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ABSTRACT
This paper presents an exploration of a specific type of a generalized multicomponent solution model, which appears to be first given by
Saulov in the current explicit form. The assumptions of the underlying theory and a brief derivation of the main equation have been provided
preliminarily for completeness and notational consistency. The resulting formulae for the Gibbs free energy of mixing and the chemical
potentials are multivariate polynomials with physically meaningful coefficients and the mole fractions of the components as variables. With
one additional assumption about the relative magnitudes of the solvent–solute and solute–solute interaction exchange energies, combining
rules were obtained that express the mixed coefficients of the polynomial in terms of its pure coefficients. This was done by exploiting the
mathematical structure of the asymmetric form of the solvent chemical potential equation. The combining rules allow one to calculate the
thermodynamic properties of the solvent with multiple solutes from binary mixture data only (i.e., each solute with the solvent), and hence,
are of practical importance. Furthermore, a connection was established between the osmotic virial coefficients derived in this work and the
original osmotic virial coefficients of Hill found by employing a different procedure, illustrating the equivalency of what appears to be two
different theories. A validation of the combining rules derived here has been provided in a separate paper where they were successfully used
to predict the freezing points of ternary salt solutions of water.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0166482

I. INTRODUCTION

There exist numerous nonideal solution theories in literature.
We will not attempt a review here but rather list a few that are essen-
tial for providing a context for the approach presented in this paper.
Regular solution theory1 is the most widely used nonideal solution
theory mainly because of its simplicity. It considers only pairwise
interactions and assumes random mixing. The quasi-chemical treat-
ment1 improves on regular solution theory by considering pairwise
additive interactions without assuming random mixing (we restrict
the usage of the term “regular” to the former case; Guggenheim’s
definition includes the quasi-chemical treatment as part of regular
solution theory). The quasi-chemical approach provides a good bal-
ance of accuracy and simplicity. It is also commonly used, especially
to capture the phase-change behavior of solutions more accurately.
By accounting for complex interactions in larger particle groups,
formally exact theories2–4 avoid all approximations, but they are
rarely used in practice due to their complexity and/or for being
computationally expensive.

Most solution models have been originally developed for binary
mixtures and then extended to multicomponent mixtures. This
extension is straight forward in the context of simple theories, such
as regular solution theory, but it is challenging in more accurate
frameworks since they are complicated by nature. Hence, it is not
surprising that explicit multicomponent formulae are usually not
provided even when the existence of such an extension is obvious.
Consequently, in practice, while the properties of a binary mix-
ture can be calculated with any theory depending on the required
accuracy, only the simple models can be effectively used for multi-
component solutions. In contrast, it is rare for mixtures in nature
as well as in industrial processes to only contain two components.
Consider, for example, solutions studied in biology,5–7 geology,8
oil processing,9,10 metallurgy,11–14 and atmospheric physics.15–20

Therefore, it is desirable to have an accurate multicomponent solu-
tion model with manageable complexity so that practically-useful
equations can be developed.

In this work, we look at a solution made of an arbitrary number
of components by considering interactions in groups consisting of
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an arbitrary number of particles, but nevertheless, we assume ran-
dom mixing. This approach can be viewed as an extension of regular
solution theory in a specific way: while the quasi-chemical treatment
addresses the nonrandomness of mixing in a system with pair-
wise additive interactions, the method employed herein accounts for
multi-body interactions with random mixing. The objectives of this
paper are twofold: (i) to give a theoretical basis for the virial equation
for the change in the chemical potential of the solvent (i.e., multi-
solute osmotic virial equation) and derive its coefficients from first
principles, and (ii) to provide a method of estimating the chemical
potential of a solvent in the presence of multiple solutes by deriving
combining rules for the mixed coefficients.

In the first part of this paper, we list the assumptions of the
present model and rederive the corresponding equation for the
Gibbs free energy of mixing. Except for the structure of the argu-
ments, some nuances in the assumptions, and notational differences,
our formulation and the resulting equation are the same as what
was obtained before by Saulov21 (and by Kakuda et al.22 for spe-
cial cases). We give a brief, equivalent derivation here for the sake
of completeness and consistency of notation with what follows.

