
Relational Databases for Querying Natural Language Text

Pirooz Chubak
Department of Computing Science

University of Alberta
pchubak@cs.ualberta.ca

Davood Rafiei
Department of Computing Science

University of Alberta
drafiei@cs.ualberta.ca

Abstract
With the vast amount of information stored in natural

language text, sophisticated query engines are needed to
pull data and effectively relate the pieces. While there has
been a great deal of activity around semistructured data and
in particular XML, there hasn’t been much work on query-
ing natural language text, despite the regularities that exist
in natural language text. This paper explores a more con-
servative approach where natural language text is stored in
a relational database. We present a framework for querying
and integrating natural language text with relational data
and investigate different strategies for optimizing queries.
Our results show that the size of the plan space depends on
the number of query terms and the overlap between query
rewritings. Moreover, we show that the complexity of find-
ing an optimal plan in the presence of rewritings is NP-
hard. We develop a cost model and pruning techniques to
reduce the size of the search space, and a polynomial-time
greedy algorithm that finds a sub-optimal plan over a set of
rewritings. Our experimental results indicate great savings
in the evaluation costs of the optimized queries and that our
greedy algorithm finds either an optimal plan or a plan that
is very close to optimal in terms of cost.

1 Introduction
There is a large volume of facts expressed in natural lan-

guage text, and we often want to extract these facts, relate
them with other facts, or ask more specific questions. Ex-
amples include extracting the list of genes mentioned in a
collection of biomedical literature, finding if a paper has ex-
perimental evidence for gene products [2], gathering opin-
ions on a topic or a product from forums and newsgroups,
etc. Past work in this area is usually either specific to a par-
ticular domain or task (e.g. named-entity recognition [9])
or assumes a clean and relatively small text collection such
as news corpora [20]. There are recent attempts to scale
up fact extraction to large collections such as the Web with
some limited success (e.g. [16]). However, to the best of our
knowledge, there is little work on more general approaches
for querying natural language text and evaluation strategies
that can scale up to very large text corpora. The problem is

challenging because natural language text has little structure
(compared to relational standards or even XML). However
natural language text is also richer than pure text in terms
of the way facts are organized; there are rules and regular-
ities governing natural language text that can be exploited
by a querying engine. Also term frequencies and the co-
occurrence statistics are meaningful.

In this paper, we study the scenario where queries
over text are expressed in Natural Language Text Queries
(NLTQ) and a rewriting engine is used for query expansion
[14]. The syntax and the semantics of the queries and the
rewritings are briefly discussed in Section 3. We further as-
sume that NLTQ queries are integrated into SQL, allowing
data from both text and relational sources to be integrated
in a query.
����� ������	�

����	�
������������������

Suppose we have partial lists of genes and syndromes,
and we want to search for more genes, syndromes and pos-
sible relationships that may have been reported in a text col-
lection such as Medline [1]. Suppose we are interested in
casual relationships between gene defects and syndromes.
In a typical setting, the set of known genes and syndromes
may be stored in relational tables and the query may be writ-
ten as follows:
(SELECT x, y FROM genes g,
"%x gene defects responsible for %y"
on medline WHERE g.name=x)
UNION
(SELECT x, y FROM syndromes s,
"%x gene defects responsible for %y"
on medline WHERE s.name=y)
"%x gene defects responsible for %y"

on medline is expected to return pairs of genes and
syndromes that are reported to have the relationship we
are seeking. It is feasible that the texts of queries and
data may not exactly match. For example, the query
does not exactly match “the X-linked form is a result of
mutations in the CD40 ligand gene”. A rewriting engine
can expand the query into alternative expressions such as
"%x mutations in %y" and "%y is a result
of mutations in %x gene". Paraphrasing is an

1

effective method for increasing query recalls over natural
language text.����� ��������� �
	���� ��� 	���	 � � � � 	 ����
�������� � ���

	��
�	���	�
�� ���

In this paper, we take a more conservative approach and
assume that natural language text is stored in a relational
database. This has the benefit that data from both text
and relations can be joined in queries, and relational en-
gine functionalities can be exploited for expressing queries
and query optimization. The problem to be addressed is
given a SQL query with NLTQ expressions, for example in
the from clause, we want to map the query to an equivalent
query or query plan that can be efficiently evaluated by a
SQL engine. Given that relational query optimization is a
well-studied subject, our focus in this paper is on mapping
and optimizing NLTQ expressions. Our cost models and
estimates are based on the same statistics that are typically
available to a relational optimizer, hence our methods can
potentially be integrated into a relational engine.

Our first contribution is a cost model for estimating the
efficiency of a mapping, in terms of the expected number
of I/Os, and our experimental results on the accuracy of our
estimations. As the second contribution, we develop strate-
gies for pruning query plans that are guaranteed not to be
optimal; therefore the size of the search space for an opti-
mal plan is significantly reduced. Our third contribution is
on optimizing query rewritings. Given the set of rewritings
of a query, some overlap is expected between the terms of
the query and its rewritings and also between the terms of
the rewritings. In the presence of an overlap, independently
optimizing each rewriting is not guaranteed to give the over-
all best plan. We formalize the search for an optimal plan
for a set of rewritings as an optimization problem and derive
analytical results on its complexity; our results show that the
problem is at least NP-hard. As our last contribution, we re-
lax our optimality criterion and develop an efficient greedy
algorithm for finding sub-optimal plans. Our experimental
results show the greedy algorithm finds either an optimal or
a near-optimal plan at a much lower cost.

2 Related Work
Related work can be grouped into 6 categories: (a) query

optimization over text, (b) integration of relational data and
text, (c) multi-query optimization, (d) full-text support in
commercial databases, (e) named entity recognition and
question answering, and (f) extracting relations from text.
Query optimization over text There is work on querying
and optimizing queries over text and semi-structured data
but not specifically on natural language text. PAT [18] for
example, is a system for searching text with some commer-
cial success [11]; It introduces text regions as first class
citizens. The algebra behind PAT is studied more closely
by Consens and Milo where they show the relationship be-
tween region algebra and Monadic first order theory of bi-

nary trees and the complexity of optimizing queries in the
algebra [10]. Unlike PAT, NLTQ is restricted to natural lan-
guage text and somewhat makes use of the structure of the
sentences.
Integration of relational data and text Chaudhuri, Dayal
and Yan [7] study several techniques for joining relational
data with external text sources. The join methods include
semi-join, tuple substitution and probing. The authors show
that the best performing method varies with the selectivity
and the fraction of joining tuples. Unlike this work which
treats text system as a black box, our work optimizes text
queries based on their declarative expressions. Also, since
text data is stored in relational tables, a “tight” join between
text and relational tables is feasible. The work on estimating
the selectivity of text predicates [8] is also related to ours
and may be used in estimating the selectivity of our text
queries after being mapped to SQL.

