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Abstract

Temperature Discovery Search (TDS) is a forward search method for computing

or approximating the temperature of a combinatorial game. Temperature and mean

are important concepts in combinatorial game theory, which can be used to develop

efficient algorithms for playing well in a sum of subgames. A new algorithm TDS+

with five enhancements of TDS is developed, which greatly speeds up both exact

and approximate versions of TDS. Means and temperatures can be computed faster,

and fixed-time approximations which are important for practical play can be com-

puted with higher accuracy than before.
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Chapter 1

Introduction

1.1 Artificial Intelligence and Games

Games playing has been a research area since Artificial Intelligence (AI) was first

introduced. Algorithms in AI originally were not good in dealing with ambiguous,

ill defined real-world problems. Games, which are considered as an abstraction of

real-world problems, have clear rules and goals and can also be incredibly complex.

Thus many AI algorithms are tested in different kinds of games. The study of AI

techniques can also lead to good strategies for game players and here are some

famous game playing programs:

• The backgammon program TD-gammon developed by Tesauro [31] used

temporal difference learning. It beat all other backgammon programs and

its explored strategies had a great influence on the theory of backgammon

playing.

• The chess program Deep Blue developed by IBM used αβ search and a large

endgame database. It defeated the world champion Garry Kasparov by 2

wins, 1 loss and 3 draws in 1997 [25].

• The checkers program Chinook developed by Schaeffer [24] is unbeatable

and checkers is proved to be a draw [23].

• The Go program Fuego developed by Enzenberger et al. [8] uses Monte Carlo

Tree Search (MTCS) and was the first program to beat a top professional in

an even game on a 9×9 board.
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Despite the global searches used in the computer programs for games above,

another technique “Divide and Conquer” based on combinatorial game theory can

be used for combinatorial games such as the game of Amazons and Go:

• The Amazons program Arrow developed by Müller [21] decomposed an

Amazons board into a sum of independent subgames so it can search deeper

in each local subgame. Using these techniques, Amazons on a 5× 6 board

was proven a first player win by Song and Müller [29].

1.2 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 covers the introduc-

tion of the game Amazons, background on combinatorial game theory, and different

algorithms for sum games and algorithms for computing temperatures and means

for a combinatorial game. This includes discussion of the Temperature Discovery

Search (TDS) algorithm, on which our work is based. Chapter 3 explains how our

new TDS+ method improves the original TDS algorithm. Chapter 4 evaluates the

performance of TDS+ in several different test scenarios. Chapter 5 surveys other

related work. Chapter 6 discusses some potential research topics on how to use

TDS+ in different ways.

The main results of this thesis were accepted for publication in AAAI-15. An

extended journal version is in preparation.
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Chapter 2

Background

2.1 Game of the Amazons: An Example

The game of the Amazons (Amazons for short) is a well-studied combinatorial

game. It was invented by Walter Zamkauskas of Argentina in 1988. It is a member

of the territorial game family, a distant relative of Go and chess.

Amazons uses a rectangular board (usually 10 by 10 squares). The same number

of black and white Amazons are placed on the board before a game starts. Usually

there are four queens of each color, white moves first, and the players alternate

moves thereafter until the game terminates when one of the players cannot make

a move. The winner is the player who made the last move. Figure 2.1 shows the

starting position of a 10×10 Amazons game.

A B C D E F G H I J

1

2

3

4

5

6

7

8

9

10

Figure 2.1: A 10×10 Amazons starting position.

Each move in Amazons consists of two parts:
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1. amazon move. One player can choose one of his/her own amazons and move

it exactly as a queen moves in chess, i.e., move one amazon from its origin square

to another square in a straight line either orthogonally or diagonally, but it cannot

cross or enter a square occupied by an amazon of either color or an arrow.

2. arrow shot. After one amazon is moved, it must shoot an arrow from its

current square to another square, using another queenlike move.

A B C D

1

2

3

4

×
×
×

A B C D

1

2

3

4 ×
× ××

Figure 2.2: An example of how an Amazons move works.

Figure 2.2 shows an example move D4−C4×C2.

Amazons is guaranteed to terminate since each move will fill an empty square

and the total number of squares is finite.

Furtak et al. have shown that solving a generalized Amazons game is PSPACE-

complete [9].

A C D

1

2

3

4

B E F G H I

6

5

7

8

9

Figure 2.3: Amazons position with independent subgames in each corner, from [19].

In the end stage of an Amazons game, the board will often split into several parts
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such that each part is independent from the rest of the board. In Figure 2.3, from

[19], solid walls of arrows separate a roughly 4× 4 region in each corner to form

four subgames. In terms of combinatorial game theory, the overall game position G

can be represented as a sum of four simpler subgames G1 +G2 +G3 +G4.

2.2 Combinatorial Game Theory

Combinatorial game theory [5, 7] is the study of games that can be viewed as a sum

of independent subgames. Each move changes exactly one subgame. The player

able to make the last move overall wins. A recent textbook covering the theory is

[26].

2.2.1 Combinatorial Games

Combinatorial Games are two-player games with no hidden information and no

chance elements. They include children’s games such as tic-tac-toe and dots and

boxes; mathematical abstractions “played” on arbitrary graphs or grids or posets;

and some of the deepest and best-known board games in the world, such as Go and

chess [26].

Two players, often called Left and Right, play alternately and their moves affect

the position in a manner defined by the rules of the game. The game terminates

when one player cannot make a legal move. Under normal play the last player to

move wins. In misère play the last player to move loses.

The game of Amazons is an example of a combinatorial game. According to the

rules of Amazons, two players are playing on a board with perfect information and

no random elements. The player who cannot make a move loses the game. All its

properties satisfy the definition of a combinatorial game. Because of its decompo-

sition property, the game of Amazons is a good testbed for studying combinatorial

game theory.

Combinatorial game theory is most straightforward for short games or loopfree

games. In the play of a short game, a position may never be repeated, and only a

finite number of other positions can be reached.
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A short game G is an ordered pair (GL,GR), where GL and GR are sets of

“simpler” short games, the Left and Right options of G. It can be written as:

G = {GL|GR} [1].

2.2.2 Operations on Combinatorial Games

Combinatorial games can be summed and compared. The definition for summation,

negation, subtraction and comparison (<,=,>) can be defined by [1]:

G+H ≡ {GL +H,G+HL|GR +H,G+HR}

−G≡ {−GR|−GL}

G−H ≡ G+(−H)

G≥ H ≡ ∀X Left wins G+X whenever Left wins H +X .

G≤ H ≡ ∀X Right wins G+X whenever Right wins H +X .

G = H ≡ G≥ H and G≤ H.

G > H ≡ G≥ H and G 6= H.

G < H ≡ G≤ H and G 6= H.

G || H ≡ G� H and G� H.

Let G and H be two combinatorial games with G = {GL|GR}, H = {HL|HR}.

G+H means each player can either choose to play in G or H. −G means players

switched position/color, i.e. Left becomes Right and Right becomes Left. G > H

means Left has an advantage in G over H. G||H means G is confused with H and

neither game gives advantage for players. For example, game G = {0|0}, which is

denoted as ∗, is confused with 0, thus G||0.

Every short game G has many equivalent forms. For example ∗+∗= 0. But for

all short games, there is a corresponding game called canonical form (or simplest

form) of G. Every game G can be converted into one unique canonical form [1].

A combinatorial game in canonical form is said to be a number if each game

in GL is less than any game in GR for G = {GL|GR}. A number is said to be an
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integer if at least one of GL and GR is the empty set. From [1], we have:

0≡ {|}

n≡ {n−1|}

−n≡ {|− (n−1)}

Here a positive integer n means a game where player Left has n moves left while

player Right has no moves available. Similarly for a negative integer −n, Right has

n moves while Left has none.

In short games, numbers can only be dyadic numbers, i.e., the rationals whose

denominators are the power of 2 [1].

Definition 1. [1] Given G = {GL|GR}, LS(G) (the left stop of G) and RS(G) (the

right stop of G) are defined in a mutually recursive fashion as:

LS(G) =

{
x if G is equal to a number x;
max(RS(GL)), otherwise;

RS(G) =

{
x if G is equal to a number x;
min(LS(GL)), otherwise;

LS(G) and RS(G) can be viewed as the minimax value of G when G is played

with Left/Right being the first player respectively, assuming the players stop playing

as soon as the game becomes a number.