It should be noted that the idea of combining rules for the mul-
tisolute osmotic virial equation is not new. To our knowledge, the
first such concept was put forward by Elliott et al.23 who derived
the arithmetic-average combining rule for the second-order mixed
coefficient in the regular solution theory framework. A geometric-
average combining rule was also proposed for the cubic mixed
coefficient in the same work. These combining rules were then used
to predict the osmolality of solutions of interest in biology.23–26

Later, a modified version of the multisolute osmotic virial equation
with the same combining rules was applied to solutions containing
salts as well.25–27 In all cases, good agreement was achieved between
the predictions of the model and independent experimental mea-
surements. The present work aims to derive generalized combining
rules in a specific solution theory framework.

This paper is intended as a standalone work on the theoretical
exploration of the multisolute osmotic virial equation and corre-
sponding combining rules. We note that, however, we have applied
an extension of this model to dissociating solutes in another paper.28

There, the predictions of the present model for freezing points of
11 ternary inorganic salt solutions of water were found to be in
excellent agreement with independent experimental measurements
(root-mean square error of 0.45 K and close-to-zero mean bias for a
total of 371 data points).

II. THE MODEL
A. Assumptions of the model

We consider a single-phase multicomponent mixture theory
that accounts for interactions in arbitrarily large particle groups. The
goal here is to find an explicit formula for the thermodynamic poten-
tial (or free energy) of the system in terms of the energies of the
particle groups. We are interested in solutions formed at constant
temperature and pressure with fixed amounts of each component,
hence, the Gibbs free energy, G, is the thermodynamic potential of
the system. The assumptions of the model are listed below:

(i) The total nonconfigurational Gibbs free energy of the system
can be written as the sum of the interaction energies of all par-

ticle groups of a chosen size. The selection of this size is based
on assumption (ii).

(ii) For each particle, there exists a neighborhood, and the inter-
actions of this particle with particles outside of this neigh-
borhood can be neglected. The neighborhood is defined by
the smallest spherical volume encapsulating a given number
of particles. Note that negligible interaction outside of this
sphere does not mean zero interaction, but instead, implies
that the difference in the long-range interactions between the
pure substance and the mixture is negligible such that the
associated energy remains unchanged upon mixing.

(iii) Each particle is directly surrounded by a certain constant
number of other particles, which is called the coordination
number. The coordination number is well defined for a solid
lattice but should be thought of as an average of many pos-
sible arrangements for liquids. The fluctuations around this
average can be shown to have insignificant effect on the local
geometry in liquids. No assignment of this constant is needed
in our calculations.

(iv) All particles are of similar size so that, when a particle at a
site is replaced by a different type of particle, the coordination
number can be assumed to be unchanged.

(v) The particles are randomly distributed even though the
exchange interaction energies are not zero. In other words,
all particles have an equal probability of occupying any given
site, which is also the same for all sites, independent of the
occupancy of the neighboring sites.

Assumption (v) is also known as the Braggs–Williams approxi-
mation,2 and it is the main simplification made in the present
treatment.

B. Nonconfigurational Gibbs free energy
of random mixing

Here, it is convenient to work with a modified Gibbs free energy
function that excludes the terms due to configurational entropy. This
contribution can be separately calculated and added later. Consider
n-tuples as the interacting particle groups (i.e., groups of n particles;
smaller or larger groups are not used in the formulation) at con-
stant pressure and temperature. Then, based on assumptions (i) and
(ii), the nonconfigurational Gibbs free energy, Gnc, of a system made
by mixing r types of components can be expressed as the sum of
energies of all particle groups:

Gnc
=∑

ℓ

gAℓ
NAℓ

(1)

where gAℓ
and NAℓ

are the nonconfigurational Gibbs free energy and
the number of a certain type of fixed composition n-tuples denoted
by the index Aℓ, respectively. The subscript ℓ is an incrementing
label pointing to each unique element of A (see the next paragraph).
Each gAℓ

is assumed to be averaged over all possible spatial con-
figurations of particle groups having the same composition. The
main idea of the present treatment is to not search for a decom-
position of gAℓ

in terms of the energies of smaller particle groups
if not necessary, and instead, treat it as a fundamental quantity.
This approach reduces mathematical complexity and avoids need-
less approximations that may be present in other approaches, such as
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the quasi-chemical treatment, where the pairwise additivity of inter-
action energies had to be assumed. Note that this does not mean that
the method presented here is superior to others. The choice is rather
a matter of what one wishes to calculate/achieve using the model. For
the purposes of this article, viewing the n-tuple energy as irreducible
will suffice.

