific inhibitors of digestive enzymes further reduce the digestibility of 103 

starch and proteins in legumes and cereals. Wheat and other cereals contain amylase-trypsin 104 

inhibitors, which account for up to 4% of the total protein in the grain endosperm [25]. Protease 105 

and amylase inhibitors are also present in seeds of legumes and oilseeds [12, 21]. 106 

Fermentable oligosaccharides, disaccharides, monosaccharides, and polyols. The content of 107 

raffinose-family oligosaccharides pulses ranges from 1% to 6% with stachyose as most abundant 108 

compound. In cereals, the content ranges from 0.5 – 1.5% and raffinose is the sole or the most 109 

abundant compound [26, 27]. Cereals, in turn, contain 1 – 5% of fructans with a DP of 3 – 6 [27]. 110 

Ingestion of non-digestible oligosaccharides results in adverse digestive symptoms when a 111 

threshold of about 15 g / person and day is exceeded [28], a threshold that is readily exceeded in 112 

cereal- or legume based diets unless the content of these oligosaccharides is reduced by 113 

fermentation or germination.  114 

Lactose is not present in plant foods, however, adverse effects of lactose ingestion relate to those 115 

caused by other indigestible oligosaccharides and are thus also briefly discussed in this 116 

communication. Infants digest lactose through the activity of brush-border β-galactosidase 117 

(lactase); generally, the expression of brush border lactase is reduced after weaning and most 118 

human adults do not digest lactose [29]. About 25 – 30% of human adults are lactase persistent; 119 

the current high prevalence in European populations evolved in less than 5000 years [29]. The 120 

ability of humans to digest lactose is thus substantially predated by the consumption of fermented 121 

dairy products, which dates back to about 5,000 BCE [30]. 122 
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Are noxious components of plants and animal foods degraded in food fermentations? 123 

Cyanogenic glycosides. Cyanogenic glycosides are degraded by substrate-derived β-glucosidase 124 

after injury of plant tissue by milling (Fig 1). β-Glucosidase activity of Lactiplantibacillus 125 

plantarum (previously Lactobacillus plantarum [31]) and other fermentation organisms 126 

contributes to the degradation of cyanogenic glycosides to glucose and the volatile cyanide during 127 

fermentation of cassava [32].  128 

Vicine and convicine in beans. Comparable to cyanogenic glycosides, the β-glucosides of vicine 129 

and convicine are degraded during fermentation of faba beans by substrate-derived or microbial 130 

β-glucosidases (Fig 1) [33]. The aglycones divicine and isouramil are reactive and unstable, and 131 

are rapidly removed during fermentation [33]. 132 

Degradation of phytate. The phytase activity of cereals [13] is sufficient to degrade phytates if 133 

the insoluble salts of phytate and divalent cations are solubilized by acidification [34, 35]. Phytate 134 

degradation in sourdough thus occurs independent of microbial phytases. Cereal phytases are 135 

optimally active pH 5.5 but remain active at the lower pH-values that are achieved in sourdough 136 

and legume fermentations [35]. The use of sourdough in bread production, and lactic fermentations 137 

for production of cereal porridges or beverages thus increase the bioavailability of minerals [36].  138 

The phytase activity in legumes is lower when compared to cereals [13, 37], however, processing 139 

of legumes by soaking, milling and lactic fermentation prior to cooking substantially reduces 140 

phytate levels. One example for such a product is idli, which is produced by fermentation of rice 141 

and legumes in South Asia [38]. Fermented soy products in South East Asia are produced by 142 

steaming or cooking of raw materials prior to fermentation [39]. In these products, substrate-143 

derived phytases are inactivated and phytate degradation is achieved by fermentation with bacilli 144 

or fungal cultures, e.g. Rhizopus stolonifer or Aspergillus oryzae, which hydrolyse phytate with 145 
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extracellular enzymes [40, 41]. Examples of these products include tempe (or tempeh) produced 146 

in Indonesia, stinky tofu produced in China and natto produced in Japan. 147 

Phenolic compounds. The content of tannins is reduced in fermentations of plant foods [42]. In 148 

particular, red and black sorghum varieties, which are cultivated in sub-Saharan Africa because of 149 

their superior drought and pest resistance, are considered essentially inedible unless they are 150 

processed by germination and / or fermentation. Only few studies, however, document the 151 

biochemical conversions of phenolic compounds including tannins at the molecular level [43–45]. 152 

