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Abstract

Default reasoning is a fundamental area of research in Artificial Intelligence.
A default is knowledge that is generally true though it admits exceptions
(e.g.. birds fly, objects retain their colour when moved, and people with colds
cough). The approach taken here is to view a default as a statistical claim
about the world plus an applicability criterion. The assumed applicability
of a default to a particular case is thereby governed by the same criteria
governing the assumed applicability of statistical knowledge to a particu-
lar case—the problem of determining default applicability is essentially the
famous problem of reference class selection in probability theory.

We examine the problem of reference class selection within the context
of Bacchus and Halpern’s combined probability logic and we introduce a
new approach based on the idea of second :.der randomization. Under this
scheme. the assumed independence properties of particular predicates are
based on the independence properties of randomized predicates. This is a
natural extension to first order randomization, where the degree of belief in a
proposition about a particular individual is based on the statistical properties
of randomized individuals. The flavour is much like that of maximum entropy
approaches but we avoid problems such as syntax sensitivity. This approach
accounts for many intuitive default inferences and solves problems involving
conflicting sources of statistical knowledge that present difficulties for many
other approaches.
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Chapter 1

Introduction

1.1 Representation and Reasoning Controversy

Great controversy and confusion has arisen lately in Artificial Intelligence
(Al) regarding the principles of representing and reasoning in the presence of
uncertainty [38, 51). A resurgence of the declarativism/proceduralism debate

of the seventies was sparked by McDermott's disillusionment with the logicist

approach [49].

The logicist's credo—-that knowledge can and should be represented declar
atively, independently of how the knowledge is used—hinges on two premises.
First, the conclusions that deductively follow from a set of premises follow
regardless of how those conclusions will be used—truth is truth. Second, a
significant part of reasoning is deductive. There is no question that the first

premise is true since soundness is a property of deduction, but McDermott ar-



gues that the second premise is erroneous. Because plausible reasoning is not

logical deduction, McDermott reluctantly suggests that Al must inevitably

resort to procedural ad hocery. He reached the pessimistic conclusion that
“...we must resign ourselves to writing programs. and viewing
knowledge representations as entities to he manipulated by the
programs.” [49, p. 159]

While logical deduction is useful in determining what conclusions follow
from a set of axioms. it says nothing about how to rationally determine and
maintain a set of beliefs. According to Israel [26], what is necessary for the
formalization of rational belief (and rational inference) is the specification of
a set of rational epister iic policies of belief fixation and revision. Further-
more, these policies must necessarily be heuristic in nature and are akin to
scientific procedures (i.e.. the scientific method). Isracl argued that com-
mon sense reasoning should be considered within the framework of scientific
theory formation. If progress is to be made, Israel contends, we should not
confine our attention to semantics and proof-theory; rather we should turn
to epistemology and the philosophy of science.

More recently, the probabilists, for example, Cheeseman, have suggested
that “the logic mafia” have overlooked, indeed ignored, probability theory {in
its various guises) as the natural tool for plausible reasoning [6]. Cheeseman
claims

“...that the difficulties McDermott described are a result of in-
sisting on using logic as the language of common sense reasoning.



If. instead. (Bayesian) probability is used, none of the technical
difficulties found in using logic arise.” [6, p. 58]

Perhaps this is so. but as the flurry of responses to Cheeseman’s position
paper suggest. probability theory has its own closet full of skeletons [51].
Yet the probabilists cannot be dismissed lightly. Much recent work has
suggested that even if numeric probability theory is not a panacea for all
the ills of the logicist approach, it has manv useful concepts like degrees of
belief, conditionalization, randomness, and independence that have no direct
analogue in logic (e.g.. [1, 2, 12, 18, 37, 58, 55]). In view of the evidence,
logicists can no longer ignore the importance of probabilistic concepts and
the probabilists cannot overlook the fundamental computational importance

of locality of logical entailment.

Cheeseman's position was the catalyst for the current controversy between
the logicists and the probabilists and has many researchers struggling to

determine the appropriate role of logic and probability in Al [51}.

1.2 Motivation

This dissertation is the result of the author’s own struggle to determine the
appropriate role of logic and probability in Al The work evolved from the
author's previous work on hypothetical reasoning and the frame problem in
temporal reasoning [15]. In that work, two kinds of knowledge were of prime

concern: defaults—propositions that are generally true but admit exceptions,



such as birds fly.—and theory preference—any criteria by which sets of as-
sumptions are ranked. The work left several epistemological issues unsettied:

1. What kind of knowledge do defaults and preferences encode?

[SV]

. In what sense are defaults and preferences true or correct?

3. How are defaults and preferences determined or verified in the domain?

The motivation of this current work is to seek answers to such episte-
mological questions. More particularly. we seek a deeper understanding, of
the nature of default knowledge used in common sense reasoning and we de-
sire a specification of defaults that provides a clear representation of domain
knowledge in a principled way.

An offshoot of our primary motivation is that we seek to develop a tool
to facilitate the specification and exploration of defauit knowledge, i.c.. we
would like a hypothetical reasoning system that allows us to experiment
with potential specifications and various theory preferences. Hypothetical

reasoning is the subject of the next section.

1.3 A Hypothetical Reasoning Framework

Since our knowledge of the world is imperfect, our representation of the world
is necessarily only an approximation. Regardless of the limitations on our
ability to represent the world, we still want to be able to reason about it. In

order to draw useful conclusions about a domain for which our knowledge is



inaccurate or incomplete, we must make assumptions. It seems that the only
reasonable way to manage these assumptions so as to draw useful conclusions
is to adopt a scientific theory formation approach. This approach involves
building, testing, and revising theories to explain observations and make
predictions. In view of our imperfect knowledge, it seems the best we can
hope for is to build plausible theuries and revise them when they are found
defective.

Though the ability to make assumptions, draw conclusions. and revise be-
liefs is an essential part of rational (and common sense) reasoning, this ability
alone is not enough—we must be able to compare alternative sets of possible
assumptions and determine those which are most plausible. Representing our
uncertain and incomplete knowledge, reasoning effectively (making plausible
assumptions) in spite of our imperfect knowledge. and rationally maintaining
and revising beliefs: these are all vital aspects of common sense reasoning.

The development of nonmonotonic reasoning systems was. in part, mo-
tivated by the inability of logical deduction to capture the forms of rational
inference typically involved in common sense reasoning. Because logical de-
duction is monotonic and because rational inference is not, attempts were
made to extend classical logic to allow nonmonotonic reasoning [46, 50, 75].
Israel has criticized these formalizations of nonmonotonic reasoning and ar-
gued that. instead of developing extensions to logic, nonmonotonic reasoning

should be considered within the framework of scientific theory formation {26].

<t



He contends that such an approach is not only the best we could hope for,
but is also the only thing that makes sense.

In the spirit of Israel's proposal. Goebel. Poole and their colleagues have
been investigating the theory formation (or hypothetical reasoning) approach
to common sense reasoning in the Theorist project [T0]. Theorist views rea-
soning as scientific theory formation (rather than as deduction). Seience is
concerned. not merely with collecting facts. but also with finding explana-
tions. making predictions, testing and revising theories. Reasoning in the
Theorist framework involves building theories that explain observations or
make predictions.

By specifying a language of facts and assumptions and a procedure for
drawing and retracting assumption-based conclusions. the Theorist frame-
work provides a natural tool for investigating common sense reasoning.

The next section turns to the question of justifying assumptions in hypo-
thetical reasoning. In particular. the statistical interpretation of defanlts is

introduced.

1.4 Statistical Interpretation of Defaults

As Cheeseman [6] noted, “the logic mafia” have ignored probability as a tool
in knowledge representation.

~...ever since McCarthy and Hayes [48] proclaimed probabilities
to be ‘epistemologically inadequate,’ Al researchers have shunned



probability adamantly. Their attitude has peen expressed through
commonly heard statements like *The use of probability requires
4 massive amount of data,” *The use of probability requires the
ennmeration of all possibilities,” and *Peopie are bad probability
estimators.” *We do not have those numbers,” it is often claimed.
and even if we do, *We find their use inconvenient.” ™ [58. p. 15]

But if one takes the view that “probability is not really about numbers: it is
about the structure of reasoning.” as Shafer did [58. p. 15]. then the value of
probability as a knowledge representation tool becomes more apparent. In
particular, it is hard not to appeal to probability in the analysis and repre-
sentation of plausible knowledge such as default assumptions in hypothetical
reasoning,

One approach to answering the question. posed in section 1.2, about the
kind of knowledge defaults encode is to propose a probability model that
is alleged to capture the content of a set of facts and defaults. Probability
theory can then be used v determine the plausibility of various conclusions.
If some conclusion which is not plausible in the domain of interest is deemed
plausible by the probability model, the various assertions in the probability
model can be examined to find those that are incompatible with the domain
or to determine if additional assertions are necessary. If the probability model

needs to be changed then either
o the content of the facts and defaults didn’t correspond to the domain

knowledge: or.

e the original transformation from facts and defaults to probability as-
sertions didn't capture their content.



If the former is true, this exercise has taught us something more about the
domain (i.e.. identified missing or incorrect facts and defaults). If the latter
is trie. we have learned something about the content of the facts and defaults
(i.e.. what thev sayv about the domain).

There is much work in the literature that proposes probabilistic interpre-
tations for defaults. Pearl’s e-semantics takes a default to be a conditional
probability arbitrarily close to one [38]. For example. the probability asser-
tion p(fly|bird) = 1-¢ is taken to mean that birds fly by default.

A second approach, due to Neufeld, is to take the minimal meaning of
defaults to be a “favouring.” Here the birds fly defanlt is taken to mean (at
least) that knowing something is a bird farours concluding it flies [53]. The
probability assertion p(fly|bird) > p(fly) expresses this.

A third approach. due to Bacchus. is to take a default to be a conditional
probability greater than some threshold ¢ [2]. In this case, the probability
assertion p(fly|bird) > ¢ represents that birds fly by default.

Here we adopt a view similar to that of Bacchus and interpret the Meta-

Theorist statement (see section 6.1)

default birdsfly(X): fly(X) «(.X)— bird(X).

as encoding the statistical knowledge that most X's that are birds also fly.
Section 6.4 provides some indication of just how far this interpretation takes

us toward capturing the intuitive content of defaults.



1.5 The Thesis

A fruitful approach to the specification of computational models of common
sense reasoning is the development of a hypothetical reasoning framework
based on scientific theory formation in which assumptions and their justi-
fications are explicitly represented and reasoned about. Representing and
reasoning in a hypothetical reasoning framework involves specifying at least
the following: what is known to be true about the domain: what can be as-
sumed about the domain: under which conditions are assumptions justified:
and. given the above, what can be inferred about the domain.

While logic is useful for the specification and implementation of such
a framework. some concepts from probability theory are essential and yet
they are not part of the machinery of logic. The most important of these
are: degrees of belief. conditionalization, randomness. and independence. The
importance, for instance, of the concept of independence is revealed by its
ubiquity in common sense reasoning.

The power of goal-directed methods stems directly from independence—
irrelevant information need not be considered. In logic, every proposition
is independent of every other proposition unless they are related via an
implication—hence the context independence of modus ponens and the ex-
istence of goal-directed proof procedures. In common sense reasoning a de-

pendency between propositions might affect the reasoning even if there is



no known implication between the propositions. For example, learning that
a bird lives in the Antarctic might cast doubt on its flying abilities even if
living in the Antarctic does not imply the bird does not fly -such cases are
not directly addressed by the machinery of logic.

In probability theory, a random variable is independent of another ran-
dom variable only if its independence is asserted. Furthermore, independence
must be asserted for every context in which it holds—hence the context de-
pendence of the probability of a random variable. Probability theory suffers
from a kind of qualification problem [45, p. 1040]; to say that a random
variable depends only on some set of random variables, we must assert its
independence from every other random variable.

Logic and probability theory can be viewed as two extremes on a contin-
uum of varying degrees of (implicit or assumed) independence. The middle
ground is more suitable than either extreme for computational specifications
of common sense reasoning.

In a hypothetical reasoning framework, the appropriate place to artic-
ulate independence is at the meta-level, i.e.. at the level of justification of
assumptions. The meta-level is also the appropriate place to articulate other
probability theory concepts.

Indeed the semantic difference between the various kinds of hypotheses
(e.g., defaults, conjectures, etc.) arises at the meta-level. In the case of

defaults, in particular, their semantics are intimately intertwined with the

Y



above concepts from probability theory.

In view of the evidence. logicists can no longer ignore the importance of
probabilistic concepts and the probabilists cannot overlook the fundamental
computational importance of the goal-directedness offered by logic.

The major tizesis this dissertation defends is that reference class selection
policies based on Reichenbach’s principle (and. analogously. default inheri-
tance based on subset preference (specificity)) are inadequate for common
sense reasoning. Instead. reference class selection should be based on a prin-
ciple of second order direct inference (and second order randomization) where

independencies of particular predicates are inferred from independencies of

the set of similar predicates.

1.6 The Contribution of this Work

This work provides a deeper understanding of the intuitive concept of default
used in common sense reasoning. This understanding stems from the use of
logic and probability as tools to unravel and specify the meaning of defaults.
We have identified and articulated an appropriate role of logic and probability
in AL namely, the analysis and specification of common sense reasoning
concepts.

The use of these tools has led to the specification of a statistically moti-

vated semantics for defaults, which in turn facilitated the representation of

11



domain knowledge in a way that avoids the problems of current representa-
tions—not by yet another “technical tweak™-—but by having a well-founded
representation.

A major contribution is the introduction of Second Order Direct Infer-
ence in Chapter 5. This provides a treatment of default inheritance that
more closely mirrors intuition than do approaches based on Reichenbach’s
principle and other specificity approaches. This is the key difference with
almost all the approaches to default reasoning that we are aware of. except
perhaps maximum entropy approaches. Examples such as the Vaccinated
Child problem (Example 6.9), the Russian Roulette problem (LExample 7.1).
and the Elephants and Zookeepers problem (Example 6.2) are typical cases
not correctly handled by other approaches.

Another contribution is the extension of the basic Theorist hypotheti-
cal reasoning framework to include a meta-level which allows the specifica-
tion of theory preference and pruning criteria, several kinds of hypotheses
(e.g., default, convention, and conjecture), and additional kinds of inference
(e.g., prediction). This Meta-Theorist framework provides a platform to ex-
periment with potential specifications of defaults. The implementation of
Meta-Theorist made it possible to provide empirical evidence to support our
proposed statistical interpretation of defaults. Additionally. Meta-Theorist
can be seen as a general tool for hypothetical reasoning—it is not limited to

tasks involving defaults.



13

More specifically, the contributions are:

1.7

the interpretation of Meta-Theorist defaults as statistical assertions:
the specification of statistically motivated defaults in Meta-Theorist;
the development of a reference class selection policy:

the introduction of Second Order Direct Inference;

the Viable Inheritance Correspondence conjecture;

the extension of basic Theorist to Meta-Theorist;

two theorems about incremental theory pruning and preference; and

the implementation of Meta-Theorist.

Outline of the Presentation

The next chapter describes the basic Theorist hypothetical reasoning frame-

work and the philosophy behind it.

An extension to Theorist is described in Chapter 3, along with two the-

orems that justify incrementally computing theory pruning and preference.

Chapter 4 discusses probabilistic knowledge and inference. In particular,

it examines Bacchus’s probability logic [3] which is adopted and extended for

use as a formal tool in the analysis and specification of defaults.

Chapter 5 examines the problem of reference class selection. The reference

class selection policy in Bacchus’s formalism is shown to be inadequate. A

new policy is proposed based on the average over the reference class to which

we are indifferent.



The expressive power of Bacchus's formalism makes it difficult to imple-
ment. Chapter 6 develops a specification for statistically motivated defaults

in Meta-Theorist. These defaults correspond to a restricted form of statis-

tical assertion in Bacchus's probability logic, namely. statistical majority.

Several examples that indicate the merit and shortcomings of this approach
are discussed.
The final chapter discusses the significance of the current work, and pos-

stble directions for future work.



Chapter 2
Theorist

In view of our imperfect knowledge of the world, it seems the best we can
hope for is to build plausible theories and revise them when they are found
defective. The methodology of observe, hypothesize, predict, test, and evalu-
ate, which has proved so fruitful in science, should also be useful w.'hen applied
to prescientific common sense reasoning and rational belief. Based on a phi-
losophy inspired by Popper [72] and in the spirit of [srael’s proposal [26],
Goebel. Poole and their colleagues have been investigating the scientific the-
ory formation approach to common sense reasoning in the Theorist project
(84, 70]. This chapter describes the Theorist hypothetical reasoning frame-
work and the philosophy behind it. As the author was one of the contributors
to the Theorist project, this chapter, besides being a review of previous work,

presents the author’s current view. In the following chapter, our extension,
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called Meta-Theorist, is described along with its implementation.

2.1 Philosophical Basis

Reasoning in the Theorist framework involves huilding theories to explain
observations. In the philosophy of science. the deductive nomological model
of explanation [24] defines an explanation as a valid deductive argument.
The premises of the argument include nomological general statements (laws)
and other singular statements (called initial conditions). These statements
deductively entail the conclusion. In this sense, the conclusion is explained
by the premises; that is, to explain an observation is to deduce it from a
law. Scientific explanation of observations involves a subsum- tion argument
under laws.

Laws are universal generalizations that express relations that hold he-
tween various properties. Nomic necessity and hypothetical force distinguish
laws from ordinary generalizations. To say that a generalization has nomic
necessity is to say that the relationship it expresses is somehow necessary.
This element of necessity extends to the unobserved. the unrealized, and the
hypothetical counterfactual. For example, from the law that objects denser
than water sink, we can infer that if an ice cube were denser than water
(which it isn’t) then it would sink.

A question that has troubled philosophers since early times is: “Where
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do laws come from?” Given that universal laws govern the unobserved. it is
clear that they cannot be arrived at deductively from experience; similarly.
given that universal laws govern the unobservable, the hypothetical. and the
counterfactual, it is clear that they cannot be arrived at inductively either.

Rescher answers the question as follows:

“The basic fact of the matter—and it is a fact whose impor-
tance cannot be overemphasized—is that the elements of nomic
necessity and hypothetical force are not to be extracted from the
evidence. They are not discovered on some basis of observation
at all; they are supplied. The vealm of hypothetical counter-
fact is inaccessible to observational or experimental examination.
Lawfulness is not found in or extracted from the evidence, it is
superadded to it. Lawfulness is a matter of imputation. When
an empirical generalization is designated as a law, this epistemo-
logical status is imputed to it. Lawfulness is something which a
generalization could not in principle earn entirely on the basis of
warrant by the empirical facts. Men impute lawfulness to certain
generalizations by according them a particular role in the episte-
mological scheme of things, being prepared to use them in special
ways in inferential contexts (particularly hypothetical contexts),
and the like.

When one looks at the explicit formulation of the overt content
of a law all one finds is a certain generalization. Its lawfulness is
not a part of what the law asserts at all; it is nowhere to be seen
in its overtly expressed content as a generalization. Lawfulness
is not a matter of what a generalization says, but a matter of
how it is to be used. By being prepared to put it to certain kinds
of uses in modal and hypothetical contexts, it is we, the users,
who accord to a generalization its lawful stitus thus endowing it
with nomological necessity and hypothetical force. Lawfulness is
thus not a matter of the assertive content of a generalization, but
of its epistemic status, as determined by the ways in which it is
deployed in its applications.” [76, p. 107]



The key point to draw from this is: “Lawfulness is thus not a matter
of the assertive content of a generalization. but of its epistemic status, as
determined by the ways in which it is deploved in its applications.” As we
shall see. the power of Theorist derives from the special epistemic status it
gives to possible hypotheses. The nonmonotonic nature of Theorist results
from the ways in which possible hypotheses are used.

A distinction can be made between potential explanations and actual
explanations. A potential explanation is a valid deductive argument the
premises of which entail the conclusion. For an explanation to be an actual
explanation, its singular premises must be true and its general premises must
be well-confirmed lawful generalizations.

If the explanatory premises are true, a deductive argument provides con-
clusive evidence for the conclusion. When our premises are not so certain as
to allow conclusive explanations, we have at least two alternatives: we can
turn to probabilistic explanations (cf. [5, 25, 76]), or we can tentatively as-
sume tl.2 premises are true and treat the explanation as potentially refutable.

