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Abstract

There has been tremendous research progress in estimating the depth of a scene

from a monocular camera image. Existing methods for single-image depth

prediction are exclusively based on deep neural networks, and their training

can be unsupervised using stereo image pairs, supervised using LiDAR point

clouds, or semi-supervised using both stereo and LiDAR. In general, semi-

supervised training is preferred as it does not suffer from the weaknesses of

either supervised training, resulting from the difference in the camera’s and the

LiDAR’s field of view, or unsupervised training, resulting from the poor depth

accuracy that can be recovered from a stereo pair. In this thesis, we present

our research in single-image depth prediction using semi-supervised training

that outperforms the state-of-the-art. We achieve this through a loss function

that explicitly exploits left-right consistency in a stereo reconstruction, which

has not been adopted in previous semi-supervised training. Furthermore, we

showed outputing inverse depth instead of disparity leads to better general-

ization and it is essential in the training. In addition, we describe the correct

use of ground truth depth derived from LiDAR that can significantly reduce

prediction error. The performance of our depth prediction model is evaluated

on popular KITTI dataset, and the importance of each aspect of our semi-

supervised training approach is demonstrated through experimental results.

Our deep neural network model has been made publicly available.1.

1Source code is available at https://github.com/a-jahani/semiDepth
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“Give me six hours to chop down a tree and I will spend the first four

sharpening the axe.”

– Abraham Lincoln
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Chapter 1

Introduction

1.1 Motivation and Background

Perceiving the 3D world is an important task in the field of robotics and com-

puter vision. To perceive the 3D world around us, knowing how far each pixel

is from our robot, known as capturing depth, is essential. Acquiring depth is

important in many situations. A solution to this task can be used in a broad

range of applications. Some of these applications are 3D point tracking in

localization of the robot poses [35], [63], 3D reconstruction in simultaneous

localization and mapping [51], knowing the distances to each objects in col-

lision avoidance [7], and figuring out the shape of the object and distance in

grasping [44], finding out the scale [8] or figuring out occlusions [3] in artificial

reality, and also taking a portrait mode in photo editing tools [56].

As a human, we have many cues to figure out depth of an object including

having two eyes or moving our head to use parallax, or our depth of field when

we try to focus on objects close and far away to us, or the prior our brain

has learned about the size of objects and occlusions. In order for our robot

to be able to perceive the 3D environment around it, knowing the depth is an

essential task. In general, depending on the task, the accuracy needed varies.

For example, for high definition maps in driverless car applications, the object

locations have the accuracy of up to 10 cm. Depending on the environment and

the tasks, many methods and sensors for capturing depth have been proposed

and made. Each has its cons and pros. In this work, compared to our baseline,

we improved the accuracy of the depth map from a single image by 12% (0.474
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meter) and achieving 3.464 meters in RMSE metric for KITTI dataset. In the

next section, we talk about these methods and sensors being used to capture

depth.

1.2 Methods of Acquiring Depth

1.2.1 RGB-D cameras

One of the most common ways of acquiring depth using sensors is to use

RGB-D cameras, e.g. Kinect, Xtion Pro. These cameras have Infrared Ra-

diation(IR) projector, which projects unique known patterns of IR dots in

a known direction, and there is another camera placed by known baseline

capturing these patterns from the scene. By matching the pattern seen by

the camera with the projected patterns, it can look up and see which direction

this pattern was projected and by the use of trigonometry, depth can be calcu-

lated. Although these sensors work well, they have some limitations. Because

of IR projection and sun rays having IR in its bandwidth, they can only work

indoors. Kinect v2 tried to overcome this limitation by using time of flight

cameras and built-in ambient light rejection feature, but still, it is not working

well in the direct sunlight situations. The depth range for Kinect and Xtion

pro is around 0.4m - 4.5m, 0.8m - 3.5m, respectively.

1.2.2 LiDAR, Radar, and Sonar

These sensors have been developed mostly to work for outdoor environments.

These sensors project waves and measure the time that the wave takes to

return to its source. Then the distance can be calculated using the following

formula:

distance =
speed of wave× time of travel

2
(1.1)

The difference between LiDAR, Radar, and Sonar is the type of wave that

is being emitted. LiDAR is using a laser while Radar and Sonar are using

radio wave and sound wave, respectively. Due to the frequency difference,

each has its usage in different applications. Compared to others, LiDAR is
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more accurate, and hence, they are expensive. Initially, LiDARs were only

one beam, but nowadays multi-beam LiDARs are available at the expense of

higher price. Due to the higher frequency of the laser, LiDAR has problems

in foggy environments. While Radar can penetrate fog better, its accuracy is

limited. Sonar is being used mostly for underwater and medical applications.

1.2.3 Using Image

Another way of getting depth is to use stereo cameras. By using two cameras,

first, we need to find the correspondence between two images, and by knowing

the baseline and camera focal length, we can calculate the depth of that pixel.

Figure 1.1 shows the trigonometry in stereo to get the depth of a pixel.

Figure 1.1: Stereo Trigonometry. f is focal length and disparity is xr − xl. Ol

and Or are the center of the left and right camera respectively. P is a point
in space. pl and pr are the projection of point P on the camera plane, and B
is the known baseline [23].

In summary, in the stereo camera, depth could be derived using the formula

below.

depth =
baseline× focal length

disparity
(1.2)

Alternatively, many algorithms have been proposed to calculate the depth

of a pixel using multiple images. Stereo cameras fall under this category as

well. Some well-known algorithms that calculate depths using multiple images

3



are the depth from defocus (DfD), shape from shading (SfS), simultaneous

localization and mapping (SLAM) also known as structure from motion (SfM).

By taking photos from the same point of view with different known light

source directions, we can solve an optimization to calculate the shape of an

object. These methods are called Shape from Shading.

Depth from focus/defocus also estimates the 3D surface of a scene from

multiple images of that scene. These images are captured from the same

point of view using different camera parameters by typically changing the

focal length of the camera to change the image plane position. The sharpness

of a pixel with a different focus of the camera can measure the depth of a pixel.

Simultaneous localization and mapping (SLAM) known as structure from

motion (SfM) in the computer graphics field also measures the depth of a pixel

using an optimization process. First corresponding point in multiple images

needs to be established. By knowing how much the camera has moved between

frames (camera poses), we can solve an optimization term called a geometric

loss or photometric loss to find the 3D position of that pixel.

Another way of capturing depth is to use single image. Given a single

image, we can perceive depth from it and find out which object is closer to

which one. This is possible because our brain has learned sizes of different

objects and how they should look like, and it also has learned the effect of

occlusions.

By using learning methods, researchers [24], [46] have shown that single

image depth estimation is possible, but the initial accuracy achieved was low.

With the rise of deep learning, the accuracy was boosted significantly in the

field of single image depth estimation. The focus of this thesis is about single

image depth estimation using deep learning. Hence, in the next section, we

explore deep learning.

1.3 Deep Learning

Deep learning is a part of machine learning, which involves a broad range of

neural network architectures. It uses connected neuron nodes to simulate the
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process of the brain. One of the differences between the deep neural network

versus classical machine learning is that there is no need to hand-design the

features. Features are automatically being optimized in the process of deep

neural network training. Some of the architectures of the neural network ar-

chitectures are fully connected neural networks, recurrent neural networks,

convolutional neural networks, and deep belief networks. These neural net-

works have been applied to many fields and proven to be successful with high

accuracy, e.g. in computer vision, audio recognition, natural language process-

ing, and medical image processing.

