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ABSTRACT

This thesis examines the current analytical techniques for delay
assessment at signalized intersections in Canada, Australia and the
United States. The thesis discusses the reliability of these techniques,
with particular focus on the Canadian model (Whiting delay equation)
and on the inter-relationships of its parameters. The implications of
using an aypropriate evaluation time parameter for more accurate
delay predictions, and in turn the development of a method to
determine such parameter values and an alternate model of providing
those delay predictions are discussed. The relevant information for
this study comes from the literature, transportation reports, existing

models, on-site surveys and computer simulations.

The review of the Whiting delay model uncovers three important
points: (1) the random overflow delay component of the model cannot
be simultaneously random and time-dependent as model results
indicate, (2) the absolute value of the signal cycle time influences the
occurrence of random overflow, and (3) the prediction of expected
delay is more useful than that of the delay experienced. In addition to
the derivation of an evaluation time formula, which better reflects the
congestion period, an alternate random overflow delay model is

developed to replace that in the Whiting equation.

The two equations produce comparable results. However, the
alternate approach seems to explain the predicted delay in easier and

more understandable terms.



EXECUTIVE SUMMARY
INTRODUCTION

The main oobjective of this research was to review the Whiting
overflow delay equation, and to determine the relationship between
the evaluation time and the congestion period. After a detailed
examination of the equation, the research was expanded to develop a

better approach to predict random overflow delay.

This thesis describes the findings of the research. The thesis
begins by explaining the theories of delay and the current methods for
analytical signalized intersection delay assessments. The derivations
and limitations are examined to identify the influential parameters of
the overflow delay. The thesis then describes the Whiting overflow
delay equation and its related questions. The relationship between the
evaluation time and the congestion period is revealed through the
derivation of an equation. It is followed by discussions of the
development and verification of the new overflow delay prediction

model.

The relevant information for this study comes from the
literature, transportation reports, reviews of delay theories and
existing models, queueing diagrams, field measurements and

computer simulations.



THEORY OF DELAY

Delay is a useful tool in evaluating signal operatior:s. Uelay is
defined as the additional time a driver has to spend at an intersection
compared to the time in which there is unimpeded access. It may be
caused by either the traffic signal or any other traffic. Generally, delay
is determined by means of a queueing model, or queueing diagram:
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A queueing diagram showing a queueing situation within a signal
cycle of a lane of traffic at a signalized intersection
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The difference between the number of vehicles arrived and the
number of vehicles discharged in time interval t, is the number of
vehicles in queue at time t. The time difference between the arrival
and the discharge of a vehicle, will be the delay experienced by the
vehicle. Therefore, the total delay is equivalent to the area enclosed
by the average arrival and discharge curves, the average delay is equal
to the total delay divided by the total number of cars discharged in a
single cycle.



There are two major techniques for delay assessments: field
measurements and analytical estimates. The latter method is more
convenient and popular because delay predictions are possible even

when signal systems are still in design stage, as the technique does
not require the actual existence of a signal system.

DELAY PREDICTION MODE

Three types of delay are usuaily estimated in analytical
prediction of delay. They are:

1. Uniform delay - this type of delay results from the
interruption of traffic flow by traffic signals.

2. Continuous overflow delay - experienced when the
arrival flow is consistently greater than the capacity '
the lane. A growing queue forms.

3. Random overflow delay - caused by fluctuations in
vehicle arrivals. It may occur during some cycles under

generally uncongested operations.

Although each of the three types of delay is significant within a
certain range of degree of saturation, all three of them occur over the
entire range of degree of ‘saturation. Degree of saturation is the ratio
of the travel demand to the travel supply. A total overall delay is the
sum of all three types of delay. The average overzall delay is the total



overall delay divided by the number of vehicles passing through the
intersection during the analysis period.

Three overall delay models have been developed and are
currently used in many countries. They are named after their
countries of application: the Canadian, Australian and American Delay
Models.

In Canada, Canadian Capacity Guide for Signalized Intersections
recommends the Whiting delay equation as the analytical delay
estimation technique. This equation consists of a steady state uniform
delay and a time-dependent overflow delay model. By introducing an
empirical modifier into the overflow delay term, whiting developedan
equation that accounts for all three types of delay. The introduction of
a simple random overflow delay modifier is a major contribution of
Whiting formula, since for low and high degree of saturation the

unifrom and overflow models work well.

Unlike the Canadian formula, the Australian delay equation has a
minimum degree of saturation before it applies the overflow delay
term. The minimum degree of saturation is determined based upon
the capacity per cycle of the traffic lane. The Australian formula also
incorporates the effect of the absolute signal cycle time has on the
uniform and random overflow delays and places much more emphasis

on the random overflow delay than other models.



The American delay equation has a tendency of increasingly
overpredicting delays in oversaturated conditions. The American
model predicts stopped delay rather than overall delay. The
difference between the two is that the stopped delay disregards the
acceleration and deceleration delays. The model's assumption of
stopped delay is always 77 percent of the overall delay is questionable.
The correlation between the two is a function of the red interval and
the deceleration delay, instead of just a constant. The American delay
equation also assumes a fixed evaluation time of 15 minutes, regardless
of the actual congestion period. This assumption of fixed evaluation
time restrzints the consideration of the effects of congestion period
have on the overflow delay. Due to these assumptions, the American
model loses its accuracy of predictions as the degree of saturation
increases, and it diverges rapidly after the degree of saturation is
greater than 1.0. It is recommended that predicted delays should only
be used as an indication of the order of magnitude. This

recommendation would also apply to the Canadian and Australian

models.

The compazison of the three delay prediction models shows:
1. The significance of random overflow delay lies mainly
between the degrees of saturation of 0.85 and 1.05.
2. The difference between the Canadian and Australian

equations are negligible.



3. The three models are actually variations of one another,

and can be generalized in one single equation.

REVIEW OF WHITING OVERFLOW DELAY EQUATION

The Whiting delay equation appears to be a good representation
of actual traffic conditions.A However, after further examination of the
derivation principles of the Whiting delay egquation, several major
findings emerge:

1. There is a lack of definition of what, exactly, the evaluation
time should be, and how it is related to the congestion
period; all that is known is merely the evaluation time
should reflect the congestion period. Evaluation time is the
duration for a delay analysis. With continuous overflow delay
being directly proportional to the evaluation time, the
accuracy of delay predictions is dependent on the usage of
the correct evaluation time.

2. The average continuous overflow delay predicted is the
delay experienced by the vehicles discharged within the
evaluation period. It seems to be of lesser value to predict
delays of those discharged vehicles because delay already
experienced has no use to the driver in trying to avoid time

loss in the first place.



3. It is contradictory for the random overflow delay model of
the equation to be both random and time-dependent at the

same time. ,

4. The Whiting random overflow delay model neglects the
effect that absolute value of cycle length has on the delay.

Besides the fact that Whiting’s derivation uses an evaluation time
that is not clearly defined, his random overflow delay equation has no
specific theory to support it. Therefore, a different approach to the
equation is required', together with a proper correlation of the
evaluation time and the congestion period. This would improve the

accuracy of delay predictions.

DEVELOPMENT OF NEW OVE W DELAY PREDI N MODEL
(MODIFIED WHITING DELAY EQUATION)

Knowing that random overflow delay is time independent and
cycle-length oriented, a model with probabilistic features should be
chosen for the new prediction model. Because random arrival is
usually represented by a Poisson distribution, it is used as the
praobabilistic delay prediction model. Applying the distribution, and
simulating the conditions of random overflow at a =signalized
intersection, a model has been developed, which consists of two parts
- one to predict the probability of random overflow and one to predict

the resulting random overflow delay. Included in the new approach is



also the principle of determining the delay expected instead of delay
experienced. It appears that the new model is a more realistic

representation of the actual traffic conditions.

The applications of the modified delay prediction model are:

1. to only individual fixed-time signalized intersections.

2. for all ranges of degree of saturation. At a low degree of
saturation, the delay predicted is close to zero because
the probability of overflow is close to zero. At high
degree of saturation, the probability of random overflow
is constant but is insignificant in comparison to that of

the average continuous overflow.

The assumptions for the new modified model are:

1. Random arrival pattern is represented by a Poisson
distribution.

2. Uniform discharge pattern is at a rate equal to the
saturation flow.

3. Four vehicles overflow or underflow is used as a
practical range.

4, Two consecutive cycles of random overflow are used as
a maximum.

5. Vehicles étacking at the stopline.

It should be noted that it was not part of this research to review

the uniform delay model. As a result no modifications have been
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attempted and this component of the modified equation was left as it
was orlglrially.

The relationship between the congestion period and the
corresponding evaluation time was derived using the geometry of a
queueing diagram. The evaluation time is redefined as the flow-
persisting time, or the duration in which the arrival flow is
consistently greater than the capacity. By applying the principle of
conservation of matters and energy, and knowing the arrivals and the
duration of the congestion, the evaluation time that allows prediction
of the representative delay can be determined properly without any
guessing.

VERIFICATION OF THE NEW MODEL

The new model was verified by using field data and computer
simulations. Two delay surveys were conducted. One survey was done
with regular out-of-step queue count and the other survey was made by
means of vehicle trajectory reconstruction. Two sets of computer

simulations were also made with a specially designed program.

The predictions obtained from the new model, using the
conditions of the fleld surveys, were compared to those actual field
measurements, computer simulated results, and those delays
predicted from the Whiting delay equation. The comparisons show

that results from the modified model correspond very well to those
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obtained analytically, as well as field measurements and computer-
simulated results. Due to the limited number of fleld measurements
available for further verification of the new equation, no further

conclusions can be made at this date.

NCLUSION

The objectives of this research were reached. An equation of
how to obtain a proper evaluation time for delay assessment, and a new
approach to random overflow delay prediction has been developed.
Unlike Whiting overflow delay equation, where the random overflow
model was derived empirically, the new meodel is derived based on a
proven mathematical model. The modified model also predicts delay

expected.

In conclusion, although limited field data and time did not allow
sufficient model testing to prove the new model improves the quality
of delay predictions, it can be said that the model presents a useful
alternative delay-prediction technique that is mathematically
justifiable.

Therefore, it is recommended that the new model should be
thoroughly tested, and that it be adopted as another approach to delay

predictions.
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CHAZPTER 1 INTRODUCTION

"It may be sufficient to say that the operation is excellent or
dreadful, but a number is nice. In truth, the ability to assign numerical
values to different degrees of dreadfulness is important." These afe
Hurdle's words on signalized intersectiozn operation in a paper titled
'‘Signalized Intersection Delay Models - A Primer for the Uninitiated'
[1]. The quote shows the importance of being able to quantify the
operational quality of a signal system. Such a need for the
quantification becomes important in signalized intersection analysis.
Through an analysis, the performance of a signal system can be
evaluated, and the results can be used to compare before and after
situations in signal system improvement, and justify the capital

expenditure.

Delay, level of service, capacity and queue length are some of the
criteria used for evaluating signal operation. Each of the criteria
represents different characteristics of signal operation. Delay has
become the most popular evaluation tool in signalized intersection
analysis. Delays for individual lanes and the overall intersection
represent the most powerful means of evaluating intersection
performance and in turn provide a method for comparing intersection

operations.

Delay experienced by a driver at a signalized intersection is
defined as the additional time that the driver has to spend at the



intersection compared to the time if the driver could go through the
intersection unimpeded. It is often used as one of the govérning
factors in many engineering and economic decisions. For example,
one of the goals for transportation engineers is to design and operate
signal systems that minimize delay to the users, as delay is an
indication of the drivers' perception of how well the intersection
operates. In economic appraisal of an intersection improvement
scheme, delay savings form the main benefit that justify capital

expenditure.

There are two major of technigues for vehicular delay
assessment at signalized intersections: field measurements and
analytical estimates. Field measurements of delay involve actual site
surveys, and include queue counts and vehicle trajectory
reconstructions. They are useful for evaluation of signal operations;
however, since they require site surveys, they are not applicable if a
signal system is still in the design stage. The analytical estimation
technique includes mathematical models that simulate the arrival,
queueing and discharge of traffic at signalized intersectioris. They can
be applied in either the design or operation stage since they do not
require the actual existence of the signal system. As a result, the
analytical delay estimation technique has become popular for

signalized intersection delay assessment.

The Canadian Capacity Guide for Signalized Intersections (2]
recommends the Whiting delay equation, which is also known as the



Canadian delay equation, as the analytical technique for signalized
intersection delay assessment in Canada. The equation was derived
using queueing theory and designed for the lane by lane analysis of
individual fixed time signalized intersections. Delay equations have
also been developed in Australia and the United States.

The Whiting delay equation can predict delay with reasonable
accuracy if appropriate values are used for the parameters. However,
the selection of the proper parameter values may present a problem.
A good example is what to use for evaluation time. Evaluation time is
the duration in which a delay assessment is done. It is stated in the
Canadian Capacity Guide for Signalized Intersections that the
evaluation time should reflect the congestion period, yet the exact
relationship is unknown. Moreover, "since the delay for congested
conditions depends greatly on the evaluation time, which is rarely
determined accurately, the resulting delay should only be considered
indicative of the order of magnitude rather than taken as an exact
absolute value" [2]. The lack of understanding of this relationship has
complicated the selection of the correct evaluation time which gives
representative delay predictions of any congested conditions. It is
necessary to know how the evaluation time is related to the congestion
period, in order that an evaluation time which reflects the congested
condition can be applied for the delay prediction. This research is
motivated by this urge to gain a better insight into the accuracy of
aelay prediction; and in particular, designed to look for the
relationship between the evaluation time and the congestion period.