The latter alternative is described by Popper [72]. In this approach, the
premises of a deductive argument can be of two types: those that we accept
as true, and those we treat as assumptions. These two types of premises
taken together form a potential explanation of the deductively entailed con-
clusions. In the spirit of the scientific method, a potential explanation can be

subjected to crucial experiments, and having survived the tests, the potential



explanation becomes well-confirmed. Thus Popper writes:

~A scientist, whether theorist or experimenter, puts forward state-
ments, and tests them step by step. In the field of the empirical
sciences. more particularly, he constructs hypotheses. or systems
of theories. and tests them against experience by observation or

experiment.” [72. p. 27]
“From a new idea. put up tentatively. and not vet justified in any
way —-an anticipation, a hypothesis. a theoretical system. or what
you will—conclusions are drawn by means of logical deduction.
These conclusions are then compared with one another and with
relevant statements, so as to find what logical relations (equiva-
lence. derivability, compatibility, incompatibility) exist between
them.” 72, p. 32
This is the philosophy underlying the Theorist framework. Instead of
viewing reasoning as deduction from our knowledge. reasoning may be bet-
ter modelled by scientific theory formation. While the intuition underlying
Theorist stems from the deductive nomological model of explanation. there
is a notable difference. The Theorist framework does not require explana-
tions to contain lawful general statements. Thus explanations in Theorist
are usually only potential explanations. Because of this, it may be more ap-
propriate to think of Theorist’s explanations as “prescientific” (or common
sense) theories.
Even though Theorist’s possible hypotheses are not usually lawful gen-
eralizations, Rescher’s remarks about where laws come from furnish some

insight into the often asked question, “where do Theorist’s possible hypothe-

ses come from.” In the Theorist framework the answer is simply that possible
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hypotheses are supplied by the user and. in so doing. the user licenses The-

orist to use the possible hypotheses in certain ways to form explanations.

2.2 Theorist Framework

A hypothetical reasoning framework should ultimately be concerned with
observation. explanation, prediction. and comparing, testing and revising
theories. The original Theorist framework [70], however, was only concerned
with explaining observations. Later. Goodwin, Goebel and Gagné [17. 16]
and Poole [69] proposed elaborations incorporating prediction; comparing
theories was considered by Poole [62]. Goodwin and Goebel {17, 15]; and
theory testing and revision was discussed by Sattar, Goodwin and Gocebel
77, 80. 79, 78]. In this section, the original version of Theorist is deseribed.
along with Poole's extension to include prediction and a distinction between
conjectures, defaults, and conventions [70, 69, 66, 64].

The Theorist framework views reasoning as building theories that logi-
cally imply a set of observations. Statements of the underlying representation
language, full first order clausal logic, are divided into two types: facts and
possible hypotheses. Facts are statements that we accept as true and thus
constitute ordinary assertions in a logical theory. Possible hypotheses, how-
ever, are given a different epistemological status than facts. They are used

as a kind of schema for axioms—possible hypotheses can he viewed as the
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specification for the generation of logical theories which are extensions of the
facts. Instances drawn from the set of possible hypotheses can be used to
constrict explanations for a set of observations.

A theory T, consisting of instances drawn from a set of possible hypotheses
H, is said to crplain a set of observations G if the theory. togethor with the
facts I, is consistent and logically implies the observations (see Figure 1). It
is important to note that FUT is an ordinary logical theory having standard

Tarskian semantics.

T explains G if T C H! such that FUT = G and FUT is

consistent.

Figure 1: Theorist Framework

VH denotes the set of instances of elements of H w.r.t. the universe of discourse U.



The formation of instances of possible hypotheses depends on the nnder-
lving universe of discourse [". Most implementations of Theorist take {7 to
be the Herbrand universe of ' U H U (/ (as instantiation in Prolog imple-
mentations amounts to binding variables through unitication). though the
introduction of Skolem functions may eularge {7 [11].

In the original Theorist framework [70]. there is only one kind of possible
hypothesis. If the user designates a sentence schema as a possible hypothesis,
the user is licensing Theorist to use ground instances of that sentence schema
in forming explanations. provided the ground sentence is consistent with the
facts and everything else assumed. Poole [64, 68] later draws a distinetion
between conjectures, defaults, and communication conventions. In the next
chapter, a means to distinguish between various kinds of hypotheses, cach
kind licensing a difterent use, is provided.

Explanation in Theorist depends on logical consequence and consistency
(see Figure 1). For any logic as powerful as first order logic. cach of the two
conditions is, in general, only semi-decidable. Since we have good reason
to want Theorist’s underlying logic to be at least as powerful as first order
logic [22], and since we are interested in actual computation. not just math-
ematical abstractions, we must inevitably be concerned with the inherent
undecidability of such a powerful system. While undecidability is a problem
in theory, it is not often encountered in many interesting problem domains

—when it is, we must resort to heuristics. This should not be scen as a



Llemish on the methodology underlying Theorist. Rather. we should be sur-
prised if scientific theory formation were decidable. In practice, we couid,
perhaps, submit our explanations to a partial consistency check. Passing
this test can be viewed as confirming evidence for the potentially refutable
explanation. This view of reasoning has a basis in the philosophy of science
(cf. [72. 25, 76]).

In most implementations of Theorist, the internal representation language
(the form in which expressions are represented in the underlying implemen-
tation language. e.g.. Prolog) is full first order clausal logic; in this case, F,
T. and & are sets of sentences. and H is a set of sentence schemas. Gener-
ally. the sentence schema in ‘H are restricted to be schema for literals (i.e.,
H is a set of ground literals). This in no way limits the expressive power
of Theorist, as proved in [68], but it greatly simplifies Theorist’s conceptual
complexity and its implementation. Since T C H. theories are also sets of
ground literals.

The sentences of the external representation language (the form in which
expressions are provided by and presented to the user) of most Theorist im-
plementations consist of predefined commands followed by their arguments.
The commands to compile facts and hypotheses to their internal representa-
tion are as follows:

fact W[, means that if Wffis a wif in first order predicate



calculus? and {Clausey, ... Clause,} is a set of clauses
corresponding to W{f then {Clausey. ..., Clause,} C I

hypothesis Hypothesis. means that the literal Hypothesis € H.
.ypothesis Hypothesis: Wff. is synonymous with
hypothesis Hypothesis.
fact Clause; — Hypothesis.

fact Clause, — Hypothesis.

To illustrate the original Theerist framework, the well-known birds fly

example is represented® in Example 2.1.

fact bird(tweety).

fact bird(X) « penguin(X).

fact —fly(X) « penguin(X]}.
hypothesis bf(X): fly(X} « bird(X).

Example 2.1: Theorist Representation of Birds Fly

This encodes the knowledge that Tweety is a bird and all penguins are
birds and penguins don't fly. As well, if something is a bird then it can
be assumed to fly provided the assumption is consistent. From this, &y =
{fly(tweety)} can be explained with the theory T} = {bf(tweety)} formed by

instantiating the hypothesis bf(.X) with X = tweety. Thus we can explain

2The extension allowing first order wffs in Theorist's external representation langnage

is due to Ferguson [11].
3The syntax used in representations given in this chapter differs slightly from the im-

plementation language (as ordinary keyboards lack some special symbols).



that Tweety flies because Tweety is a bird and birds can be assumed to fly.
Should we later learn that

fact penguin(tweety).

then ) can no longer be explained as T, is inconsistent with the facts.
However G, = {~fly(tweety)} can be explained with the theory To= {}. i.e.,
Tweety does not fly follows deductively from the facts.

A typical dialogue with Theorist is given in Figure 2. The user interacts

fact bird(tweety).

fact bird(X) «— penguin(X).

fact -fly(X) < penguin(X).
hypothesis bf(X): fly(X) «~ bird(X).
explain fly(tweety).

Answer is: [fly(tweety)]
Theory is: [bf(tweety))]

No (more) answers.

fact penguin(tweety).
explain fly(tweety).

No (more) answers.
explain -fly(tweety).
Answer is: [~fly(tweety))

Theory is: ||
No (more) answers.

Figure 2: Typical Theorist Dialogue



with the system by providing facts and hypotheses. and by posing queries
(requests for explanations or predictions). In the figure, the user's input
is shown in boldface. The system responds to queries with answers (which
indicate variable bindings. if any) and theories. User interface features such
as file input. knowledge base listing. tracing. etc. are provided in many of
the various implementations.

In general. there may be multiple theories that explain the observations.
An example of a set £ of explanations of & for an arbitrary set, of theories
is illustrated in Figure 3. The set I/ contains the unacceptable theories. i.e.,
the inconsistent ones. In the figure. all the theories depicted are consistent
theories except Ty. The ones in the set & entail G and are explanations of
G. Note that T, is not an explanation of either G or =G, It may, however.
be an explanation of some other goal.

Multiple theories in Theorist correspond to multiple minimal models in
circumscription [46] and to multiple extensions in default logic [75]. It may
be the case that some of these theories do not make intuitive sense. The
problem of having multiple theories of which only a subset make intuitive
sense is known as the multiple extension problem [20].

To illustrate, suppose in the birds fly example, it is possible that some
penguins fly but that we can still assume penguins don’t fly if it is consis-
tent to do so. Also suppose Tweety is a penguin. This is represented in

Example 2.2. From this. G; = {flu(tweety)} can be explained with the the-
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Figure 3: Explanations of a Goal

fact penguin(tweety).

fact bird(X) « penguin(X).

hypothesis bf(X): fly(X) « bird(X).
hypothesis pdf(X): -fly(X) « penguin(X).

Example 2.2: Theorist Representation of Birds Fly and Penguins Don’t




ory Ty = {bf(tweety)} but also. Ga = {~fly(tweety)} can be explained with
the theory To= {pdf(tweety)}. But. intuitively, only the second theory makes
sense. If Tweety did fly, it would be because he was a special kind of penguin
(e.g.. magical) or in special circumstances (e.g.. on a plane) and not because
Tweety is a bird.

This is not to say that Theorist is reasoning incorrectly in the above ex-
ample. By designating bf(.X) as a possible hypothesis, we licensed Theorist
to use instances of this hypothesis in an explanation whencrer it is consistent
to do so. The problem is not with Theorist but that we gave Theorist too
strong a license to use bf(X). Yet the Theorist framework provides no mecha-
nism to sanction a more restricted use of possible hypotheses. Consequently,
the Theorist framework needs to be extended to sulve the multiple extension
problem.

Theorist can be extended to discriminated between multiple competing
theories, in a way that is in accord with the philosophy of science, by incor-
porating theory preference and theory pruning knowledge. This meta-level
knowledge can be used to prune theories that are irrelevant, or to order the-
ories by utility or likelihood. etc. This extension of the basic [ramework is
the subject of the next chapter.

Poole extended Theorist with another mode of reasoning: prediction. In
prediction. we are interested, not in what we could assume to explain some

goal or observation, but with whether all theories of a particular type have
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the goal as a consequence. To specify whether a theory is of the right type
for prediction. Poole first distinguishes two types of possible hypotheses:
conjectures and defaults. Conjectures are hypotheses having no particular
justification. Defaults, on the other hand. are hypotheses that are expected
to he true if they are consistent. Consequently, Poole defines prediction as
determining whether a goal is entailed by every theory that contains only
instances of defaults and is marimal with respect to set inclusion. By virtue
of the justification of defaults, such predicted goals are likewise expected to
be true.

A goal G is predicted if G {ollows from every maximal theory (containing
only defaults). The set of maximal theories P on which prediction is based
is illustrated in Figure 4. The arcs in the figure represent the subset relation
between theories which determines the maximal theories P. U contains the
inconsistent theory T;. It also contains theories that contain conjectures
(none are shown). (It will become clear in the next chapter that P and U
correspond to theory preference and theory pruning criteria, respectively.)
Since there is at least one maximal theory that does not entail G, it is not
predicted. Similarly, ~G is not predicted either.

As a more concrete illustration, consider again Examples 2.1 and 2.2.

If the hypotheses are considered defaults, then in the former example, we

10ther more skeptical and less skeptical definitions of predict are possible. See (64, 42].
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predict ¢y = {fly(tweely)} because Ty = {bf(tweety)} is the unique maximal
theory and it entails (7;. In the latter example. Ty = {bf(tweety)} and Tr=
{pdf(tweety)} are both maximal so neither Gy = {Ay(tweety)} nor Gy =
{~fly(tweety)} is predicted.

In the next section, the implementation of a Theorist Interpreter is dis-

cussed.,

2.3 Theorist Interpreter

Many versions of Theorist have been implemented in Prolog, e.g., Fergu-
son’s C-Theorist [11], Poole and Goodwin’s Q-Theorist compiler [71, 67], and
Poole, Goebel, and Aleliunas’s Theorist interpreter [70]. These implementa-
tions are essentially based on a first order logic theorem prover extended to
manage assumptions and provide user interface features.

In Poole’s approach, there are only two kinds of hypotheses: conjectures
and defaults. Let C be the subset of H interpreted as conjectures and A be
the subset of H interpreted as defaults. A few definitions and theorems are

necessary to set the stage for the definition of procedures for explanation and

prediction.

Definition 1 (SCENARIO (POOLE (64, P. 12]))
A scenarioof FUCUA is aset FUT where T is a set of ground instances

of elements of C U A such that FUT is consistent.
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Scenarios are viewed as being possibly true in the domain of interest,

Definition 2 (EXPLANATION FROM FUCU A (PooLE [64, . 13]))
If ¢ is a closed formula then an explanationof ¢ from FUCUJN is a scenacrio

of FUCU A which implies g.

This definition allows defaults to be used in explanations as long as they
are consistent with the facts and other assumptions. Poole gives the following
theorems to provide a basis for implementation of the above definition of

explanation.

Theorem 3 (EXPLANATION PROOFS (POOLE [64, P. 34]))
If F is consistent and T = {t;,...,t,} is a set of ground instances of elements
of CUA then FUT is an explanation of ¢ iff there is a ground proof of ¢

from F U T such that FU {¢..... tiaj -t foralli=1...n.

From this Poole [64, p. 34] derives the following “algorithm®” to explain

g from FUCU A:

1. try to prove g from FUCU A and make T = {t,....t,} the set of

instances of elements of C U A used in the proof.

2. ground T so we have created a ground proof of g from FUT.

SThe “algorithm” is, of course, not even semi-decidable in general.



3. for each 1, € T, try to prove =t; from F U {t;,...,ti-y}. If all such

proofs fail, F'U T is an explanation of g from FUCU A.

An important feature of this procedure is that step 3 allows for incre-
mental consistency checking, i.e.. consistency can bc checked as each new
hypothesis instance is added to the current theory. Figure 5 gives a Quin-
tus Prolog implementation of this procedure for explanation. The predicate
explain is true when the goal Goal is explained by the facts and the consis-
tent set of hypothesis instances Theory. The predicate prove is a first order
logic theorem prover based on Loveland’s MESON proof procedure [43] and
augmented with the ability to introduce consistent instances of hypotheses.
The first clause of prove checks the list of ancestors goals for the negation of
the current goal, i.e.. it checks for proof by contradiction. The second clause
attempts to prove the goal from the facts. The third clause tries to use a
previously assumed hypothesis instance and the final clause allows additional
consistent assumptions. Step 2 of the procedure is not included in the given
implementation (cf. [70]) which is only correct when there are no Skolem
functions and there are no free variables in the hypotheses when they are
tested for consistency—this problem has been addressed by Ferguson {11].
Figure 6 shows the implementation of the test for inconsistency.

To implement prediction from defaults, Poole defines maximal scenarios

(which have corresponding maximal theories).
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explain(Goal,Theory) :-
prove(Goal, [],[],Theory).

prove(Goal,Ancestors,InTheory,InTheory) :-
negate(Goal,NotGoal),
member (NotGoal,Ancestors).

prove(Goal,Ancestors,InTheory,OutTheory) :-
fact(Goal,IfBody),

proveAll (IfBody, [Goal|Ancestors],InTheory,OutTheory).

prove(Goal,Ancestors,InTheory,InTheory) :-
hypothesis(Goal),
member (PreviousHypothesis,InTheory),
Goal == PreviousHypothesis.

prove(Goal,Ancestors,InTheory,[GoalIInTheory]) -

hypothesis(Goal),
not( member (PreviousHypothesis,InTheory),
Goal == PreviousHypothesis ),

not( inconsistent([GoallInTheory]) ).1

proveAll({],Ancestors,InTheory, InTheory).

proveAll([Goall|Goals],Ancestors,InTheory,OutTheory) :-
InTheory == OutTheory,
prove(Goal,Ancestors, InTheory, InTheory),
proveAll(Goals,Ancestors,InTheory,InTheory).

proveAll([GoallGoals],Ancestors,InTheory,OutTheory) :-
not( InTheory == QutTheory ),
prove(Goal,Ancestors,InTheory,IntermedTheory),
proveAll(Goals,Ancestors,IntermedTheory,OutTheory) .

Figure 5: Explain in Prolog



inconsistent ([Goall|Theoryl) :-
negate(Goal,NotGoal),
not ( prove(NotGoal,[],InTheory,InTheory) ).

Figure 6: Inconsistent in Prolog

Definition 4 (EXTENSIONS (POOLE [64, P. 13]))
The set of logical consequences of a maximal (with respect to set inclusion)

scenario S of FU A, written Th(S), is an extensionof FFUA,

Poole [68] proves the correspondence between this definition of extension

and that of Reiter [13]) when 8 € A corresponds to Reiter's default :M&/é.

Theorem 5 (EXPLANATIONS AND EXTENsiONS (POOLE [64, P. 13]))

There is an explanation of g from £ U A iff there is some extension of £/U A

that contains g.

Definition 6 (PREDICTION FROM F U A (POOLE [64, P. 13]))
We predict g based on FFUA if g is in every extension of FFUA. (Note that

no conjectures are involved in (strict) prediction.)
An procedure for prediction can be derived from the following theorem.

Theorem 7 (PREDICTION PROOFS (POOLE (64, P. 34]))

The following are equivalent:

I. ¢ is in every extension of FUA.



1)

. every scenario S of F'U A is an explanation of y.

3. there is a set & of (finite) explanations of ¢ such that every scenario S
of FUA is consistent with some E € &,.

4. there is some set T of instances of \ such that FF U T F ¢ such that

if t; € T and -t; is explainable by T,. then ¢ is in every extension of

FUuT,UA.

From point 4 of this theorem, Poole [64, p. 36] suggests the following
procedure for proving that ¢ is in every extension of U A, i.e., that g is

predicted from F U A:

1. try to prove ¢ from FUA and make T" = {{,.....1,} the set of instances

of elements of A used in the proof.

[SM]

ground T so we have created a ground proof of ¢ from FUT.

3. for each t; € T try to explain =¢; from FU{t;,....t,., JUA. If there is
an explanation using no assumptions then T is inconsistent; otherwise

for each T; explaining —¢;, try to prove ¢ is in all extensions of FUT,UA.

Figure 7 gives a Quintus Prolog implementation of this procedure for pre-
diction. The predicate predict is true when Goal can be derived from every
maximal theory (i.e., it is in all extensions). The predicate inAl1Exten-
sions is true if Goalis in all extensions of F U SU A. Finally, the predicate

counterExplanation is true if there is an explanation NewS of the negation
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of some assumption Ti in T that includes the assumptions in S and if Goal
is not in every extension of the explanation NewS. As step 2 is not included
in this implementation. the same proviso given for erplain holds for predict.

As well. this implementation assumes all hypotheses are defaults.

predict(Goal) :-
inAllExtensions(Goal, []).

inAllExtensions(Goal,S) :-
prove(Goal,[],s,T),
not( counterExplanation(Goal,S,T) ).

counterExplanation(Goal,S,T) -
member (Ti,T),
negate(Ti,NotTi),
prove(NotTi, [],S,NewsS),
not( inAllExtensions(Goal,NewS) ).

Figure 7: Predict in Prolog

The Theorist framework described above is simple, yet powerful. It has
been applied to several domains such as inheritance reasoning (e.g., [62]),
temporal reasoning (e.g., [15, 14]). analogical reasoning (e.g., [27, 86. 13]).
diagnosis (e.g., [63]), and many others. In the next chapter, our extension to

the Theorist framework is presented.
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Chapter 3

Meta-Theorist

This chapter develops a hypothetical reasoning framework. called Meta-
Theorist, which is our extension of Theorist. Representing and reasoning
in Meta-Theorist involves specifying what is known about the domain; what
can be assumed about the domain; under which conditions assuniptions are
justified; and what can be inferred from the above. Several kinds of hypothe-
ses are described in this chapter—each can be considered as an assumption
plus conditions for its applicability. Meta-Theorist incorporates meta-level
theory pruning and theory preference knowledge that can bhe used to elim-
inate unacceptable or irrelevant theories, or to order theories by utility or
likelihood, etc. This extension to Theorist subsumes many previous exter-
sions to Theorist in a conceptually efficient way. Meta-Theorist is a general

tool for hypothetical reasoning, but in developing it we have in mind its use
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in specifying and experimenting with defaults (see Chapter 6).