Some of the most common properties of these neural networks are:

• Multilayer graph-based architectures with multiple nodes (i.e. neurons)

in each layer. Each neuron might be connected to other neurons (or

input xi) with weighted edges wij. The output of each neuron is the

linear multiplication of the edges with its input followed by a nonlinear

activation function.

• The cost C = f(X,W, Y ) for a given set of Y target, is a function of

weighted edges W , input X.

• The cost function is minimized using nonlinear optimization frameworks,

e.g. gradient descent. The weighted edges are being updated based on

the back-propagation to have a lower cost of the objective given the input

[55].

Deep neural networks can have millions of parameters which need to be

optimized. Therefore, they have high flexibility of representing complex func-

tion f to map input X to target Y. In the following section, we discuss some

of the specific deep neural network architectures.

1.3.1 Deep Neural Networks

Fully Connected Networks

Fully connected Neural networks are an architecture which has fully connected

layers. In fully connected layers, each neuron has weighted connections from
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all previous neurons. Neural networks which are based on only fully connected

layers are called fully connected neural networks.

For instance, Figure 1.2 shows a simple fully connected neural network

with one fully connected layer. It has three layers:

• input layer Xi: it includes two neurons and acts as an input to the

network.

• fully connected layer: a layer of four neurons, which are all connected

to previous neurons and neurons after.

• output layer yi: a layer consists of two neurons and acts as an output

layer. For instance, one could be a probability of the input being cat

and another might be a probability of the input being dog.

Figure 1.2: Sample of fully connected neural network. It includes three neurons
Xi as input layer and a fully connected layer with four neurons and an output
layer with two neurons yi. Neurons are connected with blue lines (edges) where
each has a weight of wij [52].

Convolutional Neural Networks

Convolutional neural network (CNN) is a type of deep neural network mostly

applied to the image data. These networks include convolutional layers. These

convolutional layers have filters which convolve the input with the filter using

dot product followed by a nonlinear function known as activation layer.
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Some of the layers and units which might be used in the CNNs are fully

connected layers, convolutional layers, activation layers, and pooling layers. In

the following section, we will discuss some of the components of CNNs.

Convolutional Layers: In mathematics, convolutions are integral over

two functions to measure how much the two functions overlap when one passes

the other one. Each convolutional layer has these two common attributes:

• Input shape is usually a tensor of shape

(batch size)× (width)× (height)× (depth).

• Convolutional kernels known as filters have a size of width × height ×

depth. Their width and height are hyper-parameters, and the depth

should match the depth of its input tensor. Each filter is convolved

across the width and height of the input volume and computes the dot

product between the elements of the filter and the input. The output

is a 2-dimensional activation map. By having m filters, we will have

m 2-dimensional activation maps. Therefore, by concatenation of all of

them, the output of this layer is a tensor with a depth size of m, where

m is the number of the filters.

Pooling Layers: Pooling layer is a nonlinear layer for downsampling.

There are many strategies for pooling layer, and max-pooling is the most

commonly used. The pooling layers are used to reduce the spatial size of

the representation after successive convolutional layers. Max-pooling gets the

maximum value in a window and outputs that number for that particular

position of the window for the output. Pooling layers are applied individually

for each slice of the image depth. Max pooling is usually defined by a window

size of n× n with a stride of m where the stride is the number of pixels each

time to jump over to find the next position of the window.

Figure 1.3 shows an output of an image slice when a max-pooling layer of

2× 2 with stride 2 is done on that slice.

Activation Layers: Activation layers are usually nonlinear function,

which decides whether a neuron should fire or not. Nonlinear activation func-

tions make the model flexible to fit and generalize to a variety of data. Hence
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Figure 1.3: Max-pooling with a 2× 2 filter and stride of 2 [60].

the model can represent complex mapping functions. Many nonlinear activa-

tion functions have been proposed, e.g. sigmoid, tanh, SELU, ReLU. Among

all of the activation functions, and RELU and sigmoid are the most commonly

used. Figure 1.4 shows the sigmoid versus ReLU function. Sigmoid is often

used before the output, especially if the output is a probability making the

output range fall into (0,1) while ReLU is often used after convolution layers.

Figure 1.4: Sigmoid vs ReLU activation Layers [54].

Now that we have discussed the different units in convolutional neural

networks, we bring an example of a CNN in figure 1.5. In this example, the

input is an image of a digit between 0-9 and output is ten numbers each are

the probability of the input being a digit from 0-9.

In the first layer, conv 1, n1 5× 5× 1 convolution filters are being applied
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to the input resulting in an output tensor with a shape of 24 × 24× n1 given

the input dimensions are 28 × 28 × 1. Then a 2 × 2 max-pooling process is

applied, reducing the dimensions to half, making it 12 × 12 × n1. Again n2

convolution filter with size of 5 × 5 × n1 is applied resulting in an output

of 8 × 8 × n2 followed by a 2 × 2 max-pooling. The output will become

4× 4× n2. Afterwards, by flattening the tensor, the shape of the tensor will

become n2× 16. Subsequently, a fully connected layer of n3 units is applied,

and at the end, an output layer of 10 neurons each represents a digit exists.

The output of each neuron is a probability of the input image being that digit.

Figure 1.5: A sample of CNN [45].Input is an image of a digit between 0 to 9
and output is the probability of that image being 0-9 for each digit. n1, n2, n3
are the number of filters in layer one and two respectively. n3 is the number of
neurons in fully connected layer [45]. This network includes two convolutions
followed by a max-pooling, and at then end, fully connected layers to estimate
the probability of that image belong to which class.

Generative Adversarial Networks

Generative Adversarial Networks (GANs) are known as a class of machine

learning where two neural networks are contesting with each other. These

two neural networks are called generator and discriminator. The generator

tries to generate new data that falls in the training data distribution while

discriminator fights back the generator by trying to discriminate between the
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generated one and the actual real data coming from the training distribution.

With optimization, both networks will get stronger and reach a point where

discriminator cannot distinguish between generated data and the actual real

data anymore. Then in most cases, the discriminator is being removed, and

only the generator is being used to generate new samples from training data.

Figure 1.6 shows a simple idea of GANs where generator generates an

image from random noise while discriminator tells if its input is from fake

images coming from the generator or it is from real images coming from the

training set. By letting these two fight against each other eventually generator

will fool the discriminator by generating real looking images, and that means

the generator has learned the distribution of the training set properly.

Figure 1.6: A sample of GAN [47]. The generator tries to generate a fake
image in the distribution of the training set from random noise. Discriminator
tries to fight back the generator by discriminating the fake image from the
generator and the real image from the training set

1.3.2 Deep Learning in Depth Estimation

Deep learning has shown promising results in many classification and regres-

sion tasks in a variety of fields and is considered the state-of-the-art method

in many fields. In recent years, many researchers are taking advantage of

deep neural networks in their tasks, and depth estimation is not an exception.

Some use it for an end to end depth learning, e.g. direct learning of depth from

video [70], or stereo matching [67] while others are using it as a mini-module
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to improve the traditional multiple view geometry, e.g. feature detection and

matching [18].

Besides, deep learning has shown its use in depth completion task, e.g.

densifying of LiDAR data [43], filling missing data for RGB-d cameras using

inpainting methods [68] as well.

One of the disadvantages of the deep learning models compared to tra-

ditional based methods is the extra cost of GPU and the time consumption

during inference. Some researchers have proposed methods to reduce model

size and complexity to run the single image depth estimation models in real-

time for robots [13] beside the fact that costs of GPUs are dropping over time

and their power of calculation is increasing with improvements in technology

and hardware designs.

With the rise of deep learning, notable achievements in terms of accuracy

and robustness have been obtained in the study of single image depth esti-

mation. We can train deep neural networks for single image depth estimation

using supervised, unsupervised, and semi-supervised methods.