In Eq. (1), A denotes the set of all multisets of length n, cho-
sen from r types (i.e., all the different n-tuples that can be made of
n particles chosen from r particle types or components), and ℓ is
used to label its elements. One such element represents a unique n-
tuple type (and vice versa) in terms of its composition, and each Aℓ

is permutation-invariant (i.e., no ordering is assumed). From basic
combinatorics, the number of such multisets (i.e., the number of
elements of A) can be found to be29

∣A∣ =
⎛
⎜
⎝

n + r − 1

n

⎞
⎟
⎠
=
(n + r − 1)!
n!(r − 1)!

(2)

meaning that ℓ ∈ [1, ∣A∣] (note that 0! = 1). We use natural numbers
from 1 to r to label the components. For example, for n = 2 and r = 3
we have

Gnc
= g11N11 + g22N22 + g33N33 + g12N12 + g13N13 + g23N23 (3)

for n = 3 and r = 2 we have

Gnc
= g111N111 + g222N222 + g112N112 + g122N122 (4)

and so on, as desired. The complicated index notation we adopt here
may seem unnecessary, however, its use has the benefit of making
certain formulae in the following derivation much shorter and easier
to comprehend.

Using assumptions (iii) and (iv) and taking zn as the num-
ber of n-tuples sharing each particle, which only depends on n and
the coordination number, the number of particles of type j and the
number of n-tuples can be related by simple counting as follows:

Nj =
1
zn
∑
ℓ

ξj∣Aℓ
NAℓ

(5)

where 0 ≤ ξ j∣Aℓ
≤ n is the multiplicity of component j in the multiset

Aℓ. Noting that ∑r
j=1ξ j∣Aℓ

= n for any Aℓ, we can sum the left- and
right-hand sides of Eq. (5) over j and obtain

∑
ℓ

NAℓ
=

zn

n

r

∑
j=1

Nj (6)

which relates the total number of n-tuples to the total number of
particles of individual species. As it can be inferred from Eq. (6), the
factor zn/n is the number of times we overcount each particle when
counting the particle groups. If we multiply both sides of Eq. (5) by
the pure n-tuple energy, g j. . .j, before summing its left- and right-

hand sides over j, we instead get

zn

n

r

∑
j=1

gj...jNj −∑
ℓ

⎛

⎝

1
n

r

∑
j=1

ξj∣Aℓ
gj...j
⎞

⎠
NAℓ
= 0 (7)

Equation (7) can be added to Eq. (1) and the result can be
rearranged to give

Gnc
=

zn

n

r

∑
j=1

gj...jNj +∑
ℓ

⎛

⎝
gAℓ
−

1
n

r

∑
j=1

ξj∣Aℓ
gj...j
⎞

⎠
NAℓ

(8)

Notice that the first term on the right-hand side of Eq. (8) is the
nonconfigurational Gibbs free energy of the system when only the
like particles interact. It has the same value as if we calculated the
total system energy with each pure-component subsystem existing
far apart.

From the second term on the right-hand side of Eq. (8), we can
naturally define the nonconfigurational Gibbs free energy change
of formation of a particle group by viewing the mixing process
as the creation of a particular n-tuple from the “disassembly” and
“reassembly” of the appropriate pure-component n-tuples:

wAℓ
= gAℓ

−
1
n

r

∑
j=1

ξj∣Aℓ
gj...j (9)

Clearly, wj. . .j = 0 for all j, however, we will not make this
substitution in some cases to preserve the symmetry of certain
expressions. With this notation, the nonconfigurational Gibbs free
energy of the system can be expressed as

Gnc
=

zn

n

r

∑
j=1

gj...jNj +∑
ℓ

wAℓ
NAℓ

(10)

Based on the random-mixing assumption, (v), the probability
of a randomly chosen n-tuple having the composition Aℓ can be
found with the help of combinatorics:

PAℓ
=

n!