Definition 2. [1] If G satisfies the condition that −v < G < v for all positive num-

bers v, then G is called an infinitesimal.

Therefore, the left and right stops of any infinitesimals are both 0. For example,

G = {0|0}, is an infinitesimal.

2.2.3 Thermography

Definition 3. [1] A game G cooled by t, Gt is defined as:

Gt =

{
m if ∃t ′ < t : LS(Gt ′) = RS(Gt ′) = m;
{GL

t − t|GR
t + t}, otherwise;
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Cooling G by t means that “you can move first in G if you donate t moves to

your opponent”.

Definition 4. [26] The Left and Right scores of G, denoted by Lt(G) and Rt(G),

are defined by

Lt(G) = LS(Gt) and Rt(G) = RS(Gt)

regarded as functions of t. The thermograph of G is the ordered pair (Lt(G),Rt(G)).

The functions Lt(G) and Rt(G) always intersect at some point (m, t) and are

equal from all t ′ > t. We call this line from point (m, t) and above the mast of

the thermograph and m, t are m(G) (mean of G) and t(G) (temperature of G)

respectively.

Temperature is the answer to the question: “How much is a move worth?” and

mean is the answer to the question: “Who is ahead? And by how much?”. Both

notions are defined for a game without considering which player it is to move.

From a complete thermograph of G, t(G) and m(G) can be easily extracted as

the coordinates of the base of the mast. This is one way to compute t(G) and m(G).

In Figure 2.4b, Lt(G) and Rt(G) intersect at (5
4 ,

7
4) which indicates that m(G) = 5

4

and t(G) = 7
4 .

Besides t(G) and m(G), thermographs contain information about how G be-

haves at different temperatures, though not as much information as the canonical

form. For example, infinitesimal difference between options are lost.

8



A B C D

1

2

3

4 ××××
× ×

×
×

(a) An Amazons position G.
(b) Thermograph of G with mean 5

4 and
temperature 7

4 .

Figure 2.4: An Amazons position and its thermograph.

Figure 2.4 shows the thermograph of an Amazons position generated by CG-

Suite (see website: http://cgsuite.sourceforge.net). The values on

the horizontal and vertical axis represent mean and temperature values respectively.

It is hard to tell the mean or temperature of G from its canonical form:

G = {4|2,{3|0,{1
2
|0}}||{0,∗|−1},−1

4
}

while it is easy to tell from the thermograph. The mean value is just the mast value

at the intersection, 5
4 in the example and the temperature is just the temperature

corresponding to the base of the mast, 7
4 in the example.

2.2.4 Birthday of a Combinatorial Game

The birthday of a combinatorial game G, denoted as b(G), is a measure of its recur-

sive depth.

Definition 5. [26] The birthday of a game (or value) G = {GL|GR}, denoted by

b(G), is 1 plus the maximum birthday of any game in GL ∪GR. In the base case,

when GL = GR = /0, b(G) = 0. G is said to be born on day n if b(G) = n, and it is

born by day n if b(G)≤ n.

9
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0 is the only game born on day 0. Only four games, 1 = {0|}, −1 = {|0},

∗ = {0|0}, and 0, are born by day 1. For short games born by day n, an upper

bound of their temperature is n−1. For Amazons subgame G with m empty squares,

b(G)≤m. If b(G) can be easily bounded from the set of possible temperatures, t(G)

will be constrainted. As we will see in Section 3.3.3, t(G) lies in a much smaller

set of possible temperatures for short games born by day n.

2.2.5 Enriched Environment and Coupon Stacks

It follows from [19] that an analysis for computing the temperature of a single sub-

game can utilize an enriched environment [3, 4] consisting of elementary switches,

simple subgames of the form v|−v for some number v. In v|−v, Black to move can

gain v extra moves, while White to move can also gain v moves which is scored as

−v. The mean of such a switch is m(v|− v) = 0 and its temperature is t(v|− v) = v

[5]. Sum games consisting only of such switches are easy - playing a switch with

highest temperature v is always optimal. Following [3], coupon stacks can be ex-

tended to cover negative temperatures down to the lowest possible temperature of

-1. A sum game consisting of a single, potentially complex, subgame G plus an en-

riched environment called a coupon stack can be used to determine both the mean

and temperature of G [3].

In a sum game consisting of a single, potentially complex, subgame G plus an

enriched environment, the trade-off now becomes much simpler to analyze: the

choice is between playing in G and playing the switch with highest value v in the

environment. If v is large, each player will take this profit rather than play in G. As

the available values v become smaller, eventually a player will prefer to move in G

instead.

Definition 6. Given δ > 0 and tmax = nδ for some integer n such that nδ ≥−1, an

extended coupon stack C(tmax,δ ) contains coupons of value tmax, tmax− δ , · · · ,−1,

followed by a sufficiently large number k of final coupons of value -1, and a “bal-

ancing” coupon of value −1
2 . If tmax > −1, the current player can take the top

coupon of value tmax in C(tmax,δ ). This changes the score of the game by ∆ = tmax

in that player’s favor and leaves a shorter stack C(tmax−δ ,δ ). When tmax =−1, a
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player can take a coupon of value −1 in this final coupon stack.

The number k of extra coupons should be chosen large enough that there is

always such a coupon available while play in G continues. A coupon stack C =

C(tmax,δ ) with tmax ≥ 0 behaves like a combinatorial game of temperature t(C) =

tmax and mean m(C) = 0. For any tmax ≥−1, the left score, the minimax score with

alternating play and Left going first, is V (C,Left) = dn
2eδ while the right score with

Right going first is V (C,Right) =−dn
2eδ .

[19] Let G be a finite loop-free combinatorial game and p be a player. In the

view of thermography [5], a player should play in G at a temperature t(G). How-

ever, in so-called sente situations a player has a threat that makes it possible to play

G at a higher temperature. Let t̂(G, p) be the highest temperature such that player p

can play in G without a loss in the thermographic sense. For loop-free games, this

means p can play in G at any temperature in the range [t(G) . . . t̂(G, p)].

2.3 Algorithms for Playing Sum Games

Algorithms for playing sum games emphasize local analysis of each subgame, since

the computational complexity is much lower than when dealing with the whole

sum at once. Three kinds of algorithms for playing sum games are global search

algorithms, local search algorithms and combined global-local search algorithms.

2.3.1 Global Search Algorithms

The popular global search algorithms just consider sum games as a single game.

Examples are αβ search, which depends much on a good heuristic for position

evaluation, and Monte Carlo tree search, which is widely used in computer Go.

αβ search [16] is a search algorithm that seeks to decrease the number of nodes

that are evaluated by the minimax algorithm in its search tree. When applied to a

standard minimax tree, it returns the same evaluation as minimax would, but prunes

away branches that cannot possibly influence the final score. The move may change

with use of transposition tables, etc. For branching factor b and search depth d, the

best case time complexity of αβ search is Θ(bdd/2e). In games like Amazons, the
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branching factor can be very large, which results in a shallow search for a given

time limit.

Monte Carlo Tree Search (MCTS) is a method for making decisions in arti-

ficial intelligence (AI) problems, typically move planning in combinatorial games.

It combines the generality of random simulation with the precision of tree search

[6]. Research interest in MCTS has risen sharply due to its spectacular success with

computer Go [8, 10] and application to a number of other difficult games such as

Hex [2], Shogi [22], and Amazons [17].

2.3.2 Local Search Algorithms

Local search algorithms can often search much deeper than global search does since

they only search in one subgame, which has a much smaller branching factor. Lo-

cal search usually cannot guarantee globally optimal move. Three local search

algorithms discussed in [1] are:

Hotstrat: The player will always choose to play in the hottest subgame which

is the subgame with the highest temperature.

Sentestrat: Define the ambient temperature as the lowest temperature of all

previous positions; it starts out infinite. If the opponent has just moved in a com-

ponent leaving it at a temperature above the ambient temperature, respond in that

component; otherwise play hotstrat.

Thermostrat: Find the ambient temperature T and move in the component

whose thermograph is widest at T . The difference between the optimal strategy and

thermostrat is bounded by the largest temperature of the components. This strategy

is used when the thermographs of each component can be easily calculated.