Supervised methods in single image depth estimation use ground truth

derived from LiDAR data. It is time-consuming and expensive to obtain dense

ground-truth depth, especially for the outdoor scenes. LiDAR data is also

sparse relative to the camera view, and it does not share the same field of view

with the camera in general. Consequently, supervised methods are unable to

produce meaningful depth estimation in the non-overlapping regions with the

image (see Figure 1.7). In contrast, unsupervised methods learn dense depth

prediction using the principle of reconstruction from stereo views; hence, depth

can be estimated for the entire image. However, the accuracy of unsupervised

depth estimation is limited by that of stereo reconstruction.

1.4 Thesis Statement

Unsupervised methods use either stereo cameras or video sequences for train-

ing. One of the limitations of the unsupervised single image depth estimation

methods that use stereo cameras is that they output disparity and, as a result,
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(c) unsupervised (d) supervised

(e) semi-supervised

(a) image (b) ground-truth

Figure 1.7: Qualitative comparison of supervised, unsupervised, and semi-
supervised. Using stereo only (c) leads to the noisy depth map. Using LiDAR
only (d) results in inaccurate for the top part of the image because there is
no ground-truth available. Our semi-supervised method (e) fuses both LiDAR
and Stereo and can predict depth more accurately. Ground truth LiDAR (b)
has been interpolated for visualization purpose.

all the data in training should come from the same camera setup and baseline.

If the cameras are different, then this will lead to different disparity values for

the similar images taken by two different cameras. This inconsistency in out-

put is similar to feeding same cat images taken from two different cameras to

a classification network and one time saying this is a cat image and the second

time saying this is a dog image. We show this inconsistency will confuse the

network in the training phase.

As a solution to this problem, we propose our model to output inverse depth

instead of disparity. Unlike disparity, inverse depth is invariant to camera

intrinsic and baseline. In unsupervised training, in order to leverage massive

data over the internet, it is essential that the output of the proposed model

be invariant to the camera settings.

In this thesis, we present our research in single image depth prediction us-

ing semi-supervised training that outperforms the state-of-the-art. The focus

of our study is the outdoor scene. We propose a novel semi-supervised loss

function that uses the left-right consistency term originally proposed in [20].

Our network uses LiDAR data for supervised training and rectified stereo im-

ages for unsupervised training, and in the testing phase, our network takes
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only one image to perform depth estimation.

Another focus of our study is the impact of ground truth depth information

on the training of our model, when network training is performed with the

projected raw LiDAR data and the annotated depth map recently provided by

KITTI [53], respectively. We discover that the commonly used projected raw

LiDAR contains noisy artifacts due to the displacement between the LiDAR

and the camera, leading to poor network performance. In contrast, we use

the more reliable preprocessed annotated depth map for training, and we can

achieve a significant reduction of prediction error.

In summary, in this thesis, we propose a semi-supervised deep neural net-

work for depth estimation from a single image, with state-of-the-art perfor-

mance.

1.5 Thesis Contribution

Our work makes the following three main contributions.

• We show outputting inverse depth is better than outputting disparity in

unsupervised training of single image depth prediction, which makes the

depth estimation model invariant to the camera setup.

• We show including a left-right consistency term in the loss function im-

proves performance in semi-supervised single image prediction.

• We provide empirical evidence that training with the annotated ground

truth derived from LiDAR leads to better depth prediction accuracy

than with the raw LiDAR data as ground truth.

We make our semi-supervised deep neural network available to the com-

munity.

1.6 Organization of the Thesis

This thesis is organized as follows.
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• Chapter 1. Introduction:

We discussed the problem of acquiring depth and our motivation, deep

learning and its applications in depth estimation, thesis statement, and

contribution in the field of single image depth estimation.

• Chapter 2. Related Works:

We reviewed related works to our research focusing on single image depth

prediction for outdoor scenes.

• Chapter 3. Method:

We presented our deep neural network architecture, loss function used

for training.

• Chapter 4. Datasets:

We talked about commonly used datasets for outdoor depth estimation

and their properties.

• Chapter 5. Experiments:

We provided the most common evaluation metrics in depth estimation

field and discussed the implementation details of our training procedure

and the qualitative and quantitative result of our proposed method. We

also discussed and experimented how each factor contributed to our im-

provement.

• Chapter 6. Conclusion:

We talked about the conclusion of this thesis and the ideas developed

in this field. We also suggested some ideas for future work to make the

result more accurate.
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Chapter 2

Related Works

Over the past few years, numerous learning-based methods have been proposed

for the problem of single image depth estimation. In this chapter, we survey

papers related to single image depth estimation. Given a single image, we are

interested in the depth value for every pixel. We can categorize the work of

depth estimation into shallow methods and deep methods. Shallow methods

are trying to find the best model that can map input image space to the output

depth, whereas deep methods are doing the same thing except for the model

which is a convolutional neural network instead.

2.1 Shallow Methods

One of the first methods in the single image depth estimation area was the

work of D. Hoiem et al. [24] known as Automatic Photo Pop-up. It creates

a 3D model from an image by labelling each region of an outdoor image as

ground, vertical, or sky and based on the ground-vertical boundary in the

image. Then by an estimate of the horizon’s position, it figures out where to

fold and cut the image.

Another early work in this field is Saxena et al. [46] known as Make3D.

They apply a superpixel algorithm on the image and fit each region a plane

and estimate the 3d position and orientation of planes corresponding to each

region. Both methods, Automatic Photo Pop-up [24] and Make3D [46], are

considered a local method and they rely on hand-crafted features. Therefore,

they have poor generalization and accuracy compared to deep learning-based
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approaches.

2.2 Deep Methods

With the advances of deep learning, the field of single image depth estimation

has been pushed to the next level of accuracy. Since then, almost all the

proposed methods are using deep learning-based models, e.g., convolutional

neural network. One advantage of using these models is that these models

make coherent global predictions. Based on methods of the training, we can

categorize deep methods into three subcategories: supervised, unsupervised,

semi-supervised.

2.2.1 Supervised

Supervised methods use ground truth depth, usually from LiDAR in outdoor

scenes, for training a network. Eigen et.al. [12] was one of the first who used

such a method to train a convolutional neural network. Figure 2.1 shows the

architecture of their proposed method. They had two stages of training. First,

they generate the coarse prediction and then use another network to refine the

coarse output to produce a more accurate depth map.

Figure 2.1: Eigen et al. model architecture [12]. It consists of two stage
prediction, a coarse prediction followed by a refined prediction. Full and conv
refers to fully connected layers and convolutional layer, respectively.
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Following [12], several techniques have been proposed to improve the accu-

racy of convolutional neural networks such as CRFs [34], inverse Huber Loss

as a more robust loss function [32], joint optimization of surface normal and

depth in the loss function [25], [42], [58], fusion of multiple depths maps using

Fourier transform [33], and formulation of depth estimation as a problem of

classification [6], [14].

Lee et al. [33] proposed a method where they used multiple crops of the

input image to produce multiple depth maps followed by fusion of multiple

depth maps using Fourier transform. They also proposed a new loss, called

depth-balanced Euclidean loss, where it solves the problem of the tendency of

L2 loss to backpropagate more for higher depth values. Similarly, Xu et al.

[62] fused multi-scale information of the CNN by using a structured attention

guided network.

Among those, the work of Fu et al. [14] is considered state of the art

in supervised methods. Figure 2.2 shows the architecture of Fu et al. [14].