The works on combined querying of text documents and
relations (such as WSQ/DSQ [13] and [12]) are also related.
Unlike ours, the result of a text search is usually a set of
matching documents here.
Multi-query optimization Roy et al. [17] study the opti-
mization of multiple queries. Their method benefits from
materializing and re-using common sub-expressions that
exist among different queries. They model their optimiza-
tion problem with Directed Acyclic Graph (DAG) repre-
sentation and introduce heuristics for improving the perfor-
mance of multi-query evaluation. Our work on optimizing
the evaluation of multiple rewritings in section 6 is simi-
lar to [17] but has a few important differences. First, given
a query (or a rewriting) in our scheme, any subset of the
query terms can be used for filtering and for each subset,
there is a different set of possible plans. This is unlike the
queries in Roy et al. where the query terms or relations are
fixed for each query. Second, the search space for the best
plan is the union of the plans for all possible term subsets.
In the presence of multiple rewritings, the search space is
the Cartesian product of the plan sets for different rewrit-
ings. We are not sure if a DAG in the style of Roy et al. can
be constructed or would be effective for this search space.
Third, our greedy algorithm is similar to the one by Roy
et al., with a difference that ours enumerates term overlaps
whereas theirs iterate over DAG nodes.
Full-text support in commercial databases Many com-
mercial database management systems support facilities for
full-text search functionalities integrated into their rela-
tional engine (See DB2 Text Extender[15] and Oracle In-
terMedia Text[3]). The output of a text search again is a set
of matching documents and it is not easy to tightly integrate
and interrelate them with relational data.
Named entity recognition and question answering Re-
lated work also includes the literature on named entity
recognition where given a fixed set of categories such as

2

person names, locations, percentages and monetary values,
the task is to extract and classify the elements in text to one
of those categories [9]. There is also work on question an-
swering where given a natural language question, the task is
to find the most relevant answer from a text collection [20].
Our work here is different in that the set of types is not fixed
in advance and can vary with queries.
Extracting relations from text Finally our work is related
to the literature on extracting relations from text [19] and
web pages [6, 4]. Our work is based on natural language
queries of DeWild [14] which have a more confined syntax,
allowing us to map text queries to SQL.

3 Problem Formulation
This section presents the syntax and the semantics of

NLTQ and our mapping of NLTQ expressions to query
plans over relations that store natural language text.����� �������
�� ��� ��	���������� ��� � ��� ��� � � � 	�	 �

� � ����	�
�� ���
Definition 1. A natural language text query (NLTQ) is a se-
quence of terms, phrases and wild cards. Each NLTQ must
have at least one extractor wild card and can be represented
with the following grammar.
<PHRS> ::= term | <PHRS> term
<WLCD> ::= %variable | *<PHRS>*
<NLTQ> ::= %variable
<NLTQ> ::= <PHRS> <NLTQ> | <NLTQ> <PHRS>
<NLTQ> ::= <WLCD> <NLTQ> | <NLTQ> <WLCD>

The extractor wild card, denoted by %variable, can
replace a noun or a noun phrase. The query syntax includes
another wild card, denoted by *<PHRS>*, for query expan-
sion. The wild card indicates that the enclosed phrases can
be replaced with similar terms and phrases without much
affecting the meaning of the query. The result of a query on
a text collection is a table with one column for each extrac-
tor and includes all assignments of the variables that give
rise to a match.

Definition 2. A natural language text query ��� is a rewriting
of query � if both � and � � have the same extractors and
every match for �	� is also considered a match for � .

As an example, the query %x is the *author*
of %y extracts pairs of x and y, where x is an author of
y. Since ‘author’ is enclosed in *’s, similar terms to ‘au-
thor’ are considered and the query is re-evaluated. For the
given query, similar terms to ‘author’ can be ‘writer’ and
‘co-author’. Moreover, a set of query rewritings for the
given query could be ‘‘%x, author of %y’’, ‘‘%y
written by %x’’ and ‘‘%x wrote %y’’.

In this paper, we take a relational database approach
to query optimization. Input text is stored in two tables:
terms(term, docid, sid, offset, length,
pos) and sentences (sentence, sid, docid).
The key for sentences is docid, sid and the same set
of attributes is a foreign key in terms referring sentences.

There are indexes on term, docid, sid, offset
and on sid, docid, term of terms and on sid,
docid of sentences, and we assume partial match searches
are also supported which is the case in most commercial
relational databases. Note that all parsings and speech tag-
gings necessary are done by dedicated NLP tools before the
text is stored in relations. A study of these preprocessings
are outside the scope of this work.

The choice of the schema is largely influenced by the
syntax and semantics of our queries. The matching bound-
ary of a NLTQ cannot be larger than a sentence. Hence, the
sentences table is sufficient to answer any NLTQ. On the
other hand, the smallest unit that can match a wild card is a
term. Also, the terms table allows us to do IR-style inverted-
list pruning for our queries. Table of n-grams and phrases
may also be beneficial for some queries (e.g. [5]); but since
they are less general, they are not considered here.

Given a NLTQ, the query is mapped into an execution
plan over the base tables. In the style of relational query
optimizers, a query plan is best described as a tree with base
tables at the leaves and the operations at the intermediate
nodes or edges.

�����
 ��� ��� � ��	�
���

� ��	�
�� � ��� �
	���� �

The space of possible plans for a query � in general is
exponential on the number of query terms as shown in Sec-
tion 5. Filtering sentences based on all query terms is not
necessarily the best strategy since each filtering also intro-
duces an overhead. Other plan trees are possible by chang-
ing the order of the selections and considering other tree
structures such as bushy trees. The space of possible plans
is even larger if we consider rewritings and the overlaps be-
tween their query plans. For instance, there are terms that
appear in multiple rewritings and a query optimizer should
be aware of such overlaps in enumerating the plans and cost
estimations. We are interested in plans with minimal ex-
pected costs. The problem to be addressed is: given a query
� and its set of rewritings ������� , find the “best” evaluation
plan. Here the “best” refers to the plan with the least esti-
mated I/O cost, according to our cost model to be discussed
next. The right choice of a plan can have a great influence
on the cost of query evaluation as shown in some of our
experiments.
4 Cost Model

Given a query plan, its cost can be estimated in terms
of the expected number of I/Os. Each node in the query
plan tree can be considered as the root of a subplan tree;
the evaluation cost for each node is the sum of the costs of
evaluating its children and the cost of joining the results.� ��� � �
�� � � � 	 � � 	�
�� ��	

� ���

Given nodes ��� and ��� , the join conditions are �������! #"%$
� � ���! #" and � � � "'&	() *"+$,� � � "'&	() *" . Let -.�/�0� and 12�/�0� re-
spectively give the left child and the right child of node � .

