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Abstract

Turbulence is a chaotic motion of fluid that can be described by the Navier–

Stokes equations or even highly simplified shell models. Under the continuum

limit, standard shell models of turbulence are shown to reduce to a com-

mon evolution equation that reproduces many predictions of the classical Kol-

mogorov theory. In the spectral domain, the quadratic advective nonlinearity

of the Navier–Stokes equations appears as a convolution, which is often calcu-

lated using pseudospectral collocation. An implicit dealiasing method, which

removes spurious contributions from wave beating in these convolutions more

efficiently than conventional dealiasing techniques, is investigated. Even with

efficient dealiasing, the simulation of highly turbulent flow is still a formidable

task. Decimation schemes such as spectral reduction replace the many de-

grees of freedom in a turbulent flow by a limited set of representative quan-

tities. A new method called multispectral reduction is proposed to overcome

a significant drawback of spectral reduction: the requirement that all scales

be decimated uniformly. Multispectral reduction, which exploits a hierarchy

of synchronized spectrally reduced grids, is applied to both shell models and

two-dimensional incompressible turbulence.
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Chapter 1

Introduction

Wherein the models under consideration are introduced, and

the questions and problems to be addressed are discussed.

Most of the matter in the universe is undergoing chaotic motion in response

to external forces and internal damping. This is equally true if we consider the

blood running through our veins, stellar plasma, or the thin dust from which

all of this was formed.

This behaviour is called turbulence, and is characterized by activity at

many scales, from waves the size of the system, and through all intermediate

scales down to the relatively microscopic scales where the motion is dimin-

ished by friction. Despite the relative simplicity of the equations that we use

to describe this motion and the near ubiquity of the phenomenon itself, our

understanding of turbulence is surprisingly incomplete and we often lack the

ability to make accurate probabilistic predictions of turbulent systems ana-

lytically. Moreover, the huge range of spatial and temporal scales involved

in modelling such systems vastly outstrips the ability of modern computers,
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and will continue to do so for the foreseeable future. This complexity leaves

us unable to predict basic properties that are fundamental to both practical

applications and our understanding of the natural world.

1.A Outline

This dissertation is divided into six chapters. Chapter 1 introduces the reader

to the models under consideration, namely the Navier–Stokes equations and

shell models of turbulence, and various properties of these models are dis-

cussed.

In Chapter 2, we demonstrate that the standard shell-models of turbulence

produce the same evolution equation under the continuum limit, and that this

limit reproduces many predictions of classical Kolmogorov theory.

The Navier–Stokes equations possess a quadratic nonlinear term, the cal-

culation of which is a difficult and slow step in performing simulations of

turbulent systems. In Chapter 3, we describe a computational technique for

implicitly dealiasing convolutions, which improves upon the standard zero-

padding technique for calculating Fourier-transform based convolutions.

While the implicitly dealiased convolutions of Chapter 3 allow one to per-

form simulations with significantly less computational effort, the simulation

of highly turbulent systems is still too difficult for even the most modern of

computer systems, and will remain so for the foreseeable future. Chapter 4 de-

scribes spectral reduction, which is a decimation scheme for turbulent systems

that allows one to perform simulations with greatly decreased effort.

Unfortunately, spectral reduction requires that one decimate at all length

scales, which is a significant drawback to the method. This problem may
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be overcome by using the method of multispectral reduction, which is the

subject of Chapter 5. The multispectral method is a numerical technique that

makes use of a hierarchy of spectrally reduced grids in Fourier space, allowing

one to decimate non-uniformly. In principle, this method is applicable to all

time-dependent partial differential equations that are amenable to spectral

reduction.

The above-mentioned results are summarized in Chapter 6, in which open

problems and future work are also discussed.

1.B The Navier–Stokes Equations

The Eulerian velocity of an infinitesimal fluid parcel with position x = (x, y, z)

is denoted u(x, t) = (u(x, t), v(x, t), w(x, t)). The motion of this fluid parcel

is effected by advection, pressure, viscosity, and external forces.

Let ρ be the density of the fluid. The change in the momentum per unit

volume is given by

(1.1)
∂(ρu)

∂t
=
∑

Forces per unit volume,

where the right-hand side is a sum over the advective, pressure, viscous, and

external forces. In the case where ρ(x, t) = ρ, (i.e. constant density) one can

divide the external forces by the density to isolate the time derivative of u on

the left-hand side of equation (1.1), yielding

(1.2)
∂u

∂t
=
∑

Forces per unit mass.

The advective force can be represented via a Lagrangian derivative,

(1.3)
∂u

∂t
+ u · ∇u,
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which represents how the fluid parcel reacts to the motion of fluid parcels in

its vicinity; i.e. the fluid parcel, in absence of other forces, will move with the

fluid around it.

The fluid parcel will be accelerated by pressure forces. Considering pressure

and advective forces, the equation of motion is

(1.4)
∂u

∂t
+ u · ∇u = −1

ρ
∇P,

where P (x, t) is the pressure. Note that equation (1.4) is a three-dimensional

equation (i.e. it has x, y, and z components), but contains four unknowns,

namely u, v, w, and P . As such, an equation of state, which relates the pressure

field to the velocity is required to close equation (1.4). In this monograph, we

restrict ourselves to incompressible flows; that is, we insist that the density

has zero Lagrangian derivative. In other words, the fluid is incompressible if

and only if

(1.5)
∂ρ

∂t
+ u · ∇ρ = 0.

This, in combination with the continuity equation

(1.6)
∂ρ

∂t
+∇ · (ρu) = 0,

which guarantees conservation of mass, implies that

(1.7)∇ · u = 0

everywhere. If the initial conditions are such that ρ is initially constant (which

we will assume for the remainder of this monograph), then incompressibility

guarantees that ρ is constant at all time. Thus, without loss of generality, let

ρ ≡ 1. Equation (1.7) is particularly advantageous when performing simula-

tions, as it allows one to reduce the dimensionality of the problem.

4



Most (though not all) of the models that we will consider include friction.

For fluids, this is known as the kinematic viscosity, governed by the physical

parameter ν. In the case of molecular viscosity, the velocity changes as

(1.8)ν∇2u.

Molecular viscosity preferentially diminishes small-scale features of the flow

field. Some models incorporate hyperviscosity, in which ∇2 is replaced by

(−1)p+1∇2p for some integer p > 1.

In some cases (for example bounded two-dimensional simulations) there are

two viscous terms that remove energy from both the large and small scales.

One typically uses two coefficients νL to denote the viscosity that damps large

scales (i.e. low wavenumbers) and νH to denote the viscosity that damps small

scales (i.e. high wavenumbers). The effect of this on the velocity field is given

by
(1.9)− νLu + νH∇2u,

where we have chosen a constant damping at the low wavenumbers and molec-

ular viscosity to damp high wavenumbers.

Finally, models often include an external body force, be it gravity, the

influence of a rotating reference frame, or a more purely mathematical con-

struct. We denote such force F (x, t). For the purposes of this monograph, we

generally consider F to be a white-noise banded force, i.e. one that is delta-

correlated in time and active over only a certain range of scales. This allows

one to control the energy injection rate (Novikov [1964]), which is useful for

testing statistical theories of fluid motion.

By combining the forces of advection, pressure, viscosity, and the ex-

ternal force, and assuming the fluid to be incompressible, we arrive at the
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incompressible Navier–Stokes equations,

∂u

∂t
+ u · ∇u = −1

ρ
∇P + ν∇2u + F , (1.10)

∇ · u = 0.

This can be formulated in terms for the vorticity,

(1.11)ω
.
=∇× u

(the notation
.
= is used to emphasize a definition). In the case where∇·u = 0,

equation (1.11) is invertible up to some function A with ∇×A = 0 since

(1.12)ω =∇× u =∇× (u + A).

The Navier–Stokes equation may be expressed in terms of the vorticity by

taking the curl of equation (1.10), which yields

∂ω

∂t
+ u ·∇ω = ω ·∇u + ν∇2ω +∇× F . (1.13)

One closes the equation by inverting Equation (1.11) to obtain u(ω).

Properties of the Navier–Stokes Equations

The incompressible Navier–Stokes equations conserve energy when both the

forcing and viscosity are zero. The energy is defined as

(1.14)E
.
=

1

2

∫

Ω

|u(x, t)|2 dx,

where Ω is the physical domain of the fluid. One can prove that energy is

conserved (assuming periodic boundary conditions and that the velocity is
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uniformly continuous) by taking the time derivative of the energy:

(1.15)

dE

dt
=

1

2

d

dt

∫

Ω

|u(x, t)|2 dx

=

∫

Ω

u · ∂u
∂t

dx

=

∫

Ω

u · (−u ·∇u−∇P ) dx

= −
∫

Ω

u ·∇
(
|u|2

2
+ P

)
dx

=

∫

Ω

(∇ · u)

(
|u|2

2
+ P

)
dx

= 0

since ∇ · u = 0.

In three dimensions, equation (1.10) admits another non-trivial invariant

called helicity. The helicity is defined as

(1.16)H
.
=

1

2

∫

Ω

u · (∇× u) dx,

and is conserved when ν and F are zero since (e.g., Frisch [1995])

(1.17)
dH

dt
= ν

∫

Ω

[ω · (∇× ω)] dx.

Helicity is not a sign-definite quantity, so it doesn’t play as obvious a rôle in

determining the behaviour of a fluid system as, for example, energy.

In two dimensions, helicity is conserved trivially since ω and u are per-

pendicular, and thus H = 0. Two-dimensional inviscid flows also conserve the

enstrophy, defined as

(1.18)Z =
1

2

∫

Ω

|ω|2 dx,
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which is conserved since

(1.19)

dZ

dt
=

∫

Ω

ω · ∂ω
∂t

dx

=

∫

Ω

ω · (−u ·∇)ω dx

=

∫

Ω

(∇ · u)
|ω|2

2
dx

= 0

since ∇ · u = 0. Since enstrophy is positive-definite, it plays an important

role in two-dimensional fluid mechanics. Two-dimensional turbulence also con-

serves an infinitude of other quantities known as Casimir invariants, which are

arbitrary L1 functions of vorticity. However, these invariants are lost in finite-

resolution simulations, and one typically focuses primarily on the conservation

of energy and enstrophy alone.

Solutions to the Navier–Stokes equations are invariant under the map

(1.20)(t,x,u, ν)→
(
γt, λx,

λ

γ
u,
λ2

γ
ν

)
,

for arbitrary non-zero λ and γ ∈ R. If U is a characteristic velocity and L a

characteristic length scale, then the Reynolds number

(1.21)R =
UL

ν

is invariant under the mapping in equation (1.20). This allows one to char-

acterize solutions to the Navier–Stokes equations by considering all solutions

with equal Reynolds number. Low Reynolds-number solutions are dominated

by viscosity, whereas high Reynolds-number solutions are more influenced by

the nonlinear forces. At low Reynolds number, the fluid will move laminarly,

with the nonlinear part of equation (1.10) not playing an important rôle. When

the Reynolds number reaches a certain value, the nonlinear term will suddenly
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become more active, causing the fluid to move in complicated fashions and en-

ergy to be transported to smaller scales, where it is dissipated. This behaviour

is called turbulence. As it is ubiquitous, we have been aware of the existence

of turbulence for many centuries; as it is complex and irregular, our under-

standing of turbulence falls far from what one would otherwise expect of such

an important, ancient, and omnipresent phenomenon.

Our modern understanding of turbulence is founded on the work done

by A.N. Kolmogorov [Kolmogorov 1941] in which he considered the transfer

of energy between scales to be a cascade, wherein energy moves from larger

scales to smaller scales via intermediate scales. The viscous term in the Navier–

Stokes equation is predominantly active at the small scales, where it acts to

remove energy, while energy injection (via forcing) is typically restricted to

large scales. In statistically steady three-dimensional turbulence, the energy

is transferred by the nonlinear (advective) term from the large scales to the

small scales. The region of Fourier space in which this energy transfer takes

place, in the absence of forcing and dissipation, is called the inertial range.

For scales within the inertial range, viscous forces are sub-dominant. Let ε

be the energy injection rate per unit mass, and u(k) be the typical veloc-

ity at wavenumber k. The energy spectrum E(k) is defined by the equation
∫
E(k) dk = E. Kolmogorov argued that only the typical velocity magni-

tude u, the energy injection rate ε and the wavenumber k are relevant in the

inertial range. Dimensional consistency gives ε ∼ u3k, so u ∼ (ε/k)1/3 and

u2 ∼ (ε/k)2/3. But u2 = 2
∫
E(k) dk has the same dimensions as kE(k), so

(1.22)E(k) = Ck−1
( ε
k

) 2
3

= Cε
2
3k−

5
3

for some dimensionless quantity C.
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The k−5/3 energy spectrum was predicted by Kolmogorov [1941], who con-

jectured that C is a universal constant for all fully developed turbulent flows.

He also established formulae for structure functions of turbulent flows, namely

the parallel velocity increments

(1.23)δu ‖(x, `)
.
= (u(x + `)− u(r)) · ˆ̀,

where ˆ̀ is a unit vector parallel to `. Letting 〈. . . 〉 .
=
∫
. . . dx/

∫
dx, Kol-

mogorov used isotropy to determine a scaling for the pth order structure func-

tion

(1.24)
Sp(`)

.
=
〈∣∣δu‖(x, `)

∣∣p〉

= Cpε
p
3 `

p
3

∼ `ζp ,

where ζp is the pth-order structure function exponent. Moreover, Kolmogorov’s

prediction that ζp = p/3 this was shown to be exact for p = 3. Equation (1.24)

produces, with some additional arguments, the Kolmogorov energy spectrum

with more rigour than mere dimensional analysis.

While Kolmogorov’s argument is exact for p = 3, other cases are subject

to corrections known as anomalous scaling. Both numerical and physical ex-

periments show a deviation from ζp = p/3 for p 6= 3, with ζ1 and ζ2 being less

than predicted, and ζp being higher than predicted for p ≥ 4.

The energy spectrum is divided into three parts: the energy-injection re-

gion, which encompasses the scales at which the external force is active; the

inertial range, in which energy is transferred from large scales to small scales,

and the dissipation range, in which kinetic energy is removed from the sys-

tem. The dissipation range has a characteristic scale given by the Kolmogorov

dissipation scale,

(1.25)ηd
.
=

(
ν3

ε

) 1
4

.

10



This determines the smallest scales that are active in a turbulent system.

When ν is generally small, ηd is also quite small, producing a very wide range

between the largest and smallest active scale, with no quiescent intermediate

scale. The time-scale corresponding to velocity fluctuations that obey Kol-

mogorov scaling with length scale near ηd is

(1.26)τd
.
=
(ν
ε

) 1
2
.

Turbulent systems with high Reynolds number (i.e. small ν) have a wide range

of physical and temporal scales.

In two dimensions, the situation is complicated by the presence of two

quadratic positive-definite invariants, namely energy and enstrophy. Let ε be

the energy injection rate and η be the enstrophy injection rate due to the

external forcing F . The energy cascade of two-dimensional turbulence was

first considered by Kraichnan, Leith, and Batchelor, who considered trun-

cated two-dimensional Navier–Stokes systems [Kraichnan 1967], [Leith 1968],

[Batchelor 1969], [Kraichnan 1971], [Kraichnan 1975]. The picture of the en-

ergy and enstrophy cascades, first proposed by Fjørtoft [1953], is shown in Fig-

ure 1.1. Energy (and hence enstrophy) is injected into the central set of wave

k1 k2 k3
E1

Z1

E3

Z3

E2 Z2

Energy and Enstrophy Injection

Figure 1.1: Fjørtoft diagram, showing the transfer of energy and enstrophy
injected at intermediate wavenumber k2, which is then transported to lower
wavenumber k1 and higher wavenumber k3.
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vectors with characteristic wavenumber k2. Nonlinear interactions between the

wave vector sets will move an amount of energy E1 from the middle set with

characteristic wavenumber k2 to the left set with characteristic wavenumber k1.

The characteristic wavenumbers are defined as satisfying k2
i = Ei/Zi. This re-

distribution of energy carries with it a redistribution of enstrophy, which we

label Z1. Similarly, energy E3 and enstrophy Z3 moves from the middle set to

the right set with characteristic wavenumber k3. If k1, k2, and k3 are typical

wavenumber for the boxes, then the equations describing the balance of energy

and enstrophy transfers are

E2 = E1 + E3, (1.27)

Z2 = Z1 + Z3, (1.28)

that is,

E2 = E1 + E3, (1.29)

k2
2E2 = k2

1E1 + k2
3E3. (1.30)

This implies that

E1 = E2
k2

3 − k2
2

k2
3 − k2

1

. (1.31)

If, for example, k1 = k, k2 = 2k, and k3 = 4k, then we should expect

E1 =
4

5
E2, (1.32)

E3 =
1

5
E2.
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Thus, we expect to see a dual cascade, with energy moving primarily to lower

wavenumbers and enstrophy moving to higher wavenumbers. In an unbounded

domain, the modes approaching k = 0 act as an infinite reservoir that the

energy cascade cannot saturate. In this case, the infinite-reservoir allows an

inverse cascade of energy, and one expects a k−5/3 inverse cascade and a k−3

direct cascade.

The Spectral Navier–Stokes Equations

The spectral Navier–Stokes equations are the result of performing a Fourier

transform on the incompressible Navier–Stokes equations given in equation (1.10).

That is, we consider the Fourier transform uk of u(x),

(1.33)uk
.
=

∫
u(x)eik·x dx,

where k is the wave vector for the mode with complex amplitude uk. Since

the x-space data u(x) is real-valued, the Fourier-transformed data exhibits

Hermitian symmetry, i.e.
(1.34)u−k = u∗k,

where (. . . )∗ denotes complex-conjugation. Taking the divergence of the Navier–

Stokes equations and applying ∇ · u = 0 results in the equation

(1.35)−∇2P =∇ · [(u ·∇)u],

the solution to which yields the pressure field from the velocity. On using

this constraint to eliminate the pressure from equation (1.10), the Fourier

transform of the three-dimensional incompressible Navier–Stokes equation is

(1.36)
∂uk

∂t
=

(
I − kk

k2

) ∑

p+q=k

i(k · up)uq − νk2uk + Fk.
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For simulations in a periodic domain, with x ∈ (2π)dRd/Zd, the wave vectors k

lie in Zd. Since
(1.37)∇ · u = 0 ⇐⇒ k · uk = 0,

one can eliminate one component of uk.

For two-dimensional turbulence, equation (1.37) allows one to eliminate all

but one component of the velocity field, and it is particularly efficacious to use

the vorticity formulation given in equation (1.13). In two dimensions, ω = ωẑ,

and ω · u = 0, so we may rewrite the vorticity-based Navier–Stokes equation

(1.13) as

(1.38)
∂ω

∂t
+ (u ·∇)ω = ν∇2ω + ẑ ·∇× F .

Denoting f
.
= ẑ ·∇× F , the Fourier transform of equation (1.38) is

(1.39)
∂ωk

∂t
=
∑

p

pxky − pykx
|k − p|2 ωpωk−p − νk2wk + fk,

the numerical solution of which will be the main subject of Chapter 5.

Equipartition

The vorticity formulation of two-dimensional spectral Navier–Stokes equations

with ν = 0 and no forcing have the form

(1.40)
∂ωk

∂t
=
∑

p+q=k

εkpq
q2

ω∗pω
∗
q,

where
(1.41)εkpq = (ẑ · p× q)δ(k + p + q)

is the nonlinear interaction coefficient. The three-dimensional version con-

serves energy and helicity, while the two-dimensional version conserves energy

and enstrophy. Equation (1.40) can be written as a noncanonical Hamiltonian

system, i.e.

(1.42)
∂ωk

∂t
=
∑

q

Jkq
∂H

∂ωq
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where H = 1
2

∑
k |ωk|2/k2 is the Hamiltonian and Jkq =

∑
p εkpqω

∗
p. Note that

Jkq = −Jqk, which implies that

(1.43)

∑

k

∂ω̇k

∂ωk

=
∑

k,q

∂Jkq
∂ωk

+ Jkq
∂2H

∂ωk∂ωq

=
∑

k,q

εk(−k)q +
∑

k,q

Jkq
∂2H

∂ωk∂ωq

= 0,

where the first sum vanishes because εk(−k)q = εqk(−k) = 0 and the second

term vanishes since it is the sum of the product of an antisymmetric and

a symmetric factor. Equation (1.43) is known as the Liouville theorem for

equation (1.40), and implies that the system conserves volume in phase-space.

Assuming that equation (1.40) is ergodic, then the entropy

(1.44)S(t)
.
= −

∑

i

Ni(t) logNi(t),

where Ni(t) is the number of modes in state i at time t, will increase to a

maximum value. By the Gibbs H theorem [Carnevale et al. 1981], the system

will tend towards a statistical equilibrium that maximizes S subject to the

constraint that the invariants must be conserved, i.e. the conserved quantities

will be in equipartition.

The entropy of the system is constrained by the invariants of the system,

namely energy and enstrophy. Let εi and ξi be the energy and enstrophy of each

mode in state i, respectively. If a system is ergodic, the GibbsH theorem states

that the equilibrium state of the system is the unique state that maximizes

the entropy of the system. Indeed, we expect the entropy of a system to

increase, not necessarily monotonically, until it reaches an equilibrium state

where the entropy is constant and maximal. However, this extremization must
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be subject to the constraints of energy and enstrophy conservation. In general,

we may have many conserved quantities, which we label Ej
.
= 1

2

∑
k σ

j
k|ωk|2, for

certain functions σjk, where j = 1, . . . , nc. Each of these provides a constraint

Ej =
∑

i εi,jNi , where εi,j is the amount of quantity Ej for each mode in

state i. In addition, the total number of modes
∑

iNi is constrained to be N .

The equilibrium state will therefore minimize

∑

i

Ni logNi − α0

(
N −

∑

i

Ni

)
−
∑

j

αj

(
Ej −

∑

i

εi,jNi

)
, (1.45)

where the αj are Lagrange multipliers. On setting the derivative of (1.45) with

respect to N` to zero and solving for N`, one obtains the Gibbs distribution

Ni = exp

(
−1− α0 −

∑

j

αjεi,j

)
. (1.46)

If there are N independent complex amplitudes ωk, there will be 2N de-

grees of freedom, which we arbitrarily label by κ = 1, 2, . . . 2N . Let X =

(ω1, . . . , ω2N) be a point in phase space. On denoting the state of mode κ

at X by iκ, one can compute the probability that the system is in state X:

P (X) ∝
∏

κ

Niκ ∝ exp

(
−
∑

κ,j

αjεiκ,j

)
= exp

(
−
∑

j

αjEj

)
, (1.47)

where αi is determined by the initial conditions of the system. The expected

value for the energy in mode k is therefore

〈
ωr
k

2
〉

=
〈
ωi
k

2
〉

=

∫
ωr
k

2P (X) dω1 . . . dω2N∫
P (X) dω1 . . . dω2N

, (1.48)

16



where ωk = ωr
k + iωi

k. In two dimensions, the conserved quantities are en-

ergy, enstrophy, and other (nonquadratic) Casimir invariants associated with

infinitesimal parcel rearrangement. Since we choose to work in a finite spec-

tral domain we lose conservation of the Casimir invariants. Only the two

quadratic invariants (energy and enstrophy) survive this spectral truncation,

so {σik : i = 1, . . . , nc} = {1/k2, 1}. Since
∫∞
−∞ e

−ax2
dx =

√
π/a, one finds, on

accounting for the Hermiticity condition ωk = ω∗−k, that

〈
|ωk|2

〉
=
〈
ωr
k

2
〉

+
〈
ωi
k

2
〉

=
1

α/k2 + β
(1.49)

for some constants α and β that are determined by the total energy and enstro-

phy present in the initial conditions. On noting that E(k)
.
= 2πk〈1

2
|ωk|2〉/k2,

we obtain the equipartition spectrum,

E(k) = π
k

α + βk2
, (1.50)

which is shown in Figure 1.2.

Three-dimensional turbulence follows a similar argument, except that he-

licity is conserved, while enstrophy is not. Because helicity is not positive-

semidefinite, it is not thought to play a role in the equipartition spectrum.

Thus, {σik : i ∈ I} = {1}, and the three-dimensional equipartition spectrum is

E(k) =
2πk2

α
. (1.51)

Reproduction of the equipartition spectrum is an important test of any nu-

merical code, which can be quite difficult. It is prudent to make use of conser-

vative integrators (Bowman et al. [1997], Shadwick et al. [1999]) to avoid sec-
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Figure 1.2: Equipartition spectrum for the two-dimensional Navier–Stokes
equation, with equipartition spectrum parameters α = 15, β = 1.

ular energy growth, as these errors can dominate the simulation quite quickly

when ν = 0.