The objective of this research is to derive an equation which |
relates the evaluation time to the congestion period. It is achieved by
first reviewing Whiting overflow delay equation and then correlating
the evaluation time with the congestion period. The review of the
equation focuses on the derivation principles and the relationships

between the parameters of overflow delay.

From the review, three additional questions have arisen.

1) Is the prediction of average continuous overflow delay for vehicles
that arrive within the evaluation period more practical than that of
vehicles which are discharged during that period ?

2) Can the random overflow arrival and delay function be random but
time dependent ?

3) Is the absolute value of cycle time influenced by random overflow
and the resulting delay ?

These questions have expanded the objective of this research to

include an investigation of the possibility of a different approach to

random overflow delay prediction.

This thesis summarizes the findings of the research. Chapter 2
discusses the queueing theory and the types of delay used in analytical
estimation of delay. Chapter 3 presents the various models of
analytical delay estimation. The approach employed in this research
to achieve the objectives is explained in Chapter 4. In Chapter 5, the
development of a modified model is detailed, while the verification of



the model is shown in Chapter 6. Chapter 7 discusses the results and
implications of this research.



CHAPTER 2 DELAY AND TYPES OF DELAY

2.1 DEFINITION OF DELAY

The concept of delay can best be explained by visualizing a
situation where two vehicles are travelling towards a signalized
intersection. One of the vehicles, A, passes through the intersection
without having to slow down or stop, but due to interference of the
" traffic signal, the other vehicle, B, has to slow down and stop at the
intersection. Then, it is said that vehicle B has experienced a delay
while vehicle A has experienced none. The length of delay is the
additional time that vehicle B has to spend at the intersection when
compared to vehicle A. This concept is illustrated in Figure 1.

>
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Figure 1 Time space diagram illustrating the basic
concept of delay
In traffic engineering, the delay experienced by a driver at a
signalized intersection is defined as the additional time the driver has
to spend at the intersection compared to the situation of unimpeded
access. Such delay may be caused by the traffic signals or by other
traffic. Different factors lead to delays of different nature.



However, the actual delay experienced may be different from
that shown in Figure 1. Delay may have already started at some point

before the stopline. This shows the inherent vagueness of the delay
definition.

2.1.1 Vagueness in the Delay Definition

In a paper titled 'Accuracy of Delay Surveys at Signalized
Intersections' [3], Teply states that "since direct measurements of
delay are not possible, surveys employ indirect techniques based on
time-space concept or on queueing theory. A detailed examination of
both approaches shows one of the major problems lies in the inherent
vagueness of delay definition and different interpretations of the
concept of delay." The vagueness of delay is due to several reasons.

The two major factors are discussed in this section.

Varying travel speed is one of the causes of the vagueness in the
delay definition. Speeds of vehicles approaching a traffic signal are
rarely constant, especially when drivers can observe the change of
signal from green to amber to red. Therefore, because of drivers'
responses to changing Signals. the arrival rate encountered at the
stopline is not necessary the same as the rate at some point upstream
of the signal. Such a situation may lead to an over or underprediction
of delay due to the use of an inaccurate arrival rate. A similar problem
also exists for vehicle discharge. In actual situation, due to the

perception and reaction time of drivers and the acceleration of



vehicles involved, the saturation flow is not obtained until a few
seconds after the start of green interval. Saturation flow is the
maximum rate of vehicle discharge observed during green interval.
Therefore, the non definite starting and ending points of delay have
caused difficulties in defining the reference points for delay

predictions. Accuracy is subsequently affected. '

Another reason to the vagueness of the delay definition is the
varying arrival rate. In reality, vehicles do not join the queue at the
stopline but at some point upstream. The rate at which vehicles are
joining the queue is different than the average upstream arrival rate.
This is because the end of the queue is travelling backwards. In traffic
flow theory, this is called a "shockwave", as shown in Figure 2.

&»

Time

shockwave

'Y

Distance .

Figure 2 Time space diagram showing a shockwave at
the end of the queue of a lane of traffic at a
signalized intersection



With the shockwave travelling backwards, the rate of arrival at
the end of the queue is greater than the upstream rate of flow.
Therefore, if the upstream arrival rate is used for delay prediction, it

can result in an underprediction.

2.2 THEORY OF DELAY

The delay theory applied in analytical estimation of delay uses a
queueing model. It portrays the queueing situations of traffic at a
signalized intersection. There are two approaches to the

interpretation of a queueing model: probabilistic and deterministic.

A. Probablilistic concept

The queueing model views traffic as a stream of customers
seeking service from a server that only provides service intermittently
{1]. In this case, the server is the traffic signal. The customers who
have to wait for service experience delay while those who obtain
services immediately upon arrival experience no delay. The model
assumes the customers arrive in a random manner with an average
arrival rate, and they are discharged from the intersection in the
order of arrival, at a maximum uniform rate when the signal light is
green. A queueing model with these characteristics is called an
M/D/1:(FIFQO) system, where M represents a Markov or randomly
distributed arrival; D stands for a deterministic or uniform discharge
rate; 1 means one channel of arrival and service or only one vehicle

can arrive and discharge at a time, and FIFO, is the abbreviation for
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first in, first out, which indicates services are in the order of arrival
[4].

The characteristics of the M/D/ 1:/¥iFQ) system have limited the
application of the queueing model tu only individual fixed tirse
signalized intersections. Individual in the sense that the arrival
pattern at the intersection is random and not influenced by any
upstream traffic pattern. This characteristic of only one vehicle being
discharged at a time implies the concept of lane by lane analysis of
delay.

B. Deterministic concept

The M/D/1:(FIFO) system is a good representation of the actual
traffic condition. However, owing to the high level of uncertainty in
the random arrival, it is impossible to consistently predict delay. If it
is to predict delay consistently, the uncertainties have to be

minimized.

As a result, assumptions are introduced into the queueing model
to negate the vagueness caused by the lack of distinct starting and
ending points for delay, and the continuous variations in the arrival
and discharge rates. It is assumed that there is a constant average
arrival rate, and the discharge rate changes instantaneously from zero

to saturation flow at the onset of green interval.
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The uncertain starting point of the maximum discharge flow
complicates the nature of delay. To simplify the theory, the second
assumption described above is made. Since this is a major
assumption, a compensation is needed. The compensation is that an
effective green instead of the actual green interval is used. The
effective green is the period of the actual green interval where the
discharge rate is equal to saturation flow. Having loss of time at the
beginning of the green interval due to the perception and reaction
time of drivers as well as acceleration time of vehicles, the effective
green should be shorter than the actual green interval. However,
since many drivers do make use of the amber period, the time lost at
the beginning of green interval is usually offset. This extends the
duration of the effective green interval. For the purposes of this
research, the effective green interval is assumed to be equal to the
actual green interval. It should be noted that the assumption of
effective green being equal to the actual green is only valid in fully
saturated conditions. Since this research focuses mainly on overflow
delay, the assumption is justified. In Toronto, the effective green is
found to be equal to the actual green interval, while in Edmonton, the
effective green is taken to be equal to the green interval plus one

second [6].

Applying the two assumptions to the M/D/1:(FIFO) system, the
probabilistic queueing model applied for analytical estimation of delay
at signalized intersection becomes a deterministic, or a D/D/1:(FIFO)
system.
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In graphical form, queueing model is known as queueing
diagram. The diagram shows the time of arrival and discharge of every
vehicle at a signalized intersection. This information allows the most
important "measures of queue behaviour” [4] to be determined from
the diagram. Figure 3 is a queueing diagram of a lane of traffic at a
signalized intersection. .

In Figure 3, the difference between the number of vehicles that
arrive and the number of vehicles discharge in time t is the number of
vehicles in queue at time t. Wj is the duration ith vehicle has to wait
after its arrival at the intersection before its departure. This waiting
time is the delay ith vehicle experiences.

|
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Figure 3 A queueing diagram showing the queueing situation
within a signal cycle of a lane of traffic at a signalized
intersection
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where to = Time at which the queue which built up during
the red interval has dissipated. Before tg, the
rate of discharge is s, and after t5, itis q

nj} = The number of vehicles arrived at the
intersection in the traffic lane in time t

ng = The number of vehicles discharged from the
intersection in the traffic lane in time t

Q(t) = Queue length in the traffic lane at time t

wi = Waiting time of ith vehicle. The amount of time

vehicle i has to wait at the initersection after
arriving and before departing

r = Red interval (including amber period)
g = Green interval

Figure 3 is redrawn in another perspective to show the delay of

individual vehicle. This is shown in Figure 4. The shaded segment

represents the delay experienced by the first vehicle. This segment is
of a height of 'one vehicle' and a width of ‘w) time unit'. The delay for

all the other vehicles can be represented by a segment of similar
nature, i.e. a height of 'one vehicle' and a width of ‘wp’', where n is
the vehicle number. With the total delay being the sum of all
individual delay, which is equivalent to the sum of the area of all the
segments, it is equal to the area between the arrival and the discharge

curves. The average delay is then the total delay divided by the
number of vehicles discharged.
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Figure 4 A queueing diagram showing the individual delay of
vehicles in a traffic lane at a signalized intersection.
The representation is for one signa! cycle only.

Therefore,
a) Total delav = Area between the average arrival and discharge curves

Total delay

b) Average delay = [ e of vehicles discharged In a signal cycle, n

2.3 TYPES OF DELAY

Different arrival and discharge patterns lead to different types of
delay. Two types of delay are usually examined in delay assessments at
signalized intersection. They are the uniform delay and overflow delay.
These different types of delay are illustrated in Figure 5 and 6, which
are time-space and queuing diagrams, respectively.
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Uniform delay is the type of delay results from the interruption
of traffic flow by traffic signals. Vehicles arriving during red isiterval
experience the longest delay, as in the case of vehicle a to d in Figure
5a, while those arriving during that portion of green interval where
the queue has already dissipated experience no delay, as shown by

JVehicles f and g. Uniform delay is a function of the cycle time and the
degree of saturation. Degree of saturation is the average arrival flow to
capacity ratio [5]. Figure 6a is a queueing diagram showing the
qﬁeueing situation which results in uniform delay.

Overflow delay is the delay experienced by vehicles which are
unable to be discharged within the signal cycle they arrive because the
arrival flow is greater than the lane capacity. There are two types of
overflow delay: random and continuous overflow delay. Random
overflow delay is caused by the fluctuations in vehicle arrivals and may
occur during an occasional cycle of uncongested operation. A situation
where the average arrival flow is less than the capacity, is shown in
Figure 5b. It is a function of the signal cycle time and the degree of
saturation. Figure 6b is a queueing diagram showing the queueing
situation which results in random overflow delay. Conversely,
continuous overflow delay is experienced when the arrival flow is
consistently greater than the capacity of the lane, thus leading to the
formation of a growing Queue. as shown in Figure 5c. Continuous
overflow delay is a function of the degree of saturation, the absolute
difference between the arrival flow and the capacity, and the duration

of the congestion.
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Figure 6a Queueing diagram illustrating undersaturated conditions
(from [2])
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Figure 6b Queueing diagram illustrating capacity conditions with
random overflow
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Figure 6c Queueing diagram illustrating oversaturated conditions
(from [2])

In a growing queue situation, duration of congestion is important
since the longer the congestion period, the longer the total overflow
delay will be. As shown in Figure 6c, in which the longer the
congestion period, the larger the area representing the total overflow
delay. Total overflow delay is represented by the (dottedly) shaded
area In Figure 6c. With the total overflow delay increases with
congestion period at a rate greater than the number of vehicles
increases with congestion period, a longer congestion period will

result in a longer average continuous overflow delay.
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The total overall delay is the sum of the total uniform delay and
the total overflow delay. The average overall delay is the total overall
delay divided by the number of vehicles which pass through the

intersection during the congestion period.
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CHAPTER 3 ANALYTICAL DELAY PREDICTION MODELS

The advantage of analytical delay predictions over field delay
measurements has led to the development of various mathematical
equations for signalized intersection delay estimations. These delay
equations consist of various individual models which represent
different types of delay. These individual models are of different
mathematical theories. The uniform delay model is steady state and
deterministic, while the continuous overflow delay model. Different
individual models are then combined to form different delay equations
that predict the overall delay.

In this chapter, three basic models which are used to predict
different types of delay are discussed. In addition, three combined

models used to predict the average overall delay are also discussed.

3.1 BASIC MODELS
In this section, three basic models used to predict three types of

delay are discussed. The models are the uniform delay model, the
continuous overflow celay model, and the random overflow delay

model.
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3.1.1 Uniform Delay Model

The uniform delay model is derived from a queueing model

using undersaturated traffic conditions.

In graphical form, the queueing model which simulates uniform
delay condition is a model with undersaturated traffic condition and
has incorporated the assumptions discussed in Chapter 2. The
queueing diagram is similar to that of Figure 6a. The assumptions of
ignoring the randomness in the arrivals and the instantaneous rise of

the discharge rate from zerc to the saturation flow have resulted in the
following conditions:

a) constant arrival rate, and

b) limiting the discharge rate to only
i) zero during red interval
i) saturation flow during part of green where there is a queue
iii) a rate equal to the arrival rate during part of green where
there is no queue
The two assumptions result in a queueing diagram which consists of a
series of identical arrival, queue and discharge patterns.

With the triangles in Figure 6a are identical for every cycle, any
one of them can be used for the derivation of a mathematical equation
which estimates the average uniform delay experienced during a signal
cycle. Figure 7 is one of the triangles.
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Figure 7 A queueing diagram of a traffic lane with undersaturated
flow at a signalized intersection

Applying the principle which states that

Total Delay
Number of vehicles in the system

Average delay =

the uniform delay model can be developed. Total delay is equal to the
area between the arrival and the discharge curves. The derivation of

the equation is as follows.

a) The average uniform delay is equal to the area between the arrival
and the discharge curves divided by the number of vehicles
discharge within the cycle.