3

(� � �0� $
���������
	���
��������� �������

-.�/�0���.12�/�0� $�-����! "�	��
	���
$#
�%�
&
&('�� 1
) ���

(��� �0� $
��* � � �+���� � � � 	���
 ���-,�.�/0,

� - �/�0�0� 12�/�0� $+-1�
�! !�	������2�3���� #
� ,�.4/�, &
&('3� 1�) *���
Where

�
	5�(

$76985:<; � ��-.�/�0� �0� � �/12�/�0� �>= and

� ,?.�/�,
$69@-AB; � ��-.� �0�.�0� � �/12�/�0� �.�0= . (� models the cost of an index

nested loop join, whereas (!� models the scenario where all
the results from both left and right subtrees are retrieved
before a join. In our cost models,

� �
is the cost of retriev-

ing the first page from an index with matching entries for a
given query. In a typical setting, we can assume that

� �
is

equal to 1.2 I/Os on average 1.
�DC

is the size of an index
entry in bytes, and

�FE
is the page size. Therefore,

������ gives
the fraction of a page that is occupied by a single index en-
try.

�
� �0� is the size of the result set at node � , in terms of

the number of distinct sentences that are retrieved. Assum-
ing that the terms occur independently in sentences 2, the
size of the result set at a node � is given by:�

� �0� $HGJILK � $�-��
� �MON 	 N KOPQP�R MON�STN K-P1PU � &
&('3� 1�) *���
In which I K is the number of sentences that contain the term
at node � and I C is the total number of sentences.� ��� � � 	
�����	�
���� 	 � � � �
� 	 �WV � � �����

The cost of evaluating a plan rooted at node � is defined
as the sum of the costs of evaluating the left and the right
subtrees, the cost of the join and the cost of storing and re-
trieving any intermediate results (if needed). More formally,
the cost can be recursively defined as follows:

(� �0� $YXZ []\ � $�-1�
� �6985:<; (!� �/�0�0� (��� �0�>= �
(��-.� �0�.�

�
(�/12� �0�.�

�
(T^�� �0� ��_$�-1�
� �

where (^ � �0� is the cost of storing and retrieving any in-
termediate results. When evaluating a non-leaf node, we
sometimes cannot directly pipe the intermediate results.
Thus, we need to store the results of the left or the right
subtree on the secondary storage before evaluating their
join. The cost of writing the result set of a node � di-
rectly depends on the size of its result set and is (

�/�0� $

�
�DC(`-�aE

�
�
�/�0� . Reading from disk is usually a little bit faster

than writing on disk. However, since costs of reading and
writing are small compared to join costs, we can make the
simplifying assumption that (S �/�0� $ (

�/�0� . Having this

assumption,
� ^ can be computed as follows:

1This is a conservative estimate for a B+-tree assuming that the first
few levels of the index are cached.

2It should be noted that in a more realistic setting, terms that appear in a
sentence are not independent. For example, the terms of compound words
and phrases are more likely to appear together. Section 4.3 discusses this
issue in more details.

(T^ �/�0� $7XZ []\ - �/�0��b 12�/�0� $ -1�
� �
(S ��-.�/�0� � � (

��-.� �0�.�

�
��-.� �0�.�%c �

�/12�/�0� �
(S � 1 � �0�.� � (

� 1 � �0�.�

�
��-.� �0�.�%d �

�/12�/�0� �
Finally, the qualifying matching tuples must be joined with
sentences. Assuming that 12�/�0� is the sentences table, the
total cost (

C
at the root � can be given as

(
C
� �0� $�(�� -.� �0�.�

�
(!���/�0�)�

It might be desirable to confine the result set of the query
to terms with specific part of speech tags. For example we
would only like to have nouns in the result set. This could
be done by a final join of the result set on the pos column
of terms table. Since this additional cost does not change
our optimization results, we do not include it in our opti-
mization model for brevity.� �/� � � � � � � � �Fe
���	�
�� ���

Although assuming independence for terms in a sentence
somewhat simplifies the cost estimates, it is not hard to list
many cases where this assumption fails.

Definition 3. Term association score is a number between
0 and 1 which describes the confidence that two terms
occur in the same sentence relative to their expected co-
occurrence value when the terms are assumed to be inde-
pendent. For the nodes ��� and ��� , term association is de-
fined as:� �/� �
� ���!� $7XZ [\ �

� � � � � � �%c M-N KgfhP MON KOi(PU �MON K fkj K i Pmlon�prq f�s nkptq i>su �vxw y N5MON K!fhP j MON K-i�PQP �
� � � � � � �%d M-N KgfhP MON KOi(PU �

where
�
� � ���.���!� is the joint frequency of two terms and

is defined as the number of sentences that contain the terms
at nodes � � and � � . Note that � � and � � must both be
leaves, otherwise the term association will be undefined. If
the expected frequency and real frequencies are equal, as-
sociation will be zero. On the other hand the higher the
association, the more we are underestimating the expected
joint frequency.

Storing association scores for all term pairs can be costly.
For example, a text collection we have been experiment-
ing with had 64,783 unique terms and 8.3 million associ-
ation pairs with nonzero joint frequency (occuring together
at least once in a sentence). To reduce the size, one heuristic
is to remove the pairs whose associations don’t have a sig-
nificant effect on the joint frequency. These would include
the entries with an association score less than a threshold.
As Figure 1 suggests for our dataset, with a threshold of
0.2, we can reduce the number of entries to almost 10%
of its previous size, leaving less than 850,000 term pairs
in the association table. Finally, to remove the noisy and
meaningless terms that have been seen very infrequently,
we define a support factor for the minimum frequency of
terms. This leaves only around 26,000 tuples in the asso-
ciation table when the support factor is 5. With that many

4

pairs, the association table can be cached by the query op-
timizer for fast look-ups. Note that we only maintain the
scores of frequent pairs and as figure 1 suggests the number
of those pairs drops exponentially as the association score
increases. Therefore, we expect an association table to be
scalable for large text collections. If the terms at nodes � �
and ��� have an entry in the association table, their joint fre-
quency is given by� �
�/� �-�.���!� $ � �/� ���.���!� 6 85:�� � �/� � ��� � � ���!�.� � � � � � � � � � � �I C �

Otherwise, the terms can be treated independently. In or-
der to generalize the above formula, we need to check all
the term pairs in a query sub-tree for which we are estimat-
ing the joint frequency. Suppose we would like to join a
subtree

� � with another subtree
� � and estimate their joint

frequency. Given the estimated frequency for
� � and

� � , the
joint frequency can be estimated as follows:�-�

� � � � � � � $ �
� � � �

�
� � � � �Kgf����-f �K-i�����i

�-�
� � � � � � ��

�/� � �
�
�/�����

where � � and � � represent nodes in subtrees
� � and

� � re-
spectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7
x 10

6

Average Term Association

N
um

be
r

of
 T

er
m

 T
up

le
s

Figure 1. Distribution of term associations

5 Query Plan Optimization
Given a query with � terms, a query plan can choose

any combination of the terms placed at the leaves of a plan
tree.
Lemma 1. The number of query plans for a NLTQ with �
terms is given by 	�
K
� � � ��� ��� �.�0� where

� � �'��� �.�0� $ G � � $���� 	 K"l �.
� � � ��� ��� �. �.� � �'����� >�.��� � �������

Proof. Appears in the appendix.