2.3.3 Global and Local Search Combination Algorithms

One global-local search was introduced in [20]. It is a hybrid algorithm that com-

bines local temperature estimates with shallow global search.

[20] examines several different ways of combining local information with global

search, including different ways to prune moves and order moves. The results show

that a hybrid algorithm can perform much better than purely local search algorithms
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like hotstrat or thermostrat. For example, in one scenario, given some temperature

bound b, only the positions p with t(p) > b are searched deeper, and positions p

with t(p)≤ b are evaluated statically.

2.4 Algorithms for Finding the Temperature of a Com-
binatorial Game

Both bottom-up and top-down algorithms can be used for finding the temperature

of a combinatorial game.

2.4.1 Bottom-up Algorithms

The following works use bottom-up algorithms for finding the temperature of a

combinatorial game:

• Snatzke [27] built a complete database of canonical form values and ther-

mographs for Amazons positions within a set of small game boards by us-

ing bottom-up strategies which compute all results for smaller size Amazons

games before computing larger size games.

• Tegos [30] also used bottom-up strategies to build a database of canonical

form values and thermographs. Besides, he built another database called

minimax database which stores the minimax value of every position for each

player.

• Enzenberger’s Amazons database module CGDB is part of the Arrow [21]

code base. It is used for building Amazons playing and solving programs.

It can compute the thermographs using bottom-up strategies. An extension

by Song [28] can create databases for Amazons blocker territories which

contain queens of only one color, and overlap with one or more active areas

on some queens called blockers.
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2.4.2 MTS: Mean and Temperature Search

Mean and Temperature Search (MTS) [12, 13] searches a subgame starting with

alternating-first order and refines bounds on means and temperatures up to conver-

gence. The main limitation of MTS is the requirement that all game positions of

temperature zero and below can be statically recognized and evaluated. In many

combinatorial games, including Amazons, this is not feasible.

From [12, 13], the outline of MTS is similar to an αβ search. ML(G), MU(G),

T L(G), and TU(G) denote the lower and upper bound of the mean and temperature

of a position G. Before the search starts, these values are initialized for all positions:

ML = −∞ , MU = ∞, T L = 0, TU = ∞. During each run of the search, a new

terminal node will be visited and the values of all nodes on the path from the root

to the terminal node will be updated. The search process continues until ML = MU

and T L = TU at the root. The search may terminate while there are still unvisited

nodes, which corresponds to pruning in αβ search. In the worst case, as in αβ

search all terminal nodes will be visited.

2.4.3 TDS: Temperature Discovery Search

Temperature Discovery Search (TDS) [19] can handle any short (loopfree) game

including those with positions of nonpositive temperature.

Both MTS and TDS are forward search algorithms. They do not need to con-

struct the complete thermographs of all follow-up positions by bottom up analysis.

TDS is a forward search algorithm based on αβ search of the sum G+C, where

G is the game to be analyzed and C is a coupon stack. Taking a coupon of value v is

represented by C(v). With a small-enough δ and large-enough tmax, TDS computes

exact means and temperatures for loopfree combinatorial games. TDS can fail if the

temperature tmax of the largest coupon is too small. This is indicated by a principal

variation (PV) of the αβ search which starts with a move in G, not a coupon.

Using an Enriched Environment to Determine t(G) and m(G) [19]:

First the maximum possible temperature, tmax which t(G) could be, is deter-

mined. Then a search starts in the game G+C(tmax,δ ) for a player p to compute
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V (G+C(tmax,δ ), p).

1. Determine the mean: Assume that p is the player to move. According to a

theorem in [3], if the value δ in C is sufficiently small, then V (G+C, p) = m(G)+

V (C, p). Since V (C, p) is known (see Section 2.2.5), m(G) can be determined.

2. Determine the temperature: Observe the move sequence in the principal

variation (PV) returned by the search. If t(C)> t̂(G, p), then the first moves in the

PV will all be in C. At some time when t(G) ≤ t(C) ≤ t̂(G, p), the first move in

G will appear in the PV. This can be used as a starting point of an iterated search

process to determine t(G). t(G) is the lowest temperature at which optimal play

can switch from C to G. For example, if the first move in G was played between the

coupons of value t and t− δ , The first estimate of t(G) is set to t, since t(G) ≤ t.

If the minimax score stays the same even if the next lower coupon of value t− δ

is played before the first move in G, then the temperature estimate can be lowered

by δ . To check this, search is modified to play all the coupons down to C(t− δ )

before a move in G is allowed. If the minimax score remains the same, then taking

C(t−δ ) first was not a loss, compared to the previous search where G was played

before C(t − δ ). Therefore the estimate can be decreased to t := t − δ , and the

process is repeated. Otherwise, if the minimax score changes, then taking C(t−δ )

was nonoptimal, and the temperature is t(G) = t.

The process above is called temperature discovery search (TDS) and Algorithm

1 shows the pseudo code.

A B C D
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2

3

4 ××××

×
×
× ××

×
×

Figure 2.5: Amazons example G = {2|− 1
2 ,±1}.

Figure 2.5 [19] shows a local Amazons position G with Black = Left to move
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first. The search of G+C with an extended coupon stack C =C(tmax = 17,δ = 1
8)

yields the minimax score V (G+C,Left) = 15
8 . The principal variation (best line of

play-PV) for Figure 2.5 is:

1. C(17
8 ) 2. C(16

8 ) 3. C(15
8 ) 4. C(14

8 ) 5. C(13
8 )

6. C(12
8 ) 7. C(11

8 ) 8. A1–A2×B1 9. C(10
8 ) 10. C(9

8)

11. C(8
8) 12. C(7

8) 13. C(6
8) 14. C(5

8) 15. C(4
8)

16. C(3
8) 17. C(2

8) 18. C(1
8) 19. C(0) 20. C(−1

8)

21. C(−2
8) 22. C(−3

8) 23. C2–B3×C2.

Algorithm 1 TDS
1: function TDS(G)
2: t := MaxPossibleTemperature(G)
3: δ := SmallEnoughDelta(G)
4: (v, sequence) := αβ (G+C, p, t) . solve G+C for player p, no board

move when top coupon is greater than t
5: T := GetTemperatureFromSequence(sequence)
6: M := v− v(C, p)
7: while True do
8: (newv, newsequence) := αβ (G+C, p,T −δ )
9: if newv 6= v then

10: M := v− v(C, p)
11: break
12: else
13: v := newv
14: sequence := newsequence
15: T := GetTemperatureFromSequence(sequence)
16: end if
17: end while
18: return (T,M)
19: end function

Approximate TDS uses a larger value of δ than the required small enough δ .

It was shown to yield excellent approximations of means and temperatures even

with relatively large δ such as 1
2 . In experiments on sums of Amazons positions, a

heuristic TDS-based algorithm outperformed global αβ search for sums of Ama-

zons subgames.

Let G be a (sub)game to be analyzed. A search state in TDS is defined as

S(g,c,∆, toPlay), where g is the current game position reached by play from G, c is

16



the current coupon stack, ∆ is the aggregate score of all coupons already taken, with

coupons taken by White counted negative, and toPlay is the color to play next. A

move in g changes the state to a board position g′, while a move in c changes both

the coupon stack and ∆. Any move also changes toPlay to the opponent.
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Chapter 3

TDS+: Improving Temperature
Discovery Search

3.1 A Motivating Example

The main problem of applying the original TDS algorithm in practice is its time

complexity when scaling up - either to larger subgames, or to higher precision using

smaller δ . As an illustration, consider the game G in Figure 2.5 with temperature

t(G) = 5
4 where TDS scales badly for small δ . As an approximation algorithm with

a relatively large δ = 1/2 and setting tmax = 2+δ , TDS is reasonably fast and com-

putes the following principal variation (PV) with Black going first:

1. C(5
2) 2. C(4

2) 3. C(3
2) 4. A1–A2×B1 5. C(2

2)

6. C(1
2) 7. C(0) 8. C(−1

2) 9. C2–B3×C2.

The first move on the board is played at move 4, between coupons of value
3
2 and 1. This represents a good approximation to t(G) = 5

4 and is achieved with

a relatively fast 9-ply search. However, computing the exact temperature requires

setting δ = 1/8. This leads to a deep 23-ply search as shown in the previous chapter.