0, = 2 (1a)
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b) where ng = sty = qr+tyg) and n= qc

c)

d)

where

thus, qr + qtg - stg =0

t = AL (1b)
0
s-q
substituting Equation (1b) into (1a),
1 1 qr sr2
= z——|=rs—24——) =2 ————— 1
> u qc(2rs s-q) 2c(s-q) (1c)

However, as it is common practice to measure flows in terms of

vehicles per hour, all flows in Equation (lc) are converted into

hourly rate. Converting into hourly flow, where

i) saturation flow, s becomes S, and S = C c/g where C is the
hourly capacity

iif) arrival flow, q becomes V , and since

r.;-&
c c

substituting into Equation (1c), yields

c(l-g-)2

D = cv
" _EY
201 cC)

(1d)

cycle time (sec)

green interval (sec)

hourly arrival flow (pcu/h)

hourly saturation flow (pcu/h)
hourly capacity (pcu/h), where C = S g/c

LpOCﬂ<°°°
"

average uniform delay (sec)
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3.1.2 tin Delay Model

Equation (1d) was derived based on the assumption of an
undersaturated traffic condition. However, there are times that
oversaturation occurs over a long period of time. The presence of an
arrival flow that is consistently greater than the capacity results in a
queueing situation that is different frem that shown in Figure 6a. The
actual condition is one of Figure 6¢c. Figure 6c shows that there is
continuous overflow delay in addition to the uniform delay. Therefore,
in order to predict the delay correctly, a model that can predict the

continuous overflow delay is required.

With the application of the same delay theory used in the
derivation of the uniform delay model, an oversaturated delay model
can be developed. As mentioned before, the average delay is the area
between the arrival and the discharge curves divided by the number of
vehicles discharged within the evaluation time. Applying this
principle, an oversaturation delay equation can be derived from the
geometry of a queueing diagram with oversaturated conditions. Figure
8 is a queueing diagram illustrating a traffic condition with continuous
overflow. It should be noted that since continuous overflow occurs
over a long period of time, the derivation of the equation in terms of

hours is more practical.
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Figure 8 A queueing diagram of a traffic lane with continuous
overflow delay. Area PQR representing the total
continuous overflow delay

In Figure 8, it is noted that a vehicle which arrives at time zero
experiences no delay, but the vehicle that arrives at time T must wait
for a time equals to QS. Between time zero and time T, the horizontal
distance between the arrival and the discharge curves varies linearly,

so the average waiting time for those that arrive between time zero

and T is half of the length QS. The same is true for those that arrive
between T and Tg_ Hence for everyone that is in the overflow queue

that exists from time zero to time Tg, the average overflow delay is

equal to half of @S. To calculate the average delay, first note that QU is
VI-CT = (V-C)T

Then, because QU is also equal to QS times the slope of the discharge

curve, C, the average delay is

—

v-o)T (2)

D = C

[}

)

The notations are similax to that o

L ]

Equation (1d).
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3.1.3 Random Overflow Delay Model

Equation (1d) and (2) are not ideal because in real life, vehicles
do not arrive at an intersection uniformly, but rather in a random
manner. This randomness in the arrival may cause some cycles of
overflow even during undersaturated conditions. The additional delay
is not included in the delay prediction of uniform delay or continuous
overflow delay model. Therefore, an equation that can estimate this

additional delay is needed.

At low arrival flow levels, the effects of randomness are not
significant, but when the arrival flow approaches the capacity, the
actual average delay experienced will be considerably longer than the
average uniform delay, as predicted by Equation (1d). The reason is
shown in Figure 9, in which the number of arrivals in the lane is the
same during every cycle except in the second cycle, when some extra
vehicles happen to arrive. At low arrival flow levels, even with extra
arrivals, the total arrivals are still less than the lane capacity, thus
causing no extra delay to the system as the extra arrivals are only
utilizing the spare time of the green interval of the cycle. The spare
green is the result of overdesign of the signal plan, where there is a
longer green interval than is necessary. Conversely, at high arrival
flow level, when the lane is almost saturated, it takes a long time for
the extra queue that builds up in the second cycle to dissipate. The
area between the arrival and the discharge curves is thus considerably
larger than if the extra arrivals had not occurred. This extra delay is
called the random overflow delay, and this signifies the effects of
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randomness in the arrival flows have on delay experienced at a

signalized intersection.

Number of vehicles

Time

Figure 9 Overflow due to variations in the arrival flow in
undersaturated conditions (from [1])

In order "to predict the random overflow delay, it is necessary to
construct a stochastic model using the methods of probability theory"

[1]. The usual stochastic model depends on four basic assumptions:

"]. The number of arrivals in a given time interval has a known
distribution with a constant average, often Poisson, and the
distribution does not change with the time of the day or the
number of arrivals in any other time interval.

2. The headways between departures from stopline either have a
known distribution with a constant mean, or are all the same.

3. Arrival flow is less than capacity.

4. The system has been running long enough to have settled into
a steady state.”" [1]
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In 1958, Webster [5] derived a steady state stochastic random
overflow delay model. A steady state system is "a system that has
operated for a sufficiently long time with the same average values of
arrival and discharge and to have settle into a state that the system
does not vary with time" and any changes in the system are all internal
[7]. On the other hand, a stochastic system is one that "pertains to a
process involving a randomly determined sequence of observations,
each of which is considered as a sample of one element from a
probability distribution”, signifying randomness in the system [8].
Combining his model with the deterministic uniform delay model,

Webster derived an equation for the average delay, D, where

V .2
c(l-g)2 (=)
c C C , V .(2+5g/c)
D= + -0.653 [—=(=) (3)
2c(1-%-g-) 2V(1-%) \Vv¢ C

Notations and units are similar to that of Equation (1d).

The first term of Equation (3) is the deterministic uniform delay
equation. The second term was derived by Webster to account for the
additional delay due to the randomness in the arrival flow. The third
term 1is a calibration term that was determined empirically; it reduces
the delay predictions by ten to fifteen percent [9]. All three terms are
applied using the units of passenger car unit per hour for flows, and

seconds for time dimension.
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3.1.4 Comparison of the Models
Figure 10 is a graphical comparison of the three basic delay

models.

F

=
2 Webster model
(uniform + random
overflow delay) \

Continuous
overflow delay
Uniform delay
model
[ e -

1.0 Degree of saturation

Figure 10 Comparison of Uniform delay model, Webster model and
Continuous overflow delay model (from [1])

As shown in Figure 10, the random delay component of Equation
{3) is small when compared to uniform delay that occur when the
degree of saturation is small, but increases very rapidly as degree of
saturation increases and approaches infinity as the degree of saturation
approaches one. The reason for Webster model prediction of infinite
delay is that in actual situation, it takes a long time for "a system with a
degree of saturation close to one to settle into steady state. It simply
takes a long time for such a queue to form, especially since vehicles
are leaking away through the signal" [1]. Therefore, at low degree of
saturation, any arrival within a cycle can be handled in the cycle itself.
The constant repetition of arrival, queue, and discharge within the
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same signal cycle maintain a stable system. Conversely, at a high
degree of saturation, where the degree of saturation is much greater
than one, a growing queue will form. As the arrival will continuously
cause the queue to grow, the state of the system at any time can be
predicted. This characterizes a stable system. However, at a degree of
saturation close to 1.0, the randomness in the arrival causes the queue
to continuously and unpredictably grow and shrink. This continuous
variation in the queue prevents the achievment of a stable system. As
a result, the steady state conditions required by the Webster model is
never achieved. The large delay predicted by Equation (3) will not be

encountered.

The discrepancy in the Webster model is a result of the
unrealistic assumption that the system is always in steady state, a state
that is easily achieved at low and high degree of saturation but takes an
infinite amount of time to achieve at degree of saturation close to 1.0
{1]. Thus, the inability of the system to achieve steady state at
intermediate flow levels causes the failure of Webster model. In
addition, since it is an assumption of the Webster model that the
arrival flow is less than the capacity, the mode! also fails at high flow
level, even though the system is in a steady state. In conclusion, the
steady state model (Equation 3) is only useful for predicting delay at
lightly loaded intersections, where the second and third element of
the Webster delay equation do not matter and the arrival flow is less
than the capacity.
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With the Webster model applicable to only situations where
arrival is less than capacity, there is a need for another model to
predict the random overflow delay at situation where the average
arrival is greater than the capacity. Random overflow does not present
a problem when the overflow queue is long because error due to the
ignorance of the effects of randomness will be small when compared
with the estimated delay. However, this error can be significant if the
intersection is only slightly oversaturated. For example, an overflow of
eleven vehicles will not cause a significant difference in the average
delay from that of an overflow of ten vehicles. In slightly oversaturated
intersection, an overflow of one vehicle and overflow of two vehicles

cause overflow delays that are very different.

In summary, the steady state queueing model works well when
the degree of saturation is considerably less than 1.0. The
deterministic queueing model works well when the degree of
saturation is greater than one. However, at an intermediate ievel of
degree of saturation, there is a problem. The steady state model

predicts infinite delay, while the time dependent model predicts zero
delay.

Although each type of delay is significant in # rzrtain range of
degree of saturation, they do occur over all ranges of degree of
saturation. It would be desirable to have a model that can predict all
three types of delay over all ranges of degree of saturation. This calls

for a combination of the basic models. For example, 2 combination -of
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the uniform delay model, the Webster model and the continuous
overflow delay model would give a good overali delay model. However,
as shown in Figure 10, it is obvious that the Webster model, which has
incorporated the uniform delay model, and the continuous overflow
models are "utterly incompatible” [1] at degree of saturation of 1.0.
The combination of the two models results in a discontinuity. One
predicting zero delay while the other predicting infinite delay at the
same degree of saturation. Nevertheless, Figure 10 "gives an insight
of what the actual delay function ought to be" [1]. Knowing that there
is a model, the steady state queueing model, that works well when the
degree of saturation is considerably less than one and another model,
the deterministic Queuemg model, that works well when the degree of
saturation is considerably more than one, it is logical to think that the
actual delay function is one that lies between these two models. This
is the basis for deterministic delay prediction models, that are

currently being used.

3.2 DELAY PREDICTION MODELS : CURRENT MODELS

With the three models mentioned above as basis, three new
models which estimate the average overall delay have been developed.
These models which are a variation of each other are named according
to the country of application: Australia, America (United States) and
Canada. As they were derived based on the three previously discussed
models, the constraint applied to the original models also applies to
them. The applications of the models are limited to individual fixed
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time signalized intersections. The three models are discussed in the
following subsections.

3.2.1 Canadian Delay Formmuia

The Canadian Capacity Guide for Signalized Intersections [2]
recommends the Whiting delay equation as the analytical delay
estimation technique for Canada. This equation consists of a uniform
delay model and a time dependent overflow delay model derived by
Whiting. Using the Webster steady state model and the continuous
overflow delay model as the guides, Whiting concluded that the actual
delay function is one that approximates both models at the extremes
but in between them at a degree of saturation close to 1.0. This
conclusion is consistent with the fact that the two models predicts
delay with reasonable accuracy in lightly loaded or heavily
oversaturated conditions, but over or underpredict when they are

close to degree of saturation of 1.0.

With this conclusion, Whiting combined the uniform delay model
and the continuous overflow delay model, and then introduced a
modifier to join the two models at degree of saturation of 1.0. He
derived a function that approximates the uniform delay mode;: and the
continuous overflow delay model at the extremes and is in between
the two at degree of saturation close to one. Whiting's derivation of

the continuous overflow delay equation is as follows [6]:
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Figure 11 The queueing diagram that is the basis of oversaturation

overflow delay equation (from [5])

With the

_ Total overflow delay within time period

Average Overflow delay, D, =

Total overflow delay = area XYZ, and
number of vehicles discharged = Cte,

the average continucus overflow delay Dy is:
D-—}—[l‘Vt Ct t] (4a)
o~ C t, 2tV % e) te a

and converting the parameters into specific units:

te in minutes
V and C in pcu/h
Dg in seconds, yields
D_= is-?1:-"-'( V-C)
o c (4b)

However, when V < C, then Dy < 0. Since

Number of vehicles discharged
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D = Dy + Dg ==> D < Dy --- an impossibility.

Therefore, by spliting the ( V - C ) term into two parts and
negating the effects of a negative value when V < C by using a
mathematical manipulation of taking the square root of the square of a

number:
(V-C)= 1/2*2(V-C)

= 1/2 *[(V-C)+ \/(V-C)Z

=> =(V-C)

i
il
v

Thus, Whiting modified Equation (4b) into
_ 2t [ (v J(v-ci?] (4c)
D, = < (V-C) +y (V-C)

Howrever, this equation only accounts for average continuous
overflow delay. The combination of Equation (4c) and average uniform

delay equation still neglects the additional delay due to random

overflow.

When V = C, Dy = 0, which is not true because of randomness of

arrivals. By introducing an empirical modifier into the overflow delay
term, Whiting derived an equation that accounts for all three types of
delay: uniform, random overflow and continuous overflow delay. The

modifier is

240 V
t

]
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Thus, Equation (4c), the average overflow delay, becomes

15t
D,= —= (V-C)+\/(V-C)+-24TO-Y-1 (4d)

Recalling that,
Average Overall delay = Average Uniform delay + Average Overflow
delay

=> D=D.u+D0

where D;; as in Equation (1d) and Dy as in Equation (4d), yields an
equation that has three parts, with each being significant only in
certain range of degree of saturation in which each type of delay is
important.

with cycle time (sec)

green interval (sec)

hourly arrival flow (pcu/h)

hourly capacity (pcu/h)
evaluation time {min)

average overall delay (sec)

average uniform delay (sec)

g“pdf‘;’040ﬂ°
]

average overflow delay (sec)

3.2.2 Australian Delay Model
The Australian Delay Formula was modified by Akcelik into the

present form by extending the application of the Miller formula [10]
for overflow delay prediction by using the Transport and Road
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Research Laboratory time dependent delay method [11]. The equation
is as follow: (ali notations are consistent with the Australian Road
Research Board Report [12]).