Computational Domain in Fourier Space

Equation (1.39) determines the vorticity field for a two-dimensional flow using

just one complex scalar quantity, ω(k, t). For systems topologically equivalent

to S1×S1 (S1 is the unit circle) the wave vectors k will lie on a square lattice.

For wave vectors significantly higher than 1/kd, ω is dominated by viscous

damping and hence negligible. Thus, one can safely truncate the spectrum

at high wavenumber. For numerical reasons, one typically truncates so as to

leave a rectangular grid (see Chapter 3 for more details). From the Hermiticity

condition in equation (1.34), one need only evaluate ω on half of this grid, as

shown in Figure 1.3.

For inviscid runs, this argument is invalid since there is no reason that

18
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Figure 1.3: Retained wave vectors for the vorticity-based two-dimensional
Navier–Stokes.

modes with high wavenumbers should be negligible. Indeed, the three-dimensional

equipartition spectrum has average modal energies that are independent of

wavenumber. To justify using a finite Fourier grid for inviscid simulations we

provide the following theorem:

Theorem 1.1: Consider a system consisting of the modes {ωk},k ∈ D for

some set D, with

(1.52 )
∂ωk

∂t
=

∑

p,q∈D
k+p+q=0

εkpq
q2

ω∗pω
∗
q

where
(1.53 )εkpq = −εqpk,

then the system conserves the energy

(1.54 )E =
1

2

∑

k∈D

|ωk|2
k2

.
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Proof. The rate of change of energy is given by

(1.55)

dE

dt
= Re

∑

k∈D

ω∗k
k2

∂ωk

∂t

= Re
∑

k∈D

ω∗k
k2

∑

p,q∈D
k+p+q=0

εkpq
q2

ω∗pω
∗
q

= Re
∑

k,p,q∈D
k+p+q=0

εkpq
k2q2

ω∗kω
∗
pω
∗
q

= 0

since εkpq is antisymmetric under exchange of k and q.

A similar calculation establishes enstrophy conservation.

Thus, the grid of wave vectors shown in Figure 1.3 will conserve the same

invariants as if we had chosen our wave vectors k to come from all of Z2. Since

the wave vectors on the truncated lattice are interacting, ergodicity still holds,

and the truncated system will tend towards equipartition.

Computation of Discrete Spectra

Kolmogorov formulated his theory for the case where the physical domain

is infinite, which implies that the Fourier basis is all of Rd, where d is the

dimension. The energy spectrum wavenumber k is then a continuous quantity,

and the definition of E(k) is straightforward. In the case where the physical

domain is finite, we present two different methods for calculating the spectrum.

One choice is to use a binned spectrum. The spectrum is given by

(1.56)E(k) =
∑

`
`∈[k− 1

2
,k+ 1

2)

1

2

|ω`|2
`2

/ ∑

`
`∈[k− 1

2
,k+ 1

2)

1, k = 1, 2, 3, . . .

20



That is, we take E(k) to be the average energy for the modes with ω` for `

within 1/2 of k, treating k as an integer. The distribution of spectral shells

is shown in Figure 1.4. This produces a fairly smooth spectrum for averaging

ky

kx

Figure 1.4: Diagram of distribution of binned energy shells.

over relatively small time windows because more modes are included per shell,

particularly for large values of k. For a simulation consisting of m by 2m− 1

modes, there will be d
√

2me such shells. However, the modes with |`| > m are

highly oscillatory, and are usually ignored in favour of concentrating on modes

that lie in the semi-circle inscribed in the upper-half plane of the truncated

grid, in which case there are m shells, as shown in Figure 1.4. Figure 1.5 gives

an example of the raw spectrum.

Alternatively, one can determine E(k) for only those values of k for which

there exists at least one mode ω` with |`| = k. We refer to this as the raw

spectrum. The first such value is k = 1, which is attained when ` = (±1, 0) or

` = (0,±1). The next value is k =
√

2, and so on. The distribution of achieved

radii is shown in Figure 1.6. The question arises as to how the number of

achieved radii grows as m becomes large; if this is some sizable fraction of 2m2,
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Figure 1.5: Binned energy spectrum for an inviscid, unforced run at late times,
with equipartition spectrum parameters α = 15, β = 1.
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Figure 1.6: Diagram of distribution of radii for the raw spectrum.
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then computing the spectrum in this fashion would be somewhat expensive.

Certainly, there are at least m radii achieved (i.e. those along the axis), and

no more than m(m + 1)/2, the number of modes in an octant. Ramanujan

established a more accurate estimate in the early 20th century, which is detailed

in [Hardy 1999]. The leading order estimate for the number of numbers less

than x that are sums of squares is asymptotic to

(1.57)
Kx√
log x

,

with

(1.58)K =

[
1

2

(∏

r

1

1− r−2

)] 1
2

≈ 0.764 . . .

where r runs through the primes that are equal to −1 mod 4. Thus, the number

of radii achieved that are less than m is equal to the number of numbers less

than m2 that are sums of squares, i.e.

(1.59)
Km2

√
logm2

,

as shown in Figure 1.7. The computational complexity for calculating averaged

values of E(k) for all of these radii, while higher than the binned case, is not

leading order for pseudospectral simulations. The difference in speed between

the two methods is less than is detectable on a computer. Figure 1.2 gives an

example of the raw spectrum.

Numerical Solutions to the Navier–Stokes Equations

This monograph focuses on the pseudospectral method for solving the spectral

Navier–Stokes equations numerically. Upon taking the Fourier transform of

a given nonlinear evolution equation, the nonlinearity is transformed into a

spectral convolution. While the linear terms may be efficiently computed in
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Figure 1.7: Number of radii achieved as a function of grid size m.

Fourier space, a direct calculation of the convolution takes O(n2) operations

(or more, for cubic and higher-order nonlinearities). Thus, it is preferred to

calculate the nonlinear terms by returning from k-space to x-space via an

inverse transformation where the nonlinear term may be calculated as a mul-

tiplication, taking O(n) operations. Since the fast Fourier transform (FFT)

takes only O(n log n) operations, this method is much faster than a purely

spectral method. Moreover, the FFT has better numerical accuracy than a

direct convolution. This method is discussed at great length in Chapter 3.

Using Kolmogorov’s estimate for the dissipation scale as an estimate for the

smallest scale required to capture the dissipation range, the highest wavenum-

ber grows like

(1.60)kd ≈
1

ηd
∼ R3/4,

where R is the Reynolds number. The total number of modes N grows like

(1.61)N ∼ R9/4,

for three-dimensional turbulence. Physical systems of interest have Reynolds
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numbers of the order 109, resulting in systems with more than 1020 active

modes, far out-stripping the memory of any computer currently available.

Even in two dimensions, where ηd ∼ R−1/2, the number of modes grows linearly

with Reynolds number.

In order to bridge the gap between the simulations that one would like to

perform and the simulations that one is able to perform, one turns to subgrid

models, which require less computational power, and produce approximate

solutions. These are discussed in Chapter 5.

1.C Shell Models of Turbulence

The incompressibility condition eliminates any possibility of the one-dimensional

Navier–Stokes equation being interesting. And, while not as difficult to solve

numerically as three-dimensional turbulence, two-dimensional turbulence still

requires a great deal of computational power and, more importantly, patience.

Shell models of turbulence are ad-hoc models that mimic the behaviour

and share characteristics with the Navier–Stokes equation, while being simpler

both analytically and computationally. We present three models, namely the

DN model (subsection 1.C.1), the GOY model (subsection 1.C.2), and the

Sabra model (subsection 1.C.3).

Shell models are purely spectral models with a single complex quantity un

representing a typical modal amplitude for all modes uk with |k| ∈ [kn, kn+1),

with kn = k0λ
n, where k0 is the amplitude of the zeroth mode, and λ is the

geometric shell spacing factor. These shells are shown in Figure 1.8. The

modes un interact via a quadratic nonlinearity (as in the spectral Navier–
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Figure 1.8: Distribution of modes for shell models of turbulence.

Stokes equations), which has the general form

(1.62)kn
∑

`,m

A`,mu
∗
`u
∗
m.

For the models under consideration herein, the sum is restricted to modes

that neighbour (or are next to neighbours) of mode n. The shells are damped

by a viscous term −νk2
nun, and forced with force Fn. The general evolution

equation for shell models is

(1.63)
∂un
∂t

+ νk2
nun = kn

∑

`,m

A`,mu
∗
`u
∗
m + Fn.

The energy of such models is defined as

(1.64)E =
1

2

∑

n

|un|2 ,

and the energy spectrum is

(1.65)E(kn) =
1

2

|un|2
kn+1 − kn

.

Higher-order moments of shell models of turbulence are also available, with

the pth moment defined as
(1.66)Sp = 〈|un|p〉 ,

where 〈. . . 〉 indicates averaging in time. The moments scale like Sp(k) ∼ kζp ,

where ζp is known as the structure function exponent.
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1.C.1 The DN Model

If one restricts the nonlinear term in equation (1.63) to nearest-neighbour

interactions, energy is conserved if and only if the nonlinear term has form

(1.67)ikn
(
anu

2
n−1 − λan+1unun+1 + bnun−1un − λbn+1u

2
n+1

)∗
,

where an and bn are the nonlinear interaction coefficients, which are typically

constant with respect to n. In this case, the evolution equation is
(
∂

∂t
+ νk2

n

)
un = ikn

[
a
(
u2
n−1 − λunun+1

)
+ b
(
un−1un − λu2

n+1

)]∗
+ Fn,

(1.68)

which is known as the DN model, developed by Desnyansky & Novikov [1974].

Unlike the Navier–Stokes equations, the DN model has only one conserved

quadratic invariant, namely energy. The equipartition is of the energy of

shells, resulting in an equipartition spectrum proportional to 1/k, as shown

in Figure 1.9. The nonlinearity of equation (1.68) has a fixed point when
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∝ k
−1

Figure 1.9: Equipartition spectrum on the DN model.

un ∝ k
−1/3
n , which corresponds to E(k) ∝ k

−5/3
n , i.e. a Kolmogorov spectrum.
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Bell & Nelkin [1977] concluded that this fixed point is linearly stable if a and b

have opposite sign. The DN model reproduces the Kolmogorov spectrum

even with white-noise forcing and viscous damping, as shown in Figure 1.10.

The higher-order moments Sp for the DN model are anomalous, but do not
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E
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k

Figure 1.10: The energy spectrum of the DN model with white-noise forcing at
low wavenumbers and molecular viscosity with ν = 10−10, nonlinear interaction
coefficients a = −1/4 b = −1, and 32 shells.

display the same scaling with p as does the Navier–Stokes equation. The

structure function exponents for one realization of the DN model are shown

in Figure 1.11.

1.C.2 The GOY Model

The GOY model, first proposed as a model with un real-valued by Gledzer [1973]

and generalized to complex un by Yamada & Ohkitani [1987], features a next-

nearest neighbour quadratic nonlinearity. The evolution equation for the GOY
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Figure 1.11: Structure function exponents ζp of the DN model with the first
shell forced with a white-noise forcing with ε = 1, molecular viscosity with
ν = 10−10, nonlinear interaction coefficients a = −1/4 b = −1, and 32 shells.
Dashed lines show the predictions of Kolmogorov theory.

model is

(1.69)
∂un
∂t

= ikn

(
αun+1un+2 +

β

λ
un−1un+1 +

γ

λ2
un−1un−2

)∗
− νk2

nun + Fn.

The GOY model has a fixed point when F = ν = 0 with un ∝ k
−1/3
n , but,

unlike the DN model, this fixed point is unstable [Biferale et al. 1995]. The

GOY model conserves the energy E = 1
2

∑
n |un|

2 if the nonlinear coupling

coefficients α, β, and γ are such that

(1.70)α + β + γ = 0.

One typically rescales time so that α = 1, leaving two free parameters.

A second quantity,

(1.71)
1

2

∑

n

kpn |un|2

is conserved, where p = − logλ (−β − 1). With β = −1/2, and λ = 2 this

quantity is equal to

(1.72)H =
1

2

∑

n

(−1)nkn |un|2 ,
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which we call the shell-model helicity. Like helicity in 3D turbulence, this

quantity is not positive definite, and does not play an important rôle in deter-

mining the equipartition spectrum. The choice β = −5/4 and λ = 2 implies

that the vorticity

(1.73)Z =
1

2

∑

n

k2
n |un|2

is conserved.

The GOY model exhibits a period-three oscillation [Biferale et al. 1995],

as is evident from the fact that

(1.74)un = k
− 1

3
n





A0 for n = 0 (mod 3),

A1 for n = 1 (mod 3),

A2 for n = 2 (mod 3)

is a fixed point of the nonlinearity in the GOY model for arbitrary A0, A1,

and A2. This introduces noise into the energy spectrum. Kadanoff et al. [1995]

suggested that one should instead compute the spectrum based on the flux

(1.75)Σn
.
=

〈∣∣∣∣Im
(
unun+1un+2 +

1 + β

λ
un−1unun+1

)∣∣∣∣
2/3
〉
,

where 〈. . . 〉 is a windowed average in time, to avoid this problem. A compari-

son between the energy spectrum and the flux spectrum is given in Figure 1.12.

The GOY model has a k−1 equipartition spectrum, as shown in Figure 1.13,

and shows Kolmogorov-style scaling in forced-dissipative simulations, as shown

in Figure 1.14. The higher-order moments of the GOY model scale in very

much the same fashion as Navier–Stokes turbulence. Structure function expo-

nents for the GOY model are shown in Figure 1.15, which are compared with

experimental values from Jensen et al. [1991].
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Figure 1.12: A comparison of the energy spectrum and flux spectrum for the
forced-dissipative GOY model.
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Figure 1.13: The equipartition spectrum of the inviscid, unforced GOY model.
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Figure 1.14: The energy spectrum of the GOY model with the first shell forced
with a white-noise forcing with ε = 1, molecular viscosity with ν = 10−10,
nonlinear interaction coefficients α = 1 b = −1/2, and 32 shells.
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Figure 1.15: Structure function exponents ζp of the GOY model with the first
shell forced with a white-noise forcing with ε = 1, molecular viscosity with
ν = 10−10, nonlinear interaction coefficients α = 1 b = −1/2, and 32 shells.
Dashed lines show experimental values.
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1.C.3 The Sabra Model

The Sabra model, developed by L’vov et al. [1998], is a next-nearest neighbour

model that lacks the period-three oscillation found in the GOY model. This is

accomplished by modifying the nonlinear term to take the complex conjugate

of some terms but not others. The evolution equation of the Sabra model is

(1.76)
∂un
∂t

= ikn

(
αu∗n+1un+2 +

β

λ
u∗n−1un+1 −

γ

λ2
un−1un−2

)
− νk2

nun + Fn

Like the GOY model, the Sabra model has a k−1 equipartition spectrum (see

Figure 1.16) and exhibits a Kolmogorov spectrum (see Figure 1.17) in forced-

dissipative simulations. The higher-order moments of the Sabra model are
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Figure 1.16: The equipartition spectrum of the inviscid, unforced Sabra model.

very similar to those of the GOY model, however, the advantage of having a

smoother spectrum seems to have been lost with higher moments, which are

much less smooth than those of the GOY model. Structure function exponents

for the Sabra model are shown in Figure 1.18.
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Figure 1.17: The energy spectrum of the Sabra model with the first shell forced
with a white-noise forcing with ε = 1, molecular viscosity with ν = 10−10,
nonlinear interaction coefficients α = 1 b = −1/2, and 32 shells.
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Figure 1.18: Structure function exponents ζp of the Sabra model with the first
shell forced with a white-noise forcing with ε = 1, molecular viscosity with
ν = 10−10, nonlinear interaction coefficients α = 1 b = −1/2, and 32 shells.
Dashed lines show the predictions of Kolmogorov theory.
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Chapter 2

Analytic Results from Shell

Models of Turbulence

Wherein much insight is gained by considering shell models of

turbulence with unusual resolutions, characteristics of classical

Kolmogorov theory are reproduced, and the relationship between

shell-model parameters and anomalous scaling are explored.

Shell models are toy models for turbulent systems; they mimic the be-

haviour of solutions to the Navier–Stokes equations but lack the computa-

tional and analytic complexity. They are simpler but non-trivial; they, like

the Navier–Stokes equations, involve a quadratic nonlinear term, which makes

direct analysis difficult.

The shell models considered consist of geometrically spaced shells in Fourier

space, with shell n having characteristic wavenumber kn = k0λ
n, where k0 is

the wavenumber of mode 0, and λ is the dimensionless geometric spacing

factor. For typical simulations λ = 2 and k0 = 1, allowing simulations with
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Re ≈ 1011 using only 32 shells. The shells interact according to an evolution

equation of the form

(2.1)
∂un
∂t

+ νk2
nun = kn

∑

`,m

A`,mu
∗
`u
∗
m + Fn,

where ν is the viscosity, A`,m is the nonlinear interaction coefficient, and Fn is

an external force.

2.A Low-resolution shell models

Shell models with λ > 2 require fewer shells to model the same range of scales

as shell models with λ = 2, and are considered low-resolution shell models. In

the limit of λ being very large, the range of active scales is eventually modelled

by one single shell.

2.A.1 DN model

The nonlinear source term of the DN model,

(2.2)
dun
dt

= ikn
[
a
(
u2
n−1 − λunun+1

)
+ b
(
un−1un − λu2

n+1

)]∗ − νk2
nun,

is dominated by high-wavenumber shells when λ� 1. Moreover, the nonlinear

coupling term increases as λ increases. To maintain the magnitude of the

nonlinear coupling as λ becomes very large, we modify the nonlinear coupling

coefficients as

(2.3)(a, b)→
(
a

λ
,
b

λ

)
.

The DN model is then mapped to

(2.4)
dun
dt

= ikn

[
a

(
u2
n−1

λ
− unun+1

)
+ b
(un−1un

λ
− u2

n+1

)]∗
− νk2

nun.
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In the limit of large λ, the first and third terms in the nonlinearity are insignif-

icant with respect to the other terms, leaving

(2.5)
dun
dt

= −ikn
(
aunun+1 + bu2

n+1

)∗ − νk2
nun.

The wavenumber for shell n increases as λ increases, so, if ν is kept con-

stant, this system is ultimately dominated by viscosity, as the term νk2
nun

will increase faster than the nonlinear term. This is expected; increasing λ is

equivalent to approximating more and more scales by a single thick shell, so

as one includes higher and higher wavenumbers into a single shell, one would

expect that viscous dissipation from smalls scales would dominate. The main

advantage of considering this limit is that equation (2.5) shows the rôle of the

nonlinear coupling coefficients a and b: a is associated with the term unun+1

and thus provides self-coupling i.e. the shell self-interacts, whereas b, associ-

ated with u2
n+1, controls back-scatter, i.e. an inverse energy cascade from high

wavenumbers to low wavenumbers.

2.A.2 GOY model

We perform a similar analysis with the GOY model,

(2.6)
dun
dt

= ikn

(
αun+1un+2 +

β

λ
un−1un+1 +

γ

λ2
un−1un−2

)∗
− νk2

nun.

The GOY model conserves energy when α + β + γ = 0. Using β = −α − γ,

equation (2.6) becomes

∂un
∂t

= ikn

[α
λ

(λun+1un+2 − un+1un−1) +
γ

λ2
(un−1un−2 − λun+1un−1)

]∗
−νk2

nun.

(2.7)
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Letting a = γ/λ and b = α, this becomes

∂un
∂t

= ikn

[
b

(
un+1un+2 −

1

λ
un+1un−1

)
+ a
(un−1un−2

λ
− un+1un−1

)]∗
−νk2

nun.

(2.8)

For large λ, one arrives at

(2.9)
∂un
∂t

= ikn(−aun+1un−1 + bun+1un+2)∗ − νk2
nun.

As with the large-λ DN model, the large-λ GOY model given in equation (2.9)

is dominated by the dissipative term. The low-resolution limit of the GOY

model has the nonlinear coupling coefficient a governing self-coupling and b

governing back-scatter, as in the low-resolution limit of the DN model.

2.B High-resolution limits

Shell models with λ < 2 require more shells to capture the same range of

scales as shell models with λ = 2, and are thus considered high-resolution

shell models. High-resolution limits of shell models of turbulence provide a

different perspective; if the resolution is very high, one can successfully apply

a continuum approximation, making the problem amenable to analytic results

[Benzi et al. 1996], [Jensen & Olesen 1998].

The continuum limit is achieved in the case λ→ 1. That is, the geometric

spacing λ of the characteristic shell wavenumber is unity, and the shell spacing

goes to zero. We introduce a continuous shell index η, given by

η = log λn = n log λ,

which maps the geometrically-spaced shells back to a linear spacing. Taking

k0 = 1 for simplicity, the wavenumber kn for mode n is given by

kn = λn = eη,
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with η ∈ (0,∞). Let ∆ = log λ be the shell-spacing. Since shell models exhibit

a smooth spectrum, we treat neighbouring modes via Taylor approximations:

(2.10)un±1 = u(η)±∆
∂u

∂η
+O(∆2).

2.B.1 DN model

The DN model has nonlinearity

(2.11)ikn
[
a
(
u2
n−1 − λunun+1

)
+ b
(
un−1un − λu2

n+1

)]∗
,

which, under the infinite-resolution limit and continuum approximation, be-

comes

(2.12)

ieη

[
a

((
u−∆

∂u

∂η

)2

− λu
(
u+ ∆

∂u

∂η

))

+ b

((
u−∆

∂u

∂η

)
u− λ

(
u+ ∆

∂u

∂η

)2
)]∗

.

Keeping terms to first order in ∆, one arrives at

ieη
[
a

(
u2 − 2∆

∂u

∂η
− λu2 + λ∆u

∂u

∂η

)
+ b

(
u2 −∆

∂u

∂η
− λu2 − 2∆λ

∂u

∂η

)]∗

= ieη
[
u2(a+ b)(1− λ) + ∆u

∂u

∂η
(−2a+ λa− b− 2bλ)

]∗

= ieη
[
Au2 +Bu

∂u

∂η

]∗
,

(2.13)

where A = (a+ b)(1− λ) and B = ∆(−2a+ λa− b− 2bλ). In order to have

a non-zero nonlinear term as λ → 1, we must choose the nonlinear coupling

coefficients a and b via

a→ a

λ− 1
, b→ b

λ− 1
,
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which is equivalent to the scaling from section 2.A when λ� 1. This gives

A = −(a+ b), B =
∆

λ− 1
[a(λ− 2) + b(−1− 2λ)].

Taking λ→ 1 the continuum DN equation is

(2.14)
∂u

∂t
= ieη

[
(−a− b)u2 + (−a− 3b)u

∂u

∂η

]∗
− νe2ηu.

2.B.2 GOY model

The GOY model has nonlinearity

(2.15)ikn

(
αun+1un+2 +

β

λ
un−1un+1 +

γ

λ2
un−1un−2

)∗
.

Applying the continuum approximation un±1 = u(η)±∆∂u
∂η

with kn = eη and

∆ = log λ this becomes

(2.16)
ieη
[
α

(
u+ ∆

∂u

∂η

)(
u+ 2∆

∂u

∂η

)

+
β

λ

(
u−∆

∂u

∂η

)(
u+ ∆

∂u

∂η

)
+
γ

λ2

(
u−∆

∂u

∂η

)(
u− 2∆

∂u

∂η

)]∗
,

and keeping terms that are first order in ∆ yields

(2.17)ieη
[ (

α +
β

λ
+

γ

λ2

)
u2 + 3

(
α− γ

λ2

)
∆u

∂u

∂η

]∗
= ieη

(
Au2 +Bu

∂u

∂η

)∗
,

where A = α + β
λ

+ γ
λ2 and B = ∆3

(
α− γ

λ2

)
. Since A and B go to zero as

λ→ 1, we rescale the nonlinear coupling coefficient via the map

(2.18)(α, β, γ)→ (α, β, γ)

λ− 1
,

in accordance with the rescaling performed for the DN model.

Including the energy-conservation requirement α + β + γ = 0 and taking

the limit as λ→ 1 this continuum GOY model reduces to

(2.19)
∂u

∂t
= ieηK

(
u2 + 3u

∂u

∂η

)∗
− νe2ηu,

where K = α is the nonlinear scaling factor for the continuum GOY model.
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2.B.3 Flux Formulation

The nonlinear term in the continuum limit shell model is energy-conserving if

and only if

(2.20)0 =

∫
ueη
(
Au2 +Bu

∂u

∂η

)
dη.