The optimal line of play contains two long coupon-taking subsequences but

only two moves (8 and 23) on the game board. Moves 1–7 are all coupons since

the initial temperature tmax =
17
8 of the coupon stack is considerably higher than the

board temperature of 5
4 . After the first board move 8. A1–A2×B1, the temperature

of the board drops to −1
2 , and therefore all moves 9–22 are again coupons.

In the simple standard model with fixed branching factor b and fixed depth d, the
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best case time complexity of αβ search is Θ(bdd/2e). Compared to an αβ search

of G without a coupon stack, b increases by one in TDS for the added coupon

move. However, d increases by the number of coupons that need to be taken before

reaching a terminal position in G, which can be very large when δ is small and

tmax increases. The number of coupons in a coupon stack is about (tmax + 1)/δ ,

plus possibly several final coupons of value -1. Since the branching factor b is

determined by the game, the current work focuses on how to reduce the search

depth d.

One important improvement implemented in the original TDS, and used in the

example above, is that as soon as a recognized terminal position is reached in G,

TDS stops the search and computes the alternating-play value of the remaining

coupons. To improve the speed of TDS in practice, reducing the search depth is

essential. The TDS+ algorithm developed in this thesis achieves this while retaining

correctness. The improvements to TDS developed in this thesis are based on three

main insights:

1. In the PV of TDS, long consecutive coupon move sequences exist. So re-

ducing the effective search depth can be achieved by avoiding long sequences of

coupons, both at the beginning and in the middle of a search.

2. Fast pre-searches with a large value of δ can be used to quickly gain in-

formation about a game, in order to set up the final, expensive search as well as

possible.

3. The transposition table is not fully used in TDS. The fact that a sum G+C

is searched can be used for strong algorithm-specific improvements to the transpo-

sition table, which allow much better re-use of information compared to the “plain

αβ” transposition table used in the original TDS algorithm. However, some care is

needed to handle this re-use correctly, as discussed in the next section.
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3.2 Re-using State Information and Solving a TDS-
specific Graph History Interaction Problem

The graph history interaction (GHI) problem occurs when the outcome of a game

depends on the path (history) of moves from the initial state. The most frequent

example of this problem is position repetition. Surprisingly, GHI can appear when

searching G+C even when a game G itself has no history dependency.

Play of G+C ends either in a normal terminal position, where the value of G can

be statically recognized, or in a pseudo-terminal position (PTP), where both players

took a -1 coupon as their last move, indicating their unwillingness to continue play.

PTP are evaluated as 0 by the simplicity rule of combinatorial game theory [5, 19].

PTP can cause a GHI problem as follows:

Let δ be fixed, and let c−1 =C(−1,δ ) be a final coupon stack with tmax = −1.

Consider playing G+ c−1 with Black to play, when there exist moves a for Black

and b for White such that the resulting board position G′ is the same after either

sequence ab or ba played from G. Then the move sequence ending with successive

-1 coupons:

1. Black a 2. White b 3. Black C(−1) 4. White C(−1)

is a PTP which is evaluated as 0, while the sequence:

1. Black C(−1) 2. White b 3. Black a 4. White C(−1)

is not and might have a different minimax score. Both sequences result in identi-

cal board positions G′ and coupon stacks c−1, but their evaluation is not the same in

general. In the original TDS algorithm, this problem is avoided since the transposi-

tion table is only used in a very conservative way: states reached after consecutive

-1 coupons are never stored or looked up in a table. The more aggressive use of

tables in TDS+ requires handling this GHI problem. While efficient general so-

lutions exist [14], for the current special case it suffices to slightly extend search

states by storing the number of consecutive -1 coupons taken as the most recent

moves. Instead of storing both states resulting from the two sequences above as

S(G′,c−1,∆,Black), which would cause a GHI problem, the extended states be-

come distinct: S(G′,c−1,∆,Black,2) and S(G′,c−1,∆,Black,1).
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3.3 Five Enhancements to TDS

3.3.1 Conditional Move Generation

Algorithm 2 Conditional Move Generation using a temperature-dependent Skip()
test.

1: function CONDITIONALGENERATE(G,C, Skip)
2: t := MaxTemperature(C)
3: if Skip(t, G) then
4: return {C(t)}
5: else
6: return {C(t)} ∪ Generate(G)
7: end if
8: end function

Two of the enhancements below work by suppressing move generation in the game

G for specific temperatures t. In principle, coupons at these temperatures could

be removed from the coupon stack, but the bookkeeping for stacks with nonuni-

form temperature differences becomes messy. In Algorithm 2, a uniform stack is

retained, but move generation in G is skipped at these temperatures, resulting in

a very fast unbranched search step. Enhancements E2 and E4 below utilize this

approach, with different Skip functions.

The following five enhancements lead from TDS to an improved algorithm

TDS+.

3.3.2 E1: Fast Pre-searches with Decreasing Values of δ

The original TDS sets tmax = bound+δ , where bound is a game-specific bound on

the maximum possible temperature. In Amazons, a safe bound for a position with

n empty squares is n− 1 (see Section 2.2.4). However, the temperature of most

positions is much lower. As in Figure 2.5, searching with a larger δ is much faster

and can be used to obtain a better tmax estimate. Extensive empirical testing showed

that the estimated temperature returned from such searches never underestimates by

much, giving rise to the 2δ -Conjecture.

Conjecture 1. Let tδ = TDS(G,δ , tmax) be the approximate temperature computed

for some δ . Then the true temperature t(G) is upper bounded by t(G)≤ tδ +2δ .

21



Algorithm 3 shows TDS with enhancement E1. G is searched repeatedly with

decreasing values of δ = 1, 1
2 , · · · ,

1
2n , while adapting tmax along the way. Since the

2δ -conjecture is unproven, the call to TDS in Line 7 of the algorithm could possibly

fail. In this case, the algorithm needs to re-search with larger tmax until it succeeds.

However, this case has never happened in thousands of experiments. Choosing a

lower position-dependent tmax means fewer coupons in the final, most expensive

search. In the ideal case the PV starts with a single coupon, followed by a move in

G.

Algorithm 3 TDS1: Pre-searches with δ from 1 to 2−n

1: function TDS1(G,n)
2: δ := 1
3: tmax := safe bound(G) . n−1 in Amazons
4: while δ > 2−n do
5: isFail := true
6: while isFail do . Failure handling
7: tδ := TDS(G,δ , tmax, isFail)
8: if isFail then
9: tmax := tmax +δ

10: end if
11: end while
12: tmax := tδ +2δ . Adapt tmax for next iteration
13: δ := δ/2
14: end while
15: return TDS(G,δ , tmax)
16: end function

3.3.3 E2: Avoid Search at Impossible Temperatures

For fixed n, the set of games born by day n is finite. Theorem 1 in Appendix A

characterizes a set Tn = {− 1
2b ,0,

1
2b ,

3
2b , . . . ,a+

1
2b |0 ≤ a ≤ n− 2,0 ≤ b ≤ n− 1},

which contains all temperatures of games born by day n. The following function

can be used to check whether a temperature is possible or not.

Algorithm 4 Skipping Impossible Temperatures
1: function SKIP-IMPOSSIBLE-T(t,G)
2: n := BirthdayUpperBound(G) . n empty squares in Amazons
3: return t 6∈ Tn
4: end function
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Enhancement 2 directly applies this theorem using the SKIP-IMPOSSIBLE-T

function in Algorithm 4 as the argument Skip in CONDITIONALGENERATE of Al-

gorithm 2. This test requires an estimate of the birthday of a game G. Especially

for small δ , many temperatures can be skipped.

A B C D

1

2

3

4

××××
××
××
××

Figure 3.1: Amazons example G = ±(1,{2|12 ,{1|∗}}), where E2 can help skip
many coupons.

Figure 3.1 shows an example of how E2 performs. First, TDS1 lowers tmax to 22
16

(details not shown). Then, the PV of the final TDS search is as follows:

1. C(22
16) 2. C(21

16) 3. C(20
16) 4. C(19

16) 5. B2–B3×B2
6. C(18

16) 7. C(17
16) 8. C(16

16) 9. C(15
16) 10. C(14

16)

11. C(13
16) 12. C(12

16) 13. B3–A3×B3

For 7 out of the 11 coupons, search is skipped by E2 along the PV. These

coupons are C(21
16), C(19

16), C(18
16), C(17

16), C(15
16), C(14

16), and C(13
16). Note that in

other branches of the search, the set of skipped coupons may be different, since it

depends on the birthday upper bound of the current board position.

