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Abstract

The Internet of Things (IoT) is an emerging technology that is connecting
billions of otherwise ordinary devices to the Internet. A key component of
[oT is Low- power and Lossy Networks (LLNs), composed of various resource-
constrained devices with limited energy, memory, and processing power. To
communicate with each other, devices (referred to as nodes) in LLNs require
an efficient routing protocol. ROLL (Routing Over Low power and Lossy
networks), a working group of the Internet Engineering Task Force (IETF),
designed RPL, the standard IPv6 Routing Protocol for Low-Power and Lossy
Networks, to meet specific needs of LLNs. RPL generates low control plane
traffic and offers a range of interesting features for LLNs. However, RPL has
several deficiencies with regard to security and point-to-point communications.
This thesis investigates and tackles some of these deficiencies.

Chapter 3 introduces and analyses the DAO induction attack, a new attack
against RPL. In the DAO induction attack, a compromised node in the net-
work periodically transmits a special control message. Fach of these crafted
control messages induces many nodes in the network to transmit in response.
This significantly increases the power consumption of nodes, hence reducing
the lifetime of battery-operated IoT devices. In addition, the attack severely
impacts end-to-end latency and packet delivery ratio, two important network
performance metrics. The chapter proposes a lightweight solution to counter
the attack. The proposed solution imposes no overhead when the network is

in its normal operation (i.e., it is not under attack) and can quickly detect the
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attack even when the network experiences high packet loss rates.

Chapter 4 studies the sender’s authentication problem in RPL and proposes
a solution based on the Blom key pre-distribution scheme. The proposed
solution has a significantly lower computation cost than the original Blom
scheme, hence is more suitable for computationally constrained IoT devices.

Finally, Chapter 5 studies the quality of the RPL’s Point-to-Point (P2P)
paths. In particular, it analyzes how much RPL’s P2P paths “stretch” com-
pared to the shortest paths. It shows that the average stretch is a factor of
at least two in any RPL network. Furthermore, it shows that RPL’s stretch
factor can be considerably higher than two in some network topologies includ-
ing linear networks and grid networks. To improve the quality of RPL’s P2P
paths, the chapter proposes a solution that is simple to implement and fully

compatible with RPL.
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Preface

The results presented in Chapter 3 were published in International Conference
on Software, Telecommunications and Computer Networks (SoftCOM 2020) [1]
and IEEE Internet of Things Journal [2].
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Chapter 1

Introduction

RPL (Routing Protocol for Low-Power and Lossy Networks) is the standard
routing protocol for Low power and Lossy Networks (LLNs). LLNs are a key
component of [oT, and are typically composed of various resource-constrained
devices with limited energy, memory, and processing power [3]. RPL generates
low control plane traffic and offers a range of interesting features for LLNs. For
instance, RPL can cope with low-speed links and high transmission error rates
and can adjust its traffic with the network’s dynamics. RPL, however, has de-
ficiencies with regards to security and point-to-point communications. In this

thesis, we study these deficiencies and propose easy to implement solutions.

1.1 Motivation

1.1.1 RPL’s Security

Recent research has shown that RPL is vulnerable to a wide range of attacks,
including Denial-of-Service (DoS) attacks which can considerably degrade the
network’s performance and shorten the lifetime of nodes operating in the net-
work. Security is one of the main concerns of RPL networks, particularly when
these networks are deployed in critical infrastructures such as smart grid. Due
to the multicast nature of transmissions and lack of tamper-resistant equip-
ment in [oT devices, providing security for these networks is a complex task.
In particular, mitigating security attacks in LLNs is not trivial because imple-
menting security solutions such as digital signature can greatly degrade the

performance of resource-constrained nodes. In the absence of security solutions
1



such as digital signatures, an internal attacker (e.g., a compromised node) may
alter, inject, replay, and generate data or control messages to impact the reg-
ular operation of RPL networks [4], [5]. For instance, in the version number
attack [6], a compromised node can initiate a whole network repair by sending
a single control message on behalf of the root. Similarly, in our proposed at-
tack (Chapter 3), a compromised node can send a control message on behalf of
the root and trigger many nodes in the network to send redundant messages.
Such attacks, generate many redundant transmissions, hence can significantly
degrade the performance of the network, and reduce the lifetime of IoT devices
that run on batteries. Consequently, it is necessary to design lightweight and

efficient solutions to counter such attacks.