This may be expressed as a flux, if B = 3A, in which case

(2.21)

∫
ueηK

(
u2 + 3u

∂u

∂η

)
dη =

∫
K∂η

(
eηu3

)
dη

= Keηu3
∣∣ηmax

ηmin
,

that is, the nonlinear term only changes the energy due to boundary conditions.

If B 6= 3A, then the nonlinear part of the continuum shell model does not

conserve energy, and therefore cannot be written as a flux. For the DN model,

this implies that a = 0. The continuum GOY model is expressible in flux

form automatically if α+ β+ γ = 0, i.e. the continuum GOY model conserves

energy whenever the discrete GOY model conserves energy.

2.B.4 Higher-Order Approximations

Taking second-order continuum approximations of the DN model gives a non-

linearity of the form

(2.22)

u2(a− aλ+ b− bλ) + ∆u
∂u

∂η
(2a− aλ− b− 2bλ)

+ ∆2

[(
∂u

∂η

)2(
a+ bλ2

)
+ u

∂2u

∂η2

(
a− aλ

2
+
b

2
− bλ

)]
.

The term multiplied by ∆2 will change the energy of the system since ∆2

is a sign-definite operator. This secular energy change will not be generally

corrected by other terms if one were to expand to yet higher powers in ∆. We

therefore only consider the continuum equation to first order in ∆.
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2.B.5 Steady-State Solutions

Both the DN and GOY models reduce to the same energy-conserving contin-

uous PDE,

(2.23)
∂u

∂t
= ieηK

(
u2 + 3u

∂u

∂η

)∗
− νe2ηu

for appropriate nonlinear coefficients choices. In the steady state one has

∂u
∂t

= 0. Then,

(2.24)ieηK

(
u2 + 3u

∂u

∂η

)∗
− νe2ηu = 0,

which implies that

(2.25)
∂u

∂η
=
−iν
3K

eη
u∗

u
− u

3
.

Unfortunately, this isn’t easily solved for u(η).

In the case that u ∈ R, and K is purely imaginary, we arrive at the

continuous PDE,

(2.26)
∂u

∂t
= ieηK

(
u2 + 3u

∂u

∂η

)
− νe2ηu,

which has steady-state solution

(2.27)u =
[ ν

4Ki

(
e

4
3
η − 1

)
+ u0

]
e−η/3,

where u0
.
= u(0). If u0 is real-valued and K purely imaginary, then

(2.28)
iν

4K

(
e

4
3
η − 1

)
+ u0

equals zero for some value of η, and the solution to equation (2.26) reaches

zero for some η, which we denote ηd. In particular, if ηd � 1, then one expects

a dissipation wavenumber

(2.29)eηd ∼
(

4Kiu0

ν

) 3
4

,
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analytically reproducing Kolmogorov’s prediction for Navier–Stokes turbu-

lence [Kolmogorov 1941].

On taking the continuum shell model with u ∈ R, and let K̂ = −iK be

real-valued and positive, so that the continuum shell model is

(2.30)
∂u

∂t
= −K̂

(
u2 + 3

∂u

∂η

)
− νe2ηu.

If we take equation (2.30) and multiply by up−2 and apply the time-average

operator 〈. . . 〉 .=
∫ T

0
. . . dt/T :

(2.31)

〈
up−2∂u

∂t

〉
=

〈
−K̂eη

(
u2 + 3u

∂u

∂η

)
up−2 − νe2ηup−1

〉

= −K̂eη
(
〈up〉+

3

p

∂ 〈up〉
∂η

)
− νe2η

〈
up−1

〉
.

In the statistically stationary state, the left-hand side of equation (2.31) is

zero, and we can solve for moments iteratively via the equation

(2.32)
∂ 〈up〉
∂η

+
p

3
〈up〉 = − νp

3K̂
eη
〈
up−1

〉
,

which is a linear first-order differential equation in 〈up〉 having solution

(2.33)〈up〉 = e−
p
3
η

(
C − ν

K̂

p

3

∫
e
p+3

3
η
〈
up−1

〉
dη

)
.

Noting that 〈u0〉 = 1 and using the notation cp
.
= 〈up〉|η=0

(2.34)
〈
u1
〉

= e−η/3
[
u0 −

ν

3K̂

(
e

4
3
η − 1

)]

The next few moments are:

(2.35)
〈
u2
〉

= e−
2
3
η

[
c2 +

c1

2

ν

K̂

(
e

4
3
η − 1

)
+

1

6

ν2

K̂2

(
e

4
3
η − 1

2
e

8
3
η − 1

2

)]

〈
u3
〉

= eη
[
c3 − c2

3

4

ν

K̂

(
e

4
3
η − 1

)
+ c1

3

8

ν2

K̂2

(
e

4
3
η − e

8
3
η

2
− 1

2

)
(2.36)

+
1

16

ν3

K̂3

(
e

4
3
η + e

8
3
η − e4η

3
− 5

3

)]
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〈
u4
〉

= e
4
3
η

[
c4 +

ν

K̂

2

5
c3

(
1− e 10

3
η
)

(2.37)

+c2
ν2

K̂2

(
3

10
e2η − 3

14
e

10
3
η − 3

35

)

+c1
ν3

K̂3

(
− 3

40
e2η +

3

28
e

10
3
η − 1

24
e

14
3
η +

1

105

)

+
ν4

K̂4

(
5

84
eη − 1

44
e

7
3
η − 1

60
e

11
3
η +

1

228
e5η +

393011

403788

)]

and so on. Using these, we can derive decay exponents for the velocity mo-

ments. The structure function exponent is defined as

ζp
.
= − lim

η→0

d 〈up〉/dη
〈up〉 . (2.38)

We find

ζ1 =
1

3
+

1

c1

4

3

ν

K̂
(2.39)

ζ2 =
2

3
+
c1

c2

2

3

ν

K̂
(2.40)

ζ3 = 1− ν

K̂

c2

c3

+
1

c3

1

6

ν2

K̂2
(2.41)

ζ4 =
4

3
− ν

K̂

c3

c4

4

3
+
ν2

K̂2

c2

c4

8

315
− ν3

K̂3

c1

c4

1367

1260
− ν4

K̂4

1

c4

5053

920997
, (2.42)

giving analytic predictions for finite-viscosity deviations from the classic Kol-

mogorov scaling. Since we are interested in the case where ν � 1, we can

discard terms involving factors of ν2. This yields a finite-viscosity correction
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to the K41 structure function exponents:

ζ1 =
1

3
+

1

c1

4

3

ν

K̂
(2.43)

ζ2 =
2

3
+
c1

c2

2

3

ν

K̂
(2.44)

ζ3 = 1− ν

K̂

c2

c3

(2.45)

ζ4 =
4

3
− ν

K̂

c3

c4

4

3
. (2.46)

Having an analytic description of the velocity moments for the steady state,

we can calculate the energy dissipation rate for arbitrary viscosities. On taking

the evolution equation and multiplying by u and integrating over η, we get

the energy balance equation:

dE

dt
=

∫
∂u2/2

∂t
dη =

∫ [
−K̂∂η

(
eηu3

)
− νe2ηu2

]
dη.

The energy dissipation rate ε is defined as

ε
.
=
dE

dt

∣∣∣∣
dissipative

= −ν
∫
e2ηu2 dη.

The time-averaged dissipation of a statistically steady-state continuous shell

model is given by

〈ε〉 = −ν
∫ ηd

η0

e2η
〈
u2
〉
dη

=− ν
[
c2

3

4
e

4
3
η + c1

ν

K̂

(
−3

8
e

4
3
η +

3

16
e

8
3
η

)
+
ν2

K̂2

(
1

48
e4η − 1

16
e

4
3
η +

1

16
e

8
3
η

)]ηd

η0

.

(2.47)

Using the definition of the dissipation wavenumber kd = eηd with ηd defined as

in equation (2.29), and taking the limit as ν → 0, the dissipation approaches

(2.48)〈ε〉 = −K̂
(
3c2c1 + 80c3

1

)
.

45



That is, taking steady-state solutions and then letting the viscosity approach

zero, the energy dissipation from the viscous term tends towards a finite non-

zero limit, just as Kolmogorov hypothesized would occur for a similar limit of

the Navier–Stokes equations.

2.B.6 Recursive Solutions

Given that we are looking for steady-state solutions, we can verify the results

of section 2.B.5 by solving the discrete shell-model equations recursively.

Recursive Solutions of the DN model

The steady state of the discrete DN model is given by

νk2
nun = ikn

[
a
(
u2
n−1 − λunun+1

)
+ b
(
λunun−1 − u2

n+1

)]∗
. (2.49)

We introduce the variable vn, un = vnk
−1/3
n for convenience; when un obeys a

K41 scaling, vn is constant. Then

νk5/3
n vn = ik1/3

n

[
aλ2/3

(
v2
n−1 − vnvn+1

)
+ bλ1/3

(
vn−1vn − v2

n+1

)]∗
, (2.50)

which gives

vn+1 =
−a
2b
λ1/3vn (2.51)

±

√
k

2/3
n a2λ4/3v2

n + 4k
1/3
n bλ1/3

[
k

1/3
n

(
aλ2/3v2

n−1 + bλ1/3vn−1vn
)
− iνk5/3

n v∗n

]

−2k
1/3
n bλ1/3

.

Equation (2.51) can be solved quite easily on a computer. Keeping the

velocity complex and treating a and b as real, the energy spectrum matches
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the Kolmogorov prediction until near the dissipation scale, by which point

the imaginary component of the velocity has reached the same magnitude as

the real component of the velocity, and the solution diverges at wavenumbers

higher than the dissipation wavenumber (see Figure 2.1). If we consider ia, ib,
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Figure 2.1: Recursive solution of the complex-valued DN model, with constant,
real boundary conditions. Imaginary contribution shown dotted.

and the velocity un to be real, then the system goes to zero at the dissipation

scale and does not diverge at higher wavenumbers. See Figure 2.2.

When b = 0, equation (2.51) is invalid, and we must instead solve

νk2
nun = ikna

(
u2
n−1 − λunun+1

)
(2.52)

for un+1, giving

vn+1 =
v2
n−1

vn
− ν

−iλa
k

4/3
n

λ2/3

v∗n
vn
. (2.53)

Unfortunately, this recursion formula is not numerically robust.
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Figure 2.2: Recursive solution of the real-valued DN model.

Recursive Solutions of the GOY model

The GOY model presents a simpler problem. The stationary case is

νk2
nun = ikn

(
αun+1un+2 +

β

λ
un−1un+1 +

γ

λ2
un−1un−2

)∗
+ Fn, (2.54)

which, using vn, un = vnk
−1/3
n becomes

νk5/3vn =
ik1/3

λ
(αvn+2vn+1 + βvn−1vn+1 + γvn−1vn−2)∗ + Fn. (2.55)

We may solve for vn+2 uniquely:

(2.56)vn+2 =
iλνk4/3v∗n − βvn−1vn+1 − γvn−1vn−2 − F ∗n

αvn+1

.

We solve this with v0 = v1 = 1 in Figure 2.3. Solutions with smaller λ

demonstrate increasing amounts of noise in the inertial range. This noise is

likely attributable to the well-known period-three oscillation exhibited by the

GOY model.
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Figure 2.3: Recursive solution of the GOY model.

2.C Simulations

2.C.1 Dissipation

The steady-state continuum shell model with real-valued velocity yields an-

alytic solutions. One prediction from this is that velocity goes to zero at

wavenumber eηd , as given in equation (2.29). As can be seen in Figure 2.4,

this prediction holds reasonably well for even large λ, and becomes more and

more accurate as λ→ 1.

The energy spectra of finite-resolution shell models with complex-valued

velocity does not go to zero as sharply as those with real-valued velocity. How-

ever, equation (2.29) provides a useful prediction even in this case, as can be

seen in Figure 2.5. The simulations depicted were forced with a white-noise

force instead of a constant boundary mode, and the nonlinear coupling coeffi-

cients were treated as real. The definition of the dissipation wavelength as the

wavelength for which the half the energy dissipation occurs at higher wavenum-
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Figure 2.4: Rescaled DN model real velocities, ia = −1, b = 0.

bers and half at lower wavenumbers is taken from Bowman et al. [2006].

2.C.2 Energy Spectra of Simulations with White-Noise

Forcing

White-noise forcing allows one to control the average energy-injection rate,

which is useful when looking at turbulence in terms of energy cascades. As

may be seen in Figure 2.6, simulations of the complex DN model with con-

stant forcing-amplitude exhibit increased energy at low wavenumbers and an

advanced dissipation range. In order to rectify this, one must rescale the

energy-injection rate by 1/log λ. Under this modification, the spectra and

dissipation wavelengths approach an asymptotic limit as λ → 1, as shown

in Figure 2.7, which closely matches the K41 prediction.
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Figure 2.5: Energy spectra DN simulations with different values of ν. The ver-
tical dashed lines are the dissipation wavenumber as given in equation (2.29),
and the vertical dotted lines are the dissipation wavenumber defined as being
the median wavenumber for energy dissipation.
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Figure 2.6: Energy spectra from rescaled DN model with a = −1/4, b = −1.
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2.C.3 Structure Functions and Anomalous Scaling

Real-valued shell models replicate K41 structure-function scaling as may be

seen in Figure 2.8. In contrast, complex-valued shell models exhibit modifica-

tions to the anomalous scaling exponents.

For standard, complex-valued shell models, anomalous scaling seems to de-

crease as λ → 1, even if the nonlinear term is rescaled. This can be seen in

Figures 2.9, 2.10, 2.11, and 2.12. The effect of resolution changes on correc-

tions in structure-function exponents suggests that anomalous scaling in shell

models of turbulence may not be due to back-scatter since these terms become

less significant when the nonlinear term is rescaled.

52



0.5

1

1.5

2

ζp

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

k

Figure 2.8: Structure function exponents for p = 2, 3, 4, 5 for the DN model,
ia = −1, b = 0, ν = 10−8. Shell spacing factors are λ = 2 (blue) and λ = 21/25

(red). Here, ζp is shown for p = 4, 3, 2, top to bottom.
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Figure 2.9: Structure function exponents for the DN model with complex
velocity, a = −1, b = −1 λ = 2, and ν = 10−8. Here, ζp is shown for
p = 6, 5, 4, 3, 2, top to bottom.
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Figure 2.10: Structure function exponents for the DN model with complex
velocity, a = −1, b = −1, ν = 10−8, λ = 21/2. Here, ζp is shown for p =
6, 5, 4, 3, 2, top to bottom.
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Figure 2.11: Structure function exponents for the DN model with complex
velocity, (a, b) = (−1, 1), bc0 = 1, λ = 2, and ν = 10−8 λ = 21/22
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54



0.5

1

1.5

2

ζp

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

k

Figure 2.12: Structure function exponents for the DN model with complex
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Chapter 3

Implicitly Dealiased

Convolutions

Wherein we discuss several methods for the efficient calculation

of the convolution of functions by means of Fourier transforms.

Care is given to remove aliasing errors caused by Fourier trans-

forms treating all arrays as periodic.

The convolution of the functions F and G in L2(R) is written F ∗ G and

defined as

(3.1)(F ∗G)(k)
.
=

∫
F (κ)G(k − κ) dκ.

This definition can extended to other function spaces, such as L2(C), for ex-

ample. The convolution is an important tool in such areas as image filtering,

digital signal processing, correlation analysis, and when performing spectral

simulations involving nonlinear differential equations. The convolution has

some useful properties, such as commutativity and associativity. The convolu-

tive identity is the Dirac delta function, with (F ∗ δ(k)) = (δ(k) ∗ F ) = F (k).
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The definition in equation (3.1) is equivalent to

(3.2)(F ∗G)(k) =

∫ ∫
F (κ1)G(κ2)δ(k − κ1 − κ2) dκ1 dκ2.

Using this notation, one may create n-ary convolutions, defined as

(3.3)∗ (F1, . . . , Fn)(k)
.
=

∫
. . .

∫
F (κ1) . . . F (κn)δ

(
k −

n∑

i=1

κi

)
dκ1 . . . dκn.

Moreover, one is able to define the unary convolution, ∗(f)(t) = f(t), and the

nullary convolution, ∗()(t) = δ(t), i.e. the empty convolution simply returns

the identity for the binary convolution.

The convolution of two functions F and G in `2(R) (or `2(C), etc.) is

defined similarly, with

(3.4)

(F ∗G)k
.
=
∑

κ∈Z
FκGk−κ

=
∑

κ1,κ2∈Z
Fκ1Gκ2δ`,κ1+κ2 ,

with δ`,p1+p2 the Kronecker delta. As per equation (3.3), the n-ary discrete

convolution is

(3.5)∗ (F1, . . . , Fn)k
.
=

∑

κ1,...,κn∈Z
F1,κ1 . . . Fn,κnδk,κ1+···+κn .

Discrete convolutions are important in many numerical applications, where

the input vectors will generally be non-centered, with {Fk}m−1
k=0 and {Gk}m−1

k=0 ,

and

{F ∗G}k =
k∑

κ=0

FκGk−κ, k = 0, . . . ,m− 1,

or centered, with {Fk}m−1
k=−m+1 and {Gk}m−1

k=−m+1, and

{F ∗G}k =
k−m+1∑

κ=−m+1

FκGk−κ, k = −m+ 1, . . . ,m− 1.
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Centered data is typical when the data comes from spectral simulations, in

which case it is often Hermitian-symmetric, i.e. F−k = F ∗k , where the asterisk

denotes complex conjugation. Hermitian data in Fourier space is mapped to

real-valued data in physical space, and such transforms can be done in half

the time of a complex-to-complex transformation.

If the input vectors F and G are of length m, then calculation F ∗G as in

equation (3.4) requires O(m2) operations and introduces significant numerical

error when m is large. One can avoid calculating the sum directly by applying

the convolution theorem:

(3.6)F−1[(F ∗G)] = F−1[F ]F−1[G],

where F−1[F ] is the inverse Fourier transform of F . Equation (3.6) applies

equally the continuous and discrete case.

Finite-length discrete Fourier transforms may be calculated using an FFT,

which takes, to leading order, only Km logm operations, with K = 34/9 opti-

mal [Johnson & Frigo 2007], [Lundy & Van Buskirk 2007], for data of length

m, and produces much less numerical error than using equation (3.4).

Given two input vectors {F}m−1
k=0 and {G}m−1

k=0 , their linear convolution is

given by

(3.7)(F ∗G)k =
k∑

κ=0

FκGk−κ, k = 0, . . . ,m− 1.

The Fourier transform maps periodic data to periodic data. As such,

(3.8)

{F
[
F−1[F ]F−1[G]

]
}k = {F ∗m G}k

.
=

m−1∑

κ=0

FκmodmG(k−κ) modm,

where F ∗m G is the discrete cyclic convolution of period m. The differences

between F ∗m G and F ∗ G are called aliasing errors, and the sum in equa-

tion (3.8) is said to be aliased. The process of recovering the linear convolution
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F ∗ G from the cyclic convolution F ∗m G is called dealiasing, and is accom-

plished by either phase-shift dealiasing (subsection 3.A.1) or zero-padding the

input data (subsections 3.A.2 and 3.A.3).

3.A Dealiasing Binary Convolutions

3.A.1 Dealiasing Binary Convolutions via Phase-Shift

Dealiasing

One-dimensional binary convolutions can be dealiased by taking the difference

between the näıve FFT-based convolution and a convolution based on the

shifted FFT [Patterson Jr. & Orszag 1971], [Canuto et al. 2006],

(3.9)F−1
∆ [F ]j

.
=

m−1∑

k=0

e
2πi
m

(j+∆)kFk.

Using the notation f∆
.
= F−1

∆ [F ], the phase-shifted convolution is

(3.10)F ∗∆ G
.
= F∆(f∆g∆).

With the choice ∆ = 1
2
, the phase-shifted convolution equals

(3.11){F ∗∆ G}k =
k∑

κ=0

FκGk−κ −
m−1∑

κ=k+1

FκGk−κ+m.

Since the (unshifted) cyclic convolution yields

(3.12){F ∗m G}` =
k∑

κ=0

FκGk−κ +
m−1∑

κ=k+1

FκGk−κ+m,

we may recover the linear convolution by taking the arithmetic mean of a

cyclic and a shifted convolution,

(3.13)F ∗G =
1

2
[(F ∗m G) + (F ∗∆ G)].
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This requires computing two convolutions, each involving three FFTs of length

m, and the computational complexity of this technique is therefore 6Km logm.

Applying this technique to d dimensions requires 2d convolutions to remove

all aliases, with a computation complexity of 3 · 2ddKmd logm. Table 3.5 on

page 84 shows this technique in comparison to other methods. Removing all

aliases from d-dimensional via phase-shift dealiasing is very expensive.

Partial Phase-Shift Dealiasing

Because of the high cost of this method, one often dealiases only some of the

modes when performing multi-dimensional convolutions. In three dimensions,

all of the modes can be recovered via the 3-dimensional transform shifted once

by ∆ = 1
2

in each direction, i.e. we apply equation (3.9) in the x, y, and z

directions.

Terms that are aliased in an odd number of directions (e.g. if the term is

an aliasing error from the x convolution but not from the y or z convolutions)

are multiplied by −1, whereas terms with aliasing errors from an even number

of directions (e.g. if the term is an aliasing error from the x convolution and

the z convolution but not the y convolution) are multiplied by 1. Thus, the

single- and triple-aliased terms may be eliminated by taking a geometric mean

as in equation (3.13), while the doubly aliased terms are removed from the

system by setting all terms with |k| > 2
√

2m/3 to zero (i.e. zero-padding, see

subsection 3.A.2), which also eliminates the triply aliased modes. The max-

imum wavenumber is then 2
√

2m/3 ≈ 0.94m [Patterson Jr. & Orszag 1971],

so one retains approximately 3.47m3 of the original 8m3 modes (see Table 3.6

on page 85). Since not all modes are retained, phase-shift dealiasing is not use-

ful for many applications such as image filtering. In certain applications, this
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loss is not so bad; for example, in pseudospectral simulations of turbulence,

if one eliminates modes with wavenumber greater than m from the system,

the time step is greatly reduced, while the loss of high-wavenumber modes

is not so dire for energy dissipation since only a fraction of the modes with

wavenumber greater than m were available in the first place.

3.A.2 Dealiasing Binary Convolutions via Explicit Zero

Padding

Aliasing errors can also be removed by extending the input arrays with enough

zeroes so that the extra terms are removed. This technique is known as explicit

zero-padding, and removes all the aliasing errors at the expense of having to

perform an FFT-based convolution on a larger data set.

One-Dimensional Non-Centered Binary Convolutions

The non-centered inputs vectors {f`}m−1
`=0 and {g`}m−1

`=0 are padded with zeroes

to length 2m. In this fashion, the 2m-cyclic convolution equals the length m

linear convolution:

(3.14)

(F ∗2m G)k =
2m−1∑

κ=0

Fκ(mod 2m)G(k−κ)(mod 2m)

=
m−1∑

κ=0

FκG(k−κ)(mod 2m)

=
k∑

κ=0

FκGk−κ

= (F ∗G)k, k = 0, . . . ,m− 1.

This method requires 3 FFTs to be done on data of length 2m, which may

be done in 6Km logm operations. The data must also be increased in length;

61



this requires 2m extra words of memory. This method is compared with other

methods in Table 3.2 on page 80. The results of timing tests for this method

are given in Figure 3.1 on page 80.

For centered inputs {Fk}m−1
k=−m+1 and {Gk}m−1

k=−m+1, the data need only be

padded from length 2m− 1 to length 3m [Orszag 1971]:

(3.15)

(F ∗3m G)k =
2m−1∑

κ=0

Fκ(mod 3m)G(k−κ)(mod 3m)

=
m−1∑

κ=0

FκG(k−κ)(mod 3m)

=
k−m+1∑

κ=0

FκGk−κ

= (F ∗G)k, k = −m+ 1, . . . ,m− 1.

This requires 2m extra words of memory and 3 FFTs of length 3m, for a com-

putational complexity of 9
2
Km logm. See Table 3.5 on page 79 a comparison

to other methods, and Figure 3.4 on page 84 for timing tests.