3.3.4 E3: Generalized Transposition Table

The original TDS implementation uses a standard hash table to recognize transpo-

sitions in its αβ search. The design of its hash function for coupon stacks did not

allow re-use of information between searches. The generalized transposition table

of TDS+ improves upon TDS in three ways: First, TDS+ computes the hash code

for a stack c by first defining a hash function mapping each temperature t to a hash

code h(t), then defines the hash code of c as the bitwise xor of the codes of all
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coupons with temperature t >−1. Second, in order to deal with GHI, the hash code

encodes the number of consecutive −1 coupons taken as the most recent moves.

This allows re-use of hash table entries between different searches.

Third, TDS+ generalizes the entries in the hash table as follows: The minimax

value of a full state S(g,c,∆, toPlay,nuFinal-1Coupons) is the sum of the aggregate

value ∆ of coupons taken so far, and its remaining value, which depends on the other

state variables g, c, toPlay and nuFinal-1Coupons. In the TDS+ hashtable, states

are stored without encoding ∆. The value of ∆ is kept up to date incrementally in a

search while traversing the game tree, and is added to each value retrieved from the

hash table. In this way, a state s′ that has a different past history in terms of coupons

taken but is the same otherwise as a state s can be used to compute the value of s

without search.

3.3.5 E4: Recursive TDS

While enhancement E1 is designed to lower tmax and avoid search at too-high tem-

peratures at the beginning of the search, the same idea can be applied recursively

after each move on the board, since the temperature may have dropped significantly,

as in Figures 2.5 and 3.1. Enhancement E4, shown in Algorithm 5, recursively calls

TDS1 to compute a tmax estimate at every position during the search. In case of a

temperature drop, this approach can skip many coupons in the top-level search.

When combining the SKIP-RECURSIVE function with the SKIP-IMPOSSIBLE-

T of enhancement E2, the algorithm first uses the SKIP-IMPOSSIBLE-T to check if

the temperature is possible or not. It also records the maximum possible tempera-

ture for the current board position and saves it in a separate board hash table, which

stores useful information for board positions independent of the state of the coupon

stack, also including the score of each color by the static evaluation function. Each

time the board hash table is checked first to see if this position was searched before.

If so, the maximum possible temperature stored is used directly without searching

this position again. Then SKIP-RECURSIVE is used to check the temperature again.
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Algorithm 5 Lower the temperature at internal nodes
1: function SKIP-RECURSIVE(t,G)
2: n := BirthdayUpperBound(G)
3: return t >TDS1(G,n)
4: end function

3.3.6 E5: Improved Handling of PTP States

With E5, PTP states (see Section 3.2) reached after two consecutive -1 coupons are

recognized as solved positions. Without E5, the same G+C reached after two con-

secutive -1 coupons may be visited many times during the search and the algorithm

needs to check whether it is a solved position every time. With E5, the informa-

tion of whether the state is reached by two consecutive -1 coupons is also stored in

the transposition table. The algorithm can use this information to avoid duplicate

checking, which leads to a speedup.

3.3.7 The TDS+ Algorithm

The TDS+ algorithm uses all enhancements E1,E2, . . . ,E5. It simply calls the func-

tion TDS from Algorithm 1 with the following changes:

• Move generation in αβ search uses Algorithm 2 to avoid board move gen-

eration at impossible temperatures which is determined by enhancements E2

and E4. E1 is used in E4 as shown in Algorithm 5.

• By using enhancement E3, the transposition table now stores better informa-

tion than the old algorithm. It can also use E5 to deal with the GHI problem.

3.3.8 Using TDS+ When Bounds for Birthday Are Unknown

In E1, E2, and E4, we assume that a bound tmax for temperature and a bound b(G)

for birthday exist and tmax is initially set to this bound according to the birthday.

For the game of Amazons, the birthday for each position can be easily bounded

according to the number of empty squares, but for other combinatorial games, the

birthday cannot be bounded easily.

Here are some suggestions for use when bounds for birthday are unknown.
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• When tmax cannot be easily bounded: first run TDS/TDS+ using a guess for

tmax. If tmax > t(G), the algorithm will work correctly; if tmax ≤ t(G), and

the first move in the PV is a board move, then run TDS/TDS+ again using a

larger tmax by adding 1 or some other good step to the previous tmax and keep

following this process until the search returns a PV starting with a coupon.

• When b(G) cannot be easily bounded: the use of E2 is restricted: from The-

orem 1, negative temperatures can only be of the form − 1
2n .

• When small enough δ cannot be determined: in this case, we can only gen-

erate an approximation for temperature and mean by successively setting δ

smaller and smaller. This approximate version can also use an approximation

for birthday b(G) and therefore use E2 again.
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Chapter 4

Experiments and Results

All experiments use the game of Amazons and are performed on a 2.4 GHz Intel

Xeon. The maximum memory in the experiment is 80 MB for the hash tables of

entries.

4.1 Improvement from Individual Enhancement

TDS+ corresponds to the original TDS algorithm plus all enhancements E1–E5.

This section investigates the performance of different subsets of enhancements. The

presence of enhancement Ei is indicated by adding i to the subscript of TDS. For

example, TDS13 uses E1 and E3, and TDS+ is TDS12345.

Not all subsets are meaningful, since E4 requires both E1 and E3, while E5

requires E3. E4 includes E1, and E4 requires E3 since E4 is used recursively which

leads to many calls of the same searches for the same position. Using the hash table

(E3) can avoid duplicate searches.

The test set contains 600 cases from a complete database of 4×4 Amazons po-

sitions with one queen each: 17 cases with two empty squares, 33 cases with 14

empty squares, and 50 test cases each for 3 to 13 empty squares. They were ran-

domly sampled from the database. (See Appendix B for details.) Experiments were

performed to test interesting subsets of enhancements, including each enhancement

in isolation, as well as a leave-one-out setting. Figures 4.1 and 4.3 show the results

in terms of coverage, or number of problems solved, with different time limits. Fig-

ure 4.3 shows the comparison of enhancements in a leave-one-out setting. Each
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version of TDS in Figure 4.3 except TDS+ lacks one single enhancement.

Figure 4.1: Comparison of each enhancement in isolation.

The x-axis in Figures 4.1, 4.2, 4.3 and 4.7, which is on a log scale, represents

the time limit (in seconds) for each test case, and the y-axis represents the number

of solved test cases in for a given time limit.

Discussing the contribution of each enhancement from the results in the figure,

TDS1 already solves many more test cases than TDS. However, its scaling with

higher time limits is also poor. Comparing TDS235 with TDS1235 shows that E1 is

also very strong in combination.

Results for TDS2 show that E2 alone helps little. However, combined with other

enhancements it works very well for more complex test cases, as shown by the big

difference between TDS1345 and TDS12345 for longer time limits.

The individual strength of E3 is similar to E1, as seen when comparing TDS1

and TDS3, and also TDS235 and TDS12. These two combine very well in TDS13,

and also in TDS1235 compared to both TDS235 and TDS12.
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Figure 4.2: Combining enhancements E1, E3 and E4.

Figure 4.3: Comparison of enhancements in leave-one-out setting.
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Adding E4 is a strong improvement over E3 alone but when adding E4 to TDS13,

the improvement is not so much as seen in Figure 4.2.

TDS12345 and TDS1235 also have similar coverage. TDS12345 can solve more of

the high temperature test cases.

Figure 4.4 shows details. For high temperature test cases with t(G)≥ 2, TDS12345

is always faster than TDS1235. Since larger size test cases (6 or more empty) are not

all complex test cases, TDS1235 can finish some of them faster than TDS12345 does.

The improvement from E5 is modest, but visible in a few data points in Figure

4.3. To give a quantitative indication, TDS12345 expands 0.5% fewer nodes than

TDS1234 over the set of all 50 test cases with 5 empty squares.

Figure 4.4: Runtime comparison, TDS1235 vs TDS12345.
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Figure 4.5: Runtime comparison, TDS135 vs. TDS135+n.