1.1.2 Point-to-Point Routing in RPL

RPL supports three main communication patterns: Multipoint-to-Point (MP2P),
Point-to-Multipoint (P2MP), and Point-to-Point (P2P). MP2P and P2MP en-
able communications between the network’s root (i.e., the sink) and the re-
maining nodes in the network, while P2P enables communications between any
two nodes in the network. The main focus in designing RPL was on MP2P
and P2MP communications (from the root), rather than P2P communications.
As a result, RPL is not optimized for P2P communications. For instance, in
RPL’s basic mode of operation (RPL’s common mode of operation) a P2P
packet has to travel from the source all the way up to the root and then travel
all the way back down from the root to the destination. This is normally a
much longer path than the shortest path between the source and destination,
as we will show in this thesis. This is not desired as P2P communications is
an essential component in many emerging IoT applications such as building
automation and remote control applications [7] where the IoT networks aim
to control actions rather than collect data.

To improve P2P communications, RPL provides two “upgrades” over its
basic mode of operation. 1) Multicast Destination Advertisement Object
(MDAO), and 2) storing mode. The former solution allows a source node

to send its data packets directly to the destination if the destination is within
2



the transmission range of the source. The latter solution allows the common
ancestor of the source and destination (instead of the root) to redirect the
source packet down towards the destination. Therefore, in the storing mode,
a packet may not need to go all the way up to the root and then get redi-
rected towards the destination. This solution requires non-leaf nodes to store
a routing table, which can add pressure on nodes with limited memories. This
is more harsh for nodes near the root as they have more nodes as their chil-
dren. Therefore, it is important to devise a lightweight and efficient method

to improve RPL’s P2P routing.

1.2 Thesis Contributions

To tackle the problems mentioned in the previous section, we present three
research works in Chapter 3 to Chapter 5. The contributions of these chapters

are summarized as follows:

1.2.1 The DAO Induction Attack: Analysis and Coun-
termeasure

Chapter 3 introduces and studies the DAO induction attack, our proposed
novel attack against RPL. In the DAO induction attack, a compromised node
in the network periodically transmits a special control message. Each of these
crafted control messages induces many nodes in the network to transmit in
response. We show that transmitting these unnecessary messages can signifi-
cantly increase the power consumption of nodes, hence reduce the lifetime of
battery-operated IoT devices. In addition, we show that the attack severely
impacts end-to-end latency and packet delivery ratio, two important network
performance metrics. For instance, in a network with 50 nodes, our simula-
tion results show that the attack increases the average end-to-end latency and
packet loss ratio by 410% and 260%, respectively. To counter the attack, we
propose a lightweight solution. We show that our solution imposes no overhead
when the network is in its normal operation (i.e., it is not under attack) and

can quickly detect the attack even when the network experiences high packet



loss rates.

1.2.2 LBAM: A Lightweight Authentication Mode for
RPL

Chapter 4 studies the authentication problem of the RPL protocol and pro-
poses a new authentication mode for RPL using the Blom key pre-distribution
scheme [8]. The main contribution of this work is that we show that the
computational cost of the Blom scheme can be significantly reduced at the
cost of slight increase in memory requirement. This makes the Blom scheme
more suitable for computationally-constrained IoT devices. We compare the
computation overhead of original Blom scheme with the proposed lightweight
Blom for MSP430 CPU family and show that the computation overhead of
the proposed scheme is much lower than original Blom scheme. Moreover, we
formulate the attacker’s cost for capturing nodes and show that there is no

better algorithm other than brute-force.

1.2.3 P2P paths in RPL

We study the quality of RPL’s P2P paths in Chapter 5. In particular, we
analyze how much RPL’s P2P paths “stretch” compared to the shortest paths.
We prove that the average stretch is a factor of at least two in any RPL
network. That is, the RPL’s P2P path between two randomly selected source
and destination nodes in any network is expected to be at least twice as long
as the shortest path between the two nodes. Furthermore, we show that RPL’s
stretch factor can be considerably higher than two in some network topologies
including linear networks and grid networks. To improve the quality of RPL’s
P2P paths, we propose a solution which is simple to implement and fully
compatible with RPL. Moreover, our solution does not require nodes to store
any routing table, which is important as nodes in LLNs are typically highly
resource-constrained. We evaluate our proposed solution using the Contiki-
NG operating system and its built-in Cooja emulator, and show that our
proposed solution can significantly improve the quality of RPL’s P2P paths

with a modest overhead.