Higher-Dimensional Centered Binary Convolutions

The convolution of two functions F and G in L2(Rd) or L2(Cd) is defined as

(3.16)F ∗G .
=

∫ ∫
F (`1)G(`2) δk−`1−`2 d`1 d`2,

where bold notation denotes vector quantities. The convolution of F and G

in `2(Rd) or `2(Cd) is defined as

(3.17)F ∗G .
=

∑

`1,`1∈Zd
F (`1)G(`2) δk,`1+`2 .

Higher-dimensional convolutions are dealiased by performing a one-dimen-

sional dealiased convolution in each direction. The computational cost of such
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a method for a non-centered convolution is

(3.18)3 · 2ddKmd logm,

and requires 2(2d − 1)md extra words of memory just for zero-padding. See

Table 3.3 on page 81 for comparisons to other methods and Figure 3.2 on

page 82 and Figure 3.3 on page 82 for timing tests. A centered Hermitian

convolution has complexity

(3.19)
3d+1

2
dKmd logm,

also requiring 2(2d − 1)md words of work memory. A comparison to other

methods is given in Table 3.6 on page 85 and timing tests are given in Figure 3.5

on page 86.

In theory, the computational complexity may be reduced upon noticing

that some Fourier transforms are performed on data known a priori to be zero.

For a p/q-rule dealiased convolution, one must pad the data from length m to

length mq/p, i.e. one performs a Fourier transform on data that is non-zero for

p/q of its length. In d dimensions, the first Fourier transform can skip all but

(p/q)d−1 of the data. The second Fourier transform is applied to only (p/q)d−2

of the data, and so on, with the last transform being applied to (p/q)d−d = 1,

i.e. all of the data. In this fashion, the complexity of a p/q-padded convolution

in d dimensions may be decreased by a factor

(3.20)

∑d
i =1

(
p
q

)d−i

d
=

1

d




1−
(
p
q

)d

1− p
q


 .

For the non-centered case, p/q = 1/2, this is equal to

(3.21)
2

d

[
1−

(
1

2

)d]
,
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which reduces the computational complexity of a non-centered d-dimensional

binary convolution to
(3.22)6

(
2d − 1

)
Kmd logm,

which is compared with other methods in Table 3.3 on page 81. For the

centered Hermitian case, the savings from pruning transforms is

(3.23)
3

d

[
1−

(
2

3

)d]
,

which reduces the computational complexity to

(3.24)
9

2

(
3d − 2d

)
Kmd logm,

which is compared in Table 3.6 on page 85. The memory requirements for both

types of convolution remain the same. In practice, pruning such transforms

(i.e. skipping transforms whose results is known a priori to be zero) is often

not useful because existing FFT libraries are generally optimized to deal with

data in contiguous blocks, and convolution calculations that attempt to take

advantage of the fact that transforms of zero vectors are also zero can be slower

than the unpruned calculation [Bowman & Roberts 2011a].

3.A.3 Dealiasing Binary Convolutions via Implicit Zero

Padding

Explicitly dealiased convolutions perform calculations on data that is known a

priori to be zero. Reading zero data from memory and performing calculations

on it can be avoided by using implicitly padded Fourier transforms, which form

the basis for the implicitly padded FFT-based convolution.
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Implicitly Zero-Padded FFTs

Suppose that we would like to take the Fourier transform of an input vector F

of length qm, of which only a fraction p/q is non-zero. Let pm be the length

of the non-zero portion. The Fourier transform of F is

(3.25)fj =F−1 [F ]j =

qm∑

k=0

ζjkqm Fk

where ζN = exp(−i2π/N) is the N th root of unity. We can reduce the range

of summation by using the fact that Fk = 0 if k ≥ pm, equation (3.25) can be

reduced to

(3.26)fj =

pm∑

k=0

ζjkqm Fk

Unfortunately, equation (3.26) is not a Fourier transform, and is not amenable

to calculation via an FFT. The computational cost of computing fj for j =

0, . . . , qm−1 via equation (3.26) is asymptotic to qpm2, compared to qm log qm

by using equation (3.25) and an FFT.

We rearrange the output of equation (3.26) into groups with k = q` + r,

with ` = 0, . . . ,m − 1 and r = 0, . . . , q − 1. Then, one computes f via the

implicitly padded Fourier transform,

(3.27)fq`+r =

pm−1∑

k=0

ζ(q`+r)k
qm Fk =

m−1∑

s=0

ζ`sm

p−1∑

t=0

ζr(tm+s)
qm Ftm+s,

which is the Fourier transform of length m of
∑p−1

t=0 ζ
r(tm+s)
qm ftm+s, and there-

fore amenable to calculation via an FFT. Since r ranges from 0 to q − 1, we

require q such transforms, yielding a leading-order computational complexity

of qm logm. The inverse of equation (3.27) is

(3.28)Fk =
1

qm

m−1∑

`=0

ζ−rkqm

q−1∑

r=0

ζ−klqm fq`+r, k = 0, . . . , pm− 1.
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Note that while the output of equation (3.27) is scrambled, fq`+r need not

be unscrambled before taking the inverse transformation as given in equa-

tion (3.28). To perform an implicitly p/q-padded convolution on input vectors

F and G, one determines fq`+r and gq`+r, multiplies the scrambled output

term-by-term to get fq`+rgq`+r, and then uses equation (3.28) to determine

(3.29)(F ∗G)k =
1

qm

m−1∑

`=0

ζ−rkqm

q−1∑

r=0

ζ−klqm fq`+r fq`+r, k = 0, . . . , pm− 1.

Calculating the Fourier-transformed one-dimensional convolution as per

equation (3.27) offers only a minimal decrease in computational complexity

over explicit zero-padding, but removes the restriction that the data and work

arrays must be contiguous. As will be seen in the following sections, this

seemingly inconsequential advantage allows one to take convolutions of multi-

dimensional data while using less memory than explicitly padded convolutions.

Moreover, while the convolution may be done in-place, all but two of the sub-

transforms may be done out-of-place, giving one the option of doing out-of-

place FFTs, which are typically faster than in-place FFTs (cf. Figures 1–6

of Frigo & Johnson [2005]), while not increasing the memory footprint of the

convolution calculation.

Non-Centered Binary One-Dimensional Convolutions

Non-centered binary convolutions require “1/2” padding rule, i.e. p = 1, and

q = 2. The implicitly 1/2-padded Fourier transform for the input {Fk}m−1
k=0 is

(3.30)f2` =
m−1∑

k=0

ζ`km Fk, f2`+1 =
m−1∑

k=0

ζ`k2m ζ
k
2mFk,
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which is described in procedure fftpadBackward for complex data. The inverse

of equation (3.30) is

(3.31)fj =
1

2m

(
m−1∑

p=0

ζkpm F2k + ζ−j2m

m−1∑

p=0

ζkpm F2k+1

)
, k = 0, . . . ,m− 1

and given algorithmically in procedure fftpadForward. The convolution of in-

put vectors f and g attained performed by first applying equation (3.30),

multiplying the scrambled output term-by-term, then inverting the trans-

form by applying equation (3.31) to produce the dealiased convolution, as

shown in function cconv. This technique is compared to other methods in

Table 3.2 on page 80, and the results from timing tests are given in Fig-

ure 3.1 on page 80. These algorithms are implemented for complex data

in Bowman & Roberts [2010].

Input: vector f
Output: vector f, vector u
for k = 0 to m− 1 do

u[k]← ζk2mf[k];
end
f ← fft−1(f);
u← fft−1(u);

Procedure fftpadBackward(f,u) stores the scrambled 2m-padded back-
ward Fourier transform values of a vector f of length m in f and an aux-
iliary vector u of length m.

One-Dimensional Centered Binary Convolutions

For centered data, one uses a “2/3” padding rule, i.e. p = 2 and q = 3. The

implicitly 2/3-padded Fourier transform of the input {Fk}m−1
k=−m+1 is given by

(3.32)f3`+r =
m−1∑

κ=1

ζ`κm ζ
r(κ−m)
3m Fκ−m +

m−1∑

k=0

ζ`km ζ
rk
3mFk.
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Input: vector f, vector u
Output: vector f
f ← fft(f);
u← fft(u);
for k = 0 to m− 1 do

f[k]← f[k] + ζ−k2mu[k];
end
return f/(2m);

Procedure fftpadForward(f,u) returns the inverse of
fftpadBackward(f,u).

Input: vector f, vector g
Output: vector f
u← fft−1(f);
v← fft−1(g);
u← u ∗ v;
for k = 0 to m− 1 do

f[k]← ζk2mf[k];
g[k]← ζk2mg[k];

end

v← fft−1(f);
f ← fft−1(g);
v← v ∗ f;
f ← fft(u);
u← fft(v);

for k = 0 to m− 1 do
f[k]← f[k] + ζ−k2mu[k];

end
return f/(2m);

Function cconv(f,g,u,v) computes an in-place implicitly dealiased con-
volution of two complex vectors f and g using two temporary vectors u
and v, each of length m.
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This transformation can be simplified by introducing

(3.33)F̃k,r
.
=

{
F0 if k = 0,

ζrk3m(Fk + ζ−r3 Fk−m) if 1 ≤ k ≤ m− 1,

in which case

(3.34)f3`+r =
m−1∑

k=0

ζ`km F̃k,r.

The inverse transform is

(3.35)Fk =
1

3m

1∑

r=−1

ζ−rk3m

m−1∑

`=0

ζ−`km f3`+r, k = −m+ 1, . . . ,m− 1.

This method is given algorithmically in Procedure conv and compared to other

methods in Table 3.5 on page 84. The results from timing tests are given in

Figure 3.4 on page 84.

Input: vector f
Output: vector f, vector u
u[0]← f[m− 1];
for k = 1 to m− 1 do

A← ζk3m

[
Re f[m− 1 + k] +

(
−1

2
,−
√

3
2

)
Re f[k]

]
;

B← iζk3m

[
Im f[m− 1 + k] +

(
−1

2
,−
√

3
2

)
Im f[k]

]
;

f[m− 1 + k]← A + B;

u[k]← A− B;
f[0]← f[k];
f[k]← f[k] + f[m− 1 + k];

end
f[0, . . . ,m− 1]← fft−1(f[0, . . . ,m− 1]);
u[m]← f[m− 1];
f[m− 1]← u[0];
f[m− 1, . . . , 2m− 2]← fft−1(f[m− 1, . . . , 2m− 2]);
u[0, . . . ,m− 1]← fft−1(u[0, . . . ,m− 1]);

Procedure fft0padBackward(f,u) stores the scrambled 3m-padded cen-
tered backward Fourier transform values of a vector f of length 2m − 1
in f and an auxiliary vector u of length m+ 1.
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Input: vector f, vector u
Output: vector f
f[m− 1, . . . , 2m− 2]← fft(f[m− 1, . . . , 2m− 2]);
u[m]↔ f[m− 1];
f[0, . . . ,m− 1]← fft(f[0, . . . ,m− 1]);
u[0, . . . ,m− 1]← fft(u[0, . . . ,m− 1]);
u[m]← f[0] + u[m] + u[0];
for k = 1 to m− 1 do

f[k − 1] = f[k] +
(
−1

2
,
√

3
2

)
ζ−k3mf[m− 1 + k] +

(
−1

2
,−
√

3
2

)
ζk3mu[k];

f[m− 1 + k] = f[k] + ζ−k3mf[m− 1 + k] + ζk3mu[k];

end
f[m− 1]← u[m];
return f/(3m);

Procedure fft0padForward(f,u) returns the inverse of
fft0padBackward(f,u).

Input: vector f
Output: vector f, vector u
u[0]← f[0];

F← f [2c− 1];
f[2c− 1]← f[0];
for k = 1 to c− 1 do

A← ζk6c

[
Re f[k] +

(
−1

2
,
√

3
2

)
ReF

]
;

B← −iζk6c
[
Im f[k] +

(
−1

2
,
√

3
2

)
ImF

]
;

f[k]← f[k] + F;
u[k]← A− B;

F← f[2c− 1− k];
f[2c− 1− k]← A + B;

end

Procedure build(f,u) builds the FFT arrays required for Function conv

from an unpadded vector f of length 2c into f and an auxiliary vector u
of length c+ 1.
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Input: vector f, vector g
Output: vector f
F← f[c];
build (f,u);
C← f[c];
f[c]← 2ReF;

u[c]← ReF+
√
3 ImF;

G← g[c];
build (g,v);
D← g[c];
g[c]← 2ReG;

v[c]← ReG+
√
3 ImG;

u← crfft(u);
v← crfft(v);
v← v ∗ u;
u← rcfft(v);

v← crfft(f[0, . . . , c]);
f[0, . . . , c]← crfft(g[0, . . . , c]);
v← v ∗ f[0, . . . , c];
f[0, . . . , c]← rcfft(v);

S← f[c− 1];
T← f[c];

f[c− 1] = ReF−
√
3 ImF;

f[c] = C;

g[c− 1] = ReG−
√
3 ImG;

g[c] = D;

v← crfft(g[c− 1, . . . , 2c− 1]);
g[c− 1, . . . , 2c− 1]← crfft(f[c− 1, . . . , 2c− 1]);
g[c− 1, . . . , 2c− 1]← g[c− 1, . . . , 2c− 1] ∗ v;
v← rcfft(g[c− 1, . . . , 2c− 1]);

for k = 1 to c− 2 do

f[k] = f[k] + ζ−k6c v[k] + ζk6cu[k];

f[2c− k] = f[k] +
(
− 1

2 ,−
√
3
2

)
ζk6cv[k] +

(
− 1

2 ,
√
3
2

)
ζ−k6c u[k];

end

f[c− 1] = S + ζ1−c6c v[c− 1] + ζc−16c u[c− 1];

f[c] = T −
(
− 1

2 ,
√
3
2

)
v[c]−

(
− 1

2 ,−
√
3
2

)
u[c];

if c > 1 then

f[c+ 1] = S +
(
− 1

2 ,−
√
3
2

)
ζc−16c v[c− 1] +

(
− 1

2 ,
√
3
2

)
ζ1−c6c u[c− 1];

end
sreturn f/(6c);

Function conv(f,g,u,v) uses Procedure build to compute an in-place
implicitly dealiased convolution of centered Hermitian vectors f and g of
length 2c using temporary vectors u and v of length c+ 1.
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Implicitly Dealiased Binary d-Dimensional Convolutions

Higher-dimensional FFT-based convolutions are typically performed by taking

the inverse Fourier transform of the inputs F and G in all d dimensions,

multiplying the result, and transforming back to the original domain. One can

also calculate the convolution in multiple stages; consider the two-dimensional

convolution of F(`1,1,`2,1) and G(`1,2,`2,2), `1,· = 0, . . . ,m1−1, `2,· = 0, . . . ,m2−1:

(F ∗G)(k1,k2)

=
∑

`1,1=0,...,m1−1
`2,2=0,...,m2−1

∑

`1,2=0,...,m1−1
`2,2=0,...,m2−1

F(`1,1,`2,1) G(`1,2,`2,2) δ(k1,`1,1+`1,2) δ(k2,`2,1+`2,2).

(3.36)

This can be rearranged to give

(F ∗G)(k1,k2) =

m1−1∑

`1,1,`2,1=0

δ(k1,`1,1+`1,2)




m2−2∑

`1,2,`2,2=0

δ(k2,`2,1+`2,2) F(`1,1,`2,1) G(`1,2,`2,2)


,

(3.37)

that is, the two-dimensional convolution F ∗ G is equal to the convolution in

the k1-direction of the convolution of F and G in the k2-direction. Applying

this to FFT-based convolutions, one has

(3.38)F ∗G = Fk1Fk2

[
F−1
k2
F−1
k1

[F ] · F−1
k2
F−1
k1

[G]
]
,

where Fki is the Fourier transform in direction ki, with inverse F−1
ki

. This

extends from two dimensions to d dimensions in a straightforward fashion.

For explicitly zero-padded convolutions, there are two options: one can

either extend the data with zero padding in all d dimensions before applying

any transformation, or one can copy the data after each transformation to

a new zero-padded memory buffer. In the first case, this has the computa-

tional complexity and memory requirements of simply Fourier-transforming
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in all d dimensions at once. The second case has the possibility of using less

memory, but the cost of copying the data is great enough that the resulting

method would somewhat negate the advantage gained from a decreased mem-

ory footprint. Explicitly padded dealiased convolutions are compared to other

methods in Table 3.3 on page 81 and Table 3.6 on page 85.

On the other hand, implicitly zero-padded Fourier transforms do not re-

quire that the work array be contiguous with the data arrays. With this

in mind, we can use the one-dimensional implicitly padded convolution rou-

tines as building-blocks to create convolution routines in higher dimensions.

For example, two-dimensional implicitly padded convolutions on non-centered

data arrays F and G are achieved by first applying equation (3.30) in the k2-

direction. This requires a work array of size m1m2 words per input array. One

then applies equation (3.30) in the k1-direction, multiplies the output, and then

returns to the original domain by applying equation (3.31) in the k1-direction

and then the k2-direction.

In d dimensions, one first performs an implicitly padded fast Fourier trans-

form in the direction kd, leaving a d − 1-dimensional convolution still to be

performed. If the resulting convolution is 1-dimensional, then one uses ei-

ther Function cconv (for non-centered data) or Function conv (for centered

Hermitian-symmetric data). Recursively defined functions are given in Func-

tion cconvd for non-centered data and Function convd for centered Hermitian-

symmetric data. The d-dimensional convolution function requires two work

arrays of size m1 × . . . × md. Each time the function is recursed, two addi-

tional work arrays of size m1×. . .×md−1 are required. The total work memory

required is then 2
∑d

i=1m1 × . . .×mi. Since all terms with i 6= d are of lower

dimension than the i = d term, these terms are inconsequential. The leading-
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order work array size requirement is then simply 2m1 × . . . ×md. Implicitly

padded d-dimensional convolutions are compared favourably to other methods

in Table 3.3 on page 81 and Table 3.6 on page 85. The results of timing tests

are given in Figure 3.5 on page 86.

Input: vector f, vector g
Output: vector f
if d > 1 then

for j = 0 to mi − 1 do
fftpadBackward(f, u);
fftpadBackward(g, v);
cconvd(f, g, d− 1);
cconvd(u, v, d− 1);
fftpadForward(f, u);

end

else
cconv(f, g);

end
return f;

Function cconvd(f,g,d) computes an in-place implicitly dealiased con-
volution of two complex vectors f and g using two temporary arrays u
and v, each of size m1 × . . . × md. Fourier transforms are done in the
direction kd.

3.B Dealiasing n-ary Convolutions

The `th component of the n-ary convolution of n vectors f 1, . . . , fn is defined

as

∗
(
f 1, . . . , fn

)
`

.
=

∑

`1,...,`n∈Z
f 1
`1
. . . fn`nδ`1+···+`n,`.
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Input: vector f, vector g
Output: vector f
if d > 1 then

for j = 0 to mi − 1 do
fft0padBackward(f, u);
fft0padBackward(g, v);
convd(f, g, d− 1);
convd(u, v, d− 1);
fft0padForward(f, u);

end

else
conv(f, g);

end
return f;

Function convd(f,g,d) computes an in-place implicitly dealiased con-
volution of two Hermitian-symmetric complex vectors f and g using two
temporary arrays u and v, each of size m1× . . .×md. Fourier transforms
are done in the direction kd.

The non-centered n-ary convolution of the finite-length vectors f 1
k , . . . , f

n
k , for

k = 0, . . . ,m− 1, is defined as

∗
(
f 1, . . . , fn

)
`

.
=

m−1∑

`1,...,`n=0

f 1
`1
. . . fn`nδ`1+···+`n,`, ` = 0, . . . ,m− 1,

and the centered n-ary convolution of the centered finite-length vectors f 1
k , . . . , f

n
k ,

for k = −m+ 1, . . . ,m− 1, is defined as

∗
(
f 1, . . . , fn

)
`

.
=

m−1∑

`1,...,`n=−m+1

f 1
`1
. . . fn`nδ`1+···+`n,`, ` = −m+ 1, . . . ,m− 1.

Such higher-order convolutions arise when performing simulations of the com-

pressible Navier–Stokes equations or when considering high-order Casimir in-

variants in pseudospectral simulations [Bowman 2011].

Theorem 3.1: An n-ary convolution of the sequences f 1, . . . , fn ∈ `2 can be
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computed via n− 1 binary convolutions.

Proof.

(3.39)

∗
(
f 1, . . . , fn

)
`

=
∑

`1,...,`n∈Z
f 1
`1
. . . fn`nδ`1+···+`n,`

=
∑

`1,...,`n∈Z
f 1
`1
. . . fn`nδ`1+···+`n−1,̂̀δ`n+̂̀,`

=
∑

̂̀,`n∈Z
fn`nδ`n+̂̀,`

∑

`1,...,`n−1∈Z
f 1
`1
. . . fn−1

`n−1
δ`1+···+`n−1,̂̀

=
[
∗
(
f 1, . . . , fn−1

)
∗ fn

]
`
.

By induction on n, we have ∗(f 1, . . . , fn) = f 1 ∗ f 2 ∗ · · · ∗ fn.

By the convolution theorem and Theorem 3.1,

(3.40)F
[
∗
(
f 1, . . . , fn

)]
= F

[
f 1
]
. . .F [fn]

One can also perform the binary convolutions iteratively since

(3.41)∗
(
f 1, . . . , fn

)
= f 1 ∗

[
∗
(
f 2, . . . , fn

)]

= F−1
[
F
[
f 1
]
F
[
∗(f 2, . . . , fn)

]]
.

Unfortunately, Theorem 3.1 does not hold for linear convolutions of fixed

finite length.

Theorem 3.2: For general input vectors f1, . . . , fn of fixed finite length,

(3.42 )∗ (f1, . . . , fn) 6= f1 ∗ (f2 ∗ . . . (fn−1 ∗ fn) . . . ).

Moreover, the right-hand side of equation (3.42) is not associative.

Proof. It suffices to consider the convolution of three non-centered vectors f , g,

and h with two entries, i.e. with m = 2 and f = (f−1, f0, f1), g = (g−1, g0, g1),

and h = (h−1, h0, h1). In this case, the ternary convolution is given by

(3.43)∗ (f, g, h)k =
∑

a,b,c

fagbhc δa+b+c,k, k = −1, 0, 1.
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∗(f, g, h)1 (f ∗ (g ∗ h))1

a b c a ` b c

1 0 0 1 0 0 0
0 1 0 0 1 1 0
0 0 1 0 1 0 1
1 1 -1 1 0 1 -1
1 -1 1 1 0 -1 1
-1 1 1 N/A

Table 3.1: Comparison of terms contributing to the first component of the
ternary convolution ∗(f, g, h)k =

∑1
a,b,c=−1 fagbhc δa+b+c,k and the double bi-

nary convolution (f ∗ (g ∗ h))k =
∑1

a,`=−1 fa(g ∗ h)`δa+`,k, with (g ∗ h)` =∑1
b,c=−1 gbhc δb+c,`.

Performing binary convolutions, we have, for example,

(3.44)(f ∗ (g ∗ h))k =
∑

a,`

fa

(∑

b,c

gbhc δb+c,`

)
δa+`,k, k = −1, 0, 1.

The terms contributing to the first component of equation (3.43) and equa-

tion (3.44) are shown in Table 3.1. Since (g ∗ h) has only three components,

namely (g ∗ h)−1, (g ∗ h)0, and (g ∗ h)1, the intermediary variable ` can only

equal 0 or 1. Thus, the last row, which would require ` = 2 is excluded from

the calculation of f ∗ (g ∗ h), but is included in the calculation of ∗(f, g, h).

Therefore, ∗(f, g, h) 6= (f ∗ (g ∗ h)). Moreover, it is clear that (f ∗ (g ∗ h)),

((f ∗ g) ∗ h)), and (g ∗ (f ∗ h)) will exclude different terms, implying that the

finite-length binary convolution is not associative.

Due to Theorem 3.1, one must be careful when performing higher-order

convolutions, or taking the convolutions of vectors that are themselves the

result of a convolution.
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3.B.1 Dealiasing n-ary Convolutions via Zero Padding

Dealiasing n-ary Convolutions in 1 Dimension

Computing a non-centered n-ary convolution requires n + 1 Fourier trans-

forms. The input vectors must be zero-padded from length m to nm, i.e.

“1/n” padding. The computational complexity is then

(3.45)(n+ 1)nKm log nm.

Dealiasing an n-ary convolution of centered Hermitian data requires the

input data of length m to be padded with zeroes so that the resulting array

has length n+1
2
m, i.e. “2/(n + 1)” padding. The computational complexity of

this method is

(3.46)
(n+ 1)2

2
Km log

n+ 1

2
m

for the centered case.

