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Abstract

The work presented here is intended to provide theoretical support
for medical physicists who are interested in improving radiotherapy
treatment plans involving charged particle beams. These plans still
rely heavily on emperical behavior rather than theory as a basis for
making predictions. In the most frequent therapy applications, elec-
tron beams, typically with initial energies between 5-20) MeV, penetrate
materials of low atomic number. Energy loss is predominately by ioni-
zation and the effects of multiple scattering by repeated Coulomb

deflections from nuclei are of primary interest.

Our development is strongly influenced Sy these applications and
80 we begin our work with a review of Fermi-Eyges theory. This theory
and ideas which were equivalent to it have dramatically improved elec-
tron beam treatment plans over the last several years, as is now
generally recognized. This theory also has significant limitations due
to the approximations or assumptions that it makes. Since we can
improve and.extend these results by relaxing some of the key assump-
tions, we continue by considering some generalizations of this basic
theory and we discuss those which were given by Snyder-Scott, Lewis and

Yang in some detail.

Yang's theory had significant potential for applications but this
theory will not work properly unless its time development is handled
Jifferently. This leads us to present a wave solution to the penetr-
ation problem in our final chapter. Sample calculations of the most

important distributions are given there as well.



Acknowledgements

I am especially indebted to John Scrimger, my supervisor, and to
J.A, Kernahan, Chairman of the Physics Department, for their honesty,
their guidance and unwavering support. Special thanks are also due to
J.G. Holt, who initially suggested the project and to Jim Nester for

inspiring conversations.

I would also like to thank Sally Morris Carlbom for a significant

effort in the preparation of the manuscript.

vi



TABLE OF CONTENTS
CHAPTER PAGE

I. Introduction.seeeecesereoncccenrscsascconnsoononesl

II, Small Angle Lateral Transport.ceescecsosecesvoes ol
A, Statistical ApPProath.icseeseressessesersnnosell
B, Fermi's Transport EQUation.ssevesceveeesceesT
C. The Eyges ExtensioNeecsececesssesssseersensl0
D. The Need For A Better TheOrYeeveseesesrsocssl3
E. Diffusion CalculationNSeeeeeonssessvsceesoessl?

I1I. Generalizations of the Transport Equation........20

A. Multiple Scattering EQuationS...ceveceesoess20
. Snyder=Scott TheOrY.ecseeteescearsssossssseas b
« Lewis' Theory.eeeerecssosecrsccesscnsresness33
¢« Yang's TheorY.seeessoovsosseoscosrsascncsnecesldl
. The Moments DevelopmeNnt..cceseeessecssssseesdd

moOw

IV. Re-examination of Lewis' TheOrY.eeeseeseseoesees 02
A, The Angular DiStribution..eeeseessscsercoessb2
B, Perturbing The Penetration Distribution.....68
C. Spatial Moment ProblemS....ceeesccecscecnsesTl

A Wave Solution to the Transport Problem.........86
A. Small ANEleS.eeesssosscecscssasssnsssessases80
B, Large AngleS.ceeccsoccvaccsrsccccscssescocssdl
c. AnalysSiS..eeesecsrvevacsssasesssossscsscaseasl03
D. Sample CaleoulationS.v.eeecevsecesosssersesss 108
E. The Linear Approximation..i.ecesecevescessasell3

VI. Concluding RemarkS.eceecoeecsasssscossonsassossnans 118

FigUreS.iceeeseceereassssncaasssseenncssscsassassssrnasasill]
RefereNCeS.cceccccscsscsenccsrssasonssssanscasscas cereaas 132

vii



10.

LIST OF FIGURES

Page
Schematic Transport DiaBramS.cececsesesserscrcecss 122
An Inhomogeneity ProbleMescessccceosssvesoreseceessll3
First Order Lateral Spreading..cecesecceseeoveossl2l
Results From Snyder=Scott Theory..eveceoseeciveesel @D
Spencer's Numerical Moment PlotS....ceeeeesvecsss126
Comparison of Yang's and Kessaris' Calculations..127
Time Deperident ReSUILS...cceereesvscsvscssonossesellB
Steady State ResultS...ivvesssssesvccsccsscccceesl9
Parameters for Electron CalculationS..eceeeeeeesss130

Quality of the Linear Approximation...eceecesessel3l

viii



I. Introduction

Medical physicists' association with accelerator-produced charged
particle beams is about three and one half decades old. In that time a
number of important problems in radiation dosimetry have been success-
fully solved and are presently managed rather well. Others have been

more persistent and no such success can be claimed.

To a medical physicist concerned with therapy, the most important
quantity is the absorbed dose, the energy absorbed by an infinitesimal
bit of matter during the course of an irradiation. If the target is a
hemogeneous medium of tissue-like material, e.g., a tank full of water
or sheets of solid plastic, the measurement of absorbed dose is a
satisfactorily solved problem. The calculation of absorbed dose, even
under these limited conditions, is not. A more difficult question
which arises frequently in actual irradiations is the calculation of
dose within inhomogeneous tissue, when a beam will penetrate mixtures
of material of different composition. The recent advances in computer-
ized axial tomography, which makes detailed anatomical information
available, has stimulated renewed interest in the inhomogeneity topic

although the importance of the prcblem was recognized long ago.

This work aims to extend the earlier effort of Perry and Holtl.
Along with a number of other papers that began to appear mostly after
1975, but especially also those of Goitein2 and Hogstrom and Almonds, a

number of problems were being solved for medical physicists which had

been in their literature for decades. The explicit topic discussed by



these papers was the inhomogeneity problem and the various means which
had been taken to address it used methods which were equiValent to
Fermi's“ theory or the Eyge55 extension of it. Most medical physicists
concerned with this topic have now recognized that this approach has
been successful in that iﬁ has led to progress and is quite promising6.
Its success rests squarely on the fact that it is analytic. Its grea-
test value and level of difficulty was not in the production of results
which were directly and immediately useful, treatment planning computer
programs, but in the identification and development of an applicable
theory which was required as a prerequisite to this. It is this aspect

of the approach that we aim to extend here,

In the charged particle applications most frequently met by treat-
ment. planners, electron beams, typically with initial energies between
10-15 MeV, penetrate materials of low atomic number. Here energy loss
is predominantly by ionization, the stripping of orbital electrons, and
the effects of multiple scattering by repeated Coulomb deflection,
"collisions" with nuclei that cause an angular spread, are of primary
interest. Within this context we will generally consider the following
problem: A group of fast charged particles is injected into a homogene-
ous medium within a burst of extremely short duration. Sometime later,

where are they?

The penetrability of a beam into a material is an extremely impor-
tant piece of information.. A medical physicist, who usually summarizes
this information into what is callied a depth dose curve, will often use

it to characterize and completely represent a beam's interaction with a



material. It is an essential componcnt of every treatment plan. For
this reason special emphasis will be given to the longitudinal or pen-

etration aspects of the problem.

Our treatment of multiple scatter will be organized in the
following way: In Chapter II we give a background discussion of Fermi's
model. Since this section is also intended to serve as an introduction
to the multiple scattering problem we take advantage of the opportunity
to introduce a few ideas which will later be met in more elaborate
ways. In Chapter III we discuss two small angle generalizations of

7 and that of Yanga. Lewis! theoryg,

Fermi's model, Snyder and Scott's
which may be regarded as a generalization of Snyder and Scott's work,
will also be introduced there but then considered in more detail in
Chapter IV. Each of these theories contained pivotal information but
also had difficulties which were significant enough to prevent the
emergence of a working theory of charged particle penetration. In
Chapte~ V we define a theory free of these difficulties, a theory which
may well prove to be valuable in medical physics applications. We also

give some sample calculiwions and discuss some of its more important

predictions.



II. Small Angle Lateral Transport

We first consider the question'of the lateral transport of charged
particles in its simplest form. A charged particle moving through a
material will be deflected by the Coulomb potential of any nucleus that
it passes close to. If the charged particle is fast, meaning difficult
to deflect, its change in direction from any one collision is typically
through a very small angle. We are interested here in the case of a
- large number of collisions, statistically large, but still small enough
so that even a resultant deflection remains a small angle and we may
write Sine € =€, ces83§ | Changes in direction of movement will
be accompanie” by changes in particle positions, Our first question is

to decide how to describe the situation.

A. Statistical Approach

The simplest problem considers particle motion in a plane, say
¥-% _ The initial direction of particle movement can define ths &
axis and, as a result of scattering, a particle will acquire a small
velocity component perpendicular to it, which we denote by O . To
determine a particle's direction of movement after W scatterings, we

sum over all its individual directional changes. If we call our parti-

cle o , then

W2

ety = = &6, : (1)

P-k
|
-
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where &6y ti) is the particle's change in direction due to the ¢**
collision. The lateral distance that a particle will travel afterw
collisions is computed similarly

o

0. ) &2 (2)

-
“"
-

‘Ms

. ° n
X (Y= S X0 =
' i=1

where &£ is the distance that a particle drifts between collisions.
This distance is usually called the mean free path and will be -denoted
by A . If £ is the particle's pathlength, then wet 4, We are not
particularly interested in describing one particle but a very large
number of them, N . Of particular interest are group averages which

we denote by bars, e.g.,

o
by = & Z 67 (3)
Xy = & = XM (4)

To actually compute such group averages requires the use of the

deflecting cross section. Thus

— n ; <= .'}
8‘(71) = g ”.‘Z:' 59, ()

1l

n .
[ Seafde, 0. @ }
st fee, S, d;q‘l(.:)

kd
= = <86 (s)

=

Since a particle will deflect right as often as left, < 59.( (=0

and we have 8¢ tm¥=¢, Similarly X(a) =0 . The first non-vanishing

quantities involve squares
R ~ n n )
82n) = :’,— Z = £4.%) 2 J&: (J4)

azt e/ d.=,

= = 2" Z §6.1) §6.G3Y> ()
g’

c=1



Ir 4, & §56,i)80,15)> = < 800> <K 40 (j)> because different

collisions are independent and this product is zero as above. So i=j
and

LAY
02(n) = 2 < (§e,))*>

()

i\

S \”M‘M, 8} dir (7)
:_:o d_(l-’ ‘(0.10'

If we ignore energy losses, the collision cross section never changes

so that < §8,*(0)> = < 8§6.2> and

6,'tn) = n < 867> (8)

Similar steps would give

X 2(n) = 9,‘1()1) —Qz/s (q)

Using the central limit theorem of statistics we could prove that the

angular distribution becomes Gaussian as W -» e so that -

! e’ /a5 (te)
f(l,e.‘) - (‘;_'re—:_)‘/: .

can represent the probability that a particle will be travelling in the

directional interval (6« , 8. +d8. ) after making w

collisions.
We would use (8) to obtain 82 . We would also write
a —
{ (£,x) = ' e T )
- — )
J ’ (ar X3 ) %2

to represent the spatial probability distribution, and use (9) for
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¥*{2Y . Equations (10 and (11) do not tell us everything about
what is happening. If a particle has the direction 6, we do not yet
have an equation telling us where it is; similarly, if a particle {s-
located at ® we do not know its direction of movement. Equations (10)
and (11) say nothing about how the variables €y and X are correlated.-
To completely describe the situation we need a joint probability dis-

tribution {-(1,0.,1) which has the properties

jdr fue,0 = fu.e. (12)

(a6 fu0e0 = f@x0) (13)

\{j‘ﬂe‘ d x )[(2;9.,1) = | 04

A more elaborate version of the above argument using the same type of

steps leads to

a.-3 y ,7_9-‘" -'2/1-!-"
e—( 3!/2)//( /‘/) , € (‘S )

— \
(27 67 14)" (2m3)">

}(z,e,,ﬂ =

which is equation (A8) in the appendix of Perry and Holt. The remain-

ing details of the derivation are given there as well.

B. Fermi's Transport Equation

- —_ 3
Fermiu pursued the observation that 8. (e~ A4 while X™(2)~f,

as in (8) and (9), and are different order infinitesimals if we let



L >dL =0 , The first order effect is to pr‘odﬁce an angular
distribupion, but since the spatial width is zero to this order, the
spatial distribution is a point. Spatial distributions will only
develop thereafter, in subsequent infinitesimals as particles begin to
fly apart due to an angular distribution developed earlier, Thus, a
particle moving through a distance 49 will simply drift from one point
to another along its initial line of motion, but be represented as a
spray of different directions when it gets there (Fig. 1). 'Fermi had
identified the nature of the problem as a shower or multiplication

problem. Collecting his observations he wrote

-y

«;(.04-‘!1,9.,1) = Sa“?.f )((l,ﬂl,x-o:u) f(,u,a,'-e,) (16)

-—

which says that a particle which arrives at the point ¥ has come from
the point x/= x~8/ d2 ,if @¢ was its direction of movement when
it started. In the process of moving it can change direction and be
scattered from the initial value @y into the final direction & .
This feature is described by the probability distribution

‘f(&.t, 0, -~ 6.) . The integral adds up all the contributions. Fermi

used

- (82-8.) /x kg
! e

Gredg)’s (17)

{(«41,9.'—»0‘) = {(Jl,e.‘-&.)

to describe the angular changes by moving through an infinitesimal dis-
tance Jf, the step that incorporates the Gaussian approximation into

his work. Expanding (16) and keeping terms up to first order in 4



gives

,((1,&,,1) + 9_[(4,5“,{) P A (19)

o8

j.,w [ fle,e x-0.40) + f(t,t.,xoa)(é’ -4.)

.

+ L 9__} (2,0.,x-0.44)(61-6,Y" +,,,] HL2,8:-0,)
2 39.:.

where the Taylor expansion on the right i's motivated by the fact that

’
-F(J.l , 2y 0« ) becomes an even more sharply peaked function about .
as o 4> 0 . Continuing we have

{(1,9',1) + e, )t +... (i

24
= [ fettonr-0 dunpm etz [ frae, 8/50) = ]
24

La%(m. -8, cls) HM D! -4,) ferg 0/-8) = o]
b {u 0 | g_:ga: -4, [ (48,8-4,) = K24

2!

So that

a_;((lpgt,’f) = - _{ (20)
oX

oOR

LR
W
‘h

is obtained as an exact equation of motion. Fermi also gave the solu-

tion to (20) as

b)) = Y3 @
)C(I :eml ( >

J g (& 380 43X
A
“ (z1)



which is equation (1.62) of Rossi and Griesenu and is valid for

constant ¥ . They also showed that (21) had the initial conditions

1((1.0,0,)= f(0) ; ~{(1=o.n - fwo (22)
If we use

g = (080 8) = K2 (23)
) -

we easily establish that (15) and (21) are identical expressions
although the derivations were quite different. The argument leading to
{15) was a moments approach in which the form of the solution, obtained
from the central limit theorem, was combined with a few average beam
features which, in this case, could be computed without great diffi-
culty. Moments and moment related arguments are important and will be
a frequently recurrent theme. However, Fermi's method, which was also
based on a moments argument, was superior because he used much better
calculational machinery. This would show up in several different ways.
For example, from it we can obtain the exact solution without ever
making use of the central limit theorem. Writing the differential equ-
ation is the essential first step in the theory and Fermi's
contribution was to give such a clear exposition on how to do this. It

is also a step upon which it is easy to generalize.

C. The Eyges Extension

Equation (21) is the solution to (20) in the sense that it works

in the differential equation. It is not the best form for use, (15) is

10



better, and we have said nothing about how to solve (20) in a systema-
tic way. Some insight on the latter question was given by Eyges who

solved

a_fu,e',n = - 0.9 v k(0P L (24)
EY. TR

with the initial condition

fa=0,6.,0) = £ § (0 (25)
The difference between (24) and (20) is that we have allowed K to
become path length dependent, K-> K(2). A particle moving through a
material will generally be losing energy and the ability of the mater-
ial to deflect it may, and generally will, be dependent on this. This

is the problem that Eyges addressed. Letting

0

[ . '.‘('T'o-' Pax)
{(1,9.'1) =(;;), XJTX \(“fi e + X {(1‘3',,?‘) (92‘)

and then using it in (24) gives the differential equation for the Four-

ier transform of the solution

a,f(x,r,,e.) = Pl f - KWOTf (27)
o A pY;

With a change of variable Eyges solved (27) and then gave a form which
is equivalent to

- (ﬂo (-‘) Tg‘ + ﬂ;“) J-A P‘ + na(l) "42)

{(4,%,&) = € (28)

L
Hhere Aoy = [ e ke (29a)
AL () = 2 ‘f:ou' “U-L') Kt /4 (29b)

As(2)

f*x.e' L-2)* K(2')/y (29¢)

11
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which are Eyges' equations (13 a,b,¢) in our notation. The initial
conditions on A< (2) are A«(o) = 0 , which are the same as (25).
Eyges then inverted the transforms using (26) and (28) to obtain

f ( &, 0, xX) , a straightforward step since it only involves stan-
dard integrals, and then gave the solution in the form (21) except that

the terms £, 2%, 2° are replaced by more complicated expressions

involving A< () . For future reference we rewrite equations (29) in

the form
dA = K (30a)
d4 ¥
AA. () = 24, () (305)
AL
AA () = A, (20 (30c)
AL

Since we have been using the approximation <ceoS$8 =1, we also

have £=Z , and (24) with X replaced by & everywhere will now describe a
beam traversing a medium that has varying scattering properties. This
is the inhomogeneity problem, or at least a simple form of it, and the
fact that this theory can describe it is a key reason why medical phy-
sicists have shown an interest in the Fermi-Eyges equations. Since the
replacement A» 2 turns an energy dependent homogeneous scattering
problem into an inhomogeneity problem, it is evident that both have the
same character. O0Of the two, homogeneous versus inhomogeneous, it is
the homogeneous problem which is the more difficult and the more valu-
able., Our work in later sections will be 'generally restricted to
homogenous solutions and it will be left to medical physicists to

pursue the topic further, adapting them to handle inhomogeneous confi-
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gurations.

D. The Need For a Better Theory

Returning to Fermi's transport equation (20) and integrating it

over all space gives

2ft,0.) =
EY)

' f (31

K
o+

as the equation for the directional distribution, recognizable as the
familiar diffusion equation with path length playing the role of time.
The diffusion of direction brought about by multiple scattering and
described by (31) then leads to diffusion in space. It is easily veri-
fied using (9) that the spatial density satisfies

‘1{(”'” = ke *f (32)
3.4 ¥ ax®

which has the same form as (31) except that our diffusion constant has
become time dependent. To obtain (32) or equivalently (9) from (20)
requires that we first find the complete solution ftl)P.,r) , then
integrate out the angular variables, leaving the spatial density,
]C(,e,x) . This is a much more elaborate procedure than was required

to obtain the equation for the directional distribution (31).

We will generally show more interest in spatial distributions than
in directional distributions. They contain more information,which is

why they are more difficult to solve for. They also contain the kind



of information that medical physicists should be interested in because
they are very closely related to energy release and absorption calcula-
tions. Our pursuit of angular distributions will be in part because
they can tell us something about spatial distributions, give us some
insights, and in part because we need to develop angular information
concurrently, i.e., we need to go through the motion in order to con-

struct a configuration.