They treated the regression problem as a classification task by discretizing the

depth values into k intervals in log space, and for every pixel, they predict k

probability of that pixel belong to every interval and then merge all of those

probabilities and get the final class of that pixel to determine which interval

that pixel belongs to. One of their contributions was to use dilated convolu-

tions as well. Although they outperform other supervised and unsupervised

methods by a huge margin, their result for the top portion of the image is

noisy resulting from the difference in the camera’s and the LiDAR’s field of

view. There is no groundtruth for the top portion of the images in KITTI.

Therefore, noisy result won’t affect the quantitative results.

Recently Generative Adversarial Networks have shown a promising result

in domain transfer applications [28], [71]. Some researchers proposed super-

vised training of depth using GAN [5], [10], [22], [69] by distinguishing real

or fake images, e.g., Zheng et al. [69] and Atapour et al. [5] proposed using

synthetic data to train the network and convert real images to a synthetic do-

main and predict depth in the synthetic domain while some of them proposed

unsupervised learning of depth using GAN [2], [4], [30], [41].
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Figure 2.2: Fu et al. model architecture [14]. For each pixel x, they predict k
probabilities of L∗ > lk where L∗ denoted the predicted depth for that pixel
and lk are the k discritized depths.

2.2.2 Unsupervised

Collecting manually labelled data is a time consuming and expensive task,

especially for outdoor environments, where LiDAR ground truth data is sparse

and noisy and requires expensive hardware. Uhrig et al. [53] proposed an

automatic way of post-processing LiDAR data to remove noise and to make

it a little bit denser but still collecting data is always time-consuming, and

training will be limited to those datasets. In deep learning, the most important

factor is the amount of data, and that is where the importance of unsupervised

training shines. Recently, the unsupervised methods in depth estimation have

shown a promising result.

Xie et al. [61] proposed unsupervised deep neural networks method of

view synthesis to convert 2D videos and images to a stereoscopic 3D format,

i.e., generate right eye image for left image input. Similarly, Garg et al. [15]

demonstrated an unsupervised method in which the network is trained to

minimize the stereo reconstruction loss; i.e., the loss is defined such that the

reconstructed right image (i.e., obtained by warping the left image using the

predicted disparity) matches the right image. Later on, Godard et al. [20]

extended the idea by enforcing a left-right consistency that makes the left-view

disparity map consistent with the right-view disparity map. The unsupervised

training of our model is based on [20]. Figure 2.3 shows the input-output of

the proposed Godard et al. method [20]. Given a left view as input, the model
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in [20] outputs two disparities of the left view and the right view, while we

are outputting only one depth map for one input image in the form of inverse

depth instead of disparity. As a result, we treat both left and right images

equivalently. This allows us to eliminate the overhead of the post-processing

step in [20]. By making these changes, our unsupervised model outperforms

[20] as will be discussed in Section 5.3.

Figure 2.3: Inverse warping strategies [20]. The left column, Näıve, CNN
outputs disparity aligned with image right for input image left. The middle
column, NO LR, fixes this issue but there is no constraint on the left-right
consistency [15]. The right column is the warping strategy proposed by Godard
et al. [20]

Since visual odometry, optical flow, and depth are very related tasks, some

researchers proposed methods of jointly optimizing them [19], [72]. At the

same time as Godard et al., Zou et al. [70] trained a network using monocular

videos. Figure 2.4 shows their proposed encoder-decoder architecture. There

are two networks: one for depth prediction, and another for Pose estimation

and explainability mask. Explainability mask is a mask to define the occluded

and moving regions in monocular videos. They use the visual odometry be-

tween frames to warp the consecutive frames into each other and have their

loss as the photometric loss. Then they calculate loss only on regions where
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explainability mask is valid, i.e., non-occluded and static. Accounting for oc-

cluded regions is a well-explored method in optical flow estimation [26], [27],

[40], [59]. In the field of depth estimation, Gue et al. [21] proposed using

a stereo matching network to find a proxy of depth and occlusion mask and

used those outputs as a helper to train another network for single image depth

estimation.

Figure 2.4: SFM-Learner architecture [70]

Following the work of Godard et al. [20], Zhan et al. [66] proposed a

method of unsupervised learning of depth and visual odometry by reconstruc-

tion of features. First, they warp the image, then they get the features of the

warped image and then by having a loss over that they were able to train their

network. Similarly, in the field of optical flow, which is same as the disparity

in case of stereo, instead of warping the image and then get the features, Sun

et al. [50] proposed first to warp the features, and then have volume loss over

warped features. More recently, Yan et al. [35] and Yang et al. [63] trained a

network for depth estimation and used it to boost the accuracy of traditional

visual odometry.

Mahjourian et al. [37] proposed a method of estimating depth and ego-

motion from monocular video using 3D geometric constraints. In addition

to the 2D photometric loss, they convert depth map to point clouds then

they used ICP to warp the point clouds and have a 3D loss as well. Yin et al.
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proposed a jointly unsupervised learning of depth, optical flow, and ego motion

[64]. They also propose an adaptive geometric consistency loss to increase

the robustness about non-Lambertian regions where the photometric loss is

not valid. At the same time, Wang et al. [57] proposed using a traditional

differentiable visual odometry instead of using a network estimator for a more

reliable estimation of poses during training.

2.2.3 Semi-supervised

Unlike unsupervised methods, there has not been much work on semi-supervised

learning of depth. Smolyanskiy et al. [48] proposed a method of semi-

supervised learning for stereo disparity estimation, but not for single image

depth estimation. Recently, Luo et al. [36] and Guo et al. [21] proposed

a method that consists of multiple sequential unsupervised and supervised

training stages; hence their method could be categorized as a semi-supervised

method although unlike us, they did not use LiDAR and stereo images at the

same time in training.

Closest to our work is Kuznietsov et al. [31], who proposed adding the

supervised and unsupervised loss terms in the final loss together resulting

in using LiDAR and stereo at the same time in training. One of the main

differences between [31] and ours is that we explicitly enforce the left-right

consistency term first proposed by [20]. Having this term makes the prediction

consistent between left and right. Another difference is that their supervised

loss term was directly defined on the depth values, whereas we defined it on

inverse depth instead. As discussed in [31], a loss term on depth values makes

the training unstable because of the high gradients in the early stages of the

training. To remedy the situation, Kuznietsov et al.[31] proposed to gradually

fade in the supervised loss to achieve convergence whereas our method does

not have this problem and does not need to fade in supervised or unsupervised

loss terms. In Section 5.3, we show qualitatively and quantitatively that we

can obtain better accuracy than [31], which is considered the state-of-the-art

in semi-supervised single image depth estimation, as the result of the above

considerations.
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Figure 2.5: components of the semi-supervised loss proposed by Kuznietsov et
al. [70]. As shown the supervised loss is defined
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Chapter 3

Method

In this thesis, for training, we use rectified stereo images as unsupervised and

ground-truth depth data as supervised training. In the following section of this

chapter, we will talk about our model architecture and the loss function used

for training. To the best of our knowledge, we are the first one to use left-right

consistency proposed by Godard et al. [20] in a semi-supervised framework of

single image depth estimation.

3.1 Model Architecture

We use encoder-decoder architecture with skip connection. Skip connections

were used to back-propagate the gradients better and also to use the early

captured features of image for the output. Figure 3.1 shows an overview

of our network. Our network inputs one image and outputs inverse depth

corresponding to that image at four scales, and in our loss section, we defined

loss for each scale. Each scale is half size of the next scale in width and height

size. The dimensions of the four scale outputs are 256×512, 128×256, 64×128,

and 32× 64, respectively. Our model has over 59M parameters.