Dealiasing n-ary Convolutions in d Dimensions

Performing a convolution on n non-centered input arrays requires (n+1) FFTs.

The inputs must be padded from length m to length nm in each direction, so

each transform has complexity Kndmd logm. Some transforms are performed

on data that are known to be zero a priori, and can therefor be skipped. This

reduces the computational complexity by a factor of

(3.47)
1

d

[
1−

(
1
n

)d

1− 1
n

]
.

The total cost of performing an n-ary convolution in this fashion is then

(3.48)n(n+ 1)
nd − 1

n− 1
Kmd log nm.
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Implicit and explicit zero-padding techniques for dealiasing n-ary non-centered

convolutions are compared in Table 3.4 on page 83.

For the centered case, the input arrays must be padded to length from

length 2m− 1 to length (n+ 1)m in each dimension, so each FFT takes

(3.49)K((n+ 1)m)d log (n+ 1)m)d

operations. The computational savings from pruning these transforms is

(3.50)
1

d

[
1−

(
2

n+1

)d

1− 2
n+1

]
.

The total cost of the convolution is then

(3.51)3(n+ 1)d

[
1−

(
2

n+1

)d

1− 2
n+1

]
Kmd logm.

Implicit and explicit zero-padding techniques for dealiasing n-ary centered

convolutions are compared in Table 3.7 on page 86.

3.C Comparison of Dealiasing Techniques

3.C.1 Non-Centered Convolutions

Non-Centered Binary Convolutions

Non-centered convolutions can be dealiased by either explicit or implicit zero-

padding. As seen in Table 3.2, one-dimensional non-centered convolutions

have identical theoretical performance characteristics, which is confirmed em-

pirically in Figure 3.1. While implementing explicit zero-padding is more

straightforward, implicit zero-padding has the important advantage of not

requiring a contiguous work array. An implementation of implicitly padded

convolutions is already publically available [Bowman & Roberts 2010].
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Method Complexity Memory Footprint

Explicit Zero Padding 6Km logm 4m

Implicit Zero Padding 6Km logm 4m

Table 3.2: Comparison of methods for dealiasing one-dimensional non-centered
complex binary convolutions of length m.

5
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15

ti
m
e/
(m

lo
g
2
m
)
(n
s)

102 103 104 105 106
m

explicit

implicit

Figure 3.1: Comparison of computation times for explicitly and implicitly
dealiased complex in-place 1D convolutions of length m.
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Method Complexity Memory Footprint

Explicit Zero Padding
3 · 2ddKmd logm 2d+1md

without Pruning
Explicit Zero Padding

6
(
2d − 1

)
Kmd logm 2d+1md

with Pruning

Implicit Zero Padding 6
(
2d − 1

)
Kmd logm 4md

Table 3.3: Comparison of methods for dealiasing d-dimensional non-centered
complex non-centered binary convolutions of size md.

Non-centered convolutions in d dimensions can be calculated in three ways;

via explicit zero-padding without pruning, via explicit zero-padding with prun-

ing, or via implicit zero-padding. As may be seen in Table 3.3, both types

of explicit padding have greater memory requirements than that of implicit

padding. Moreover, explicit zero-padding with pruning and implicit zero-

padding have reduced computational complexity, making implicit padding

clearly superior. Moreover, implicit padding is able to avoid a bit-reversal

stage of the fast Fourier transform, which partly contributes to its superior

empirical performance, as show in Figures 3.2 and 3.3.

Non-Centered n-ary Convolutions

Implicit padding being superior for binary convolutions, we now compare

methods for implicitly padding n-ary non-centered convolutions. Implicit and

explicit zero padding are equivalent in one dimension. In higher dimensions,

pruning transforms provides a significant decrease in computational complex-

ity of which both pruned explicit padding and implicit zero padding can take

advantage. Moreover, implicit zero padding offers significantly decreased mem-

ory requirements, as shown in Table 3.4.
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Figure 3.2: Comparison of computation times for explicitly and implicitly
dealiased complex in-place 2D convolutions of size m2.

20

30

40

50

60

ti
m
e/
(m

3
lo
g
2
m

3
)
(n
s)

101 102
m

explicit

xz-pruned

implicit

Figure 3.3: Comparison of computation times for explicitly and implicitly
dealiased complex non-centered in-place 3D convolutions of size m3.
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Method Complexity
Memory
Footprint

Explicit padding (n+ 1)nddKmd log nm nd+1md

Explicit padding
n(n+ 1)n

d−1
n−1

Kmd log nm nd+1md

with pruning

Implicit padding n(n+ 1)n
d−1
n−1

Kmd log nm n2md

Table 3.4: Comparison of explicit and implicit methods for dealiasing d-
dimensional n-ary non-centered complex convolutions on data of size md.

3.C.2 Centered Convolutions

Centered Binary Convolutions

There are three methods available for dealiasing centered convolutions in one

dimension: phase-shift dealiasing, explicit zero-padding, and implicit zero-

padding. As shown in Table 3.5, phase shift-dealiasing is both more computa-

tionally difficult and requires more memory than zero-padding. Both explicit

and implicit zero-padding have identical characteristics to leading order, and,

as may be seen in Figure 3.4, both implicit and explicit zero-padding perform

calculations in roughly the same amount of time. Implicit zero-padding offers

the one advantage that the work arrays need not be contiguous with the data

arrays.

Centered binary convolutions in d dimensions may be dealiased in five dif-

ferent ways: via phase-shift dealiasing, via partial phase-shift dealiasing (for

d = 3), via explicit zero-padding without pruning, via explicit zero-padding

with pruning, and via implicit zero padding. As can be seen in Table 3.6,

phase-shift dealiasing is very expensive in terms of both computational effort

and memory use. However one may choose to dealias only some of the convo-
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Method Complexity Memory Footprint

Phase-Shift
6Km logm 4m

Dealiasing

Explicit Zero Padding 9
2
Km logm 3m

Implicit Zero Padding 9
2
Km logm 3m

Table 3.5: Comparison of methods for dealiasing one-dimensional centered
Hermitian convolutions of length m.
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Figure 3.4: Comparison of computation times for explicitly and implicitly
dealiased centered Hermitian in-place 1D convolutions of length m.
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Method Complexity Memory Footprint

Phase-Shift
3 · 22d−1dKmd logm 22dmd

Dealiasing
Partial Phase-Shift

3 · 2ddKmd logm 2d+1md

Dealiasing
Explicit Zero Padding 3d+1

2
dKmd logm 3dmd

without Pruning
Explicit Zero Padding 9

2

(
3d − 2d

)
Kmd logm 3dmd

with Pruning

Implicit Zero Padding 9
2

(
3d − 2d

)
Kmd logm 3 · 2d−1md

Table 3.6: Comparison of methods for dealiasing d-dimensional centered Her-
mitian convolutions of size (2m− 1)d−1 ×m.

lution, with the rest taken care of by zero-padding. In three dimensions, this

leaves all modes inside a sphere with radius 0.94m, constituting approximately

44% of the original modes. This is particularly advantageous since the memory

footprint is greatly reduced, though the computational expense is still signif-

icant. Explicit zero-padding offers only slightly higher memory and dealiases

all of the data. However, it is quite computational expensive in the absence of

pruning transforms on data that are known a priori to be zero, and pruning,

while theoretically faster, is often not worthwhile in practice due to the lack of

FFT routines specifically optimized for this purpose (cf: Figure 3.5). Implicit

zero-padding is the clear choice for multi-dimensional centered binary convo-

lutions, requiring less memory and less time per calculation. This result holds

empirically, as shown in Figure 3.5.

Centered n-ary Convolutions

For multidimensional centered n-ary convolutions, pruning Fourier transforms

provides a significant reduction in computational complexity for pruned ex-
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Figure 3.5: Comparison of computation times for explicitly and implicitly
dealiased centered Hermitian in-place 2D convolutions of size (2m− 1)×m.

plicit zero-padding and implicit zero-padding as compared with un-pruned

explicit zero-padding. Implicit zero-padding also greatly reduces the memory

requirements for dealiasing such convolutions, as shown in Table 3.7.

Method Complexity
Memory
Footprint

Explicit padding 1
2
(n+ 1)d+1dKmd log nm n(n+1)d

2
md

Explicit padding 1
2
(n+ 1)2 (n+1)d−2d

n−1
Kmd log nm n(n+1)d

2
md

with pruning

Implicit padding 1
2
(n+ 1)2 (n+1)d−2d

n−1
Kmd log nm n(n+ 1)2d−2md

Table 3.7: Comparison of methods for dealiasing d-dimensional n-ary centered
Hermitian convolutions on data of size (2m− 1)d−1 ×m.
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3.D Parallel Computation of Implicitly Dealiased

Convolutions

The fact that implicitly zero-padded Fourier transforms produce output that

is non-contiguous can be used to develop an FFT-based convolution that can

be parallelized. For example, to perform a two-dimensional convolution, one

must first perform an inverse Fourier transform in the x direction, and then an

inverse Fourier transform in the y direction. One then multiplies the outputs,

takes a forward Fourier transform in the y direction, and finally takes a forward

Fourier transform in the x direction. We demonstrate how this might be

computed in parallel for a p/q-dealiased binary convolution using N = λq

processors.

To set up the x transform, the input data must be sent to the sub-

processors, for a communications cost of m2 (or N−1
N
m2 if some data can stay

on the master processor). For i = 0, . . . , N − 1, processor i then performs an

implicitly padded λp/lq Fourier transform in the x direction on the contiguous

memory blocki,j for j = 0, . . . , λp− 1 for each input, as shown in Figure 3.6.

Each x transform produces λq = N output blocks: processor i uses a work

array consisting of memory blocki,j for j = λp, . . . , N − 1, with the output

from the x transform stored in blocki,j, j = 0, . . . , N − 1, with blocki,j con-

taining x transformed data with x index equal to jmodN and y wavenumber

in
(
mi
N
, m(i+1)

N

)
.

We must move the data in blocki,j for i = 0, . . . , N − 1, j = 0, . . . , N − 1,

i 6= j. To perform the y transform. Each block has size

(3.52)
m

N
×mq

p

1

N
= m2 q

p

1

N2
.
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cpu0 block0,0 block0,1

cpu1 block1,0 block1,1

cpu2 block2,0 block2,1

cpu3 block3,0 block3,1

Figure 3.6: Demonstration of the x transform involved in a parallel, transpose-
free FFT-based two-dimensional convolution of implicitly zero-padded data.
Dark gray indicates input data, with output captured in the both light and
dark gray blocks.
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All but N of the N2 block must be moved to another processor for the y

transform, which is to say that, for each input array, data of size

(3.53)m2 q

p

N2 −N
N2

must be communicated in order to perform an implicitly padded Fourier

transform in the y direction by processor j on input arrays blocki,j for i =

λp, . . . , N − 1, producing output in arrays blocki,j for i = λp, . . . , q
p
N − 1, as

shown in Figure 3.7. The data in blocki,j is fully in physical space, with x

coordinate equal to jmodN and y coordinate equal to imodN .

The output from the inverse Fourier transforms of input arrays f and g

performed by processor j are multiplied by processor j. One then inverts the y

and x direction implicitly padded Fourier transforms, incurring an additional

communication cost of

(3.54)m2 q

p

N2 −N
N2

+m2,

for a total communication cost of

(3.55)3

(
m2 q

p

N2 −N
N2

+m2

)
.

This method has computational complexity and memory requirements equal

to serial implicitly padded FFT-based convolution, but that problem is split

between N processors, allowing the calculation to be performed in less time.

The situation is complicated for Hermitian-symmetric data, where the implic-

itly padded FFT (Function conv) stores produces overlapping output. This

minor inconvenience can be dealt with by rearranging data during the commu-

nication step. An implementation of this algorithm would be of great benefit,

allowing one to perform implicitly dealiased pseudospectral simulations on

distributed-memory architectures.
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cpu0 cpu1 cpu2 cpu3

block0,0

block0,1

block0,2

block0,3

block1,0

block1,1

block1,2

block1,3

block2,0

block2,1

block2,2

block2,3

block3,0

block3,1

block3,2

block3,3

Figure 3.7: Demonstration of the y transform involved in a parallel, FFT-based
two-dimensional convolution of implicitly 1/2-padded zero-padded data. Dark-
and medium- gray blocks represent input data to the y transform, with output
stored in all blocks in the Figure.
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Chapter 4

Spectral Reduction

Wherein a method for uniformly decimating spectral simula-

tions is described, which is applied both to shell models of tur-

bulence, including higher-order approximations, and to the two-

dimensional Navier–Stokes equations.

Turbulent systems exhibit many degrees of freedom, which is a major ob-

stacle when performing simulations of such systems. However, it is suspected

that the information content of high Reynolds-number Navier–Stokes turbu-

lence may not be as severe as per Kolmogorov’s prediction that the number of

active modes N grows as N ∼ Re9/4 [Landau & Lifshitz 1959], as some modes

may be quiescent (for example, [Paladin & Vulpiani 1987], [Farge 1992]) and

there is the possibility of performing useful simulations of such systems using

a restricted basis.

Moreover, we may not always be interested in the incredible detail con-

tained in all the degrees of freedom from turbulent systems, and could be very

happy indeed with a solution providing only the average motion of the fluid
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in question. This problem has been approached by taking statistical closures of

moments of turbulence [Kraichnan 1958], [Kraichnan 1961], [Martin et al. 1973],

[Orszag 1977], [Holloway & Hendershott 1977], [Bowman et al. 1989], or by con-

sidering reduced systems [Lorenz 1972], [Kraichnan 1985], [Williams et al. 1987],

[Kraichnan & Chen 1989], [Lee 1989], [Vázquez-Semadeni & Scalo 1992],

[She & Jackson 1993], [Grossmann et al. 1996], [Holmes et al. 1996].

The method of spectral reduction [Bowman et al. 1999] allows one to re-

duce the dimensionality of a system by evolving “bins” of Fourier modes in-

stead of the individual modes themselves. This coarse-graining drastically re-

duces the computational cost of simulations without modifying the flow qual-

itatively. Each bin ΩK represents the modes {wk}k∈SK for some set SK of

modes from the original system. The evolution equation for ΩK is determined

by averaging the source term for the modes. The method is closed by approx-

imating the modes {ωk}k∈SK by some function of ΩK .

This technique reproduces the expected equipartition spectrum for inviscid,

unforced dynamics when the sets SK are all the same size. However, when the

number of modes in SK varies with K, the system forgets that the bins were

originally composed of modes, and thus evolves to create an equipartition not

of modal energies but of bin energies. While this can be corrected by rescaling

time by the bin size, the resulting system is too numerically stiff to be of much

use [Bowman et al. 2001].
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4.A Spectral Reduction of Shell Models of Tur-

bulence

Shell models are not an immediately obvious candidate for spectral reduction,

as they do not exhibit a large number of degrees of freedom, so a reduced

model is not greatly in demand in the first place. Our goal in applying spectral

reduction to shell models of turbulence is not to make these models yet more

amenable to numerical methods; rather, we use them to clarify and test ideas

and techniques before applying them to more complicated systems.

Shell models of turbulence represent the fluid velocity by shells of modes

characterized by the complex amplitude un. These shells are geometrically

spaced with characteristic wavenumber kn = k0λ
n. It is convenient to first

consider a radix-two spectral reduction of shell models, which reduces the

number of evolved quantities by half. In this case spectral reduction represents

modes u2n and u2n+1 by the single quantity

u(1)
n =

u2n + σ
(0)∗
n u2n+1

1 +
∣∣∣σ(0)
n

∣∣∣
2 , (4.1)

where σ
(0)
n

.
= u2n+1/u2n is the ratio between adjacent modes. The original

modes can be recovered via

u2n = u(1)
n , u2n+1 = σ(0)

n u(1)
n .

The evolution equation for u
(1)
n is derived from the evolution equations of u2n

and u2n+1. If we were to start with the GOY model, where

(4.2)
dun
dt

= ikn

(
αun+1un+2 +

β

λ
un−1un+1 +

γ

λ2
un−1un−2

)∗
− νk2

nun + Fn,
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then the evolution equation for u
(1)
n , assuming that σ

(0)
n is constant with respect

to time, is

du
(1)
n

dt
= −νk2

2n

1 + σ
(0)∗
n λ2

1 + |σ(0)
n |2

u(1)
n +

F2n + σ
(0)∗
n F2n+1

1 + |σ(0)
n |2

(4.3)

+
1

1 + |σ(0)
n |2

ik2n

[
σ

(0)
n−1

γ

λ2
u

(1)2
n−1 + σ(0)

n (α + β)u(1)
n u

(1)
n+1

+σ
(0)
n−1σ

(0)
n

(
β

λ
+
γ

λ

)
u

(1)
n−1u

(1)
n + λασ(0)

n σ
(0)
n+1u

(1)2
n+1

]∗
.

The coarse-grained energy E = 1
2

∑
n|u

(1)
n |2(1 + |σ(0)

n |2) is conserved in the ab-

sence of forcing and viscosity if the original model conserved energy and σ
(0)
n

is constant with respect to time. Other quadratic invariants (i.e. helicity or

enstrophy) are lost. Since the original modes had next-nearest-neighbour in-

teractions, the resulting system has nearest-neighbour interactions.

If α + β + γ = 0, then the underlying GOY model conserves energy, and

equation (4.3) is the DN model with parameters given by

u(1)
n =

u2n + σ
(0)∗
n u2n+1

1 + |σ(0)
n |2

, a(1)
n =

γ

λ2

(
σ

(0)
n−1

1 + |σ(0)
n |2

)
, b(1)

n =
−α
λ

(
σ

(0)
n−1σ

(0)
n

1 + |σ(0)
n |2

)
,

λ(1) = λ2, ν(1)
n = ν

1 + |σ(0)
n |2λ2

1 + |σ(0)
n |2

, and F (1)
n =

F2n + σ
(0)∗
n F2n+1

1 + |σ(0)
n |2

. (4.4)

Further applications of spectra reduction map the DN model to the DN model,

which is a fixed point of spectral reduction [Eckhardt 2004].

The spectrally reduced DN model uses the same binned mode as in equa-

tion (4.1), but the evolution equation is found by binning the source from the

DN equation. Following the same procedure as with the GOY model, we can

also start with the evolution equation for the DN model,

(4.5)
dun
dt

= ikn
[
a
(
u2
n−1 − λunun+1

)
+ b
(
un−1un − λu2

n+1

)]∗ − νk2
nun + Fn,
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which, when binned according to equation (4.1), yields for constant σn
.
= σ

(0)
n

the evolution equation for u
(1)
n :

du
(1)
n

dt
=

1

1 + |σn|2
(
du2n

dt
+ σ∗n

du2n+1

dt

)
(4.6)

=
ik2n

1 + |σn|2
(
a2nσ

2
n−1u

(1)
n−1

2 − a2n+2λ
2σ2

nu
(1)
n u

(1)
n+1

+ b2nσn−1u
(1)
n−1u

(1)
n − b2n+2λ

2σnu
(1)
n+1

2
)∗

+
F2n + σ∗nF2n+1

1 + |σn|2
− νk2

2nu
(n)
1

1 + λ2 |σn|2

1 + |σn|2
.

Repeating spectral reduction ` times maps the nonlinear coefficients to

a(`)
n = a

(0)

2`n

`−1∏

i=0

(
σ

(i)

2in

)2

, b(`)
n = b

(0)

2`n

`−1∏

i=0

σ
(i)

2in
(4.7)

and we also divide the nonlinear term by
∏`−1

i=0

(
1 +

∣∣∣σ(i)

2in

∣∣∣
2
)

to account for

binning. The dissipative coefficient changes as

ν(`)
n = ν

`−1∏

i=0

1 + λ(i)2
∣∣∣σ(i)

2in

∣∣∣
2

(
1 +

∣∣∣σ(i)

2in

∣∣∣
2
) . (4.8)

Since the nonlinear term in the DN model is nearest-neighbour, spectral re-

duction is also nearest-neighbour.

Both the DN and GOY shell models spectrally reduce to the DN model,

with nonlinear interaction coefficients, forcing, and viscosity. The resulting

model is amenable to simulation, and exhibits fewer degrees of freedom than

the original system.
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The energy spectrum of spectrally reduced shell models is given by

E(`)
n = δ(`)

n

∣∣u(`)
n

∣∣2 =
`−1∏

i=0

(
1 +

∣∣∣σ(i)

2in

∣∣∣
2
) ∣∣u(`)

n

∣∣2 (4.9)

and the total energy is E` =
∑
E

(`)
n . We modify the white-noise banded forcing

so that the energy injection rate remains invariant under binning. That is, if

we force just mode one, we require that

(4.10)

d

dt
E(`) =

d

dt
E

(`)
1

=
1

2

d

dt

`−1∏

i=0

(
1 +

∣∣∣σ(i)

2i

∣∣∣
2
) ∣∣∣u(`)

1

∣∣∣
2

=
1

2

`−1∏

i=0

(
1 +

∣∣∣σ(i)

2i

∣∣∣
2
)〈
|f |2
〉

= ε,

where ε is the energy injection rate. Thus the mean forcing amplitude must

be given by

(4.11)f =

√√√√√√

2ε
`−1∏

i=0

(
1 +

∣∣∣σ(i)

2i

∣∣∣
2
) .

As in the once-reduced case, exact knowledge of the values of σn and u(`)

implies exact knowledge of the unreduced velocity modes. Since the goal of

spectral reduction is to represent the system using a reduced basis, we use an

approximation to determine σn to close the system.

4.A.1 Binned Spectral Reduction

The simplest approximation is to assume that the velocity modes are constant

over a bin. That is, σn = 1 for all n. In this case, the reduced mode is just
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the mean of the unreduced velocities:

(4.12)u(1)
n =

u2n + u2n+1

2
.

The mapping of nonlinear coefficients is also simplified. In the case of the

GOY model being reduced to the DN model,

a =
1

2

γ

λ2
, b =

1

2

−α
λ
,

and the DN model just reduces the nonlinear interaction coefficients by half:

a(1) =
1

2
a(0), b(1) =

1

2
b(0).

The viscosity in both cases is mapped to

(4.13)ν(1) = ν(0) 1 + λ2

2
,

which compensates for the fact that part of the bin reaches higher wavenumbers

where the Laplacian has more effect. As can be seen in Figures 4.1 and 4.2,

treating σn as constant over a bin is quite effective, producing reasonable

results even when the system is decimated repeatedly.

4.A.2 Interpolated Spectral Reduction

The shell amplitudes un typically obey a power-law relationship. One can

use this to approximate the unresolved variables σn = u2n+1/u2n by taking a

geometric mean of the reduced modes via

σn ≈
√
u2n+2

u2n

=

√
u

(1)
n+1

u
(1)
n

.

This can be applied recursively for repeated reductions, giving

(4.14)σ(`)
n =

√
σ

(`−1)
2n ,
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Figure 4.1: Energy spectra from the spectrally reduced DN model with con-
stant σn, α = 1, β = −1/4, and ν = 10−7.
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Figure 4.2: Energy spectra from the spectrally reduced GOY model with con-
stant σn, α = 1, β = −1/4, and ν = 10−7.
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under the assumption that σ(`−1) is constant across the `-level bin u
(`)
n .

Since the evolved modes are complex-valued, taking square-roots is prob-

lematic due to branch-cut choices. We therefore treat σn as real-valued, and

determine it via the formula

(4.15)σn =

√√√√√

∣∣∣u(1)
n+1

∣∣∣
∣∣∣u(1)
n

∣∣∣
.

We are most interested in statistically stationary states. To increase numeri-

cal stability, we replace the instantaneous values in equation (4.15) by time-

averaged quantities. These can either be the time-mean of the evolved modes

from initial-conditions on, or a periodically reset quantity, i.e. we take a win-

dowed average over either [0, t] or over more recent values in order to more

closely represent the current state of the simulation.

Energy conservation requires that σn be constant over a single time step,

but one is free to change σn between time steps to more closely reflect cur-

rent statistics. Since σn appears explicitly in the definition of energy (equa-

tion (4.9)), one must be careful that changing σn does not modify the total

energy of the reduced system. That is, if σn changes while the velocity is

constant, then, energy is conserved if

∑(
1 + |σn(t1)|2

)
|un(t1)|2 =

∑(
1 + |σn(t2)|2

)
|un(t2)|2 . (4.16)

It is necessary to rescale the velocities from time t1 to time t2 in order to

conserve energy if σn changes from time t1 to time t2. This can be accomplished

in a straightforward fashion by requiring that equation (4.16) be satisfied for

each mode.
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4.A.3 Simulations

Interpolation Based on Time Average

The spectra of interpolated and uninterpolated simulations are fairly similar.