Fermi's theory combines both transport and diffusion. We can
eliminate the diffusive aspects of the theory by allowing K=0 in (20).

The remaining equation of motion

3{(1,0‘,1) =-623f (33)

J

4 X
merely describes radiation moving from one place to another in a recti-
linear straight line fashion. For example, if we choose the initial
conditions to be f(R=¢, 0., x) = &(8«-8.,) dfx-x) then the solution of
(33) 15 £(2,80,%) = (0c-80.) £ (¥-%0-8,2) . It is easily shown that
the Gaussians which solve (31), (32), (20) and (24) collapse back into
infinitely narrow beams, i.e., rays, as Ko40. The medium becomes scat-

terless in this limit.

Before meidical physicists became interested in the development of
Fermi's theory, a ray picture in one form or another (Fig. l1a) was
almost universally and‘exclusively adopted by treatment planners. We
should call it the zero order theory because the probability fields

have no degrees of freedom. Because the radiation fields do not do

14
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anything, except go straight, medical physicists had to rely extensi-
vely on experiments in ordér to infuse this model with some
"predictive" power. In practice this meant drawing straight lines,
then extrapolating and interpolating measured values to make predic-
tions. Trying to amend and correct the deficiencies of a theory by
inserting empirical behavior whenever the theory fails is an approach
we should wish to avoid; it does not improve our understanding of the
situation; it has many practical difficulties associated with it; it
may also give incorrect predictions eve:r when conducted with apparent
care. The alternative is to get a better theory, one capable of making

genuine predictions on its own.

Fermi had a first order theory with sine®= & and cos® = |
It contains the ray picture exactly but is superior to it because it
gives the probability fields a lateral degree of freedom. Particles
penetrating a medium now spread out over an infinitely thin flat sur-
face perpendicular to the initial line of movement (Fig 1b). An
example of the inadequacy of the ray model predictions in an inhomogen-
eity problem is shown in our Fig. 2 which was taken from Perry and
Holt. As that diagram also shows, the agreement between predictions
and experimental results dramatically improves once the lateral move-

ment of charged particles is taken into account.

Models which incorporate only the lateral movement can’'t be
expected to do everything for us. If our questions concerned the lon-
gitudinal movement, which is correlated with the lateral motion, there

was either no prediction at all, or a prediction was made which was
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incorrect. Depth dose information, the most pivotal information of a
treatment plan, had to be inserted empirically into the models of Goi-
tein, Perry and Holt, Hogstrom and Almond, etc., because the
Fermi-Eyges equations tell us nothing about it. Our Fig. 3, also taken
from Perry and Holt, gives an example of an incorrect prediction. The
lateral spreading is predicted to increase monotonically with increas-
ing depth in the Fermi-Eyges picture, but experimentally it reaches a
maximum then falls to zero again at deeper penetrations, a systematic

error.

Removing these difficulties requires another degree of freedom,
allowing particle distributions to develop in the direction parallel to
the initial line of motion. Fermi's theory works well near the surface
of the material and cannot simply be discarded, so we build on it.
Noting that particles which are scattered wide won't be as deep, the
flat surfaces of Fermi's model may be redrawn as curved, bent slightly
back towards their origin (Fig. 1c¢). If we keep the small angle for-
malism, we would now use $ine & =8, cosa= j- 9?2, giving a second
order theory. Since ces@+# 1!, ¢ & , and particle distributions
now have a longitudinal degree of freedom not present in Fermi's
theory. This leads us to Yang's theory, discussed in the next chapter,

and a central topic of this work.

E. Diffusion Calculations



Most medical physicists interested in treatment planning applica4
tions would view a small angle energy independent theory with
considerable suspicion, Many would dismiss it out of hand as being
unrealistically simple. This could easily lead to a significant mise-
valuation and we might well be discarding an invaluable result by‘

underestimating it.

The two volume text of Morse and Feshbach1o is an excellent source
of background remarks concerning the nature of diffusion and the way a
diffusion calculation is supposed to work. Although their remarks are
scattered throughout both volumes and it requires a bit of an effort to
dig them out, there is probably no finer reference on this matter.
Their key observations are as follows: Diffusion is always a blurring,
dulling, smearing and eroding process. An ongoing diffusion process
will invariably lead us from sharper and more distinctive distributions
into smoother and more rounded forms. Since sharp distributions are
always more difficult to describe than round ones, the mathematical
structure of a diffusion calculation cannot (or should not) develop
into something which becomes more complicated with time. The pivotal
part of a diffusion calculation is therefore in_the earliest stages of
its development where small angle energy independent approximations are
expected to be valid. Relaxing these approximations is not expected
then to complicate an analysis by requiring that we find extra or addi-
tional structure, but by leading us to more difficult additions
instead, e.g., more difficult integrals. The Eyges' extension of

Fermi's theory, for example, certainly had this character.




The remarks of Morse and Feshbach clearly identify the small angle
energy independent analysis as being crucial. We therefore examine two
‘such generalizations of Fermi's theory in the next chapter (III),

Snyder and Scott's and Yang's.

Calculations allowing for energy dependence or large angles should
be classified, according to the above remarks, as applied calculations.
To be sure, it is often necessary to know how to do them. Meaningful
comparisons between theory and experiments sometimes can't be done
without them. They would be necessary for credible inhomogeneity cal-
culations. The'point made above, however, was that a correct
theoretical solution, even one obtained by small angle energy indepen-
dence approximations, should contain and develop enough structural

information to handle these applied topics as well.

We can use these remarks in more than one way. For example, if
the underlying analysfs has’ a fundamental difficulty accomodating
either of these effects, then this might well be a signal that there is
something fundamentally wrong with thai analysis. The Snyder and Scott
calculation had a most interesting difficulty ith a large angle
effect; Yang's analysis cannot handle any energy dependence. Both cal-
culations had problems with moments. Both had problems with their time
development. The difficulties in these key analyses were not resolved
in later works, but were incorporated and assimilated into them.
Applications floundered very badly because of it. The end result for
medical physicistsvis that they were left without a working theory of

electron penetration.

18
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We discuss the theories in more detail in chapters III and IV,
which should be helpful in identifying more precisely just what the
problems were. We redo the fundamental analyses in chapters IV and V,
which leads to a theory free from these problems. We also give some

examples of applied calculations, which are sufficient to demonstrate

that the theory is working properly.



III. Generalizations of the Transport Equation

Very many generalizations of Fermi's equation (20) are possible,
Each feature that we add to the description leads to an altered equ-
ation of motion and could technically be called a different theory.
Some changes are more important than others and the most dramatic are
those which give the probability fields more degrees of freedom because
they lead to different kinds of predictions. This work will be primar-
ily interested in Yang's theory because it included the longitudinal
degree of freedom, allowing us to calculate true penetration phenomena.
Yang's solution to the transport equation was not only exact and com-
pletely analytic but also completely contains Fermi's theory exactly
within it, much as Fermi's theory contains the ray model exactly within
it. To the present day treatment planner, whose charged particle
applications are overwhelmingly concerned with electron beams having
initial energies between 5-20 MeV and penetrating low Z materials,

there is no theory which is more important.

A. Multiple Scattering Equations

Our discussion begins with a generalization of Fermi's argument
(16) and aims to derive all the transport equations that will be consi-

dered in this work. Harder"s11 discussion is also noteworthy here.

The equations that we shall be concerned with neglect all
secondary particles and follow only the primaries. In the electron

problems to which we will eventually wish to apply this theory, there
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are both knock-on or secondary electrons as well as bremsstrahlung pho;
tons. We would try to argue that neither is a cause of great concern
to us, e.g., that the secondary electrons are of such low energy and
short range that they are immediately absorbed at the site of produc-
tion, that the photons are of éuch long range that they escape the
regi&n nf interest altogether and deposit their energy somewhere off at
infinity. Neither statement is altogether true in practice and the
anplicability of the theory discussed here will be limited to the
extent that they are not. References 6,12,18,22 provide ample back-

ground on this topic.

Our picture will assume that a particle moving through matter
traces out a continuous trajectory and the distance along its path back
to its origin will be denoted by! . We specify the status of a single
particle at a given time by stating its direction of movement
_ﬁ- , its spatial coordinates X , and its energy €. The instan-
taneous status of a large number of particles is then completely
defined by the probability distribution f£(8,& £ ,%) ; the number
of particles within the energy interval (&, d4€&), and the directional
inter'vall(.f\-, £0.) and the spatial volume (% ,d¥ ) is *(1:50-‘3';)

LE L0 £°x  ir they have all traveled a distance £. We

obtain the differential equation as before, by constructing {(ldl,E,f\;:)

from f (¢£,€, 2,% )  and then looking at the difference. We write
flasd2,8,6,%) =ﬂ f L' L% JC(z,EZﬁ'.?') f(42,6%6 Nads, 343)
' (34)

2. A 3
where -f(au’, E've, >0, x'>%)dednd¥ gives the fraction of

particles that would scatter from E',.f].',';' into the interval



dedndX in the course of moving through a distance df. This equation
is written with the understanding that we intend to take the limit as
J!-»o , which will mean in practice that we only need to keep first
order differentials. Particles simply drift from ;'—t? along their ini-

tial line of movement, as discussed earlier, so that
- a C . ", » LI S
f(JJ,E%e‘,Jl'-*JL't"':) = /(‘,ll,e..e,_n._,_ﬁ_) &i? +d840'-x) (35’

In the theory that we will be concerned with, energy loss is by one
mechanism while deflection is by another. The two processes are assu-
med to have nothing to do with each other. When electrons of several
MeV penetrate a low material, for example, the major part of energy
loss is to orbital electrons with only negligible scattering while
deflection is produced by Coulomb scattering off the nucleus with only

negligible energy loss. Since the two are independent we can write

[(,6'>e, D'>8) = f(l2ehe) fots 88 (30)
and then continue the right side of (36) into (3.,)

— tlf d L - 7 B : hNe & - A, A
= [;2. ,,;L!fzf) w(r o%f‘)&{s ei} Lé‘-{ al:: (;,2-».9.) +(l %‘)J(n_n')]

where M., M, and ¢, 0n are the mean free paths and cross sections

associated with each of these processes. Continuing with (37) gives
fa+ds e'ae, A°2 8)
= As oA a - } Jd’. ’ iy
= fle-e)fa-a) + J““"'“’(éf )[‘E ;E(E*E’ J(E-e)]
[]

+SE-o@ [ “5e, a50) - faa)]
(38)
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if we keep only terms up to first order in 4%. Using the delta func-

tions to do the integrals, (34) then becomes

a wy h.-l ‘__d.'.., - . -
Da_i(.a,e,n,d = -Q vf +;:_‘j.!s [; d_‘;(e €) - §(e c)])C(ﬂ,e,.mx

v [ [ g eehad) - ga ] faa i
, : (39)

the third term on the right of (39) may be written

while the second, if we assume that the significant energy variation

depends only on the energy difference €=Eg'-g, becomes

.1'1_' de 1 dace,e [ feeee, iy - f0,4,0]

We further assume that the mechanism of energy loss involves only very

small energy charges in a given interaction so that only the first non-

vanishing term from the difference fu,e“;,_f-,_,} ) - f([,e,n,i)needs to

be kept. This term becomes

] jolé e d0,(ee) = <€> '3{(1,5,.:"1,‘;)
yy Ie [ de drieer x| 3

This last step incorporates into the theory what is frequently referred
to as the continuous energy loss or continuous slowing dcwn approxim-

Y A e
ation. If we now write f(x, E,Q x)= {(!,E){(l,ﬂ,x) the transport



equation (39) decomposes into two equations

?_{(,Q,E) = <E_? a'F(I)E) QOQ)
o0 He o€ ~

Heb D L83 (40 dote & Do 8- 23]

ag A Ol (40!))
If the 2snergy distribution is initially a delta function, then the
solution to the first is always a delta function connecting the energy
of the particle to its distance of travel. The effect is to make path-
length, time and energy equivalent variables. We.will choose
pathlength as the variable of interest, but will frequently refer to it
as if it were time.‘ebh‘is the average energy lost per interaction
over the average distance between (energy loss) interactions. This

information is most usually presented as a stopping power § (€)

S(E_) = < %{032 ("“)

|
&
where e is the density of the material. The delta function relation

Eo
Qe = 4 (4o = ¢2)
e Y, Se"

is the result of solving (40a). If we set £ equal to the rest energy
of the particle, then (42) defines the range R of the particle in a
given material if it initially had energy E.. Stopping power inform-

ation is fairly accessible to medical physicists and we will assume
that there is no problem in obtaining or using range-energy relation-

ships’z. The ultra-sharp correspondence between -R and E.is an



idealization that will be used or assumed throughout this work. Had we

not wished to retain it, we would be required to keep at least the next

a%

term Se*

f(g,z,ii;i) in the expansion of the energy difference.
This would allow a distribution of energies to develop for a given

pathlength.

Lewis' theory9 is essentially equations (40a) and (40b), although
he developed the theory further. If we made an expansion of the dif-
ference f(l, ﬁ,‘):) - {(z,ﬁ.,i) , a worthwhile idea if the
deflecting cross section 1is expected to redirect a particle's direc-
tion of motion by only a slight amount in any one collision, the first
term would integrate to zero and the first non vanishing term involves
the second derivative in angular variables. The transport equation

(40b) would then simplify and become

e, 4,%) = - 4.Ff + L <o V2 (43)
2 f s ~

where <&*»may be written

N = L L0, 6200 47 ) 1Y)
<ev 5. SJ 40, (6.2+6}) f_(_é_o:(;& ,6,) (
¥ H 4

since small angle notation is clearly appropriate here. When derived
in this manner the transport equation (43) is called the Fokker-Planck
approximation and it is obviously an approximation. An equation of the
same form can be derived more directly by first writing

33y = ([ o dhe flo, 220 fre 248 (U, 88
-)((IM(!,n,x)—-on(JLJ [, 8,8) S 2493 {(18,8 Q(L\m

- 0%
e /edy (46)

and then inserting {(42"&:9‘6—) = e
TKAL
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where Cos@= & -51' and taking the limit of d{~»0 ., With Ke€O2u;
we would again obtain (43), but now as an exact equation of motion
although it would be called the Gaussian appro#imation. If we use a
spherical description for .Ei and Cartesian spatial coordinates it is
explicitly

9-;(1 ) = - [.Su\ee Cos ¢ 2. + Sine O Sime d gy + cos O ai] f
EY]

. xm[ 2 smeoa_) v a.‘]f M7)

« Sine® 6 20 Siné® 4*

We have allowed for energy dependence simply through the notation K(2).

We would choose the initial conditions on (47) and (40b) as

[(g0,4,8) = §(&-8) §0) @9

which places the coordinate origin at the point where the particle ori-

ginates and defines the & axis as the initial direction of movement.

B. Snyder-Scott Theory

If we integrate (40b) over the & coordinate, eliminating it from
the equation, and also restrict the discussion to small angles, the

transport equation may be written
b{-(ﬁ 0.6y, %) _ (e aaxw z){ + “9)
BY:
ﬁaw 46, .ltr(o)[ 1,0.,8/,%,4) = {(2,0.,8, ,vi]
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where the deflection angle for a single collision is((o:.e_)%(o;-o,)‘}"*

The Snyder and Scott7

development thus began with a generalization of
Fermi's lateral transport equation (20) in which the generalization was
to use a very realistically chosen cross section to redirect particles
rather than assume the Gaussian approximation. We could, of course,
recover two equations of the form (20) simply by expanding the differ-
ence {(ﬂ,o;,o;,x,y).— 1[(1,9“97.;,7) and retaining only the first

non~vanishing terms.

Snyder and Scott worked in the projection plane, obtained by

integrating one dimension away
{(I,G‘,Z) = ‘(c(é, 54‘1 {@,e\.,o,,x,ﬂ (50)

If we also integrate over the remaining spatial coordinate, the tran-

sport equation (49) then becomes

3{(9,0.) = _ 549..' Cpeoj (€1 62) [{(z,e;)-{(n,o.)] (s1)
BY; Mo

where

0',,.:.3(90 j‘le &(d'((&‘ f9 ) ) (53)

which is the equation satisfied by the (projected) angular
distribution, the topic their work was concerned with. One may obtain

a formal solution to (51) by using Fourier transforms defined by

7((1,9;) = ;'- S‘;J} AL f{n,r‘) (534)
# - -y

- {T.6.
Torey (02) = 3'-1’ S_fa“ e O proj (30) (53b)



When (53a) and (53b) are inserted into (51) and a few straightforward

integrals are done, (51) then becomes

4(2,7) = - 1 (1= Gorajtzn] {le,7 (54)
'Sh Mg [' :r ] .{

The solution of (54) that we want is

_ 2 [,- Spre; (x.):l (55)
fasy=e =5 77

since it has the initial condition {(zzo,':.) = | , Or equivalently

by (53a), ;(n=o.0‘) « §8,), To obtain (54) we would also need to

use @peo;¢T=0)=0 , arelation easily obtained from (53b) and (52).

To obtain results with this approach we insert (55) into (53a) and then

invert the Fourier transform, a major part of the problem.

Snyder and Scott then chose the differential cross section derived
in the Born approximation for scattering from a screened Coulomb poten-
tial, V(r)= (ze’/v) e~ a , a rather realistic model, as the
starting point to begin deriving their results. They used the small
angle version of

deoe) = (zz'e*e)‘ |

AL 2prc?

[sine 6, +(65,)] *

o~ (azz’e‘& * t (56)
P*c™ (8*+6:)*

where 9: = ("-'mc 0.)"' is the screening angle, "o'u the wave number of

the approaching particle and Q, the screening radius was given its

28



conventional value QG = a./& va where Qe is the Bohr radius of
hydrogen. With the form (56), the integral (52) is done directly

giving

Core: (0,) = ¢2i!£’(’.‘e)1 T (57)
el pics 2 (o2+67)™

Using the modified Bessel function integral representation

K, xoy = 025 (4*’\’&‘“ Cof X% (s9)

TR X (Erszth

for V=1, the Fourier transform of (57) gives

Coroj (T = (2 zz'e E) (7.6,) 'K.(a',p‘) (59)

1e*@s

we also get

ey — o = T (222°e%E 60
dProd (Ts=0) c 7T< Picro, ) o)
So that
| - o-proj (3 = | - T, g.s 1.(3-04) (él)
o

and, with (55)

;(1,3-:) = e"£5(|‘7.93q(|(.7‘.0‘)) (Ll)

The only remaining step is to use (62) in (53a), which may be written

{-(1,9.) = :rLr S:(T. cos (T, 6.) 1[(.(2,?..) (63)
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To generate numerical values for the modified Bessel function ﬂ(. ’

Snyder and Scott used an ascending series representation
O Z F3 L (ay-1
K@ = 5+ E{ (s «LCr-0} +

3
Z rE A - Y4
+ 2 {bm‘.s‘) + L (ay g)} S ()
where ¥ is Euler's constant = .5772, and then numerically evaluated the
integrals (63) very carefully. The presentation of their results was
somewhat facilitated by the fact that their integrals depended only on

ratios /44, the number of collisions, and ©#/e,.