3.1 Meta-Theorist Framework

3.1.1 The Meta-Level

‘I'he basic Theorist framework is extendzd with a set of meta-level sentences
M which allows (among other things) the specification of theory preference
and theory pruning criteria. As with the object level sentences, the under-
lying representation language is full first order clausal logic. The external
representation language provides a command to compile meta-level wffs to

their internal form.!
meta fact W#. meaus that if W is a wif in first order predi-
cate calculus and {Clause,. .. .. Clausen} is a set of clauses
corresponding to Wf then {Clause,. .... Clause,} € M.
Sentences and sets of sentences are objects in the semantic domain of the
meta-level and so F, H. theories, etc. may be used as arguments in meta-
level predicates. The commands to compite facts and hypotheses are now

reflected (cf. section 2.2) in the meta-level as follows:

fact Wff. is synonymous with

meta fact fact(Clause,).

I'The set of meta-level commands also includes meta hypothesis, meta explain,
meta predict, ctc. The extension also provides a meta-meta-level and beyond. Discussion
of these features is omitted as they are not of prime concern to this disserfation.
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meta fact fact(Clause,).

if WiTis a wif in first order predicate caleulus and {¢'lause.
... Clause,} is a set of clauses corresponding to WL

hypothesis Hypothesis. is synonymous with
meta fact hypothesis( Hypothesis).
hypothesis Hypothesiss W[ is synonymous with

hypothesis Hypothesis.
fact Clause, — Hypothesis.

fact Clause, — Hypothesis.

Two meta-level predicates of special iuterest are: prefer(T'1.772) and
prune(T). The procedures for explanation and prediction (i.e.. the meta-
predicates erplain(G.T). preferred_erplanation(G.T). and predict((i)). use
these two predicates to determine theory preference and theory pruning. The
theory pruning and theory preference meta-predicates considered helow are
defined independently of the goal and independently of the kind of inference.
One might envision certain goal-dependent or inference-dependent pruning
and preference criteria. Such criteria can be expressed by a straightforward
extension.

The user’s interaction with Meta-Theorist is essentially the same as with
Theorist. The main difference is that the user can specify meta-facts, meta-
hypotheses. etc. and that these meta-level statements can be used to specify
theory pruning and preference criteria. Additionally, we might have a system

designer/knowledge engineer who provides the user with a pre-packaged set of

Y



priuning/preference criteria for particular domains. For instance in Chapter 6.
we envision defanlts to be a kind of hypothesis with an associated pruning

criteria provided by the system designer.

3.1.2 Theory Pruning

The conditions under which a theory is deemed unacceptable (e.g.. inconsis-
tent. irrelevant. etc.) define the prune predicate. These conditions may be
specified via:

meta fact prune(T) — W

If M k= prune(T) then the theory T is in the set of unacceptable theories
. By U(T) it is meant that T is unacceptable according to the pruning
criteria determining i, i.e., T € #. Throughout this chapter, the following
completion of the set of pruning criteria is assumed.?

meta fact -prune(T) «— naf(prune(T)).

The set of possible theories Tl is defined as the power set of H excluding
olements of U3 By 1I(T), we mean T € II. We are generally only interested
in possible theories (e.g.. theory preference in section 3.1.3 is only defined for

possible theories).

meta fact possible(T) « theory(T) & —prune(T).

*T'he meta-meta-predicate naf means negation-as-failure.
IThe meta-predicate theory(T) means T CH.
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Inconsistent theories are considered impossible theories (though in view
of the semi-decidability of consistency checking. we might waut to treat the-
ories that have not yet been shown inconsistent as possible theories  we do
not intend to pursue this here). Throughout the rest of the chapter. repre-
sentations are implicitly assumed to include:*

meta fact prune(T) « inconsistent(T).
meta fact inconsistent(T) «

JH (member(H.T) & prove(—H.T)).
meta fact consistent(T) « -inconsistent(T).

Recall that in the modified birds fly example (Example 2.2). there was a
counterintuitive explanation T (see section 2.2) that explained Tweety flies
even though Twee'y is a penguin. We could eliminate T by providing a
pruning criterion based on specificity [62. 30}, that is. the hypothesis that
penguins don't fly is more specific knowledge than the hypothesis that birds
fly, so whenever the former hypothesis is applicable (i.e., when the bird in
question is known to be a penguin), the latter hypothesis is nov applicable.
This might be naively represented as follows.®

meta fact prune(T) « minus(T,[bf(X)],T2) &
minus(T1,[pdf(X)],T2) & consistent(T1) &
union(T,[pdf(X)],T3) & -consistent(t 3}.

1The meta-predicate member(H,T) means HET, and prove(P.T) 1s true whenever
FUTEP.

5The meta-predicate minus(T,[H], T1) means T-{H}=T1. and unton(T,[H], T1) means
Tu{H}=T1.



I'hat is, the theory T should be pruned if it contains a bf assumption but
a corresponding pdf assumption cannot be consistently added while the bf
assumption could be consistently replaced by a corresponding pdf assump-
tion. The above criterion is not being proposed as a correct formalization
of specificity. There is much debate on how this intuitive concept should be
formalized [8]. The above is just a naive formalization to illustrate the use

of pruning. The issue of specificity arises again in connection with defaults

in the next three chapters.

3.1.3 Theory Preference

Various kinds of theory preference knowledge can be used to rank theories
(e.g.. simplicity. predictive power, likelihood, etc.). Theory preference s
described as a partial order. prefer. on I1. the set of possible theories (cf. the
partial order >¥ in [17. 14]). When we say one theory is preferred to another.
we mean the former is better or equal to the latter. Theory preference (i.e..
when 1’1 is preferred over T2) is asserted in the following manner:

meta fact prefer(T1,T2) — W

To be a partial order. prefer. must be reflerive, transitive, and antisym-
metric, i.e.. it satisfies the following axioms:

meta fact prefer(T.T).
meta fact prefer(T1.T3) « prefer(T1.T2) & prefer(T2.T3).
meta fact equipreferable(T1,T2) «

prefer{T1,T2) & prefer(T2.T1).
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Here the meta-predicate equipreferable(T1.T2) means T'l and 12 are equally
preferred. Thus, it follows that
meta fact prefer(T1.T2) — equipreferable(T1.12).
Some theories in the partial ordering may be incomparable. i.e.. neither

theory is preferred and the theories are also not equipreferable.

meta fact incomparable(T1.T2)
—prefer(T1.T2) & -prefer(T2

o
Th).
Throughout this chapter. the following completion of the set of preference

criteria is assumed.

meta fact —prefer(T1.T2) — naf(prefer('T1.T2)).

3.1.4 Explanation and Prediction

The set of viable explanations &g of a set of observations (& are the elements of
the set of possible theories IT which entail ¢ given the facts F (See Figure 8
here the arcs represent preferences.). In Meta-Theorist, the set of possible
theories is restricted by the pruning criteria, as the inclusion of Ty in i
suggests. Consequently, the definition of erplain must be revised to take
the theory pruning criteria into account. A theory T is said crplain a set of
observations G if FUT =G and T € 11 (so M ¥ prune(T)).

meta fact explain(G.T) « possible(T) & prove(G.T).

The definition of erplein is meant as a specification--obviously there are

more efficient ways to implement it.
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Often we are interested in finding preferred explanations. The set Pg; of
preferred theories explaining G are the maximal elements (w.r.t. prefer) of
the subset of [T that explain (7 (Figure 9).

meta fact preferred_explanation(G.T1) ~— explain{G.T1) & VT2
(equipreferable(T1.T2) « prefer(T2.T1) & explain(G.T2)).

Fu

Fu

Figure 9: Preferred Explanations of a Goal in Meta-Theorist

In prediction, we generally want to base our conclusions on the most
preferred theories. The most preferred or marimal elements of the partial

order are those for which there is no strictly better theory. A partial ordering

{6



may have multiple maximal elements but if it has a unique iraximal element
then that element is the mazimum element.
m >ta fact maximal(Tl) «
V12 (equipreferable(T1.T2) « prefer(T2.T1)).
meta fact maximum(T1)— VT2 ((T1 = T2) «- prefer(T2.T1)).
We predict a goal (7 if it follows from every possible maximal theory.
meta fact predict{() «
VT (prove(G.T) « possible(T) & maximal(T)).
The set of preferred theories P on which prediction is based is shown in
Figure 10. A comparison between Figure 9 and 10 reveals the essential dif-
ference between preferred explanation and prediction. Preferred explanation
considers the maximal theories w.r.t. the partial order on the subset of I
which explain the goal. Prediction considers the maximal theories w.r.t. the
partial order on all of II regardless of whether the goal is explained.

The Meta-Theorist framework is illustrated in Figure 11.

3.2 Kinds of Hypotheses

The semantics of hypotheses is determined in part by the first order sen-
tences they are schemas for and in part by theory preference and pruning.
We can. in effect, define different kinds of hypotheses, licensing them to be
used in different ways, by making the theory preference and pruning criteria

dependent on the kind of hypotheses contained in the theories.
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G is predicted if VT € P. FUT  G.

Figure 11: Meta-Theorist Framework
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For our purposes, it is be convenient to partition the set of possible hy-
potheses into several classes. The most prevalent kind of hypothesis in the
nonmonotonic reasoning literature is the default [75. 70]. The previous chap-
ter introduced defaults i.x connection with prediction. Under the usual in-
terpretation. defaults are assumed true in the absence of evidence to the
contrary.

This interpretation of defaults is ambiguous because it is not clear what
constitutes contrary evidence—-particularly troublesome is the status of m-
tually inconsistent defaults—the resulting “clash of intuitions™ led 1o a dis-
tinction between credulous defaults and skeptical defaults [83]. The difference
is that conflicting credulous defaults lead to alternative theories while con-
flicting skeptical defaults are mutually blocking.

Another ambiguity is the status of default conclusions. Usually, they are
taken to be only plausible conclusions. This leads to a couple of problems.
First. the interpretation of the conclusions of Meta-Theorist change from
“true if the assumptions are true” to “plausible if the assumptions are true.”
Second. is the problem of chaining. i.e.. the plausible conclusion of one defauit
may or may not be considered sufficient to “enable” another default.

A second interpretation of default conclusions is that they are true rather
than merely plausible. This interpretation corresponds to communication
conventions [47, 64]. For example. we might establish the convention that if

I tell you something is a bird then [ am in effect telling you it flies unjess |
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tell you otherwise. So when I tell you Tweety is a bird, you can take it as a
fact that Tweety is not a penguin because if Tweety were a penguin should
have told you so. While plausible defaults may be credulous or skeptical with
regard 1o conflicts, communication conventions should not permit conflicts
otherwise the convention (if one may call it that) is ambiguous (64].

Lot us now consider how these various kinds of hypotheses might be
specified in Meta-Theorist. The following specifications are not claimed to be

correct. They are only intended to illustrate how various kinds of hypotheses

might be specified.

Let A Ayg. and A be subsets of H containing hypotheses that are to be

interpreted as credulous and skeptical defaults respectively. The commands

to specify these defaults are:®

credulous Hypothesis. is synonymous with

hypothesis Hypothesis.
meta fact credulous(Hypothesis).

credulous Hypothesis: Wff. is synonymous with

hypothesis Hypothesis: W
meta fact credulous(Hypothesis).

skeptical Hypothesis. is synonymous with

hypothesis Hypothesis.
meta fact skeptical( Hypothesis).

skeptical Hypothesis: Wff. is synonymous with
hypothesis Hypothesis: W

The meta-predicate credulous(H) means He Acq. skeptical(H) means HE Ayq conven-
fton(H) means He A, .



meta fact skeptical( Hypothesis).
convention Hypothesis. is synonymous with

hypothesis Hypothesis.
meta fact convention(/{ypothesis).

convention Hypothesis: W is synonymous with

hypothesis Hypothesis: 1Wf.
meta fact convention( Hypothesis).
Different semantics can by given to these by defining pruning criteria
that treat elements of Ao Agi. Ao differently than other elements of H.
The following pruning criterion corresponds to a credulous interpretation of

defaults.

meta fact prune(T) « credulous(H) & —~member(H.T) &
union(T.[H].T1) & consistent(T1).

This prunes any theory which can be consistently extended by an instance of
a credulous default—this corresponds to the defanlts in the previous chapter.
We could re-represent the birds fly example by treating the hypotheses

as credulous defaults (Example 3.1). Consider the following theory:

fact bird(tweety).

fact bird(X) — penguin(X).

credulous bf(X): fly(X) « bird(X).
credulous pdf(X): -fly(X) « penguin(X).

Example 3.1: Birds Fly using Credulous Defaults

T, = {bf(tweety),pdf(tweety)}.



'T'his theory is the unique maximal® theory since it is the only possible theory
(unless the goal enlarges the umverse of discourse by mentioning another
individual). From this we predict (cf. section 3.1.4) Tweety flies and is not
a penguin.

Suppose we also know that:

fact penguin{opus).
In this case. the theory
Ty, = {I)f(opus).prlf(opus‘).bf(t,weety).pdf(tweety)}

'« not maximal since it is inconsistent. The conflicting credulous defaults

pdf(opus) and bf(opus) give rise to the aliernative maximal theories:

Ty = {pdf(opus).bi{tweety).pdf(tweety)}.

Ty = {bf(opus).bf(tweet_\’).pdf(tweety)}.

If we use a specificity criterion similar to that of section 3.1.2 then theory T3
would be the unique maximal theory from which we predict Opus does not
fy.

For skeptical defaults. the following pruning criterion applies:

meta fact prune(T) « skeptical(H) & -member(H.T) &
& max.nonskeptical subset(T.T1) & union(T1.[H].T2) &
cousistent(T?2) & -blocked(H.T1).

"In the absence of any preference criteria, all possible theories are maximal.



This prunes any theory which can be extended by a consistent instance of
a non-blocked skeptical default. Here mar_nonskeptical_subset(T. 117 means
T1is the largest subset of T' not containing any skeptical defanlts  this makes
“skepticism™ relative to other kinds of assumptions an even more skeptical
approach would be to check consisteney of 1 relative to the facts alone. A
skeptical defauit is not bloched if it is not contradicted by any consistent set

of skepticat defani s

me’ . fact —blocked(H.T1} — VT2 ((VH2 (member(H2.12) —
skeptical(H2)) & union(T1.T2.T3) & consistent(T3) &
union(T3.[H].T4)} — consistent(T4)).

We could also re-represent the birds fly example by treating the hypothe

ses as skeptical defanlts (Example 3.2). The difference from the previous

fact bird(tweety).

fact hird(X) — penguin(X).

skeptical bf(X): fly(X) « bird(X).
skeptical pdf{X): =tiv(X) «- penguin(X).

Example 3.2: Birds Fly using Skeptical Defaults
example is that now if we know
fact penguin(opus)

the skeptical default instances bffopu: i and pdffopus) ave mutually blocking

thus leaving

Ty = {bf(tweety).pdf(tweety)}



as the unique maximal theory, We could incorporate specificity by modifying
the definition of blocking for skeptical defaults so that less specific defaults

do not block more specific ones.

meta fact —blockedi H. 11 — Y12 ((VH2 (member(H2.T2) —
(skeptical(H2) & - specific(H.H2)) & union(T1.T2.T3)
& consistent(T3) & union(T3.[H]. T4)) — consistent(T4)).

This would give the unique maximal theory
Ty = {pdf(opus).bf(tweety).pdf{tweety)}

from which we predict Opus does not fly.

The following pruning criterion corresponds to one possible interpretation
of communication conventions:

meta fact prune(T) — convention(H) & —member(H.T) &
consistent (H).

Tins prunes any theory which can be extended by an instance of a consistent
commutuication convention. Note that if there are conflicting communica-
tion conventions that are each consistent with tl~ facts then every theory
is pruned indicating that our communication conventions are ambiguous.
A more claborate interpretation of communication conventions migat con-
sider conflicting chains of conventions similar to blocking skeptical defaults.
Another elaboration would consider the interaction of communication con-
ventions with conjectures which are described later in this section. As it

stands above. conventions are relative to the facts: but we may want them
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relative to the facts plus any conjectures we have assumed (see the discussion
in section 3.3).
The birds fiy example with hypotheses treated as communication conven-

tions is given in Example 3.3, Here the unique maximal theory is:

e m— e - N

fact bird(tweety).

fact bird(X) — penguin(X).

convention bf(X): flv(X) «— bird(X).
convention pdf(X): ~fly(X) — penguin{\).

Fxample 3.3: Birds Fly using Communication Conventions

Ty = {bf{tweety).pdf(tweety)}.

From this we predict Tweety flies and 1s not a penguin.
Suppose we also know that

fact penguin(opus).

In this case. the comniunication conventions pdf{opusj and . opus) conflict
so all theories are pruned.

Another kind of hypothesis mentioned in the previous chapter is the con-
jecture (cf. [64. 68]). Unlike defaults, which are assumed true in absence of
evidence to the contrary. conjectures are simply hypotheses which may be
assumed in forming an explanation or a conditionai prediction. Any predic-

tion that is based on a theory containing an instance of a conjecture is a
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conditional prediction. Let € be the subset of H containing hypotheses that
are to be interpreted as conjectures. The commands to assert conjectures

are:®
conjecture [lypothesis. is synonymous with

hypothesis Hypothesis.
meta fact conjecture(Hypothesis).

conjecture [lypothesis: WfI. is synonymous with

hypothesis [fypothesiss Wi
meta fact conjectnre Hypothesis).

The pruning criterion for conjectures is implicit in the consistency require-

ment for theories given in section 3.1.2.

fact animal(tweety) & feathered(tweety).
fact animal(X) «— bird(X).

credulous bf(X): fly(X) «~ bird(X).
credulous adf(X): ~fly(X) « animal(X).
conjecture [b(X): bird(X) « feathered(X).

Example 3.4: “Feathered Things are Birds” Conjecture

Example 3.4 illustrates the use of conjectures. Here our knowledge is such
that we are willing to entertain the possibility that feathered things are birds
even though we do not necessarily accept this as plausible in the absence of

evidence to the contrary. There are three maximal theories:

*The meta-predicate conjecture(H) means HE C.



17 = {bf(tweety)adf{tweetyv)}.

s

b

{bf(tweety )b tweety) ).

T3 = {adf(tweety).fb(tweety) }.

Since these theories disagree about whether Tweety flies, it is not predicted
according to onr carlier definition; however, we distinguish conditional and
strief? predictions according to whether conjectures are involved. Tweety
does not fly is a strict prediction based on Ty and if we assume bfftweety) is
more specific than adf(tweety)) so that Ty is eliminated. then Tweety flies is
a conditional prediction given fb(tweety) hased on T,

Many other kinds of hypotheses can be defined in this framework. For
example. we may designate some hypotheses as askables. Part of the pruning
criterion for askables would involve a query to the user. Fired predicates [65)]
can also be represented.

The essential point of this section is thet each Kind of hypothesis s simply
a hypothesis plus conditions on its applicability. Meta-Theorist explicitly

represents and reasons with these conditions.

“The term unconditional prediction is avoided since Poole [65] assigns a special meaning
to this in conjunction with fited predicates.



3.3 Meta-Theorist Interpreter

The Meta-Theorist interpreter is built upon a previous version of Theorist.
Ferguson's C-Theorist [11]. and is written in Quintus Prolog. The implemen-
tation is intended only as a prototype for experimentation. The purpose of
this seetion is to describe the key aspect of the Meta-Theorist interpreter: the
implementation of explanation. Other aspects of the implementation such
as the user interface and the meta-level theorem prover are not discussed as
they are straightforward.

The starting point for the definition of a procedure for generating expla-
nations in Meta-Theorist is Theorem 3 (Explanation Proofs). Examination
of this theorem reveals that incremental consistency checking (highlighted in
Figure 5) relies on the monotonic nature of inconsistency, i.e.. if a theory is
inconsistent then so is any theory containing it. As Theorem 9 shows. Meta-
Theorist's (non-pruned or viable) explanation procedure can be implemented
by replacing the incremental copsistency checking with incremental theory

prining provided the criterion is monotonic as defined below.

Definition 8 (MONOTONIC PRUNING CRITERION)

A pruning criterion U is monotonic iff for all theories Ty and T; we have

Tl g T) & Zl(T]) — L{(Tg)

Note that consistency with respect to F is a monotonic pruning criterion.



Theorem 9 (INCREMENTAL THEORY PRUNING)
If ¢4 is a monotonic pruning criterion and if "= {#;..... t,}is a set of ground
instances of elements of H then F U T is an explanation of 4 if there is a

ground proof of ¢ from FUT such that ~i{({f,..... ) forallee (1., n.

Pioof: U F U T is an explanation of g then U T = g and =H(T). By

the completeness™ of F we have F'U T F g So there is a gronnd proof of ¢4

from FUT. Now suppose U({t;..... t.}) for some v € (L..... n): then, since
{t..... t;} C T we have U4(T) by the monotonicity of ¢. This contradicts
=l(T). Hence ~U({t;..... t,}) forallie(l..... n).

If there is a ground proof of g from FUT then FUT |= ¢ by the sonndness

of k. Since ~l({t)..... t,}) forall i € (1..... n). in particular, we have for
t = n that =U({t..... tw}). Le., ~U(T). Hence FUT is an explanation of
y.