The number of query plans in general can be huge, and
searching the plan space for a plan with the least cost can be
computational-intensive. We want to reduce the size of the
search space while still keeping the plan with the least cost
in the reduced space. The following theorems will show
that there exists a linear solution that finds the optimal plan
for a single query.

Theorem 1. Assuming terms independence, for a query
plan with � leaves represented in a Left Deep Tree (LDT),
the lowest estimated cost can always be obtained by sort-
ing terms according to their frequencies and placing lower
frequency terms on leaves in higher depths.

Proof. Appears in the appendix.

Definition 4. We say two binary trees & � and & � are traver-
sal equivalent when there exists a Depth First Search (DFS)
traversal that produces the same leaf sequence on both &)�
and & � . We denote a traversal equivalence by �$.

As an example, the following two tree representations
are traversal equivalent, i.e. (((a b) c) (d e)) �$ ((((a b) c) d)
e). Since both trees only have labels at the leaves, all the
DFS traversals produce the same leaf sequence.

Theorem 2. Assuming terms independence, any query plan& with � leaves has a traversal equivalent left deep tree that
always has an estimated cost less than or equal to the esti-
mated cost of & .
Proof. Appears in the appendix.

Based on Theorems 1 and 2, we know that an optimal
plan is always a left-deep tree with terms sorted by their
frequencies and placed at the leaves with lower frequency
terms in higher depths. The number of those plans cannot
exceed � . A linear search over that many plans is guaran-
teed to find an optimal plan. We refer to an optimal plan for
a single rewriting as a local optimal plan.

6 Optimization Over Multiple Rewritings
In the presence of multiple rewritings, finding an optimal

plan for each rewriting is not guaranteed to give an overall
plan with the total least cost. In particular, if the plan trees
of two or more rewritings share the same subplans, it might
be cheaper to evaluate the shared subplans only once and
feed their results to the plans.����� � � � � ��� ��� ����
 ��
����

The main idea for optimizing a set of rewritings is to take
advantage of common terms in their query expressions. If
there are two or more terms that are shared among multiple
queries, it may worth to isolate the terms into a subplan and
evaluate and store the result for future uses. These subplans
can be evaluated once and used many times. We use the
term subplan to refer to a part of a plan that may be shared
between more than one rewriting. To find a plan with the
least total cost over a set of rewritings, we would need to
first find a set of subplans that are shared by multiple rewrit-
ings and are also worth materializing.

As an example, consider a query that would give a list of
athletes who achieved a gold medal in any of the Olympics
from a corpus of archived data on sports news. Suppose
the query to evaluate is R0:%x, an Olympics gold
medalist and its set of rewritings is given as follows.

5

R1:%x, the Olympics gold medalist
R2:%x won an Olympics gold medal
R3:%x was a champion in Olympics
R4:%x stood first in Olympics
R5:the gold medal of Olympics was given to %x

The following table gives the plan with the minimum
cost for R0 and each of its rewritings when each query is
optimized individually; the third column of the table shows
best plan costs, in terms of the estimated number of I/Os.
We refer to these plans as local optimal or best local plans.

Rewriting Best Local Plan Cost
R0 (Olympics medalist) 29.2
R1 (Olympics medalist) 29.2
R2 (won Olympics) 26.2
R3 (champion Olympics) 20.2
R4 (stood Olympics) 21.4
R5 (Olympics given) 31.8

A set of subplans that are shared between at least two
of the above query rewritings are given in the following
table. The last column in this table shows the amount
of saving in terms of the reduction in the estimated
number of I/Os if the subplan is materialized. The saving
is measured over the sum of the costs of local optimal plans.

Subplan Rewritings Saving
B0:((Olympics medalist) gold) R0,R1 26.4
B1:((Olympics medal) gold) R2,R5 10.9
B2:(Olympics was) R3,R5 -1.3
B3:(Olympics gold) R0,R1,R2,R5 -46.9
B4:((Olympics gold) an) R0,R2 -79.4
B5:((Olympics gold) the) R1,R5 -98.2
B6:(Olympics in) R3,R4 -598.7

Deciding which subplans to materialize, and which
rewritings should use the materialized subplans can be
tricky. Selecting a subplan to be materialized can influence
the cost of other subplans. The cost function for a given set
of rewritings is not necessarily linear, if the subplans are not
independent; i.e. for two interdependent subplans � � and
� � the total cost when both subplans are materialized is not
the sum of the costs when each subplan is materialized.

The problem to be addressed is to find a set of plans, one
for each rewriting, and a set of subplans, materialized in
advance and reused in plans, such that the total cost of eval-
uating the plans and materializing the subplans is minimal.
In Section 6.3 we introduce a heuristic and a greedy algo-
rithm that selects the subplans according to their estimated
cost saving. Once a subplan is selected to be materialized,
the other subplans can choose to use it to reduce their own
cost. The next section analyzes the complexity of problem
in its general form.
����� � � ������� �

	!� � ������� �
��

Given a query � , let ����� � be the collection of its rewrit-
ings including the query and

� $�� S�� � � N�� P � � 1 . � .

Definition 5. A subplan � is legal over ��� � � if there is 1
.	�

��� � � such that
� ������
 � �/1 . � .

Definition 6. Let � denote the set of all legal subplans
of ��� � � . We call � �

�� an optimal materialization set
over ��� � � if the sum of the costs of materializing � � and
evaluating ��� � � with � � materialized is minimal; i.e.

�
� �
�����

�
��� . ��� � � �S��

�
� N�� P

�
�/1��!��� � �

is minimal where
�
��� ��� � is the cost of evaluating � given

that � is evaluated in advance and its result is materialized.

Theorem 3. The problem of finding an optimal material-
ization set is NP-hard.

Proof Consider a slightly simpler version of the problem
where we want to find if there exists � �
 � such that

�
� �
��� �

�
�!� . �"��� � �S��

�
� N�� P

�
�/1 � ��� � �
#%$

for a fixed $. If we show the NP-hardness for this simpli-
fied version, the proof for the more general version follows.
We prove this by providing a reduction from the minimum
cover problem. Given a collection � of subsets of I , a min-
imum cover of size $ or less for I is � ��
&� such that he
union of the sets in �%� is I and ' � ��'
#($. Define a cost
function

�
as follows: (1)

�
�*) . ��� � $�� for every) . � � ,

(2)
�
�
�+�g�,� � � $ \ if � �-
.� and there exists) . � � �

that covers �/� , and (3)
�
�
�+�g��� � ��$10 otherwise. � � is a

minimum cover of size at most $ for I if
�
2 �
�43 �

�
�*) . ��� � � �^ � � U

�
�
� � �,� � �
$ �

Having a polynomial time algorithm for finding an op-
timal materialization set implies that we have a polynomial
time algorithm for the minimum cover which is unlikely
(unless P=NP). A naive algorithm may examine all possible
query plans which is expected to be large for large number
of terms and rewritings. Next we give a sub-optimal algo-
rithm that runs in polynomial time.���/� � � ��	 ����	�
������ � � � ��	

� �

We propose a greedy algorithm called Common Subplan
Greedy (CSGreedy) that gives a suboptimal solution with
a polynomial time complexity. This algorithm chooses the
subplans according to their savings, and the subplan with
the highest saving is chosen first. In each step, the algorithm
estimates the total cost of rewritings using the subplans cho-
sen so far, and continues until the cost is not decreasing any
more. The overall suboptimal plan is the plan with the min-
imum total cost. Intuitively, subplans which have low costs

6

and are shared among a large number of rewritings, have
priority to be selected.