Snyder and Scott quoted many results but the two that are most
noteworthy are reproduced on our Fig. 4. Together they indicate that
the exact numerical prediction is more sharply peaked at very small
angles than is suggested by the Gaussian approximation. The results
fall below the Gaussian at slightly larger angles only to rise above it
again, being several orders of magnitude above the Gaussian at large
angles where it approaches the single scattering prediction asymptoti-

cally.

As an interesting or noteworthy calculation, the Snyder and Scott
analysis was unobjectionable. However, as a theory, it was seriously
defective. The chief difficulty was that these authors had generated
all their results using a specific cross section. The solution of the
transport equation is actually a function of the deflecting cross sec-

tion, so one can't solve it by choosing a particular case. The example



that they chose to examine, charged particle multiple scattering, is
certainly the one that we are most interested in., It is also a patho-
logical case. It becomes a poor theoretical example to choose,
especially if we only have one, because the pathological pecularities

of the problem will be contained in its results,

NDifficulties in their analysis began with line (56). The patho-
logical features of this particular cross section become evident when

we try to computee its moments, i.e.,

cer> = {fdbdl oreep) drier (e g

£ _ ole
o (87+67)

(X9)

which undefined. Higher moments <9">, <8¢ ,.. will diverge even

S 0. 48, do @
{1

[£

faster and won't exist either. Because the moments of the single scat-
tering cross section don't exist, the moments of the complete multiple

scattering angular distribution don't exist, e.g.,
iy = (f_je- o: {(e,on/g,w‘ .F(g’g‘)) — oo (b6)

as is easily demonstrated if we use the general relation (53a) and the

particular form (62). Since

i) = - & ,{(&ml (67)
R

T,=o0
as can be shown easily from (53a), these derivatives will not exist, a
feature traceable to the presence of log terms in the expansion (64),

Since moments of the angular distribution did not exist, moments of the

spatial distribution would not exist either, Taylor expansions would
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not exist, and the analytic structure of the whole prbblem has been
ruined. These difficulties are all traceable back to the choice (56).
The root difficulty is that charged particle multiple scattering is not
strictly a small angle problem. The Rutherford (single scattering)
tail, a characteristic feature of any realistically chosen charged
particle differential cross section, imparts large angle features to
the problem which the small angle formalism can't accomodate properly.
The end result was a highly accurate numerical description built out of

specific functions which were analytically impossible.

Snyder and Scott made no mention of the moments problem. Scott,
in his article "Small Angle Multiple Scattering of Charged Particles"
written for the Reviews of Modern Physics more than a dozen years
later, a work often considered to be a definitive treatment of the
topic, finally acknowledges and addresses the problem after a brief
discussion of Snyder and Scott theory. Moments, of course they exist,
he writes. His next choice of topics indicates how to solve this prob-
lem to his satisfaction, with cutoffs and shaveoffs. Thus, numerical
fix up is the answer. The real reason for the infinities is that we
are attempting to solve an essentially three dimensional problem in two
dimensions, and cutoffs or shaveoffs won't address it. Apart from the
difficulty with moments and the significant limitations due to numeri-
cal analysis, the problem of constructing spatial distributions, a
problem significantly more complicated than angular distributions, had

not been addressed either.



a3

C. Lewis' Theory

Lewi59

began by writing (40b). The main purpose of his work was
to describe a method of obtaining exact results without the small angle
approximation, His equétion is, for the most part, a large angle gen-
eralization of (49) although he also included the longitudinal |
coordinate and did derive some exact relations concerning it. His
investigation of this integro-differential equation included both its

angular and spatial parts. We will discuss both briefly, beginning

with angular distribution, which is simpler.

Integrating (40b) over all spatial coordinates out to infinity
leaves the equation for the angular distribution, irrespective of posi-
tion. If we also ignore energy losses, which would not be important to

the discussion here, it becomes

oftad) - o« 54mu_,_ Z(;(_&.ﬁ')[;@,ﬁ')-/(y,fm] ©8)
3 @

Y’ - 9

The initial condition would then be the space integral of (48),
{(,ﬁ:o,ﬁ): 8&a-2), Equivalently, if we use spherical coordinates
_f{l:o,.ﬂ.):(av)-'&(l-CoSO). The most general form of the solution would

then be

{(2,c056,4 = (““'){ () P, (cs8) (49

d—o
because of the cylindrical symmetry of the problem. The initial condi-
tions require that f} (12=0)=I . If we also decompose the differential

cross section into its Legendre components

d ) = +1 0
?’r- f).(wo J“ 21__)(0_ d.n.) P (Cos0) (Uﬂ))



and then insert (69a) and (69b) into (68), we obtain

dfjt = -1 [ I - __do-)] ;0 (70)
AL s
if we use the addition theorem for spherical harmonics and use the

orthogonality of the Legendre polynominals to do the remaining integ-

rals. The solution to (70) with the correct initial conditions is

d
)[ (2) = e J.l;‘. “(+ Tg.)] )
Since the coefficients (o‘ a5 ) are given by
]
' dd' — . _‘__da-(oa
(c_ o aw S_fleso Pi (s ®) = 42 cesd) (72)

as one obtains by inverting (69b), we may alternatively write

fi=¢€ K4 Y

where
K; = g deoso (1= P (aso) - TGt (7
ftt;

which is equivalent to the form which was given by Lewis. The steps
should look familiar. (69a) and (69b) are analogues of (53a) and
(53b), while (70) and (71) are analogues of (54) and (55) respectively.
Lewis' theory, as far as the angular distribution is concerned, is
essentially Snyder-Scott theory redone with large angle machinery. The
corresponding expressions would have looked even more similar if Snyder
and Scott had used a cylindrical rather ithan a Cartesian (projected
angle) description. Energy dependence, had we included it, would only

2
have led to the replacements Kj=¥ K& , K;f{ - \f, LR KjcCa') .
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This example was intended to serve as an illustration of the
comments made in section II.E concerning diffusion calculations,
namely, that the pivotal theoretical analysis is the small angle energy
independent analysis, the analysis which pertains at the earliest
possible times because it is expected to develop a mathematical struc-
ture sufficient to handle the problem at all subsequent times, and
sufficient to handle it rather easily. We should also point out that
this will only be the case if this early time analysis is impeccable.
Should it contain a flaw, or even less, such as a misleading feature,
then the problem of constructing distributions correctly at later times
can become extremely difficult. This is particularly true of large
angle problems which can turn very ugly, into almost intractable
analyses. The small angle analysis needs to be perfect and suggest

exactly the correct route to take.

Lewis initiated work on the construction of spatial distributions,
the topic of principle importance to us. Consider the longitudinal
part of the multiple scattering problem which we define by integrating

away lateral variables
2t i =~
g(ﬂ)qso,;ﬂ = j‘ d'# 5"(! \(\AJ *F U,‘d“;é,":)‘;i) (74)

The equation of motion for this distribution function, obtained by

applying these integrals to (40Ob), becomes

i (2,c056,2) + @582 { (75)
2. d
24 = j: S d&SJa: 0? = %(E,Cos ) [{(2,(450; z) -{(R,uso,zil
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where

CoS@ = CogO oS8 + s5ine® Sine @' cosld-4" (76)

Our problem would be simpler, considerably simpler, if we could integ-
rate over ceS$® as well, turning (75) into a direct differential
equation for the density. Unfortunately this can't be done and it
becomes necessary to solve for angular information simultaneously. If

we write
;(I,Cosa,l-) = ;E“ 1_}_3’_' {*(l,a) P'(Co-rp) | (77)

as a first step toward solving (75), then by inserting (77) and (69b)
into (75), and then using the orthogonality of the Legendre polynomi-

nals we obtain

3_1(;,(17,5) = - 9 [_.r_ ‘F,-‘,"" *Li+0 {‘gf.a)] - Ka(‘z’)c,;“‘")
o4 JE | a)+! 2}"4 (7€)

which is exactly equivalent to (75). The moments approach to the
problem, which Lewis pursued, applies additional integrals to (78).

Defining the n“'moment of the j-"‘distr'ibution by

L -4

5,(:) = S‘JE =™ 7['- (2,%) 79

- an

then (78) becomes

AL =i L2 wegn o0 |-k nf
7 d t ¢ Jrm

s d-t,n- tiyaN-
LR 24t! ! (24+1)

(80)

Setting n=0 in (80) gives the equation for the angular distribution

discussed earlier, so the complete set of Legendre coefficients fa(f)

gives the directional distribution, irrespective of position. The



coefficients ffi‘ give the moments of the spatial distribution irres-
pective of direction. The fact that we can solve for them from (80)
and the possibility that we can construct a spatial distribution from a

knowledge of its moments is the reason for writing (80).

To solve for them we would begin by solving for {-J,,’ nao ,.a
trivial equation. To solve for the next spatial moment,.f,,”.. we
would first have to solve for {:dg,,"=a. A procedure which aims to
compute f;u will involve computing all coefficients -f(;" for which
}+v\$N. The procedure, which begins with almost trivial equations,
develops enormous and burgeoning complexity as we try to compute more
moments, largely because the number of integrations to be performed
rapidly increases. Any reasonable individual trying to solve these
equations with his hands would begin to question the sense of his
effort beyond W = 3 . Really determined individuals, diehards,
would begin dropping out after & . The complexity of these equations
is a practical limitation, not a theoretical one, since numerical
integration by computer can yield results for higher w . Lewis stated
that the set 4.;f: for all m constituted a solution in principle,
although he did mention that the moments approach might not be that

useful.

Sooner or later we would have to specify the K; . For the case

of charged particles, Lewis suggested the forms
., d
K, = A+ [Ln('/,g) +1l -2 s (‘/m)] (81
2 m={
2 A1) [InYe) + 1 - 2 (¥4 bn o))
2
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where A= 2TN Z*e’/prv2 , B =("'/1’1, ¥ is Euler's constant.
He arrived at these expressions by beginning with the definition (73),
the large angle differential cross section (56) which had been quoted
(but not used) by Snyder and Scott, and some difficult arguments with
Legendre polynominals. These expressions would agree with the first
few terms of the ascending series representation which had been used by
Snyder and Scott. Thus Lewis' work clearly contained the Snyder-Scott
analysis within it, but was more general. It also contained the prob-
lems of the Snyder-Scott analysis, but was now beginning to add a few

of its own.

There are two new questions that have come up. The first is
whether or not a knowledge of all the moments of a distribution
actually constitutes a solution in principle. The second is whether
the moments of a distribution are numbers or not, i.e., do we need ana-
lytical expressions for the moments or is it sufficient to compute them

numerically? Both questions can be answered at once.

If we had an infinite set of expressions, yzoym we would look
=%
to organize all of them into a single equation as the very first step.
Otherwise, we would simply have a large number of disjointed expres-

sions that might just as well not have anything to do with each other.

If we define the Fourier transform of the distribution by

oo .
l cQe
'F(*”Z) = ja(a e 7[(1,0) (§2)
XM U_g
then by inverting the transform and expanding the exponential we have

fer= {30 - @ L& + @)W .. (83)
! =
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which is simply a Taylor expansion of-f(&,d)about the point Q=0, where
the M derivatives with respect to Q are the moments of the distribu-
tion (e.g., defined by (79)). This accomplishes the first objective,
putting all the moments into one equation. The next step in construct-
ing the distribution would be to invert the Fourier transform (82). 1In
general we would not be able to do this because it is typical of such
series expressions that they will not converge from Q=0

Thus ;ﬁ,e)’if defined by (83), simply won't have definition across the

range required by the integral.

Singularities in the complex plane will cause this series to
diverge. Within some circle of convergence, say from Q=mo = @, , the
series (83) will be meaningful and converge. Outside it, the series is
meaningless and needs to be given extended meaning by redefining it in
a manner so that it will always converge suitably. Thus the principle
by which the moments approach works is analytic continuation. Without
such a redefinition, and the information required to accomplish it, the
series (83) is not a solution in principle. What we have instead is a
representation of a solution, i.e., we have something to work with even

though we don't know what the solution actually is.

Whether we can evaluate moments numerically or not will depend on
the problem. Sometimes we can, sometimes we can't, but we should not
simply assume that we can and blindly go ahead and start evaluating
them numerically as a first step. If we were to do this, we might well
be destroying the structural information that would have allowed us to

make a meaningful analytic continuation. If it turns out to be mean-



ingful to evaluate moments of a distribution numerically; then we

should be able to prove this before we actually go ahead and do it.

Lewis' work on spatial distributions was taken rather seriously
because it had the appearance of being very thorough and quite studi-
ous, because of the high degree of plausibility of his remarks, because
he had been able to derive some exact relations concerning them. There
were nonetheless significant practical and theoretical difficulties
intrinisic to the whole approach. These problems were to be even
further compounded by Yang's analysis, an analysis which should have

shed considerable light on the problem instead.

D. Yang's Theory

Yang8 began by writing a transport equation which is equivalent to

the small angle version of (43),

3((2,9,,0.,‘ ¥,9,8) = - [e‘ 7& + 97.3_ + ('~(951_97)) g_l]{
B, ' "

PE (Gt L) f (34)

The essential generalization of Fermi's transport equation (20) is the
introduction of the # or longitudinal coordinate. The assumptions of
energy independence, small angles and the Gaussian approximation are
retained in (84), exactly as they were in Fermi's theory. Introducing

the spatial variable & =2-% and Fourier transforms (8 5-)

}(n,e,)o,,x,y,a) = &'_1;)3 S-SJ‘IP"Q?YJY ei(P-nr*PvY*?03(@,9‘,8,,?;,(1,%)



then by inserting (85) into (84) we obtain

af(‘)ot;an?-: Pv»g) = - [9‘ Pe +0,p, + \8(9;_*_'_0,‘)]‘(
a

EY
K (2" :
¥ 4 'a'b..‘* %‘6;)‘( (86)

The equation is separable into x-¥ parts. If we let

{(ﬂ,D;,o,, Ps, PV:%’ = {(kpel, Pt,&’ {(2,0,, Png) (8 7)

then (86) becomes two equations

3,0, ) = (K - ig6s _ip.a) (2,04, 89)
_;i Vo= (K - U ipa)fEmenn)

with the same equation for y . Yang recognized them as being reduci-
able to a form identical .o Schrodinger's equation for a harmonic

oscillator with the only difference being that the frequency here would

[ 3
be complex. With & = o.+%and {(9,9.,9.,g)="i’u,o:,g)e_”i;—; , (88)
becomes
oY (a,00,p) = (K 37 -ig o) ¢ (®3)
a4 4 261t 2

. - ' . ~wQ
which he solved by the eigenvalue approach. Letting “V= $e

the time variable is eliminated and we are led to solve
1 A
Wy ¢, (o )=(—5¢£_ + ¢ 9,")45(9; y Qo)
" g ¥ 44 g';,: n (g

for all the eigenfunctions and eigenvalues. Letting F = & @y , vhere

Ko /4 = i.g/.za(‘ = u,)a(g) , (90) is put into the dimension-

less form

A () = (42 +72) dan D
AE+

a1



where An= ©@n ., The eigenvalues of (91) are well known from the
We
quantum theory of the harmonic oscillator, An= n+iwhere N 0y1,2,., aS

are its eigenfunctions (see Schiff‘w, Chapter 1)
~Lxr? )
Pu(F) = Cu HolE)E 3 (42

- V. .
where the Hy, are Hermite polynominals , C« = {(a™w !Trya) zar'e normali-

zation constants determined by
Sa(f $nlF) b, (8) = S @3)

Since the eigenfunctions form a complete set, the general form of the

solution to (88) may be written
= B ( W, A
]L("»e-;F-:g) = %o A“ é"(‘r) ¢ iy aned (g)) (‘]'«})

where the A are constants determined by the initial conditions. If we
-

take the initial condition on (84) as .{(1-0,9.,0,,:”,7.) = §(6)4(X),

then the initial condition on (88) would become {(.QwO,O-,P,,%)ﬁ S (9.)

so that

A = f:«f £00) $u(P) = x by, (<) @s)

—

Yang actually had two variables, Ax,4y, rather than just a that we
used in (85). Our presentat.on altered this feature in order to con-
form to our own usage. In Yang'38 original work, particle
distributions were confined to infinitely thin, geometrically flat
planes, exactly as in Fermi's theory. Z had the meaning of a scattering
foil thickness and a distribution in A=R-~% gave the variation of

pathlengths, £, for particles which emerged through the foil. In our
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usage, % is the common distance that all particles travel within a
material. A distribution in A develops because particles will be loc-
ated at different depths, & . Particles will then be found within
curved surfaces (Fig 1e¢). For the case of small angles, the two pictu-

res are complimentary and equivalent.

In order to compute spatial distributions using this theory, we
also need to invert the Fourier transforms (85). We consider the most

important spatial distribution of the theory defined by

TC (2,4) = S‘S SS«M. 48, dx dy {(:,0;,0,,::,7,4) Q)

which gives the longitudinal or penetration density irrespective of
lateral position or direction of movement. The integrals over dx dy
in (85) give (am)* §{pa) ¢ ?y) » SO that the p.,6 p, integrals

are trivial. Then

{@z,8) = ;'-1; 5 A4 et f,w, L0, -,[(1,0‘,0,,0,0,3)

. e @7
where
oo —x(nemr)w,g
- o« ¢, (%6, &, (x0,) b (D (€
{(2)9‘ >91 ,0,0,%) % e ¢ 4"\ ’ (qg)

Some of the quantities needed to evaluate (97) can be obtained from the

generating function for Hermite polynominals defined by

S(r)s) = e-s’+zs}" = ﬁ H“(F)_S_: (‘H)

n=o 7!
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If we set =0 in (99), we get

I 2 2
e = 1~ 8+ (i:) S - E H"(o) _6;" (‘00)
2! ne ‘n!

from which we obtain

Ha0d = (-0™2n! n= even
(M/2)! (101
Ha(e) = O N = edd

so that 4“ (Y= N, H,0), where Nm are defined by (92), H, (o) by
(101). Integrals of the form S"-“w- ¢,‘°‘0.)=Sd¥ <N1") can also be evalu-

ated this way. With
i 2

- -3 * — n - —%.‘F
gaur Seae* =3 8 Su e (103)

- o
-~ O

the integral on the left is easily done directly and then expanded,

i.e.,

« z

2 ~LF Y 2
g” et MY L am”et =(m)"{f+s‘+§."+--~-}

<!

-0

(03)

so that a comparison of (103) and (102) gives

= -LF? v,
SJF //,‘ (r) € * o (Q-TT)/ n n= even
) - (n/2)! (lO‘f)
= o W= oJCl
Thus, in (97),
-~ Newm e_ 2 (nemae) O (900

_ )= 'm!
[(do.ae, frro o 00py = = EUZ [_"-1!—'27}‘ (i05)

even



and the remaining part of (97) is to do the g integral. Since
AP =(Lgu/.p)"1 by its initial definition, all the integrals have the

f ad .
orm | ﬂlg o t§e e-MCdo(g)R
Qam Voo ‘
where M is an integer, and to do them along the real q axis requires
some definition of the choice of phase. Yang chose them so that the
) - \
real part of W, is always positive, i.e., (L%) 25 2 y"(l:'c) W‘ h
f § ist real |
The above integral becomes
= : -(lfi’(f”z‘(l‘)y; 2, gz\a - MoKa?
Re A{ e"id C 6 ¢ = <M____K__£) C 3a2a
o 3ama?
T Y (10¢)

With (106) and (105), (97) becomes

_Mnem+n) K ?