D=qc(1'u)2+qu[;:+\/zz+Z(X-XO)] (5a)

2(1-y) Qt,
067+ S8
x, = 0.67 + 500 (5b)
where Q = hourly capacity (veh/h)

Tf = flow period, iii< time interval during which an
average arriva: flow persists (h)

x = degree of saturation, q/Q

y = flow ratio, q/s

z = x-1

Xo = the degree of saturation below which the overflow
queue approximates zero. Thus if x < x,, the
overflow delay is zero

sg = capacity per cycle (veh/cycle)

s = saturation flow per cycle (veh/cycle)

g = green interval (sec)

u = green time ratio (g/c)

qc = average number of arrivals in vehicles per cycle
(q = flow in vehicle per second , ¢ = cycle time
in seconds)

D = average overall delay (sec)

Unlike the Canadian formula, the Australian delay equation has a

minimum degree of saturation before the overflow delay term is
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appled. The Australian equatior al7o place. more emphasis on the
per signal cycle flow patterns. it i o:porates the effects of the
absolute signal cycle time have ca the unifori: and the random
overflow delay, as shown in Equation (5a) where thie arrival per cycle
is used and in Equation {5b) where the minimum degree of saturation
before the overflow term comes into effect is evaluated based on the
capacity per cycle of the traffic lane under evaluation. The Australian
formula places three times more emphasis on the random overflow

delay when compared to the Canadian formula.

3.2.3 American Delay Formula

The American delay formula was developed based on the same
principles as the Canadian and the Australian formulas. The equation:
(With notations consistent with the Highway Capacity Manual [13]).
(Equation (6))

(1'%)2 16X
D = 0.38¢ —————a + 173X2[(X'1)+J(X-1)2+—-C—]
(1-£x)

where D = average stopped delay per vehicle for the subject
lane group (sec/veh)

¢ = cycle time (sec)

g/c = green interval to cycle time ratio

»
"

degree of saturation

Q
]

capacity (veh/h)
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However, due to a different calibration method, "the Highway
Capacity Manual delay formula tends to overpredict the delay in

oversaturated conditions. The overpredictions increase with the

degree of saturation.

The Highway Capacity Manual formula predicts the stopped
delay. Stopped delay is the time vehicles spent at the intersection
when they come to a stop. The difference between overall delay and
stopped delay is that the latter ignores the acceleration and
deceleration delays. Since it is the stopped delay that is being
measured in standard intersection delay measurements techniques,
the Highway Capacity Manual recommends the prediction of stopped
delay as opposed to overall delay. The Highway Capacity Manual
conversion of overall delay to stopped delay is obtained by multiplying
the overall delay formula by a factor of 0.77 ( ife. it assumes that
stopped delay is always 77% of overall delay) [13]. This assumption
has been questioned. Teply has shown that the correlation between
stopped delay and overall delay is not constant but a function of the
red interval and the deceleration delay [3].

Moreover, unlike the Canadian and the Australian counterparts,
the American delay equation assumes a fixed evaluation tliae of 15
minutes regardless of what the actual congestion period may be. This
assumption of fixed evaluation time does not allow for the
consideration of the effects of congestion period have on overflow

delay. Overflow delay is very much dependent on the evaluation time



and congestion period, since as previously explained in Chapter 2, the
longer the congestion period, the longer the total overflow delay. With
the total overflow delay increasing with congestion period at a rate
greater than the number of vehicles increasing with congestion
period, a longer congestion period will result in a longer average

continuous overflow delay.

In addition, the American delay equation uses a second order
degree of saturation. As a result, "the Highway Capacity Manual
formula appears to produce a curve that does not have the fundamental
characteristics of time-dependent delay formulation. For degree of
saturation above 1.0, it diverges from the deterministic delay line and
predicts very large delay values” [11]..

Besides the points mentioned above, the most significant
difference between the American delay formula and the Canadian or
the Australian formula, is that the accuracy of prediction of the former
varies with the degree of saturation. For example, as stated in the
Highway Capacity Manual [13],

Degree of Saturation Accuracy of Predictions
0.0<V/C<1l.0 Reasonable
1.0<V/C<12 Use with caution
1.2 <V/C ‘ Not recommended

The divergence of the Highway Capacity Manual delay formula

from the continuous overflow formula and subsequently the loss of
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accuracy with increasing degree of saturation are due to the fixed
evaluation time as well as the fixed correlation between the stopped
delay and the overall delay [11]. This may also be true for the
Australian and Canadian equations. As it is stated in the Canadian
Capacity Guide for Signalized Intersections [2], the delay predicted
should only be used as an indication of the order of magnitude,
because the credibility of the prediction decreases with increasing

degree of saturation.

3.2.4 Generalized Delay Fquation

Akcelik suggested that since the American, the Australian and
the Canadian delay formulas can be treated as variations of one
another, they can be written in a generalized equation {11]. He
presents the following equation for the average overall delay, D is:
(Equation (7))

11-£12 v.

L Ly JPRNPEL S0

cC
where D = average overall delay (sec)

¢ = cycle time (sec)

g = green interval (sec)

V = hourly arrival flow (pcu/h)

C = hourly capacity (pcu/h)

T = flow period (h)

x, = degree of saturation below which the second term
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of the delay formula is zero. It can be expressed as
X, =a+ bsg

m,n,a.h = calibration parameters

sg

capacity per cycle ( s = saturation flow rate
in pcu/sec and g = effective green in sec}

The generalized form of the delay equation predicts the overall
delay as opposed to the stopped delay in the Highway Capacity Manual.

With different values applied to the calibration parameters, the
Canadian, the Australian and the American Highway Capacity Manual
delay equations can be obtained from Equation (7). (See Table 1)

Table 1 Values of the calibration parameters in Australian, American
and Canadian overflow delay model. (From [11])

calibration parameters m n a b
Australian 12 o 0.67 1/600
American 4 2 0 0o
Canadian c 0 0

Assuming a situation with the following conditions, the three

delay equations will be compared. The conditions are:

Capacity = 1000 pcu/h
cycle time = 100 sec
g/cratio = 0.50

evaluation time = 15 min. ( to be consistent with
the American model )
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Table 2 illustrates the difference between the delay predicted
from the three equations.

Table 2 Delay predicted using the American, Australian and Canadian

delay formulas
Average Delay (sec)
v/C AMERICAN AUSTRALIAN CANADIAN
0.0 12.50 12.50 12.50
0.1 13.16 13.16 13.16
0.2 13.21 13.89 13.98
0.3 14.78 14.71 14.94
04 15.82 15.63 16.10
0.5 17.11 16.67 17.55
0.6 18.82 17.86 19.45
0.7 21.23 19.23 22.08
0.8 25.12 22.52 26.19
0.9 32.97 30.12 34.11
1.0 53.46 51.08 53.46
1.1 100.23 94.11 93.65
1.2 174.88 153.04 150.94

Figure 12 is a graphical representation of Table 2. It shows the

followings: -

a) random overflow delay is only significant when 0.85 < V/C <1.05
(note the range may vary slightly with the saturation flow [2].)

b) the range of significance of each type of delay

c) the difference between the Canadian and the Australian equations is
so insignificant that it barely noticeable and the "divergence” [11] of
the American Highway Capacity Manual at high degree of saturation.
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CHIAPTER 4 WHITING OVERFLOW DELAY EQUATION: A RTVIFW

This chapter discusses the review of the Whiting overflow delay
equation. Questions are posed and procedures of the review are
c¢tlined in the first section. Detailed questions are defined and

answered in the subsequent sections.

4.1 THE REVIEW
4.1.1 Continuous Overflow Delay

The following review shows that the Whiting overflow delay
equation was derived based on the basic theory of delay as previously
mentioned in Chapter 2. The queueing diagram used to represent the
theory is a good representation of the actual oversaturated traffic
situation. It shows what the key parameters - the arrival and
discharge flows, saturation flow, capacity and congestion period. The
diagram can also be used to show the effects these parameters have on
the overflow delay. These key parameters and their effects are found
to be reflected in the delay equation. The Whiting equation is found to

be representative of the actual delay condition.

However, two limitations of the equation are identify. The
derivation principle leads to the prediction of delay for vehicles
discharged instead of for vehicles that arrived within the evaluation
period as shown in section 4.3. The equation also fails to define the
correct evaluation time - one that gives representative overflow delay

predictions of a congestion period.
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4.1.2 Random ow

The random overflow delay equation is derived for the purpose
of providing a smooth transition between the uniform delay and the
continuous overflow delay equation. "This transition is not the result
of any detailed analysis of queue behaviour but of intuitive ideas of what
ought to happen" within this range of degree of saturation [1]. There
is no specific theory employed for the derivation of the eguation,
although the equation seem to be a good numerical representation of

the actual random overflowing situation.

From the study on a queueing diagram with random overflow,
the parameters that are influential include the arrival and discharge
flows, saturation flow, capacity and cycle time. These parameters and
their effects on random overflow delay are reflected in the delay

equation.

However, there are some differences between the influential
parameters and those reflected in the equation. The equation is time
dependent and excludes the effects of the absolute value of cycle time,
while the queueing diagram shows that random overflow delay should
be time independent and cycle time oriented.

4.1, ons R Whi tion
The previous overview of the theory of delay and Whiting delay

equation has posed four questions.
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a) What is the evaluation time that gives representative average
continuous overflow delay prediction for a congestion period?

b) Is the prediction of the delay expected for vehicles that arrive
within the evaluation time more practical than the delay
experienced by vehicles that are discharged within the same time
period?

c) Does the absolute value of cycle time have a significant impact on
the occurrence of random overflow and the resulting delay?

d) Can the random overflow delay model be random while time
dependent? If not, how can the random overflow element of
Whiting formula be adjusted or replaced tc make the formula

independent of the evaluation time?

These questions are discussad in details in the following sections.

4.1.4 Procedures of Review
The following procedures are used in the review of the
Whiting delay equation.
1) Determine the theory used for derivation of the equation.
2) Determine what the limitations of the theory are.
3) Study the queueing diagram that is representative of the
delay conditiocn: to determine the influential parameters.
4) Examine if the most influential parameters are included in
the delay equation.
5) Study how the parameters affect the overflow delay by using
the queueing diagram.
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6) Determine if the results from Step (5) are being reflected

the same way in the equation.

The above procedures are designed to give information on the
overflow delay equation that is crucial to the correlating of the

evaluation time and congestion period.
Due to the fact that they are very different in na*:'ve, the random

overflow and the continuous overflow delay equation will be reviewed

separately.

4.2 EVALUATION TIME VERSU NGESTION TIME

The Whiting overflow delay equation is designed in such a way
that the continuous and the random overflow delay part are dependent

on the evaluation time. This is shown in Equation (4d) below, where

average overflow delay, Dy :

t

¢

15 t
D°=—E-£[(V-C)+\ﬁv-0)2+%-‘l‘-’-] (4d)

Due to this characteristic of the equation, the overflow delays
predicted using this equation are very sensitive to the evaluation time.
As shown in Figure 13, the delay predicted using an evaluation time of
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120 minutes is approximately twice of that using 60 minutes. This
shows the evaluation time has a significant impact on overflow delay
predictions. Therefore, if the representative overflow delay of a
congestion period is to be estimated, the use of the correct evaluation

time for delay prediction is necessary.

However, the correct evaluation time for practical applications is
not immediately clear from the formula. The Canadian Capacity Guide
for T!znalized Intersection [2] states that the evaluation time should
reflec. the congestion period, yet there is no exact relation available.
Moreover, the evaluation time is rarely determined accurately in the
field. Should it be the period where there is overflow queue, t¢ in
Figure 14, or the period where the arrival is greater than the capacity,
to in Figure 14, or the period where some average arrival rate persists.
Figure 14 is a flow diagram illustrating the arrival flow over a period of

time.

tc in Figure 14 is the duration where there is an overflow queue

at the intersection. This duration is also shown as t¢ in Figure 15. t,

in Figure 14 is the duration where the average arrival flow is
consistently greater than the capacity, as shown as tg in Figure 15.

Whiting's derivation of the delay equation uses an evaluation time

that is not clearly defined. It is only known that the evaluation time
should reflect the congestion period, to. With the average continuous

overflow delay dependent on the evaluation time, it is essential that
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one is able to determine the representative evaluation time of any

congestion period for the purpose of delay prediction.

In conclusion, since the correct evaluation time is essential to
the representative delay prediction of a congestion period, a relation
that allows the determination of the corresponding evaluation time
would be beneficial. Therefore, it is an objective of this research to

find this relationship.
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Figure 14 A flow diagram showing the peaks within a daily traffic flow
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Figure 15 A queueing diagram showing the the duration of
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The following is an overview of Whiting's derivation of the

continuous overflow delay equation. ( See Chapter 3 for details)
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Figure 16 Queueing diagram used for derivation of Whiting
continuous overflow delay equation
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The shaded area is the total overflow delay experienced within
the zvaiuation period. The average continuous overflow delay, D, is:

D total overflow delay experienced within t,
° ” number of vehicles discharged within t_, n,

Whiting's use of n, vehicles for delay calculation is based on the
reasoning that n; + 1 ton, vehicles arrive within the evaluation
period, and contribute to delay. However, since they are not
discharged within the evaluation period, they are excluded from the
average delay calculation. This reasoning leads to an interpretation
that the average continuous overflow delay determined is the delay for
vehicles discharged within the evaluation period, or it is the delay
experienced by vehicles.