The algorithm, as presented in Figure 2, takes a set � of
rewritings and returns a suboptimal solution � and an esti-
mated total cost for � . � is the set of subplans that would
need to be materialized; it is initially empty. In steps 2-4,
� is initialized to empty set and is incrementally populated
with the tuples c 1���� � where 1

�
� is a rewriting and �

is a local optimal plan for 1 . The search space for finding a
local optimal plan for each rewriting has a size linear to the
size of the query, as discussed in Section 5.

CSGreedy(R)

1 �����
2 �	�
�
3 foreach �
��� do
4 �	�
������������������� � �"!$#&%(')� � !*�+�-,/.0�214365
5 #7�8#7� � ����9:#/�;�:�8'
!*<$#&= #7�8#7�>� ����9:#:.(�?�@�
1
6 9A<*BC!D�+�-,E9F�HG>=I# � �+� 9A<*BC!D�+�-,E9�.(�J1
7 Sort the subplans based on their savings over P such that

9A�-KL%(,MGM.�9A<*BC!D�+�-,E9�.0%71@1ONP9A�-KL%(,MGM.�9A<*BC!D�+�-,E9�.RQL1@1 iff %O�SQ
8 foreach %UTWV��IXAXAXA�IY 9A<*BC!D�+�-,E9LY do
9 ���
�Z�)9I<$B7!D�+�-,E9�.0%C1
10 ����9:#/�;�:�8'
!*<$#&= #7�8#7�>� ����9:#:.(�?�@�
1
11 if ����9:#[�\#7�8#7� � ����9:# then
12 #&�]#&�>� ����9:#/�;�:�29A#
13 Update the plans in � assuming that � is materialized

else
14 return ���?�7#&�]#&�>� �:�29A#43
15 return ���[�@#&�]#&�>� �:�29:#[3

Figure 2. A greedy algorithm for finding sub-
optimal plans

In line 5, we find the total cost of the rewriting set which
is the sum of the minimum local costs of the rewritings since
� is empty. In lines 6 and 7 we find all subplans that can
be built from our set of rewritings and sort the subplans ac-
cording to their savings over the total cost estimated in Step
5. In lines 8-14, we iterate over the subplans, from the one
with the greatest saving to the one with the least and add
each subplan to � . Then we recompute the total cost of
rewritings given that the set � is materialized; the cost here
also includes the cost of materializing � and any additional
readings that may be needed. The iteration continues until
the point where materializing a subplan does not reduce the
cost. The algorithm returns a suboptimal plan and its cost.

In order to compute the complexity of our algorithm, we
assume that �

�
is the average number of terms per rewriting

and $ is the total number of rewritings. For lines 3 and 4,
the algorithm iterates over 	_^

.
� � ' 1

. ' � operations, for which
' 1 . ' is the size of rewriting in terms of the number of terms.
Therefore, the complexity for this section of CSGreedy is
approximately ` �*$�a �

�
� . Since we find and store the costs

of local optimal plans in lines 3 and 4, line 5 has a com-
plexity no more than ` �*$ � , which is negligible. In line 6,
CSGreedy computes all subplans that are shared between
two or more rewritings. Each subplan must have at least
two terms before it is useful. In order to compute the com-
plexity of the algorithm in lines 8-14 we model each term
as a random variable

�
that may happen to be in a rewrit-

ing �
. � $ � � � $ with a probability � �(b

�
�
.
��$ �

�-`
�

where � is the total number of terms. Given this probabil-
ity and solving for the expected number of unique overlaps
between any selection of rewritings, we would get the fol-
lowing formula for the expected number of unique overlaps:

^� 	
� �

�
�
� �
� #�c�edgf � -"h�$ �C� � �ia �� #�c�edgf ���*h � �C� 	 �

�
	 �

where � #�c�edgf is the binomial probability distribution
function. The reason both - and � are initiated to 2 and
greater is that we would like at least two terms be shared
with at least two rewritings, otherwise we would not con-
sider them for caching. Finally, we make a simplifying as-
sumption that the number of terms is greater than the num-
ber of rewritings, which is the case in most of our rewriting
sets. A numerical analysis shows that the expected number
of unique overlaps is approximately j�� �

� $?k i � . The most
expensive operation in lines 8-14 is estimating the cost of
rewritings with set � materialized; the time complexity of
this step is $ � � . Hence, the complexity of the algorithm is
j�� � �

� $?li � .
7 Experimental Results

In order to evaluate our algorithms we conducted sev-
eral experiments. The real dataset used for all these exper-
iments was a collection of more than 10,000 NSF proposal
abstracts. We processed each document and extracted a col-
lection of roughly 2.5 million terms and 100,000 sentences.
We calculated the frequencies for individual terms and term
association scores for pairs of terms and pruned the entries
according to our discussion in Section 4.m ��� � � � 	 ���
�� � � � �
�� �
�

In this experiment, we do a baseline comparison be-
tween a local optimal plan and an ‘average’ plan, in terms
of the difference in estimated costs. For ‘average query
plan, we estimate the cost for all query plans and com-
pute the average cost. For our testing, we generated 4 sets
of queries, with the number of terms per query fixed in
each set, but varied from 2 to 5 between sets. For each
set we generated 5000 queries with terms chosen randomly
from our term collection. To keep the naturalness of the
queries, the selection process used frequencies so that terms
with higher frequencies appear more often in our gener-
ated queries. The probability of selecting term n is there-
fore proportional to the frequency of n and is given by

7

� �Q& $
n ��$
�
��n �
`
	
C
���

�
�1&.� , where

�
is the corpus of

terms.
After generating the queries, we calculate the selectivity

for each query. The selectivity of a query is the expected
number of sentences that contain all the terms of the query,
and is given by the product of selectivities of its terms or
�?��- ����� $�� C

�
�� ����-.�1&.� , where ��� - �Q&.� is the selectivity of
term & , which is the ratio of sentences that contain & and ���
is the set of query terms. The other parameter we compute
is the standard deviation of the selectivities of the terms,
denoted by �?& " �1&.� . For each query we build all possible
plans, and estimate the cost for each plan using our cost
models.