{(4,4) =2 EME onlwm! Meme) KRt @ 7a
n,ms= 2 nem-s 1 Ya n3a
oven "R e] (3aw)”a¥ (o7

Yang expressed this result (his Case I) more simply by using the vari-
able v = %4/g2*and defining the function {(z,w) by f(,iz,cr) Avu

= .ﬁ(,v.,a) d& . Then (107) becomes

- as/,
f(a,v) = - }

-Y -
2 {e To3e Mirse Vs
'n""/; v 3
(o 8)
once we work out the coefficients. Yang also gave the asymptotic

approximations to this result, valid to within 1% in the regions indiec-

ated, as (e— '/.r_ 3 e-"/.r) e

~-m*V/16 b2
(109)
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For the case of small angles and energy independence that we are using
here, it is easily shown that a=K:/4 whered is the average value of

the longitudinal distribution. The two regions of (109) are then

agcada |, ax» 4 .

Many of the eigenstates +“mwhich were required for a solution of
(84) did not appear in the final calculation of the longitudinal den-
sity (108). The integrals over the lateral coordinates gave conditions
that n,m be even integers, which removed them from the summations.
Instead, we could have formulated a more restrictive but simpler one
dimensional problem by integrating over these coordinates right from
the very beginning. The equation of motion (84) would then become
f(e.00, 00,8 o _[1-L (oiv8)] 2f 4 5_(9_ 2 )
ot 9Z “4 \ 26 36y
(10)
Since the problem is cylindrically symmetric it makes better sense to
use cylindrical variables &,§ rather than Cartesian 6x,6,. By integrat-

ing over the ¢ variable (110) becomes

3 (1,9,3) = - "g-l 3{ K ba
521(2 ¢ 2)52 +:f'('a—e=+7'9?a'o)7( (i)

With

(om = & (448D anp

(IPY)
as the analogue of (85), we obtain
3£ (2,6,9) = [K 2* 412\ - ig e] f(2,6,9)
3.2 4 39* e 39 2 ? ,% (“3)
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as the analogue of (89). The eigenvalue approach \f(l,o,g)= Ve 3) e’ Wi

now leads us to solve

w«P=[—5 A* 1 d +Le‘]w

v g\ A0~ B Zo) X:T " ()

as the analogue of (90). Letting F= « @ where u:(-}_i‘&)v"(ﬂu)
K

becomes

Aute = [_ (%715‘*}'? %r) +F] "t (s

Wwhere Xu"‘“)—"— and a’,-‘g‘;as were defined earlier. The eigenvalues of
o

(115) are >\~= L(an+!) where N = 0,1,2,... , so that Wy =

2{aN+1W,The eigen functions of (115) are where L,

are the Laguerre polynominals.

V@) = Cu Ly & ET (he)

where the L, are Laguerre polynominals. The normalization constants

can be determined by the requirement

S FAE ¥, (5) V. (8) = . (1)

The generating function for Laguerre polynominals

- e$/(-$) ki
= 1. & = s
W Cp,8) = — > S bowe
(ce)

can be used to do these integrals and we would find C = 1”‘/~.’. The

most general form of the solution to (113) would then be

fla,6,9) = = AL Yu(D o™ W (P4 19)
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where the constants A~ are determined by the initial condition f(oﬂ%g)

= § (6¥2) giving

A. = (5ar so) t(p = Vo (20

Setting p=0 in (118) gives Luy(o)y= N! , so that the solution of
{(113) becomes
& . -EY —w, (R
faap=S et L e T Gan
LA X .

If we integrate over all angles, (121) becomes

= a - o €72 o Wa(g)R
fagp == 7\71{ (Fas L ce e}

= S 2 e v (2a)

N o

in agreement with (105). Inverting the Fourier transform leading to

(108) would be done as before.

The above example was suggested by a section of Spencer and
Coyne15, who generally pursued the one dimensional longitudinal prob-
lem. The eigenfuctions (116) are exact machinery and are potentially
valuable for doing calculations in which we modify some aspect of the
penietration problem. Spencer and Coyne generally used them with varia-
tional type calculations. We will refer to them again as a starting
point for perturbation calculations. The fact that Laguerre polyno-
mials will solve the two dimensional cylindrically symmetric oscillator
problem isn't very surprising, however, since the three dimensional
spherically symmetric oscillator is known to be solved by associated

Laguerre polynomials, a well studied example in nuclear physics. One
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of the strengths of Yang's quantum oscillator recognition was the fact
that it gives us access to a great deal of free information. Also
noteworthy is a known symmetry of the oscillator problem, that the
eigenfunctions inkconfiguration or momentum space are of identical
type. In the same angle multiple scattering problem we could rewrite an

equation like (89) as

2 W, .9 = (Lg (. 5x,=) v @'
Y} 2 Tt ¥4

if we use Fourier transforms of the kind defined by (53a, 53b). The
eigenfunctions and eigenvalues that solve (89) will obviously solve

(89Y.

Let us briefly consider practical applications of this theory,
applications of the type that treatment planners might be interested
in. Their applications would include energy dependent and large angle
effects. .The introduction of any energy dependence into the problem,
done by allowing K- K (&) , causes eigenfunctions and eigenvalues to
disappear. They don't exist anymore. If we were to try to adapt this
machinery to handle an energy dependent problem we might consider
breaking up the problem into several regions where the scattering par-
ameters are constant within each region but differ from region to
region. Yang's theory would give us a solution within each region and
we would only have to connect the various sectional solutions to solve
this problem. In principle we could do it, in practice we could not.
To connect results from one region to the next we would have to overlap
a set of eigenfunctions of one frequency with another set of a differ-

ent frequency. Harmonic oscillator wave functions have many nice



mathematical properties, but the overlapping of two sets with different
rfundamental frequencies is not one of them. The overlap coefficients
are quite complicated and an eigenfunction from one region will connect
to every other eigenfunction of the next region in a difficult way. We
would quickly give up this calculation as altogether intractable.
Extension to large angles also appears to be very dubious. Rather than
writing differential equations in the small angle case, we would be led
to write difference equations in the large angle case. To represent a
solution we would need all the eigenfunctions and eigenvalues, so we
can expect to be working with NxN matrices to obtain them. Analytic
work with 3x3 matrices is already becoming difficult, NxN seems out of
the question. If we recall the statements that were made in section

_IIE, we have a signal that there is something the matter with this

theory.

There are several other aspects of the theory that suggest that
something is wrong. While there is no doubt that Yang solved the equa-
tions in a convinecing and elegant manner, physical interpretations are
quite difficult with this type of machinery. What do these calcula-
tions actually explain? What is a quantum oscillator doing in the
middle of a classical diffusion problem? This is no clear correspon-
dence between the mathematics and the physics and the theory doesn't
make any apparent physical sense. Time developmént, for example, is
exceptionally special in Yang's problem and all distributions and
simply grow larger with time. The longitudinal density given by (108)
or (109) is only one example of this. It is a function of a dimension-

less ratio A/A, so its shape never changes. We should have expected
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to see something different in a diffusion problem, distributions
deforming continuously with time. This special time development sever-
ely limits our ability to interpret what is happening; we need to see
change, not perfect replication. We could have the suggestion now that
Yang chose a problem with too much symmetry in it. To make it intel-
ligible as a diffusion theory we should mess up the problem a bit,
remove and ruin some of the exquisite oscillator symmetry. To accom-
plish this technically we will have to change something in the way the
problem was formulated and this will lead us, in Chapters % and 5, to
relax the approximations which were being made, The three approxima-
tions, the Gaussian approximation, small angles, energy independence
apply constraints to the problem and each prevents the solution from
developing or changing in some way. Relaxing these approximations will
give us greater freedom for promoting change while also allowing for

more realistic description.

The §~o limit of Yang's theory is also worth pursuit. The
limit of Yang's differential equation (88) is Fermi's differential equ-
ation (20). Therefore Yang's solution should collapse down to Fermi's
solution if we take the 40 limit of his results. This will clearly
involve more than simply setting §=¢ in all of his expressions because
we would have trouble making sense out of his terms like ¢“(:€?) in
(95), where ot = (3-"-%/ K) Y4 . The connection back to Fermi's
solution is not immediately apparent. Further, there has been nothing
in Yang's theory which indicates that the modification of Fermi's

theory has geometrical meaning, i.e., that the main alteration is to
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curve or bend the distributions as was drawn in (Fig. 1e).

The 8-balimit of Yang's theory is worthy of pursuit for another
reason, moments. As already noted in connection with equations (78),

(80), (81), if the density and its Fourier transform are related by

7((1,&) = 1‘-" S.dg P £, (1x3a)
f(2,8) = Sda e"x“f(x,a) (1a3y)
then an expansion of the exponential in (123b) gives the moment series
fag) =3 aTw g" (124)
mwe (M my

where the moments of the distribution would be defined by
-
AT (R) = S da A™ L(1,a) (1)
- -y

Since (124) is also a Taylor expansion, am = ¢m™ 2 {(g)\ .
g™ §=e

If we use Yang's result (122) and proceed (rather blindly) to take its

first derivative we might write

Z—(-n) = ¢ 9_ a(—')N e—z(a.cvu) W, (3)2’

= i3 20"y e"“‘“’""‘)°‘5)*’
~ T §=c  (am

(ae)

—> oo because Wo(g) ~ 87’-
None of its higher derivatives would exist either. Equivalently, none
of the terms in (108) have sensible moments. Individually the terms in
(108) do not have moments, collectively they do. The error in going
from (126) to (127) was that we interchanged a derivative and an infin-
ite summation. This is only permissible sometimes. The way around

this problem is to first sum the series and then take its derivative.
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We can sum the series because of the linear spacing between oscillator

levels. Thus (122) should be written

fa,g) = 2 o  F ! = en” [e”]"  (ad

= & e.‘ * et = (Co&h(lwol))-. (N.Q)

1+ @~ ¥Wot

All the derivatives of (129) can be evaluated at ‘{"" and the difficulty

with moments illustrated in (127) has disappeared, e.g.,

A = i 2 \cosh 2w, (2 - \ (l30)
¢ T ( § ) (e

= 22 [My dwomx = Ke*
Eoleesniawg) 4y g, 4

Other series expressions resulting from Yang's oscillator theory can

also be summed, e.g., (121) becomes

7[(1,9’?) _ a“ae-awoze-p/; i [e-awe,q]:v Lgx)

° N'!
(131)

and with the use of the generating function (118) this becomes

2 -Fz( e" Y Wal
Q-zwane-f/z c BRI TN

f.0,8) = 2«

(,_ e vu.f) (30)
- w2 - ¥y ((cosh 2w.2
= &K G4 /1( Sinh QWeg (33)
Sinh aw,9

K&



a Gaussian angular distribution of width K&, the correct result; but

one which would not be obtained by setting §=o first in (121).

The expressions (129), (133) are far more compact than their coun-
ter parts (122), (121) and have superior anélytic properties. The
summations which were used to obtain them have had an interesting by-
product, they have completely removed everything of the quantum
oscillator from the results. We will suggest here and later demon-
strate that Yang's quantum oscillator was elegant but irrelevant

computational machinery. It introduced an elaborate and very mislead-

ing structure into the theory.

A result contained within Yang's theory that we can pursue is the
singularity structure contained within (129). When cosh 2 W.()Q =0
the Fourier transform of the longitudinal density diverges. This

occurs for special values of‘.g which we obtain from
‘2“)"(5“)_2 = t(an+) T (35)
¢ 2

where n=0,1,2,. With the definition for ., (135) becomes

*?n =+ iCane)wm? (136)

——————

RKR?
This allows us to invert the Fourier transform by complex contour
integration. Closing a contcur in the upper half complex g plane gives

iga = ¢
fon) =+ 4 e o 2 p ol
2T Vuup cosh 20492 n=e (137



where theﬂ., are the residues at the poles gan. If we work out the Bx

and express this result using the variable v = 2 a/xr we have with
A =KLy

= ~(anen?*w®
f@,v) = -I/-’-' S @' € e (138)
n=0

as an alternative to (108).

The quantum oscillator machinery that we used to obtain this
series isn't providing us with sufficient guidance to say very much
about it. We can nonetheless pursue the suggestion that (138) is more
fundamental than (108), e.g., in an energy dependent problem eigenva-
lues must disappear but poles might remain, providing us with a
different way of representing the solution and analyzing the problem.
The small angle energy dependent analysis given in Chapter (V) will
answer questions like this and also provide us with the machinery

necessary to handle the large angle problem.

E. The Moments Development

We will refer to the works of Spencer16, Adawi17 and Kessaris18 as
the moments development. The general objective was the construction of
spatial distributions by the moments method, especially longitudinal or
penetration distributions. This development, which used Lewis' equ-
ation as the equation of motion, essentially began where Lewis had

stopped.

Spencer, being the first to actually construct distributions using
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the moment relations, faced a number of problems. His methods of han-
dling them were discussed in his 1955 work and he later presented the
results of a large number of electron calculations done in many differ-
ent materials with various initial energies. Adawi followed and
extended the approach into a higher and more therapeutically useful
energy region. Both Spencer and Adawi had focused their attention on
energy dissipation curves. Since they are closely related to energy
absorption distributions, both are potentially important in medical
physies applications. Kessaris, working in the same energy region as
Adawi, recomputed these curves more carefully by computing more mom-
ents (than Adawi) and also considerably broadened the scope of the
calculations by constructing a number of other relevant distributions
as well. Kessaris, who had produced calculations that treatment plan-
ners should have been very interested in, had followed, like Adawi,

Spencer's ideas very closely.

Spencer, who laid the groundwork for this applied development,
found it necessary to introduce and incorporate the function fitting
approach into his calculations. The approach had two essential steps.
First we compute the numerical values of the moments of the distribu-
tion, then we find a function or functions that will reproduce those
numbers. Both steps require elaboration but we will concern ourselves

here only with the first.

Spencer noted that attempts to construct distributions from a

knowledge of the first few numerical values of moments were generally
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unsatisfactory because the information contained seemed insufficient
for such a construction. While he felt that a knowledge of all the num-
erical values of moments should theoretically yield the distribution,
he also noted that in practice only a finite number of them could
actually be computed, and even these only with imperfect accuracy. In
Spencer's opinion, constructing a spatial distribution was equivalent
to extrapolating the finite set of imperfectly known numerical values
of moments, which we could compute, to infinite order. The essential
information which was missing, according to Spencer, was something
which would allow us to make this extrapolation with confidence. Spen-
cer identified this something as the asymptotic behavior of the
distribution, its po-»e behavior, which he labeled "the deep penetr-

ation trend".

This behavior had already been calculated by Wick19 and so Spencer
sometimes called it a Wick-type asymptotic behavior. Wick, who had
earlier been solving a neutron penetration problem, made the small
angle approximation at the end of his paper, recognized the Schrodinger
equation, then made the Gaussian approximation and calculated
the A-»0 part of the distribution from the most deeply bound state of a
quantum harmonic oscillator. Yang's calcﬁlation with the quantum
oscillator was complete, exact and fully analytic. It superceded
Wick's work. The behavior being referred to is the Ywoterm in (108),

- 1 3/, : -
{,(g,u.,o)=ge_/"/rr”\),&which had as its Fourier transform &e” *“% |

Thus, in Spencer's development, the behavior of the spatial dis-

-3/ —b/g
tribution should be .{-(R,a-)o)-vo *e@ 'where b is some number, or



something equivalent to it such y
as )[(z-—vl)/v (-lm(t/.e»

Section 5.

LA

% in(E
(d In(¥/2) , as he stated in his

The numerical values of the spatial moment integrals would then

have the form (‘W/b)y’ e v s(nen] & for high w, as he writes
in his equation #30. This suggested to Spencer that the computed num-
erical values of moments would plot up into a straight line, for

high v , if one plotted the logafithims of the numerical values of

L)
moments against(“id)/f

Spencer also worked out recursion relations that allowed him to
compute the numerical values of many moments of the spatial distribu-
tions. When he plotted up the first twenty in the manner just
discussed, they did indeed plot into straight lines., Spencer gave an
example of this in his Fig. 2, which we have reproduced as our Figure
5. Spencer thus.stated that he could very clearly recognize the trend
predicted by a Wick-type asymptotic calculation. It was the "break"
that made the construction of spatial distributions possible, as he
writes in the second page of his introductory remarks. Spencer still
had many problems related to finding functions that would reproduce
these numbers, but we will not be concerned with that part of his

development here.

Spencer's demonstrations had not proved anything. He seems never
to have considered the possibility that the numerical values of moments
might not be meaningful numbers. It would not then be meaningful to

compute them, to plot them, to extrapolate them, to work out recursion
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relations for them or to find functions that would reproduce them. We
can illustrate the incorrectness of argument by choosing an example

from Kessaris' work.

Kessaris18 considered the problem of high energy electron beams
(10-20 MeV) penetrating water, the example of greatest interest to
treatment planners. His calculation of the time dependent (primary)
particle density was his most important calculation. His result (Kes-
saris' equation (26)) expressed in our notation was
a0 _2d e o 4V ()

d e z° e (139)

e ———————

f(l,z-) = T E
25% [~ ln E/L]"/a.

where d and A are numbers which are to be read off a graph (Kessaris'
Fig. 6). He obtained this result by numerically integrating Lewis’
spatial moment equations, (80). At each time of interest he computed
the numerical values of the first ten moments of the spatial distribu-
tion. He plotted these values on semilog paper against_(v\+l+ A)‘/‘l

and obtained a straight line (to within an accuracy of 1/2% or
less) when A was suitably chosen. Thus, his result not only reproduced
the numerical values of moments, but also contains the deep-penetration
or Z - £ behavior of Spencer's analysis, the behavior that Spen-
cer felt would allow him to extrapcolate the finite set of numbers

antually computed to infinite order with confidence.

Kessaris' calculation was elaborate and required a high degree of

computer force to conduct it. He appears to have made every effort to

s



produce results which were both accurate and reliable and he generally
conducted his calculation with great diligence, as had Spencer. Kes-
saris did this calculation for three different initial energies, 10, 15
and 20 MeV electrons. All three calculations worked the same way and

exhibited the same type of behavior. It will suffice to take an exam-

ple from only one.

Let us choose the case of 20 MeV electrons after they have
travelled a distance of 1 e¢m in water., This distance corresponds to
approximately 10“ collisions, so the Gaussian approximation would be
reasonably good. The approximations ofismall angles and energy inde-
pendent scattering would also be '‘nobjectionable under these
conditions, so a comparison of Kessaris' result against that of Yang is
then valid and the two should agree. The comparison is shown in our
Fig (6). Kessaris' result is in error by about an order of magnitude
and all three of his calculations contain similar errors. If we had
made many comparisons with Kessaris' results, we would find that the
size of his error depends on the time at which we choose to look at it.
Generally speaking, the longer the time the better his result, the ear-
lier the time the larger the error. If we recall the remarks of
Chapter II Section D, the proper way to evaluate a diffusion theory is
to look early into it, in the earliest stages of its development.