It appears that an equation which estimates the expected delay
or the delay for vehicles arriving within the evaluation period is of
more practical value. This is because a driver is more interested in
knowing what is the expected delay than what is the delay
experienced, since the latter is something that the driver already
knows. This is especially true when drivers plan for the shortest
route. Therefore, a derivation principle which results in a model that
predicts the expected delay by a driver who is arriving at the
intersection within a certain time period may be more practical and
useful.
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4.4 TIME DEPENDENCY OF RANDOM OVERFLOW I iLAY
Random overflow occurs when the arrival i greater than the

capacity during occasional cycles. This type of o flow leads to the

occurrence of random overflow delay.

It has been a common practice to represent the randomness of
traffic arrival patterns at a signalized intersection by a Poisson
distribution [2]. The distribution is a single variable discrete
probabilistic function used extensively in queueing theory. This
function implies that the occurrence of an event is not influenced by
another event [7]. Therefore, if an arrival pattern of traffic at a
signalized intersection is represented by a Poisson distribution, then
the number of arrivals in one cycle is independent of the previous
cycles or subsequent cycles, with the constraint that the average of the
arrivals in all cycles is equal to the average arrival per cycle used in the
distribution. This characteristic implies a time independent system.

However, the Whiting overflow delay model is designed in such a
way that the random overflow delay part is dependent on the

evaluation time, as shown in Equation (4d) and the following example,
where D, is the average overflow delay:

15t
D, = —-é—°-[(v-C)+\/(v-C)2+3-‘i9-Y-] (4d)
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Assuming a case where the arrival flow is equal to the capacity, V = C
(this is to eliminate the effects of the continuous overflow delay
portion of the equation on the delay estimations in which the
evaluation time has a strong influence), then Equation (4d) becomes

15 t 240V
[ ]
D, = C t

e

(8)

Assuming a case where the arrival flow equals to the discharge
flow, where V = C = 1000 pcu/h, the significance of evaluation time on

the random overflow delay predictions using Whiting equation is
shown in Table 3.

Table 3 Effects of Evaluation Time on Random Overflow Delay

Evaluaticx: Time (min) Random overflow delay (sec)
60 56.9
45 49.3
30 40.2
15 28.4

This example shows that evaluation time has a significant impact on

the estimated random overflow delay using Whiting overflow delay
equation.

However, since the arrival pattern is random, it should be time

independent. The following example illustrates the fact.
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Figure 17 and 18 respectively depict the probability curves of
the per cycle arrival and discharge at a signalized intersection. These
Figures are obtained by using a computer program which was written
as part of this research. The program simulates the arrival, queueing
and discharge patterns of vehicles. The Figures show that the per
cycle arrival pattern is not influenced by the evaluation time; and the
effect the evaluation time has on the discharge is minimal. From the
Figures, it can be seen that random overflow as well as the resulting

delay are time independent.

A study on the actual number of arrivals and discharges in every
simulated cycle has led to the following explanation of why random
overflow delay should be time independent.

A new term called 'underflow' has been introduced. It is the
situation where the actual number of arrival at the stopline is less than
the discharging capacity of the lane. Note that the computer
simulation program assumes vertical stacking of vehicles at the
stopline. Since the randomness of arrivals is represented by a Poisson
distribution, the characteristics of the distribution must apply to both
the random overflow and underflow. It is a constraint of the Poisson
distribution that the actual per cycle arrival flows average out to the
mean arrival per cycle. That means there are cycles where the arrivals
are greater than the average and there are cycles where the arrivals

are fewer than the average.
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Figure 18 Probability curve of discharge per cycle at a signalized intersection
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In other words, the higher than average arrival in one cycle will
be offset by the less than average arrival in the subsequent cycles.
Therefore, regardless of the degree of saturation, the arrival will
average out. This makes the effect of the overflow and underflow in a

cycle or cycles time independent.

It should be noted. that throughout the discussion, only random
overflow and underflow of vehicles are mentioned. This is because
only the overflow and underflow of vehicles and not the delay that are
offsetting. Random overflow delay is accumulative. This means that a
cycle with underflow does not reduce the random overflow delay that
has already inurred, even though it may reduce the number of
vehicles experiencing random overflow from the previous cycle.
Random overflow delay still remains an important delay component

when arrival flow approaches capacity.

Table A in Appendix A is a listing of the probability of X number
of vehicles that arrive in a cycle calculated using Poisson distribution.
The arrival flow is taken to be equal t6 the capacity in order to
eliminate the effects of continuous overflow delay part of the Whiting
overflow delay equation. Table A shows that the probability of an
underflow is consistently higher than that of an overﬂow; The reason
of that is due to the nature of the Poisson distribution: skewed to the
left [14]. Therefore, if there is a cycle of overflow, the overflow will be
dissipated in the subsequent cycles. Even if the overflow in the first
cycle is not dissipated in the second cycle due to an at capacity flow or
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another overflow, the system will eventually have some cycles of
underflow that will dissipate the built up queue. This is known zs the
'regression to mean', and is one of the constraints of the Poisson
distribution. Therefore, as long as the average arrival flow and the
capacity remain the same, the probability of overflow and underflow
remains the same. Thus, as long as the average arrival flow and the
capacity remain the same, the underflow will absorb the overflow,
making the period of time the average arrival flow persists

insignificant.

However, one may argue that the skewing effect of a Poisson
distribution is significant only when the mean is close to zero. As
stated by Harnett in his book 'Statistical Method' [14], "when the mean
is not too close to zero, the shape of the Poisson distribution will often
have a very symmetrical appearance’. However, considering the
probability of arrival in Table A, it can be seen that the skewing effect
is still significant up to an average arrival of forty vehicles per cycle.
Table 4 shows the skewing effects of the Poisson distribution.

Table 4 Skewing effects of Poisson distribution

Probability Average arrival per cycle (V=C)
of 20 25 30 35 40
P(C- 10 to C-1) 0.4652 0.4609 O. 4538 0.4451 0.4357
P(C) 0.0888 0.0795 0.0726 0.0673 0.0629

P(C+1 to C+10) 0.4273 0.4246 O. 4194 0.4126 0.4055




P(Z-10 to C-1) in Table 4 is the sum of the probability of arrival
of the capacity per cycle minus one vehicle compared to the capacity
per cycle minus ten vehicle. P(C+1 to C+10) is the sum of probability
of arrival of the capacity per cycle plus one vehicle compared to the
capacity per cycle plus ten vehicle. P(C) is the probability of arrival of
the at-capacity vehicle.

Table 4 shows that the probability of cverflow is approximately 3
to 4% lower than that of the underflow. For the application in this
research, it can be considered that the skewing effect of Poisson
distribution is still be significant. Hence, the overflow in one cycle
will always be offset by the underflow in the following or subsequent
cycles. This makes the length of time an average arrival flow persists
insignificant.

In conclusion, the above examples show that if the arrival flow
pattern is represented by a Poisson distribution, then the constraints
of the distribution must also apply to the model that represents the
arrival flow. Therefore, it is questionable to assume the arrival to be
random in nature but is time dependent. A model that is discrete,
probabilistic and time independent may be a more realistic

representation of the actual random overflow situation.
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4.5 EFFECTS OF THE ABSOLUTE VALUE OF CYCLE TIME
The WI:iting random overflow delay model does not include the

effects of the absolute value of cycle time. It considers its significance
only in terms of the green interval to cycle time ratio. As shown later
in this Chapter, delay predicted using Whiting delay equation is not
influenced by the absolute value of the cycle time.

However, as Figure 19 illustrates, the cycle time is influential in
wwevin of the absolute value as well as in the green interval to cycle

YATA® Talwl,

Example
Consider a situation where there are two signal plans with the

same green interval to cycle time ratio but vne of the plan has a cycle

time that is twice of the other.

Number of vehicles
&
7]
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Time:
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N

Figure 19 A queueing diagram showing the effects of cycle time on
nccurrence random overflow
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The diagram shows that the random overflow which occurs
during the third cycle of the signal plan with a shorter cycle time
would not occur if a longer cycle time were used. Table 4 shows the
same result. In Table 4, the probability of overflow for a shorter cycle
time is 2.2% to 3% higher than that of a longer cycle time. For
example, in a case of 20 arrivals per cycle compared to 40 arrivals per
cycle, the latter has a cycle time twice of the former and has a
probability of overflow of 0.4025 while the former has a probability of
0.4273.

The observation made from this diagram has led to a detail

analysis on the subject.

Further testing of this subject involved a computer simulation to
study the occurrence of random overflow with respect to the cycie
time. The random overflow delay calculated by the Whiting delay
equation was examined using the theory of probability. The reason for
this testing is based on the fact that since random overflow delay is
probabilistic in nature, and by including the elements of probability, a
more realistic representation oi the traffic conditions may be

provided.

TEST A
Figure 20 shows that with shorter cycle time, the occurrence of
greater than capacity arrival is more frequent than with longer cycle

time.
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Figure 21 Probabllity curve showing discharge per cycle from the stopline

of a signalized intersection



Figure 21 shows that a signal plan with longer cycle time
experiences fewer at-capacity discharges. Therefore, it can be said

that longer cycle time results in a lower probability of overflow.

In conclusion, Figure 20 and 21 show that cycle time influences
the occurrence of random overflow delay in terms of both the cycle

time and the green interval to cycle time ratio.

However, the question whether a probability of lower occurrence
of random overflow with longer cycle time leads to shorter random
overflow delay still remains. The question is answered in the following

test.

TEST B
Since the randomness of arrival is represented by the Poisson

distribution, the function is used for determining the probability of
arrival of vehicles.

m e ™
PX) = —5—
where P{X) = probability of x vehiclcs arrive
m = average arrival
X = number of arrivals

The counting interval used for this research is a signal cycle.
‘*11is selection is based on two reasons. An hour interval is too large

and does not show the effects of randomness. On the other hand, a
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counting interval of one second is too small for it only shows if there is
a vehicle, and conceals the effects of randomness. A counting interval
on the basis of a signal cycle does not have the above problems, and it
is the ideal time period for the counting interval. Therefore, the

average arrivals per cycle is used, making the Poisson equation
- Vc

P <
& =—5

where V = average number of arrivals per cycle (pcu/cycle)

Thus applying the Poisson distribution, the probability of
overflow is
P(OVERFLOW) = P(C+1) + P(C+2) + P(C+3) + .....

where C = capacity per cycle (pcu/cycle)

It is the summation of the probability of arrival of vehicles that cause
overflow, where P(C+1) is the probability of arrival of the capacity per

cycle plus one vehicle.

Since number of vehicles arriving is a function of probability, the
delay that occurs as a result of the random overflow can be determined
using the theory of probability. In probability theory, the average or
"expected value, E(x) of a discrete random variable x is found by
multiplying each value of the random variable by its probability and
then summing over all values of x" [12] or

Ex) = ¥ x P(x)



For the purpose of this research, the random variable x is the
overflowing vehicles. Since every overflowing vehicle has a
corresponding overflow delay, the average overflow delay can be
determined using the principle of expected value of probability. Thus,

the average overflow delay due to the randomness in the arrival is:

Average overflow = &  expected delay for *  probability of
vehicle delay vehicle x x arriving

Applying the above principle, the ranus overflow delay of any
traffic condition can be determined. niizivdder a case where a
signalized intersection has five signal plans f the same green interval
to cycle time ratio but different cycle time.

Assuming the foliowing values for the parameters:
Arrival = discharge = 900 pcu/h

Saturation flow = 1800 pcu/h

green interval to cycle time ratio = 0.5
evaluation time = 60 minutes

cycle time = 60, 80, 90, 100, 120 seconds

The arrival and the discharge is made equal to eliminate the
effect of the continuous overflow delay part of the Whiting overilow

delay equation. Now, assume a case of overflow where the arrival is
1.2V, vehicles in the first cycle is followed by arrivals of V¢ or less

vehicles in all subsequent cycles. The selection of 1.2V vehicles is

based on the findings that a degree of saturation of 1.2 is usually the
upper limit in overflow cf arrivals [2,11,13].
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With this information, the random overfl: v delay can be
determined. Results are shown in Table 5. See Appendix B for details
of calculations.

Table 5 Effects of cycle time on random overflow delay Dgq

- Emo--

- D > > T S " P D Y - - > n - - -

cycle # cycles arrival or capacity Ploverflow) probability Whiting
time per hour per cycle

(sec)
60 60 15 0.452 9.8 60.0
80 45 20 0.447 14.7 60.0
90 40 22.5 0.444 16.9 60.0
100 36 25 0.441 19.9 60.0
120 30 30 0.432 25.6 60.0

- - > - - - - - -

Table 5 shows that signal plans with same green interval to cycle
time ratio but of different cycle time have different probabilities of
occurrence of random overflow. It also shows that the random
overflow delays predicted using theory of probability vary with the
cycle time, while the delays predicted by the Whiting overflow delay
equation are independent of the cycle time.

The fact that the probability of overflow varies with cycle time is
supported by the Canadian Capacity Guide [2]. It can be interpreted
from Figure 22, a diagram taken from the Guide, that the probability
of discharge increases with cycle time. With this fact and the

observations made from Table 5, it is believed that random overflow



delay is dependent on the absolute value of the cycle time, and that it
should be incorporated into the delay prediction model.

It should be noted that the differencé between the delay
estimated by theory of probability and the Whiting equation may be due
to an assumption of different overflowing situations. However, it was
not an objective tp examine the accuracy of the overflowing situation
used by Whiting, but merely to demonstrate that the absolute value of
cycle time is crucial to the occurrence of random overflow and the

resulting delay.