Figure 4.5 gives further evidence that reducing the number of top coupons as

in E1 is important. In this experiment, TDS135+n is TDS135 but with n extra top

coupons of value tmax + δ , · · · , tmax + nδ added after establishing tmax using TDS1.

For all test cases with runtime over 1 second, TDS135 is fastest.

Only cases where all experiments finished within the time limit are shown. Out

of the 144 test cases that completed with TDS135, the number of extra timeout cases

was 3, 5, 8, 8 for n = 1 . . .4. Runtimes are plotted on a log scale in Figures 4.4 and

4.5.
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Figure 4.6: Amazons example where adding E4 is much better. t(G) = 3, m(G) = 0.

Figure 4.6 shows an example where TDS12345 performs much better than TDS1235.
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TDS1235 expands 800,751 nodes while TDS12345 only expands 31,041 nodes and

is about 7 times faster. It cost 29.39s for TDS1235 while it only cost 4.28s for

TDS12345. The reason is that after the first move on the board, the temperature

drops from 3 to -1. E1 can only lower tmax for the starting position while E4 can

lower tmax for any intermediate board position.

4.2 2δ -Conjecture Experiment

The 2δ -Conjecture is used for enhancement E1, see Section 3.3.2.

This experiment tests how much can be gained if only one δ is added to tmax

instead of using the 2δ -Conjecture on TDS1235. The 2δ -Conjecture is used in all

other experiments since it was found empirically that the 2δ -conjecture never failed.

Figure 4.7: TDS1235 when using δ /2δ conjecture.

In Figure 4.7, the results show that TDS1235 can be improved a little when

adding only one δ to tmaxin Line 12 of Algorithm 3, which means 2δ needs to

be added to tmax only very few times.
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The one δ version of TDS1235 is used for all searches beginning with the initial

large δ to the final, small enough δ .

It is a trade off to add one δ or 2δ to tmax since adding one δ can shorten

the search depth while adding two δ can avoid the re-search assuming the 2δ -

Conjecture never fails.

In the experiment, for all size 4 to 6 (2 to 4 empty squares) test cases, only

two cases have a PV with exactly 1 coupon before the first board move in the final

search. For all other 131 passed test cases, the PV starts with more than one coupon.

That is why adding only one δ to tmax is a little faster as shown in Figure 4.7.

4.3 Approximate Version of TDS+

δ = 1 1s 3s 10s 30s 100s
TDS 85 165 188 214 246
TDS+ 178 195 240 261 305
δ = 1/2 1s 3s 10s 30s 100s
TDS 84 143 165 180 197
TDS+ 156 171 190 232 257
δ = 1/4 1s 3s 10s 30s 100s
TDS 79 95 131 156 170
TDS+ 116 155 175 195 239
δ = 1/8 1s 3s 10s 30s 100s
TDS 45 78 85 102 130
TDS+ 102 146 164 180 194

Table 4.1: Coverage for approximate TDS and TDS+..

Two experiments compare the approximate versions of TDS and TDS+. The

experiment in Table 4.1 shows the coverage on the test set for fixed values of δ and

fixed time limits. TDS+ finishes substantially more test cases than TDS for each

tested combination of δ and time limit.

Note that the data in Table 4.1 is the number of problems solved over time. In

the limit, both algorithms should solve all 600 problems but it might take an astro-

nomical amount of time. Assume that there is an absolute scale of difficulty, and

that TDS+ dominates TDS, then there will be uneven relative gains when increasing
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the time limits, since the difficulty of the 600 test problems is most likely not evenly

spaced on this difficulty scale.

Figure 4.8: Average approximation errors for temperature (t) and mean (m) of TDS
and TDS+.

The second experiment measures approximation errors for temperature and mean

when varying the time limit. Figure 4.8 shows that both mean and temperature are

approximated better by TDS+ than by TDS. If a test case times out, different ap-

proximations to the temperature are feasible based on the PV of the incomplete

search. Let tmin be the minimum coupon value in the PV. As in TDS, if the PV

contains a board move, the value of the coupon previous to the first board move

is chosen as the estimated temperature. In case there is no board move in the PV,

eight different approximations for the temperature were tried: tmin, tmin− δ , 0, -1,
tmin

2 , tmin−δ

2 , tmin+1
2 and tmin−δ+1

2 .

Results are shown in Figure 4.8: a good choice is half the minimum coupon

value in the PV, t = tmin
2 . The choice of t = −1 used in the original TDS is shown

to be poor.
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More specifically, the results in Table 4.2 show the average errors for all eight

approximations with different time limits using TDS and TDS+. Choosing a value

around tmax
2 is more promising for TDS+ and TDS.

Time Limit 2 4 8 16
tmin TDS 3.278 2.889 2.556 2.267

TDS+ 1.232 1.115 1.051 0.908
tmin−δ TDS 2.697 2.407 2.127 1.908

TDS+ 1.223 1.109 1.047 0.906
0 TDS 2.060 2.021 1.977 1.876

TDS+ 1.153 1.091 1.070 0.940
−1 TDS 2.647 2.517 2.415 2.241

TDS+ 1.301 1.194 1.149 0.992
tmin

2 TDS 1.178 1.273 1.298 1.306
TDS+ 1.015 0.992 0.992 0.895

tmin−δ

2 TDS 1.364 1.400 1.396 1.373
TDS+ 1.049 1.003 0.990 0.887

tmin+1
2 TDS 1.070 1.206 1.243 1.282

TDS+ 1.015 0.992 0.993 0.896
tmin−δ+1

2 TDS 1.178 1.273 1.298 1.306
TDS+ 1.046 1.001 0.989 0.887

Table 4.2: Average t errors using different approximations in TDS and TDS+.

4.4 Using TDS+ to Check if t(G) > T for a Given
Temperature Threshold T

The MTS algorithm of [13] can be efficient, but requires recognizing and evaluating

the mean of all positions of nonpositive temperature. MTS can be made into a gen-

eral algorithm by using TDS+ as a temperature threshold checker. For any position

MTS encounters in the search, first use TDS+ to check if the current position G is

hot or not, i.e., whether the temperature of the G is greater than 0 or not. If G is

hot, it satisfies the condition of MTS to keep searching. If G is not hot, then treat

it as a terminal position for MTS and evaluate it by the mean calculated by TDS+.

The current experiment checks whether TDS+ is suitable as such a leaf node recog-

nizer for MTS. While only testing t(G) > 0 is needed in MTS, experiments using
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TDS+ on the same test set as the previous section check t(G)> T for all thresholds

T ∈ {0,1,2}. This could be useful for developing approximate versions of MTS for

complex games.

ttrue ≤ T ttrue > T
ttest ≤ T low-low fail-low
ttest > T fail-high high-high

Table 4.3: Possible results for TDS+ to check if t(G)> T , for threshold T .

In Table 4.3, ttest is the temperature estimate returned by TDS+ and ttrue is the

true temperature for G. Only the errors for low-low and fail-low situations are cal-

culated because if TDS+ thinks the temperature of G is greater than the threshold T ,

which corresponds to the situation that G is hot in MTS, it keeps searching without

needing to know the exact temperature and mean. Notice that in the experiments,

fail-low situations never happen because TDS+ always lowers the temperature in

the range from t to t̂.

T = 0 1s 3s 10s 30s 100s
avg m errors 0.052 0 0 0 0
max m errors 0.5 0 0 0 0
#fail-low 5 0 0 0 0
T = 1 1s 3s 10s 30s 100s
avg m errors 0.073 0.034 0.034 0.03 0.03
max m errors 0.5 0.25 0.25 0.25 0.25
#fail-low 25 19 18 12 12
T = 2 1s 3s 10s 30s 100s
avg m errors 0.108 0.093 0.093 0.045 0.044
max m errors 0.875 0.875 0.875 0.453 0.375
#fail-low 10 10 10 10 7

Table 4.4: Coverage for TDS+ to check t(G)> T .

Results in Table 4.4 show that when the time limit increases, the average and

maximum errors for mean and the number of fail-low cases all decrease.

Since both the average and maximum errors for the mean are small, TDS+

seems to be a good tool which can be used to develop an approximate version of

mean-temperature search.
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4.5 Comparing Sum Games Players

Four different players were tested in a sum game experiment similar to Table 3 of

[19]. A sum of several small Amazons positions is played twice, with colors re-

versed. Each subgame contains one Amazon of each player, plus random obstacles.