Thus, when the moments development is examined properly, at early times

as in Fig. (6), it is seen to be in significant error.

The greaéest error of the function-fitting approach was not the

size of the numerical errors that it was capable of, nor even the fact
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‘that its arguments were fundamentally unreliable and incorrect. It was
the manner in which the information was being carried. Functions like
(139), and all the functions of Spencer's function-fitting apprcach,
come from tables of integrals and have nothing to do with the problem.
This makes them theoretically worthless. Kerraris' results, even if
they had been highly accurate numerically, would have been practically
worthless in treatment planning applications as well. The high degree
of computer muscle required to obtain them would have been sufficient

to disqualify the whole approach there.

Each theory discussed in this section had theoretical difficulties
associated with it. As the theory developed, problems from previous
analyses were being carried along and compounded. Spencer, for exam-
ple, had misidentified the missing information, the complex plane
structure, and pursued a misleading and irrelevant structure, the quan-
tum oscillator. The end result, the moments development, was so
thoroughiy riddled with error it is unsalvagable. To solve the multi-
ple scattering problem in a theoretically meaningful way we begin by
going back and redoing the most pivotal analyses. Developing the
theory further then leads to a theory which has practical potential in

the applications of interest.



IV. Re-examination of Lewis' Theory

Much of the content within Lewis' theory was simply being lost
because it had been pursued by numerical analysis. The first and most
pivotal problems had been introduced by Snyder and Scott on line (56),
as we have already noted, where they chose a specific functional form
for the deflecting cross-section. We therefore begin by re-examining
the angular distribution without any specific choice of cross-section
but we retain the small angle approximation. We then make a continuous
passage to large angles which requires the more general yewis formal-
ism. We finally consider spatial distributions, the topic that we are
most interested in. We ignore any energy dependence throughout this

chapter since it would unnecessarily complicate the arguments.

A. The Angular Distribution

We consider the angular distribution associated with (49)
)__{-(n,o‘.o,) =1 “49; 40, a!_a-co)[{(z,a.:,o;)—[@.%."y)]
2L Ms O Ao (140)
here 6 = { (6 -0 + (6y - 97)‘}'/"as before. We first rewrite (140)
the basic Snyder—Scott (small angle) equation in a way that exhibits
the cylindrical symmetry of the problem. This is a bit repetitious but
necessary since the transition from small angles requires that we have
our equations in this form. We define the two dimensional Fourier

transforms )((1,0‘,9,,) - (;u;),. S&‘d]_‘ JJ; ei T-e{(z’_\‘_‘;’\ (I"ild-)

do(0.,8) = ju. L7, e° -6

o j do (7,30 (418)
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which are the analogues of (53a) and (53b). The cylindrical symmetry
derives from the fact that & depends only on the magnitude of its
argument,® , rather than its Cartesian projections 6,6, separately.
Its Fourier transform then depends only on (TJ+J,*) Y2 and not J., Ty
separately, while the same is true for {(l,r_ ,:r,) which can be replaced

by f(.!,T) . With (141a), (141b), the equation of motion (140) becomes

LRI BTE R (143)
24
where
K@ =L -1 6_1__9'(:')] = L [doty=e) . Ja-(:)] (143)
Mg o da Mool da ds

The quantity de(® is defined by the inversion of (1U41b)

> > - ar
~-iT0 —iTeco
do (3,7 = Sgdo‘io, e dow =Sadad_no)$d< ik
A 5. A s AR,
(144)

With the integral representation for the zero order Bessel function

LT
- _ LYO Cos ™ ('[‘,5)
U, (0) = 2 Sodi e
(144) becomes
do¢ = :.1.-5‘:) 406 T, (76) da (e) (!‘Ho\
da o AN
so that (143) may be written
7) = AT p - 6)| L da(e) 147
K() _‘gade[t:ri,(:]c‘uh ()

The solution of (142) with the initial condition 5(1'0»3’)=| is
- KT (148)
fa7) = €



and the angular distribution (141a) then becomes

%(I,LO,J) = :-i;’_ I:Jr J- (we) ][(1,7) (,t{q)

in cylindrical variables. There is no explicit azimuthal dependence in
(149) because of the cylindrical symmetry of the problem. To construct
an angular distribution we need only (147), (148) and (149). They are
the small angle analogues of Lewis' equations (73), (71)' and (69a)

respectively.

Two series developments of the angular distribution can be given
which correspond to either very few or very many collisions. In the
case of very few collisions we could expand (148) as

7[(1,3') = /- K@ + (~K_(=3_1)‘ + ... (150)
2!
and, after we invert the transform (149), we would have an expansion in
which particles do not scatter, scatter only once, twice, ete. This
was the series that Snyder and Scott pursued in their section (4).
That series concerns very few particles if there are many collisions
and we are far more interested in an alternative development which

begins by utilizing the power series expansion of pA i.e.,

J.zo) = (- @y w(wys) (G0, s
(1) (21)* (3hH*

so that K@) from (147) becomes

- a -3 kN 2 2
K(7) = j—zs 5‘”949{ 3-79 - (3'—5)1<¢?f) +-...} -;—‘f{_{‘_i“”

= = { <@>/T _<evs (1) } .
AL g (l‘.)’(‘/) E’;‘!‘),_ 7) + (IS:D
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where <0% means that we average with the small angle cross-section, as
before. We will temporarily exclude the pathological case of charged
particles for which <8%* , <87, ...would not exist. The expansion
(152) is a moments expansion and is very general. It is important that
it is not specific, i.e., we can represent the situation without stat-
ing exactly what the differential cross section actually looks like.
Using (144), we could then expand the exponent around its leading term

* 1,{“ {<9=>a' -<a*') ({')‘ + <08 ¢y )3—0...}

f(g’:r) = @ ¥ (an\y (31> \4
- 849> N\ L <> 3
= {’+( <(:I.') ( ) <(—3—‘)1(%) + ”'] .
+ L (R e /ey LS ’—%‘_’2_7
3" u.,) [ ] §!<I1:) [ ] N A
with (153) in (149) we obtain (53)

feae) = {Hn Aa LUOVE) L L (7). ]

(a‘) n? 3 n3
P 2L ann 1 e72).]
3 <z) A @@y T,
- 87§
{ ] + e e_— ('5:”
™ 8

where we have used the notation n for the number of collisions,l/;.(.,

82 = wn<8* | Ln for Laguerre polynominals and <9""‘)/(<9’>)m

= \By,\ . In the limit crwn-e, but in a way that w remains finite,
we have 2/ =
93
n <y oo 5:
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a result that we could have obtained separately and independently
through the central limit theorem. This is, of course, the Gaussian
approximation and means that the details of the deflecting cross sec-
tion become less important with time and only its average features
survive if we wait long enough. The additional terms in (154) show the
approach towards the Gaussian limit and simply correct for the fact
that W is not infinite. The closely related Fokker-Planck approxim-

ation keeps nw finite but sets <€¥>,<€¢ =0 achieving the same effect.

As a by-product of the above demonstration we have some additional
machinery to work with, a different and general way of representing
the expansion (152). We can use it to define spherical moments of the
deflecting cross section which can replace the quantities <0”>)<9”>...

that would not exist in a charged particle problem.

The large angle analogue of (147) is Lewis' expression (73). The
replacement of 6(«450) by:):(:f@) for small angles derives from the fact
that Legendre's equation collapses into Bessel's equation for small
angles. From that fact we would also derive the association 3"9}(.54!).
It would not be sufficient to use the usual Legendre polynominals etc.
in expression (73). To insure continuous contact between the small and
large angle expressions we would match Ki- on K() smoothly. This
requires a series development of P} (ces®) in powers of‘}(}ﬂ) analogous to
the series development of —\To (70) in powers of T which was used in
(151). This is a Taylor series which takes derivatives with respect to

(156)
order and has the form :

2 E P(e,ce > 319(0,6050) 2y
P; (cos) » P(Ticeso) = P(o,eow)«-l%_f ‘S"ﬂr +[S‘(’F)* ](:r?? t...



To obtain this series we integrate Legendre's equation beginning with
T *=0 |, and fix all integration constants by requiring that (156)
agree with (151) for small angles. The first several terms may be

written

» 3
P, (cos0) = | - }(}H){ sine’ & +L(Sine" %2 +.;.(s:.a‘é’/z)t_,}

2 . 2 > 2 3 Y
4’(&.(}*'[)) {:}’— (Sln& %) "_;_(Slnc.' 9/2) +;:3Z(S;,,c %)‘f*“‘}

- + ... (57)
This recovers the usual Legendre polynominals for discrete values
J=0,I,...but also allows transition to continuous T without difficulty.

Thus (73) could be written

b
— e,tc L(} P yee ) i(j
K} — < %P;(,.’c s9)> }()*H) + 33(3(:): sa> (J (i,:-!)) +...

(153)

where < > now means average over 9mgeometry using the large angle
expression forAJZZLnu A comparison of (152) and (158) then allows us to
define spherical moments. For example, comparing the first term in

each series, and using also (157) gives

2 . 3
<6*> — 4 4 Sine ¢, + "li(s‘."ﬁlo/z) 4-%(5.‘,@ 9/_,_) +>
(159)

This would eliminate the moments problem indicated in (65), if we use
the first line of (56). By performing the average with the large angle
cross section, the terms on the right exist even if the term on the
left does not. However, this series of terms will converge so quickly

that the first term dominates all the others and the approximation
o> ~ 4 <K sine™ 927 (tto)
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would be more than adequate. Higher order terms <67>,<6%3, could also

be redefined by a comparison of (152) and (158).

The decomposition of K; into the power series (158) was fundamen-
tal to Lewis' theory but was missing from it. The two
functions K(¥) and K, which we can now use interchangably, control all
the dynamics of the multiple scattering problem since it is only
through them that the deflecting cross section enters our expressions.
Any analytically acceptable representation of them requires that these
expansions exist, but the numerically accurate representations of them
which had been given in the literature were incompatible with it.
Lewis' spatial moment equations, (80), for example, recognize and res-
pect the spherical structure of K; and won't work properly without it.
Representing these functions correctly does not solve all of our diffi-

culties; it is only a first step towards their solution.

B, Perturbing The Penetration Distribution

We consider the construction of a spatial distribution that

corresponds to the angular distribution given by (154). We first solve

d4(4,6.,6,,4) = _07 d 8.4,)- f(14,
f 3 Zwﬂ” 16; m)[{(x )- flots)
(161)

Y, 2 24

in order to obtain f(£,4). With the Fourier transforms

f@,.0,0 = %, 5“13,4% ” e:(r.mi’o{(mg)
(162)



(161) becomes

?_{(11»7"3) = g/a . ! 2_))[ K(J);C(!.Tf) (”03)

o4 2 QJ"

and we would use the expansion (152) which we write as

a

K(T) T + SK@ | (1bY)

K
«f
where K= <6*>/ s and §K represents all the other terms in the
expansion. We will treat the terms §K(¥) which appear in (163) as per-
turbations or corrections to

f1mD < (BB o

which is a problem that can be solved exactly with Yang's eigenvalue
approach., It is simply the Fourier transform of (113) and the two can
be solved in the same manner. The solution to (165) also may be writ-
ten in the form (119), where the eigenfunctions are given by (116).
However, we would now use ¥ = WV« 6 &= (2i8/k)%.  The eigenvalues
Wy =@N+H) 2w, with W, = Ka“/¢ , are unchanged. With the initial
conditions {(1:0,3',7) = |, we have A= 2"tNY Once we alter
the problem by adding corrections terms SK , the eigenfunctions and
eigenvalues all change, Wy => W, +J‘a)~, "}’N-b"/’,v *+4 ')“: In the exam-
ple below we consider only the first or. :r changes for which

non-degenerate (first order) perturbation theory gives“4

Swe = (V8K (166 a)
$Y, = = (4. SKYL) ¢, (Ibet)

MEN (UJ:«—(UM)



Once we have worked out these expressions the solution to (163) will

then have the form

fas = S AL e (L7)

~

where the primes indicate that we use the new eigenfunctions and eigen-
values and new constants which are determined from the initial

conditions. To obtain them we need the integrals

(., 5K Y = f}df Con Lu(£7) e 7

3
L (:-r<.9"> (a(_’_}jz-;-{&‘)(d‘fj -+”].
My Lo(an*\ ¢ GH*\¥
D Cu L (E) e T2 (168)
Y1
where we have used J=%¥ | The normalizing constants are 2 /W!

as before. These integrals are most easily evaluated by using the

recursion relations for the Laguerre polynomials
e Lyl = (AN Lotp) =N Lo () =~ Luw(e) (169

so that

prL, = (N HeNe2) L = IN Lo =4t Loy # N =)L oea + L

(170)
is obtained by applying (169) twice. It will be sufficient for our

purposes to retain only the first term in the set of perturbations, the

"
term containing ¥ . Then

o ~-F7/2
{rdr c Lt € F¥ ¢, L sy e

= (é~=+6N+l)£MN - ‘/NIJ‘M

£

Vst ‘J(N*")ISM,N'H

+ NN-0 &0 s + (N+2Y(NHD) S e (”')

70



1

So that

fw., T “:’; w? J({w hen+2) (nu)
(2

L] a2 3 3
§Y7=-<6" (E‘.) [’.ﬁ’ Vs 400 Vo + w0 Y, ~uonn ¥,
A‘(zl): 4 ‘d‘ w, 8&,’. ng
(72 %)
where we have used Wyz=(2y+)aw, in the denominator of (166b). Since
the new eigenfunctions are still orthonormal, the initial condition
<((,Q.o,f,g)ﬂ now gives

A =_(f-(f Y = ff/}’("&(f) +5%.) (13)

[

Since

2

L}“)‘r Loy @ = ) (v ()

Al = ZYJ(-I)H[l <6> u( {5' 2/#:}] (|15-)

/lg 2 1)1

Since we are interested in the spatial density we integrate our solu-
tion over both angular variables. This is equivalent to setting ¥
= ¢ in (167), and we need the values of the new wavefunctions only at

the origin. Since ""V,,(c)-:ly*, we have

P = 2 [1- 222 (23 el ] (170)

LUy (2')

using also (172b). Then, using the notation {(n,rna,g)-; {(4,?), (167)

becomes

16(1,2) = ” ’(I)”[H 9> oz) (zsz)] e by g (”.,)

Me (2
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] S(WHEw), 2
by using (175) and (176). We can also make the replacement €

¢ -
= u-,sw.,l)e vt since this is a first order calculation, and

along with (172a), (177) becomes

" . —w,g
7l(:z,g)= > 1(—:)"[\*}%? <) [ 2uet 4 2 (6N H,mz)}] e

to lowest order. The series expressions are now summed

(178)

Wy

23S nN"e . (cosh(.zu),n))-' (1734)
N

as in (129).

-
2 S enansne ¥t o o1 2 (osh(awn) (190)

aw, oL
Since (6N 46N +2) = Ya+ 3 (24400,
N -u)“x
DA R ARILIZ = [1 2(35) ax }(Cosh(zwez))
(179¢)
With the definitions and (179), (178)
becomes

,9) = [ + M; <9‘4> Kll Y-12 432 Q_}‘} Cosb(:.tdal)
(180)

whioh allows us to invert the Fourier transform trivially by carrying
the operators through the integral. Thus, the spatial density becomes

. a5
= Ms <6Y> K_l g -1 +3% ] £
-{(l,A) [ t 1,; ST} on 4 P 3,2 )2V coshawed

(181)

where the integral required in (181) was given in III D. If we use the

infinite series that comes from this integral, take the indicated deri-



vatives, and then express it in terms of the variable W which was used

in III D, we could rewrite (181) as

Lor < fler s B [i/m— vf vy ) G

(1.’);_(;‘t) A dU‘"

where f”)is the unperturbed result, given by (108) or (138), although

the simplest form to use for evaluation would be (109). Here Y¥a
= <0”>/f0‘>)t,n=£ is the_numbér of collisions, which is the notation
L3
used in association with (154). If we had a differential cross section

- 08

of the form do~ & then <02=6," <¢@v>=28., and the overall

strength of the perturbation would be on the order of il | The

Ine Ne
rearrangement from the unperturbed result would be fairly small, even
with as 1little as 10 collisions, for both the angular and spatial dis-
tributions. If we chose a more realistic charged particle cross
section, e.g. (56), then Y¥s would be on the order of <(sine*9;)*>/
<5"\;%>1, as the discussion leading to (160) indicates. Working out
these integrals using (56) gives “fa = [o Lv\(z/é),'l]"2 .

The screening angle is given by 65 = (bine @) ', and irf
Wwe use a wave number corresponding to 10 MeV electrons, and a typical
atomic dimension @ ¥~ (0~ %m., then Y¥: is on the order of 105, and it
takes a tremendous number of collisions before something as mild as a

first order perturbation calculation, with only one correction term,

can adequately represent the situation.

Keeping many correction terms in a perturbation calculation and
pushing it to high order would not be theoretically interesting or

practically useful. A fast procedure, useful at short times, e.g.,
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10* — 10> collisions, would be to use the expressions for K(¥)

and K; given by Lewis and Snyder and Scott phencmenologically. One
could define a convergence number, Je , by the relation K(F.)4

=| , and then replace the exact expression (148) by a phenomenologi-
cal term fm'f:";-) = e—Tt/"TJ(‘) . This would give Gaussian
angular distributions and would only alter the way that we compute the
parameters of the distributions. It would easily and accurately repro-
duce the numbers that Snyder and Scott generated, except for the part
of the distribution associated with the Rutherford tail, but we will

not pursue the topic further.

C. Spatial Moment Problems

The perturbation calculation given in the last section has certain
exact features to it, features that would remain unaltered by keeping
more terms or by going to higher orders. Here we examine these featu-

res and consider some of the implications.

If we return to (180) and take “he indicated derivatives, the

result may be written

fag) = [\+ > (zm Ihidd 43 -3 ](Cosh 0.8

(24) e Coth*aw,g
(183)

If we expand (183) in powers of q, keeping terms up to order q2, it may

be written as

e e G/

21 3
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where K= <0™4:' by definition. By comparing with (124), we can simply
read off the moments of the longitudinal distribution, where the mom-
ents were defined by (125). We obtain
AW =1, A = K&y , 87D = (S \a,)(z)‘ (185)
2 3 TN

Within the context ol the small angle approximation for which these
expressions were derived, we can show that they are exact, that these
three moments would be unaffected by higher orders or more terms in a
perturbation calculation. To prove this we use a moments approach on

(163) which derives exact expressions. The approach is a small angle

analogue of Lewis' spatial moment procedure.