10
−20

10
−10

10
0

0

0.2

0.4

0.6

0.8

1
2 terms

Query Selectivity

S
av

in
g

R
at

io

10
−20

10
−10

10
0

0

0.2

0.4

0.6

0.8

1
3 terms

Query Selectivity

S
av

in
g

R
at

io

10
−20

10
−10

10
0

0

0.2

0.4

0.6

0.8

1
4 terms

Query Selectivity

S
av

in
g

R
at

io

10
−20

10
−10

10
0

0

0.2

0.4

0.6

0.8

1
5 terms

Query Selectivity

S
av

in
g

R
at

io

Figure 3. Saving Ratios vs. selectivities(log-
scale)

10
−10

10
−5

10
0

10
−6

10
−4

10
−2

10
0

2 terms

selectivity

st
an

da
rd

 d
ev

ia
tio

n

10
−15

10
−10

10
−5

10
0

10
−5

10
0

3 terms

selectivity

st
an

da
rd

 d
ev

ia
tio

n

10
−20

10
−10

10
0

10
−4

10
−3

10
−2

10
−1

10
0

4 terms

selectivity

st
an

da
rd

 d
ev

ia
tio

n

10
−20

10
−10

10
0

10
−4

10
−3

10
−2

10
−1

10
0

5 terms

selectivity

st
an

da
rd

 d
ev

ia
tio

n

Figure 4. Spectrum of Saving Ratio
vs. selectivity(log-scale) and standard
deviation(log-scale)

The ratio of the saving, defined as (average cost - mini-
mum local cost)/average cost, is shown for each set of our
queries in Figure 3. As shown, the majority of the savings
are close to 1, which indicates that in most cases a best plan
has a much lower estimated cost. Also the saving is gener-
ally greater when the query selectivity is low, i.e. a small
fraction of data is retrieved. This is expected because a high
query selectivity is often the result of having only frequent
terms in queries, and for such queries there is not much dif-
ference between the costs of a best plan and an average plan.

However, there are some exceptions; in particular, the
plot of 2-term queries shows that not all queries with low
selectivities benefit the most. If all query terms have low se-
lectivities, it does not matter much which subset of the terms
and in what order they are placed on a plan tree, and as a re-
sult there is not much difference between a best plan and an
average plan in terms of the estimated number of I/Os. Fig-
ure 4 shows this intution for the same set of queries. The
intensity of the darkness of each point gives a measure of
the saving for a query, with darker points showing higher
savings. The saving not only depends on query selectivity
but also on the standard deviation of the individual term se-
lectivities. For a fixed selectivity, the saving ratio increases
as the standard deviation increases. The reason is that a
higher standard deviation results in a greater difference be-
tween minimum local cost and the average cost, because
best local plans can use low selectivity terms.m ��� � � �
�� �
� � � � � � � � �
� 	�
�� �����
	 ��	 � 	�� � �

To evaluate the accuracy of our cost model in a real set-
ting and its applicability within a relational database frame-
work, we tried to push our query plans to a commercial
database engine and compared the costs (in terms of run-
ning time) to the costs of the plans fully generated by the
relational engine. Most commercial databases that we are
aware of impose restrictions that prevent one from passing
a query plan. We used IBM DB2 as our relational DBMS,
and generated a set of around 5700 random queries having
2 to 5 terms each. For each query we obtained two SQL
queries: one query only had the terms of the best local plan
and the other had all the terms of the query (referred to as a
full filtering plan). Since DB2 does some kind of caching,
different invocations of a query can result in different exe-
cution times. Therefore, we ran each query three times and
only considered the minimum cost (cost of the query with
the most caching). To make a fair comparison, we added
the CPU overhead of our cost estimation to the execution
times of best local plans on DB2. On a modest machine
(PIII/933MHz with 2GB RAM), the overhead was on aver-
age 0.93ms, 1.8ms, 2.99ms and 4.36 ms for queries with 2,
3, 4 and 5 terms respectively.

Figure 5 shows the savings in the execution times of best
local plans over the full filtering plans. The majority of the
queries have a saving greater than or equal to zero, which

8

means that DB2 has a smaller running time for the best lo-
cal plan we find over a plan that contains all query terms.
Our experiment shows that on average, best local plans run
approximately 1.8 times faster on DB2. For queries with
more terms, the saving is higher on average. The average
savings are 0.09, 0.20, 0.28 and 0.31 for queries with 2, 3, 4
and 5 terms, respectively. The amount of the saving is less
than our estimated saving over average plans. There are two
reasons for this: first, we could only pass our term selection
but not ordering to DB2; second, DB2 was doing its own
optimization on query expressions of both full filtering and
best plans. That said, in order to show the statistical signifi-
cance of the difference, we conducted a student’s t-test with& $ * � ��� * and � � � * \ . the probability that our plans exe-
cuted faster than DB2 plans is by chance is less than 0.0025.

−1.25 −1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
0

500

1000

1500

2000

2500

3000

3500

Saving Ratio

N
um

be
r

of
 Q

ue
ry

 In
st

an
ce

s

Figure 5. The histogram of the savings of db2
running times for 5568 queries

m �/� �

�
���� � �����

	�
�� �
�
In the presence of multiple rewritings, finding an opti-

mal plan is computationally expensive, as shown analyti-
cally; hence we came up with a greedy algorithm which
was significantly faster. The objective of our experiment in
this section is to evaluate the effectiveness of our greedy al-
gorithm. For our rewriting set, we generated a number of
query seeds and used each seed to produce a set of rewrit-
ings by replacing, adding or removing terms from the query
seed. We created 2 sets of query seeds, each with 100 seeds;
query seeds in one set had 4 terms and in the other set had
5 terms. Query seeds were generated by selecting random
terms from our collection of terms. For each query seed
of size � , the rewritings were generated by randomly re-
placing, adding or removing 1 terms, where 1 varied from
� to � ��� , giving � � � different sets of rewritings. The
probability of replacing terms was 0.5, while probability of
adding and removing terms were 0.25. All our term selec-

tions adhered to the probability given in Section 7.1 Finally,
we ended up with 700 rewriting sets, each having 10 rewrit-
ings.