Lactic acid bacteria metabolise tannins by tannases and related phenolic acid esterases (Fig 1) [46]. 153 

Tannase releases gallic acid from tannins, thus reducing their interaction with proteins as well as 154 

the affinity to iron. In cereal fermentations, phenolic acid esterases of lactobacilli release phenolic 155 

acids that are esterified with plant cell wall polysaccharides [46, 47]. Glycosides of phytochemicals 156 

including flavonoids are metabolised by diverse glycosyl hydrolases, releasing the corresponding 157 

aglycons [44]. Phenolic acids are metabolized by phenolic acid reductases, phenolic acid 158 

decarboxylases, and vinyl phenol reductases [48, 49]. Phenolic acid metabolism by lactic acid 159 

bacteria is strain specific and frequently observed in organisms of the genera Lactiplantibacillus, 160 

Levilactobacillus and Furfurilactobacillus (previously L. plantarum, Lactobacillus brevis and 161 

Lactobacillus rossiae groups, respectively [31]) as well as Limosilactobacillus fermentum 162 

(previously Lactobacillus fermentum [31, 48], which are dominant fermentation organisms in 163 

spontaneous cereal, legume and vegetable fermentations [39]. The products of phenolic acid 164 

metabolism include dihydro-derivatives of hydroxycinnamic acids, and decarboxylated volatiles 165 

which contribute to the food flavor [46]. Lactic fermentation also generates pyranoanthocyanidins 166 

or pyrano-3-deoxyanthocyanidins, which are formed by condensation of vinylphenols, products of 167 

decarboxylation of hydroxycinnamic acids by lactobacilli, and anthocyanidins or 3-168 



9 

 

deoxyanthocyanidins [45]. The biological activities of the metabolites that are formed from 169 

phenolic compounds including their nutritional properties, however, remain to be explored [43].  170 

Degradation of fermentable oligosaccharides, disaccharides, monosaccharides, and polyols. 171 

FODMAPs including lactose, raffinose-family oligosaccharides and fructans are partially or 172 

completely degraded by fungal or bacterial enzymes during food fermentations (Fig 1). 173 

Fermentation of yoghurt and related fermented dairy products removes only 10 – 20% of the 174 

lactose in milk [50], however, β-galactosidases of fermentation organisms remain active 175 

throughout gastrointestinal transit, hydrolyse lactose, and thus alleviate lactose intolerance [51].  176 

Raffinose family oligosaccharides are hydrolysed through the activity of α-galactosidases, 177 

levansucrase and sucrose-phosphorylase activities of lactic acid bacteria [52, 53] or corresponding 178 

enzymes of fungal cultures; their removal in legume fermentations has been amply documented 179 

(Fig 1) [54].  180 

The removal of fructans in cereal flours has been explored only recently. In fermentations for bread 181 

production, extracellular yeast invertase and intracellular fructanases of lactic acid bacteria 182 

hydrolyse sucrose and low molecular weight oligosaccharides but fructans with a higher degree of 183 

polymerization are not degraded [27]. The use of lactobacilli or yeasts expressing extracellular 184 

fructanases, which is currently employed only in few commercial applications, achieves hydrolysis 185 

of all fructans for production of low-FODMAP bread [27, 55]. Because the adverse effects of 186 

FODMAPs are dose dependent, even their partial reduction in food fermentations alleviates or 187 

even eliminates adverse symptoms.  188 

Degradation of patulin and other mycotoxins. Patulin is a mycotoxin that is produced by 189 