Based on this theorem. we can modify the implementation of explanation
given in Figure 5 by replacing the incremental consistency chect highlighted
in the fourth clause of prove with incremental theory pruning as indicated
in Figure 12. This is correct in the sense that all resulting explanations are
viable because pruning is checked each time an assumption is introduced {in

particular, the last check is of the complete theory). It is also complete in the

190ur theorem prover is only complete in the sense that if F U T is consistent and
FUT g then FUT F g. In this case, we require the extra condition that ~U(T) inplies
consistent( F U T).
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sense that no viable explanations are lost when a partially constructed theory
is pruned because all theories containing a pruned subtheory are non-viable

by Theorem 9.

prove(Goal,Ancestors,InTheory, [GoallInTheory]) :-
hypothesis(Goal),
not ( member(PreviousHypothesis,InTheory),
Goal == PreviousHypothesis ),

not( prune([Goal|InTheory]) ).

Figure 12: Explain with Incremental Pruning in Prolog

A similar result holds for incremental theory preference.

Definition 10 (MONOTONIC PREFERENCE CRITERION)
A preference eriterion P (which induces the partial order >% on the possi-
ble theories determined by the pruning criterion U) is monotonic iff for all

possible theories Ty and T, we have
Tl CT), - Tl ZP Tz-

Note that subset preference (i.e.. when >% is C) underlies all monotonic

preference criteria.

Theorem 11 (INCREMENTAL THEORY PREFERENCE)
If P is a monotonic preference criterion and if T = {t,.....t,} is a set of

ground instances of elements of H then FUT is a preferred explanation of ¢

61



iff there is a ground proof of g from F U T such that there is no explanation

FuT' of gy where T' ST {#..... 1} foranv i€ (1..... n.

Proof: If FUT is a preferred explanation of ¢ then FUT | ¢ and there is
no explanation FUT’ of g where 1" >7 T By the completeriess of F we have
FUTF g. So there is a ground proof of ¢ from F'U T. Now suppose there
is an explanation FUT' of g where T >7 {t,.....1,} for some i € (1..... n)
then since {t;.....t;} C T we have T" >T T by the monotonicity of P. This
contradicts that there is no such explanation F U T’ of ¢ where 7" >7 T,

Hence ihere is no explanation F U T" of g where T7 >% {1,..... {,; for any

If there is a ground proof of g from FUT then FUT |= ¢ by the soundness
of F. Since every explanation F U T of g is such that T" #7 {t..... t} for
all i € (1..... n). in particular, we have for i = n that 7' 7 T Henee FOT

is a preferred explanation of ¢. ®

As with the pruning criterion. we can implement incremental theory pref-
erence if the preference criterion is monotonic. but there is an important dif-
ference. In the case of prusisg, Theorem 9 indicates that the ground proof
said to exist has the property that. at every stage of partial completion. the
associated partial theory is viable. The condition refers only to the partial
theories involved. In the case of preference, however. the condition in The-

orem 11 involves. not only the partial theories. but all other theories no



other theory is strictly preferred over the partial theories. Having to check
the partial theories against all other theories defeats the purpose of incre-
mental compitation - we might as well generate all explanations and thcu
seleet the best theories,

Nevertheless. we can still make use of this result. In Figure 13. we again
modify the highlighted part of the fourth clause of prove. The predicate
preferred ensures that there is no member of a predesignated set of theories
CurrentBest that is strictly preferred over the partial theory. The result 1s
that the explanation procedure will now generate only theories that are at

least. as preferred as the ones designated by the predicate currentBest.

prove(Goal,Ancestors,InTheory,[GoallInTheory]) i
Lypothesis(Goal),
not ( member (PreviousHypothesis,InTheory),
Goal == PreviousHypothesis ),

preferred([Goal|InTheory]).
viable([Goal|InTheory]).

preferred([Goal|InTheoryl) :-
currentBest (CurrentBest),
not( member (SomeTheory,CurrentBest),
strictly_prefer(SomeTheory, [GoallinTheoryl) ).

Figure 13: Explain with Incremental Preference in Prolog

We can now take this procedure and embed it in a depth-first iterative
deepening search procedure. Each time the procedure produces an explana-

tion. the CurrentBest list is revised (some theories may be dropped). Upon
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termination. CurrentBest contains all of the maximally preferred viable the-
ories.

As an example of the utility of this procedure. consider the following:

F={f&g&h-k
a& b —k,
a — f.
h&c—ag

Liolp = Licpe oo il = 10 = i }

H={ab.c}

Suppose we take the pruning criterion to be consistency and Ve prefer-
ence criterion to be subset preference. There are two viable theories explain-
ing k: Ty = {a. b.c}and T2 = {{a. b }. Theory Ty is strictly preferred over
theory Ty because it is a proper subset. Note that computing all viable the-
ories involves the arbitrarily expensive proof of h. This means that finding
all preferred viable theories by first finding all viable theories is arbitrarily
expensive.

Our procedure. however. finds the best theory in two iterations while
visiting only 12 nodes (4 at depth 1 and ¥ at depth 2). After the first
iteration, a proof of k from the theory T3 is found and it becomes the current
best theory. On the second iteration. we encounter ¢ in the sub-proof of

g having previously assumed ¢ and b. At this point. the sub-proof of g is



abandoned because the enrrent best theory is strictly preferred to the partial
theory { a. b. ¢ }. Since there were no branches cutoff by depth considerations
during this iteration. the procedure halts with the current best theory To.

The incremental pruning and preference theorems only guarantee the cor-
rectness of the given implementations when the pruning and preference cri-
teria are monotonic. Unfortunately. not all of the pruning and preference
criteria we are interested in are monotonic. For instance, in section 3.2 it
was mentioned that we may want our communication conventions to be rel-
ative to the facts plus any conjectures we make. Pruning criteria for such
conventions will be nonmonotonic because conjectures might enable conflicts
hetween conventions. It can happen that a convention that was unblocked
when we assumned it becomes blocked when later assuming a conjecture.

There are at least three strategies that can be used to deal with nonmono-
tonic pruning and preference criteria. First, we could delay checking some
hypotheses. For instance, we could incrementally check conjectures and de-
lay checking conventions until we reach a point where no further conjectures
will be assumed. Some versions of Prolog use such a delaying strategy to
deal with unbound variables in negation [54]. Poole uses a similar technique
to deal with unbound variables in consistency checking [67].

Second, we could recheck some hypotheses. For instance, every time we
add a conjecture, we could recheck all the conventions in the current theory

to see if any previously unblocked conventions have become blocked.



Third, we can vary the size of the checking increment. For instance,
when considering adding a convention, if we find it is currently blocked.
we could consider adding in conjectures to unblock the convention. 1T..
effect of this is that a pruning criterion that is nonmonotonic for single steps
becomes monotonic between variable sized steps. We call such pruning and
preference criteria stratified monotonic criteria. This veflects that the praning
criteria can be divided into multiple layers. The bottom layer consists of a
monotonic criterion, e.g., we might consider only whether hypotheses are
consistent conjectures. The criterion at the next layer becomes monotonic
once the bottom layer is fixed. e.g.. if no more conjectures are considered,
the critericn for conventions becomes monotonic.

So far we have only considered explanation implementation issues. When
prediction was described earlier. it was in terms of the consequences of all
maximal theories. This definition of prediction presupposes a particular in-
terpretation of defaults, nainely. credulous defaults. In the reniainder of this
dissertation, a different interpretation of defauits is developed. As will be
seen. under this interpretation, prediction becomes simply corjecture-free

explanation.

tHt



3.4 Conclusion

This chapter has presented an extension to Theorist called Meta-Theorist.
s eta-Theorist angments Theorist with a meta-level in which theory pruning
and theary preference may be specified. Consequently. Meta-Theorist is ca-
pable of a broader range of representation and reasoning than Theorist. For
instance. Meta-Theorist can reason about preferred explanatic .5 while The-
orist is limited to consistent explanations. Meta-Theorist is a general tool
for conimon sense reasoning. The meta-leve! allows specification of theory
pruning and theory preference in first order logic. This has the advantage of
expressiveness but the disadvantage of providing the user ‘th little guidance
and being compntationally expensive  llowever. Meta-Theor.  was devel-
oped simpls to allow experimentation with vartous pruni,.; and preference

criteria = . dequate for this task.



Cl..gver 4

F1,babilistic Knowiedge and

Inference

I has been argued that the natvre ~7 such of our knowledge of the world
and much of our reasoning is [)['()l)ai),il;sli(-. and therefore. prolal ilistic knowl-
edge and inference is a crucial component of the knowledge representation
and reasoning problem in Al (e.g.. [531'}. This chapter discusses probabilistic
knowledge and inference: in particular. tiie combined probability logic devel-
oped by Bacchus[3] and Halpern [15] is examined.! A fundamental problensin
probabilistic inference—the reference class problem- -is also described. This
chapter provides the necessary background for the next chapter where we

consider the reference class problem more closely.

IExcept where noted, mention of Bacchus’s work in this chapter refers to [3].
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4.1 Frobabilities

Like logic. probabil” ies have heen intensely studied. Simple axiomatizations.
e (31 are well Lnderstood and generally accepted. Yet much debate re-
ains over the interpretation (and application) of probahilities. The ax-ma-
tization of probabilities restricts the pussible interpretations to satis{y certain
properties, but the axiomatiza. ion does not pick out a unique interpretation.
nor does the axion:atization interpret itself.

Three main interpretations oi pro!abitities have heen proposed. the em-
pirical. the logical. and the subjes 1 pew Lhe empirical interpretation
views probability statements as «tatistical claims about the domain  These
claims. have an objective truth vaiue that depends only ou the state of the
domain and not on any hody ' evidence or on any agen:’s beliefs. The logical
interpretation takes probabilities to be a predetermined logical relation be-
(ween an assertion and a body of evidence. In the subjective interpretation.
probabilities are understood as the degrees of belief of some agent at some
time. These degrees of belief may repr- =7t opinions that are not necessarily
groundesd i reality.

Carnap [5] has suggested the need for two distinct kinds of probabilities
(this view was recently adopted for Al by Bacchus and Halpern (3, 19].). One
kind of probability is needed for empirical knowledge anu another is needed

for beliefs. Consider the following two statements:
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Birds probably fy.

Tw oty (a particular bird) probably thes.

Bicctin - has shown that straightforw. ol 2 poo-oaches to representing the al-we
two statements in a single probability interpretation run into ditlicnlities,

For example. if we interpret probabilities empirically. the first statement
is true in the domain if most of the individuals in the domain that are birds
also fly. But the second statement preseuts a problem since Tweety is a
particular individual in the domain who either flies or doesn’t fly. That s,
the probability that Tweety flies under the empirical interpretation is either
zero or one. The empirical interpretation does not capture the distinetion
hetween "Tweety probably flies™ and ~Twesiy es”

[finstead we interpret probabilities subjectively.say with a possible worii
semantics such as [36]. Bacchi. has shown that straightforward approaches
to representing the first statement do not work. lor instance. attaching a

high probability to the statement
VX.bird(X) - £1y(X)

is inadequate since this means that all birds fly in most possible worlds rather
than most birds fly in all possible worlds. This distinction is important since
the latter allows for the possibility of there being at least one non-flying bird
in every possible world while the former rules this out.

The work Bacchus [3] and Halpern [19] has yielded a combined probability



logic capable of representing and reasoning with these two kinds of proba-
Lilities. Tn the next two sections. we discuss (empirical) probabilities on the
domain and (subjective) probabilities on possible worlds. Bacchus refers to
these two tvpes of probabilities as statistical and propositional probabilities

respectively.

4.% Statistical Probabilities

AMueh of our knowledge is essentially statistical knowledge. Statistical prob-
abilities are probabilities defined over sets ot individuals. They make a claim
about the domain which is either true or false. Statistical knowledge is
empirically verifiable, though in pruciice. verifizhility is limited by our ob-
servational powers.

Fxamples of statistical probabilities are: the probability that birds fly.
the probability that elephants like zookeepers, the probability that aaults
are employed.

Bacchus develops a syntax. semantics, and proof theory for a two-sorted
first order logic containing statistical terms. The approach involves placing a
probability distribution on the domain of discourse O to assign probabilities
(o sets of individuals. Formulas with placeholder variables are used to denote
cts of individuals or vectors of individuals. Numeric terms denoting the

probability of the set of individuals defined by a formula are generated using



a variable l)in(ling statistical |)l'()})a|)ilil)' uperator, I'his aperator consists of
square brackets, subscripted by a set of placeholder variables, placed aronnd
its formula argument. For example, [bird(X)|x represents? the measure of
the set of birds. Condii.onal probabilities are introduced as a definitional
extension to the logic. The conditional probability. for instance, of Hy wiven

bird is represented as [f1y(X)[{bard(X)]x. More generally. the notation

s

RS

is used to express the measure of the set of vectors of domam objects \ that
satisfies p(.X'j given they satisfy q(.\).
Below are the statistical probability terms corresponding to the three

examples given above.
L. [fly(X)|bird(X,.

2. [likes(X.Y)jelephant(X) & zookeeper(Y)x.y).

-

3. [employed(X)adult(X)lx.

Assertions about these statistical probabilities can be made in the logic.
For instance. “More than 75% of all birds fly.” ~90% of pairs of elephants
and zookeepers are in the likes relation.” “More adults are employed than

unemployed™ correspond respectively to

2For convenielice, we use the Prolog convention of upper case variables and lower case
constauts and predicate names. The reverse convention is used Ly Bacchus.



I. (flyiX)lbird(X)jx > 0.75.
2. [likes(X.Y)|elephant(X} zookeeper(Y)|x.yy = 0.9.

3. [employed(X)ladult(X)}x > (~employed(X)|adult(X)}x.
or. cquivalently,

[employed(X)jadult(Xjjx > 0.5.

A disenssion of the formal details of Bacchus's logic is unnecessary for our

purposes; however, we give several useful lemmas. These lenimas show that

certain probability terms can be simplified or related to simpler probability

terms,

Lemma 12 { BAaccuus)

If no o, € F which appears in a A 7 is free in A then
EidA N >0 = [aldA Ny =[o]d]x
Two special cases of the above ferama are given in the following corollary.
Corollary 13 (BaccHus)
. i nor, € Fis free in A then
E[3A Nz >0 [a|3A Nz = [e]J]x
2. If o and \ share no free variables then

t= [/\]; >0— [a|,\]5 = [a];.



For instance, if [21y(X)[bird(X) & dog(Y)|ixyy > O then
[fly(X)|bird(X) & dogi(Y)xy; = [f1y(X)[bird(X)|x.y).

Lemma 14 (Baccurs)

If y does not appear free in a then

= [a]czys = [a]r

So. for example. by Lemma 14 and the definition of conditional probabil-
ity terms. we have [fly(X)|bird(X)jxyy = [f1ly(X)[b1rd(X)]x.

Lemma 15 (Baccuuvs)

EVEi =) = [oldANz=]a" 1]z

Lemma 16 (Baccnv

= Vi (a = A) = [M3]r > [old)-

The following two lemmas (and. more specifically. Lemma 39 in Chap-
ter 6) are useful for the kind of reasoning involved in cases such as the

Elephants and Zookeepers problem (Example 6.2 in Chapter 6).
Lemma 17 (BACCHUS)

- e ol a0

— [a‘[a|,’3]; € [r.ra) A d] - € [r.r).



Lemma 18 (Baccirs)

If no ., € Fis free in the formula & then

= Vrr,. [f A&A [()'J]; € [7'1. l'g]](l_ » >0
*

— [(r’i/\b A [()]J]:G . “’-2]~
{J

Lemma 19 (Baccnrs)

If ov is a closed formula. i.e.. if @ has no free variables. then [a]z = 0 or L.

This final lemima shows that statistical probabilities are unsuitable for
representing propositional probabilities. For instance. [fly(tweety)]z = 0 or

l.

4.3 Propositional Probabilities

Propositional probabilities are assertions about the subjective state of an
agent’s beliefs. They express an agent’s degree of belief in some proposition.
The agent to which reference is being made is left implicit so. for instance.
the degree of belief in some proposition is understood to mean that partic-
ular agent's degree of belief in that proposition. Both the assertion that a
particular agent holds a particular degree of belief in some proposition and
the proposition itself are objectively true or false, but the agent’s degree of
belief in some proposition is not. For example, even though the world is

in fact not flat, voung Randy. from Melville Saskatchewan may believe that



Tt

s flat. So his degree of belief in the propiett-m “the ecarth is fha™ is 1
Propositional probabilities may be unconnected 1o the domain, vet such o
connection is desirable as is discussed in the next section,

Examples of propositional probabilities are: the probahility of the propo.
sition “Tweety flies™ given “Teeety is a bird.”™ the probability of the proposi-
tion "Clvde likes Tony™ given “Clyde is an elephant and Tony is a zookeeper.”
the prohability of the proposition "Randy is emploved™ given “Randy is an
adult.”

Halpern [19] has developed a probability logic that combines Bacchus's
statistical logic with propositional probabilities. This logic includes a propo-
sitional probability operator that maps formulas to the probability of the set
of possible worlds satisfving the formula  The syntax prob(«) denotes the
propositional probability of tie formula a, .. .. the probability of the set of
worlds satisfving a. Coadition-} nr babilities are introduced by defintional

extension of the logic. The notation

prob(p(@)|q(@))

is used to express the propositional probability that a particular vector of
domain objects @ satisfies p given that it satisfies q. Another definitional

extension is an abbreviation for probability one.
cert(a) =4 prob(a) = 1.

Propositional probability terms corresponding to the three examples given



ahove are
I prob(fly(tweety)|bird(tweety)).
2. prob(likes(clyde.tony)lelephant(clyde) & zookeeper(tony)).

3. prob(employed(randy)ladult(randy)).

Assertions about these propositional probabiiities can be made in the logic.
For instance. the probability of the proposition “Tweety flies™ given “Tweety
is a bird™ is more than 75%. the probability of the proposition “Clvde likes
Tony™ given "Clyde is an elephant and Tony i« a zookeeper™ is YUY . the
probability of the proposition ~Randy is employed” grven "Randy is an adult”
is greater than the probability of the proposition “Randy is unemployed”

given “Randy is an adult” coi respond respectively ¢e
l. prob(fly(tweety)\bird(tweety)) > 0.75,

2 g"rob(likes(clyde.tony)lelephant(clyde) & zookeeper(tony))

= 0.9,

3. prob(employed(randy)ladult(randy))
> p(ob(-empl ¢ yed(randy)|adult( randy)),
or, equivalently,

prob (employed( randy)|adult(randy )) > 0.5.



Bacchus argues that propositional probabilities are inadegnate for repre
senting statistical probabilities. Though there are technical wavs of repre-
senting these. the obvious schemes do not work. For example, representing

“More than 75% of all birds tly™ asx a high probability universal, i.e.
prob(V¥X.bird(X) — £1y(X)) > 0.75

precludes assigning a high probability to there being a non-Hying bird since
in every possible world where there is a non-fiying bird. the universal is false.

This is clearly seen in the equality
prob (¥X.bird(X) — £1y(X)) = 1 - prob(3X.bird(X) & ~f1y(X)).
Another possibility is to represent the statistical probability as
VX.prob(bird(Xj) > 0 — prob(£1y(X)[bird(X)) > 0.75.

This is also inadequate because it precludes believing there is that a partic-
ular bird than does not fly. For instance, the above assertion is inconsistent

with

prob(bird(opus)) >0— cert(ﬂfly(opus)|bird(opus)).

Because both statistical and propositional probabilities are needed for
representing and reasoning about our probabilistic knowledge, Bacchus comn-
bines the two kinds of probabilities in one logic. This logic is capable of

expressing assertions with both kinds of probabilities and reasoning about



their valid consequences. But because the probability distribution over the
domain does not restrict the probability distribution over the possible worlds,
the two kinds of probabilities are unconnected. The nexi section examines

the problem of establishing a connection between statistical and propositional

probebilities.

4.4 Direct Inference

“The issue of empirical foundations for probabilities used as de-
grees of belief has beep largely ignored in Al Proponents of prob-
abilities have always been quick to claim that probabilities are
empirically founded, referring to statistical probabilities. Unfor-
tunately they often continue on to claim that propositional prob-
abilities have the same advantage, without paying due attention
(o the serious problems inve!“ed in connecting propositional prob-

abilities with empirical observations.” {3, p. 141]

If propositional probabilities are not emf)irically founded, where do they
come from and Low can we judge whether they are rational? If they are
empirically founded. then how?

As Bacchus has noted. a connection is made between propositional prob-
abilities and statistical probabilities in actuarial situations. The rate quoted

for a particular person’s life insurance is based on assuming the propositional



probability of the person’s dying (say. this year) given various things that
are known about the person. such as age and occupation. is equal to the
proportion of deaths (statistical probability) among the group of individuals
having these properties.