3.1.1 Encoder

Resnet50 was chosen for the encoder section. The schematic of our model

architecture is shown in Figure 3.1. Figure 3.2 and 3.3 show the two types of

resblocks in our resnet50 encoder architecture type A and type B. As shown

in Figure 3.1 we have 16 resblocks. Resblock 3, 7, 13, and 16 are type B with
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Figure 3.1: Overview of the schematic of our model architecture. C, MP , and
up are convolution and max-pooling and upsampling layers, respectively. Blue
arrow means there is going to be concatenation after. Green arrows consist of
a layer of convolution. The black dashed arrow consists of resizing the image
two times and concatenate it afterwards. Upsampling layer includes resizing
two times and then convolution. We output four different scales and use these
intermediate outputs for our loss.

Figure 3.2: Type A residual block with stride 1. convks denotes convolution
with stride s and filter size k× k. The residual is obtained from three consec-
utive convolutions. The output channel is same as the input [31].

stride s = 2, and the rest are type A with stride s = 1.
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Figure 3.3: Type B residual block with stride 2. convks denotes convolution
with stride s and filter size k × k. The residual is obtained from three con-
secutive convolutions. The first convolution applies on stride s = 2. Another
additional convolution with stride s = 2 is applied and concatenated with the
output of the three consecutive convolution. The output channel is double (for
s = 2) as the input [31].
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Figure 3.4: Resnet50 Encoder Architecture. ”k × k conv, i, /s” denotes i
number of convolutions with kernel size k × k and stride s. Skip connection
and code will be connected to the decoder part.
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3.1.2 Decoder

We use multiple upsampling layers which consist of nearest neighbour resizing

followed by a convolution. We concatenate the skip connections and output

the inverse depth at different scales. Figure 3.5 shows our detailed architecture

of our decoder.

Figure 3.5: Decoder Architecture. Code and skip connections come from en-
coder. ”k × k conv, i, /s” denotes i number of convolutions with kernel size
k × k and stride s. For resizing module, we used nearest neighbour method.
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3.2 Loss Terms

One of the most critical factors in deep learning is defining the loss function.

Minimizing the loss function should directly be aligned with the objective.

Carefully designing the loss function is very important, especially in unsuper-

vised training.

Figure 3.6 shows the different loss terms we use in our training phase, to

be described in the current section.

Figure 3.6: Overview of the schematic of our proposed loss. There are four
terms in our loss Ereconstruction, Esupervised, Elr, Esmooth, Esupervised. Subscript
L and R refers to left and right image, respectively. ρ refers to output of
our network inverse depth. We use bilinear sampler in the inverse warping
function.

We define Ls for each output scale s. Hence the total loss is defined as

Ltotal =
∑4

s=1 Ls.

Ls = λ1Ereconstructions + λ2Elrs + λ3Esuperviseds + λ4Esmooths (3.1)

where λi are scalars and the E terms are defined below. By setting λi, we can

define how much each loss term contribute to the final loss.
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3.2.1 Unsupervised Loss Ereconstruction

We use photometric reconstruction loss between left and right image. Simi-

lar to other unsupervised methods, we assume photometric constancy between

left-right images. Inverse warping has been used to get the estimated left/right

image and then the estimated image is compared with its corresponding real

image. In the inverse warping, bilinear sampler is used to make the pipeline

differentiable. For comparison, we use the combination of the structural sim-

ilarity (SSIM) and L1 used by Godard et al. [20], and the ternary census

transform used in [38], [49], [65]. SSIM and the ternary census transform

can compensate for the gamma and illumination change to some extent and

result in improved satisfaction of the constancy assumption. Our unsupervised

photometric image reconstruction loss term Eu is defined as follows:

Ereconstruction =
∑
k∈{l,r}

f(Ik, Ĩk)

f(I, Ĩ) =
1

N

∑
i,j

α1 ∗
1− SSIM(Iij, Ĩij)

2
+

α2 ∗ ||Iij − Ĩij||1+

α3 ∗ census(Iij, Ĩij)

(3.2)

where I l, Ir, Ĩ l, and Ĩr are the left image, right image and their reconstructed

images, respectively. N is the total number of pixels. α1, α2, and α3 are scalars

that define the contribution of each term to the total reconstruction loss.

SSIM

Structural similarity (SSIM) measures how two images are similar to each

other. It gets two input images and outputs in a range of (-1,1]. Zero means

they are totally different, and one means two images are equal, and negative

one means two images are inverted versions of each other.

SSIM tries to simulate how the human visual system (HVS) works by

calculating three different properties of an image in a N × N window where
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N = 11 as default. These properties are luminance(l), contrast(c), structure

(s).

l(x, y) = 2µxµy+c1
µ2x+µ2y+c1

c(x, y) = 2σxσy+c2
σ2
x+σ2

y+c2

s(x, y) = 2σxy+c2
2σxσy+c2

c1 = (k1L)2 c2 = (k2L)2

(3.3)

SSIM = l(x, y)α × c(x, y)γ × s(x, y)δ (3.4)

where µ and σ2 denote the average and variance of pixel values in the window,

respectively. L is the dynamic range of pixel values (2(number of bits) − 1), and

k1 = 0.01, k2 = 0.03 as default. By choosing α = γ = δ = 1 the equation 3.5

will become:

SSIM =
(2µxµy + c2)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(3.5)

Census

Census operator is a robust way of patch representation first proposed by

Zabih and Woodfill [65]. It is a nonlinear transformation which compares a

pixel with its local neighbourhood pixels.

Ternary census transform is defined in Figure 3.7. For a pixel P and its

local neighbourhood pixel P ′, we calculate the difference and if the difference

is less than ε we assign 1 to it and 0 if the difference is greater than ε and 2

for less than −ε. Then we concatenate all numbers. For example, the ternary

census transformed value for the middle pixel x shown in Figure 3.7 is going

to be 21002222.

To calculate the census loss between I1 and I2, we first use ternary census

transform operator to find every pixel representation, and then we use the

hamming distance between ternary representations at each pixel. Final cencus

loss is the sum of hamming distances between two images over all pixels.
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Figure 3.7: Ternery cencus transform. P is middle pixle in the window and P ′

is the surrounding pixel. The ternary census transform of pixel x is 21002222
[49].

3.2.2 Left-Right Consistency Loss Elr

To ensure the equal contribution of both left and right images in the network

training, we feed left and right images independently to the network, and then

we jointly optimize the output of the network such that the predicted left and

right depth maps are consistent. As explained in [20], the left-right consistency

loss attempts to make the inverse depth of the left (or right) view the same

as the projected inverse depth of the right (or left) view. This type of loss is

similar to forward-backward consistency for optical flow estimation [38]. We

define our left-right consistency loss as follows:

Elr =
1

N

∑
i,j

||ρlij − ρrij+dlij ||1 + ||ρrij − ρlij+drij ||1, (3.6)

where ρl and ρr are the predicted inverse depth for left and right images,

respectively. dl and dr are predicted disparities corresponding to left and

right images, respectively. The conversion of inverse depth ρ to disparity d is

calculated using (3.7):

d = baseline ∗ f ∗ ρ, (3.7)

where f is the focal length of the camera, and baseline is the linear distance

between the two cameras.

3.2.3 Supervised Loss Esupervised

The supervised loss term measures the difference between the ground truth

inverse depth Z−1 and the predicted inverse depth ρ for the points Ω where
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the ground truth is available.

Esupervised =
∑
k∈{l,r}

1

Mk

∑
i,j∈Ωk

||ρkij − Z−1k
ij||1 (3.8)

where Ωl and Ωr are the points where the ground truth depths are available

for the left and right images, respectively. Ml and Mr are the total number of

the pixels that ground truth is available for left and right images, respectively.