1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 provides the neces-
sary background on Low Power and Lossy networks, RPL and key management
techniques. The next two chapters deal with RPL’s security, and propose new
mitigations. In particular, Chapter 3 introduces DAO induction attack and
proposed a lightweight mitigation technique, and Chapter 4 proposes a new
authentication mode for RPL based on well known Blom key predistribution
scheme. Chapter 5 analyzes P2P routing efficiency in RPL and provides a
lightweight method to enhance P2P routing in RPL. Finally, Chapter 6 con-
cludes the thesis and presents possible extensions to these works, and provides

potential directions for future works.



Chapter 2

Background

2.1 Internet of Things and Wireless Sensor
Networks

Internet of Things (IoT) and Wireless Sensor Networks (WSN) share certain
characteristics with each other [9], [10]:

e In both networks, nodes are usually limited in terms of processing power,

battery and memory.

e Both networks suffer from unstable connectivity. Devices may turn off
due to limitation in power. Communication links between devices are

lossy and unstable.

Despite these similarities, IoT and WSN are not the same and have several
differences. First, the traffic pattern in WSN is mostly Multiple Point to Point
(MP2P); WSN originally designed for data collection without any smartness
at nodes. Furthermore, nodes send data to specific sink nodes and the data is
processed outside of the network. IoT, however, introduces intelligence to the
devices by delegating certain decisions to them. In addition, IoT devices may
communicate directly with each other to coordinate actions.

The second major difference is that [oT devices use the IP protocol stack.
This means that each device can directly communicate with any Internet end
system. Also, routing protocols in IoT are based on IP addresses. This is not

the case in WSN. In WSN, routing protocols usually use the location of nodes



and the way they are located with respect to each other to route a packet to

the sink [9].

2.1.1 General Security Issues in Wireless Sensor and
Ad-hoc Networks

Security is one of the main concerns in Ad-hoc and wireless sensor networks.
These networks are susceptible to security attacks that impact the following

security attributes:

e Availability: this feature guarantees network services despite the denial
of service attacks. An attacker can perform a denial of service attack
in various layers of the network to disrupt the service. For instance, an
adversary may apply jamming to make interference for communication
between nodes in the physical layer. In the network layer, a malicious
node could disrupt the routing services and disconnect nodes from the
network. A denial of service attack usually concerns battery exhaustion
as devices are usually resourced constrained with limited power. For
example, in a sleep deprivation attack, an attacker prevents a node from
turning off its radio to save energy. As a result, nodes consume more

energy, and their battery is exhausted faster.

e Confidentiality: this attribute keeps certain information private from
unauthorized entities. Some network transmissions, depending on ap-
plications, contain sensitive information. If an attacker gets access to
this information, it can use them to establish strong attacks against net-
works. For example, routing messages can provide valuable information

to an attacker to identify and locate her targets.

e Integrity: this ensures that a message is delivered to the destination
without any change. This is very important for routing protocols. An
attacker may alter routing messages to downgrade the routing perfor-

mance or even disconnect nodes from the network.



Table 2.1: Classes of constrained devices in Low Power and Lossy Networks
(1 KiB = 1024 bytes) [12].

Device Categories | RAM (data size) | ROM (code size)

Class 0 < 10 KiB < 100 KiB
Class 1 ~ 10 KiB ~ 100 KiB
Class 2 ~ 50 KiB ~ 250 KiB

e Authentication: this allows a node to verify the identity of other nodes
in the network. In a network without authentication an attacker can
easily use fake identities or steal legitimate identities of other nodes to

gain unauthorized access to resources and information.

Ad-hoc and WSN networks use wireless links which are susceptible to at-
tacks such as eavesdropping, message replay, and message distortion. These
attacks can violate all the attributes mentioned above. Second, nodes in these
networks usually are not tamper-resistant. Therefore, in addition to external
security threats, we must take into account the attacks that launched from
inside of the network. Finally, the topology of these networks can be changed.
Therefore, the relation between nodes may change over time. This can cause

problems for security solutions that only work within static networks.

2.2 Low Power and Lossy Networks

Low Power and Lossy Networks (LLNs) are networks in which nodes are highly
resource constrained, and communication links are unstable with relatively
high loss rates and low data rates. LLNs are a key component of IoT and have
many applications including industrial monitoring, building automation (e.g.
heating and lightning), asset tracking, smart agriculture, and eHealth [11].

Devices in LLNs can be placed into three categories as shown in Table 2.1.

2.2.1 Challenges of Routing in LLNs

LLNs are different from the traditional IP networks. Routers in LLNs are

highly constrained in terms of battery, memory, and processing power. LLN
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devices are connected through different communication mediums including
wired and wireless. LLNs networks can compromise thousands of nodes [13],
and must support different types of traffic patterns. High data rate traffic
can easily congest the network and increases the packet loss and latency. A
routing protocol for LLNs must handle and cope with all these limitations and
challenges.