For each rewriting set, we find and estimate the costs of
a sub-optimal plan using CSGreedy, an optimal plan using
an exhaustive search, and a plan that consists of local op-
timal plans for each rewriting. We find the saving for both
CSGreedy and optimal strategies over the sum of minimum
local costs. Figure 6 compares the savings of CSGreedy
and exhaustive optimal search for 429 rewriting sets that
were discussed. Each data point on this figure gives the
greedy saving of one set of rewritings. Since the horizontal
axis shows the savings of optimal plans, any point on line
y=x represents a query for which CSGreedy finds an opti-
mal plan. All the data points must be under the diagonal
line of y=x because no rewriting set can have a greedy sav-
ing greater than optimal. Also the closer the data point is
to the optimal line, the better it estimates the optimal solu-
tion. As this figure shows, there are many rewriting sets for
which CSGreedy finds an optimal solution. Moreover, there
are only a few number of rewriting sets for which CSGreedy
cannot find a solution better than the sum of minimum lo-
cal costs. The amount of saving of CSGreedy is also very
much compareable to that of optimal; on average the saving
is within 92% of the saving of an optiaml plan.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Saving of Optimal Cost over sum of best local costs

S
av

in
g

of
 G

re
ed

y
C

os
t o

ve
r s

um
 o

f b
es

t l
oc

al
 c

os
ts

Ratio of Savings of Optimal Cost and Greedy Cost

Figure 6. The Saving of Optimal Cost vs. the
Saving of Greedy Cost

8 Conclusion and Future Extensions
In this paper, we propose using relational databases for

querying natural language text and address the issues of
mapping and optimizing queries. Our theoretical results
show that we can significantly reduce the size of the search
space for the plans of a NLTQ, while guaranteeing to find
an optimal plan. We also show that finding the overall op-
timal plan for a NLTQ and its set of rewritings is NP-Hard

9

in general. Therefore, we propose an efficient greedy algo-
rithm with expteced j�� � �

� $ li � time complexity where �
�

is the average number of terms per rewriting and $ is the
number of rewritings. Our experimental results show that
the estimated costs of our local optimal plans are usually an
order of magnitude less than the costs of average plans, and
that query selectivity and standard deviation of term selec-
tivities are two major factors that determine the amount of
saving. The actual execution times for our queries mapped
into SQL show that our cost model performs well in esti-
mating the cost, and that taking into account the overhead
for optimizing queries, it is beneficial to find the optimal
plan on a commercial relational database. Our final results
on optimizing a set of multiple rewritings demonstrate that
our CSGreedy algorithm performs well compared to an op-
timal plan, with an average saving within 92% of the saving
of an optiaml plan.

To the best of our knowledge, this is the first work that
studies the issues related to querying and query optimiza-
tion over natural language text in the context of relational
databases. As a future extension we can consider the study
of joining result set of NLTQ’s with other relational data for
different sizes of join. We would expect that our estimated
optimal plans on average would outperform a random plan
or a plan which chooses all the terms of the query. More-
over, as the size of the join increases we would expect to see
a larger gap between the performance of our optimal plans
and any random plan on average. As another future work,
it would be interesting to somehow conduct experiments to
compare the effect of optimizing multiple rewritings on a
commercial relational database framework.

References

[1] Pubmed. http://www.ncbi.nlm.nih.gov/

entrez.
[2] Kdd cup 2002, 2002. http://www.biostat.wisc.

edu/˜craven/kddcup/.
[3] Oracle text, an oracle technical white paper,

2005. http://www.oracle.com/technology/

products/text/pdf/10gR2text_twp_f.pdf.
[4] Eugene Agichtein. Extracting Relations From Large

Text Collections. PhD thesis, Columbia University,
2005.

[5] Dirk Bahle, Hugh E. Williams, and Justin Zobel. Ef-
ficient phrase querying with an auxiliary index. In SI-
GIR, pages 215–221, 2002.

[6] Sergey Brin. Extracting patterns and relations from the
world wide web. In WebDB, pages 172–183, 1998.

[7] Surajit Chaudhuri, Umeshwar Dayal, and Tak W. Yan.
Join queries with external text sources: Execution and
optimization techniques. In SIGMOD Conference,
pages 410–422, 1995.

[8] Surajit Chaudhuri, Venkatesh Ganti, and Luis Gra-
vano. Selectivity estimation for string predicates:

Overcoming the underestimation problem. In ICDE,
pages 227–238, 2004.

[9] Nancy Chinchor. Muc-7 named entity task defini-
tion. In Seventh Message Understanding Conference
(MUC-7), 1998.

[10] Mariano P. Consens and Tova Milo. Algebras for
querying text regions: Expressive power and opti-
mization. Journal of Computer and System Sciences,
57(3):272–288, 1998.

[11] Open Text Corporation. Enterprise content manage-
ment solutions (ecm). http://www.opentext.com.

[12] Stefan Deßloch and Nelson Mendonça Mattos. Inte-
grating sql databases with content-specific search en-
gines. In VLDB, pages 528–537, 1997.

[13] Roy Goldman and Jennifer Widom. Wsq/dsq: A prac-
tical approach for combined querying of databases and
the web. In SIGMOD Conference, pages 285–296,
2000.

[14] Haobin Li and Davood Rafiei. Dewild: a tool for
searching the web using wild cards. In SIGIR, page
731, 2006.

[15] Albert Maier and Hans-Joachim Novak. Db2’s full-
text search products - white paper, 2006.

[16] Marius Pasca, Dekang Lin, Jeffrey Bigham, Andrei
Lifchits, and Alpa Jain. Names and similarities on the
web: fact extraction in the fast lane. In ACL, pages
809–816, 2006.

[17] Prasan Roy, Srinivasan Seshadri, S. Sudarshan, and
Siddhesh Bhobe. Efficient and extensible algorithms
for multi query optimization. In Weidong Chen, Jef-
frey F. Naughton, and Philip A. Bernstein, editors,
SIGMOD Conference, pages 249–260. ACM, 2000.

[18] Airi Salminen and Frank William Tompa. Pat expres-
sions : an algebra for text search. In COMPLEX, 1992.

[19] Stephen Soderland. Learning information extraction
rules for semi-structured and free text. Machine
Learning, 34(1-3):233–272, 1999.

[20] Ellen M. Voorhees and Dawn M. Tice. Building a
question answering test collection. In SIGIR, pages
200–207, 2000.

Appendix
Lemma 1. The number of query plans for a NLTQ with �
terms is given by 	
K
� � � ���'� � � �0� where

� ��� ��� �.�0� $7XZ [� � $ �
�� 	 K"l �.

� � � ��� ��� �. �.� � �'����� >�.��� � � � � �
Proof of Lemma 1. In order to find the search space

size for plans with � nodes, selecting their terms from �
different terms from the query, we first need to enumerate
the different orientations that a plan tree can take with �

10

leaves and then we will find how many different permuta-
tions can � different terms make on such a tree. For ex-
ample, the number of different orientations that a tree can
take with � $ � or � $ *

is only one. These are shown in
Figure 7.(a). Therefore, the number of different trees with
� $�� is �
 ��� $�� when we have � terms to distribute over
leaves.

For � d *
we can solve this problem recursively and

solve for the left and right subtrees. Therefore, we can have
$ leaves in the left subtree and � � $ leaves in the right
one. We denote such a tree with �*$ � �/� �%$ � . However, it
turns out that � $ � � � � $ � and �/� � $ � � $ � give the same fil-
tering sequence and have the same plan cost. This is shown
for a query plan with � $�� in Figure 7.(b). It turns out
that for each plan there is a symmetric plan that does the
same filtering and can be obtained by rotating the tree hor-
izontally. Therefore, we have to halve the total number of
query plans possible for a tree with � leaves. This results in
the � ���'� � � �0� recursive function. In order to find the over-
all space size, we just need to sum over trees with different
numbers of leaves, from 1 to N, which gives the formula for
our lemma.