3.2.4 Smoothness Loss Esmooth

As suggested in [20], [31], the smoothness loss term is a regularization term

that encourages the inverse depth to be locally smooth with a L1 penalty on

inverse depth gradients. We define our smoothness regularization term as:

Esmooth =
1

N

∑
k∈{l,r}

∑
i,j

|∂xρkij|e−|∂xI
k
ij | + |∂yρkij|e−|∂yI

k
ij | (3.9)

Since the depth is not continuous around object boundaries, this term encour-

ages the neighbouring depth values to be similar in low gradient image regions

and dissimilar otherwise.
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Chapter 4

Datasets

In deep learning, one of the essential factors is having a dataset that can cover

the distribution of real-life scenarios. While many datasets have been publicly

available for indoor scenes, e.g., Tum RGB-D dataset, Scannet dataset, there

has not been many datasets for outdoor scene due to expensive LiDAR equip-

ment. In this chapter, we will discuss the datasets that most people have been

training their network on for outdoor scenes.

4.1 Cityscape Dataset

Cityscape dataset [9] was released with semantic, instance-wise, dense pixel

annotations of 30 classes. It was initially used for semantic segmentation task,

but more recently, researchers have been using stereo images of this dataset

to train single image depth prediction neural network unsupervised. It has

about 25000 stereo images. Unfortunately, there is no LiDAR ground truth

depth available. The depth data is provided by doing the stereo matching.

Stereo matching algorithms are not accurate, and due to the triangulation,

stereo depth accuracy is not good enough for far objects. This dataset has

been recorded while driving in 50 cities during several month and summer,

spring, and fall season with good weather conditions.

The image resolutions are 2048 × 1024 with baseline around 20cm-23cm

different in each sequence. A sample pair of stereo images is provided in

Figure 4.1. As shown the left portion of the right image includes noisy data.

Hence, we take the center image of each image and crop the noisy part and
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car hood section on the bottom.

Figure 4.1: Cityscape stereo images sample. Images are being cropped such
that left portion of right image and carhood section are not included.
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4.2 Make3D Dataset

Make3D [46] consists of only RGB and depth pairs. The resolution of images is

1704× 2272. Due to different aspect ratio of this dataset with KITTI dataset,

we crop the images to have the same aspect ratio with KITTI. This dataset

provides 400 images with aligned depth maps. Since the ground truth depth

maps of this dataset are not perfectly aligned, and it is not considered a big

dataset for deep learning, this dataset is not being used for training a deep

neural network. However, this dataset is still being used for generalization

tests. Figure 4.2 shows sample images from this dataset, including their aligned

colour coded depth maps.

Figure 4.2: A sample of Make3D dataset and aligned depth maps. More red
means more closer and more blue means furthur away pixels [46].
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4.3 KITTI

This dataset [17] is the main dataset for training and evaluation of outdoor

single image depth estimation tasks that people have been using, and there-

fore we will be using this dataset as our main dataset. This dataset was built

for stereo, optical flow, visual odometry, 3D object detection and 3D track-

ing, and depth estimation tasks. They equipped a standard car with two

high-resolution colour cameras, two monochrome cameras, GPS, IMU, and an

accurate LiDAR, i.e., Velodyne. The Velodyne LiDAR only provides informa-

tion for the bottom half of the RGB images due to the field of view difference.

This dataset is captured by driving around cities in rural areas and highways.

Therefore, it is an appropriate dataset for self-driving tasks. Up to 15 cars

and 30 pedestrians are visible in each image.

Figure 4.3: KITTI data acquisition setup [16].

Image resolutions of KITTI dataset varies from a sequence to another, e.g.,

1242×375 , 1241×376 , 1224×370, 1226×370 , and 1238×374. To deal with

different resolution, we simply resize the images and their corresponding depth

maps to fit our network input size making all images the same resolution.

Besides the fact that raw dataset is available, we can also download the

splits for each benchmark as well. We will discuss some splits and benchmarks

related to our thesis in the Section 4.3.1. The KITTI also provides an online

system to rank algorithms based on the accuracy of the evaluation metrics for
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Figure 4.4: A sample stereo images of KITTI dataset.

each benchmark. Everyone can submit their results for the non-public testing

splits in each benchmark.

4.3.1 KITTI Splits

There are various splits in each benchmark. The most common splits in the

field of depth estimation are Eigen Split and KITTI splits.

Eigen Split

This split was created by Eigen et al.[12] and after that, most of the researchers

follow this split to compare their algorithm with other researchers. They used

56 scenes from the “city,” “residential,” and “road” categories of the raw data

and 28 scenes were used for the training set and other 28 scenes was used for

testing. The training set has 800 images per scene. When the acceleration of

the car is low, they exclude those shots to avoid stationary duplicate images.

In total, the training set has 20K unique images, and the testing set has 697

unique images. For evaluation, since projected Velodyne LiDAR is noisy due

to occlusions, the motion of the vehicles, etc., we used more accurate pre-

processed depth map from KITTI depth benchmark called ”Annotated Depth

Map.” Since depth benchmark only covers 652 out of 697 images, we evaluate

based on these 652 accurate depth maps. We will talk about this more in

Section 4.3.2.

KITTI Stereo 2015 Split

This split is also known as KITTI split used in [20]. It refers to KITTI stereo

benchmark, which is a benchmark with the purpose of disparity estimation.
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The training set includes 33 scenes with a total of 29,000 images. The

testing set includes 28 scenes with a total of 200 high-resolution disparity

maps. These disparity maps are manually labeled by inserting CAD models.

Although the quality of these disparity maps is better than the projected

Velodyne LiDAR, the CAD models result in incorrect values for transparent

surfaces, e.g., car windows, and they are not perfectly aligned with the image

as well.

4.3.2 Ground-truth LiDAR Projection

Since LiDAR measurements and the cameras are in different coordinates sys-

tems, we need to project LiDAR 3D points into the camera coordinates system.

Figure ?? shows the steps we need for this transformations. The steps needed

for this projection are as follows:

• Velodyne coordinates to camera coordinates: We need to use Velodyne

to camera transformation matrix using calibration data.

• Camera coordinates to normalized image coordinates: Normalized image

coordinates are the coordinates for a virtual image if we assume the focal

length of the camera is at 1 meter. All the 3D points should be divided

by their Z to force Z=1, as shown in Figure ??.

• Normalized image coordinates to pixel coordinates: Finally, by multiply-

ing the normalized image coordinates with the intrinsic camera matrix,

we will be able to get the corresponding pixel coordinates.

Using this näıve way of projection will cause an occlusion artifact. Due to

offset between the camera and LiDAR sensor, some LiDAR points are occluded

from the camera point of view. Hence näıve projection will result in incorrect

depth values for those points. We can preprocess projected LiDAR as described

by Uhrig et al. [53] or use provided annotated depth map(c) for KITTI dataset.

They used multiple adjacent frames to densify the depth map and use left-

right consistency check combined with stereo matching algorithms consistency

checks to filter out the outliers and noise in LiDAR data. They also use
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the speed of the vehicle to untwist the LiDAR points and publish the post-

processed depth maps as the annotated depth map. Figure 4.5 shows the

comparison of the näıve projection and the projection using Uhrig et al. [53].

Later on in Section 5.3, we showed that significant accuracy boost could be

gained if we use denser and more accurate depth map.