In philosophy, the inference of propositional probabilities from statistical
probabilities is an idea going back at least to Reichenbach [74]. He suggested
that single ¢ -<e probabilities (propositional) should be determined by con-
sulting the statistical probabilities for the narrowest class to which the single
case belongs ...~ "or which there are “adequate statistics.”

For ingirne we infer that the propositional probability that the bird
Tweety flies is equal to the statistical probability that birds fly provided we
know this statistic and we do not know the statistical probability of flying
for any smaller class to which Tweety belongs. If Tweety was also known
to be yellow then yellow birds is a smaller class to which Tweety is known
to belong. Reichenbach’s principle still allows us to infer the propositional
probability of Tweety flying from the statistical probability of birds flying
since we have no statistics for yellow birds. This amounts to assuming that
yellowness is irrelevant to Tweety’s flying abilities.

Inferring propositional probabilities from statistical probabilitics is called
direct inference [61]. This inference depends on choosing a reference cluss
which contains the single case. The reference cluss problem is the problem of

choosing the appropriate class from which to perform direct inference [35]. A

N



number of techniques or policies for making this choice have been proposed,
e.g., [34, 39, 35, 60, 61, 3].

Bacchus defines a direct inference principle in his combined probability
logic to connect statistical and propositional probabilities. He starts by as-
suming that an agent expresses assertions about his environment in a fixed
statistical language £**'. Assertions in L£*** are called objective assertions.
The agent's degree of belief in the objective assertions are represented in
another language £°™ which extends £** with the propositional probabil-
ity operator prob and an expectation operator E. (The expectation operator
maps terms to their expected value, i.e., the weighed average of their value
across possible worlds.) Formulas of £eomb that are also in £ are called
objective formulas. The agent’s knowledge base KB is a finite collection of
objective formulas. KB represents the agent’s full beliefs, i.e., cert(KB). The
propositional probabilities are determined by direct inference from KB. Ex-
ample 4.1 illustrates direct irference in Bacchus’s logic.

The following lemma summarizes many useful properties of the expecta-

tion operator.

Lemma 20 (PROPERTIES OF THE EXPECTATION TERMS (BAccHUS))

1. If t is rigid,® then E(t) = ¢.

3Rigid terms are terms whose denotation is invariant across possible worlds, e.g., nu-
meric constants.



10.

11.

cert(t = t') — E(t) = E(t').

cert(t < t') — E(t) < E(t).

. cert(t > ') — E(t) > E(t').

cert(t < ') — E(t) < E(t').

cert(t > t') — E(t) > E(').

E(t) = 0 = cert(t = 0).

E(t) = 1 = cert(t = 1).

E(t +t) = E(t) + E(¢').

If r is rigid, then E(r x t) = 7 x E(t).

If r is rigid, then E(t/r) = E(t)/r.

Prior to formally defining direct inference, the concept of randomization

must be defined.

Definition 21 (RANDOMIZATION (BACCHUS))

Let & be a formula of £*2¢. If {c1,. .., cs) are the n distinct object constants

that appear in « AKB and (v1,...,v,) are n distinct object variables that do

1ot oceur in a AKB, then let KBY (V) denote the new formula which results

from textually substituting c; by v; in KB (a), for all 2.

Now we can give the definition of direct inference which links the two

kinds of probabilities.



Definition 22 (DIRECT INFERENCE PRINCIPLE (BACCHUS))
If o is a formula of £ and if KB is the complete set of objective formulas
that the agent fully believes, then the agent’s degree of belief in a should be

determined by the equality
prob(a) = E([o" [KB"];).
The agent must also fully believe that [KBV]; > 0, i.e., cert([KB"]g > 0).

The above definition leads to the property that an agent fully believes
all the consequences of his full beliefs. This logical omniscience property is

controversial (e.g., [10]).

Theorem 23 (BACCHUS)

prob(a) = 1 is a logical consequence of the direct inference principle if and

only if KB = a.

The theory generated by the direct inference principle is formally defined

as follows:

Definition 24 (THE THEORY To (BACCHUS))

Let Do be a set of formulas of L£eomb consisting of the formula cert({KB"]g
> 0) along with all instances of the direct inference principle. That is, for all
objective formulas a, i.e., a € £**, Do will contain the formula prob(a) =

E([aVIKB"]g). Let T, denote the closure of Dy under logical consequence.
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Let
KB = bird(tweety) & [fly(X)[bird(X)]x > ¢,

where ¢ is a rigid numeric constant that is strictly greater than
0.5. Then we have the following proof:

prob(fly(tweety))
= E([rry(v)|pira(v) & [Fy(X)[bird(X)h > c|,) Def. 22
cert([fly(V)lbird(V) & [f1y(X)[bird(X)k > c]v

= [£1y(V)[bird(V)}y) Cor. 13
E([fly (v Ibird ) & [£ly(X)|bird(X))x > C]v)
= E([£1y(V)bird(V)}y ) Lem. 20.2
prob (fly(tweety)) = E({fly ){bird(V) ]v)
cert([fly )bizd(V)}y > c) Thm. 23
E([£1y(V) v)[bird(V)ly) > E(c) Lem. 20.4
E(c)=c Lem. 20.1

prob (fly(tweety)) >c

Example 4.1: Tweety flies (Bacchus)

34



4.5 Inadequate Statistics (Reference Class Problem)

The direct inference principle in Bacchus’s combined probability logic takes
into account all that is known about the individuals in the formula to which
it is applied. It uses the narrowest reference class—a reference class which

may be so narrow that we have no useful statistics about it.

SKB4.2:

[£1y(X)|bird(X)]x = 0.75,
[£1y(X)|antarctic(X) & bird(X))x = 0.2,
black(opus) & antarctic(opus) & bird(opus)

Example 4.2: Black Antarctic Birds

Suppose the agent’s statistical KB is the the conjunction of the formulas
listed in SKB4.2 (Example 4.2). Using Bacchus’s direct inference principle

we have Ty contains

prob(fly(opus))
= E([f1y(V)Iblack(V) & antarctic(V) & bird(V)ly).

Since no useful information about the expected value for black antarctic birds

can be derived from SKB4.2, T; only entails
0< prob(fly(opus)) <1,

The direct inference principle tells us nothing useful in this case.
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Since the statistics for black antarctic birds are “inadequate,” we should,
according to Reichenbach’s principle, turn to the wider reference class of
antarctic birds for which SKB4.2 does entail useful information about the
expected value. This amounts to assuming the irrelevance of blackness to
the flying ability of antarctic birds.

Bacchus provides a mechanism for moving to the wider reference class.

The next section discusses this mechanism.

4.6 Expectation Independence Assumptions

Conditioniig on the entire knowledge base amounts to using the narrowest
possible reference class. This reference class may be so narrow that we have
no useful statistical information about it. To deal with this problem of overly
specific reference classes, Bacchus provides a mechanism which allows the
nonmonotonic inheritance of statistical information from superclasses. These
assumptions are added to Ty (Definition 24) which is the base theory resulting
from direct inference.

The general form of these assumptions is
cert(YU.KBY — §) — E([QIKBV];,') = E([alﬂ]g).

These ezpectation independence assumptions are weaker than the correspond-

ing statistical independence assumptions:

cert(V5.KBY — ) — cert([a|KB"]a = [alﬁ]g).



Bacchus justifies the use of the weaker expectation independence assumptions
by illustrating the unit reference class problem (see (3, p. 1452}).
The mechanism allows, for instance in Example 4.2, moving to the wider
reference class of antarctic birds by the nonmonotonic assumption
E([£1y(V)[black(V) & antarctic(V) & bird(V)}y)
= E([fly (V)|antarctic(V) & bird(V ]v)

from which we could derive
prob(fly(opus)) =0.2.

The same mechanism allows moving to the wider reference class of birds by
the assumption

E([£1y(V)[black(V) & antarctic(V) & bird(V)ly)

= E([£1y(V)Ibird(V)}y)
from which we could derive

prob (fly(opus)) = 0.75.

The expectation independence assumptions permitted by Bacchus are

determined by the following:

Definition 25 (NONMONOTONIC ASSUMPTIONS (BACCHUS))

If cert(VU.KBY — B) € Tp, then
E((alkB"]s) = E([al8]s)

is a legitimate nonmonotonic assumption.



The above definition gives rise to multiple possible extensions to the base

theory To. These are formally described by the following definition.

Definition 26 (NONMONOTONIC THEORIES (BACCHUS))
Let T, be the closure under logical consequence of Ty U D;, where D; is the

i-th finite set of default assumptions. That is, T; = {a:ToUDi = al.

Some of the nonmonotonic theories may be inconsistent as indicated in

the following definition.

Definition 27 (CONTRADICTED THEORIES (BAccHUs))

A theory T, contradicts a theory T; if there exists a formula a such that

a €T, and ~a €T;.

The following two definition characterize preferred assumptions and pre-

ferred theories.

Definition 28 (PREFERRED NONMONOTONIC ASSUMPTIONS (BaccHus))

The nonmonotonic assumption
E([lke"]5) = E([«l81]s)
is preferred to the nonmonotonic assumption

E([aK"]5) = E([alfils)-
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if cert(Vi.3, — 3;) € To. That is, we prefer to inherit expectations from

known narrower classes.

Definition 29 (PREFERRED THEORIES (BACCHUS))
The theory T; is preferred to the theory T, if for every default assumption
d € D;, there exists a default assumption d' € D, such that d is preferred to

d'.

Only some of the theories are considered viable descriptions of an agent’s

beliefs. These theories are determined by the following definition.

Definition 30 (VIABLE THEORIES (BACCHUS))

T is a viable if it is not contradicted by any preferred theory.

Bacchus's preference ordering on theories captures the preference for in-
heriting statistical information from narrower reference classes. Returning
to Example 4.2, because antarctic birds are a subset of birds, the theory T)
based on the first assumption is preferred to the theory T; based on the second
assumption (by Definition 29). Furthermore, by Definition 27, T3 is contra-
dicted by T since the two theories disagree on the value of prob(fly( opus)).
Therefore T; is not a viable theory by Definition 30. Both Tp and T are
viable theories for describing the agent’s beliefs. Bacchus’s formalism does

not uniquely determine the agent’s theory.
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Bacchus argues (as does Konolige and Myers [32]) that domain indepen-

dent determination of a unique theory is too much to expect. However,

Bacchus claims:

“What a default reasoning system should provide is the ability
[to] generate the obvious, uncontroversial theories, and equally

important, it should eliminate obviously incorrect theories.” (3,

p. 168]

in the next chapter, it is argued that Bacchus’s formalism does not go
far enough in eliminating obviously incorrect theories and a novel reference

class selection policy based on averaging is proposed.



Chapter 5

Reference Class Selection

“If we are asked to find the probability holding for an individual
future event, we must first incorporate the case in a suitable ref-
erence class. An individual thing or event may be incorporated in
many reference classes from which different probabilities will re-
sult. This ambiguity has been called the problem of the reference
class.” [74, p. 375)

This chapter examines a fundamental problem in probabilistic inference—
the reference class problem [35|—within the context of the combined prob-
ability logic developed by Bacchus [2, 3] and Halpern [19]. We begin by
considering the reference class selection policy in Bacchus’s formalism. This
leads to the claim that Bacchus’s viable theories are too liberal in some cases
and too conservative in others. The difficulty lies in the “expectation in-
dependence” assumptions allowed in his formalism—the culprit being the

restriction to downward inheritance of statistics.

To illustrate, suppose we know most vaccinated people acquire immu-
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nity, Lt blonde vaccinated children do not acquire ymmunity. As we argue
in section 5.1, this situation is ambiguous w.r.t. vaccinated children acquir-
ing immunity because the class vaccinated children is wedged between the
conflicting classes vaccinated people and blonde vaccinated children. But
Bacchus's inheritance mechanism does not consider the upwards influence
of statistics for blonde vaccinated children with the consequence that most
vaccinated children are presumed to acquire immunity.

We propose an alternative reference class selection policy in which the
probability of a proposition concerning a particular individual is inferred
from the corresponding statistic within the unique reference class of indi-
viduals that are KB-indistinguishable! from the particular individual. This
statistic is in turn inferred from the average value of the statistic over all
sets of individuals that are KB-indistinguishable from the reference class. We
will show how this randomizing? of individuals and sets (relations) solves
problems involving conflicting sources of statistical knowledge that present
difficulties for many other approaches.

Two advantages of this policy are that a unique reference class is always

determined and that confining the “magic” to randomization reduces the

UIf in every interpretation that satisfies KB, exchanging two individuals i, and iz pro-
duces another interpretation that satisfies KB, then #; and i, are KB-indistinguishable.

?Kyburg has pointed out the potential circularity suggested in the term randomization.
Perhaps meanification or averagifying or even variablizing would be more appropriate

terms.
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determination of relevant statistics to a straightforward application of sta-
tistical principles. Randomization involves "magic” in the sense that there
is no empirical or logical basis for assuming, in absence of evidence to the

contrary, that a particular case is a average member of a set of similar cases.

“To transform the absence of a reason into a positive reason rep-
resents a feat of oratorical art that is worthy of an attorney for
the defense but is not permissible in the court of logic.” [74, p.
354]

Trying to justify randomization empirically or logically is futile. Instead, we
can view it as inducing a falsifiable scientific theory upon which to provision-

ally base our beliefs.

“So it is a profound mistake to try to do what scientists and
philosophers have almost always tried to do, namely prove the
truth of a theory, or justify our belief in a theory, since this is
to attempt the logically impossible. What we can do, however,
and this is of the highest possible importance, is to justify our
preference for one theory over another. If we are rational we
shall always base our decisions and expectations on ‘the best of
our knowledge’ ...and provisionally assume the ‘truth’ of that
knowledge for practical purposes, because it is the least insecure
foundation available; but we shall never lose sight of the fact that
at any time experience may show it to be wrong and require us
to revise it.” [44, p. 26-27]

The implication is that, while our proposed reference class selection policy
cannot be justified empirically or logically, we can justify the preference for
it over other policies. The merit of our reference class selection policy is
indicated by coraparing the empirical results in section 6.4 with those of its

competitors.
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Our reference class selection policy is not without its shortcomings how-
ever. As will be seen, the policy is related to the maximum entropy principle
(28], and shares the problem of computation—there is no known way to
compute it in general. While this is inconvenient for practical purposes, the
policy is nevertheless useful as a specification of the desired properties of our
inferences and can be computed in restricted settings.

In the next chapter, the reference class selection policy developed in this

chapter is used in the specification of defaults in Meta-Theorist.

5.1 Problems Inheriting Statistics

“The fact that many properties in the most specific reference
class are irrelevant is the intuitive basis for allowing the inheri-
tance of expected statistics, and the default assumptions enable
this kind of inheritance. The preference criterion captures the
1atural constraint that we should try to retain as much informa-
ticn as possible; i.e., we should use the narrowest reference class

possible.” [3, p. 167]

In Bacchus’s reference class selection policy, assumed irrelevance allows mov-
ing to a wider reference class while specificity (known relevance) constrains
the widening. For instance, the assumed irrelevance® of blackness in Exam-
ple 4.2 allowed moving from To to Ty while the specificity of the antarctic

bird statistics in comparison to the bird statistics disallowed moving to T>.

3The actual assumption is about “expectation independence” rather than statistical
independence.
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In addition to the specificity constraint, Definition 25 restricts inheritance
of expected statistics to downward inheritance from known supersets. These
two constraints are the key determinants of viable reference classes (with
corresponding viable theories) in Bacchus’s formalism. In this section, two
examples illustrate that Bacchus’s reference class selection policy fails to
sanction certain intuitive theories and fails to prohibit certain overly pre-
sumptuous theories. This informal discussion is put on firmer footing in the
next section.

Consider the Black Bird Problem in Example 5.1. Here we have that

SKB5.1:

bird(tweety),
black(opus) & bird(opus),

And either (a):
[£1y(X)[bizd(X)]x = 0.75;
or else (b):
[f1y(X)black(X) & bird(X)]x = 0.75.

Example 5.1: The Black Bird Problem

Tweety is a bird and Opus is a black bird. If, as in SKB5.1a, it was also

believed that 75% of birds fly then there would be a viable theory containing

E([£1y(v)[black(V) & bird(V)ly) = E([£1y(V)[bird(V)]y)
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and this entails

prob (fly(opus)) = 0.75.

That is, the Definition 25 permits the downward inheritance of the expected
statistics of flying for birds to black birds via the assumed expectation inde-
pendence of blackness w.r.t. flying given bird. Yet, if instead, as in SKB5.1b,

it was believed that 75% of black birds fly then there is no viable theory

containing
E([£1y(v)[black(V) & bird(V)ly) = E([fly(V)lbird(V)]v)

and so

prob (fly(tweety)) =0.75

is not concluded. Definition 25 prohibits the upward inheritance of the ex-
pected statistics of flying for black birds to birds, i.e., the expectation in-
dependence of blackness w.r.t. flying given bird cannot be assumed. This
is peculiar—if blackness is expectation independent of flying given bird then
knowing the flying statistic for either bird or black bird determines the statis-
tic for the other—there seems to be no intuitive justification for this prohi-
bition of upward inheritance.

Failing to draw intuitive conclusions is a problem, but a more serious
problem is drawing counterintuitive conclusions. Consider the Vaccinated

Child Problem in Example 5.2. Here we have that vaccinated people probably
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SKB5.2:

[immune(X)|vaccinated(X)}x = 0.75,

VX.(blonde(X) & vaccinated child(X)) — —immune(X),
VX.vaccinated child(X) — —immune(X),
vaccinated.child(mary).

Example 5.2: The Vaccinated Child Problem

acquire immunity (0.75), blonde vaccinated children do not acquire immunity,
and Mary is a vaccinated child.

By direct inference we have that Ty contains
prob(immune(mary)) = E([immune(V)Ivaccinated_child(v)]v).

This tells us nothing useful since the reference class vaccinated child is overly
specific (i.e., we have no statistic for immune given vaccinated child).

We could, however, infer
prob(immune(mary)) =0.75
from the viable theory T} in which we assume
E([immune(V)Ivaccinated_child(V)]v) = E([immune(V)|vaccinated(V)]v).
That is, by To, which is contained in T,

prob(immune(mary)) = E([immune(V)|vaccinated_child(V)]v)
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and by T'1,
E([immune(V)Ivaccinated,child(V)]v) = E([immune(V)|vaccinated(V)]v)
and from the KB (and properties of E) we know
E([immune(V).]vaccinated(v)]v) = 0.75
so we have
prob(immune(mary)) = 0.75.

We also have that T, contains
prob(blonde(mary)) <0.25

as shown in the proof sketch in Figure 14.

Notice that the expectation independence assumption has the conse-

quence that
E([blonde(V)Ivaccinated_child(v)]v) < 0.25.

This constraint on the expected proportion of blonde vaccinated children
among vaccinated children seems unwarranted—since most vaccinated people
acquire immunity, vaccinated children are vaccinated people, and blonde vac-
cinated children do not acquire immunity implies either most vaccinated chil-
dren are not blonde or most vaccinated people are not vaccinated children—
as the proof sketch in Figure 15 shows. Making the expectation independence

assumption has the effect of choosing the first of the two disjuncts.
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E([immune(V)|vaccinated.chi1d(V)]v)

= E([immune(V)|vaccinated(V)]v)
E([immune(v)|vaccinated(v)]v) =0.75
E([immune(V)|vaccinated.child(V)]v) =0.75
E([ﬂimmune(V)Ivaccinated.child(V)]v) =0.25
cert([blonde(V)|vaccinated_chi1d(V)]v

< [—vimmune(V)|vaccinated.chi1d(V)]v)
E([blonde(V)|vaccinated_child(V)]v)

< E([ﬂimmune(V)Ivaccinated_child(V)]v)
E([blonde(V)|vaccinated_child(V)]v) <0.25
prob (blonde(mary))

= E([blonde(V)|vaccinated_chi1d(V)]v)
prob (blonde(mary)) <0.25

Def. 25

Lem. 16

Lem. 20.5

Def. 22

Figure 14: prob(blonde(mary)) <0.25
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[immune(V)|vaccinated(V)ly = 0.75
VV.(blonde(V) & vaccinated_child(V)) — —immune(V)
[~(blonde(V) & vaccinated_child(V))|vaccinated(V)}y

> [immune(V)|vaccinated(V)}y = 0.75 Lem. 16
[blonde(V) & vaccinatedchild(V)|vaccinated(V)]y

< 0.25
[blonde(V)|vaccinatedchild(V) & vaccinated(V)]y

x [vaccinated.child(V)|vaccinated(V)]y < 0.25
[blonde(V)lvaccinated.child(V)y

x [vaccinated.child(V)|vaccinated(V)]y < 0.25 Lem. 15
[blonde(V)|vaccinated.child(V)]y < 0.25

or [vaccinated.child(V)|vaccinated(V)]y < 0.25

Figure 15: Is [blonde(V)|vaccinated.child(V)}y < 0.25?
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Another possibility is that the expected proportion with immunity among

vaccinated children is the same as the expected proportion with immunity

among blonde vaccinated children:

E ([immune(V) |vaccinated.child(V)]v)

= E([immune(V)Iblonde(V) & vaccinated_child(V)]v).