As in the experiment mentioned above, results are averaged over 200 runs with

different randomly generated subgames where one queen each and three burnt-off

squares were placed into each subgame at random locations.

Arrow is a full-board αβ player [21]. The three other players use Hotstrat [5],

but differ in their method for computing temperature estimates. Hotstrat-TDS uses

the original TDS algorithm, Hotstrat-TDS+ uses TDS+, and CGDB uses a database

with exact temperatures. (See Appendix B for details.) The database CGDB uses is

calculated and stored by a generator designed by Markus Enzenberger [28], which

is a part of the Arrow [21] code base. The database is only available for the case

of 4×4 subgames. Players share the same Amazons-specific code, core αβ search

engine with standard enhancements, and heuristic evaluation function. In the first

two experiments of Hotstrat-TDS+ vs Arrow and Hotstrat-TDS+ vs Hotstrat-TDS,

the time limit is 10 seconds per move.

Table 4.5, 4.6 and 4.7 show the game results depending on the number N and

the size of the subgames. Each entry in these three tables shows the mean score,

the standard deviation of the score and the percentage of wins for player A in the

result of player A vs player B. Note that only the games with non-zero result value

are used to compute the percentage of wins.

N 4×4 5×5 6×6
2 -2.20(6.06) 44.0% -1.62(8.95) 52.3% 0.58(11.8) 57.3%
4 -2.60(8.49) 49.3% 2.54(12.3) 58.6% 25.4(19.7) 77.5%
6 -1.58(10.1) 50.1% 16.4(16.9) 72.8% 53.9(25.4) 86.8%

Table 4.5: Hotstrat-TDS+ vs Arrow

Table 4.5 shows the result for games between Hotstrat-TDS+ and Arrow. The

performance of Hotstrat-TDS+ improves strongly with the size and number of sub-

games. For 4× 4 subgames, full board αβ is slightly superior, but for the cases
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with many large subgames, Hotstrat-TDS+ wins big. It is interesting to contrast

these results with Table 3 of [19], obtained 10 years ago on much slower hardware.

The relative performance of αβ is much improved for simple subgames due to the

extra search depth reached, but the superior scaling of local search remains clear

for more complex subgames.

N 4×4 5×5 6×6
2 9.77(5.53) 82.5% 22.2(9.26) 88.2% 43.2(13.5) 91.4%
4 19.7(7.59) 90.0% 39.7(12.2) 94.7% 61.1(16.2) 97.7%
6 29.9(9.85) 93.3% 50.7(15.5) 96.7% 76.6(21.6) 98.8%

Table 4.6: Hotstrat-TDS+ vs Hotstrat-TDS.

Table 4.6 matches Hotstrat-TDS+ against Hotstrat-TDS. The experimental set-

ting is the same as in Table 4.5. Hotstrat-TDS+ performs much better. Both methods

are based on approximate temperatures, but TDS+ can compute better approxima-

tions in the same time, as also seen in Figure 4.8.

Time 2×4×4 4×4×4 6×4×4
1 -2.86(4.99) 35.64% -8.17(7.75) 27.04% -15.95(8.61) 15.46%
3 -1.51(5.81) 42.93% -7.01(7.84) 30.89% -12.30(9.29) 23.33%

10 -1.19(6.02) 44.63% -6.43(7.51) 29.22% -7.82(9.77) 29.46%
30 -1.16(5.59) 46.09% -3.58(7.79) 40.27% -5.62(9.18) 35.43%

100 -1.13(6.01) 46.29% -3.76(7.42) 38.14% -5.69(9.37) 33.87%

Table 4.7: Hotstrat-TDS+ vs CGDB.

The results of Table 4.7 show that Hotstrat-TDS+ is weaker than the CGDB

player with its perfect temperature databases. When the time limit increases, the

score difference decreases gradually and the percentage of wins increases. This

indicates that TDS+ temperature approximation works effectively and can approach

the true temperatures in the limit.
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Chapter 5

Other Related Work

5.1 Other Sum Game Algorithms

In [32], Yedwab compared some strategies on playing well in sum games: “follow

the leader” [18] where a player only plays locally optimal moves and plays in

the same game as the opponent whenever possible, “mean strategy” [11] where a

player always plays t-optimal moves and will have a error bound of the maximum

temperature of subgame Gi in the final game value, and “thermostratic strategy”

[5] based on thermographs. She also improved the error bound in “mean strategy”

to be the second highest temperature among all subgames Gi.

5.2 Other Approaches for Computing Amazons

Song [28] created an αβ player which uses the endgame databases like in Tegos

[30], and improved the bounds heuristics for Amazons. He solved the 5×6 Ama-

zons starting position as a first player win.

Kloetzer [15] compared different algorithms, αβ , Monte Carlo Tree Search

(MCTS) and temperature discovery search, on playing Amazons. He showed that

traditional proof number search is best suited for the task of finding moves in a

subgame, and a MCTS player performs better in sum games when the number of

subgames is large.

39



Chapter 6

Future Work

6.1 Combining MTS and TDS+

Since Kao’s Mean and Temperature Search (MTS) cannot deal with nonpositive-

temperature positions and TDS+ can quickly determine whether a position is hot or

not, a general algorithm could be developed which would combine a top-level MTS

with a TDS+ based hotness checker for identifying leaf nodes of MTS. The result

of the comparison between TDS+ and MTS with TDS+ checker in different games

would be interesting. It is also interesting to know how TDS+ compares to MTS in

games where all nonterminal positions are hot.

6.2 Better Global and Local Search Algorithms Us-
ing TDS+

Hybrid algorithms as discussed in Section 2.3.3 can be developed for sum games.

Such algorithms combine local temperature estimates with shallow global search as

in [20]. In the experiments of that paper, the algorithm used for playing sum games

is only a hotstrat player. Many options for creating a good sum games player are

available, such as first generating several potential good moves in several subgames

according to the estimated temperatures of the subgames, then using global search

only on these moves, pruning moves in low temperature subgames, and those that

are locally unpromising according to a modified TDS+ algorithm.
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6.3 Proof of the 2δ -Conjecture

In all the experiments conducted in this paper, the 2δ -Conjecture never failed from

Section 3.3.2. It is still important to prove its correctness or find a counterexample.

6.4 Relation Between Searches With Different δ

A more general question concerns the relation between the search information com-

puted by different searches using different values of δ .

Is it possible to derive bounds from these searches? One idea is that for the

search using some δ , if temperatures of subpositions during this search are all even

multiples of δ , we can assume or assure that this δ is already small enough, thus

stop decreasing δ immediately and use the results of that search. But it still needs

a proof and testing.

In TDS+, only a single hash table is used to store all the search information with

different δ s. Right now, this information is not exploited effectively, since only

approximate temperature is used in the algorithm and all other search information

in the hash table is ignored afterwards. If more information from the searches with

larger δ s can be exploited, then searches with smaller δ could be sped up more.

6.5 Proof for the Exact Temperature Set for Short
Games Born By day n

Only a proof for the superset of the possible temperatures for short games born

by day n is provided in Appendix A. If the exact possible temperature set for short

games born by day n can be determined, E2 can skip more impossible temperatures,

which leads to a faster search.

6.6 Applications to Other Combinatorial Games

Testing TDS+ on other combinatorial games, like NoGo and Go, would be interest-

ing. It will be great if TDS+ can be extended to Go endgames. The main technical

difficulty here is dealing with local position repetitions called ko.
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Appendix A

Possible Means and Temperatures

In this Appendix, first characterizes the sets Tn and Mn that contain all possible

temperatures and means of games born by day n. Next, an example show that Tn

and Mn are not exact sets.

A.1 For Games Born by Day n

Theorem 1. For a game born by day n ∈ N, its temperature is contained in the set

Tn = {− 1
2b ,0,

1
2b ,

3
2b , . . . ,a+

1
2b |0 ≤ a ≤ n− 2,0 ≤ b ≤ n− 1}, and its mean in the

set Mn = {0,± 1
2b ,± 3

2b , . . . ,±(a+ 1
2b ),±n|0≤ a≤ n−2,0≤ b≤ n−1}.