4.6 THE IMPLICATIONS
As a results of the above findings, the objective of this research

is expanded to include modifications to the Whiting delay equation.
The new approach involves a probabilistic instead of the traditional
deterministic method to the estimation of random overflow delay. It
determines the expected delay instead of delay experienced. It
appears that the new approach may be a more realistic representation
of the actual traffic conditions, and will taprove the quality of delay
prediction.
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CHAPTER 5 MODIFIED WHITING DELAY EQUATION

In this Chapter, the development of the modified Whiting delay
equation is discussed. The Chapter includes the derivation of the
equation which correlates evaluation time to congestion period and
the development of the new random overflow delay prediction model.
The delay equation is presented according to its three parts : uniform,

random overflow and continuous overflow delay.

DELAY MODE
It is not part of this research to review the uniform delay model,
so no modification has been zttempted. The uniform delay model

applied in the modified equation is identical to that in the Whiting

delay equation.

The following conclusions can be made from referring to the
discussion on the guestions associated with the Whiting random

overflow delay model in Chapter 4.

1. The arrival pattern of traffic at signalized intersections is
assumed to be random in nature and best represented by
Poisson distribution [2].
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2. The occurrence of random overflow and the resulting delay

is affected by the signal cycle time.
3. Average random overflow delay is time independent.

The modified random overflow delay model takes these three

factors into considerat'on.

(1) Since arrival pattern of traffic at signalized intersection is
represented by a Poisson distribution, the probability of arrival as well
as the probability of overflow can be determined by using this
distribution. The Poisson distributi.n is

X -m
PX) = X (9)

where P(X) probability of X vehicles arrive

‘m = average number of vehicles arrive
X = actual number of vehicles arrive

(2) Since random overflow delay has been shown to be cycle
time oriented, the random overflow delay model can be den\{ed in
terms of arrival and capacity per cycle. The probability of rﬁndom
overflow occurring is determined by summing the probability of arrival
of the vehicles which cause overflow. In mathematical form, random

overflow occurs when X > C. Thus, the probaility of random overflow:

P(X>CC) = (11)

XﬂCc-l-l x
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where P(X>C¢) = total probability of random overflow
Ve = average arrival per cycle (pcu/cycle)
Ce = capacity per cycle {pcu/cycle)
X = actual number of arrivals in the cycle (pcu)

(3) A time independent probabilistic model is used for analytical
estimation of random overflow delay because the arrival function is
commonly represented by Poisson distribution, which is a probabilistic

functiori, and the average random overflow delay is found to be time.

With the random overflow delay model being a probabilistic
function, the principle of expected value of a random variable from
probabilistic distribution, previously mentioned in Chapter 4, can be
applied to determine the average random overflow delay. The
principle can be interpreted as the average delay is equal to the
summation of all the products of the probability of a delay occurring
and the delay expected if a delay does actually occur (7).

In this research, the variable is the delay expected by the xth

vehicle
X =00

Deo = 2 PRI (12b)

where Dgo

average random overflow delay (sec)

expected delay corresponding to the Xtk vehicle
{sec)

=
0

2
&
"

probability of X number vehicles arrive or that
of ty occurring

0
e
]

capacity per cycle (pcu/cycle)
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Equation (12b) is the general random overflow delay model in
the modified delay equation. Details of the development for each term

of the equation are discussed in the following sections.

5.2.2 The Probability Term, P(X)

Probability of experiencing random overflow in a signal cycle can
be determined by summing the probability of arrival for all vehicles
which may cause overflow in that cycle, as shown in Equation (11).
This is a summation of the probability of arrival of the capacity-per-
cycle plus one vehicle to the infinite vehicle.

However, an examination of the individual probability will show
that the summation is incorrect because in actual situation, the arrival
of the infinite vehicle will not occur. Not only that, the individual
probability of arrival for each overflowing vehicle zpproaches zero
rapidly as the degree of saturation increases, as shown. in Figure 23.
The conclusion which may be drawn from these two findings is that
the summation of the probability of arrival for the overflowing vehicles
can be limited to a specific number of vehicles greater than the

capacity.
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Figure 24 is shows the ratio of the probability of arrival of an
overflowing :hicle to the total probability of overflow. It shows that
the differerice between the probability of arrival of two successive
overflowing vehicles approaches zero very rapidly as the number of
overflowing vehicles increases. This means that since the difference
between the probability is so small, including an extra overflowing
vehicle will not have much impact from that if the extra vehicle is left
out from the delay prediction. This assumption is used to determine
the number of overflowing vehicles significant to random overflow

delay predictions.

Figure 24 also shows that the significance of the probability of an
extra overflowing vehicle relative to the total probability of overflow is
negligible as of the fourth or the fifth ov flowing vehicle.

Therefore, for the purpose of this research, the fourth
overflowing vehicle will be considered as the last overflowing vehicle
that is still significant to the prediction of random overflow delay. This
is the number used as the upper boundary for the summation of the

probability of random overflow. Thus,

g ~ (13a)

where  P(X>C¢) = total probability of random overflow

Ve = average arrival per cycle (pcu/cycle)

Ce = capacity per cycle (pcu/cyclg)
X = actual number of arrival '
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However, in actual traffic conditions, random overflow does not
always occur in only one cycle. In some situations, it may occur in
successive cycles. In order to have a model that is a good
representation of the actual traffic condition, this facior must be

incorporated into the random overflow delay prediction model.

Figure 25 is a tree diagram illustrating the possible occurrence
of successive cycles of random overflow. It shows that there are
infinite number of possibilities. For example, consider the worst
possible case where there are four random overflowing vehicles in the
first cycle. For random overflow to occur in the second cycle, there
must be Cc - 3 to Cc + 4 vehicles arriving in the second cycle. For
random overflow to occur in the third cycle, there must be Cc - 7 to
Cc + 4 vehicles arriving in the third cycle, and so on. However,
similar to the overflowing vehicles, the significance of the extra
vehicle of underflow is limited after a few underflowing vehicles.
Using the same technique as in the case for overflow, it is found that
the limit of significance of underflowing vehicles is also four vehicles.
This number is then used as the lower boundary for the summation of

the probability of consecutive cycles of overflow.

Figure 25 also shows that there is a chance for the random
overflow to occur in many successive cycles, so it is hecessary to
consider all the cycles. However, Table 6 shows otherwise. Table 6
tabulates the probability of consecutive cycles of random overflow for

the worst possible case ( Cc + 4 vehicles of overflow in the first cycle,
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and with the limit of four overflowing or underflowing vehicles in the

subsequent cycles) .

Tablz 6 Probability of overflow in consecutive cycles

Number of cycles number of arrivals  probability probability of

with random that will cause of arrival overflow
overflow overflow
1 Cc+4 0.0529 0.0529
2 Cc-3 to Co+4 0.5879 0.0311
3 Cc-4to Co+4 0.5888 0.0080
4 Cc-4to Co+4 0.5888 0.0011

For the case with the highest probability of occurrence, the
chances of overflow for three consecutive cycles is low, 0.80%. The
omission of the possible occurrence of three or more consecutive
cycles of overflow in delay predictions seems justified. It is found that
for all possible cases of random overflow in the first cycle, with either
1 to 4 overflowing vehicles, the probability of random overflow in
three consecutive cycles is 1.07%. It is insignificant.
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Considering the possible random overflow of either 1 to 4
vehicles in the first cycle and followed by a second cycle of random
overflow of either 1 to 4 vehicles, the following equation can be

derived. The total probability of random overflow in two successive

cycle is
hc‘”vxe-v‘ x-c‘nvxe-\’, Y=C +4 V?e-v‘
- e \ e ¢ 14a
HIC) = & ~gr+ 2 g T (142)
X-C¢+1 x-c.n Y-CQ-Q
or

P(X>Cc)=PX =1Ccq) + PX = jCc4q) PY =_4Ccq) (14b)

where P(X>Cq)

probability of randoem overflow

Ve = average arrival per cycle (pcu/cycle)

Ce = capacity per cycle (pcu/cycle)

X = overflowing vehicle in the first cycle (pcu)

Y = overflowing vehicle in the second cycle (pcu)
5.2.3 Expected Delay

The prediction of expected delay are discussed according to the
specific cycle of the vehicle arrivals.

Based on the assumption of a maximum of four overflowing
vehicles in the first cycle of random overflow, a time space diagram
fllustrating the queueing situation at a signalized intersection can be
produced (shown in Figure 26). This figure can be used to
approximate additional delay experienced due to the random overflow.
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Figure 26 A time space diagram showing the gucueing situation at a
signalized intersection. The diagram is used for the
determination of the excepted random overflow delay in
the first cycle. The diagram is drawn based on actual

queueing at an intersection. Note th

to scale.

at the diagram is not

From Figure 26, the additionai delay experienced by each
overflowing vehicle can be determined, see Table 7.

Table 7 Expected extra delay in the first cycle during a random

overflow situation

Vehicle number Expected delay
C+1 red + 4h, + Ohg
C+2 red + 3h,, lhg
C+3 red + 2h,, 2hg
C+4 red + 1h,, 3hg

C + 5 - it is the first vehicle in the seccnd cycle
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where red = red interval (including amber) (sec)

Cc = capacity per cycle (pcu/cycle)
hg = saturation flow headway (sec)
hy = average per cycle arrival headway (sec),

by = 3600/V, The headway used for delay calculaticm
is the actual arrival headway. However, as the actual
arrival headway is not available, the average per cycle
arrival headway may be used since for random
overflow to occur, the average actual headway in the
overflowing cycle has to be less than the average per
cycle arrival headway. Thus, with the use of hy, it

already results in an overprediction of individual delay.

Averaging the expected delay, ylelds
Average delay, tq =red + 2.5 hy + 1.5hg (15)

The calculation of the expected delays for vehicles that arrived
in the second cycle of overflow is complicated. The complication is
caused by the fact that the expected delays for the vehicles arrive in
the second cycle of random overflow are dependent on the actual
number of vehicles arrived in the second cycle and the average arrival
fow. Since the actual number of arrivals in the second cycle is
unknown, concise calculation of the expected delay for the second
cycle is impossible. Therefore, for practical purposes, the average
expected delay in the second cycle is assumed to be equal to that in
the first cycle. This assumption is justified because in most cases, the
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saturation flow is greater than the arrivai flow, and the additional delay
experienced in the second cycle would be less than that in the first
cycle. This occurs especially in the case where the vehicles arrived in

the first cycle are assumed to have waited through an entire red
interval or more. This is based on the fact that since hg is less than

hy, at some particular time within a signal cycle, the number of
vehicles that can be discharged from the queue is equal to or greater
than the number of vehicles that actually arrive and queue. Any vehicle
which arrives subsequent to this time can go through the intersection
without delay. Therefore, the average extra delny for vehicles in the
cycle where the overflow queue dissipated is i=ns than that of the
previous cycle of random overflow. As shown in Figure 26, the delay
for vehicle 1 is greater than the delay for vehicle 2. The delay for
vehicle 2 is greater than the delay for vehicle 3, and so on. The
average expected delay will be less than thai of the first cycle. The
assumption that the expected delay in the second cycle is equal to that
of the first cycle is a conservative measure and Justifiable.

2.4 Final m M

Combining the probability term and the expected delay term by
using the principle of expected value, Equation (16) is developed.

DRro = PX=1C¢4) tqg + PX=1Ccq) P(X=_4Ccq) ty (16)

where DRO

XK= 1 C4)

average random overflow delay (sec)

probability of having four vehicles more than
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cavacity arrived in the first cycle

P(X=.4C4) = probability of having four vehicles less than
or more than capacity arrived in the second

cycle
ty = average expected delay (sec)
= red + 2.5h, + 1.5hg
red = red interval of signal plan (sec)
h, = average per cycle arrival headway (sec)
hgy = discharge/saturation flow headway (sec)

Equation (16) is the probabilistic approach to random overflow
delay prediction. It is a cycle-time oriented, time independent, and
probabilistic m:del.

Applications

Equation (16} is only applicable to individual fixed time
signalized intersection. It can be applied over all ranges of degree of
saturation. At low degree of saturation, the probability of overflow is
close to zero. The average random overflow delay is also close to zero.
This can be seen from Table A in Appendix A. At high degree of
saturation, the probability of random overflow is constant and
significant. However, the average random overflow delay is
insignificant when compared to the average continuous overflow delay,
as shown in Table A in Appendix A and Figure 12 in Chapter 3.
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5.3 CONTINUOUS OVERFLOW DELAY

The advantage of predicting overflow delay expected as
compared to the delay experienced has led to the modification of the
Whiting continuocus overflow delay equation. The modification consists
of a different derivation principle, one which aliows for the estimation

of the expecte? delay for vehicles arriving at the intersection within
the evaluation period.

The main differences between Whiting's derivation of the
continuous overflow delay equation and the modified approach are that
the delay calculation includes the entire delay of all the vehicles arrive
within the evaluation time (i.e. area QRS is also included). The average
delay is obtained by the division of the number of vehicles contributing
to the new total delay, that is Vt, vehicles instead of Cte. As a result,
some of the delay experienced after the evaluation period are included
in the average delay calculation.

L 3

Number of vehicles

e

te Time(hou;f

Figure 27 Queueing diagram used for derivation of the continuous
overflow delay equation



The derivation of the modified continuous overflow delay

~ equation is as follows:

With the difference in time between the arrival and the
discharge curves varies linearly, the average delay for vehicles arrived

during the evaluation period is half of the length of time QR.

Therefore the average continuous overflow delay, D, is:

1 (V-C)te
=-2— C
converting te into minutes:
30 t,
D=~ (V-C)

However, if V < C, then Dco < 0, and this is unrealistic. A modifier is
needed. With some mathematical manipulations, the following

equation can be written
15t .
D, = ~C_°-[ (v-cr+d(v-c2] a7

Equation (17) is used to predict the average continuous overflow
delay expected for vehicles that arrive at the intersection within the
evaluation period. The equation is applicable to only individual fixed
time signalized intersection. It is derived based on the same

assumptions as in Whiting equation. It differs from Whiting only in the



| sense that Whiu.ng equation is derived based on the vehicles
discharged within the time period.