(
r
∑
j=1

Nj)

n

r

∏
j=1

(Nj)
ξj∣Aℓ

ξj∣Aℓ
!

(11)

which is the probability mass function of the multinomial distribu-
tion.29 Here, it is assumed that each N j is much larger than n so
that the probability of each consecutive inclusion of a certain type
of species in the group is independent of its existing fraction in
that group. Using Eqs. (6) and (11), we can calculate the expected
or average number of n-tuples of a given composition in the
mixture as

⟨NAℓ
⟩ = PAℓ∑

ℓ

NAℓ
=

znn!

n(∑r
j=1Nj)

n−1

r

∏
j=1

(Nj)
ξj∣Aℓ

ξj∣Aℓ
!

(12)
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Substituting Eq. (12) into Eq. (10), we can find the expected
nonconfigurational Gibbs free energy of the entire system:

⟨Gnc
⟩ =

zn

n

r

∑
j=1

gj...jNj +
zn

n(∑r
j=1Nj)

n−1

×∑
ℓ

wAℓ
n!

r

∏
j=1

(Nj)
ξj∣Aℓ

ξj∣Aℓ
!

(13)

Used here to distinguish the exact value from the expected
value, we drop the angle brackets in the remainder of the text.
Applying the multinomial theorem to Eq. (13), we can notationally
simplify and rewrite it as

Gnc
=

zn

n

r

∑
j=1

gj...jNj +
zn

n(∑r
j=1Nj)

n−1

×
r

∑
i1 ,i2...in=1

wi1i2...in Ni1 Ni2 . . .Nin (14)

where we use a single sum notation for a series of sums repeated
n times for each element (i.e., each index) from the set of variables
{i1, i2 . . . in}, each starting from 1 going up to r. Since the individ-
ual indices appear explicitly and the second sum is symmetric in
Eq. (14), this explicit notation will prove more useful in the remain-
der of the text compared to the notation used in Eqs. (1)–(13). Note
that the choice to label the variable indices in an increasing order is
a convention we make here and follow throughout the text.

Equation (13) has been previously obtained by Saulov21 for the
general case and by Kakuda et al.22 for up to n = 4 and r = 4 using
similar arguments and assumptions. Both articles have received
minimal attention in the solution thermodynamics literature and are
not particularly well known.

C. Chemical potential
To find the chemical potential of component j, μj, we take the

derivative of the total Gibbs free energy with respect to the number
of that component, N j, at constant temperature, T, pressure, P, and
the fixed numbers of the remaining species:

μj = (
∂G
∂Nj
)

T,P,Ni≠Nj

= (
∂Gnc

∂Nj
)

T,P,Ni≠Nj

+ (
∂Gc

∂Nj
)

T,P,Ni≠Nj

= μ○j + μex
j + kBT ln xj (15)

where Gc is the configurational part of the Gibbs free energy
(G = Gnc

+Gc), μ○j = zng j... j/n is the chemical potential of the pure
substance (by the definition of chemical potential), kB is the Boltz-
mann constant, and xj is the mole fraction of component j in the
solution. Termed the excess chemical potential of species j, μex

j is the
derivative of the second term on the right-hand side of Eq. (14). The
term kBT ln xj in Eq. (15) is the derivative of Gc under the random-
mixing assumption and its derivation can be found in any standard
textbook on the topic (e.g., see Guggenheim1).