This is likely due to the fact that the value of σn is stabilized somewhat since

we calculate σn via

(4.17)σ =

(∫ t

0

∣∣∣u(1)
n+1

∣∣∣ dt
/∫ t

0

∣∣u(1)
n

∣∣ dt
) 1

2

,

where the long-time average decreases the variation of σn. If the initial con-

ditions are such that un+1 is not significantly smaller than un at early times,

then the time-averaged quantities 〈|un|〉 and 〈|un+1|〉 will change in ratio much

slower than the ratio of the unaveraged values of |un|2 and |un+1|2 . This will

stabilize the scheme by maintaining σn near its value at early times. The

energy spectra of a full-resolution simulation compared with the spectra of

reduced simulations with and without interpolation is shown in Figure 4.3.

Further decimation produces an instability that increases the energy at the

high-wavenumber end of the inertial range while basically eliminating the en-

ergy in the dissipation range. For typical simulations (i.e. with λ = 2), this

instability is present after two spectral reductions (cf: Figure 4.4).

Interpolation Based on Running Time-Average

The interpolation factor σn as given in equation (4.17) can be dominated by

initial conditions. As such, the value of σn may not match that of the current

properties of the flow. If we instead use the running-time average

(4.18)σ =

(∫ t

t−∆

∣∣∣u(1)
n+1

∣∣∣ dt
/∫ t

t−∆

∣∣u(1)
n

∣∣ dt
) 1

2
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Figure 4.3: Rescaled DN energy spectra comparing a control run with once-
decimated runs using σ = 1 and with interpolation. The simulations used
a = −1/4, b = −1, and ν = 10−7.
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Figure 4.4: Rescaled DN energy spectra comparing a control run with deci-
mated runs using with interpolation. The simulations used a = −1/4, b = −1,
and ν = 10−7.
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Figure 4.5: Rescaled GOY energy spectra comparing a control run with once-
decimated runs using σ = 1 and with interpolation. The simulations used
a = −1/4, b = −1, and ν = 10−7.
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Figure 4.6: Reset DN energy spectra for interpolated decimation with σ ∈
(0.52, 3.09) for three levels of decimation, with α = 1, β = −1/4, and ν = 10−7.
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over a moving window [t−∆, t], then σn will relax to the value of the current

statistically stationary state much more quickly, and we hope to achieve bet-

ter accuracy using this definition. Unfortunately, these more accurate values

for σn produce an instability for even a single spectral reduction, as shown in

Figure 4.7.
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Figure 4.7: Rescaled and reset DN energy spectra of comparing a control run
with once-decimated runs using σ = 1, with interpolation, α = 1, β = −1/4,
and ν = 10−7.

Since the problem with this method is an instability in the value of σn, one

approach to stabilize the technique would be to restrict σn to more moderate

values. Given bounding values σmin and σmax, we seek a monotonic map that

sends 1→ 1, 0→ σmin, and ∞→ σmax. This is provided by the bilinear map

(or fractional linear map),

(4.19)σ → (1− σmin)σmaxσ + (σmax − 1)σmin

(1− σmin)σ + (σmax − 1)
.

The bounds σmin and σmax are chosen a posteriori, based on a full-resolution

simulation. We determine (σmin, σmax) by performing a full-resolution and
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Figure 4.8: Rescaled and reset GOY energy spectra of comparing a control run
with once-decimated runs using σ = 1, with interpolation, α = 1, β = −1/4,
and ν = 10−7

looking at the maximal and minimal ratios of bin energies when the system is

in a statistically steady state. Taking these values from the inertial range, we

have σ ∈ (0.52, 3.09). Taking the bounds from the entire spectrum yields σ ∈

(0.0026, 3.09). The inertial-range bounds prevent the instability from being

expressed, but do not offer a significantly better result than those produced

without interpolation. The spectrum is improved with using less restrictive

bounds for the first decimation. Unfortunately, the instability reappears upon

successive decimations, whether one uses bounds from just the entire spectrum

(Figure 4.9) or just the inertial range (Figure 4.10).

104



10−24

10−21

10−18

10−15

10−12

10−9

10−6

10−3

100

E
(k
)

101 102 103 104 105 106 107

k

Control
Level 1
Level 2
Level 3

Figure 4.9: Energy spectra for the interpolated DN model with
σ ∈ (0.0026, 3.09), α = 1, β = −1/4, and ν = 10−7.
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Figure 4.10: Reset DN energy spectra for interpolated decimation with σ ∈
(0.52, 3.09) for three levels of decimation.
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Figure 4.11: Reset GOY energy spectra for interpolated decimation with σ ∈
(0.0026, 3.09) for three levels of decimation, α = 1, β = −1/4, and ν = 10−7.
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Figure 4.12: Reset GOY energy spectra for interpolated decimation with σ ∈
(0.52, 3.09) for three levels of decimation, α = 1, β = −1/4, and ν = 10−7.

106



4.A.4 Heuristic explanation of instabilities arising from

interpolation

Highly decimated runs tend to evolve to have artificially high spectra at the

high-wavenumber end of the inertial range, i.e. at wavenumbers just lower than

the dissipation range. Such behaviour suggests an instability in the numerical

scheme.

Instabilities in DN-derived interpolated simulations

Interpolated spectrally reduced simulations derived from the DN model have

a nonlinear source term, denoted dun
dt

∣∣
NL

, which depends on σn−1 and σn.

When σn−1 becomes small, this nonlinear source term decreases. Since it

is the nonlinear source term that provides mode n with energy, decreasing

the nonlinear source in the inertial range will decrease |un|2. This will in

turn decrease σn−1 =
〈
|un|2 /|un−1|2

〉1/4
, completing the cycle. This is shown

schematically in Figure 4.13. If |un|2 decreases, then it will continue to decrease

in a positive-feedback loop until it is un is very small.

Comparison of instabilities in DN- and GOY-derived simulations.

Spectral reduction maps both the GOY and DN models to a reduced DN

model. As can be seen in the above sections, DN→
SR

DN simulations experience

instability, whereas GOY→
SR

DN are much more stable. Of course, these insta-

bilities are only present under interpolation, but it is strange that such similar

models exhibit such different behaviour.

The explanation must be found in the mapping of the nonlinear interaction

coefficients for the resulting model. The GOY model has nonlinear interac-
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(
|un|2 / |un−1|2

)1/4 ≈ σn−1 ց

dun

dt

∣∣∣
NL

∝ σn−1 ց|un|2 ց

Figure 4.13: Schematic diagram of the instability in DN→DN interpolated
simulations.

tion parameters (α, β, γ), with energy conserved if α + β + γ = 0. Denoting

a0
.
= γ/λ2 and b0 = −α/λ, spectral reduction of the GOY model maps the

parameters as

a0→ an = a0σn−1 (4.20)

b0→ bn = b0σn−1σn. (4.21)

Spectral reduction of the DN model maps the parameters as

a0→ an = a0σ
2
n−1 (4.22)

b0→ bn = b0σn−1. (4.23)

These mappings are symmetric in a ↔ b except for the change of one index

between equations (4.21) and (4.22).
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In order to determine why DN→
SR

DN is even less stable than GOY→
SR

DN,

consider the fact that, to first order in σn, DN→
SR

DN has coefficients (a, b)

proportional to (0, 1), and GOY→
SR

DN has coefficients proportional to (1, 0).

Numerical simulations show that the choice of nonlinear coupling coefficients

(a, b) = (1, 0) has only a direct cascade, i.e. energy is only sent to higher

wavenumbers, while (a, b) = (0, 1) has both a forward and an inverse cascade.

Thus, energy in simulations based on GOY→
SR

DN doesn’t have the opportunity

to reach equipartition at low wavenumbers because the nonlinear term drives

it to smaller scales more exclusively. On the other hand, the presence of an

inverse cascade in DN→
SR

DN-derived simulations is a mechanism for energy at

lower wavenumbers to be transported away from the instability, which then

further drops σn, and the instability is perpetuated.

Spectral reduction of shell models of turbulence reproduces the behaviour

of the original system when the modes are approximated as constant over

a bin. The introduction of interpolation factors, which account for modes

having different magnitudes over a bin, exhibits an instability that prevents

interpolated spectral reduction from being a useful technique for performing

simulations of shell models of turbulence.

The experience gained from working with shell models of turbulence guides

us in developing spectral reduction of two-dimensional turbulence. Since in-

terpolated spectral reduction proved unstable, we restrict our focus to approx-

imating modes as constant over a bin.
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4.B Spectral Reduction of Navier–Stokes Tur-

bulence

The simulations of n-dimensional systems using spectral techniques are par-

ticularly straightforward to implement when the physical domain can be rea-

sonably considered as periodic, i.e. x ∈ 2πx0Rn/Zn where n is the dimension

and 2πx0 is the length of the box. This is the case when, for example, one is

interested in turbulence far way from boundaries, and is a reasonable approx-

imation provided that the correlation length of the fluid is smaller than the

linear dimensions of the periodic domain.

The motion of the fluid may be expressed as a superposition of a countably

infinite number of discrete modes, {uk,k = k0p,p ∈ Zn} where k0 is the

lowest wavenumber. Viscosity effectively eliminates energy in all modes uk

with k > kd, so we truncate the system at high wavenumbers, and consider a

solution in {uk,k = k0p,p ∈ (−dkd/k0e, . . . , dkd/k0e)n}. Since kd/k0 is very

large, we seek to modify the system so that we can capture the dynamics of the

system using a reduced basis. We typically take x0 = k0 = 1 in simulations for

the sake of simplicity. As a first step, we consider motion in two dimensions.

The Navier–Stokes equations for an incompressible fluid in two dimensions

is

(4.24)
∂ωk

∂t
+ νk2ωk =

∑

p,q

εkpq
q2

ω∗pω
∗
q + Fk,

where ω
.
= ẑ ·∇×u is the vorticity and

(4.25)εkpq
.
= ẑ · (p× q) δ(k + p + q)

is the nonlinear interaction coefficient governing the effect of modes ωp and ωq

on mode ωk. The delta function in εkpq imposes a geometrical constraint on

the nonlinear interaction in equation (4.24).
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One simple choice is to replace k0 by a larger value, say k0 → 2k0. How-

ever, this is equivalent to changing the physical domain, mapping x0 →

x0/2. Changing physical parameters in this fashion does not reproduce higher-

resolution simulations. Instead of simply changing the grid spacing, we use

spectral reduction to capture the dynamics of the original system while using

fewer modes.

4.B.1 Binned Spectral Reduction

The goal of spectral reduction is to approximate equation (4.24) on a reduced

grid composed of bins of modes. To each bin we assign a characteristic wave

vector K. Each wave vector K is associated with a number of fine-mesh

wave vectors from the original grid. We denote this set VK . These modes are

chosen so that the coarse-mesh wave vector K is representative of the wave

vectors VK , i.e. the wave vectors in VK are close to K.

To each wave vector K we associate the variable

ΩK
.
=

1

|VK |
∑

k∈VK
ωk, (4.26)

where |VK | is the size of the set VK . We can use this prescription to calculate

the evolution of ΩK , which is

dΩK

dt
+ 〈νkωk〉K =

∑

P ,Q

|VP ||VQ|
〈
εkpq
q2

ω∗pω
∗
q

〉

KPQ

+ 〈Fk〉K , (4.27)

where the notation 〈f〉KPQ denotes the mean value of f over the bins K, P ,
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and Q. We close the equation by approximating ωk with ΩK :

dΩK

dt
+ 〈νk〉K ΩK =

∑

P ,Q

|VP ||VQ|
〈
εkpq
q2

〉

KPQ

Ω∗pΩ∗q + 〈Fk〉K . (4.28)

While equation (4.27) is an exact prescription for ∂ΩK/∂t, the interaction

coefficient

〈
εkpq
q2

〉

KPQ

(4.29)

in equation (4.28) is not antisymmetric under the transformation K ↔ P ,

which breaks enstrophy conservation. In order to restore this symmetry, one

uses the modified interaction coefficient

〈εkpq〉KPQ

Q2
. (4.30)

The resulting equation,

dΩK

dt
+ 〈νk〉K ΩK =

∑

P ,Q

|VP ||VQ|
〈εkpq〉KPQ

Q2
Ω∗P Ω∗Q + 〈Fk〉K , (4.31)

conserves both the coarse-grained energy 1
2

∑
K |VK | |ΩK |2 /K2 and enstrophy

1
2

∑
K |VK | |ΩK |2 in the absence of viscosity and forcing.

One particularly advantageous coarse-mesh choice is the set of radially

spaced bins illustrated in Figure 4.14, which reach high wavenumbers and have

high resolution near the origin while using very few modes. In one simulation

the energy spectrum of forced-dissipative turbulence on a fine mesh of 683×683

dealiased modes was reproduced using only a few dozen radially spaced mesh

points [Bowman et al. 1999].

112



K

P

Q

Figure 4.14: Polar wavenumber bin geometry.

However, this method of spectral reduction requires modification to repro-

duce equipartition spectra. If the bins are not uniformly spaced (as in radial

spacing, for example), time needs to be rescaled in equation (4.31) by the bin

area. That is,

|Vmin|
|VK |

dΩK

dt
+ 〈νk〉K Ωk =

∑

P ,Q

|VP ||VQ|
〈εkpq〉KPQ

Q2
Ω∗P Ω∗Q + 〈Fk〉K , (4.32)

where |Vmin| is the minimum bin size. Under this transformation, equa-

tion (4.32) is able to reproduce the two-dimensional equipartition spectrum.

Unfortunately, the resulting system is very stiff if the modes are radially

spaced, where |VK | ∝ K2, which forces the time step to be very small, and

the efficient numerical approximation of this equation is an open problem

[Bowman et al. 2001]. Furthermore, energy is not conserved when time is

113



rescaled (although another related invariant is conserved).

In the case where the bins are of uniform size, the system is not abnor-

mally stiff, and the correct equipartition spectrum is reproduced. However,

the averaging operator smooths the delta function in εkpq, with the result that

the sum in equation (4.31) is no longer a convolution. Because of this, fast-

Fourier-transform methods are not directly applicable, leaving one with only

purely spectral simulations, which is computationally expensive as compared

with pseudospectral methods.

A pseudospectral implementation of spectral reduction that exploits the ef-

ficiency of the FFT has recently been developed by Bowman & Roberts [2011b].

This reduced model is shown to predict energy spectra in close agreement with

pseudospectral simulations of the two-dimensional forced-dissipative energy

and enstrophy cascades.

4.C Spectral Reduction of Complex Modes with

Uncorrelated Phase

So far, spectral reduction has treated the modes as having the same amplitude

and phase. However, it is straightforward to demonstrate that the phase of

shell models are uncorrelated with each other, as is the case for the Navier–

Stokes equations if the flow is spatially statistically homogeneous.

Consider the case where a bin consists of two modes with identical ampli-

tudes and uncorrelated phase. The expectation value of the magnitude squared
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of the sum of the two modes is

(4.33)

〈
|u1 + u2|2

〉
=
〈
|u1|2

〉
+����〈u1u

∗
2〉+����〈u∗1u2〉+

〈
|u2|2

〉

=
〈
|u1|2

〉
+
〈
|u2|2

〉
.

Spectral reduction defines a bin as

(4.34)u
(1)
1

.
=
u1 + u2

2
,

as is required for energy conservation. However, the magnitude of the source

term will, on average, correspond to

(4.35)u
(1)
1 =

u1 + u2√
2

,

which corresponds to an increase in the source term by a factor of
√

2.

This can be generalized to a radix-n decimation scheme where n modes

are combined into a bin. If the phases of the binned modes are uncorrelated,

then this is described by a discrete Wiener process, and the magnitude of

the binned modes of uncorrelated phase will be decreased by
√
n from the

case where the phases are equal; the source term must therefore be increased

by
√
n. While the importance of this factor is not immediately apparent in

spectrally reduced simulations, its importance becomes more obvious when

synchronizing spectrally reduced grids in the multispectral method.
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Chapter 5

Multispectral Reduction

Wherein we describe the multispectral method, a decimation

scheme that uses a hierarchy of spectrally reduced simulations

to achieve non-uniform decimation in Fourier space. This

method is applied to shell models of turbulence and the two-

dimensional Navier–Stokes equations.

Spectral reduction allows one to simulate turbulent systems using a reduced

basis, but does not reproduce the equipartition spectrum of the original system

unless the decimation is uniform. This has serious disadvantages; often, one

is interested in precise information about the large, more energetic scales,

and would prefer to decimate only at small scales, which are often of less

physical interest. For such systems, we would prefer to decimate variably

with the high wavenumbers decimated while leaving the low wavenumbers

untouched, allowing us to capture both large-scale and small-scale dynamics

without resorting to a full-resolution (i.e. DNS) simulation.

Unable to decimate variably, as we would like, we instead decimate uni-
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formly, as we must. Since we can only decimate uniformly, we employ a hierar-

chy of grids, each itself uniformly decimated, but with each grid decimated to a

different degree. More-decimated grids reach the highest wavenumbers, mod-

erately decimated grids reach moderate wavenumbers, and an undecimated

grid covers low wavenumbers. This has the effect of decimating only at high

wavenumbers, keeping the low wavenumbers intact.

Consider such a system consisting of two grids. Let G be the undecimated

grid (the grid) with wave vectors k and harmonic vorticity amplitudes ωk. Let

SG be the decimated grid (the subgrid) with wave vectors K and harmonic

vorticity amplitudes ΩK . The enstrophy is defined as

(5.1)Z =
1

2

∑

k∈G
|ωk|2 +

1

2
λ
∑

K∈SG
K /∈G

|ΩK |2 ,

where λ is a real constant factor that reflects the normalization of the subgrid

amplitudes. Note that subgrid modes only contribute if they are not already

present as part of the grid. The system conserves enstrophy if

(5.2)
dZ

dt
= Re

∑

k∈G
ωks

∗
k + λRe

∑

K∈SG
K /∈G

ΩKS
∗
K = 0,

where sk is the source term for mode ωk on the grid and SK is the source term

for mode ΩK on the subgrid, and ∗ denotes complex conjugation. The energy

is defined as

(5.3)E =
1

2

∑

k∈G

|ωk|2
k2

+
1

2
λ
∑

K∈SG
K /∈G

|ΩK |2
K2

,

with the subgrid modes only contributing if they are not already present as

part of the grid. The system conserves energy if

(5.4)
dE

dt
= Re

∑

k∈G

ωk

k2
s∗k + λRe

∑

K∈SG
K /∈G

ΩK

K2
S∗K = 0.
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The grid’s temporal evolution is given by the undecimated evolution equa-

tion. The subgrid’s temporal evolution is given by a decimated evolution

equation that is filtered to remove source terms that are already present in the

grid. That is, if the subgrid modes ΩP and ΩQ influence ΩK , then we remove

this interaction from the subgrid source if K, P , and Q are also present in

the grid. Similarly, linear and forcing terms are removed from the subgrid if

they are also already accounted for by the grid.

The grid and the subgrid are advanced in time using a conventional explicit

numerical method, such as a Runge–Kutta method. The source term for the

grid differs from the source term for the subgrid, so the grids will drift out

of sync with one another over time. One must therefore synchronize the two

grids, so that changes in the grid will be reflected in the subgrid, and vice

versa. Moreover, energy conservation, given by equation (5.4), and enstrophy

conservation, given by equation (5.2), will not necessarily hold if the grids are

left unsynchronized.

One is tempted to perform this action by adding the grid’s source term

onto the subgrid and the subgrid’s source term onto the grid. This ends up

being similar to a variably decimated spectral reduction, which produces the

incorrect equipartition spectrum for inviscid, unforced systems [Roberts 2006].

There are two basic ways to combine numerical integration of the indepen-

dent grids and synchronization; either via serial synchronization, with separate

projection and prolongation operators, or via parallel synchronization, where

the projection and prolongation operators are performed simultaneously.

With serial synchronization, one first advances the grid from time t to

t + τ , as in Figure 5.1. Then, one projects from the grid onto the subgrid,
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which copies the changes undergone by the grid as t→ t+ τ onto the subgrid

at time t, as in Figure 5.2. Then, the subgrid is advanced from time t to time

t + τ , as in Figure 5.3. Finally, the changes that the subgrid underwent as

t→ t+ τ are copied from the subgrid onto the grid via prolongation. This is

shown schematically in Figure 5.4.

Figure 5.1: Stage one of serial advancement: advancing the grid from time t
to time t+ τ .

Figure 5.2: Stage two of serial advancement: projecting from the grid to the
subgrid.

Figure 5.3: Stage three of serial advancement: advancing the subgrid from
time t to time t+ τ .

Parallel synchronization advances the grid and the subgrid from time t to

time t + τ simultaneously, as in Figure 5.5. The two grids are then synchro-
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Figure 5.4: Stage four of serial advancement: prolong from the subgrid to the
grid.

nized simultaneously, as in Figure 5.6. As will be seen in the remainder of

this chapter, grid geometries and conserved invariants play important roles in

determining the details for synchronization operators.

Figure 5.5: Stage one of parallel advancement: advancing both the grid and
the subgrid from time t to time t+ τ .

5.A General Properties of Synchronization Op-

erators

The synchronization operators play an important rôle in the multispectral

method, and choices in their design can have a dramatic effect on the result

of the simulation. In this section, we lay out some general principles to which

synchronization operators should adhere.

First, the synchronization operators should preserve the invariants of the
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Figure 5.6: Stage two of parallel advancement: synchronizing the grid and the
subgrid simultaneously.

original system. The spectrally reduced shell models discussed in this work

have only energy as a conserved quantity, whereas the two-dimensional Navier–

Stokes equations conserve both energy and enstrophy, and care must be taken

to preserve these invariants. Since the subgrid overlaps with the grid, the

subgrid evolution equation may transfer some energy (or another invariant) to

this overlapping region, which must be transferred to the grid in order to be

counted as part of the energy of the entire system.

The synchronization operators should preserve as much detail in the system

as possible. For instance, if modes on the grid are synchronized with a bin of

modes on the subgrid, then the synchronization operator should preserve the

heterogeneity of the grid modes associated with the subgrid bin. Following

this principle keeps as much detail as possible in the system, which is, after

all, the aim of variable-decimation.

The synchronization operators should be local in Fourier space. The over-

lapping grid modes and subgrid bins occupy the same region of Fourier space,

and thus have the same physical interpretation, i.e. they denote the amplitude

of certain waves in the system. It is reasonable to require that this interpre-

tation be preserved by the multispectral method.
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If the source term is zero on the subgrid then the synchronization oper-

ator should not introduce any changes on the grid. That is, if the evolution

equation on the subgrid does not indicate that anything should change, then

the synchronization operator should not impose any change. Similarly, if the

source term on the grid is zero, then the synchronization operator should not

introduce any changes on the subgrid. Moreover, the effect of the synchro-

nization operator should be proportional, in some norm, to the effect of the

evolution equations from time t to time t+ τ .

While this is not technically a property of the synchronization operator,

it is worth mentioning at this point that the multispectral method should

avoid double-counting interactions in Fourier space. That is, if modes ωk, ωp,

and ωq interact on the grid, they should not interact on the subgrid. This

can be accomplished by simply not calculating such subgrid interactions (as in

the case of shell models) or, when this is not computationally convenient, by

removing such interactions from the complete evolution equation (as is done

for the Navier–Stokes equations).

One important test case to consider when designing multispectral meth-

ods is when the nonlinear interaction is not present and the source term for

mode ωk is proportional to ωk. In this case, ωk is simply exponential in time.

Designing methods with this problem in mind allows one to eliminate a number

of possibilities that would otherwise seem, a priori, to be reasonable choices.
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5.B Multispectral Reduction of Shell Models

of Turbulence

Shell models of turbulence provide excellent test beds for the multispectral

method [Roberts 2006]; they are much more computationally accessible than

Navier–Stokes turbulence, have simple geometry, and yet possess many of the

same challenges of Navier–Stokes turbulence, having a nonlinear source term

and a wide range of active scales.

The shell models under consideration use a single complex quantity un to

represent all modes with wave vector k in a geometrically spaced shell with

|k| ∈ [kn, kn+1), kn = k0λ
n, n = 0, . . . , N . Since the DN and GOY shell models

have only nearest- or next-nearest-neighbour nonlinear source terms, removing

interactions from the subgrid that are present on the grid is straightforward.