If this is the case, then the expected proportion of blonde vaccinated children
is unconstrained (Figure 16) while the expected proportion of vaccinated

children among vaccinated people is constrained (Figure 17).

cert([~blonde(V)|vaccinated-child(V)}y

> [immune(V)|vaccinated_child(V)]v) Lem. 16
E([~blonde(V)|vaccinated.child(V)}y)
> E([immune(V)|vaccinated..child(V)]v) Lem. 20.6

E([immune(V)|vaccinated_child(v)]v)
= E([immune(V)lblonde(V) & vaccinated_child(V)]v) E-assum.
E([-blonde(V)|vaccinated_child(V)]v)

> E([immune(V)|blonde(V) & vaccinated_child(V)]v)
=0
E([blonde(V)|vaccinated child(V)}y) < 1

Figure 16: E([blonde(v)Ivaccinated_child(V)]v) <1

Though there seems to be no intuitive reason to prefer one argument over
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E([immune(V)lblonde(V) & vaccinated_child(V)]v) =0
E([immune(V)|vaccinated_child(V)]v)

= E([immune(V)|blonde(V) & vaccinated_child(V)]v) E-assum.
E([immune(V)|vaccinated_child(v)]v) =0
cert([immune(V)|vaccinated_chi1d(V)]v = 0) Lem. 20.7
cert([—vvaccinated_child(V)Ivaccinated(V)]v

> [immune(V)|vaccinated(V)]v = 0.75) Lem. 16
E([vaccinated_child(V)[vaccina.ted(V)]v) <0.25

Figure 17: E([vaccinated.child(V)|vaccinated(V)]v) <0.25

the other, the latter argument is ruled out by Definition 25 which prohibits
upward inheritance of expected statistics from subsets to supersets.

An important objection to the analysis presented in this section is that
implicit linguistic information has not been considered. For instance, one
might claim that vaccinated children should inherit statistics from vacci-
nated people on the grounds that if vaccinated children were exceptional
vaccinated people with respect to immunity then we should have reported
their statistics. That is, what we do not say is as iraportant as what we
do say. This objection, however, can be safely dismissed because the sta-
tistical knowledge bases are intended to represent what is fully believed by

the agent. If there are any linguistic conventions in effect, they should be



part of the knowledge base. Yet we should bear this objection in mind when
we come across counterintuitive examples—the counterintuitiveness might
be explained by our own hidden linguistic conventions.

The two examples in this section illustrate that Bacchus's reference class
selection policy does not take upward inheritance into account. This results
in irrelevant information blocking legitimate inheritance as in Example 5.1
or relevant information failing to block illegitimate (overly presumptuous)
inheritance! as in Example 5.2. To replace the inadequate Definition 25
in Bacchus’s formalism, the next section develops a mathematical basis for
expectation independence assumptions which shows the legitimacy of upward

inheritance.

5.2 Average Subsets

The concept of the average subset is important because it is general set-
theoretic fact that the mean of all subsets of a set equals the mean of the
set (cf. [82, 33]). Inheritance between a set and a subset can be considered
legitimate if the subset is indistinguishable from the average subset (at least

w.r.t. the inherited property). This is because the expectation independence

4More precisely, Bacchus views both Tp and Ti from Example 5.1 as viable
theories and does not choose between them.  Additionally, Bacchus does not
view the theory T in which we assume E([immune(V)|vaccinated child(V)ly) =
E([immune(V)[blonde(V) & vaccinated child(V)]y) as viable. Consequently, upward in-
heritance is not considered viable while both no inheritance and downward inheritance are
considered viable.
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assumptions, which sanction inheritance, hold between a set and the average
subset. Consequently, the test for viable inheritance reduces to a test for
indistinguishability of a subset of a set and the average subset w.r.t. the
inherited property. Bear in mind, however, that the average subset is just
an abstraction and it may be the case that there is no subset with average
characteristics.

To employ the concept of average subset in testing for viable inheritance
in Bacchus’s formalism, a distinction must first be drawn between expecta-

tion over possible worlds and expectation over the possible interpretations of

predicates.

Definition 31 (WORLD EXPECTATION (BACCHUS))
The world expectation operator E applied to its operand denotes the weighted
average of the operand across the possible worlds where the weightings are

determined by the probability distribution us over possible worlds (cf. {3, p.

135]).

Bacchus’s world expectation operator applies over possible worlds. These
worlds are interpretations of predicates, terms. and constants. We now wish
to introduce a more restrictive expectation operator which applies over inter-
pretations of predicates (with a fixed interpretation of terms and constants)
and which weights each interpretation equally. A formal extension to Bac-

chus's probability logic is necessary to include this predicate interpretation
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expectation, but we do not intend to pursue this here.

Definition 32 (PREDICATE INTERPRETATION EXPECTATION)

Let the predicates of a given KB be divided (as specified in advance) into
two classes: fired and varying. Then within a given possible world, the
predicate interpretation ezpectation operator £ applied to its operand denotes
the (unweighted) average of the operand across every interpretation which
satisfies KB and which has the interpretation of the fixed predicates, terms
and constants fixed in advance (as determined by the possible world within
which £ is applied).

We indicate varying predicates by a subscript and refer to them as pred-
icate variables. We refer to fixed predicates as predicate constants. For
example, the expression £ ([alﬂ]v)ﬁ means the average of [a|B]v across the
possible interpretations of 3. (For the expectation to make sense, it must be

the case that [Gly > 0.)

As a concrete example, suppose we have a domain of only two birds:
heckle and jeckle. Suppose that heckle flies and jeckle does not. Sup-
pose there is one further individual who is not a bird: fred. From this we

have that [f1y(X)|bird(X))x = 0.5. In evaluating

5([f1Y(V)|b1aCk(V) & bird(V)]v) <black>

that is, in determining the average value of [f1ly(V)]black(V) & bird(V))y

over varying interpretations of black, we let the interpretation of black range
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over subsets of the domain that satisfy the KB. For the expected value to be
defined, we require that [black(V) & bird(V)]y > 0. There are six subsets
of the domain that satisfy the constraints. This results in three possible sets
of black birds: { heckle, jeckle }, {heckle }, and {jeckle}. The value
of [f1y(V)|black(V) & bird(V)]y for each of these interpretations is: 0.5, 1,
and 0 respectively. The expected value is the (unweighted) average of these:
0.5.

The following theorem is a restatement of the general set-theoretic fact

that the mean of all subsets of a set equals the mean of the set (cf. [82, 33)).

Theorem 33 (AVERAGED PREDICATES)

Let 3 be a predicate variable and let a and v be predica.e constants. If the

interpretation of 3 ranges over every subset of v then
£([alBly) , = lalvv.

This theorem brings us close to the (world) expectation independence

assumptions we are seeking as seen in the following theorem.

Theorem 34 (WORLD EXPECTATION FOR AVERAGED PREDICATES)
Let 3 be a predicate variable and let o and v be predicate constants. If the

interpretation of 3 ranges over every subset of ¥ then

£(£(lalBly) ) = E(E([ell),):
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Proof: Since [a]y]v is constant within each world (only the interpretation
of 3 is varied), €([a|7]v)ﬁ = [a|y]v within each world. And since 3 satisfies
the condition of Theorem 33 (in every world), £ ([al,’i]v)ﬁ = [aly]v in every

world. Consequently, cert(E ([alﬂ]v) s = £ ([ah]v) a)' Hence by Lemma 20.2,

E(£([I8l),) = E(¢([ahly),)- =

This provides a mathematical basis for upward and downward inheritance
of expected statistics. The expected statistics of a set and the average subset
of the set are equivalent. Therefore, if one set is an average subset of another,
we can inherit expected statistics from one set to the other in either direction.

In Example 5.1 from the previous section, if black bird is an average

subset of bird then

E([£1y(V)[black(V) & bird(V)]v)<black(v) v bamatris E([fly(V)lbird(V)]v)

which entails
prob(fly(tweety)) = prob (fly(opus)).

That is, the degree of belief in flying is the same for birds and black birds.
In Example 5.2, if vaccinated children is an average subset of vaccinated

people then

E([immune(V)Ivaccinated_child(v)]v)

= E([immune(V)|vaccinated(V)]V)



and if blonde vaccinated children is an average subset of vaccinated children

then

E ([immune(V)|vaccinat ed_child(V)]v)

= E([immune(V)|blonde(V) & vaccinated_child(v)]v).
It is clear that both cannot be the case since SKB 5.2 implies

[immune(V)|vaccinated(V)}y = 0.75 and

[immune(V)|blonde(V) & vaccinated.child(V)]y =0
which implies

E ([immune(V)|va.ccinated(V)]v)

# E([immune(V)Iblonde(V) & vaccinated_child(V)]v).

Although we are mathematically justified in inheriting expected statistics
between a set and an average subset, we generally do not know whether the
subsets in the knowledge base are average. We do not know, for instance,
that vaccinated children is an average subset of vaccinated people. In fact, it
seems pretty obvious that the average vaccinated person is not a child. While
the average subset is representative of the set, we do not know whether the
particular subset we happen to have is representative. This problem is anal-
ogous to the problem of the single case probability. For that problem, the
direct inference principle (Definition 22) uses the technique of randomiza-

tion. The probability for a particular case is determined by the probability
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average case. The solution to our current problem is likewise the technique

of randomization—in this case, a second order randomization.

5.3 Second Order Randomization

“The probability of an event is determined by our own state of
knowledge and ignorance. We need knowledge of the relevant
measure statements; we may ignore special characteristics of the
object or event under consideration which are not known to be
related to the property in question.” [33, p. 185]

The inheritance of statistics (in either direction) between a superset and
a subset hinges on a second order randomization assumption, i.e., the as-
sumption that as far as we know, the subset in question is an average subset
of the superset w.r.t. the inherited property.

The following definitions are only informal as they involve extending Bac-

chus’s probability logic to include predicate variables.

Definition 35 (SECOND ORDER RANDOMIZATION)

Let o be a formula of £, If {py,...,pn) are n distinct predicate symbols
appearing in a and (pvy,...,pvs) are n distinct predicate variables that do
not occur in a, then let aP¥ denote the new formula which results from

textually substituting p; by pv; in ¢, for all 1.

A preliminary Second Order Direct Inference Principle is stated in Defi-
nition 36. We first examine the properties of this definition and then discuss

a more elaborate version (Definition 37).
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Definition 36 (PRELIM. SECOND ORDER DIRECT INFERENCE PRINCIPLE)

If o is a formula of £*** and if KB is the complete set of objective formulas
that the agent fully believes, then the agent’s degrees of belief should be

determined® by the equality

prob(a) = E(g([apvl(KBV)pv]")pv)

where the predicate variables (pv1, ..., pun) range over predicate interpreta-

tions satisfying (KBY)PY. The agent must also fully believe that £ ([(KB" )p"]v) >

0, i.e., cert(é’([(KB")p"]v) > 0).

Recall that the (first order) direct inference principle (Definition 22) con-
strains degrees of belief by replacing each constant of KB with a random
designator. The result is that the properties of particular individuals are
determined by the properties of the set of similar individuals. In the same
fashion, this preliminary second order direct inference principle further con-
strains degrees of belief by replacing each predicate of KB by a predicate
variable that ranges over interpretations satisfying the KB. The result in this
case is that the (world) expectation for particular predicates is determined
by the (predicate interpretation) expectation for the set of similar predicates.

For instance, suppose all we know is that most vaccinated people acquire

5This definition subsumes First Order Direct Inference.
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immunity, and vaccinated children are vaccinated people, and Mary is a

vaccinated child as in Example 5.3. We can use (preliminary) second order

SKB5.3:

[immune(X)|vaccinated(X)]x = 0.75,
VX.vaccinated_child(X) — vaccinated(X).
vaccinated_child(mary).

Example 5.3: Second Order Randomization

direct inference to determine the degree of belief in Mary acquiring immunity

(for R = <immune,vaccinated,vaccinated child>).

prob(immune(mary))
= E(E([immune(V)|vaccinated_chi1d(v) &
[immune(X)|vaccinated(X)]x = 0.75 &

VX.vaccinated_child(X) — vaccinated(x)]v)n) Def. 37

E( ([1mmune )|[vaccinated child( V)]v) ) Cor. 13
= E( ([1mmune(V)|vacc1nated(V)]v) ) Thm. 34
= E( immune(V)|vaccinated( V)]v)

0.75

The argument relies on an indirect use of Theorem 34. Once we pick the
interpretation of the predicates immune and vaccinated, since the choice

must satisfy (KBY)PY, we have both that [immune(X)|vaccinated(X)lx = 0.75



and that the interpretation of the predicate vaccinated.child must range
over subsets of vaccinated, i.e., it is an average subset of vaccinated.

The following (world) expectation independence

E([«l8]v) = E([alvlv)

results® from the second order direct inference principle combined with The-

orem 34 provided KB is such that
E(E([oP¥|BPY A (KB )PV]v)ps) = E(E([PI¥P" A (KBY)P"]v)p)-

If this condition is satisfied (which means roughly that on average the dif-
ferences between 3 and v do not cause their a-statistic to differ) then inher-
itance between B and v is viable. However, KB might contain information
that interferes with this inference.

For instance in Example 5.3, had we known the immunity statistic for
blonde vaccinated children and vaccinated people differ (as in Example 5.4),
the interpretation of the predicate vaccinatedchild would be constrained
in a way that prohibits it from being an average subset of vaccinated. This
can be shown by computing the statistics over the space of possible inter-
pretations for a given universe of discourse. In Example 5.4, if the universe
of discourse consists of four individuals, we can compute by exhaustive enu-

meration that (for R = <immune,vaccina.ted,vaccinated_child,blonde>)

6 provided E([a|8]v) = E({a|# AKBY]y) and E([alv]v) = E([aly AKBY]y).



E(8([immune(V)|vaccinated_chi1d(v)]v)R) = 0.625

# E(5([immune(V)lvaccinated(V)]v)R) = 0.75.

So in this case, inheritance of the immunity statistics from vaccinated people

to vaccinated_child is blocked.

SKB5.4:

[immune(x)|vaccinated(X)]x = 0.75,
VX.vaccinated.child(X) — vaccinated(X),
[immune(X)[blonde(X) & vaccinated_child(X)}x = 0.5,
vaccinated(mary).

Example 5.4: Interference

While the preliminary second order direct inference principle results in
inheritance that is more in line with our intuitions than that resulting from
Bacchus’s nonmonotonic assumptions, there are at least two peculiarities.

First, every proposition is assigned a degree of belief. Propositions for
which we have no relevant knowledge take on mid-value degrees of belief (e.g.,
prob(tall(mary)) = 0.5). Propositions for which there are conflicting rele-
vant statistics take on mid-value degrees of belief (e.g., prob(immune(mary))
takes on the mid-value between the statistic for immune vaccinated people
and the statistic for blonde vaccinated children). This is perhaps too com-

mittal.

Second, the results are syntax sensitive. In Example 5.5, which is a
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logically equivalent axiomatization of Example 5.4, we have (again for a

universe of discourse with four individuals)

E(E([immune(V)|vaccinated_child(V)]v)R) ~ 0.667

# E(5([immune(V)Ivaccinated(V)]v) R) =0.75

(for R = <immune,vaccinated,vaccinated_child.blonde_vaccina.ted_child>).

Comparing this with the result for Example 5.4 shows that the expected

SKB5.5:

[immune(X)|vaccinated(x)]x = 0.75,
VX.vaccinated.child(X) — vaccirated(X),
VX.blondevaccinated child(X) — vaccinated.child(X),
[immune(x)|blonde_vaccinated_child(x)]x = 0.5,
vaccinated.child(mary).

Example 5.5: Syntax Sensitive Expectation

statistics are syntax sensitive (i.e., the proportion of immune vaccinated chil-
dren is 0.625 in one case and (approx.) 0.667 in the other). More precisely,
the difference comes about because the predicate variables differ. In one
case, we have blonde as a predicate variable and in the other case we have
blonde_vaccinated_child. This raises an interesting question about what to
designate as the predicate variables. A similar issues arises in circumscription
[47], namely, which predicates should be allowed to vary and which should

be fixed. We will not pursue these issues here.
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Bacchus and Halpern are investigating the properties of this preliminary
second order direct inference principle” and it appears to be connected to
the maximum entropy principle [28]. They are taking a slightly different ap-
proach that essentially flattens out the E(£(—)) term by placing a uniform
distribution over possible worlds and ranging them over possible interpreta-
tions of the predicates. This combines the two expectations.

Earlier in this section, we noted a condition for viable inheritance. We
can use this to avoid the peculiarities of the preliminary second order direct

inference principle as follows.

Definition 37 (SECOND ORDER DIRECT INFERENCE PRINCIPLE)
If a, B and 7 are formulas of £t and if KB is the complete set of objective
formulas that the agent fully believes, then the agent’s degrees of belief should

be constrained® by the equality
E([alﬂ A KBv]v) = E([al'y A KBV]v)
if
E(E([2P"]8PY A (KB )PV ]v)py) = E(E([aPY APV A (KBY)P¥]v)pv)

where the predicate variables (pv1,. .., pu,,) range over interpretations satisfy-

ing (KBY)P". The agent must also fully believe that £ ([BPY A(KBY)P"]y)py > O

7Personal communication.
8This Second Order Direct Inference Principle is applied in conjunction with (rather
than in place of) the First Order Direct Inference Principle.
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and E([yPY A (KBY)P']v)pv > 0, e, cert(E([APY A (KBY)P¥]v)pr > 0) and
cert(E([4PY A (KBY)P]y)pv > 0).

In the preliminary second order direct inference principle, (world) expec-
tation for particular predicates s determined by (predicate interpretation)
expectation for the set of similar predicates. In contrast, here (world) ex-
pectation independence for particular predicates is determined by (predicate
interpretation) expectation independence for the set of similar predicates.
This new definition does not result in every proposition being assigned a de-
gree of belief and it appears not to be syntax sensitive. Note we can show the
former by construction and, though we have no general proof of the latter,
we can show it is true by exhaustive enumeration for particular examples like
the one in connection with Example 5.3 and 5.4.

To illustrate second order direct inference, consider again Example 5.3.
We can determine the degree of belief in Mary acquiring immunity as follows:

(for R = <immune,va.ccinated,va.ccinated.child>)

prob( immune(mary))

= E([immune(V)I[immune(X)|vaccinated(x)]x =075 &
VX.vaccinated.child(X) — vaccinated(X) &
vaccinated.child(V)ly) Def. 22

= E([immune(V)|[immune(x)|vaccinated(X)]x =075 &

VX.vaccinated.child(X) — vaccinated(X) &



vaccinated(V)}v) Def. 37

= E([immune(V)|vaccinated(V)ly) = 0.75

since

E(E([immune(V)|[inunune(x)|vaccinated(x)]x =0.75 &
VX.vaccinated.child(X) — vaccinated(X) &
vaccinated_child(V)lv)zr)

= E(£([immune(V)|vaccinated.child(v)]v)1z)

= E(S([immune(V)|vaccinated(V)]v)R) Thm. 34

= E(£'([immune(V)|[immune(x)lvaccinated(x)]x =075 &
VX.vaccinated.child(X) — vaccinated(X) &

vaccinated(V)v)r)

Preliminary results suggest that Second Order Direct Inference achieves
the desired inheritance for the examples commonly cited in the literature.
For instance, simple inheritance, multiple inheritance with specificity, am-
biguity, cascaded ambiguity, cycles, redundant information, negative paths,
etc. all appear to be appropriately solved. This is supported in two ways.
First, by the method of exhaustive enumeration for small examples (around
four individuals and four predicates) and, second, by the Meta-Theorist im-

plementation in the next chapter. Unfortunately, neither of these methods
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constitutes a proof in general.

Second Order Randomization also appears to exhibit the desirable prop-
erty of weak chaining. Weak chaining involves inference through multiple
probable (or default) links as seen in the following example. Suppose we
know Tweety is a bird, 90% of birds are flying things, and 90% of flying
things have wings. By Second Order Direct Inference, we can conclude at
least 81% of birds have wings so the degree of belief in Tweety having wings
s at least 0.81. This reasoning hinges on the conditional independence of
wings and birds given flying—this independence is not given in the knowledge
base but results from Second Order Randomization—i.e., it is essentially just
an assumption. This form of reasoning may, of course, go wrong as can be
seen by replacing “bird” in the above example by “helicopter.” Nevertheless,
weak chaining is generally a desirable property. Further work is necessary to
prove the above properties hold in general.