Next, we explicitly evaluate μex
j in Eq. (15) using the expression

through which it is defined:

μex
j =

∂

∂Nj

⎡
⎢
⎢
⎢
⎣

zn

n(∑r
k=1Nk)

n−1

r

∑
i1 ,i2...in=1

wi1i2...in Ni1 Ni2 . . .Nin

⎤
⎥
⎥
⎥
⎦

=
zn

nNj(∑
r
k=1Nk)

n−1

r

∑
i1 ,i2...in=1

(∑
n
k=1δjik)wi1i2...in

×Ni1 Ni2 . . .Nin −
zn(n − 1)

n(∑r
k=1Nk)

n

×
r

∑
i1 ,i2...in=1

wi1i2...in Ni1 Ni2 . . .Nin (16)

where δij is the Kronecker delta (δij = 1, if i = j; δij = 0, other-
wise). We can expand the innermost sum in Eq. (16), reindex each
resulting term, and recollect the terms to get

μex
j =

zn

nNj(∑
r
k=1Nk)

n−1
⎛

⎝
n

r

∑
i1 ,i2...in=1

δji1 wi1i2...in Ni1 Ni2 . . .Nin

⎞

⎠

−
zn(n − 1)

n(∑r
k=1Nk)

n

r

∑
i1 ,i2...in=1

wi1i2...in Ni1 Ni2 . . .Nin (17)

Cancelling out the terms in Eq. (17) and writing it in mole
fraction units, we have

μex
j = zn

r

∑
i2 ,i3...in=1

wji2...in xi2 xi3 . . . xin

−
zn(n − 1)

n

r

∑
i1 ,i2...in=1

wi1i2...in xi1 xi2 . . . xin (18)

Equation (18) is the most general form of the excess chemical
potential given the current assumptions. It can be substituted into
Eq. (15) giving the equation for the full chemical potential. However,
in the next few steps of the derivation, it will be more convenient to
work with the excess chemical potential, thus we choose to make this
substitution later.

III. SOLVENT-DOMINANT MIXTURES
In many practical applications, multicomponent mixtures are

often those consisting of a solvent as the main medium with added
solutes in small amounts (not necessarily dilute). Therefore, it is
valuable to have a method of estimating the chemical potential of
the solvent from binary solution data only. Here, with one additional
assumption about the exchange interaction energies of the compo-
nents, we provide a derivation of such a method based on Eq. (18).
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In the remainder of this paper, we will denote the solvent by 1 and
the solutes by 2, 3, . . . , r.

A. Asymmetric form of Eq. (18) for the solvent
Here, we work with Eq. (18) written for the solvent (i.e., j = 1).

It is useful to write this equation in terms of the mole fractions
of the solutes only. This can be done by repeatedly substituting
x1 = 1 −∑r

j=2x j in the expansion over each ij and simplifying the
results by combining the like terms. Below we give the details of
substitution for x1 in the expansion over i1:

Step (1). Separate the term containing x1 in the sum over i1 in
Eq. (18) from the rest and substitute for x1 to get

μex
1 = zn

r

∑
i2 ,i3...in=1

w1i2...in xi2 xi3 . . . xin −
zn(n − 1)

n

×
r

∑
i2 ,i3...in=1

w1i2...in

⎛

⎝
1 −

r

∑
j=2

xj
⎞

⎠
xi2 xi3 . . . xin

−
zn(n − 1)

n

r

∑
i2 ,i3...in=1

i1=2

wi1i2...in xi1 xi2 . . . xin (19)

Step (2). Split the expression (1 −∑r
j=2x j) in Eq. (19) into two terms

to get

μex
1 = zn

r

∑
i2 ,i3...in=1

w1i2...in xi2 xi3 . . . xin

−
zn(n − 1)

n

r

∑
i2 ,i3...in=1

w1i2...in xi2 xi3 . . . xin

+
zn(n − 1)

n

r

∑
i2 ,i3...in=1

i1=2

w1i2...in xi1 xi2 . . . xin

−
zn(n − 1)

n

r

∑
i2 ,i3...in=1

i1=2

wi1i2...in xi1 xi3 . . . xin (20)

Step (3). Collect the terms over the same sums to get

μex
1 =

zn

n

r

∑
i2 ,i3...in=1

w1i2...in xi2 xi3 . . . xin −
zn(n − 1)

n

×
r

∑
i2 ,i3...in=1

i1=2

(wi1i2...in − w1i2...in)xi1 xi2 . . . xin (21)