Moreover, the subgrid source term affects very few subgrid modes that are

redundant with grid modes, so few modes actually require synchronization.

The GOY model spectrally reduces to the DN model, and the DN model

spectrally reduces to a DN model with modified parameters. Since the DN

model is a fixed point for spectral reduction, we develop the multispectral

method for the DN model, with applications to the GOY model being relatively

straightforward. In addition to spectral reduction, it is necessary to scale the

nonlinearity by the square-root of the binning factor, which accounts for the

fact that the shell amplitudes un are uncorrelated with each other.
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5.B.1 Synchronization Schemes

The DN model has nearest-neighbour interactions, as shown in Figure 5.7.

Some of these interactions on the subgrid are present on the grid, and are thus

removed from the subgrid source term, as shown in Figure 5.8, in which it can

be seen that the subgrid source function is equivalent to a shell model with its

first shell coinciding with the last two shells of the grid.

Figure 5.7: The DN shell model with nonlinear interactions represented by
arrows.

Figure 5.8: Nonlinear source diagram for the multispectral DN model.

The subgrid has shell spacing k0SG given by k0SG = k0
2
G, requiring half as

many shells to cover the same range of scales as would the grid. Thus, the first

active shell on the subgrid represents modes with {k : |k| ∈ (k2
0λ

n, k2
0λ

n+1)},

which is the same range as the last two shells for the grid. Thus, we require

that the energy in the last two shells of the grid be equal to that in the first

shell of the subgrid.

For serial synchronization, the grid is first advanced from time t to time t+τ

via a numerical integrator, which evolves the shell amplitudes on the grid from

u
(0)
n (t) to ũ

(0)
n (t + τ). Here, a tilde over a quantity indicates an intermediate

quantity that still needs to be synchronized, and with un
(0) denoting a grid
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mode and un
(1) denoting a subgrid mode/bin. Then, we project the changes

from the grid onto the subgrid, as shown in Figure 5.9. Since the DN model has

Figure 5.9: Projection diagram for the multispectral DN model.

only energy as a conserved quantity, projection should ensure that the energy

of the subgrid shell has the energy of the two corresponding grid shells. That

is, the subgrid shell amplitude u
(1)
n (t) should be rescaled to have amplitude

ũ
(1)
n (t) as given by

(5.5)∆
1

2

∣∣ũ(1)
n (t)

∣∣2 =
1

2

∣∣∣ũ(0)
2n (t+ τ)

∣∣∣
2

+
1

2

∣∣∣ũ(0)
2n+1(t+ τ)

∣∣∣
2

,

where ∆ = 2 is the decimation factor. While one would normally project

over the entire region on the subgrid that overlaps with the grid, one need

only project the last two shells of the grid onto the subgrid since, as can be

seen in Figure 5.8, the other subgrid modes are not evolved on the subgrid.

One then evolves the subgrid modes ũ
(1)
n (t) from time t to time t + τ , with

value u
(1)
n (t+ τ). One then prolongs from the subgrid onto the grid, as shown

diagrammatically in Figure 5.10. We again require that the energies match in

the corresponding shells, which may be accomplished by prescribing

(5.6)
1

2

∣∣∣u(0)
2n (t+ τ)

∣∣∣
2

+
1

2

∣∣∣u(0)
2n+1(t+ τ)

∣∣∣
2

= ∆
1

2

∣∣u(1)
n (t+ τ)

∣∣2 ,

where u
(0)
n (t+ τ) is the new value for the shell amplitudes on the grid at time

t+ τ .

Alternatively, one can choose to synchronize in parallel, as shown diagram-

matically in Figure 5.11. In this case, both the grid and the subgrid are
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Figure 5.10: Prolongation diagram for the multispectral DN model.

advanced from time t to time t+ τ , and then projection and prolongation are

done simultaneously. In this case, one scales u
(0)
2n+1(t + τ), u

(0)
2n (t + τ), and

Figure 5.11: Parallel synchronization of the multispectral DN model.

u
(1)
n (t + τ) to account for energy changes due to source terms from both the

grid and the subgrid. In the event that both the grid and the subgrid attempt

to remove more energy from the overlapping shells than was present in the

first place, one simply repeats the integration using a reduced time step.

5.B.2 Simulations

Spectral reduction maintains the H theorem for each grid in the multispectral

simulation, so each grid will tend towards the same equipartition spectrum.

Therefore, the two grids tend towards the same equipartition spectrum to-

gether, as can be seen in Figure 5.12.

The multispectral DN shell model reproduces a Kolmogorov energy spec-

trum for forced-dissipative simulations, as can be seen in Figure 5.13, while

requiring fewer degrees of freedom. Energy spectra are compared with that
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Figure 5.12: Energy spectrum for the inviscid unforced multispectral DN
model with two grids and serial synchronization, exhibiting a k−1 spectral
slope.
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Figure 5.13: Multispectral simulation of the forced-dissipative DN model with
two grids and serial synchronization.

127



of the undecimated simulation, which is also shown after having been binned

in post-processing. Serial synchronization is straightforward to generalize to

a hierarchy of grids, and we show forced-dissipative energy spectra with three

grids in Figure 5.14 and four grids in Figure 5.15. Each successive grid is

spectrally reduced using a radix-two scheme. In order to account for the fact

that the modes have uncorrelated phase, the source term is multiplied by
√

2

for each successive decimation, as described in Section 4.C.
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Figure 5.14: Multispectral simulation of the forced-dissipative DN model, with
three grids and serial synchronization.

Shell models of turbulence work well with the multispectral method. So-

lutions to shell models of turbulence are very simple to perform as compared

to solutions of the Navier–Stokes equations; their rôle here is as a test bed for

developing the multispectral method, allowing us to develop an understanding

of basic properties of the multispectral method before applying the technique

to more complicated systems.
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Figure 5.15: Multispectral simulation of the forced-dissipative DN model, with
four grids and serial synchronization.

5.C Multispectral Reduction of 2D Incompress-

ible Navier–Stokes Turbulence

The application of multispectral reduction to the two-dimensional Navier–

Stokes equations poses new difficulties, in addition to those faced by shell

models of turbulence.

First, the geometry is more complicated. The radix-two binning used on

the geometrically spaced one-dimensional grid for shell models of turbulence

is not available for the Cartesian grid on which the spectral Navier–Stokes

equations are solved where the bin boundaries do not line up.

Second, the spectral reduction map has a fixed point when applied to shell

models of turbulence, but we are not aware of any similar behaviour with the

Navier–Stokes equations.

129



Third, the two-dimensional incompressible Navier–Stokes equations con-

serve two sign-definite quadratic invariants, i.e. energy and enstrophy, which

must be maintained by the synchronization operator, whereas the spectrally

reduced shell models considered in this work have only energy as a conserved

quantity.

Finally, simulations of the Navier–Stokes equations are more difficult to

perform, requiring highly optimized code and much more computing power

than shell models.

5.C.1 Coincident Mode Synchronization

The multispectral two-dimensional Navier–Stokes system must conserve both

energy and enstrophy. We choose to evolve the system according to the vor-

ticity equation (1.13), with vorticity being the fundamental quantity. This

implies that enstrophy conservation is relatively straightforward as compared

to energy conservation, which is wave-vector dependent.

Since the grid and the subgrid overlap in Fourier space, we must synchro-

nize the grids to ensure consistent energy and enstrophy contributions from

modes in the overlapping region. Since the subgrid is decimated, the overlap-

ping region does not have a one-to-one map between grid modes and subgrid

modes. This problem can be avoided by choosing to synchronize only a subset

of the grid modes with those on the subgrid. In particular, some modes on

the grid and subgrid coincide exactly in Fourier space (i.e. they correspond

to identical wave vectors). We call such modes coincident. Synchronizing

the grid and the subgrid by modifying these modes is called coincident-mode

synchronization.
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Coincident-mode synchronization has been developed for systems where

the subgrid has been decimated to include half of the modes, one quarter of

the modes, or one ninth of the modes, which we denote oblique, radix-two,

and radix-three, respectively. Note that the oblique subgrid is rotated by 45◦

with respect to the grid.

ky

kx

Figure 5.16: Grid and subgrid geometry for the oblique coincident-mode mul-
tispectral method. Black dots indicate grid modes and blue circles indicate
subgrid modes.

Let G denote the set of modes on the grid, and SG denote the set of

modes on the subgrid. The enstrophy of the coincident mode two-dimensional

multispectral system is

(5.7)Z =
1

2

∑

k∈G
|ωk|2 +

1

2

∑

k∈SG
k/∈G

|ωk|2 ,

and the energy is

(5.8)E =
1

2

∑

k∈G

|ωk|2
k2

+
1

2

∑

k∈SG
k/∈G

|ωk|2
k2

.
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Figure 5.17: Grid and subgrid geometry for the radix-two coincident-mode
multispectral method. Black dots indicate grid modes and blue circles indicate
subgrid modes.

ky

kx

Figure 5.18: Grid and subgrid geometry for the radix-three coincident-mode
multispectral method. Black dots indicate grid modes and blue circles indicate
subgrid modes.
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The nonlinear source term is calculated on both the grid and the subgrid.

Synchronization operators copy the change from the grid onto the subgrid and

vice-versa. In order to avoid double counting, interactions that are included

in the grid evolution are removed from the subgrid. This is accomplished by

calculating the nonlinear source term on just those subgrid modes that coincide

with grid modes, and then subtracting this from the general subgrid source

term. This is straightforward for the radix-two and radix-three decimation

schemes, where the overlapping region is rectangular and thus amenable to

FFT-based convolutions. The oblique scheme is slightly more troublesome,

and requires calculating the convolution on a rectangular grid that includes

the triangular overlapping region, and then using Theorem 1.1 to restrict the

source term to just the overlapping region.

The coincident-mode multispectral method has been developed for both

serial and parallel synchronization.

Serial Synchronization

Serially advanced coincident-mode synchronization follows the general scheme

for serial synchronization discussed in the beginning of this chapter. We as-

sume that the grids are synchronized at the beginning of the time step, i.e.

the energy and enstrophy of coincident modes are equal. The first stage is to

advance the grid from time t to time t + τ . The second stage is to project

from the grid onto the subgrid. Let ω and Ω be coincident modes from the

grid and subgrid, respectively. Since they are coincident, they have identical

wave vectors. Therefore, if

(5.9)
1

2
|ω|2 =

1

2
|Ω|2 ,
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then

(5.10)
1

2

|ω|2
k2

=
1

2

|Ω|2
K2

,

since |k2| = |K2|. In other words, if the grid mode and the subgrid mode have

the same enstrophy, then, since the grid mode and the subgrid mode have the

same wavenumber, the grid mode and the subgrid mode will also have the

same energy. This provides a simple way to guarantee energy and enstrophy

conservation when projecting from the grid onto the subgrid. Let ω(t) be the

amplitude of the grid mode at time t, and let Ω(t) = ω(t) be the amplitude of

the subgrid mode at the beginning of the time step at time t. Let ω̃(t+ τ) be

the amplitude of the grid mode after being advanced τ units in time. When

projecting from the grid onto the subgrid, we simply set

(5.11)Ω̃(t)← ω̃(t+ τ).

This communicates the changes due to the evolution equation on the grid

onto the coincident subgrid modes, including changes in energy, enstrophy,

and phase. The next stage is to evolve the subgrid mode Ω̃(t) from time t to

time t+ τ , the result of which we denote Ω(t+ τ). Finally, one prolongs from

the subgrid onto the grid by setting

(5.12)ω(t+ τ)← Ω(t+ τ),

which completes the time step.

Theorem 5.1: If the grid evolution equation conserves the grid energy EG

and the grid enstrophy ZG given by

EG =
1

2

∑

k∈G

|ωk|2
k2

, ZG =
1

2

∑

k∈G
|ωk|2 ,

and the subgrid conserves

ESG =
1

2

∑

k∈SG

|ωk|2
k2

, ZSG =
1

2

∑

k∈SG
|ωk|2 ,
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then the serial coincident-mode scheme conserves the energy E and enstro-

phy Z given by

(5.13 )

E =
1

2

∑

k∈G

|ωk|2
k2

+
1

2

∑

k∈SG
k/∈G

|ωk|2
k2

,

Z =
1

2

∑

k∈G
|ωk|2 +

1

2

∑

k∈SG
k/∈G

|ωk|2 .

Proof. Let Gc denote the set of grid modes that coincide with subgrid modes.

Let Gnc be the set of grid modes that do not coincide with subgrid modes. The

change in invariants on Gc and the change in invariants on Gnc sum to zero

since the grid’s evolution equation is conservative. Let SGc be the coincident

subgrid modes and SGnc be the non-coincident subgrid modes. The change in

invariants on SGc and the change in invariants on SGnc also sum to zero since

the subgrid’s evolution equation is conservative.

The new value of the vorticity on Gc is projected onto SGc, which then

changes the invariants on the subgrid while not affecting invariants of the two-

grid system, which does not sum over SGc. Advancing the subgrid from time t

to time t + τ conserves the invariants on the subgrid. Therefore, the change

in invariants on SGc and the change in invariants on SGnc must sum to zero.

The change in the invariants on SGc is copied to Gc during prolongation.

Thus, the total change in the invariants is equal to the change in the

invariants on Gc ∪Gnc ∪ SGc ∪ SGnc. Since the total change in invariants on

Gc ∪Gnc is zero, and the total change in invariants on SGc ∪SGnc is zero, the

total change in invariants for the multispectral system is also zero.
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The grid and the subgrid maintain the original evolution equation and

maintain a large number of triadic interactions, both of which are necessary

to reproduce the equipartition spectrum correctly. Coincident-mode synchro-

nization reproduces the equipartition spectrum, as shown in Figure 5.19.

E
(k
)

100 101

k

simulation

πk

α+ βk2

Figure 5.19: The energy spectrum of an inviscid unforced serially synchro-
nized coincident-mode multispectral simulation of the two-dimensional Navier–
Stokes equations, showing only stochastic deviations from the theoretical
equipartition spectrum, with α = 25, β = 1. The grid and subgrid have
dimension 15× 8. The grid/subgrid boundary occurs at k ∈ (7, 7

√
2).

Unfortunately, serial synchronization of coincident modes does not do as

good a job reproducing the energy spectrum of forced-dissipative simulations,

as shown in Figure 5.20. This defect becomes more pronounced as one deci-

mates more and more modes, as shown in Figure 5.21, and Figure 5.22. In

order to further understand the source of this discrepancy, we first examine

the parallel synchronization scheme in order to determine whether the choice

of serial synchronization is the cause of the error.
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Figure 5.20: Energy spectrum from a forced-dissipative serially synchronized
coincident-mode two-dimensional Navier–Stokes simulation with an oblique
subgrid, showing an energy pile-up at the grid/subgrid interface. The grid
and subgrid have dimension 63 × 32. The simulation was performed with
ν = 5 × 10−4, and white-noise forcing with unit enstrophy injection rate on
modes with k ∈ [2, 4]. The grid/subgrid boundary occurs at k ∈ (32, 32

√
2).
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Figure 5.21: Energy spectrum from a forced-dissipative serially synchronized
coincident-mode two-dimensional Navier–Stokes simulation with radix two,
using the parameters of Figure 5.20. An increased energy pile-up at the
grid/subgrid interface is observed. The grid/subgrid boundary occurs at
k ∈ (32, 32

√
2).
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Figure 5.22: Energy spectrum from a forced-dissipative serially synchronized
coincident-mode two-dimensional Navier–Stokes simulation with radix three,
using the parameters of Figure 5.20. A large energy pile-up at the grid/subgrid
interface is observed. The grid/subgrid boundary occurs at k ∈ (32, 32

√
2).
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Parallel Synchronization

We can also synchronize the coincident modes in parallel. With this method,

the grid and subgrid are both advanced from time t to time t + τ , at which

point the coincident modes on both the grid and the subgrid are synchronized.

Suppose that a coincident grid mode ωk and subgrid mode Ωk have the

same magnitude squared at time t. These modes are evolved from their values

ωk(t) and Ωk(t) at time t to ω̃k(t+τ) and Ω̃k(t+τ) by their respective evolution

equations. The change in enstrophy for the grid mode is given by

(5.14)∆ZG
.
=

1

2

(
|ω̃k(t+ τ)|2 − |ωk(t)|2

)
,

and the change in enstrophy for the subgrid modes is given by

(5.15)∆ZSG
.
=

1

2

(∣∣∣Ω̃k(t+ τ)
∣∣∣
2

− |Ωk(t)|2
)
.

In order to conserve enstrophy, we require that the grid and subgrid modes

each have new enstrophy

(5.16)Zk =
1

2
|ωk(t)|2 + ∆ZG + ∆ZSG,

which may be accomplished by setting

(5.17)|ωk(t+ τ)| = |Ωk(t+ τ)| =
√

2Zk,

providing us with a framework for synchronizing the grid and the subgrid. In

practice, we use

(5.18)ωk(t+ τ)← ω̃k(t+ τ)

√
Zk

1
2
|ω̃k(t+ τ)|2

,

(5.19)Ωk(t+ τ)← Ω̃k(t+ τ)

√√√√
Zk

1
2

∣∣∣Ω̃k(t+ τ)
∣∣∣
2 ,
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which maintains the phase information for the grid and subgrid. In the case

where Zk is negative, the time step is repeated with τ reduced. In practice,

this has never been necessary.

Theorem 5.2: The synchronization operators given in equation (5.18) and

equation (5.19) conserve energy and enstrophy.

Proof. As before, let Gc and SGc denote coincident modes on the grid and

subgrid, and Gnc and SGnc denote non-coincident modes. The evolution equa-

tions will conserve energy and enstrophy on Gc ∪ Gnc and SGc ∪ SGnc. The

synchronization operator given in equation (5.18) copies the change in enstro-

phy from SGc onto Gc. Since enstrophy is calculated based on all modes in

Gc∪Gnc∪SGnc, and the synchronization operator guarantees that the change

in enstrophy on Gc∪SGc is present in Gc, the system will conserve enstrophy.

Moreover, since the coincident modes have identical wave vectors, enstrophy

conservation implies energy conservation.

As with the serial-synchronization method, the parallel method does a good

job reproducing the equipartition spectrum, as shown in Figure 5.23. The use

of serial synchronization is evidently not the reason that the forced-dissipative

spectrum deviates from the full-resolution simulation, as this defect is found

with the parallel method as well, as shown in Figures 5.24–5.26. The source

of error is most likely owing to our choice of decimation, the effect of which is

made clear by considering the decimated direct numerical simulation.

Decimated Direct Numerical Simulations

Decimated direct numerical simulation (decimated DNS) is a full-resolution

simulation, including all interactions on a fully resolved grid, which is then
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Figure 5.23: The energy spectrum of an unforced, inviscid coincident-mode
parallel-synchronized multispectral simulation of the two-dimensional Navier–
Stokes equations showing only stochastic deviations from the theoretical
equipartition spectrum, with α = 25, β = 1. The grid and subgrid have
dimension 15× 8. The grid/subgrid boundary occurs at k ∈ (7, 7

√
2).
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Figure 5.24: Energy spectrum from a forced-dissipative parallel-synchronized
coincident-mode two-dimensional Navier–Stokes subgrid simulation with an
oblique subgrid, using a grid and subgrid of dimension 63× 32, along with the
parameters of Figure 5.20. An energy pile-up at the grid/subgrid interface is
observed. The grid/subgrid boundary occurs at k ∈ (32, 32

√
2).
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Figure 5.25: Energy spectrum from a forced-dissipative parallel-synchronized
coincident-mode two-dimensional Navier–Stokes simulation with radix two,
using the parameters of Figure 5.24. An increased energy pile-up at the
grid/subgrid interface is observed. The grid/subgrid boundary occurs at
k ∈ (32, 32

√
2).
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Figure 5.26: Energy spectrum from a forced-dissipative parallel-synchronized
coincident-mode two-dimensional Navier–Stokes simulation with radix three,
using the parameters of Figure 5.24. A large energy pile-up at the grid/subgrid
interface is observed. The grid/subgrid boundary occurs at k ∈ (32, 32

√
2).
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decimated by removing modes outside of a core set, according to a prescribed

radix. While this method is nearly as computationally expensive as a full-

resolution simulation and therefore not useful as a subgrid method, the be-

haviour of the system under this decimation scheme sheds light onto problems

that we encounter with decimated systems. As such, the decimated DNS is

useful both in developing multispectral methods and in their exposition.

Consider the decimation scheme shown in Figure 5.27, where modes have

been removed in an oblique scheme in each dimension, creating a two dimen-

sional radix-two scheme. In this system, the nonlinear source term is calculated

on the entire 2m − 1 × 2m − 1 grid, but modes with kx or ky greater than

m/2 are set to zero if either kx or ky is odd. This is also implemented with

ky

kx

Figure 5.27: Fourier lattice modes in the radix-two decimated DNS. All modes
are contained in one variably decimated grid.

modes removed in a checker-board pattern, where modes with modes with kx

or ky greater than m/2 are removed if exactly one of kx and ky is odd, as

shown in Figure 5.28. This is as an oblique scheme. This decimation can be

made yet more severe, keeping all modes in the low-wavenumber box near the
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kx

Figure 5.28: Fourier lattice modes in the oblique decimated DNS. All modes
are contained in one variably decimated grid.

Fourier origin and removing as many modes as we wish when the wavenumber

is higher. For sake of comparison, we also use the radix-three scheme, shown

in Figure 5.29. The radix-three decimation scheme is similar to the radix-two

decimation scheme, with the outer modes removed if either kx or ky are not

multiples of three. The decimated systems described above contain all the

interactions for all the retained modes, and they conserve the same invariants

as does the undecimated system. Because of these two facts, and the fact

that we have not removed so many interactions as to destroy the ergodicity of

the system, the decimated DNS reproduces the correct equipartition spectrum

regardless of the choice of radix, as shown in Figure 5.30. The defect in the

forced-dissipative spectrum, which was first encountered with coincident-mode

synchronization, is also present, as shown in Figure 5.31 and Figure 5.32.

Since the decimated DNS method uses only one grid, the defect in the

forced-dissipative spectrum cannot be due to the choice of synchronization

method, and is therefore due to decimation.
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Figure 5.29: Fourier lattice modes in the radix-three decimated DNS. All
modes are contained in one variably decimated grid.
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Figure 5.30: Energy spectrum from an inviscid unforced serially synchronized
oblique decimated DNS simulation, with α = 25 and β = 1, using a grid
and subgrid of dimension 63 × 32. The grid/subgrid boundary occurs at k ∈
(7, 7
√

2).
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Figure 5.31: Energy spectrum from a forced-dissipative serially synchronized
oblique decimated DNS simulation, using the parameters of Figure 5.20. An
energy pile-up at the grid/subgrid interface is observed. The grid/subgrid
boundary occurs at k ∈ (7, 7

√
2).
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Figure 5.32: Energy spectrum from a forced-dissipative serially synchronized
radix-two decimated DNS simulation, using the parameters of Figure 5.20.
An increased energy pile-up at the grid/subgrid interface is observed. The
grid/subgrid boundary occurs at k ∈ (7, 7

√
2).
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A DNS simulation involves evolving modes on the full-resolution grid GDNS.

The nonlinear interactions are all triadic interactions included in the set

(5.20)GDNS ×GDNS → GDNS.

Moreover, the decimated DNS contains interactions that are not available

with coincident-mode synchronization. Let G be the set of modes with k ∈

[−m+ 1,m− 1]×[−m+ 1,m− 1], and SG denote the set containing all other

modes for the decimated DNS. The union of the grid and the subgrid are a

strict subset of the modes available in a DNS simulation, i.e. G∪SG ( GDNS.

The nonlinear interaction of the decimated DNS evolution equation contains

all triadic interactions in the set

(5.21)(G ∪ SG)× (G ∪ SG)→ (G ∪ SG),

which is strictly fewer than the nonlinear interactions in the DNS simulation.

The coincident-mode multispectral method has even fewer interactions. Let

Gc, Gnc, SGc, and SGnc, be as above. Note that Gc and SGc have modes

with identical wave vectors. The decimated DNS and multispectral modes are

related by the fact that G = Gc ∪Gnc and SG = SGnc. The coincident-mode

multispectral method includes the nonlinear triad contained in interactions in

(5.22)(G×G→ G) ∪ [(Gc ∪ SGnc)× (Gc ∪ SGnc)→ (Gc ∪ SGnc)],

which is a strict subset of the interactions present in Equation (5.21). This

reduction of the nonlinear interaction exacerbates the already-depressed non-

linear energy/enstrophy transfer of the decimated DNS method, which is the

cause of the artificially high energy spectrum at wavenumbers lower than the

grid/subgrid boundary.