Note that Equation (17) is identical to the Whiting equation.
Although the Whiting's and the modified approach are different, they
result in the same continuous overflow equation because of the

geometry of the queueing diagram.

5.4 EVALUATION TIME VERSUS CONGESTIQN PERIOD

In the modified model, the evaluation time has been redefined
as the flow persisting time. Flow persisting time is the duration in
which the overflow arrival persists. It is denoted as tp in Figure 28.
This definition for the evaluation time originated by Akcelik [12]. The
redefinition allowed the derivation of a relationship between the flow
persisting time and the congestion period based on the geometry of a
queueing diagram.



Number of vehicles

—

fp te Time

Figure 28 Queueing diagram used for relating
evaluation time to congestion time

where V4{ = initial hourly arrival flow (pcu/h)

V2 = final hourly arrival flow (pcu/h)

C = hourly capacity (pcu/h)

tp = flow persisting time (min). The duration in
which the arrival is greater than the capacity.

tc = congestion period (min). The duration in

which there is overflow.

By applying the principle of conservation of matters and energy,
which éays that the number of vehicles going into a system must be
equal to the number of vehicles coming out from the system, if there
is no source or sink inside the system the following relation is
obtained.

Vitp + Va(te - tp) = Ct (18a)
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rearranging,

t = 2 ¢t ~ (18b)

. C-V
P Vl'vz ¢

Note that from the equation:
a) tp is a function of Vi, Vg, C and t,

b) V1, Vg, and C are known as they are usually measured
¢) te can be known from local conditions
The time at which the traffic reaches the peak in the congestion

period can now be determined.

With the definition of the flow persisting time, the evaluation
time term can now be :
a) any time period -- to evaluate the average continuous
overflow delay for any time lapse within
the congestion period.
b) flow persisting time -- to evaluate the representative average
continuous overflow delay of the

entire congestion period.

The introduction of flow persisting time allows one to determine
the representative overflow delay of any congestion period without

having to guess the correct evaluation time.

MOD D D

By combining the average uniform, random overflow and

continuous overflow delay equations, an equation for predicting the
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average overall delay expected at an individual fixed time signalized
intersection can be determined. The equation is applicable over all

ranges of degree of saturation. The equation is

Average overall delay, D = Dy, + Dgg + D¢o

where D,; = average uniform delay (Equation (1b))
Dpo = average random overflow delay (Equation (16))
Do = average continuous overflow delay (Equation (17))



CHAPTER 8 VERIFICATION OF THE MODIFIED MODEL

This chapter discusses the verification of the modified delay
equation. It explains the application of the techniques applied and
compares the predictéd delay using the various techniques.

6.1 DELAY ASSESSMENT TECHNIQUES
The modified Whiting delay equation is verified using computer
simulated delay estimations and field measurements. The results of

the modified model are also compared to that of the Whiting delay

equation.

1.1 Com r Sim

A computer program has been developed to simulate the arrival,
the queueing ard the discharge patterns of traffic at the stopline of a
signalized intersection. The program is designed to generate the time
of arrival and discharge of individual vehicles. The difference between
the arrival and discharge times of each vehicle is the delay
experienced by the vehicle. The summation of all individual vehicle
delay yields the total delay experienced. The division of the total delay
by the number of vehicles gives the average delay.

This simulation program was described in Chapter 4 to
demonstrate that random overflow delay is evaluation time

independent and cycle time oriented. Therefore, the use of this
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program for the verification of the modified delay model may be
considered to be unsuitable. | However, it should be noted that the
modified delay model is not designed to fit the characteristics of the
computer program, but the program is merely used to justify the
assumed characteristics of the modified model. In other words, it is
also used as a verifier in the previous Chapter. Application of this
program for verification of the modified delay model is valid for it is
used only for validation of the characteristics of the model in Chapter

4, and not used as a guide to the dc:ivation of the equation.

6.1.1.1 Program Structure

To simulate a random arrival pattern, a negative exponential
function and a pseudo-random number generator are used for
generating the arrival headways of vehicles. " A pseudo-random
number generator is a set of functions applied sequentially to generate
random numbers. One common algorithm is to pick a starting
number, called a "seed number". A sequence of mathematical
operations are then applied to this seed number. The number
produced is the random number and it is applied as the seed number
for generating the next random number. " [15] These random

numbers are then used for generating the arrival headways.

The generated vehicles are discharged from the stopline at a
uniform rate equal to the saturation flow. The discharge of vehicles is
only allowed during the green interval.
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Using. the negative exponential function, a vehicle, with  a
headway of 'h' seconds from the start of the simulation is generated.
This is the time of generation. The vehicle is assumed to be at the
stopline of the intersection. The program checks if the traffic signal
is green; if it is red, the time counter increases and the checking
process repeats itself. This continues until the signal is green, and
the vehicle is discharged. The difference between the time of
generation and time of discharge is the delay experienced by the
vehicle. After the vehicle is discharged, a second vehicle is generated
and goes through the similar process. This entire process continues
until the end of simulation period. The program then sums the
individual delay and determine the average delay by dividing the tota
delay by the number of vehicles simulated.

Figure 29 is a flowchart illustrating the logic of the program.
The program is written in FORTRAN and runs on an IBM PC or
compatibles. A FORTRAN listing and samples of input and output are
included in Appendix E.

6.1.1.2 Simulation Results
Operation of two different intersections has been simulated to

verify the modified delay equation. The two intersections are 87
Avenue - 109 Street and Hebert Road - St. Albert Trail. For each
intersection, ten trials have been made. Each trial was simulated

using a different seed number for the random number generator. The
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average of the delays simulated from the. ten trials is then used to
verify the modified delay equation.

Start

Y

Input traffic and signal timing
parameter

Y

Set counter

Y

Generate a vehicle

Y

Put vehicle onto
intesection approach

Y

Time counter =

Y

Check signal, check queue |No
Can the vehicle discharge

Jyes

Calculate delay

Y

Output

Figure 29 A flowchart illustrating the logic of the simulation program

The arrival and saturation flows and signal timing used for the

simulations are those obtained from the fleld measurements made for
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verification of the modified equation. The results of the simulations

are shown in Table 8.

Table 8 Delay predictions from computer simulations

Case 1 Case 2
Arrival flow (pcu/h) 760 445
Saturation flow (pcu/h) 1700 1348
Cycle time (sec) 105 75
Effective green interval (sec) 45 25
Effective red interval (sec) 60 50
Capacity (pcu/h) 730 450
Evaluation time (min) 24 42
Number of cycles 14 34
Shortest overall delay (sec) 79.9 52.6
Longest overall delay (sec) 90.5 75.3
Average overzll delay (sec) 85.8 63.9

where Case 1 : Hebert Road at St. Albert Trail
Case 2: 87 Avenue at 109 Street
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Figure 30b Delay predicted using computer simulation
for Case 2: 87 Avenue - 109 Street
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6.1.2 Field Measurements

Delays at two intersections were determined by surveys. For the
intersection is Hebert Road - St. Albert Trail site; delay was
determined using vehicle trajectory reconstruction technique [16]. At
the 87 Avenue - 109 Street intersection, the delay was surveyed using
the standard regular out-of-step stopped delay method. These two
locations are selected based on the fact that there is very limited
number of intersections in Edmonton that are operating with degree
of saturation close to 1.0 at the time of survey. With these two
intersections operating under the conditions similar to the simulated

conditions, they were selected.

6.1.2.1 Vehicle Trajectory Reconstruction

In this survey, a traffic data time recorder is used to record the

time of arrival and departure of each vehicle during the survey period.
The recorder is a modified and re-programmed DATAMOS traffic
classification counter. The time recorded is then compiled into a
computer and the trajectory of each vehicle is reconstructed by using
computer programs. These programs were written by Evans for his
Master of Science degree at the University of Alberta [16]. The
following description on the principles behind the vehicle trajectory

reconstruction delay surveys are summarized in a portion of Evans'
thesis.
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In the field, two reference points are selected. The downstream
reference point is at the stopline, while the upstream point is some
distance away.

A The downstream reference point
B The upstream reference point

stopline
1 o Y o o
OO0
a B

Figure 31 The reference points in delay survey (from [16])

The distance between A and B must be long enough so that the
maximum queue at the intersection does not exceed this distance
during most of the evaluation time. This requires some f.cld
observations before any actual measurements. If the distance is too
short, the queue may form beyond the reference point, and vehicles
that joint the queue upstream of the upstream reference point will not
be recorded until some time after they cross the upstream reference
point. This results in underpredicting the individual delay. If too long
a distance is used, sight limitations of the surveyors may come into
effect.

With the reference points set up, the surveyors can begin the
arvey. The surveyor watching the upstream point records the time
that a vehicle crosses the reference point, while the person watching
the stopline does the same when any vehicle crosses the stopline.

The time data are then transferred into a computer. Using the
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compilation and processing programs written by Sabourin and Evans
[16,17], the trajectory of each vehicle is reconstructed. The principle
employed for the reconstruction is shown in Figure 32.

A Upstream reference point
B Dowmstream reference point (stopline)
--- Trejectory if no deley

Recorded trajectory

RED

A Actuel trejectory B

Figure 32 Principles of delay predictions by vehicle trajectory
reconstruction (from [16])

By specifying the average free flow speed at the stretch of the
road where surveys are done, the programs can then calculate the
difference in time between the recorded time of discharge and the
time of discharge if no interference existed. Average free flow delay
speed is the traveling speed if no interference exists. The average of
all the individual delays is equal to the average delay experienced at
the intersection within the time period of evaluation.

6.1,2.2 Stopped Delay
The standard intersection stopped delay surveying technique is
the most common means in delay surveys. The technique is the

regular out-of-step queue count delay survey and is well explained in



e rugnway Lapacity manual [13] ana Manual ot Traffic Engineering

[17]. The following is a summary of the technique.

The technique involves "the counting of number of vehicles
stopped in the intersection approach at periodic intervals (such as
every 15 seconds). This sampling, along with a volume count,
provides estimates of the vehicle-seconds of stopped delay with
considerable accuracy if the sampling is properly selected (not as even
subdivision of the length of signal cycle) " [17].

The average stopped delay is converted into average overall delay
using a technique ocutlined in the paper titled 'Accuracy of Delay

Surveys at Signalized Intersections' [3] :

2

D__r
D

S (r'td)2

where D = Average overall delay
Dg = Average stopped delay
r = red interval
tq = deceleration delay
6.1.2.3 Results

Case 1 (Hebert Road - St. Albert Trial) : A vehicle trajectory
reconstruction delay survey was conducted for a period of 24 minutes
(14 cycles). The time of arrival, the time of departure, the cycle time,
the red interval, the green interval and the arrival were recorded.



Saturation flow and the capacity are then calculated from the survey
results.

Case 2 (87 Avenue - 109 Street) : A regular out-of-step stopped
delay survey with ten second intervals has been conducted for a total
time period of 42 minutes (34 cycles). The number of vehicles in
queue is noted at the end of every interval. Then, the total number of
vehicles in queue is counted; and dividing the total delay by the
number of vehicles counted, the average stopped delay is obtained.

The conditions for the two cases are tabulated in Table 9.

Table 9 Delay predictions from field measurements

Case 1 Case 2
Type vehicle trajectory queue count
Measured arrival flow (pcu/h) 760 445
Measured saturation flow (pcu/h) 1700 1350
Cycle time (sec) 105 75
Effective green interval (sec) 45 25
Effective red interval (sec) 60 50
Capacity (pcu/h) 730 450
Evaluation time (min) 24 42
Number of cycles 13 34
Average overall : measured 78.3 ---
delay (sec) : calculated - 65.8

Case 1 : Hebert Road at St. Albert Trail
Case 2: 87 Avenue at 109 Street



6.2 DI IONS OF RESULTS
The Whiting and Modified Whiting delays are calculated using

analytical delay equations. The actual, corrected and computer
simulated delays are from the previous sections. Table 10 shows the
results from various prediction models. The delays are also compared

graphically in Figure 33 and 34.

Table 10 Summary of delay predictions from various
estimation models

Case # 1 2

Degree of saturation 1.04 0.99

Actual 78.3 65.5

AVERAGE Corrected --- 68.5
OVERALL

DELAY  Whiting 91.3 75.5

(sec) —_
Modified Whiting 90.9 61.8

Computer simulation 85.8 63.9

Figure 33 and 34 are bar charts of the delay assessed from the
various technique used. They show good compatibility between the
delay assessed by using field measurements, computer simulations,

Whiting delay equation and the modified delay equation.



Figure 33 : Comparisons of delay estimations from various models
Case 1 : Hebert Road at St. Albert Tral

00 1=~
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Delay (acc)

Delay estimation model
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Figure 34 : Comparisons of delay estimations from various models
Case 2 : 87 Avenue at 109 Street



Case 1 (Hebert Road at St. Albert Trail) : The results show good
compatibility among the three models. The differences are small.
The results show that both the Whiting formula and the modified
model are over predicting delay when compared to the simulation

model and especially when compared the actual traffic conditions.

Case 2 (87 Ave. at 109 St.) : In this case, the results show a
greater variation between the three models. The field measurements
and the computer simulation medel have predicted delays that are
close to each another. The results are slightly higher than that of the
modified model. However, the Whiting model prediction is
significantly higher than that of the other three delay assessments. For
practical purposes, the results obtained can be considered to be

compatible.