Penicillium expansum and other fungi growing on fruits [56]. Its toxicity relates to the reactivity 190 

with thiols [57], which depletes cellular glutathione levels; accordingly, generation of thiols by 191 
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yeasts or heterofermentative lactobacilli during alcoholic or lactic fermentation of fruit juices 192 

inactivates patulin. L. plantarum also converts patulin by uncharacterized esterase and reductase 193 

activities [58].  194 

Aflatoxin levels were reduced in cereal and legume fermentations [59], however, pure cultures of 195 

lactobacilli do not convert aflatoxin [59] and enzyme activities that are known to degrade aflatoxin 196 

are not expressed by food-fermenting lactobacilli [60]. It thus remains unknown whether the 197 

apparent reduction of aflatoxin levels in food fermentation [59] is attributable to absorption of the 198 

toxin to bacterial biomass [61], or to the co-operative activity of bacterial and substrate-derived 199 

enzymes. It is thus uncertain whether the reduction of mycotoxins in food fermentations is 200 

achieved only by specific combinations of raw materials and fermentation cultures, or relate to a 201 

principle that is more generally applicable to fermented foods.  202 

Is the fermentative degradation of noxious compounds in plant foods relevant today? 203 

In developed countries with high food security, offending plant foods can be replaced by other 204 

plant or animal foods, as is the case e.g. in gluten-free or low-FODMAP diets, and food processing 205 

provides alternative technologies for detoxification of plant materials. Moreover, antinutritive 206 

compounds may be health beneficial in affluent societies, where diets are often characterized by 207 

an excess of rapidly digestible carbohydrates and a low intake of dietary fibre. For example, 208 

inhibition of starch digestion by phenolic compounds decreases the glycemic index and the risk of 209 

diabetes and the metabolic syndrome [24, 28]. Likewise, raffinose-family oligosaccharides cause 210 

digestive discomfort when consumed in large amounts but have beneficial prebiotic properties 211 

when consumed at an adequate dose [28]. Nutritional benefits of food fermentations, however, 212 

remain relevant even in affluent societies. As outlined further in this section, these nutritional 213 
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benefits relate to the intake of viable and non-pathogenic microbes, the reduction of the content of 214 

FODMAPs, and modification of immune-reactive proteins in food.  215 

Live and active dietary microbes. Although not all fermented foods contain viable fermentation 216 

organisms at the time of consumption, fermented foods are a major contributor to the dietary intake 217 

of viable and non-pathogenic microbes [4, 62]. Species that comprise strains with well documented 218 

probiotic properties include Lactobacillus acidophilus, Lactobacillus johnsonii, Lacticaseibacillus 219 

casei (previously Lactobacillus casei [31]), Lacticaseibacillus rhamnosus (previously 220 

Lactobacillus rhamnosus [31]), L. plantarum, Limosilactobacillus reuteri (previously 221 

Lactobacillus reuteri [31]) and L. fermentum are also present in high cell counts in specific 222 

fermented foods [39, 63]. Lactobacilli that are part of fermentation microbiota in fermented foods 223 

were shown to exhibit probiotic properties [4, 64]. Whether or not probiotic properties should be 224 

attributed to fermentation cultures in fermented foods is discussed controversially [4, 65], 225 

however, the presence of viable and active microbes in fermented foods may address the reduced 226 

intestinal microbial diversity in developed countries. 227 

Fermentation, FODMAPs and irritable bowel syndrome. The link of fructans, food 228 

fermentations and the irritable bowel syndrome or non-celiac wheat intolerance has been 229 

established relatively recently. Non-celiac wheat intolerance is poorly defined and is diagnosed by 230 

elimination of wheat allergies and celiac disease [66]. Non-celiac wheat intolerance, which affects 231 

approximately 6% of the North American population, largely overlaps with irritable bowel 232 

syndrome, which has a prevalence of about 11-15% [66]. A majority of individuals with irritable 233 

bowel syndrome or non-wheat intolerance are fructose malabsorbers [66]; i.e. fructose, which is a 234 

digestible sugar in most individuals, particularly when consumed in association with glucose, is 235 

non-digestible. A low FODMAP diet, which necessitates avoidance of wheat and onions, improves 236 
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symptoms of the IBS [67] but also reduces the intake of dietary fibre and thus reduces the diversity 237 

of the intestinal microbiota, particularly by depleting the relative abundance of bifidobacteria [68]. 238 