Routing Over Low Power and Lossy Networks (ROLL) is a working group
of Internet Engineering Task Force (IETF) that works on the routing topics
of Internet of Things. One of the main tasks of ROLL was to investigate
and analyze the existing routing protocols and define fundamental routing
requirements for LLNs. The group limited the scope of LLNs application
into four major categories: urban network, building automation, industrial
automation, and home automation. They chose these applications as a set of
representative networks, and assumed a routing protocol that addresses the
requirement of these applications is deemed to be a good choice for other
networks. Considering the above applications, the ROLL group established

four routing requirements for LLNs.

Home automation routing requirements in LLNs [14].

Industrial routing requirements in LLNs [15].

Routing requirements for urban LLNS [16].

Building automation routing requirements in LLNs [17].

The above documents did not make any assumption about link layer proto-
col; they only determined a list of requirements for the network layer of LLNs.

Some of these requirements are as follows:

e A routing protocol must support unicast, anycast, and multicast com-
munication to support three main traffic patterns. Multi Point-to-Point:
traffic from several nodes to a single sink node, Point-to-Point: traffic
between any pair of nodes, and Point-to-Multipoint: routing traffic from

a single node to several nodes in the network.
9



A routing protocol must support adaptive routing, that is a new path
must be dynamically and automatically recomputed if the network con-
dition changes. In addition, a routing protocol must support different

metrics to find routes.
A routing protocol must support constrained devices.

Scalability: number of nodes in an LLN may vary from 250 nodes in
home automation [14] to up to 10,000 in urban applications [16]. A

routing protocol for LLNs must support all such networks.

Security is very important in many LLNs applications such as smart
grid, building automation, and industrial automation. In particular,

authentication is listed as a mandatory feature in all documents.

The IETF ROLL group investigated the current and the state-of-the-art

routing protocols to find whether any existing routing protocols can satisfy
LLNs requirements [18]. They considered several routing protocols includ-
ing link state protocols: OSPF [19], IS-IS [20], OLSR [21] , OLSRv2 [22],
TBRPF [23], and distance vector protocols: AODV [24], RIP [25], DSR [26],
DYMO [27]. The ROLL group analyzed these routing protocols using the

following metrics:

Node cost, which is the ability of a protocol to integrate router prop-
erties into routing metrics and uses node features for constraint-based

routing.

Control cost, which indicates the efficiency of a routing protocol in

terms of controlling traffic power consumption.

Link cost, which evaluates the ability of a protocol in term of integrating

link properties into routing metrics.

Routing state, which shows whether a routing protocol scales reason-

ably with regards to memory.

10



Table 2.2: Protocol comparison.

Routing Routing Loss Control | Link cost | Nose cost
protocol state response | cost

OSPF fail fail fail pass fail
IS-1S fail fail fail pass fail
AODV pass fail pass fail fail
DSR fail pass pass fail fail
RIP pass fail pass NA fail
TBRPF fail pass fail pass NA
DYMO pass NA pass NA NA
OLSRv2 fail NA NA pass pass

e Loss response, which measures the performance of a routing protocol

in terms of handling link failures and recomputing paths.

Table 2.2 shows the result of evaluation of these routing protocols [18].
The value ‘NA’ indicates that the protocol does not have that feature so the
ROLL group could not conclude if the test was successful.

As shown in Table 2.2 none of the existing routing protocol could satisfy
the requirements of LLNs. Therefore, ROLL proposed a new distance-vector
routing protocol called RPL (IPv6 Routing Protocol for Low power and Lossy
Networks), which is specified in the standards document RFC 6550 [13].

2.2.2 Link State vs Distance Vector Routing

There are two general routing algorithms: link-state and distance-vector. In
link-state algorithms, each node maintains a global view of the network topol-
ogy in addition to a cost for each link in the network. Each node finds the
best path to other nodes using its own view of the topology. To maintain an
up-to-date topology information, each node periodically sends link costs of its
own links to other nodes. In link-state protocols each node must have O(N?)
space to maintain topology information, where N is the number of nodes in
the network.

In distance vector protocols, on the other hand, nodes do not have a global
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view of the network. Instead, each node maintains the distance and the next
hop towards each destination. In distance vector routing, information are
advertised as vector of distance and direction (next hop). The memory re-
quirement of distance-vector routing protocols is O(N X e), where e is the
average degree of nodes (i.e., the average number of neighbours of nodes).

Although link-state routing protocols are more powerful in terms of finding
the best path between any pair of nodes and updating the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>