Second Order Direct Inference can be determined mathematically, but
we know of no easy way to do this in general. In the next chapter, we
take the approach of identifying some characteristic patterns of interference
to approximate the reference class selection policy based on Second Order

Direct Inference described in this chapter.
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Chapter 6

Statistically Motivated Defaults

This chapter provides a specification for defaults in Meta-Theorist. The key
component of this specification is the theory pruning criteria for defaults. In
addition to describing these criteria, the aim of this chapter is to provide an
intuitive justification by appealing to probabilities and direct inference. The
methodology employed is to compare a Meta-Theorist knowledge base with a
corresponding statistical knowledge base. A mapping is also drawn between
queries and between conclusions in the two representations. The pruning
criteria are mapped to policies for choosing the reference class from the pre-
vious chapter. Because the pruning criteria are designed to make defaults
applicable to a particular case when the corresponding statistical probability
is applicable to that case, the defaults are said to be statistically motivated.

Several examples are provided in this chapter to give some indication of the
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power and limitations of the proposed specification.

6.1 Interpreting Defaults, Queries, and Conclusions

The interpretation of defaults used here differs from the usual “assume truein
the absence of evidence to the contrary” [72, 67]. Defaults are interpreted as
asserting statistical knowledge which can be used to justify particular beliefs

(cf. [3]). "I“he following is the syntax for specifying defaults in Meta-Theorist.

default Hypothesis: Wff, —(X)— Wf,. is synonymous with

hypothesis Hypothesis: Wff, — W
meta fact default(Hypothesis).

meta fact prediction(Hypothesis, Wff,).
meta fact context(Hypothesis, Wff,).
meta fact random(Hypothesis, X).

The meta-predicate default distinguishes the hypothesis as a statistically mo-
tivated default, i.e., default(H) means H € A,md where A,md is the subset
of H containing hypotheses that are to be interpreted as statistically moti-
vated defaults. The meta-predicate prediction identifies the prediction of the
default—this plays the same role as the consequent (expression to the left of
the conditioning bar) of a conditional probability term. The meta-predicate
contezt identifies the context of the default—this plays the same role as the
context (expression to the right of the conditioning bar) of a conditional

probability term. Finally, the meta-predicate random indicates the variables



to be interpreted as random designators. When all the variables of Hypoth-
esis coincide with the random designators, the following abbreviated syntax

is used.

default Hypothesis: Wff, — Wf..

Defaults are viewed as miking statistical probability assertions about the

domain. The statement

default birdsfly(X): fly(X) « bird(X).

is interpreted as asserting that most birds fly, i.e., the proportion of birds
that fly is greater than some constant (greater than 0.5). The same constant
is assumed for all defaults and no commitment is made to its value (other
than it being greater than 0.5). Consequently, defaults all have the same
(unspecified) strength.

The above default can be understood as asserting

[birdsfly(X)[bird(X)]x > c

VX.(birdsfly(X) & bird(X)) — fly(X)
which implies
[£1y(X)[bird(X)]x > c.

Definition 38 (INTERPRETATION OF DEFAULTS)

Defaults of the form
default H(X,Y): P(X,Y) «{X)- C(X,Y).

121



correspond to the statistical assertions

VY.[H(X, Y)|C(X, V)] > <,
VX, Y.(H(X,Y) & C(X,Y)) = P(X,Y).

In Example 6.1, the Meta-Theorist knowledge base MTKB6.1 corresponds

to the statistical knowledge base SKB6.1.

MTKBS.1:

default birdsfly(X): fly(X) — bird(X).
fact black(opus) & bird(opus).
conjecture blacksdontfly(X): ~fly(X) « black(X).

SKkB6.1:

[birdsfly(X)[bird(X)]x > c,

VX.(birdsfly(X) & bird(X)) — £f1y(X),
black(opus) & bird(opus),
VX.(blacksdontfly(X) & black(X)) — -£1y(X)

Example 6.1: Meta-Theorist KB and corresponding Statistical KB

The Meta-Theorist queries explain and predict are both interpreted as
queries about propositional probabilities and each treats defaults in the same
way. The difference is that explanation allows conjectures to be used while
prediction does not.

The Meta-Theorist query (to MTKB6.1)

predict fly(opus).
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can be informally understood as asking whether
prob(fly(opus)) > c.

The answer to this query is understood as affirming that the above proposi-
tional probability can be inferred to be greater than ¢ given SKB6.1 and the
reference class selection policy. Note that the strength c of the answer to the
query is the same as the strength of the defaults.

The Meta-Theorist query (to MTKB6.1)

explain fly(opus).

can be understood as asking whether, for some set of “acceptable” assump-

tions T,
prob (fly(opus)l'l‘) > c.

For instance T might be {blacksdontfly(opus)}. The acceptability criterion
for T depends on the kinds of hypotheses involved, e.g., for conjectures the

criterion is consistency—see section 3.2.

6.2 Specifying Direct Inference

This section describes the specification of the Direct Inference Principle (Def-
inition 22) by means of pruning criteria in Meta-Theorist. This results in a

system that corresponds to To from Chapter 4 for the restricted case where



all known statistical probabilities are greater than some unspecified constant
¢, less than 1 — ¢, or equal to one or zero.

The specification of the Direct Inference Principle is conceptually trivial.
It involves simply determining the context of the query and whether the
expression in the query either follows from the context plus the set of true
assertions or whether the expression in the query follows from the prediction
of some default whose context is equivalent to the context of the query. The
former case covers direct inference from probability one statistical assertions
(i.e., from the facts) and the latter covers direct inference from probability
greater than c statistical assertions (i.e., from defaults). Direct inference
amounts simply to instantiation of free variables (unification in Prolog) with
the restriction that free variables in defaults are only instantiated if their
context is equivalent to the context of the query.

The above relies on the following statistical facts:

1. i [al8)x = 1 (or 0) A & — 7 then [alflx = [1/6]x
2. if B = 4 then [o|B]x = [a]v]x; and

3. if [a|B}x > cAa — 7 then [v18]x 2 {alBlx > <.

As shown later in this section, we also need to make use of the following

lemma which is an extension of Lemma 18.



Lemma 39

If no z; € 7 is free in the formula é then

E VYrira [BASAYE@ =) Alalflz € [rura]] o >0

= (1|8 AénYEe =) Alalflz € [rml] o € 1)
Proof: Follows from Lemma 16 and Lemma 18. B

The main difficulty in specifying the Direct Inference Principle is deter-
mining the context of the query. Recall from Definition 22, that we determine

the agent’s degree of belief in a by
prob(a) = E([a"IKB"]g).

In determining the context of the query, KB is simplified according to Lemma 12.
In Meta-Theorist, the corresponding context can be determined by a
straightforward syntactic operation on the knowledge base. The meta-predicate
extract_context extracts statements containing constants from the knowledge
base and randomizes the constants (i.e., substitutes unique random vari-
ables).
The pruning criterion to specify direct inference (when considering only
a single assumption) is:

meta fact prune([H]) «
default(H) &
prediction(H,PH) &
context(H,CH) &



random(H,RVH) &
extract_context(C0) &
—equivalent._context(RVH,PH,CH,C0).

In words, direct inference using H (an instance of a default) is unacceptable
if the context of the default and the context of the query are not equivalent.

Here equivalent_contezt is a meta-predicate that is true if the (random-
ized) context of H is equivalent to the context CO.

meta fact equiva.lent_context(RVH,PH,CH,CO) —

simplify_context(RVH,PH,C0,Cn) &

randomize(RVH,CH,CHV,[|,VH) &

equivalent(CHV,Cn).
Here randomize corresponds to randomization (Definition 21), i.e., the con-
stants of CH are replaced by unique random variables (only the constants
in RVH are randomized). The meta-predicate equivalent is true if its ar-
guments are logically equivalent. Prior to checking for logical equivalence,

the context CO is simplified according to Lemma 39 by the meta-predicate

simplify.contezt. The effect is to transform a query about whether
1|8 A6 AVE(@nB) - 7) AlalBlz > | oo >

to a query about whether

[v18lz > <.

The simplification algorithm is given in Figure 18. The value of C; on the

final iteration is the simplified context of the query.
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simplify_context:
1. set 1 =0;

2. set Cp = the randomized facts, i.e., the facts of MTKB with constantg
replaced by unique variables;

3. set V; = the random variables of the randomized query;
4. repeat

(a) increment i;
(b) set C; = the statements of Cy containing variables from Vi_y;

(c) set V; = the variables of C;;
until V; = V;_y;

5. return contezt = C;.

Figure 18: Algorithm to Simplify Meta-Theorist Context

[ CV)

-1



The idea is this. When we are considering a query < and thereis a default
a: ¥ « B and facts B A 6 then, in corresponding probabilistic terms, we are

interested in

[v]6 7 8 A ¥2((a A B) = 7) A llBlz > | 2
A key observation is that whenever the conditions for Lemma 39 hold, we
have

[+]8 A 6 AVE(e A B) = 7) AlelBlz > J 3)
= [v]8 A 6 AVE((@ A B) — ) A [alBle > s

|
=
=,
"

Therefore, in considering the query 7, it is sufficient to check whether the
context of a default is equivalent to the simplified context (i.e., statements
with variables connected to the random variables of the default). In the

above, the simplified context is the conjunction of terms in
BASAVE((aAB) = 7) AlalBle > c

having free variables from Z. If the lemma applies then 6 has no z; € ¥ and
since all other terms except 3 are closed formulas, the simplified context will
be 3. Since 3 is equivalent to the context of the default, the default applies.

To see how this works, consider Example 6.2. For the statistical knowl-

edge base SKB6.2, the query
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MTKB6.2:

fact elephant(clyde) & zookeeper(tony) & zookeeper(fred).
default elz(X,Y): likes(X,Y) — elephant(X) & zookeeper(Y).
default -elf(X): —likes(X,fred) — elephant(X).

SKB6.2:

elephant(clyde) & zookeeper(tony) & zookeeper(fred),
[e1z(X, Y)|elephant(X) & zookeeper(Y)lcx.y> > ¢,
VX,Y.(e1z(X,Y) & elephant(X) & zookeeper(Y))— likes(X,Y),
[~elz(X)|elephant(X)]x > ¢,

VX.(~elf(X) & elephant(X)) — -likes(X,fred).

Example 6.2: Elephants and Zookeepers
prob (-'likes(clyde,fred))
is evaluated by determining

E([~Likes(clyde, fred)*|sKB6.2"]s)
= E([ﬂlikes(U,V)|e1ephant(U) & zookeeper(V) &
[-elz(X)|elephant(X)}x > c &

VX.(—elf(X) & elephant(X))— -'likeS(X,V)](u,V))

and, by Lemma 39, this is greater than c.
In evaluating the query —likes(clyde,fred) in MTKB6.2, the context
is
elephant(U) & zookeeper(V),
VX.(—elf(X) & elephant(X)) — —~likes(X,V)



where U and V are the random variables. The simplified context (when con-
sidering the default instance —~elf(clyde)) is just elephant(U) because terms
not connected (as per Figure 18) to the random variable U corresponding
to the random variable of the default are eliminated. Since the simplified
context is equivalent to the randomized context of the default -elf(clyde),
namely, elephant(U), the default applies and hence -likes(clyde,fred) is
predicted.
For the query, likes(clyde, fred), the simplified context is

elephant(U) & zookeeper(V),
VX.(—elf(X) & elephant(X)) — -likes(X,V)

since both U and V are random w.r.t. the default elz(clyde,fred). But
since this is not equivalent to the randomized context of the default, namely,
elephant(U) & zookeeper(V), the query is (correctly) not predicted.

So far, we have consider only the case where theories involve only one
assumption. Taking other assumptions into account is a fairly simple mat-
ter. Other assumptions are analogous to conditioning terms in probability
expressions (recall the interpretation of explain in section 6.1). So to incor-
porate other assumptions, we simply include them as part of the context of
the query. The resulting pruning criterion is:

meta fact prune([H|T}) «
default(H) &
prediction(H,PH) &
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context(H.CH) &

random(H.RVH) &
extract_context{C0) &
-equivalent_context(RVH.PH,CH.CO).

This involves modifying the meta-predicate ertract-contert to include the
other assumptions T. In the algorithm of Figure 18. Cy becomes the ran-
domized facts plus the randomized assumptions T'. For example, suppose in
Example 6.2 we are interested in the query 1ikes(dumbo, tony) given that we
have already assumed elephant(dumbo)—say, because we had a conjecture

elephant(X). The simplified context in this case is
elephant(U) & zookeeper(V)

since both U and V are random w.r.t. the default elz(dumbo,tony). Since
this is equivalent to the randomized context of the default. the default applies
and hence likes(dumbo, tony) is predicted.

Note that for the query —likes(dumbo,tony), although the simplified
context is elephant(U) which is equivalent to the randomized context of

—elf(dumbo), the query is (correctly) not predicted because ~elf(dumbo) &

elephant(dumbo) implies ~1ikes(dumbo,fred)and not ~likes(dumbo, tony).

6.3 Specifying the Reference Class Selection Policy

In this section, an approximation of the reference class selection policy of the

previous chapter is developed. This approximation is specified as pruning
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criteria for defaults. A default is deemed inapplicable to a particular case by
the pruning criteria if inheritance between the context of the default and the
context of the particular case is not sanctioned by the reference class selection
policy. This results in a system that corresponds to an extension of To from
Chapter 4 for the restricted case where all known statistical probabilities
are greater than some unspecified constant c, less than 1 — ¢, or equal to
one or zero. This extension involves incorporating the Second Order Direct
Inference Principle (Definition 37) as described in the previous chapter.

Though, as mentioned in the previous chapter, it is unclear, in general,
how to compute interferences in applying the Second Order Direct Infer-
ence Principle, the reference class selection policy can be approximated by
identifying characteristic patterns of interference. The conjectured pattern
described below has been shown to hold in several small examples by ex-
haustive enumeration and has been shown statistically significant in larger
examples by random sampling.

Suppose we are interested in the inheritance of - statistic from one con-
text to another. For instance in SK{B5.4, we are interested in the inheritance
of the proportion with immunity (75%) from the context of vaccinated peo-
ple to the context of vaccinated children. First, let us define some notions
of connectedness between contexts. Contexts, such as vaccinated children
and vaccinated people people in SKB5.4, that stand in the subset-superset

relation are potential participants in inheritance (i.e., they may stand in the



average subset-superset relation) and so we say they are connected contexts.

Formally,

Definition 40 (Connected Context)
The context ' is said to be a connected contert to the context (", if ("} € (',

or C, CCy.

If two contexts are connected. the influence of one on the other may
be interfered with by a third mediating context. that is. a closer connected
context screens the influence of a more distant context (as well, a connected
context is considered closer than an unconnected one). Vaccinated children
(in SKB5.4) is a closer connected context to vaccinated people than is blonde

vaccinated children. Closeness is formally defined as follows.

Definition 41 (Closer Connected Context)
The context Cj is said to be a closer connected contert to the context ('z than
the context C, if C; C C3 C Cq or Co C C3 C Cy (or if Cy is not connected

to C, while C3 is connected to Cs).

In determining inheritance, we are interested in the closest neighbours
of a context, that is, the closest connected contexts with known statistics,
because these screen the influence of other contexts. The context vaccinated
children is screened by its closest neighbours vaccinated people and blonde

vaccinated children in SKB5.4. This is formalized below.
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Definition 42 (Neighbour Scree:)

The P-neighbour screen of a context Cy is the set of closest connected contexts
for which the statistic for property P is known. That is, C; is in the P-
neighbour screen of Cy iff Cy is a connected context of Cy, the statistic for

P in C, is known, and there is no closer connected context C3 for which the

statistic for P is known.

In SKB5.4, since blonde vaccinated children is in the immune-neighbour
screen of vaccinated children and the immunity statistic differs from that in
the context of vaccinated people (also in the immune-neighbour screen of
vaccinated children), inheritance of the immunity statistic from vaccinated
people to vaccinated children is not viable because the conflicting influence
of the immunity statistic for blonde vaccinated children is not screened from
vaccinated children. Similarly, inheritance from blonde vaccinated children

to vaccinated children is not viable. Viable inheritance is formally defined as

follows.

Definition 43 (Viable Inheritance)

Inheritance of the statistic S, for a property P from a context C, to a context

(' is viable iff
1. C; is in the P-neighbour screen of C; and

2. there is no context C5 with statistic S; for property P in the P-neigbour

-

screen of € where Sy # S3.
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Conjecture 44 (Viable Inheritance Correspondence Conjecture)

Inheritance of the statistic for a from context § to context J is viable only if

E([o13ly) = E(lalnlv)
according to the Second Order Direct Inference Principle.

The converse, however, is false since the expectation equality may hold even
when v is not in the a-neighbour screen of 3. If the conjecture is correct then
the following pruning criterion captures the Second Order Direct Inference
Principle.

meta fact prune([H|T]) —
default(H) &
context(H,CH) &
prediction(H.PH) &
random(H,RVH) &
extract.context(C0) &
—viable_inheritance(RVH.PH.CH,C0).

Note that this is the pruning criterion from the previous sectiorn with
the check for equivalent contexts replaced by a check for viable inheritance
between the contexts. The meta-predicate viable.inheritance embodies Def-
inition 43—the parameter PH, the property being inherited, is included
because viable inheritance is defined relative to a particular property PH

and its PH-neighbour screen.

meta fact viable_inheritance(RVH,PH,CH,C0) <
in_neighbour.screen(RVH,PH,CH,C0) &
—conflicting-neighbour_screen(RVH,PH,C0).



If we let CHV and PHV be respectively CH and PH randomized w.r.t.
RV H then the meta-predicate in.neighbour_screen checks whether CHV is
in the PHV-neighbour screen of CO (see the first condition for viable inher-
itance in Definition 43) and the meta-predicate conflicting_neighbour_screen
checks whether the P H V-neighbous -creen of CO contains contexts that dis-

agree on the statistic for PHV (sec the se-. ad condition for viable inheritance

in Definition 43).
Unfortunately the specification of these two rneta-predicates is non-trivial.
To make some headway, an approximation is provided below. The empiri-

cal results in the next section indicate the merits and shortcomings of the

approximation.

The meta-predicate in_neighbour_screen is defined according to Defini-

tion 42.

meta fact in_neighbour._screen(RV1,P1,C1,C0)
known_statistic(RV1,P1,C0,C1,P1) &
randomize(RV1,C1,C1V,[},V1) &
simplify_context(RV1,P1,C0,Cnl) &
connected context(C1V,C0) &
-3 RV2,C2,P2,C2V,V2,RV,Cn
( known_statistic(RV2,P1,C0,C2,P2) &
randomize( RV2,C2,C2V [|,V2) &
simplify context(RV2,P2,C0,Cn2) &
connected_context(C2V,C0) &
intersect(RV1,RV2,RV) &
simplify_context(RV,P1,C0,Cn) &
closer_connected_context(C2V,Cn,C1V) ).

The chief problem with this definition is specifying known_statistic which
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checks whether, in the context C, there is a statistic for P or its negation. A

compromise selution is to consider only two cases. First, consider a context

as having known statistics based on the facts. Second. consider the context of

defaults as having known statistics—this unfortunately overlooks statistics
inherited to other contexts (see the Albertan Blonde Vaccinated Children
problem in Example 6.16).

The meta-predicates connected_contert and closer_connected_contert are
straightforward. The reference to prore in the braces indicates a tic into the
theorem prover (Figures 12 and 13). A means to link predicates to Prolog
predicates is provided in Meta-Theorist (the details are not important for
the current discussion). Note that not.prove is implemented via negation as

failure in Prolog.

meta fact connected_context(C1,C2) «
{ prove C1 from C2 } or
{ prove C2 from C1 }.

meta fact closer_connected._context(C3.C2,Cl) «
—connected.context(C1,C2) &
connected_context(C3,C2).

meta fact closer_connected_context(C3,C2.C1) «
connected_context(C1,C2) &
{ prove C2 from C3 } &
{ prove C3 from C1 } &
{ not_prove Cl1 from C3 }.

meta fact closer_connected.context(C3.C2,Cl)
connected_context(C1,C2) &
{ prove C3 from C2 } &
{ prove C1 from C3 } &
{ not_prove C3 from C1 }.
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The second of the two meta-predicates in the definition of viable_inheritance
is conflicting_neighbour-screen. This checks whether there are contexts in the

PV -neighbour screen of C0 with different statistics.

meta fact conflicting_neighbour_screen(RV.P.C0) <~
in_neighbour_screen(RV,P.C1,C0) &
negate(P,NP) &
in_neighbour_screen(RV,NP,C2,C0).
The pruning criterion outlined in this section provides a specification
of viable inheritance (modulo the difficulties with known_statistic) which is
conjectured to capture the Second Order Direct Inference Principle. The

examples in the next section give some empirical evidence to support this

conjecture.