To begin, we chose a representation of the solution to (163) in

the form
‘F(L"ﬂ%) = i -F'?},g) (rs)™ (19¢)
M=0C W\‘,

b m
From this definition we have 4‘“}1,%) = é{—(—ﬂ“" &(R,T,“) We
]

also use an identical representation for K(¥) , where the coeffi-

'I":O

cients K™ are defined by the expansion (152). Without the existence
of this expansion, the procedure given below would not work. Inserting

(186) and the expansion of K(® into (163) gives

(m) m et m " -n)
0_(_7[ (48) - zig(m“),(((a,g; -> ,__"‘_L--' K™ ((v;,g) (127)
A4 '

neo nifm-n)

by equating the coefficients of equal powers of T *. The Fourier

transform of the spatial density is what we are after, and i3 glven by



(m=c)
f "}Rif) = -{(2,35:0.8) . Since we intend to compute the first

three moments we need the first three equations which we write out

explicitly
r(m.-o) (m=1)
W g = 2ig §ap (1952)
21
tm=1 (m=12) W fm=zo)
3_{(1‘3) = 202 (0,80 - K (2,8) (:m)
3L
("\=1) (m = 3) " e
Ty =260 fan - pef@E vefGR]
o4

We don't use these equations as they stand, but expand them as

= [1( @,{=9 t 3{(1,3-0)% + 9 {(n,g 0) _{_‘ +]

3%1 21

= 20§ [{ (1,§=0) + gééfe),gw)g-t-...]

(1849
?_2 [f‘&,3=o) + U thg=o) g *] = 2 fEgea+-]
)
b - K"’[{ (&’,gu) + _3_{((;,’{“)? +]
¢4 (1814)
A[fdgmo+ T = - [KOffgmer + KD {5, g=0) 4]
(1839

Equating equal powers of g gives a system of six equations with six
quantities to solve for, which we do using the initial condition

“?4 o, )= 1. The three that we are interested in have the solution

flegea = Ui gm0 ke ¥V feg=0 - £ KL sm}
! L ot (190)

which are easily shown to be the same as (185), the result obtained
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from the perturbation approach,

The first three moments of the distribution are by far the most
important. If we were to attempt to construct a distribution from a
knowledge of its moments only, we would not try to do it with less
informgtion. The zero~th moment tells us the number of particles in
the distribution and was arbitrarily taken to be unity initially. We
find that Z; is always unity because particles are only redirected by
multiple scattering, not created or destroyed. It is therefore inde-
pendept of all scattering parameters <o*>,<9*>v... The first moment
of the distribution, & , defines a point, the average location of all
particles. It depends on <8&*> but is independent of all higher order

terms < 64> < 6¢) . If we alter Yang's calculation by introduc-

-
ing correction terms 3'44,3",... , we would create distributions that
look different from Yang's result, particles would be redistributed
because of these additional terms, but all distributions created in
this manner would have the same average value as appears in Yang's dis-
tribution. The next moment,.zi , would be expected to provide
information about departures from average behavior and we would try to
use it to define some physical extension for the distribution. For
example, O * = —E‘ - (E)L is generally called the variance of the
distribution and we would try to associate O with the width of that

distribution. It is in the second moment that problems with spatial

moments appear.

The problem is that the first moment of the distribution is a

meaningful number, but the second moment is not. If we use the expres-
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sion I‘orz; given by (185), which has contributions from two terms,
part of this is a meaningful number, while part of it is not. The
reason for the difference is due to the different types of mathcmatical
objects that contribute. The _35:(5)"part recieves contributions only
from simple poles. The %'i‘_'_&lpart receives contributions from first,
second and third order sin;‘larities. To invert the transform cor-
rectly in the letter case we would have to seperate its terms and then
apply different Cauchy rules. This can't be done if we have only a

number representing it, the necessary structure is irretreviably miss-

ing.

If we had, somewhat blindly, been using a moments approach and had
evaluated a*> numerically in the process of obtaining it, we might not
notice that we had done something wrong. This would be the case if we
had been working with a true small angle differentizl cross section,
e.g., {'To—n.(e) = do(6=0) e ®76> unhere we have B.¥1. The error

praey
becomes small after only a few collisions, since S >> ‘_Vj. Ba

Ne
in a short time, and the meaningless numerical part is relatively minor
by comparison. In the case of charged particle scattering, which is an
exceptional and pathlogical small angle problem, ¥¥, is enormous, on the
order of Iort‘or 10 MeV electrons, so even after lO" collisions we still
have %%;. ))%f. The numerical value of &> is meaningless under these
condition‘s and it would be equally meaningless to try to construct a
distribution by using these numbers. This is exactly the type of error

that was being illustrated in Fig. (6) in connection with Kessaris'

result.



Kessaris had expressed his result (139) in a very complicated way

and to discuss it more easily we considerd another function

fer,) = N e e et (39)

aYa
which is closely related to the one that he used and has very similar
properties. If the three parameters required to use (139)’ar‘e determi-
ned by the lowest three moments of the distribution, then (139)' will
reproduce (139) very closely at all times and for all energies for
which Kessaris did his calculation. For the distribution (139)‘. the

moments are standard integrals and give

5:4 {(1,4) =1 = N = (?;)y,, 81(%)‘/‘ (mllﬁ
\Y:LA a )((1,4) = & = (ah)y‘ (1918)

it O Va3 [2% '/.x]
jalﬁ a* {(2,8) =A% = & VAL +(E) (t91c)
o
We use these relations to eliminate N,O.,l:and replace them with
expressions for moments. If we use Yang's scaled variable VJ , and
— - ’
the definition O *= &* -{&)along with (191), then (139) may be written
2/ '/z - ./su‘ - 1,’/ "
4{
fav) =(& e VL e’ (134
TS v
where § = “7(&)1,This one number, S, completely controls the shape of
the distribution and it is simply crzexpr‘essed in dimensionless units.
Z)
With a value of $~21, (139) would look reasonable, something like Yang's
result if we were to plot it up. Kessaris, at the time referred to in

Fig. (6), was using a value about 10 times this, so the shape of his

distribution was altogether incorrect.
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Kessaris had not used the Gaussian approximation but the more des-
criptive Lewis equation with the McKinley-Feshbach cross-section. This
allowed for a few particles to be scattered directly to wide angles in
a single collision thereby seperating them from the main group which
was travelling with small angles. This part of the description was
quite realistic since it even included a Rutherford tail, a small
stream of trailing particles scattered all along the pathlength.
Although this additional structure contains only a miniscule number of
particles, a few tenths of one percent, its contribution to the numeri-
cal values of moments was disproportionate and overwhelming because of
the relatively large distances it involves. Thus, Kessaris had con-
structed his distribution on the basis of the numbers derived from the
most unrepresentative few. The incorrect step was the very first, the
numerical evaluation of Lewis' moment expressions. They provided him

with nothing more than a set of meaningless numbers.

Kessaris, however, actually did produce some reasonable looking
numerical results and these results would be associated with times that
were long enough so that the Rutherford tail dropped out of the prob-
lem. Eventually most particles scatter to large angles through a
sequence of many deflections each of which is very small. The few
which were earlier ejected from the main group by a single wide angle
collision are then recovered and returned back into it. The Rutherford
tail therefore begins to disappear, i.e., like %;,ﬁl...in the angular
distribution (154) and there is a corresponding loss of structure from
the spatial distributions as well. Thus, Kessaris' results were bes;

at the longest times considered in his calculation, which is when the
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electrons had run out of energy and stopped or were nearly ready to
stop. Evidently his calculations improved with more time not because
his arguments or methods were improving but because of the way diffu-
sion works. Diffusion is a process which eliminates details. The faét
that Kessaris and Spencer had produced some good numerical results was
the main reason why the moments development went unchallenged for deca-
des and was generally passed along with satisfactory reviews. This was
due much more to accident rather than to correct argument. Both
authors, for example, drove their calculations to high orders, i.e.,
they aimed to achieve reliability and credibility by showing that they
could reproduce the numerical values of many moments. To correctly
compute more moments than were given by (185) we would be required to
include more terms 3’6,7" ... from the expansion (152), and also go
to higher orders in a perturbation calculation. It is not difficult to
see what effect this would have.J "is a derivative operator, and in a

small angle problem it can be replaced by

J., = (—.'—)1(?:33:) —e(—!)L<2f +L32 (192)
¢ e ae; L 26™ 6 20

where the last expression is true in a cylindrically symmetric probiem,
When ¥ acts on a LaGuerre polynominal, as in (169), it produces power
factors of N . If we have a perturbation CT‘)i we apply the recursion
relation three times, which produces higher factors of N, as in (170).
Factors of N 1in the infinite series revert back to derivative opecra-
tors, as in (179b) and (179c¢). The end result is that we would be led
to take more and more derivatives of an expression which contains only

simple poles in it, so the calculatioh contains higher and higher order
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singularities in the complex 8 plane as we drive it to higher orders.
The numerical evaluation of moments is evidently less meaningful under
these conditions than it was at low orders because the confusion of

structure would be even greater.

Spencer, in trying to develop Lewis' theory, had used another
argument which should not be trusted. When he first constructed dis-
tributions and compared them with experiment he found that he did not
have satisfactory agreement. He felt, on inspecting his initial
results, that the amount of scattering being predicted was too weak and
that to achieve acceptable agreement with experiment it would have to
be made stronger. Spencer's calculations concerned relativistic elec-
trons scattering from atoms. His initial work included a factor of

£ in the calculation of the mean square deflection angle. This
factor arises from electrons scattering off the nucleus. In looking
for a way to increase the amount of scattering, Spencer suggested that
the incident electrons would also scatter from the orbital electrons of
the target. This provided # more scattering objects and so Spencer
redid his calculations using the replacement Z *— Z(Zx+1). He was
then able to achieve agreement with experiment. That argument is
unreliable because there are two coordinate systems involved, the
center of momentum frame in which we compute average deflection angles
and the laboratory frame in which we do multiple scattering calcula-
tions. In the case of electrons of a few MeV scattering from a
nucleus, the cm frame moves very slowly relative to the laboratory
system because of the large target mass and the distinction between the

two reference frames need not be drawn. In the case of equal mass par-



ticles, especially if one is relativistic, the distinction needs to be
made as the effect of transforming from our system to another is to
significantly reduce the amount of perceived scattering. A relativis-
tic electron scattering elastically from another electron in the cm
system will be viewed, in the lab frame, as one electron passing
through relatively undeflected but losing a bit of recoil energy to the

target electron.

Spencer, in his 1955 pape:’, demonstrated that he could, using
Lewis' moment relations, construct distributions that were in agreement
with experiment. When they were not in agreement, he discarded his
results and fixed them up again until they were. Achieving agreement
with experiment under conditions like this can hardly support or con-
firm the validity of the approach. Spencer consistently relied upon
arguments which sounded plausible but were unsound, unreliable or
incorrect. He appears not to have recognized the necessity of writing
and solving the differential equations, as it is the only way that one
can prove what one is talking about. Solution means analytic solution,
left hand side equals right hand side, so that we have the force of a
mathematical proof. Spencer had presesented what were essentially his
opinions within a thick cloud of theoretical sounding statements which
were generally supported by a numerical demonstration of one kind or
another in an attempt to prove his remarks. Because of this, he had
not developed the theory to the point of numerical application as he
stated and probably believed. Instead, he had developed a numerical
analysis. Spencer's theory of electron penetration was low energy

electron beam phenomenoclogy.
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Significant and important information concerning Lewis' work had
not becen developed and that undeveloped information . goes right to the
heart of Lewis' whole approach. Lewis had proposed moments as a means
of obtaining exact spatial results without the small angle approxim-
ation. Large angle effects, however, are a significant problem in the
moments approach. In the longitudinal distribution they introduce
large A effects. Because of the inverting properties of Fourier
transforms, large A effects will show up at low i . More precisely,
they can introduce high order singularities into a Fourier transform in
the vicinity of g=:0, the point about which the Taylor-moment expan-
sion is done. A high order infinity a close distance away from the
point at which an expansion is done will contain terms that can domi-
nate that expansion. If we evaluate moments numerically, which does
not deal with the nearby infinity properly, then even a relatively
minor physical effect associated with large 4 can contribute to this
nunber in a vastly exaggerated way making it quite unrepresentative of

the distribution and worthless to even compute.

There are two such problems. The first is the Rutherford tail, as
we have already discuszed. Eliminating all difficulties associated
with it is very easy, we use the Gaussian approximation which discards
this structure and all of its problems completely. The second is due
to boundaries. The exact solution to the transport equation must go to
zero in the backward direction at Z% -4 in scme manner analogous to
the way that it goes to zero in the forward direction. Terms present
in the exact transport equation that create the prcper backward beha-

vior can contribute to spatial moments and cause problems with them in
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a manner that is entirely analogous to the problems which were associ-
ated with the Rutherford tail. Eliminating boundary effects is more
difficult. We will begin by using a small angle analysis from which
boundary effects are absent. For example, Yang's solution does not
contain the correct backward boundary behavior even though his solution
was ex” ° The reason is that Yang also used the small angle approxim-
ation. It has no backward direction and so the unwanted boundary
effects don't appear when we use it. We then develop the small angle
solution directly and continuously to large angles in a manner which
will keep these boundary effects out of our description permanently.
Yang's analysis did not provide the proper machinery for doing this and
we find it necessary to repeat the small angle analysis in order to

obtain it.



V. A Wave Solution to the Transport Problem

In this chapter we consider the calculation of spatial distribu~-

tions that derive from

3{(!)6)4’511y,‘) - - [s”‘eacoséa -+ S.neoscn¢¢l 4-(' Q{G)?]{
oL
+ K(I)[..__. 2 Scncai) 3
Sined 7 a8 7 2 T
v d e ‘we9 3¢ (”3)

which is (43) or (47) with a=J4-Z replacing & as the longitudinal

coordinate. The first step in cur approach will be to solve
a{(“)el,oy, 2’;3,‘) P ..[ 6. 5% + & a + (054-9 )a ] {

+ K(.Q) Coe ]{ ('w)

¥ 3&‘ o,
which 1is (84) with A replacing # as the spatial coordinate.

A. Small Angles

With Fourier transforms

-F(,(.e“o“!,j,d) = (mr ( ‘{JT. Ay elpudpy dg

fG,3.3,p,005) €

(7047, 8, *RY+P, y-o,ia)

and separability (19%)

f(l):r;,:ry, f’u,f’y,g) = {(‘l)T"P‘!%) f@»:rnl’n%)
(19¢)

we obtain

Bfu T,red) ( 3, )
P Sin Pl T KW (+97)
Y, EN‘ Te )

which is the Fourier transform of (88) where K-y K (&) as well.
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Yang's ejigenvalue solution to this problem is possible only for con-
stant K. It is that step that we wish to avoid and the replacement
K2K(4 forces us to avoid it. The significance of the problem posed by
(197) can be interpreted in more than one way. On the one hand, it
allows for energy dependent scattering, a very practical question, rou-
tinely met in applications. On the other hand, it gives us a mechanism
by which we can deform the solution, and quite generally if we

allow K(Q) to be completely arbitrary. We want to see how the solution

responds to these changes.

We solve (197) by constructing its time development operator and
we use the fact that this equation is first order in time in order to
do it. We consider first three separate problems that we can make up

from (197), i.e.,

{1) ()
WHinp = i 2 f (1942)
EY] 2 %t
() (=)
U emard = pa 2 7( | (138t)
Y. Al
3) 2
?_/ (27<) = - KT, /m (198<)
24 4
The solution of (198c¢c) may be written
£
(3) (» -T2 \(J!‘K__(:!‘)
' (1>Tx) = (I=O)T‘) e ° 4 ("m)
but Qe would write it as
(3) (3) S TR LA
«f(,uau,if:) = 1(4,3) € T (200)

instead. The understanding will be that we keep only first order infi-
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nitesimals, By writing it this way we have an operational rule which
tells us how to take a solution at time £ and convert it into a solu-

tion of time 2+df. The analogous rule for (198b) is easily

(=) (2
7[(£+JJ.T.,P.) = § (T pudd,p.) (20))

To obtain a rule for (198a) we can first take the Fourier transform of
({2 ]

this equation. If {(h;ng)is a solution of (198a) and we

define {("'(’,0-.8) by

" (Tu® )
{(1 ’9"3) = ;‘-;r ] jTu e {(1’3-.,?) (2 0))
then the inverse of (202) in (198a) gives simply
U] )
3‘—{ (l)ea ;8) - - ".g 9:' (1, 0‘ ,3) (203)
oL Y
so that
) n —igde O,
{Cﬂ{-c’»{,gu,y) = {(l,@.,g) Q i Y (204)

which is the Fourier transform of the rule that we want. The inverse of

(202) gives

w - :-Tzol ()]
‘/(lfd—f,rt,i) = \gdo‘ e JOdJ,pn,'S) (20"')

and if we insert (204) into the right side of (205) and then use the

")
inverse of (202) again to eliminate {zh°h?)- we obtain

( . '(T"'I')a <
f (et Hg) = \ 4T & Saigels (200)
o (aTigde)”

after some manipulation. This is the form that we want since the rule,

o

do an integral, refers to the same variables as our two previous rules.



Note that (206) is an identity for df=0, so that

- 7:"3.:)‘/ ¢
/I'mt'{‘ c ( e = S(T..'-T-) (207)

For 850 but still small, the integrand is sharply peaked about

T« o2 Ty and the expansion

fz;,u;',g) = )((‘;,n.{) + 3_7(?-:’.%.{)(0‘"-31) o (209)
o

will give a quickly convergent result when used on the right of (206).
One can use it to verify that (206) and (198a) are equivalent to
lowest order in AL . Fermi had also used this argument in his deriv-

ation.

Combining the three rules (200), (201), and (206) independently

gives
I Y, AN
frde,mpop = |47 € 2H fa,vsntinpe ¥
e (RTig40) T (o9)

as the equivalent of (197). The initial condition of (197) is
{.(mh.&,ﬁ)zl. If we use it in (209) we obtain the result for the

- KoY AL T
first infinitesimal, f (JI,T.,P.,{)r- e T/

which we insert
back into (209). Inspection of the first few intervals establishes the

form of solution as

“[ALDT + A (2 Te px + A, (2,9 P
.'L(,l,r,)y”i)z B(,’g)e [A DT + A (2D Tu Px + A5 (2 pf’]
(210)

If we insert this into (197) we obtain

AA (LD« -2igals Koo (o = -igAB (1.4

48
A4
d£x<4»%) = -20§AR. ¥ 2 A, %,u.zu -ig%ﬁnx (24k,¢)



by equating equal powers of transform coefficients, The initial condi=-
tions would now be B(L=0,Q)=1 , A, (2=z0,§) =0 . Note that
the g-» 0 limit of the set (211) is the set (30), so that the Fermi-

Eyges theory is contairied as a limiting case.