Since the decimated DNS method already shows an energy bottleneck due

to its inability to transfer energy effectively from low to high wavenumbers,
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there is no reason to expect that the coincident-mode synchronization scheme

will be able to reproduce the energy transfer of the undecimated system. This

will be an issue when applying the decimated DNS or coincident-mode syn-

chronization method to any system where energy is injected at large scales

and transferred by the nonlinear terms to small scales where it is dissipated

by viscosity. For inviscid, unforced systems, the net energy flux is zero, so the

system is still able to relax to the correct equipartition spectrum despite this

bottleneck.

Another problem with the decimated DNS and coincident-mode synchro-

nization is that the energy and enstrophy from the removed modes remains

unaccounted, so the system will have less energy and enstrophy than the com-

parable full-resolution simulation. In light of these deficiencies, it is preferable

to bin subgrid modes, and synchronize the grid and subgrid over this bin, in-

stead of considering the behaviour of only those modes on the subgrid that

coincide exactly with modes on the grid.

5.C.2 Binned Mode Synchronization

The mode-centric multispectral method and the decimated DNS method both

remove modes from the system. These methods reproduce the inviscid, un-

forced spectra of the original model. However, the more modes that are re-

moved, the worse the system is able to reproduce the behaviour of the undec-

imated system when forcing and viscosity are present.

Binned mode synchronization accounts for these missing modes and inter-

actions by treating the subgrid as evolving bins of modes. This was the method

applied to shell models of turbulence. Moreover, binning modes is the starting
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point for spectral reduction. In order to synchronize the grid properly with the

subgrid, the modes on the grid must be synchronized with the corresponding

bins on the subgrid. In order to calculate the nonlinear source term on the

subgrid efficiently, the subgrid bins are chosen to lie on a uniform rectangular

grid. This places a restriction on the subgrid geometry, as we require that

grid modes be associated with a unique subgrid bin. This is straightforward

when the subgrid is decimated according to a radix-three decimation scheme,

but not possible at all with oblique or radix-two decimation schemes. The

radix-three grid/subgrid geometry is shown in Figure 5.33.

ky

kx

Figure 5.33: Grid/subgrid with radix-three decimation on the subgrid. Grid
modes are represented by black dots, and subgrid bins are represented by blue
squares.

Synchronizing modes with bins maps all modal interactions to bin inter-

actions. Suppose that modes ωk, ωp, and ωq comprise an interacting triad in

the undecimated system. Let ΩK , ΩP , and ΩQ be the corresponding bins.

Since ωk, ωp, and ωq interact in the original system, the bins ΩK , ΩP , and ΩQ

interact in the decimated system. If all three modes are on the grid, then
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the interaction is included in the grid nonlinear term. If all the modes are on

the subgrid, then the interaction is included in the subgrid nonlinear term.

If only some of the modes are on the grid, say ωk, then the synchronization

operator will copy the effect of the interaction of ωk, ωp, and ωq onto ωk,

which includes the interaction in the grid/subgrid system without having to

calculate ωp and ωq explicitly.

Since the subgrid consists of bins of modes, it is natural to apply pseu-

dospectral reduction. As with the coincident-mode synchronization scheme,

double counting of interactions is avoided by eliminating certain nonlinear

couplings on the subgrid.

Binning modes on the subgrid changes the definition of the invariants. We

account for the fact that each bin represents a number of modes by including

a weighting factor in the definition of energy and enstrophy. The energy is

defined as

(5.23)

E =
1

2

∑

ωk∈G

|ωk|2
k2

+
1

2
λ
∑

ΩK∈SG
ΩK /∈G

|ΩK |2
K2

,

Z =
1

2

∑

ωk∈G
|ωk|2 +

1

2
λ
∑

ΩK∈SG
ΩK /∈G

|ΩK |2 ,

where λ = 9 is the square of the decimation radix. Unlike in the coincident-

mode method, decimating with the binned multispectral method does not

decrease the energy or enstrophy of the system.

Let {ωki}8
i=0 be grid modes corresponding to the subgrid bin ΩK . The

enstrophy for these modes is equal to

(5.24)
1

2

8∑

i =0

|ωki |2

150



and the energy is

(5.25)
1

2

8∑

i =0

|ωki |2
k2
i

.

The subgrid bin has enstrophy

(5.26)
1

2
λ |ΩK |2

and energy

(5.27)
1

2

λ |ΩK |2
K2

.

We require that the synchronization operator be able to make these energies

and enstrophies equal to each other without changing the distribution of energy

on the grid modes. If we take K to be the central wave number, this is not

generally possible. Suppose, for example, that ωk = 1 and all the other grid

modes are zero, and that |k| 6= |K|. Enstrophy conservation requires that
∑ |ωk|2 = λ |ΩK |2, but, since |k| 6= |K|, the grid modes and the subgrid bin

cannot have the same energy.

This is not a problem with mode-centric synchronization, where the only

modes that are synchronized have the same wavenumber. For binned synchro-

nization, this problem can be dealt with the help of the following theorem.

Theorem 5.3: Consider a system consisting of the modes {ωk},k ∈ D for

some set D, with

(5.28 )
∂ωk

∂t
=

∑

p,q∈D
k+p+q=0

εkpq
f(q)

ω∗pω
∗
q

where f : Rn → R, and
(5.29 )εkpq = −εqpk,

then the system conserves the quantity

(5.30 )
1

2

∑

k ∈D

|ωk|2
f(k)

.
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Proof. The rate of change of the quantity (5.30) is

(5.31)

Re
∑

k ∈D

ω∗k
f(k)

∂ωk

∂t
= Re

∑

k∈D

ω∗k
f(k)

∑

p,q∈D
k+p+q=0

εkpq
f(q)

ω∗pω
∗
q

= Re
∑

k,p,q∈D
k+p+q=0

εkpq
f(k)f(q)

ω∗kω
∗
pω
∗
q

= 0

since εkpq is antisymmetric under exchange of the first and last indices.

This is a generalization of Theorem 1.1, which is recovered in the case

where f(k) = k2. Moreover, the quantity is conserved in a detailed fashion.

Theorem 5.3 gives us the freedom we need to synchronize the grid and

the subgrid, and we are presented with two courses of action: we must either

modify the wavenumbers for the modes on the grid, or we must modify the

wavenumbers on the subgrid.

Effective subgrid wavenumbers

It is necessary to modify wavenumbers on either the grid or the subgrid in order

to conserve energy and enstrophy simultaneously. It is simple to guarantee that

the subgrid bin have the same energy and enstrophy as the corresponding grid

modes by defining the effective subgrid wavenumber via

(5.32)K2
eff

.
=
Ebin

Zbin

.

At the beginning of each parallel-synchronized time step, we can set K2
eff for

each bin using its current energy and enstrophy.

The mode amplitudes ωi(t+ τ) for grid mode i at time t+ τ is given by

(5.33)|ωi(t+ τ)|2 = |ω̃i(t+ τ)|2 +
∆t→t+τ |Ω|2

|Ω(t)|2
|ωi(t)|2
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where Ω(t) is the bin amplitude at the start beginning of the time step,

∆t→t+τ |Ω|2 is the change in the absolute value of the amplitude of the subgrid

bin due to the subgrid evolution equation, and ω̃i(t + τ) is the vorticity of

the subgrid mode due the grid evolution equation. At the beginning of the

time step, the enstrophy of the grid modes is equal to the enstrophy of the

corresponding subgrid bin, i.e.

(5.34)
1

2

∑

i

|ωi|2 =
1

2
|Ω|2 .

The energy of the grid modes is given by

(5.35)
1

2

∑

i

|ωi|2
k2
i

.

Insisting that the grid modes have the same energy as the corresponding sub-

grid bin implies that

(5.36)Ebin =
1

2

∑

i

|ωi|2
k2
i

,

which allows us to determine K2
eff via equation (5.32).

Theorem 5.4: Equation (5.33) conserves energy and enstrophy locally.

Proof. Let
∑

i |ωi|
2 = 9 |Ω|2 and

∑
i

|ω2
i |
k2
i

= 9
|Ω2|
K2 at time t. Then, advance wi

in time, so that
(5.37)ωi → ω̃i, Ω→ Ω̃.

Then, the new enstrophy is

(5.38)

2Z(t+ τ) =
∑

i

|ωi(t+ τ)|2

=
∑

i

|ω̃i(t+ τ)|2 +
∆t→t+τ (|Ω2|)
|Ω2(t)| |ωi(t)|2

=
∑

i

|ω̃i(t+ τ)|2 + 9∆t→t+τ
(∣∣Ω2

∣∣)
∑

i |ωi(t)|
2

9 |Ω2(t)| .
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But
∑
i|ωi(t)2|

9|Ω(t)|2 = 1, so

(5.39)

2Z(t+ τ) =
∑

i

∣∣ω̃i(t+ τ)2
∣∣+ 9∆t→t+τ

(∣∣Ω2
∣∣)

=
∑

i

|ωi(t)|2 +
∑

i

∆t→t+τ
(∣∣ω2

i

∣∣)+ 9∆t→t+τ
(∣∣Ω2

∣∣),

which includes all the contributions from both the grid and the subgrid. Since

the subgrid and the grid conserve energy on their own, any change from syn-

chronization is balanced by a change of the opposite sign elsewhere in the

system.

In terms of energy conservation, one has

2E(t+ τ) =
∑

i

|ωi(t+ τ)|2
k2
i

=
∑

i

|ωi(t)|2
k2
i

+
∑

i

∆t→t+τ
(
|ωi|2

)

k2
i

+ 9∆t→t+τ
(
|Ω|2

)
∑

i
|ωi(t)|2
k2
i

9 |Ω(t)|2
,

(5.40)

but

(5.41)

∑
i
|ωi(t)|2
k2
i

9 |Ω(t)|2
=

1

K2
,

so

(5.42)2E(t+ τ) =
∑

i

|ωi(t)|2
k2
i

+
∑

i

∆t→t+τ

(
|ωi|2
k2
i

)
+ 9∆t→t+τ

(
|Ω|2
K2

)
,

which captures the changes in energy from the two grids. Again, conservation

on each grid independently implies that this synchronization method conserves

energy for the grids in conjunction.

Figure 5.34 shows the energy spectrum of an inviscid, unforced binned

subgrid wavenumber simulation. Notice that the grid boundary is visible, and

that the spectrum on the subgrid follows a different curve than the predicted
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equipartition spectrum. Upon increasing the source term on the subgrid, based

on the assumption of non-correlated phase, this divergence becomes even more

pronounced, as shown in Figure 5.35. However, decreasing the subgrid source

term moves the spectrum closer to the theoretical prediction, as shown in

Figure 5.36.

Decreasing the subgrid source term corrects for the shift in the equipar-

tition spectrum on the subgrid. For shell model turbulence, rescaling the

grid or subgrid source term had no effect on the energy spectrum of unforced

inviscid simulations, and the reason why this plays an important rôle in two-

dimensional Navier–Stokes turbulence is not entirely clear, and may be due to

inaccuracies in the subgrid evolution equation stemming from approximations

made in its derivation.

10−1

E
(k
)
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k

simulation

πk

α+ βk2

Figure 5.34: Energy spectrum from an unforced inviscid binned subgrid
wavenumber simulation, with α = 121, β = 1. The grid and subgrid have
dimension 63× 32. The grid/subgrid boundary occurs at k ∈ (31, 31

√
2).

Scaling the subgrid source term continues to be important when we consider

forced-dissipative simulations using a binned subgrid. Figure 5.37 shows the
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Figure 5.35: Energy spectrum from an unforced inviscid binned subgrid
wavenumber simulation with increased subgrid nonlinearity, using the param-
eters of Figure 5.34. The grid/subgrid boundary occurs at k ∈ (31, 31

√
2).
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Figure 5.36: Energy spectrum from an unforced inviscid binned subgrid
wavenumber simulation with decreased subgrid nonlinearity, using the param-
eters of Figure 5.34. The grid/subgrid boundary occurs at k ∈ (31, 31

√
2).
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energy spectrum of a forced-dissipative simulation with a grid and subgrid

of equal size. The visible part of the subgrid is less energetic than the full-

resolution DNS simulation would suggest. Upon increasing the subgrid source

term, this divergence is exacerbated, as shown in Figure 5.38, but is partly

corrected when the subgrid source term is diminished, as shown in Figure 5.39.
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Figure 5.37: Energy spectrum from a forced-dissipative binned subgrid
wavenumber simulation compared to a full-resolution DNS simulation, us-
ing the parameters of Figure 5.20. The grid/subgrid boundary occurs at
k ∈ (31, 31

√
2).

The grid and the subgrid both have square geometries, and this lack of

isotropy may be preventing the system from relaxing to the energy spectrum

of the full-resolution simulation. This problem can be partially solved by

eliminating modes on the grid in a circular pattern and synchronizing only the

remaining grid modes, so that the grid is effectively circular. In addition to

requiring a circular boundary, we also reduce the size of the grid. Since this al-

lows for more interactions on the subgrid, it is more able to relax to the correct

energy spectrum. Figure 5.40 shows the energy spectrum of such a simulation
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Figure 5.38: Energy spectrum from a forced-dissipative binned subgrid
wavenumber simulation with increased subgrid source term compared to a
full-resolution DNS simulation, using the parameters of Figure 5.20. The
grid/subgrid boundary occurs at k ∈ (31, 31

√
2).
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Figure 5.39: Energy spectrum from a forced-dissipative binned subgrid
wavenumber simulation with decreased subgrid source term compared to a
full-resolution DNS simulation, using the parameters of Figure 5.20. The
grid/subgrid boundary occurs at k ∈ (31, 31

√
2).
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with normal subgrid source. As before, increasing the subgrid nonlinear source

increases the difference between the energy spectra of the multispectral simu-

lation and the full-resolution DNS simulation, which is shown in Figure 5.41.

Reducing the subgrid source term moves the energy spectrum more in line

with the DNS energy spectrum, with only relatively minor oscillations at the

grid/subgrid interface.
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Figure 5.40: Energy spectrum from a forced-dissipative binned subgrid
wavenumber simulation with a grid of size 15 × 8, a subgrid of size 63 × 32,
and a circular grid boundary compared to a full-resolution DNS simulation.
Other parameters are as in Figure 5.20. The grid/subgrid boundary occurs at
k = 7.

159



10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

E
(k
)

100 101

k

DNS

multispectral

Figure 5.41: Energy spectrum from a forced-dissipative binned subgrid
wavenumber simulation with a grid of size 15 × 8, a subgrid of size 63 × 32,
a circular grid boundary, and an increased subgrid source compared to a full-
resolution DNS simulation. Other parameters are as in Figure 5.20. The
grid/subgrid boundary occurs at k = 7.

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

E
(k
)

100 101

k

DNS

multispectral

Figure 5.42: Energy spectrum from a forced-dissipative binned subgrid
wavenumber simulation with a grid of size 15 × 8, a subgrid of size 63 × 32,
a circular grid boundary, and a decreased subgrid source compared to a full-
resolution DNS simulation. Other parameters are as in Figure 5.20. The
grid/subgrid boundary occurs at k = 7.
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Chapter 6

Conclusion

Wherein the results described in this monograph are summa-

rized and open problems are considered.

Applied mathematicians face two fundamental problems: first, one must

determine a mathematical model of the system under consideration and, sec-

ond, one must use this model to help understand the system. In some sense,

these two activities are in conflict with each other. On one hand, one would

prefer a model which includes as many features as possible, but such com-

plicated models are rarely solvable, and a simplified system can yield more

insight, so long as it is still complex enough to capture the behaviour of the

system.

6.A Summary of Results

In this monograph, I considered two models of fluid motion, namely the in-

compressible Navier–Stokes equations, a complicated model which is difficult
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to solve, and shell models of turbulence, which are less complicated and easier

to solve. I approached these systems using a variety of techniques.

Shell models of turbulence are by far the simpler type of models presented in

this monograph; they are truly toy models of turbulence, which, while simpler

to understand than their older and greater sibling the Navier–Stokes equations,

solutions to shell models of turbulence exhibit complicated behaviour which

is not entirely understood. In this work, I studied the effect of resolution on

shell models of turbulence. In Chapter 2, I showed that the GOY, DN, and

Sabra models of turbulence reproduced the same continuum shell model under

the limit of infinite resolution. This continuum model reproduces aspects of

classical Kolmogorov theory, i.e. it lacks anomalous scaling. This is suggestive

that anomalous scaling in Navier–Stokes may also be due to an energy cascade

that is non-local in Fourier space.

The Navier–Stokes equations are generally considered to provide a good

description of the motion of Newtonian fluids. They seem straightforward

when written down, with individual terms representing clearly defined effects

which, individually, are not difficult to understand. However, solutions to the

Navier–Stokes equations are available under very few circumstances, and, at

high Reynolds number, their numerical solution is very difficult.

One method for numerically solving nonlinear partial differential equations

such as the Navier–Stokes equations is the pseudospectral method, where most

of the system is solved in Fourier space, except for the nonlinear term, which is

solved in physical space. This is done for reasons of efficiency; since the nonlin-

earity is quadratic, it is transformed into a convolution in Fourier space. It is

much faster to calculate this using the convolution theorem and FFTs. These

convolutions require dealiasing, which was the subject of Chapter 3. With
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the goal of producing a complete description of finite-length convolutions and

their calculation, I considered convolutions on centered and non-centered data;

nullary, unary, binary, and n-ary convolutions; and convolutions in one or many

dimensions. In this work, I considered two methods for dealiasing such convo-

lutions, namely phase-shift dealiasing and zero-padding. Moreover, the tech-

nique of implicit zero-padding was demonstrated to dealias multi-dimensional

convolutions in less time and using less memory than explicit zero padding.

Implicit padding significantly decreases the difficulty of performing pseu-

dospectral simulations of highly turbulent systems. Unfortunately, these sys-

tems are so complicated that much more must be done: even with the effi-

ciencies gained from implicit padding, the vastness of the problem completely

out-strips our computational ability. This can be addressed by considering a

decimation scheme, which reduces the number of degrees of freedom of the

problem by using some averaging technique. One such decimation scheme,

spectral reduction, is based on evolving Fourier modes in groups known as

bins. In the first part of Chapter 4, spectral reduction is applied to shell mod-

els of turbulence. It is shown that the GOY model reduces to the DN model,

which, on further decimation, is a fixed point. Spectral reduction is based on

the assumption that the individual modes may be approximated as constant

over a bin. We attempt to improve on this approximation, accounting for the

variation in amplitudes over a bin by interpolating the neighbouring bin am-

plitudes; however, this method is shown to be unstable. Spectral reduction is

also applied to two-dimensional incompressible Navier–Stokes turbulence. Un-

til recently, this required the direct calculation of a modified convolution, but

this has now been shown to be amenable to FFT-based calculation, resulting

in a dramatic reduction in computational effort.
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The major drawback of spectral reduction is the requirement that the dec-

imation be performed uniformly in Fourier space. In other words, the deci-

mation must produce bins that represent the same number of modes in the

original system. The problem becomes clear upon performing inviscid, un-

forced simulations of mixing dynamics; such simulations should move towards

a statistical equipartition of a linear combination of the conserved quantities,

and this equipartition should be an equipartition over the original modes. The

decimated system will produce an equipartition over the bins; these two states

are equivalent only when the decimation is uniform.

Performing a uniform spectral reduction reduces the information at both

the small scales and the large scales alike, which can be a significant problem.

The main focus in this monograph is the multispectral method, a multigrid-

inspired numerical technique that uses a hierarchy of spectrally reduced grids

to perform simulations of time-dependent problems.

The multispectral method was first developed for shell models of turbu-

lence, and was applied in this work to the more difficult problem of two-

dimensional incompressible Navier–Stokes flows. Various grid geometries and

synchronization methods were examined, allowing the grids to be evolved in

time and kept in sync with each other, while conserving the invariants of the

system, i.e. energy and enstrophy. While shell models require that the subgrid

evolution source term be increased in order to reproduce the energy spectrum

of forced-dissipative turbulence, the multispectral Navier–Stokes simulations

required that the source term for the subgrid evolution equation be decreased.

This suggests that higher-order corrections to spectral reduction may perhaps

be required in order to explain the difference in time scales between the grid

and the subgrid. Moreover, it was found necessary to extend the subgrid,
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which may indicate that discrete effects have a more prominent effect for the

multispectral method than for direct simulation.

6.B Future Work

Implicitly padded convolutions are faster and require less memory than con-

ventional techniques for dealiasing convolutions, and we expect that they will

become a standard tool in many areas. Implicitly padded convolutions have

been developed for non-centered, non-Hermitian data in one, two, and three

dimensions; centered Hermitian data in one, two, and three dimensions; and

centered, Hermitian ternary convolutions in one and two dimensions. All of

these algorithms have been designed for independent inputs, and there are

important special cases that can be optimized, such as the convolution of the

array f ∗f ; since the two input arrays are identical, one need only transform f

once, allowing f ∗ f to be calculated using two Fourier transforms instead of

three.

In addition to optimizing the special cases mentioned above, the calcula-

tion of n-ary convolutions merits more attention, and it may be possible to

create an efficient code that can calculate convolutions or arbitrary order us-

ing implicit padding. It would also be worthwhile to determine the magnitude

of error introduced by calculating such a convolution via binary convolutions,

particularly if this technique is used for pseudospectral calculations of com-

pressible Navier–Stokes turbulence.

As mentioned in section 3.D, it may be possible to parallelize implicitly

padded convolutions efficiently. This could be accomplished by taking advan-

tage of the fact that the implicitly padded Fourier transform divides the data
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at the highest level, as do conventional FFTs. One could divide the problem

into smaller pieces by increasing this division, and it may be possible to miti-

gate the high communication costs incurred by conventional explicitly padded

convolution techniques.

The advent of implicitly padded convolutions presents an opportunity to

create a new, more efficient three-dimensional pseudospectral Navier–Stokes

solver. Using TRIAD for time stepping and FFTW++ to compute the convolution,

this should be a relatively straightforward exercise. The resulting code should

be more efficient than existing serial pseudospectral codes.

In the multispectral method, the subgrid evolution equation had to be

rescaled for both shell models of turbulence and the two-dimensional Navier–

Stokes equations. This suggests that it would be worthwhile to consider higher-

order approximations to spectral reduction. This may be in the form of the

inclusion of phase information. Perhaps some more stable method for com-

posing bins from modes of different amplitudes might be developed. With

the advent of pseudospectral reduction, which allows the modified spectrally

reduced convolution to be calculated via FFTs, the technique is again com-

petitive and deserves renewed consideration.

Phase information may play an important rôle in the application of the

multispectral method to two-dimensional Navier–Stokes flow. The synchro-

nization operators were designed to conserve energy and enstrophy, which de-

pend only on the modal amplitude, and not the phase. It would be worthwhile

to consider synchronization operators that are able to transfer phase informa-

tion between the grid and subgrid, as the importance of phase synchronization

is not well understood at this time.

The two-dimensional multispectral method could also be studied at higher
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resolution, as the removal of grid-mode interactions from the subgrid may ex-

acerbate discrete effects. It is also interesting to consider what effect the choice

of time stepping has on the multispectral method, and whether synchroniz-

ing only between time steps causes a drop in accuracy. This problem may

be avoided by applying specially constructed Runge–Kutta integrators, where

the accuracy of each sub-stage is at least as good as the previous sub-stage.

With such integrators, one could possibly synchronize at each stage, instead

of just once per time step.

The application of the multispectral method to two-dimensional Navier–

Stokes turbulence was complicated by the presence of two sign-definite invari-

ants, a problem that does not arise in three dimensions. The lessons learnt

in developing the multispectral method for shell models of turbulence and the

two-dimensional Navier–Stokes equations will allow us to avoid many pitfalls

when applying the method to three-dimensional turbulence which, it must be

noted, is a system of even greater physical interest.
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Liouville theorem, 15
low-resolution shell models, 36

molecular viscosity, 5

non-centered, 57

parallel synchronization, 118
phase-shift dealiasing, 59
pressure, 3
project, 118
prolongation, 119
pruning, 64
pruning transforms, 64
pseudospectral, 23

raw spectrum, 21
Reynolds number, 8

serial synchronization, 118
shell-model helicity, 30
spectral Navier–Stokes, 13
structure function exponent, 10
subgrid, 117

turbulence, 9
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viscosity, 3
vorticity, 6

zero-padding, 59
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