6.4 Examples

To explore the properties of the specification of viable inheritance given
in the previous section, the pruning criterion was implemented in Meta-
Theorist.! The examples in this section discuss the results of running vari-
ous queries against several different Meta-Theorist knowledge bases. Except
where noted, the queries resulted in predictions that are correct with respect
to viable inheritance. Whether these results are also correct with respect to

the Second Order Direct Inference Principle remains an open question.

IFor efficiency, the actual implementation used Prolog directly rather than meta-facts.



MTKB6.3:

fact bird(tweety).

fact penguin(opus).

fact bird(X) — penguin(X).

fact —fly(X) — penguin(X).

default birdsfly(X): fly(X) « bird(X).

Example 6.3: Penguins Don’t Fly

Example 6.3 describes a situation in which most birds fly and penguins
do not fly. In this example. fly(tweety) and —fly(opus) are predicted. In the
case of tweety, the —~fly statistic for penguin does not interfere with the fly
statistic for bird as penguin is not in the fly-neighbour screen of the context for
tweety, namely. bird. This is because the context bird of the default birdsfly
is closer to the context bird for tweety than is the context penguin which has
the known statistic ~fly. A similar analysis applies to the prediction of =fly

for opus.

MTKB6.4:

fact bird(tweety).

fact penguin(opus).

fact bird(X) — penguin(X).

default -penguinsfly(X): -fly(X) — penguin(X).
default birdsfly(X): fly(X) « bird(X).

Example 6.4: Most Penguins Don’t Fly

Example 6.4 is similar to the previous one except that, instead of all pen-
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guins not flying, we have that most penguins do not fly. As in the previous
example. fly(tweety) and —fly(opus) are predicted. The analysis is also simi-
lar. The only difference is that the known statistic for the context penguin is
based on the default ~penguinsfly rather than on the facts. This difference.

however, has no effect on the results.

MTKB6.5:

fact bird(tweety).

fact bird(X) « penguin(X).
fact -rﬂy('Xg — penguin& .
default birdsfly(X): fly(X) « bird(X).

Example 6.5: Negative Path

Example 6.5 illustrates what is called negative path reasoning where
—penguin(tweety) is predicted. This follows from bird(tweetyj, most birds

fly. liers are not penguins. and First Order Direct Inference.

[
| MTKB6.6:

fact bird(tweety).

fact penguin(opus).

fact bird(X) «— penguin(X).

default —penguinsfly(X): -fly(X) «— penguin(X).
default birdsfly(X): fly(X) « bird(X).

fact wings(X) « fly(X).

Example 6.6: Winged Fliers

In Example 6.6, wings(tweety) is predicted while wings(opus) is not. This
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is correct because of the fact wings(X) — fly(X) implies that wings is at least

as probable as fly.

MTKBS6.7:

fact quaker(nixon) & republican(nixon).
default -rp(X): -pacifist(X) « republican(X).
default qp(X): pacifist(X) « quaker(X).

Example 6.7: Ambiguous

Example 6.7 is a case where there is a conflicting neighbour screen. The
context quaker & republican for niron has a pacifist-neighbour screen con-
taining the contexts republican and quaker. These contexts have conllicting
statistics about pacifist. Consequently, inheritance of the pacifist statistic
from either context to the context for niron is not viable. The vesult is that

neither pacifist nor - pacifist is predicted.

MTKB6.8:

fact vaccinated(tom).

fact vaccinated(mary).

fact ~immune(mary) « blonde(mary).
default iv(X): immune(X) « vaccinated(X).

Example 6.8: Blonde Vaccinated People

In Example 6.8, the context for mary and for tom differs. In the case

of tom, the context is vaccinated and so immune is predicted based on the
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default iv. In the case of mary. the context is
vaccinaled & (~immune — blonde).
’

The immune-neighbour screen is conflicting since it contains both the context

vaceinaled and the context
raccinaled & (~immune «— blonde) & blonde.

Consequently, neither immune nor —~immune is predicted for mary.

MTKB6.9:

fact vaccinated_child(mary).
fact vaccinated_child{wendy) & -blonde(wendy).
fact vaccinated(X) vaccinated_child(X).
default —ibve(X): ~immune(X) « blonde(X)

& vaccinated_child(X).
default iv(X): immune(X) — vaccinated(X).

Example 6.9: Blonde Vaccinated Children

In Fxamnple 6.9, the context vaccinated_child for mary is wedged between
the conflicting contexts vaccinated and blonde & vaccinated_child. For mary,
neither immune nor mimmune is predicted. In the case of wendy, the context
s vaccinated.child & —blonde. The immune-neighbour screen contains vac-
cinated but not blonde & vaccinated.child. Consequently, inheritance from

racetnated is viable for wendy with the result that immune(wendy) is pre-

dicted.
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MTKB6.10:

fact penn.dutch.speaker(hermann).

fact american(X) — penn(X).

fact germanspeaker(X) — penn_dutch_speaker(XN).
default pdp(X): penn{X) «— penn_dutch_speaker(X).
default —gsa(X): mamerican(X) « german_speaker{X).

Example 6.10: Pennsylvania Dutch

In Example 6.10. we have that hermann is a speaker of Pennsylvania
Dutch. Pennsylvanians are Americans, Pennsylvanian Dutch speakers are
German speakers. most speakers of Pennsylvania Dutch are Pennsylvanians,
and most German speakers are not American. The context penn_dulch_speaker
of the default pdp is a closer connected context to the penn_dutch.speaker
for hermann than is the context german_speaker of the default —gsa. Con-
sequently. inheritance from the context german_speaker is not viable while
inheritance from the context penn_dutch_speakeris viable. The result is that

american(hermann) is predicted.

MTKB6.11:

fact royal_elephant(clyde).

fact elephant(clyde).

fact elephant(X) ~ royal.elephant(X).

default eg(X): gray(X) « elephant(X).

default -reg(X): —gray(X) « royal_elephant(X).

Example 6.11: Redundant Information



In Example 6.11, the redundant information elephant(clyde) does not
affoct the inheritance of =gray from the context royal_elephant. This is be-
canse the context elephant(clyde) & royal_elephant is equivalent to the con-

text royal_elephant.

MTKB6.12:

fact roval_elephant(clyde).

fact african_elephant(clyde).

fact elephant(X) — royal_elephant(X).

fact elephant(X) « alrican_elephant(X).
default eg(X): gray(X) « elephant(X).

default -reg(X): ~gray(X) « royal_elephant(X).

Example 6.12: Off Path Preemption

Example 6.12 illustrates that viable inheritance exhibits the behaviour
called off path preemption. Here —gray is predicted based on the context
royal_elephant of the default —reg. The property african_elephant does not

interfere with this.

MTKB6.13:

fact quaker(nixon) & republican(nixon).
default —~rp(X): —pacifist(X) « republican(X).
default qp(X): pacifist(X) — quaker(X).

fact conservative(X) « republican(X%
fact anti_military(X) « pacifist(X).
default ~cam(X): ~anti_military(X) « conservative(X).

.

Example 6.13: Cascaded Ambiguity Propagation
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Example 6.13 illustrates the ambiguity due to the conflicting pacifist-
neighbour screen is propagated to the anti_military-neighbour screen. The
result is that neither anti_military nor —~anti_military is predicted. However,
if the ambiguity over pacifist is resolved {say by asserting either pacifist or

—pacifist) then anti_military is no longer ambiguous.

MTKB6.14:

fact citizen(fred) & gullible(fred).

fact crook(dick) & elected(dick).

default —lce(X.Y): =likes(X.Y) « citizen(X) & crook(Y).

default lgcec(X): likes(X.Y) «— gullible(N) & citizen{N) &
elected(Y) & crook(Y).

Exaniple 6.14: Relations

So far. the examples have involved only properties of individuals. Fxam-
ple 6.14 involves the relation likes. For the query about likes(fre d.dick). the
context is citizen(X) & gullible(X) & crook(Y) & elected(Y). The context of
the default lgcec is a closer connected context than the context of the default
—lce. Consequently, the prediction is likes(fred,dick).

Example 6.15 is similar to Example 6.2. See the discussion in section 6.2
and note the subtle twist with respect to the constant fred in the default ~lf.
Here the additional fact tall(fred) & friendly(clyde) does not interfere with
the inheritance so. as in Examyple 6.2, likes(clyde,tony) and ~likes(clyde fred)

are predicted.
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MTKB6.15:

fact elephant(clyde) & zookeeper(fred) & zookeeper(tony).
fact tall(fred) & friendly(clyde).

default —e'®~: -iitas(X fred) « elephant(X).

default el X,Y) « elephant(X) & zookeeper(Y).

B ..15: More Relations

MTKBS6.16:

fact vaccinated_child(mary) & albertan(mary).

fact vaccinated(X) « vaccinated_child(X).

default ~ibve(X): ~immune(X) «— blonde(X)
& vaccinated_child(X).

default iv(X): immune(X) « vaccinated(X).

Example 6.16: Albertan Blonde Vaccinated Children



The final example in this section, Example 6.16. illustrates a problem
with the specification of viable inheritance. The svstem incorrectly pre-
dicts immune(mary). The correct result is that immune(mary) is ambiguons
based on inheritance from the context raccinated_child which has a conllict-
ing immune-neighbour screen (as seen in Example 6.9). The incorrect pre-
diction results from the naive specification of known_statistic which doesn’t
consider the context vaccinated.child as having a known statistic. Conse-
quently, vaccinated is admitted to the immune-neighbour screen in spite of
vaccinated_child being a closer connected context. Refining the specification

of known_statistic is left for future work.

6.5 Conclusion

This chapter has provided a specification for defaults in Meta-Theorist via
theory pruning criteria. The pruning criteria were intuitively justified by ap-
pealing to probabilities and direct inference as discussed in the previous two
chapters. Second Order Direct Inference was specified indirectly via viable
inheritance. The examples discussed in this chapter indicate the properties

of this specification and provide some empirical justification.
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Chapter 7

Conclusion

7.1 What has Been Accomplished

This dissertation has dealt with the preblem of the semantics of defaults in
a hypothetical reasoning framework. It was inotivated by a desire to deepen
our understanding of the nature of default knowledge and to provide a clear
representation of this knowledge.

Logic and probability are used as tools in the analysis of default knowl-
edge and in the specification of statistically motivated defauits. This has
facilitated the representation of domain knowledge in a principled way. The
examples provided in Chapter 6 illustrate the power and the limitations of
the proposed specification.

An important contribution 1s the introduction of Second Order Direct

Inference. Just as First Order Direct Inference bases the properties of par-

148



ticular individual on the properties of the set of similar individuals, Second
Order Direct Inference bases the independencies of particular predicates on
the independencies of the set of similar predicates. Both forms of direct in-
ference hinge on the idea of randomization—a particular member of a class
is assumed to have the properties of the average member of that class.

First and Second Order Direct Inference determine a reference class selec-
tion policy. This policy is more precisely specified than that of Reichenbach
and it differs in its treatment of inheritance. In particular, cascs, such as
Example 6.9. where the relevant context is wedged between two conflicting
contexts result in ambiguous inheritance by this policy while Reichenbach’s
principle fails to consider the conflict and sanctions downward inheritance.

While it appears to be difficult, in general, to compute Second Order
Direct Inferences. a second contribution of this research is the Viable Inher-
itance Correspondence Conjecture. This suggests the possibility of comput-
ing Second Order Direct Inference by identifying the neighbour screen of a
context and checking for conflicts. This method of determining viable inheri-
tance underlies the implementation in Meta-Theorist described in Chapter 6.

This implementation constitutes a third contribution as it demonstrates
the feasibility of the proposed representation of default knowledge and it
allows for empirical study of the proposed reference class selecticn policy.

Additional contributions are the design and implementation of the Meta-

Theorist hypothetical reasoning framework together with the two t':zorems
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that lead to incremental computation u theory pruning and preference.

7.2 Future Research

There are numerous directions —from theoretical extensions to practical ap-
plications-—in which to pursue future research. The relationship between
neighbour screens and d-graph separation in Pearl et al.’s theory of graphoids
[56. 53]. and the relationship between randomization and marimum entropy
[28] seem to be promising avenues of future research. As well, the rela-
tionship between randomization and axiomatic characterizations of indepen-
dence. such as [55. 12, 7). should be investigated. But perhaps the most
interesting future direction is the application of statistically motivated de-
faults to temporal reasoning.

There is an extensive body of literature on the frame problem in temporal
reasoning. i.e.. the problem of succinctly representing and reasoning about
non-change [4, 70, 23]. Much interest has been focused on nonmonotonic
reasoning approaches and since Hanks and McDermott [20] discovered that
these approaches give rise to the multiple extension problem. many solutions
have been proposed (e.g.. {20, 39, 78. 14. 21, 40]).

Amazingly, all these solutions fail to solve the extremely simple Russian
Roulette Problem (see Example 7.1). In this example, a person is playing

Russian roulette with a single chamber gun. It is not known whether the



MTKB7.1:

fact alive(0} & shoot(0).

fact -alive(T+1) — shoot(T) & loaded(T).

default frame.alive(T): alive(T+1) « alive(T).

default frame_not.alive(T): -alive(T+1) — -alive(T)
default framelcaded(T): loaded(T+1) — loaded(T).
defauit ramenot_ loaded(T): -loaded(T+1) — -loaded('l')

Examle 7.1 Russian Roulette Problem

gnu is lraded bhut if it is loaded, the person will be dead after the shoot
action. The four defaults are intended to represent the common sense 1o-
tion of persistence. i.e.. a property tends to be invariant for a typical action
and situation. For instance. people tend to stay alive but some actions are
atypical in that they result in death.

Intuitively. since we don’t have any information about whether the gnn
is loaded. we have no reason to favour the belief that the person will remain
alive over the belief that the person will die. Yet, all of the current approaches
to the multiple extension problem favour the conclusion that the person lives!

For instance. the chronological maximization of persistence approach [11]

selects the counterintuitive theory

Ty = {frame_alive(0),framenot_alive(yj.

frame_oaded(0).frame_not_loaded(0)}

which entails alive(!; and —loaded(0). The other chronological preference
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hased approaches produce analogous results ([29. 39. 78]).
This particular problem is an instance of one of the three of problems
sointed out by Hangh [21], i.e.. chronological preference approaches fail when
o there is incomplete knowledg ot the initial state:
o there is disjunctive knowledge of action effects: or

e there is observational knowledge of a non-initial state.

Statistically motivated defaults appear to correctly deal with each of
these. Example 7.1 falls under the first case. The context for a query
about alive(1) is {alive(T) & shoot(T)}. This has a conflicting alive(T+1)-

neighbour screen which contains the conflicting contexts
{alive(T)} and {alive(T) & shoot(T) & loaded(T)}.

Because of the contlicting neighbour screen. inheritance of alive is not viable.
A closer examination shows that Example 7.1 is also an example of the
second case. The fact

fact —alive(T+1) «— shoot{T) & loaded(T).

can be rewritten as

fact (-alive(T+1) v -loaded(T)) — shoot{T).

An example of the third case is Kautz's Vanishing Car problem [29]. In
this example. Henry parks his car at time 0. At time 2, he notices it is no

longer in the parking lot. We are interested in whether the car is parked at



MTKRBT.2:

fact parked(0).

fact -parked(2).

default frame_parked(T): parked(T+1) — parked(T).
default framenot_parked(T): =parked(T+1) — =parked(T).

Example 7.2: Kautz’s Vanishing Car Problem

time 1. We can represent this as in Example 7.2, The chronological prefer-
ence approaches predict parked(I) but there is no intuitive justification {or
this—the car could have been towed away or stolen any time after it was last
observed parked. Under the statistically motivated defanlts approach. the
context for a query about parked(1)is {parked(T) & —parked(T+2)}. This
has a conflicting parked( T+1)-neighbour screen which contains the conflict:
ing contexts {parked{T)} and {-parked(T+2)}. Because of the contlicting
neighbour screen, inheritance of parked is not viable.

Another issue which immediately arises in temporal reasoning i+ e prob-
lem of chaining defaults. For instance, suppose we had a situation similar to
the preceeding one except that the car was not observed at time 2. This is
represented in Example 7.3.

Here we would like to predict that the car remains parked at time 1 and
time 2 and so on indefinitely into the future. The prediciion that the car is
parked at time 1 follows from the statistical interpretation of the defaults.

The prediction about time 2. however. does not follow. This is because the
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MTKB7.3:

fact parked(0).
default frame_parked(T): parked{T+41) — parked(T).
default frameot_parked(T): —parked(T+1) « -parked(T).

Example 7.3: Parked Car Problem

context for a query about parked;2) is {parked(T)} which has a conflicting
parked( T+ 2)-ueighbour screen. The conflicting contexts in the neighbour
screen are {parked(T) & parked(T-1)} and {parked(T) & —parked( T+23)}.
Because of the conflicting neighbour screen. inheritance of parkedis not viable
so the prediction parked(2) is not sanctioned.

This is not a problem. [t merely indicates that parked(2) cannot be
predicted at the same level of strength as parked(1). But what we would like
is to be able to predict parked(2) with a smaller degree of belief.

In Bacchus's terms. we would like to allow a weakened form of transitivity,
i.e.. from a statistical KB such as SKB7.4. we would like to infer prob(b(k)) >
¢ and prob(c(k)) > ¢ [3.p. 171ML].

Weak transitivity requires the following expectation independence as-
sumption.

E(le(Mb(v) & a(V)}y) = E(le(V)[o(V)}y).

(See Bacchus fur a complete analysis {3, p. 1714f.].) It is very promising that

this independence assumption appears to fellow from second order random-



SKB7. 1

[b(X)Ia(X)]x > 0,
[e(X)[b(X)]x >
a(k)

Example 7.1: Weak Transitivity
ization.

What this means in practical terms is that we can chain defaults in making
predictions of various levels of strength. For instance, in Example 7.3, we can
predict parked(0) at full strength based on the empty theory: we can predict
parked(1) at the strength > ¢ based on the theory {frame_parke d(0)}: we can
predict parked(2) at the strength > ¢ based on the theory {frame_parked(0).
frame_parked(1)}; etc.

Finally. in applying statistically motivated defaults to Hanks's and Me-
Dermott’s Yale Shosting Problem [20]. an importai: observation is the reap-
pearance of the multiple extension problem. Example 7.5 is a simplified
version of the Yale Shooting Problem that retains its essential features.

As expected. the default instance frame_alive(1) is inapplicable because

the alive( T+2)-neighbour screen of the context
{loaded(T) & alive(T+1) & shoot(T+1)}
contains the conflicting contexts

{loaded(T) & alive(T+1) & shoot(T+1) & loaded(T+1)}



MTKRB7.5:

fact loaded(0) & alive(1) & shoot(1).

fact -alive(T+1) « shoot(T) & loaded(T).

default frame_alive(T): alive(T+1) — alive(T).

default frame_not_alive(T): —alive(T+1) — —alive(T).
default frameJoaded(T): loaded(T+1) — loaded(T).
default framenot_loaded(T): —lowded(T+1) «— —loaded(T).

Example 7.5: Simplified Yale Shooting Problem
and
{alive(T+1)}.

This means that alive(2) is not predicted.
But the default instance frame_louded(0) is also inapplicable be-ause the

loaded( T+ 1)-neighbour screen of the context

{loaded(T) € alive(T+1) & shoot(T+1)}
contains the conflicting contexts

{loaded(T) & alive(T+1) & shoot(T+1) & alive(T+2)}
and

{loaded(T)}.

C‘onsequently, loaded(1) is not predicted (which in turn means —alive(2) is

not predicted).



The first reaction to this is that there must be a problem with statistically
motivated defaults. But what really seems to be the problem is that some
independence knowledge used to arrive at our intuitive conclusion ~alire(2)
has not been represented. The independence knowledge is essentially this:
the future is independent of the past given a sufficiently detailed present
that is. Markov's Principle [9]. This principle is in fact built into the notion
of situation in situation calculus. It also seems to be what justifies the
chronological preference approaches [29.39. 78, 14} in the cases for which they
work and it seems to explain the cases which do not work. e.g.. insutliciently
detailed present in the Russian Roulette Example. It scems that Pearl had
Markov's Principle in mind when he wrote that “interactions mediated via
unconfirmed future events can be discounted™ [54. p. 103].

In the Simplified Yale Shooting Problem. it scems that Markov's Principle

can be used to eliminate the conflicting context
{louded(T) & alive(T+1) & shoot(T+1) & elive(T+2)}

from the loaded(T+1)-neighbour screen since loaded(T+1) depends oniy on
loaded( T) by Markov’s Principle. This would result in the intuitive prediciion
louded(T+1) and —~alive(2).

There are undoubtedly many other directions that can be pursued in the

theory and application of statistically motivated defaults.
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