Health benefits that are associated with ingestion of dietary fibre including non-digestible 239 

oligosaccharides are well documented [28, 69]. Low-FODMAP or gluten free diets may thus have 240 

long-term adverse health effects if the “fibre gap” is not addressed.  241 

Does sourdough fermentation improve the tolerance of wheat products for individuals with non-242 

celiac wheat intolerance or the irritable bowel syndrome? Anecdotal evidence for improved 243 

tolerance of sourdough bread is widely shared by sourdough bakers and social networks, however, 244 

scientific evidence for this claim is scarce. FruA mediates degradation of fructans in sourdough 245 

[27]; this enzyme is generally present in oral streptococci but present only in few swine-associated 246 

lactobacilli that also occur in one industrial sourdough fermentation [27, 63, 70]. FosE, the second 247 

extracellular fructanase in lactobacilli, is present only in Lactocaseibacillus and 248 

Liquorilactobacillus (previously L. casei group and part of the L. salivarius group [31]), organisms 249 

which do not commonly occur in commercial sourdough fermentations. Even conventional 250 

sourdough fermentation, which is typically carried out with Fructilactobacillus sanfranciscensis 251 

(previously Lactobacillus sanfranciscensis) in combination with Kazachstania humilis (previously 252 

Candida humilis) in type I sourdoughs or Lactobacillus and Limosilactobacillus species in type II 253 

sourdoughs (previously L. delbrueckii group and L. reuteri group [31, 71, 72]), reduces the 254 

FODMAP content by about 50% through elimination of raffinose-family oligosaccharides and 255 

fructans with a low degree of polymerization (Fig. 1) [27, 73]. The improved tolerance of low-256 

FODMAP bread produced with FruA-expressing lactobacilli in individuals with the irritable bowel 257 

syndrome was demonstrated in clinical trials [74]. Because adverse effects are dose-dependent, 258 
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however, it is likely that even conventional sourdough fermentation improves tolerance of wheat 259 

and rye bread for a significant portion of susceptible individuals.  260 

Modification of immune-reactive dietary proteins. The prevalence of allergies in the population 261 

of affluent countries is increasing, in parallel with an increased prevalence of other auto-immune 262 

disorders [75]. Fermented foods were associated with a reduced allergenicity when compared to 263 

the corresponding non-fermented counterparts [76]. Fermented foods are not generally hypo-264 

allergenic but specific allergens are degraded by fermentation of milk [77], soy [78], wheat [79] 265 

and eggs [80].  266 

What distinguishes food fermentations from other unit operations in food processing? 267 

Fermentation with lactic acid bacteria, particularly heterofermentative lactic acid bacteria, 268 

modifies protein in the fermentation substrate by proteolysis and by reduction of disulfide bonds 269 

(Fig. 1). Proteolysis is readily achieved by alternative (enzymatic) processes but sustained 270 

reducing power for modification of disulfide-linked immune-reactive proteins requires 271 

metabolism by living cells and is achieved only by germination of seeds or by fermentation. 272 

Proteolysis is a key selection criterion for cultures in dairy fermentations while substrate-derived 273 

or fungal proteases are relevant in cereal and legume fermentations [81, 82]. Low-molecular 274 

weight thiol compounds are accumulated particularly by the glutathione reductase and 275 

cystathionine-γ-lyase activity of heterofermentative lactobacilli including F. sanfranciscensis and 276 