The key equation of this set is (211a), the one which depends only

on itself. With the transformation

A = = L d¥ap = L L b Peay) (.12)

2:8 Ve, AL 2iy 4
it becomes
L gk P =0 (213)
d4*  ai

We may take the initial conditions as ¥(e,9) =1, ¥'(o,g)=0. With

(212), the solution of (211¢) is easily

B(ﬂ;g) = "f’-y(z.z,g) (1)

Since the equation for Ay is linear and first order with a well known

general form of solution, we obtain

A, (4,3) = :-iz; (l— :LP) (215)

Y
without difficulty. We can also integrate (211c) by recognizing t/“V
as an exact differential. Defining X(Q,") as the second solution of

(213) with the initial conditions X (0,)=0 and X'(e,§) =1, then

X = L 4X - = L @1e)
g(_(/”f),_qfll("{*zg ﬁl’x) - 216

44
as is straightfoward to prove from (213). With (216), (211c) becomes
= a . X(@.¥) ')
Asap = o7 (2 - X (217)

P(e)



Spatial distributions are our objective and we delete angular inform-

ation by integration. Integrating (195) over all angles gives

7[(1)2)”0 =(;;_‘), ff ‘“’“‘I’,J{ e i(frx+l’y1+gd){am‘=r'=o""'y’?)

(218)
for the complete density, while the simpler longitudinal part, obtained

by integrating over both lateral coordinates as well, is

t tg4
o = 2 (o merntetiap a0
with (196), (210), (214) and (217), the transforms of interest are
_ P4 (l-— "("3)/4)

4,T=°,P,)= (1)9))’:' -—L" e‘ —2—':3 ’4’;)
fe p= fled Veap “l (220

therefore

and
(,t F=o0,p=0 8) = L (4 g) = y (22|)
T EES ' W)
so that all the information that we would require is to be obtained by
solving the wave equation (213). Before considering its solutions, we
remove the small angle limitation. The objective is to give extended

meaning and definition to the functions that were introduced here.

B. Large Angles

Consider first the longitudinal part of (193) which satisfies

a_fu,a-sa, 8 = —(1-cos8) ¥ s K@ 2 (c,-,,gai )
EY. EY ¥ Sined 30 20 (222)
Its initial conditions would be f(l=°, cos8,8) = §(1-cesO) §(4) .

The most general form of solution may be written.

Ha,ees6,8) = % @) fi can F o (223)

9
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where the Pj are the usual Legendre polynominals. We can always

define a set of Fourier transforms by

1L,(,¢ 2 =~ gdi’ e th {(l,g) (114)

and then (223) and (224) in (222) then give

“3{.} (44) = - i—f[{; "a_ii_”{; ‘(f*'){”] - K(‘Q)J (J‘”)(;

(ajen (22%)
which are equivalent to (222). The initial conditions are -/'u.o,g)

=1, We are particularly interested in the first two of these rela-

al?{, (40 = - ig(fe-£.) (224)
“’J () = - ig(fo- 5o -2 fa) - REOL, (22)

To solve them we need another relation and the form of the small angle

tions, i.e.,

solution provides it. The longitudinal part of the small angle solu-

tion is obtained from

{(x,e,A) = -(o;'; j&f‘(q £(2.8.,8,,%,3,8) (229

where the Cartesian angles (8\.,9,) would be replaced by their
cylindrical equivalents 6,¢ to match the spherical description (223)
smoothly. Usi=g (195), (196), (210) and (214), the integrals of (228)

lead to

{(_Q 0,a) = ' 405 ¢3 <§3‘dr’3"(ro) f(x,r,;))

y (229)
where T is the magnitude I = (z2+ Tr") ’,3’. is a zero order Bessel

function, and - A, “’i) T (130)

fe.mg) = ':p'@,
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Bessel's equation is the small angle limit of Legendre's equation and
comparing them gives the associations Jo (T8)© [, (cos0), T J(j)comparing

(223), (224) against (229), (230) then gives

\ e-A,u,,,)J(aH) @231)
¥ (ﬁ,-z) = e——
4?(44)
as the form of solution. It does not define either or which is

done by (226) and (227). With (226) and (231) we obtain a constraint

between two functions

Au(-l,g) = —.'5. lm(\*%—%yd‘?:f) (131)

With (232) we rewrite (231) as : )
. $(§+Y)
{49 = = (|+ {11’) = (233)
Y(4,8)

and then (233) in (227) gives

LY 3 “ap (5, 43)

UCY + (1+EL 4’_'*) Fr Y = 2yt (G H4) G

22 VAT 3
as the new definition of ¥. In (233) and (234) we have a complete
solution to the longitudinal part of the transport problem, That
solution is quite formal, however, since we still need to solve for ¥

and then invert the Fourier transforms. These topics will be consider-

ed in section C of this chapter.

A more general argument begins with a spherical harmonic expansion

c e\ 73
- 24+ ', (0’
fanotmpn = 2 ()7L, o) Y0 (239)

and allows us to include the lateral movement as well. The expansion
(235) replaces (223) and aims to solve (193) rather than (222). We

would again define spatial Fourier transforms

{)&‘n,z,y,a); A Ss‘fdl’""“fﬁ 61(P'x+?YY+?A)-ﬁ£‘f;P=:91,?) (23¢)

(an)?®



which replace (224). Then (235) aud (236) in (193) give

l(a}y') [d;'MCI)P‘)PIIg) 4 K(l)d (Jf')¥‘"‘]
odL

= - L (Fg *i Ph {’L‘ }*l*M)O'Fl*W\\] T;}N,\VN:. (:(}'MX}’M'D]‘/‘;‘_"M"}
—i(pa-i p,){+[(;+l-m)(}n-vn)] V}C;..,m.. - [(}m)(hm-')]y;ﬂ,-..,m-.‘)

- 214 {2in ;-G rmG-m)] Vl«/,-.,m -K 3*‘*"‘“3“""\)]’,‘{,.‘.“}
(237)

as the generalization of (225). Many of these rel!ations are not inde-

pendent. Because of cylindrical symmetry we have

% m(l Pn.fy;%)'— ('Mﬁ{i_m (R,P,O,g) (’.38“)
f,,-m (2,p,99) = 0" ,C}mu,p,o,g) (238b)
where P = (Pl“ + P"')'/l- R W = arc +a"\ ( PY/P'.) ¢

In addition to these large angle expressions, we will also want to
express the small angle result, the product of (196) and (210), which

uses continuous variables Tx,7y , in discrete notation j,m.

The p.,fy,3 integrations of (195) are spatial transforms while the

angular parts of this equations are concerned only with

L4 -0

(7.9, +T,8,)
(jr-r)* jl:ﬂ 547; e 4 %(A,I.,Ty)f,,?y,g)

o aw

g cocld -(AT* AT cos2-8)]
= J—zSTo(ngd ot T Ol “’{e Pl
(a1r) . . ‘ 8_4”7"{’}

(231)
where (6,4),(F%) ard (p,#) are the cylindrical equivalents of

(8.,8),(T<,3y) and (pse)respectively. We also used (196), (210) and



(214) on the right of (239). If we use the decomposition

e Lbhp cosa Z"’— P { ma ?’m (b(v) (Z*}o)

mz= -

where 'J'm i{s a Bessel function of order w» in both terms of this form

that appear in (239), then the right hand side of (239) becomes

- A i
(AT™+ aP)?, - CipTa) € h)@]

fwz(o T0e "‘"[
2”

mg-”

By comparing Bessel's equation for non-zero order against the associ-
ated Legendre equation, and using also the definition of spherical
vnf %
harmonics, we would be led to replace (” ?’ <‘~'0)e ‘-'-’r) .<9:f) .
244! Fm
Along with the replacement :T‘-v}()'ﬂ) so that 2TFdT- 1}+| which was used

earlier, (239) becomes

.
Y
‘('5:7)‘5»(‘”' 47, € {(g,r.,r,,p,,p,,g) (241)

(zyﬂ) ‘{J'(nl,t’.,ry,%) Y)'S\G»Q)

where

£, 0ppng) = ({m“»ﬂ"’ﬂ)':' {,mumvz)) e
—(A T +A3p)

P (2421)

The arrow in (242b) means that we still need to specify a rule for con-

-tm¥®p

(2420)

im(OPE) € { (£,7,p>9) =F (ipTA) C

verting functions with continuous T on the right into discrete ‘f on
the left. This rule will often mean 3"—»}(}“) but it may also mean

other expressions that are similar to it. We are allowing for those
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other possibilities as well.

Only the small argument expansions of these Bessel functions will
be needed. The small angle approximation, which was used to obtain
(242b), could be used to show that ip¥A,is small. However, apart from
that, a Taylor expansion in powers of P is a moments expansion of the
lateral movement. The first term in this expansion, p=o, leaves only
the longitudinal movement which is described by ?'m (0)= ‘... and (231)-
(234). We now continue this expansion to include expressions that are
linear in p aspvo. The 'Fi(-‘:;P‘.'?) are the only terms that have this
behavior and they satisfy (237) with the first term on the right hand

side discarded. It leads to order P 3 and higher. We then have

H P) o) MY — . e -
2aped [0 jgakinf ] = VG (Egaenf..)

I

g -y i Yo)

to first order in P - As a first step towards the solution of (243)

we consider its g-;o limit. We already know that

- }(J:+')4'(l,f)
. (R)P=°)g) = e

dre U
§=2 16,) §=°
d (249

from (231). We also have ‘Wa,0=!from (234) while (232) and (234) give

the differential equation for A.(l.%)from which we can easily obtain

2
A.(2,0) = jeu' /%5') G45)



With these remarks, the goo limit of (2u43) gives

-dGe ' -2(j+A (2]
g9 = PVEGD @ A "’f,u {e‘“ ) g2 o?
He!

2.(3.)4'!) ( )
246

without difficulty. We now try to generalize this relation to q%otw

writing

(2,09 = tpViGs o FIFD A (2,9) Afu,g)

!

o2
P20, @47a)
where
I} o VA (4
e o [ {en o)
(l}ﬂ) s P(L9)
(2474)

Here we have used the substitutions A.(2,0)-> A(£,§) and /= V(8,9 ¥,
Since ?’(c,q)and A.(1§)are connected by (232), to change one is to change
the other. Setting g:o removes the longitudinal movement from the
theory by integrating over it while allowing for érbitrary g returns
it to the theory. However, at this stage, (2U47) should be regarded as
a guess and so we check it against the small angle result that has con-
tinuous and non-zero values of { in it. The small angle expansion of

these relations leads to

8
_ -1 ) .
A, (Rg)—a\[d! a;x{ud) _fd(:ﬁ) = A (4,9
2.%)
(244)

where we have used (212) and (215) on the right side of (248). We com-

pare (247) with (248) against the small angle result (242b), a result



98

that we know to be correct. With the first order expanslonjﬁquVAQ
-> ipTA,_/g and the replacement ¥-»VJ(7s0, (242b) and (247) will

agree if we use (248). At this stage, (247) would become a definition.

The expression (247) is an analogue of (231). What we could prove
about one could be proved about the other, not more nor less., We could
prove that (231) is correct at all times for 3=0vuth a simple
demonstration using (225). We would then discover the relation (2u5)
if we were not already aware of it. We can also prove that (231) con-
tains the correct small angle behavior within it and then use that to
prove several other things. An alternate way of introducing the small
angle approximation, which yields differential equations, is to take
the small difference limit of difference equations. This method
appears to have been introduced into a transport problem by G.C. Wick.
Since we obtained (231) by solving a differential equation, we could
use it in the reverse manner and show that (231) solves the difference
equation (225), under the condition that the differ2.ces are small. A
most important feature of the small angle analysis is that it contains
the transform variable 8 as a continuous parameter and we get two con-
ditions concerning it by considering when this analysis actually does

apply. It clearly pertains whenever

A = -4 n(1#iH 24— L L Lfup << \
AL 2ig "*’(1,3) AL
(299)
so that (232) agrees with (212). At any time, even at a long time when
it may well apply to only a few particles of a group, this condition

can always be satisfied by choosing sufficiently high values of g ,
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point also recognized by Wick19. At short times, when it will apply to

all the particles of a group, this condition will be satisfied for all
values of.{ , extending down to cud including the poin£g=o. In the
general case, a gap exists which separates the point .y=o from the con-
tinuous high *f (small angle) region where (249) applies. In our
approach, large angle expressions such as (231 and (247) are obtained
by rearranging analogous small angle relations. We aim to insure that
these amended (and more general) relations are always correct at the
point.f:o as well. This simultaneously defines distributions within
the gap although it does not prove that our definitions are correct

there.

An alternate approagh towards bridging this gap would begin by
setting up Taylor-moment expansions about the point-g::o . The neces-
sary coefficients would then be obtained by applying Lewis type moment
relations to (193). This procedure would appear to be stronger than
the method that we proposed above because all the coefficients would
now be obtained directly from the transport equation and it would then
be expected to provide us with a proof. This procedure would lead us
to a mistake if we pursued it. The exact transport equation contains
the correct boundary behavior at all of its boundaries while the small
angle solution does not have this property. By avoiding this approach
we avoid the second large A problem witii moments that was noted in our
final remarks at the end of Chapter IV. Since we can't use the exact
transport equation to prove the correctness of our approach, we require
an alternate method and we will rely on the correctness of its predic-

tions to do this for us. What we need to demonstrate mainly is that
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the passage from small to large angles is perfectly continuous and thut .-
the solutions are always developing towards spherical symmetry. Our
work in the later parts of this chapter will illustrate that these fea~-

tures are correctly built into our method.

Spencer's work is worth mentioning again. 1In his 1955 paper,
Spencer suggested that his method of constructing spatial distributions
was equivalent to combining Lewis's moment relations (for its low q
features) to a Wick type asymptotic behavior (for its high q features).
Both had problems. Spencer did not unocover or investigate any rugfher
the problems connected with Lewis' moment relations. He was aware,
however, that his argument concerning the asymptotic behavior had dif-
ficulties since he mentioned that he had found a much better argument
which would be presented later. This led to the paper by Spencer and
Coyne (1962) which considered the longitudinal part of the multiple
scattering problem within the context of the small angle approximation.
They made progress with it in their first calculation, their sections
III and IV, but it was limited progress, well short of a breakthrough,
and so Spencer and Coyne then turned their attention back towards
eigenvalues, which is not what we want. Spencer and Coyne had missed
very key ideas concerning Yang's analysis. They did not appreciate
that first order in time is needed to derive the form of the solution
and that Yang's method of handling the time development was the pivotal
problem in his analysis. They did discover a second order differential
equation but they missed the wave equation (213), the principal equ-
ation of the small angle theory and so did not recognize that in it we

have another oscillator and a different oscillator from the one that
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Yang was discussing; We will be developing this "other oscillator"

idea in the later sections of this chapter.

We should have qualified the remark that (247) and (242b) agree.
They agree only to within an exponential factor involving f‘lhwhich is
absent t‘.rom (247). The first order argument that we used to obtain
(247), linear in pasp¥e, cannot see second order terms involving p*
and we can say nothing new about AzieQdwithout going to the next order.
On the other hand, we know everything about the small angle function
A,,Ul,g), It splits into many functions that now need to be distinguished
by an index j . The polar parts of the spherical harmonics Y.;,lo?'”
involve Ssine §, Sine O CesO , o0 forJ=|,z , ete. In the small
angle approximation that we used, which is valid up to second order,
all could be replaced by the same expression € . A consequence is that
the A:(.Q,%) became degenerate for small angles and were represented by the
same function A‘(l,p. Further, in an argument which is valid up to order
P", an argument that will not be given here, we would find that the

association
a ) Va
T = [ G0jGm(+a)] (2 59)

automatically appears in our equations. This is necessary so that the

P ‘Q » . - - .
coefficients ﬁ("»’[’»g) vanish for J" 0,¢=t- We would be using (250)
in some parts of our equations while also using J“—é}(éﬂ) in other

places. The small angle analysis does not dist inguish them.



The small angle analysis could be called the infinitesimally small
angle analysis and its extension to large angles would then be called
the extension to finite angles. Regardless of terminology, the role of
this extension is to provide better definition, to separate what is
indistinguishable in one analysis from what clearly is by another. We
appear to have just enough structure to do that. Use of the g»o tran-
sport relations, combined with the substitutions 1/‘(1,0)—» "/’u,g)

A, (1,0) - 4, (,(,f) , and careful comparisons against the

small angle equations should provide all the ¢J£3'P’3) that we would

ever need. We do not pursue this topic further.

It is evident that the 4,} are in no way fundamental since we can
express them as functions of “P and its time derivative by using (232).
The set of coefficients {J&fﬂ%ﬂ), which provide a complete description
of the system, are similar in that they are integrals and combinations
of these more fundamental functions. What we have is a dynamical
system, which requires a good deal of structure to describe it, but a
system which is being driven by a dynamical differential equation,
(234) now rather then (213). This underlying differential equation now

becomes the object of our attention.

Large angle equations are difficult to work with and we will
develop an approximate solution to them. Of the two terms in (234)
that amend (213), the cubic correction is the smaller and the more dif-
ficult to handel. Rather than using the exact continuation (234), we

will consider the approximation

o(:__"f’ + KO {_’f +j Kil) P =0 (25"1)
AL 2 At 3

102



which retains the principal correction to the small angle theory.
Rather than using an exact expression for Asu'!)’ we would also choose

the approximation

_ea . e Xy, ))
e :zig (' oy —'—"g

| 25 2

fanp = = L, X(2,0 @5 2)
P40 ,

which is a generalization of (220). Here X is defined as the second

solution of (251) with its initial conditions reversed form ’1/) . We

will use results from the exact expressions mainly to check the quality

of these approximations.

C. Analysis

Regardless of the choice of K(1), any solution of (213) or (251)
satisfying ’4’(0,8):!, ﬂ[’;,,,p:o can be represented as an infinite pro-

duct of the form

Prag9 = :‘TZ{ r- f/,f,t:)} (253)

where the g“ are the points where -p. The second solution X can
also be represented this way if we normalize with X(l,o), The zeros of
these functions define the density by (220) or (252) and also contain
the information that we require to invert the Fourier transforms by
contour integration. Our problem reduces to finding a method which
will locate the zeros of these functions in a useful way. We consider

some cases of special interest here that develop and define our method.
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The example of greatest interest to us concerns relativistic elec-
trons. penetrating a homogeneous low ¥ material. A reasonable model of
this problem uses a constant mean free path, a constant rate of energy
loss with distance of travel, and a mean square deflection angle per
collision that is inversely porportional to the square of the energy of
the penetrating particle, Combining these remarks then leads to a par-
ameterization of the form ‘

K = KO- (4/pea)” C (as9)
where ot 2 (mc*/g)R , €. is the initial electron energy,Ris the
corresponding range, the total particle path length from start to stop,

and mc'is the electron rest energy.

We first consider the small angle problem
2
V.3 K@ deo (255)
AL 20 (1= Ypan)
which is (254) in (213). With a change of variable ¥ (g = - In(1-2/psy)
followed by Y= e E/‘I (255) becomes
J1§+a)’f =0 (250
FZ
w? = {z\/z; ; A= K)(R+«) (257)

where

From the general solution of (256) we find that the two solutions of

(255) with the correct initial conditions are

4‘/(1,%) = e ¥/y (cas wf f-.?—'{:) Sine a)f-’) (25’34)
- %/, ;
Xl = £, () on

At any instant we know the value of ¥(A). If we set "I’:o and use (2%8a),

we are led to compute the intersection of the two curves

Y (wF) == %,(08) ;o (@) =ten@F)  (259)
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The solution is an infinite number of discrete points, a set of numeri-
cal values (U)}),, from which we easily determine the g“ . Since

¥(¢) is time dependent, the inclination angle of the line y,(w}) changes
with time causing it to rotate. The intersection is clearly a conti-
nously changing pattern of zeros. It is easily verified that the
relation (u)I)“=(2w+l) /a2 is always true for largew and that for

early times it is true for all n.