(a) image (c) annotated depth map(b) projected raw LiDAR

Figure 4.5: Qualitative comparison between (b) projected raw LiDAR con-
taining occlusion artifacts due to the displacement between the camera and
LiDAR and (c) annotated depth map without any occlusion artifact. We use
annotated depth map dataset (c) for our training and evaluation. (b) shows
the erroneous depth values for points (green pixels among red for the pole
bounded by the red rectangle) that are occluded from the camera point of
view but not LiDAR point of view.

Figure 4.6 shows the reason for the occlusion artifact due to the offset be-
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Camera LiDAR

A

B

Figure 4.6: Occlusion artifact top-down view. Projection of point A from
the LiDAR point of view will be point B in the camera point of view. Naive
projection will assign point A’s depth to it’s projection, e.g., point B which is
wrong

tween the LiDAR sensor and camera. Most of the points that LiDAR can

see but they are occluded from the camera point of view will have this oc-

clusion artifact, i.e., Point A. Some points, i.e., A and B, will have the same

projection in the camera point of view. Therefore their depth value will over-

lap each other, and we can easily ignore the bigger value but in practice, the

exact overlap of measurements will not often happen due to sparse LiDAR

measurements.
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Chapter 5

Experiments

For comparison, we use the popular Eigen split [12] in KITTI dataset [53]

that has been used in the previous methods. Using this split, we notice the

same problem mentioned by Aleotti et al. [2] that, when LiDAR points are

projected into the camera space, an artifact results around objects that are

occluded in the image but not from the LiDAR point of view. This is due

to the displacement between the LiDAR and the camera sensors (see section

4.3.2). Recently Uhrig et al. [53] provided preprocessed annotated depth maps

of KITTI by a preprocessing step on projected raw LiDAR data. They used

multiple sequences, left-right consistency checks, and untwisting methods to

carefully filter out outliers and densify projected raw LiDAR point clouds.

Figure 4.5 shows the occlusion artifact in raw projected LiDAR and the corre-

sponding annotated depth map dataset provided by [53]. Since the occlusion

artifact is filtered out in the annotated depth ground truth, we train our model

with this more accurate ground truth. The first and the third row of Table 5.2

show the effect of the training network with the projected raw LiDAR versus

the annotated ground truth.

5.1 Evaulation Metrics

We use the standard metrics used by previous researchers [12], [20], [31].

Specifically, we use RMSE, RMSElog, absolute relative difference (Abs Rel),

squared relative difference (Sq Rel), and the percentage of depths (δ) within

a certain threshold distance to its ground truth.
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RMSE:

√√√√ 1

N

N∑
i=1

||ρ(xi)−1 − Z(xi))||22

RMSElog :

√√√√ 1

N

N∑
i=1

|| log ρ(xi)−1 − logZ(xi))||22

ARD:
1

N

N∑
i=1

|ρ(xi)
−1 − Z(xi))|
Z(xi)

SRD:
1

N

N∑
i=1

|ρ(xi)
−1 − Z(xi))|2

Z(xi)

ACCURACY % of xi s.t. max(
Z(xi)

ρ(xi)
−1 ,

ρ(xi)
−1

Z(xi)
) = δ < thr

where N is the total number of pixels with ground-truth depth available.

5.2 Implementation Details

We train our network from scratch using Tensorflow [1]. Our network and

training procedure are identical to the Resnet50 network used by Godard et

al. [20] except for the decoder part in which we have one output instead of two

for each scale. Similar to Godard et al. [20], all inputs are resized to 256×512.

The output of the network, i.e., inverse depth, is limited to 0 to 1.0 using the

sigmoid function. We use Adam optimiser [29] with β1 = 0.9, β2 = 0.999, and

ε = 10−8 with initial learning rate of λ = 10−4, and that remains constant for

the first 15 epochs and being halved every 5 epochs for the next 10 epochs

for a total of 25 epochs. The hyperparameters for loss are chosen as λ1 = 1,

λ2 = 1.0, λ3 = 150.0, λ4 = 0.1, α1 = 0.85, α2 = 0.15, and α3 = 0.08.

5.3 Results

5.3.1 The Effect of Each Term

Disparity vs. Inverse Depth

To investigate the effect of changing the output from disparity to inverse depth,

Table 5.1 experiment has been done. The model is trained on cityscape dataset
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and has been tested directly on 200 images of KITTI Stereo 2015 split. In

Monodepth architecture [20], there is an assumption of baseline and focal

length being constant and similar for the entire training split which does not

hold for cityscape dataset. Cityscape dataset includes different stereo baseline

and different camera intrinsic. By changing the output of the model to inverse

depth, we are able to overcome this issue by feeding the network with persistent

output. This output, i.e., inverse depth, is not related to camera settings and as

shown in Table 5.1, training on inverse depth will lead to further improvement

in accuracy because, by training using inverse depth, our output becomes

independent of the camera setup.

Output Abs Rel Sq Rel RMSE RMSElog

disparity 0.296 3.909 9.518 0.321
inverse depth 0.284 3.338 8.914 0.307

Table 5.1: The effect of the having output as disparity versus inverse depth.
The model is trained on cityscape dataset and tested on KITTI split. Training
model based on inverse depth output allows us to overcome the limitation of
all training data being from the same stereo camera setup and will lead to
more accurate results.

Naive Lidar Projection vs. Annotated Depth Map and Adding Left-
right Consistency term

To investigate in detail the effect of using left-right consistency term in the loss

function and using the annotated LiDAR ground truth, we recorded result by

just changing one variable in Table 5.2, where 200 images of KITTI Stereo 2015

split [39] were used in this controlled experiment. First and third rows show

the effect of using annotated depth map. Training network using annotated

depth maps significantly improved the accuracy on all metrics. Second row

and third rows show the effect of adding left-right consistency term in our

semi-supervised framework. The result shows we get a small improvement by

adding this term to our final loss. Our proposed method is shown in bold in

Table 5.2
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5.3.2 Comparison Against Other Methods

We evaluate our method based on the official KITTI annotated depth map

rather than noisy projected raw LiDAR. Table 5.3 contains the quantitative

evaluation of the projected raw LiDAR based on the provided annotated depth

map ground truth if a depth value of a pixel exists in the both annotated

depth map and projected raw LiDAR (54.89% of the LiDAR points have been

evaluated). The large error for projected raw LiDAR suggests that raw LiDAR

is not as accurate as annotated depth maps and should not be considered as

ground truth for evaluation.

Table 5.3 shows the quantitative comparison with the state of the art meth-

ods in Eigen split using reliable annotated depth maps for training and testing.

Although supervised methods, e.g., DORN [14], can achieve better quantita-

tive performance according to some metrics than semi-supervised methods,

they produce an inaccurate prediction of the top portion of the image, which

can be seen in Figure 5.2, where the LiDAR’s field of view is different from

that of the camera.