(a) both taxed (b) left taxed (c) right taxed

Figure A.1: Different mast intersections.

Intuition: Mean and temperature can be determined by the mast value and its

corresponding temperature directly. Figure A.1 shows the three kinds of possible
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mast intersections. We only need to consider two cases since (b) and (c) are sym-

metric.

If we start from a position G with L moving first, the sequence of positions

visited will be GL,GLR,GLRL, . . . . These positions are called the left alternating

followers of G, denoted by GL(1),GL(2),GL(3), . . . . An alternating follower of G is

called odd (even) if it can be reached from G by an odd (even) number of moves.

For mast (a), the left wall and right wall are determined by some left odd option

GL(x) and right odd option GR(y) respectively where x and y are both odd.

For mast (b), the left wall and right wall are determined by some left odd option

GL(x) and right even option GR(y) respectively where x is odd and y is even.

Now we begin the proof for the theorem:

Proof. First, by Proposition 5.20(a) in (Siegel 2013), G is cold (temperature is less

than zero) if and only if G is equal to a number. A number can be represented as

x = m
2n , and t(x) =−1/2n.

A game G born on day n or less has mean and temperature of the form x/2n−1

with integer x. This follows easily by induction from adapting the proof of [7,

Theorem 61].

Combining the results above, if G is born on day n and its temperature is nega-

tive, then t(G) ∈ {− 1
2b |0≤ b≤ n−1} Also on day 1, 0 is one of the new tempera-

tures. Thus we only need to prove the positive part of Tn.

We use induction to prove Tn and Mn. When n = 0, Tn = {−1},Mn = {0}, the

theorem holds. Now we assume it holds for any positive integer up to n. We need

to prove that it still holds for n+1.

Let T ∗n and M∗n be the exact temperature set and mean set for all games born by

day n. We need to prove T ∗n+1 ⊆ Tn+1, M∗n+1 ⊆Mn+1.

In this part, we try to get the maximum possible temperature, and the maximum

and minimum possible mean of game G born on day n+1.

When we draw the thermograph of some game G, there are only 3 cases for the

mast of the thermograph.

In the case in Figure A.1a the mast base point of game G comes from the in-

tersection of the taxed masts of some left option GL(x) and some right option GR(y)
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where x and y are both odd. Therefore we have:

t(G) =
m(GL(x))−m(GR(y))

2

m(G) =
m(GL(x))+m(GR(y))

2

So t(G)≤ sup(m(GL(x)))−inf(m(GR(y)))
2 = n−(−n)

2 = n since GL(x) and GR(y) are born

by day n.

Similarly, m(G)≤ sup(m(GL(x)))+sup(m(GR(y)))
2 = n+n

2 = n

and m(G)≥ inf(m(GL(x)))+inf(m(GR(y)))
2 = −n−n

2 =−n.

Then consider two cases when the mast intersection G comes from one vertical

and one diagonal mast. In Figure A.1b, the mast of G comes from some left option

GL(x) and some right option GR(y) where x is odd and y is even. In this case, t(G)≤

t(GR(y))≤ n−1 and −n≤ m(G) = m(GR(y))≤ n. The third case in Figure A.1c is

symmetric.

In the special case when GL or GR is empty, t(G) = −1 ∈ Tn+1 and m(G) =

m(GL)+1 and m(G)=m(GR)−1 respectively, thus m(G)∈Mn+1 since sup(m(GL))+

1 = n+1 and inf(m(GR))−1 =−(n+1) are both in Mn+1.

Combining the results above, t(G)≤ n+1 for game G born on day n+1. Since

Tn+1 contains all the possible temperatures less than or equal to n and Mn+1 contains

all the possible means less than or equal to n+1, T ∗n+1 ⊆ Tn+1 and M∗n+1 ⊆Mn+1.
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A.2 An Example Why Tn 6= T ∗n and Mn 6= M∗n

t m 0 ±1
8 ±1

4 ±3
8 ±1

2 ±5
8 ±3

4 ±7
8 ±1 ±9

8 ±5
4 ±11

8 ±3
2 ±13

8 ±7
4 ±15

8 ±2 ±17
8 ±9

4 ±5
2

1
8

√ √ √ √
1
4
√ √ √ √ √ √ √

3
8

√ √ √ √
1
2
√ √ √ √ √ √

5
8

√ √ √ √
3
4
√ √ √ √ √ √

7
8

√ √ √ √ √

1
√ √ √ √ √

9
8

√ √ √ √
5
4
√ √ √ √

11
8

√ √ √
3
2
√ √ √

13
8

√ √
7
4

√ √
15
8

√

2
√ √

17
8

√
9
4

√
5
2

√

3
√

Table A.1: All possible (t,m) pairs for t > 0 of games born by day 4.

Table A.1 shows all possible (t,m) pairs of games born by day 4 when t > 0. All

temperatures in T4 do occur. However, for games born on day 5, 43
16 is contained in

both sets M5 and T5, but no game with birthday 5 can be constructed with 47
16 as its

mean or temperature. If we have such a game G and m(G) = 47
16 ∈M∗5 , it has to be in

the case of Figure A.1a due to its denominator. The only choice is using M(GL) = 4

and M(GR) = 15
8 as the two options whose masts intersect in the thermograph of

G. From Table A.1 we know that for game GR whose m(GR) = 15
8 , t(GR) can only

be 9
8 but here if we use M(GL) = 4 and M(GR) = 15

8 to construct the game with

m = 47
16 the temperature t(G) must be 17

16 which is less than 9
8 and this is impossible

to construct a game in Figure A.1a case. Reason for T ∗n 6= M∗n can be found by using

a similar example.
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Appendix B

How to Use the TDS+ Software

Our algorithms and experiments are contained in the project called Arrow [21]

which is an Amazons player. Arrow is built on top of the Fuego framework [8].

Project Arrow can be used to load Amazons positions and make Amazons moves

using several different algorithms such as αβ search, MCTS, or sum game players.

To test our algorithm TDS+ on Amazons positions, we use a another project

called CGT in which our core algorithm lies. The search engine is called CpSearch.

We used the basic αβ search engine, SgSearch, from project Fuego [8]. CpSearch

is a subclass of SgSearch.

B.1 Exact TDS

The flow of determining the temperature and mean of a game G is as follows:

• First, Arrow loads an Amazons test case G and starts CpSearch.

• Then, CpSearch searches in G+C, where C is a coupon stack. It calls the

functions in SgSearch but uses its own move-generation function and modi-

fied hash tables.

• Finally, m(G) and t(G) are determined from the value of the searches and the

move sequences in the principal variations as reviewed in Section 2.4.3.

To test TDS+ in a new game, we first need to have a project to include the game

playing functions of the new game: loading a board, board move generation, board

evaluation function etc., then follow the same process above.
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B.2 Experiments

The Amazons test cases were randomly chosen from the positions generated by

CGDB which was used to create the databases for Amazons. First the size of a

rectangle containing all database positions is chosen, in our case 4× 4. CGDB

starts generating all positions with zero empty squares, whose birthday is 0. Then it

generates all positions with more squares and computes the thermographs for them

by using all results of positions born on earlier days. All symmetric positions are

considered the same position and only one of them is kept for randomly generating

the test set. Each enhancement in our algorithm can be switched on or off manually

during the experiments. We run a regression test suite called “reg-test-tds” on all

these test cases using different versions of TDS. This test suite is now part of the

Arrow code base in “project arrow/regression/reg-test-tds”.

Sum game players use an approximate version of TDS+ or TDS using a test

suite called “experiments-splitboard-games” which is also a part of the Arrow code

base. The only difference between approximate and exact versions of TDS+ is that

the approximate version will determine the temperature and mean approximately

by the information of the searches finished in a limited time.

Different sum game players were tested in Section 4.5. The first two are hotstrat

players called Hotstrat-TDS/TDS+. They first use TDS/TDS+ to estimate the tem-

peratures for all subgames, then select a move with the second highest temperature

[19]. Arrow is a sum game player which uses global αβ search with the evaluation

function from [21]. The CGDB player is also a hotstrat sum game player. Instead

of using TDS/TDS+ to compute the temperature, it uses a pre-calculated database

of all 4×4 positions which stores all information including temperature, mean and

best move of each color for each position.
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