The results show that the modified Whiting delay equation
predicts delays with similar if not better accuracy than the Whiting
delay equation. However, due to the limited number of field
measurements available for the verification of the modified equation,

no further conclusions can be made.



CHAPTER 7 CONCLUSIONS

Two objectives were set for this research. They are:
a) to identify the relationship between the evaluation time and the
congestion period.
b) to investigate a probabilistic approach to random overflow delay
estimations.

Both of these objectives were achieved.

Evaluation Time
In this thesis, the evaluation time in Whiting delay equation has

been redefined as the flow persisting time. Flow persisting time is the
duration the overflow arrival persists. This redefinition has made the
representative delay predictions of any congestion period possible

without having to guess what the correct evaluation time ought to be.

De v n

The modified Whiting overflow delay model uses a derivation
principle that leads to the estimation of the delay expected foe
vehicles arriving within the evaluation period.

Due to the geometry of a queueing diagram, the derivation
principle which allows for prediction of expected delay, used in the
modified equation, results in a continuous overflow delay equation that
is similar to the Whiting equation, which is one that uses a derivation
principle that predicts delay experienced. This is due to the



geometry of the queueing diagram. Even though the estimation of
delay expected is more practical, it is the same as the delay
experienced predicted from Whiting equation. A numerical

improvement has not been observed.

Probabilistic approach to delay estimations

The new approach to overflow delay prediction involves a
probabilistic model for estimating the random overflow delay. The
probabilistic model of random overflow delay differs from the Whiting
model is that it is time independent, and it includes the effects of the
absolute value of cycle time.

Even though the modifled model appears to be more accurate
‘representation of the actual traffic conditions, it does not predict
delays that are much different from the Whiting delay equation.
Therefore, it can be concluded that although random overflow is time
independent and is influenced by the cycle time, a model that
incorporates both of these factors has not improved the quality of
delay predictions. Although the Whiting equation excludes the
absolute value of cycle time, this research shows that the quality of
delay predictions of Whiting delay equation is not affected. The
Whiting random overflow delay model was derived empirically as a
connector of the uniform delay model and continuous overflow delay

model.
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Recommendations
Due to the limited amount of field measurements available for

verification, no definite conclusion can be made.

A suitable follow-up to this research would be a further
verification of the modified delay model with more field
measurements and computer simulations. The verification should
include the testing of the random overflow model over a wide range of
degree of saturation and evaluation time. Also, the validity of the flow
persisting time equation should be tested.

Potential users should be surveyed for their preference of the
delay predicticn model. Do they prefer a more accurate but

complicated, or a simple but less accurate model ?

nel R

In conclusion, although the limited number of surveys and
simulation trials has not proven that the modified model improves the
quality of delay prediction when compared to the Whiting equation, it
presents a thereotically cleaner approach. The modified model has
three characteristics not present in Whiting's formula. Firstly, the
random overflow delay prediction is based on widely assumed Poisson
principle. The second characteristic is that the model allows for the
prediction of delay that is representative of a congestion period
without having to guess the evaluation time. The third tmprovements
is that the model makes it possible to include the delay which will be
experienced by drivers in the queue in congested systems.



Gl

REFERENCES

Hurdle, V., Signalized Intersection Delay Models: A primer for ¢ .o
Uninpitiated, Transport and Road Research Report 971,
Transportation Research Board, Washington D.C., U.5.-. ,
1984, p. 96 - 124.

Teply, S., (ed.) Cana : g :
Intersections, ITE Distrlct 7 and the Uni\mr@ity of Alberta,
Edmonton, 1984.

Teply, S., Accuracy of Delay Surveys at Signalize. ' intersections,

69th Annual Meeting of Transportaiion Researsi: Doard,
Washington, D.C., 1989.

Gerlough, D. and M. Huber, Traffic Flow Theory, Special Report
165, Transportation Research Board, National Research

Council, Washington, D.C., 1975, pp. 117.

Teply, S., CIV E 614 Lecture Notes, University of Alberta,
Edmonton, 1988.

Webster, F. V., Traffic Signal Settings, Road Research Paper, No.

39, Department of Scientific and Industrial Research,
HMSO, Londc.z, 1958.

Gibra, I., . St : S
E_ngmm Prenﬂce Hall Englewood Cliff New Jersey.
1981, pp.100 - 102.

Stein, J., The Random House College Dictionary, Random House of

Canada Limited, Toronto, 1975, pp. 379.

Robertson, D.I., Tra lels egles ,
- A Review, Proceedings of tho- Intemational Symposium on
Traffic Control Systems, Berkeley, California, 1979, Volume
1, pp. 262 - 288.




10.

11.

12.

i3

14.

15

16.

17.

18.

108

Miller, A. J., The Capacity of Signalized Intersections in Australia,
Australian Road Research Board Bulletin, No. 3,
Nunawading, March 1968.

Akcelik, R., The Highway Capacity Manual Delay Formula for

Signalized Intersections, ITE Journal, vol 58 no. 3, Institute
of Transportation Engineers, Washington, D.C., March 1988,
pp. 23 - 27.

Akcelik, R., Traffic Signals: Capacity and Timing Analysis,
Research Report ARR 123, Australian Road Research Board,
Nunawading, 1981.

Transportation Research Board, Highway Capacity Manual, Special
Report 209, Washington, D.C., 1985, pp. 9 - 31.

Harnett, D.L., Statistical Methods, Third edition, Addison Wesley
Publishing Company, Inc., Reading, Massachusetts, 1982,
pp. 197 - 204.

Cooper D. and Clancy, M., Oh Pascal An Introduction to
Programming, W.W. Norton and Company, Berkeley, 1982,
pp 225.

Evans, G., Vehicle Trajectory Reconstruction for Delay
Measurements, Master of Science Thesis, University of

Alberta, Edmonton, 1989.

Sabourin, P., DATAMOS User Manual, University of Alberta,
Edmonton, 1986.

anua ] neering, 4th Edition, Institute of
'n'afﬁc Engineer, Arlington. 1976, pp. VI-6.




APPENDIX A TABLES

Table A Probability of X number vehicles arrived

Actual Average arrival per cycle
arrival, X 20 25 30 35 40
10 0.0058 0.0004 0.0000 0.0000C 0.0000
11 0.0106 0.0008 0.0000 0.0000 0.0000
12 0.0176 0.0017 0.0001 0.0000 0.0000
13 0.0271 0.0033 0.0002 0.0000 0.0000
14 0.0387 0.0059 0.0005 0.0000 0.0000
15 0.0516 0.0099 0.0010 0.0001 0.0000
16 0.0646 0.0155 0.0019 0.0002 0.0000
17 0.0760 0.0227 0.0034 0.0003 0.0000
18 0.0844 0.0316 0.0057 0.0006 0.0000
19 0.0888 0.0415 0.0089 0.0011 0.0001
20 0.0888 0.0519 0.0134 0.0020 0.0002
21 0.0846 0.0618 0.0192 0.0033 0.00C4
22 0.0769 0.0702 0.0261 -0.0052 0.0007
23 0.0669 0.0763 0.0341 0.0080 0.0012
24 0.0557 0.0795 0.0426 0.0116 0.0019
25 0.0446 0.0795 0.0511 0.0162 0.0031
26 0.0343 0.0765 0.0590 0.0219 0.0047
217 0.0254 0.0708 0.0655 0.0283 0.0070
28 0.0181 0.0632 0.0702 0.0354 0.0100
29 0.0125 0.0545 0.0726 0.0428 0.0138
30 0.0083 0.0454 0.0726 0.0499 0.0185
31 0.0054 0.0366 0.0703 0.0563 0.0238
32 0.0034 0.0286 0.0659 0.0616 0.0298
33 0.0020 0.0217 0.0599 C.0654 0.0361
34 0.0012 0.0159 0.0529 0.0673 0.0425
35 0.0007 0.0114 0.0453 0.0673 0.0485
36 0.0004 0.0079 0.0378 0.0654 0.0539
37 0.0002 0.0053 0.0306 0.0619 0.0583
38 0.0001 0.0035 0.0242 0.0570 0.0614
39 0.0001 0.0023 0.0186 0.0511 0.0629
40 0.0000 0.0014 0.0139 0.0447 0.0629
41 0.0000 0.0009 0.0102 0.0382 0.0614
42 0.0000 0.0005 0.0073 0.0318 0.0585
43 0.0000 0.0003 0.0051 0.0259 0.0544
44 0.0000 0.0002 0.0035 0.0206 0.0495
45 0.0000 0.0001 0.0023 0.0160 0.0440
46 0.0000 0.0001 0.0015 0.0122 0.0382
47 0.0000 0.0000 0.0010 0.0091 0.0325
48 0.0000 0.0000 0.0006 0.0066 0.0271
49 0.0000 0.0000 0.0004 0.0047 0.0221
50 0.0000 0.0000 0.0002 0.0033 0.0177
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APPENDIX B RANDOM OVERFLOW DEL..Y CALCULATIONS

The following is the prediction of the average random overflow
delay using the principle of expected value of theory of probability.

As an example, using 20 pcu/cycle arrivals and capacity, and
assumming that there is a V/C = 1.2 arrivals in the first cycle of
overflow, there are four overflowing vehicles arriving. Also assuming
the following arrival and discharge headways:

average arrival headway = 4 sec

saturation flow headway = 2 sec

vehicle # probability excepted delay column 1 X column 2

of arrival (sec)
21 0.0846 RED + 4hv + Ohs 4.7
22 0.0769 RED + 3hv + 1lhs 4.1
23 0.0663 RED + 2hv + 2hs 3.3

24 0.0557 RED + lhv + 3hs 2.6
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St. Albert

/l’l AN

Hebert Road I surveyed lane

Case 1 : Hebert Road at St. Albert Trail

—»z

109 Street
5]
: 1
4 W 125m j movement in
lf surveyed lane
) J

Case 2 : 87 Avenue at 109 Street

Geometric layouts of surveyed locations
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APPENDIX D SURVEY RESULTS

Case 1: Vehicle trajectory reconstruction delay study
Case 2: Stopped delay delay survey

Summary

Case 1 Case 2
Arrival flow (pcu/h) 760 445
Saturation flow (pcu/h) 1700 1350
Cycle time (sec) 105 75
Green interval (sec) 45 25
Red interval (sec) 60 50
Capacity (pcu/h) 730 450
Evaluation time (min) 24 42
Weather : sunny sunny
Pavement good good
Traffic peak hour peak hour
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APPENDIX E FORTRAN PROGRAM LISTING

C PROGRAM SIMULATION
INTEGER TDIS,TA,TP,T,TIME, TCHK,TSIM,TPH,TSIMH,SEED
CHARACTER*1 ANS1
OPEN(6,FILE='OUT',STATUS='OLD’)

C
5005 WRITE(*,6001)
6001 FORMAT(QX,INPUT THE FOLLOWINGS:'/,

5X,'1. INITIAL ARRIVAL FLOW, V1, WHERE V1 > C, (PCU/H)'/,
5X,"2. FINAL ARRIVAL FLOW, V2, WHERE V2 < C, (PCUM)'/,
5X,'3. CAPACITY (PCUMH)'/,

5X,'4. CYCLE TIME (SEC)',/,

5X,'5. GREEN TIME (SEC)'/,

5X,'6. RED TIME (SEC}'/,

5X,'7. LENGTH OF TIME V1 PERSISTS (H)'/,

5X, '8. SIMULATION TIME (MIN)'/,
5X, '9. SEED NUMBER (ODD 3 DIGIT INTEGERY)")

READ(*,*) V1,V2,CAP,CTIME,GTIME, RTIME,TPH,TSIMH,SEED

SUM =0

TA=0

N=0

T=RTIME - 1

H=3600/V1

HP = 3600/ V2

HS = 3600 / (CAP*CTIME/GTIME)

IHS = NINT(HS)
THS = HS*2 + 1
IHS = INT(THS)
VHS =FLOAT(IHS)
WHS = VHS / 2.0
IHS = NINT(HS)

TP = TPH * 3600

TSIM = TSIMH * 60

MTPL = 25173

MDLS = 65536

INCR = 13849

c SCALE =0.70

9001 N=N+1
IF(T.GE.TP) THEN
SCALE =095
H=HP
ENDIF
IPROD = (25173*SEED) + 13849
SEED = MOD(IPROD,MDLS)
RSEED = FLOAT(SEED)
RMDLS = FLOAT(MDLS)
RNDN = (RSEED/RMDLS)*SCALE

4+ttt

slelelele



o
HV =2 - (H * LOG(1 - RNDN))
THV = NINTGV)
TA =TA +HV

C

1001 T=T+1
IF(T.GT.TSIM) GOTO 9999
IF(T.LT.TA) T=TA
CYCLE =T/CTIME
NCYCLE = INT(CYCLE)

TIME = T - (NCYCLE * CTIME)
TCHK = TIME - RTIME
IF(TCHK.LT.0) GOTO 1001
DO 4001 J=2,25
TDIS = J * [HS
IF(TDIS.GT.GTIME) GOTO 1001
IF(TCHK.EQ.TDIS) THEN
DELAY =T- TA
IF(DELAY.LT.0) DELAY =0
GOTO 9002
ENDIF
4001 CONTINUE
GOTO 1001

9002 SUM = SUM + DELAY

. GOTO 9001

%999 ADELAY =SUM/(N - 1)

WRITE(*,6092)ADELAY
WRITE(6,6002)ADELAY
8002 FORMAT(5X,'’AVERAGE DELAY = 'F8.2,'SEC")

WRITE(*,6003)
603 FORMAT(2X,RERUN THE PROGRAM?')
READ(*,2001)ANS1
2001 FORMAT(A1)
IF(ANS1.EQ.'Y'.OR.ANS1.EQ.y") GOTO 5005
STOP
END

116