(a) (b)

Figure 7. Examples of binary trees for differ-
ent number of leaves

Theorem 1. Assuming terms independence, for a query
plan with � leaves represented in a Left Deep Tree (LDT),
the lowest estimated cost can always be obtained by sort-
ing terms according to their frequencies and placing lower
frequency terms on leaves in higher depths.

Proof of Theorem 1. Figure 8.(a) shows our target LDT.
terms are sorted according to their frequencies and lower
frequency terms are placed at the bottom of the tree. For
such a tree, we have��� k�	� # �x�. #
��� � . # � ���� k�	� # �x� � . # � � ��
 �/ �%d�
 ��� �

f2f1

f

f

fn

4

f3

f2f1

f

fn

i

(b)(a)

j

Figure 8. LDTs used for representing query
plans. (a) Best query plan LDT with n leaves
(b) terms on

C ,
and � C , leaves have been re-

placed

Where
 � $ � is the height of node (leaf) $. Cost of this
ordered LDT is given by�
� $ 6985:�� �������

� �
� C�aE �����

�0� * ��� � � C�aE � � � ���
� ���� K�

^ ��� 6985: �
�
����� ^ l � #
�%� � ����� � C� E #
�

^ �
Where

�
����� � is the frequency of the resulting subtree and

is given by I C a � �. � � M �U � .Figure 8.(b) is the same as the LDT to it’s left except that
terms and � have been swapped. Therefore, in this LDT
we have Fc�� but
 ���'� c�
 � *� . The cost of this unordered
LDT is given by�
� $ 6985: � � � ���

� �
�DC�aE ��� �

�0� * � � � �DC�aE � � � ���
� � �� . l ��

^ ��� 6985: �
�
����� ^ l � #
�%� � ����� �DC� E #
�

^ �� 6985: � � ����� . l � #?� � � � � � � C�aE #?� � �� � l ��
^ �
.��
�
698�: � � ����� . l � j � j .�� ����� ^ l � #���� � ��� � �DC� E #��

^ �� 6985: � � ����� . l � j � j .�� ����� � l � #���� � ��� � �DC� E #�� . �� K�
^ � �

�
�
6985: � � ����� ^ l � #���� � ��� � �DC� E #��

^ �
We can easily show that the following two relations hold

11

��� �3�")
� (� � � �-#)�� 6985: �1��� (� #�6985:0�*)�� (� .��� �g� ��� � � �h; �g� �!� ��� � =��0� ����� � � � ^ � d � ^ , where
� ����� gives the power set of � .

Comparing
�
� and

�
� shows that LDT costs are equal for

the � � lower leaves and � � � upper leaves. These are first,
second and last statement of

�
� which are equal to their

corresponding costs in
�
� . Moreover, using the relations

above we can easily show that the fourth statement of
�
� is

always less than or equal to it’s corresponding cost in
�
� ,

which is

� l ��
^ �
.��
�
698�: � � ����� . l � j � j .�� ����� ^ l � #�� � � � � � � C�aE #��

^ �
#

� l ��
^ �
.��
�
698�: � � ����� ^ l � #?��� � �%� � �FC� E #?�

^ �
Therefore, we only need to compare the costs at leaves
and � . To complete the proof, we need to show that the
following always holds

6985:
����
	 � ����� . l � #
�%�
 �
� �� � ����� � C� E #
� �
 ��� �

3

�����
�

� 6985:
����
	 � ����� . l � j � j .�� ����� � l � #?���
 �
� �� � ����� �DC� E #?� .
 ��� ��

� ���
�

6985: � � ����� . l � #?� � � � � � � C�aE #?��. �� 6985: ��
	 � ����� � l � #?� �
 �
� �� � � � � �DC�xE #?� � ����

We can see that � dWd d�� and �+d �
. We have6 85: ��� ��� ��d�6 85: ��� � � �

� �(6985:0��d$� � � $ d � � #�d # � #%�� 698�:0��� �,�%� $��� �
� d �

���� ��6 85:0�Cd � � � $ � � � #Wd #��&#%�6 85:0�Cd � � � � 6985:0��� �,� � $ G � � � �&# �� � � � #��

�&#%� � 6 85:0��� � � � � 6985:0��� �,� � $ � � �� � #�� � �
� d �

�
� #�� � 6 85:0��� � � � � 6985:0��� �,� � $ � � 6985: �*� � � �� 6 85:0�*� � � �
#%� � �

� d �
�

Theorem 2. Assuming terms independence, a query plan &
with � leaves has a traversal equivalent left deep tree that
always has an estimated cost less than or equal to the esti-
mated cost of & .

Proof of Theorem 2. An LDT has the property that it
only has one leaf pair at the lowest level of the tree and no
other leaf has any leaf siblings. Any non-LDT has at least
one extra leaf pair. we compare the cost of a leaf pair and
cost of two leaves on consequent levels of a tree as will ap-
pear in an LDT. Figure 9.(a) shows an LDT and Figure 9.(b)
shows one of it’s traversal equivalent Bushy trees. As The-
orem 1 suggests, we assume the frequencies of the LDT
are sorted and assume we have the same frequencies for our
traversal equivalent bushy tree. Using Figure 9 and cost for-
mulas, we compute the cost of the LDT and bushy subtrees
as follows.

(a) (b)

f

f

f

f1 f f f2

3

4

2 3 4f1

c

c

c

cP

B

L

P

Figure 9. An LDT versus bushy tree. Bushy
trees have at least one leaf pair more than
LDTs

(
! $ 6985: � � S � � � � � � � C�#" � � � �
698�: � � S � �I C �%� � ��� �

�DC� E �%$ � �
(
"

(1)

(3 $]6 85: � � � ��� � � �DC�aE ��� � � � * � � � �DC��" �
� � ��� $

� �� * � � � �DC�xE � � �%$I C � 6 85: � � S � � � � � � �DC�aE � � � �I C � �
(
"

(2)

12

Where (! is the cost of the LDT subtree and (3 is the
cost of the bushy subtree. Moreover, we can easily show
that � �) # (� 6 85:0���3�,� � � 6985:0�*)
��� � # ((3)

Where � and � could be any numbers. Using
Equations(1),(2) and the above formula, we have

� � � � � C�#" � � � � � � � � � C�aE � $ � # * � � � � C�#" �
� � ��� $

�

Using relation 3 and adding (
"

to both sides of inequality,
will result in the following inequality.

(
! # (" � * � � � � C�#" �
� � ��� $

�
 �
� �� f (4)

similarly, we have

� � � � � C�#" � � � �
��(
� S � � I C � � � # � � ��� � � � C�aE ��� � �

� (
! # (" ��� � ��� � � �DC�xE ��� � �
 ��� �� i
(5)

Finally, using inequalities (4),(5) we will have (�! #
(
" � 6985:0�!� �
�,� � � and this proves our theorem or (�! # (3

13