Despite the specific choice (254), the behavior just described is
general since we can also arrive at it by the WKB approximation that

uses arbitrary K(f!. The WKB method uses solutions to (213) in the form

wiKa 3 i—fill/’(l',i)
(o = Ae@ b u,g) e v (2 60)

where /’ is the wave number-(ff”) .‘Our initial conditions require

"Pu':?) = (%’)} {“‘4("3)*"["""3) 44 M)] "“W%&“)

where 4(1,2)13 the phase in the exponent of (260). The WKB approach is
a short wavelength approximation that is applicable when

,'_ xm) -
(oo A/ ($5¢4)
For ,g—) oo , {261) and (262) show that

fn(x)) \{u (Ku'))y‘ _(.zn+|)1r : h=s o

(262)

(63)

will always locate the high 7 zeros of ’7)* When energy loss is
negligible, K()>K , the derivatives in (261) and (262) vanish. We

have pure oscillations for all 8 and (263) holds for all m
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As the second case of special interest we use the large angle
problem é(.: .!/,
"V 1KLY s gk ¥=0 (264)
d4* R A1 3
which is the energy independent version of (251). Most readers of this
text would be able to find its solutions for themselves, so it is the
method by which we solve it that is under discussion. Our method will

be applicable to (251) itself where K{{)is arbitrary.

We first note that any '? that can be represented by an infinite
product of the form (253) can also be represented by a Taylor series
Pan=S 2 tap| £ Lis)
(I’g) i meo —5?"‘ , iz m! ¥
since it is the more general form. The differential equation that
defines also defines the coefficients in (265) and we are especially
interested in the first derivative. Since "f{,(){:o) =] 1is an

immediate consequence of the initial conditions, (265) in (251) gives
y) 2
. -4, AL K(2")
a_j)@,ia-o) = Lfdi'{l-e“: =z
ag e

without difficulty. Using (253), we also have

(26¢)

P, o00) = - -
_a?u,g-) =-Z 70 (267)

The numerical value of this derivative, given by (266), is continually
changing with time because the zeros are moving. By (267), the impor-
tant contributions to it always come from the zeros which are closest
to the point gso. Those which are most distant, near ,?-900 , Will

hardly contribute at all.
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Our method of solving (251) begins with the function (258a). We
aim to construct the large angle solution by continuously deforming
this small angle result. The first step in the procedure is to allow¥
and A to become two arbitrary time dependent parameters. These could
be determined by any two pieces of independent information. As the
first, we choose the asymptotic relations (263). The second is a lowg

condition, that the first derivative, given by (266), always be compu-

ted correctly.

As an illustration of the procedure in a simple case, we now apply

it to (264). The functional form (258a) has asymptotic zeros at

72
(\2,‘ (1)/\(1)) f(,() =(2n+/)_73_7’ ; N—vas (2480.)
21
while the condition (263) locates them at
Y2
TaO)" K™ = @nen) T N> (2681)
2i <

The first derivative of the function (258a) is

2 . - ¥l
v (04=9 = (A [}’{1)-‘(’-9 )J (2044)
3{ 2

while, in the energy independent case, (266) becomes

- . -K£
2 (ag=0) - ([ 2- 2 (1- 4] ()
N
Inspection shows that ¥ = KL/2 and A=4fk. It is easy to verify
that the function (258a), with these parameters, has been transformed

into the exact solution of (264). At the same time, the function

(258b) will also transform into the second normalized solution of

(261), IX(‘»?)/X(‘)O)-
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D. Sample Calculations

We analyze a charged particle multiple scattering problem from

beginning to end and construct a few of the relevant distributions.

We continue with the relativistic electron example defined by

LY+ Kk 4P s gk ¥ =0 (270)
AL> a(l- I/«“) o(l 28 (I‘ -l/RCd);

The functions (258a,b) become solutions when we determine the paramet-
ers.F,A by applying the conditions (263) and (266) with (254).

Matching the locations of the asymptotic zeros gives
ﬂ a
M Flw = _(u'(;((zr))"' (271)

from (263) and (268). Doing this integral with (254) gives

A Fleo = KOK+) ba*(1- 2/k4ed (272)

as our first condition. The integral (266) using (254) may be written

3TV (4,3=0) _ ; m«)t.et"{(e,(t,) -¢ t) -(E,(t)-_q.t)}
of ¢ t
(273)
where
i , s ¥
£ = KoxRe) C E(®) = f dy e (274)
2 (1-4/pu) ¢ &

and f‘,:\‘.‘(o) . Once we specify the numerical values of Ko ,R and o¢  we

can simply look up the value of this derivative since E, , is a tabul-
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ated t‘unotionzo. We equate (268) and (273) to obtain our second
condition and then solve easily for }'(IJ,X(!) by using (272) as well.
The numerical behavior of !‘X determined this way is plotted in Fig.
(7a,7b) for the case of electrons, with initial energies of 5 and 20
MeV, penetrating water. The numerical values of K(0),R,« that were used

will be given in Fig. (9).

The zeros of A are the calculable from (259) and the first sever-
al are plotted in Fig. (7c) for the 20 MeV electron case. For yon we

can approximate terms in the infinite product (253) as

("' f. ) o~ - i g ﬁ,w:fn | - _{ (275')
VRTY Tl Fall) 9va

and then use it to show that
- ¥01)/2 bl ks
e / = I ¥ m)} (27¢)

In the initial stages of the problem, all the zeros may be computed by
(263) and ¥=0 identically, as was the case in Yang's problem. Scat-
tering deforms distributions by moving the zeros around and the ratio
(276) can give a measure of how much rearrangement there has been from
very early times to some later time that we might be interested in.

The suggestion is that -“'/,_ =1 will allow us to estimate when rear-
rangement due to scattering is beginning to become noticable or
significant. This occurs at about f=.82 in both the 5 and 20 MeV elec-

tron examples.

To construct a distribution we invert the Fourier transform by



closing a contour in the upper half complex g plane. The longitudinal

density

7[(4 ) = - ‘543 e‘f (277)
Pl %)

then becomes

fan = 5 5 et (278)

for &0 , where the slope of the wave at its n** zero is defined by
o () = 3._.1.{'"'33/
Z 9= Fnle)

For A<6 we close contours in the lower half plane. Since<™'is never

(279)

singular there, we always have .[(z, a<o0)=0. Along with the zero loca-
tions, we also need the derivative of (258a) to evaluate (279). This

is given by

_¥/,
IPag) = e [ Foine oF -4 Sieef + F coF)  (280)

where w =({A/2i)yz.

Sample results are shown in Fig. (7d)for the 20 MeV electron case.
The number of terms in the series (278) that are required to adequately
represent a result depends on A& . Large &, 4/;% z requires only the

first term, small A, &/& = .2 requires the first five.

Up to now we have used the time dependent picture exclusively, a

picture which considers particle distributions at any given instant.

110



111

Some of the most important and familiar results are steady state or
time independent calculations which are obtained by integrating over

many instants.

The longitudinal steady state density defined by
Z

! 4 R~
Lea= (48 {02 = | da f(zran (221)

sweeps a pulse across a plane at depth and counts the number of parti-
cles between &, Z+dE over the duration of a particle's lifetime. The
normalized distribution f(z)/a corresponds to injecting a continuous
current of particles where the current strength is adjusted so that
there is always one particle somewhere within the material at all

times. Expanding the integrand about the time L=¢g

Llava,0) = fzm + Hz0a 4., (282)
2Z

develops (281) into a series of time derivatives of space integrals

- ‘ $ - e
for= 3 & B (o frone) <2 45
K=o (283)

where the upper limit remains fixed J‘= R-Z . The first term in the

series is the largest and is given explicitly by

((oé) _ Z @

" (@ P2 laso

io.(z)a |29
fn (= (284)

using (278). Since

[}

da8 L(=a) = jdA i etinma =1 (185)
S—w ]L ’ . g &2 % f”(l)ﬁ,(E)




by (278), and since

‘(Ja fz o = fe{a (-'_ dg _g_‘!‘)
- - 2T Ve .'}'(1,2) FEs

we can write (284) simply as

o = 1+ i (287)

MR AN e

Analogous expressions can be given for the higher‘f(';’) as well. The
numerical behavior of the first several f{'é’)is shown in Fig. (8a) for

the 20 MeV electron example. Tizzir summation into f(z)is Fig. (8b).

Spatial distributions indicating the release or absorption of
energy within a material are also quite important in applications and
are very closely related to density calculations. For example, the
energy dissipated between the layers gz, z.<® by a penetrating primary

beam would be given by

R
D&} = fdl Sece)) 7[(1,1.7.-) (288)

where § represents an appropriate stopping power. If we continue with
the 20 MeV electron example, then the nearly constant behavior of

allows us to write
D(e) ~ Stetsen) {(2) (13‘7)

which will realize a good estimate easily. Combining the collision

part of the stopping power, which accounts for ionization losses only

and {(z) according to (289) gives our estimate of D.(#). This is plotted

in Fig. (8c). The short horizontal lines on that plot are Berger's 20
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MeV electron result21 obtained by a variation of the Monte Carlo
method. The agreement is reasonable and there probably should be some
disagreement in these results because of differences in the way the

electron scattering was parameterized, e.g., Berger did not use (254).

Berger and Seltzer22 gave a much more extensive presentation of
their results in their 1969 work and followed later with further calcu-
lations also based on Monte Carlo methodsz3. These works also provide

some worthwhile background information and perspective on the electron

penetration problem.

E. The Linear Approximation

The replacement of (234) by (251) was a key simplicity that was
incorporated into the results of sections VC, VD. We check the sense

and quality of that approximation here.

Consider first a more extended use of the functions (258a,b) in
which we aim to construct the complete spatial density. We again need
two conditions to determine the parameters ¥, \ but this time we use the
first two longitudinal moments to do it. The moment series for the
longitudinal distribution is obtained by comparing the exponential

expansion

fag = >

mmeo

i)™ Ao (124)
1

against the Taylor expansion of

foop = Yavup = (mf Ypn Tea= f;:l',) (245)
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from which we obtain

'\I’(_c,{){ gzo = ] (2900)
+ a"l'u.g), = A(D) (2904)
3% g=o
(-Gl -7-@r-e Gwo
T

without much dlt‘f‘lculty Expr'essmns which will give the numerical
values of these derivatives are obtained directly from the differential
equation for % ¢ ' which in th’is case would be (234). If we also have a
specific function in mind, in this case (258a), we simply take its
derivatives and evaluate them at gcd, giving expressions which involve
only ,F,,\ . We then set these expressions equal to their numerical
values that were obtained from the transport equation to determine the

numerical values of F,J .

This procedure defines the parameters of the second function,
(258b), simultaneously. We could then use both of them and write the
complete density as

-p o (. V(1,9 X(a.9)
7[(1 Prg) = 2ig ( V(0,9 X(12,0)

(Jz g)

(291)
which generalizes on (252) by introducing a third par*ameter')] . We
would determine this third parameter by requiring that

1 Y (2,0) -
o] oy (10 1@ Xup)i = A,
? Y(ag) X (2,0 g0

(292)
where Az(to)would be computed from (237) and a calculation valid to

order p‘
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The quantity A,(4,0) gives a measure of the lateral spread of the

beam, From the definition

n*a) = jf dx dy da (x*+y?) {a.x,,y,a)

spatial Fourier transforms of the type (218) give

(243)

S3(0) = - [ + 97
n(g) = (-a—P.,,"’ -a—r-’,) {(«t,}’-,py,g)\;:: (2‘74)

regardless of the form of the distribution., Since we also know the
form of the (Fouﬁier transform of) the density, we obtain

Ny = Y As(a,3=9) (ass)
The method just outlined is a moments approach in which the first three
moments, the average depth of penetration a , the lateral and longi-
tudinal widths, Rt and &* , are used to construct the complete
density. This approach is more general and allows us to produce
results of greater accuracy than the procedure discussed in section VC
because we can apply it to (234) without the approximation (251). This
improved accuracy is not free because the moments procedure is consi-
derably more laﬁorious. Our remaining remarks are intended to
illustrate that we achieve very little improvement for this extra

effort and that the procedures discussed in sections VC,D are perfectly

adequate to handle the electron penetration problem.

Let us first note that the transport equations (193), (234%), and
(251) all agree exactly on the first moment, & . Our method of solv-
ing (251) used the condition (266). Because we incorporated that step
into our method of solution, we are guaranteed, by relation (290b),

that distributions constructed by that method will always have an aver-
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age value that is in exact agreement with the transport equation. To
see differences between (234) and (251) and the corresponding densities
that they produce, we need to look at the next moments, f\?a) and orte

which describe the widths of the particle distributions.

Let us further note that the equations of motion (213), (251),
(234) are progressively more accurate descripticas of the diffusion
process and would be used to describe small angle‘behavior, a transi-
tion region, spherical symmetry. In the electron problems that we have
been using, the charged particles are relativistic over most of their
path length and are rather difficult to deflect under these conditions.
Once they do lose enough energy so that they are more easily deflected,
they won't go very far., They soon run out of energy and stop well
short of the diffusion limit, spherical symmetry, while still in the
transition region. This is the physical reason why we would‘try to

apply (251).

Since the differences between these equations develop with
increasing time, the case of energy independent scattering is worth
considering first. We can easily compute all the relevant moment
expressions and then project them to indefinitely long times, allowing
a worst case comparison., We find that O‘zs./d’;;q = V3 as > e and
that there is anﬂgnalogous disagreement in the lateral width by a
factor on37-. The differences will be smaller in actual problems

because particles don't scatter forever.

We consider again the example of electrons penetrating water and

summarize the situation in Figure (9). The scattering parameters that
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were used were obtained from the large angle version of (56) and also
(160). Using reasonable approximation, they yield the simpler form
(254), which allows convenient manipulation, as well as the values of
@and o that are given in this table. The particle ranges, R , are
obtained by evaluating integrals (42). This was done by Berger and

Seltzer and it is their values that were used.

The results of interest are the longitudinal moments evaluated at
f=R. The average value, & , is the same whether computed by (234) or
(251) but they differ on the second moment by ratios of 1.17, 1.12,
1.10. These ratios are all smaller than the upper limit of V3 =

(.73 set by the energy independent example.

The greatest disagreement is in the 5 Mev case and a comparison of
the two associated longitudinal densities is shown in Fig. (10). The
improvement in accuracy is minor, almost negligible, and not worth the
significant extra effort that it takes to achieve it. Since.the later-
al disagreement would be even smaller, as the energy independent
example indicates, the replacement of (234) by (251) should be per-

fectly adequate to handle the electron penetration problem.



VI. Concluding Remarks

Theory and experiment work well together to promote genuine
progress because each aims to accomplish something different. Ffom
experiment we can expect to produce accuraté and reliable numbers. The
primary purpose of a theory is to explain and predict these numbers,
not to geherate them. In the nearly four decades that medical physi-
cists have used megavoltage electron beams, theory remained neglected
and unattended to, with exceptibnal and undue emphasis placed on
experiment. The one sided character of their effort seriously arrested

their progress.

Part of the problem was medical physicists themselves. They chose
to probe the charged particle penetration problem by using tools that
they felt comfortable with, e.g., jonization chambers, but avoided the
use of tools that they were unfamiliar with, e.g., differential equa-
tions. A more significant part of the problem was that the theory
itself appeared not to be able to accomplish anything of value. The
material that was generally being presented to them under the label of
theory was actually numerical analysis. A successful numerical analys-
is will produce accurate numbers. Since medical physicists were
already able to produce accurate numbers by experiment, and more

reliably than by calculator, they found that "theory" was ignorable.

Theories should be developed analytically and the key word in a
theory is structure. The mathematical structure that comes from the
solution of a differential equation can be expected to provide an

organization, connections and relations, that can reduce a tremendous
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quantity of numbers down to a very few. That simplicity and under-
standing is what we mean by a solved problem. The structure that does
this is not only valuable as theory but is also exploitable in applica-
tions. We cannot get it from a numerical analysis nor from an

experiment.

That theories should be developed analytically is certainly the
case in other successful theories with which we are familiar, e.g.,
Schrodinger's quantum mechanics or Maxwell's electrodynamics. That
transport theory is no exception is a message that should have come
through clearly in the workg of Fermi and Yang. Moreover, as these
works also illustrate, problem solving is accamplished by precision of
thinking, by finding the right idea, not by reliance on brute force

approaches, such as Monte Carlo methods.

It should not be surprising then that the first real breakthrough
for medical physicists came about rather recently, after they ignored
the last few decades of theoretical non-development and went back to
use Fermi's analytic theory. Extending this success inevitably lesds
to Yang's theory, a much more complicated theory which engages a number
of other topics, i.e., moments, the complex plane, wave equations and

eigenvalues.

Chapters II, III and IV of this work may be considered to be back-
ground sections, of some interest to medical physicists. Chapter V
contains the material that they will find most worthwhile. Parts of it
will be essential to applications of this theory. Our development

ended once we showed that we had a well defined theory, with its equa-
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tions working; and that we could extract its precictions so that they
could be compared against experiment. The actual comparisons with
experiment, modeling with inhomogeneous configurations, the writing of

treatment planning computer programs, are all topics that remain to be

pursued.,
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Fig. 1 Schematic transport diagrams. Top. Fermi's identification
of multiple scatter as a shower or multiplication problem.
The length of each arrow is the infinitesimal distance, dl.

Proceeding downwards, (a) the ray, or scatterless picture,

(b) Fermi's lateral transport model, (c) a second order picture

which is equivalent to Yang's theory.
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Fig. 2a. Schematic showing the experimental arrangement

for determing the dose behind a small inhomogen-
eity. A 1x1x2 cm air cavity was cut into a solid polysty-
rene phanton. From Fig. 7 Perry and Holt.
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Fig. 2b. The agreement between measured and predicted
dose distributions at various depths behind the

test cavity. The continuous line is the measured film den— -

sity; the points are our calculated values; the short hori-
zontal line is the ray model prediction. From Fig. 8
Perry and Holt.
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Fig. 3 Lateral width as a function of depth in polystyrene.

Measured values (solid lines) are compared against
predicted values (dashed lines) for electron beams with various
incident energies. From Fig. 5 of Perry and Holt.
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Fig. 10. The longitudinal distribution at the end of range for the case

of 5 MeV initial energy electrons penetrating water. Two
computations are compared. The curve ‘labeled & + WKB uses the method
discussed in sections VC,D and equation (251). The more accurate two
moment approach uses the method discussed in section VE and eqn. (234).
The numbers used in both calculations are given in Figure 9. This
comparison checks the quality of the linear approximation.
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