L. reuteri [83], key organisms in cereal fermentations [71, 72]. A specific contribution of 277 

glutathione dehydrogenase of F. sanfranciscensis to protein modification was demonstrated for 278 

the hydrolysis of gluten proteins in wheat sourdoughs [82] and for reduced allergenicity of 279 

ovotransferrin [80]. 280 
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The relevance of protein modifications during food fermentation also relates to proteins that are 281 

not allergenic but exhibit pro-inflammatory properties and may exacerbate or trigger auto-282 

inflammatory diseases. Lectins including the wheat germ agglutinin are highly disulfide-bonded 283 

and immune-reactive proteins, however, their contribution to adverse health effects in humans is 284 

disputed [84] and their fate in food fermentations is unknown. Pro-inflammatory properties are 285 

more clearly established for the wheat amylase-trypsin inhibitor, which not only inhibits pancreatic 286 

enzymes but also induces intestinal inflammation through activation of Toll-like receptors [85]. 287 

The wheat amylase trypsin inhibitor is a hetero-tetramer which inhibits insect and mammalian 288 

amylases [25]. Owing to its pro-inflammatory activity, the wheat amylase-trypsin inhibitor was 289 

also hypothesized to contribute to non-celiac wheat intolerance and the irritable bowel syndrome 290 

[66]. Germination in combination with sourdough fermentation of wheat flour decreased the 291 

trypsin inhibitory activity [86], likely through degradation of amylase trypsin inhibitors. 292 

Sourdough fermentation of flour from resting grains also reduced ATI levels, and converted the 293 

dominant and biologically active multimeric form to the monomeric form [74]. However, detailed 294 

studies on the role of proteolysis, reduction of disulfide bonds, heat inactivation during baking, or 295 

other factors on the fate of ATI in (sourdough)-baking are currently lacking.  296 

Food Fermentations – an essential ex vivo digestion step for agricultural societies? 297 

Humans have mastered the skill of conversion of agricultural crops by fermentation to improve 298 

their nutritional value since the Neolithic Revolution. Whether the ability to control food 299 

fermentations was a prerequisite for this landmark transition in human history cannot be answered 300 

with currently available data, however, several beneficial nutritional aspects of fermented foods 301 

remain relevant at present. Can food fermentations be considered an essential ex situ digestion step 302 

to achieve improved digestibility of plant foods in agricultural societies? This question is partially 303 



15 

 

inspired by the observation that many omnivorous or herbivorous monogastric animals including 304 

swine, poultry and rodents harbor lactobacilli as dominant members of the microbiota in their 305 

upper intestine, i.e. the esophagus, the crop and the forestomach [87]. The composition and the 306 

metabolic functions of these animal microbiota substantially overlap with the species-level 307 

composition and metabolic activity of lactobacilli in food fermentations [63]. The case can be 308 

made that humans compensated the lack of an organ for in vivo lactic fermentation by using the 309 

cognitive function of another organ, the brain, to employ food fermentation as an ex situ digestion 310 

step to improve the nutritional value of plant crops.  311 

Is the case convincing? Probably not. Most humans can digest most plant foods or, in regions with 312 

high food security, are able to substitute offending foods with more appropriate choices.  313 

Is the analogy relevant from a public health perspective? Probably yes. Gastrointestinal disorders 314 

including irritable bowel syndrome, non-celiac wheat intolerance and auto-immune disorders 315 

impact a substantial part of the population in developed countries. Even though an increased 316 

consumption of fermented foods may make only a small and incremental change in these disorders, 317 

an increased proportion of fermented foods in the diet, or a reversion to including more diverse 318 

fermentation microbiota, e.g. by reinstating sourdough fermentations in bread production, may 319 

increase the health and the quality of life in a significant proportion of the population.  320 
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Figure legends 599 

Figure 1. Overview on metabolic activities of lactic acid bacteria that contribute to the conversion 600 

of anti-nutritive, noxious or toxic compounds in food fermentation. Fructans. High DP inulin- 601 

and levan type fructans are degraded by the cell-wall bound enzymes FosE (Liquorilactobacillus 602 

spp. and few strains of L. casei and L. paracasei) and FruA (oral streptococci and swine-associated 603 