By treating left and right images equivalently and defining our loss sym-

metrically, we eliminate the post-processing step needed in [20]. As shown

in Table 5.3, our unsupervised model outperforms our baseline unsupervised

model [20]. Besides, from Table 5.3 among the evaluated semi-supervised

methods, our method outperforms [31], considered the state-of-the-art, with

respect to the majority of the performance metrics.
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Ours

SVSM-FT [36]

DORN [14]

Ground-truth

Kuznietsov et al. [31]

Input

Monodepth [20] 

Figure 5.1: Qualitative comparison between state-of-the-art methods. We use
interpolation in ground truth for visualization purpose.The depthmap is color
coded. More red means closer pixels and more blue means further away pixels.
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Ours

SVSM-FT [36]

DORN [14]

Ground-truth

Kuznietsov et al. [31]

Input

Monodepth [20]

Figure 5.2: Qualitative comparison between state-of-the-art methods. We use
interpolation in ground truth for visualization purpose.The depthmap is color
coded. More red means closer pixels and more blue means further away pixels.
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Ours

SVSM-FT [36]

DORN [14]

Ground-truth

Kuznietsov et al. [31]

Input

Monodepth [20] 

Figure 5.3: Qualitative comparison between state-of-the-art methods. We use
interpolation in ground truth for visualization purpose.The depthmap is color
coded. More red means closer pixels and More blue means further away pixels.
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Figure 5.1, 5.2, and 5.3 show some samples of the results for 6 images. Each

column corresponds to an image. The first row shows the images fed to the

neural network as an input. The rest of the rows are depth maps associated

with the image on its column. The depth maps are in the range of 1 meter to

80 meters and colour coded. The more hot colour, i.e. red, means the object is

closer to the camera. The more cold colour, i.e. blue, means the object is far

away from the camera. The top row is the image as input. The second column

is the ground truth. Black colour means there is no depth data available to

interpolate. Note that the very top colour coded portion of the ground truth

might be wrong due to interpolation for visualization purposes. The third row

shows our result given the input image. The fourth row is the result of Lue

et al. [36] on their best-proposed model, i.e. SVSM fine-tuned. The fifth to

seventh rows show the result of Fu et al. [14], Kuznietsov et al. [31], and

Godard et al. [20], respectively.

In Figure 5.1, for both left and right images, by focusing on the traffic sign

and the car, we can see our method is able to predict consistent and more

reliable depth for the traffic sign. The depth map shows the car is closer than

the traffic sign as it appears from the image. For some other methods, e.g.

SVSM-FT [36] and DORN [14], the depth is not consistent for either the car

or the traffic signs.

In Figure 5.2, for the left image, if we focus on the bicycle, we can see

our method is producing better depth while other methods are missing correct

depth value especially around the head of the cyclist. For the right image, if

we focus on the top portion of the image, we can see we are able o produce

better and meaningful results for the sky and tree on the left side of the image.

In Figure 5.3, for the left image, if we focus on the traffic light and the

traffic sign, we can see ours is able to better predict depth for the poles and

especially the top portion of the image. For the right image, our method can

produce consistent depth for the side of the car while others are missing the

boundaries or producing wrong depth values.

In general, unlike other methods [14], [31], our method is able to predict

more accurate depth, especially for small objects, e.g., pole, traffic lights, and
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traffic signs. Furthermore, we predict more accurate depth maps for the top

portion of the image. Adding the left-right consistency term and also training

on annotated depth maps helped us achieve these improvements. Furthermore,

by outputting inverse depth instead of disparity, we can train our deep neural

network with different baseline setups without confusing the network. This

helps convergence and results in slight improvement.

51



Chapter 6

Conclusion and Future work

In this thesis, we have presented our approach to semi-supervised training

of a deep neural network for single-image depth prediction. Our network

uses a novel loss function that uses the left-right consistency term, which has

not been used in the previous semi-supervised training of depth-prediction

networks. Besides, we have explained and experimentally confirmed that, for

optimal prediction result, in either supervised or semi-supervised training,

careful use of the LiDAR data as the ground truth is essential. We have

shown in order to take advantage of huge datasets, our output should not be

related to the camera settings, i.e. camera intrinsic and baseline. Hence by

changing the output from disparity to inverse depth, we can properly train

the neural network for different camera intrinsics. To evaluate depth maps,

we have shown that näıve LiDAR projection has high error and should not

be used for evaluation purposes. Extensive experiments have been conducted

to evaluate our proposed training approach, and we are able to achieve state-

of-the-art performance in depth prediction accuracy. Our network model is

publicly available in both training and inference.

One of the challenges of this work, in general, deep learning, is the training

time. After every change, we needed to wait for 12 hours in order for our

model to be trained for 25 epochs. In future, we would like to improve the

accuracy of depth estimation by using a higher resolution of the images as

input, and instead of training from scratch, we would like to use different

encoder networks architectures pre-trained with ImageNet classification task.
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We would also like to incorporate surface normals into the depth prediction

training.

The field of single image depth estimation is considered one of the most

important and fast-growing fields in computer vision. The results are becom-

ing more robust and accurate due to better exploitation of the human visual

system and availability of the bigger datasets, and better neural network archi-

tectures. In the past recent years, researchers have been explicitly exploiting

human visual system cues and geometric constraints in the training procedure

to enhance accuracy. These exploits include using stereo cameras (i.e. when

we use two eyes), depth from defocus (i.e. when we change eye focus for objects

with different depths), using gravity as a prior for depth, using semantics to

increase accuracy (i.e. knowing of an object type will define a prior about the

depth of the object), using local planar continuity (i.e. knowing some points

3D positions on a plane will help to recognize other points’ depths on the same

plane, and surface normal smoothness in a local plane).

One of the most important visual cues yet to be investigated in the deep

learning framework is the effect of the occlusions known as depth ordering via

occlusion reasoning. Occlusions are important cues to our visual system. For

example, if part of a building is occluded by a car that means the car is in

front of the building, and this means the car is closer to the camera, and its

depth is smaller than the depth of the building. Although the network might

learn the occlusion effect during the training, this type of occlusion effect in a

single image was never explicitly incorporated into the training. Another HVS

clue which needs to be investigated in deep neural networks is incorporating

the effect of the perspective vanishing points. Vanishing points give us strong

priors about the depth along those lines.

One other important aspect of the single image depth estimation field is

its closeness to the optical/scene flow and stereo matching fields. Methods

in all these fields are very similar to each other, e.g. the design of the neu-

ral network architecture, handling occlusions in stereo warping, unsupervised

training using image warping.

Generalization was always an important issue of deep learning solutions.
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Single image depth estimation was first developed for indoor scenes, and then

outdoor scenes due to initially the existence of dense depth ground truth for

indoors. One of the unsolved problems in this field is the nonexistence of

a single model which can perform accurately for both indoors and outdoors

scenarios. Generalization for both indoor and outdoor scenes might be one of

the future lines of the research in this field.

Although single image depth estimation accuracy is not close to LiDAR

accuracy yet, given how fast this field is going forward, soon, we will not need

expensive LiDAR and other depth sensors. We can sense 3D only with a

regular camera.

54



References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.
Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283. 42

[2] F. Aleotti, F. Tosi, M. Poggi, and S. Mattoccia, “Generative adversarial
networks for unsupervised monocular depth prediction,” in 15th Euro-
pean Conference on Computer Vision (ECCV) Workshops, 2018. 17, 41, 46

[3] R. Alkemade, “Depth perception for augmented reality using parallel
mean shift segmentation,” 2010. 1

[4] Y. Almalioglu, M. R. U. Saputra, P. P. de Gusmao, A. Markham, and
N. Trigoni, “Ganvo: Unsupervised deep monocular visual odometry and
depth estimation with generative adversarial networks,” arXiv preprint
arXiv:1809.05786, 2018. 17

[5] A. Atapour-Abarghouei and T. P. Breckon, “Real-time monocular depth
estimation using synthetic data with domain adaptation via image style
transfer,” in Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’18), vol. 18, 2018, p. 1. 17

[6] Y. Cao, Z. Wu, and C. Shen, “Estimating depth from monocular images
as classification using deep fully convolutional residual networks,” IEEE
Transactions on Circuits and Systems for Video Technology, 2017. 17

[7] P. Chakravarty, K. Kelchtermans, T. Roussel, S. Wellens, T. Tuytelaars,
and L. Van Eycken, “Cnn-based single image obstacle avoidance on a
quadrotor,” in Proc. IEEE International Conference on Robotics and
Automation (ICRA’17), IEEE, 2017, pp. 6369–6374. 1
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