Lactobacillus spp.). Fructo-oligosaccharides with a DP of 2 – 4 are metabolized by the intracellular 604 

fructanases SacA and sucrose phosphorylase SucP. Raffinose-family oligosaccharides and 605 

galacto-oligosaccharides. Raffinose-family oligosaccharides are converted to αGOS by 606 

extracellular levansucrases (Limosilactobacillus spp., Liquorilactobacillus spp. and few 607 

Lactobacillus spp.) or metabolized by intracellular α-galactosidase and sucrose-phosphorylase. 608 

αGOS and βGOS including lactose with DP 2 – 4 are metabolised by intracellular α-galactosidase 609 

and β-galactosidase, respectively. Cyanogenic glycosides, vicine and convicine are converted by 610 

substrate-derived or intracellular microbial β-glucosidases; the resulting aglycones are rapidly 611 

detoxified or volatile. Phenolic compounds. Flavonoid glucosides are converted by substrate-612 

derived or intracellular microbial β-glucosidases glycosyl hydrolases. Tannins and esters of 613 

phenolic acids are hydrolysed by extracellular tannases and extracellular or intracellular phenolic 614 

acid esterases; phenolic acids are converted by phenolic acid reductases (HcrB, HcrF or PadR1), 615 

decarboxylases (Pad) and vinyl reductases (VprA). Protein modification and hydrolysis. 616 

Glutathione reductase activity of F. sanfranciscensis or other thiol-accumulating enzymes in 617 

Limosilactobacillus spp. reduce intra- and intermolecular disulfide bonds, increasing the 618 

susceptibility of proteins including ovotransferrin and gluten to hydrolysis. Cell-wall bound 619 

proteases of lactic acid bacteria – mainly found in Lactobacillus spp. and lactococci, or substrate-620 
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derived and fungal proteases hydrolyse proteins to peptides and amino acids. Drawn with 621 

information from [27, 32, 33, 44, 45, 48, 49, 53, 82, 83, 88]. 622 
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Table 1. Toxic, conditionally toxic, antinutritive or noxious compounds in plant foods and milk. 

Adverse Compound Food involved Adverse effects 

Cyanogenic 

glycosides 

Cassava, flaxseed, 

Lima beans, others 

Release of cyanide after ingestion; chronic 

disease (konzo) leading to motor neuron 

damage or acute intoxication [15] 

Vicine, convicine Faba beans 

Favism (hemolytic anaemia) in susceptible 

individuals with glucose-6-phosphate 

dehydrogenase deficiency [16] 

Phytate Cereals, legumes Reduced mineral absorption [13] 

Tannins Sorghum, legumes 
Bitter taste, inhibition of digestive enzymes 

[23] 

Amylase trypsin 

inhibitors, lectins 
Wheat, rye, legumes 

Inhibition of digestive enzymes, inflammatory 

effects; potential contribution to non-celiac 

wheat sensitivity and irritable bowel syndrome 

[25]  

Allergens 
Wheat, legumes, 

eggs, milk 

Allergic reactions, potential anaphylactic shock 

[76] 

Raffinose-family 

oligosaccharides; 

Fructans 

Legumes; 

wheat, rye 

Flatulence, bloating, osmotic diarrhea; 

contribution to non-celiac wheat sensitivity and 

irritable bowel syndrome [28, 66] 

Lactose Milk 
Lactose intolerance (Flatulence, bloating, 

osmotic diarrhea) [29] 

 

 

 



Phenolic acids 

or

phenolic acid 

derivatives

Fructans

Lactose, βGOS

Raffinose-family OS

αGOS,

Cyanogenic glucosides

Tannins,

phenolic acid esters

Lactate, acetate, 

CO2

Flavonoid aglycones

2RSH RSSR
PtrP

Fructo-OS

SucP
αGal

βGal

Flavonoid glucosides

βGlu

HCN

divicine, isouramil

FosE

FruA

βGlu

SacA

GtfA

Vicine, convicine

GshR

Ptr

Pad

PadR
Est.

VprA

Tannases,

esterase
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