If we now substitute x1 = 1 −∑r
j=2x j in the expansion over i2 in

Eq. (21) and follow the same steps (see the supplementary material),
we get

μex
1 =

zn

n

r

∑
i3 ,i4...in=1

w11i3...in xi3 xi4 . . . xin −
zn(n − 2)

n

×
r

∑
i3...in=1

i2=2

(w1i2...in − w11i3...in)xi2 xi3 . . . xin

−
zn(n − 1)

n

r

∑
i3 ,i4...in=1

i1 ,i2=2

(wi1i2...in − 2w1i2...in

+ w11i3...in)xi1 xi2 . . . xin (22)

Similarly, if substitute x1 = 1 −∑r
j=2x j in the expansion over i3 in

Eq. (22) (see the supplementary material), we get

μex
1 =

zn

n

r

∑
i4 ,i5...in=1

w111i4...in xi4 xi5 . . . xin −
zn(n − 3)

n

×
r

∑
i4...in=1

i3=2

(w11i3...in − w111i4...in)xi3 xi4 . . . xin

−
zn(2n − 3)

n

r

∑
i4 ,i5...in=1

i2 ,i3=2

(w1i2...in − 2w11i3...in

+ w111i4...in)xi2 xi3 . . . xin −
zn(n − 1)

n

×
r

∑
i4 ,i5...in=1

i1 ,i2 ,i3=2

(wi1i2...in − 3w1i2...in + 3w11i3...in

− w111i4...in)xi1 xi2 . . . xin (23)

Noticing the emerging pattern in this series, the result after n
steps can be cast into the following compact expression:

μex
1 =

n

∑
m=2

zn(1 −m)
n

⎛
⎜
⎝

n

m

⎞
⎟
⎠

×
r

∑
i1 ,i2...im=2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

m

∑
k=0
(−1)k

⎛
⎜
⎝

m

k

⎞
⎟
⎠

w1...1ik+1...im

⎤
⎥
⎥
⎥
⎥
⎥
⎦

xi1 xi2 . . . xim (24)

where (n

m
) = n!

m!(n−m)! and (m

k
) = m!

k!(m−k)! are the binomial coeffi-

cients. The number of 1’s in the subscript of w is equal to n −m + k
while the remaining m − k number of indices stay free. Note that
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more than one choice exists to label these free indices when k ≥ 1;
the choice from k + 1 up to m is arbitrary. Equation (24) is an asym-
metric version of Eq. (18) for the excess chemical potential of the
solvent. It is a multivariate polynomial containing all possible con-
figurations of powers from 2 to n of solute mole fractions only (r − 1
variables), compared to powers of n − 1 and n in Eq. (18), which also
includes the solvent mole fraction as a variable (r variables). Below
we give examples of each element in the main sum in Eq. (24) for
n = 4:
for n = 4 and m = 4, we have

−
3zn

4

r

∑
i1 ,i2 ,i3 ,i4=2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

4

∑
k=0
(−1)k

⎛
⎜
⎝

4

k

⎞
⎟
⎠

w1...1ik+1...i4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

xi1 xi2 xi3 xi4

= −
3zn

4

r

∑
i1 ,i2 ,i3 ,i4=2

(wi1i2i3i4 − 4w1i2i3i4 + 6w11i3i4

− 4w111i4 + w1111)xi1 xi2 xi3 xi4 (25)

for n = 4 and m = 3, we have

− 2zn

r

∑
i1 ,i2 ,i3=2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

3

∑
k=0
(−1)k

⎛
⎜
⎝

3

k

⎞
⎟
⎠

w1...1ik+1...i3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

xi1 xi2 xi3

= −2zn

r

∑
i1 ,i2 ,i3=2

(w1i1i2i3 − 3w11i2i3 + 3w111i3 − w1111)xi1 xi2 xi3

(26)

for n = 4 and m = 2, we have

−
3zn

2

r

∑
i1 ,i2=2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2

∑
k=0
(−1)k

⎛
⎜
⎝

2

k

⎞
⎟
⎠

w1...1ik+1...i2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

xi1 xi2

= −
3zn

2

r

∑
i1 ,i2=2

(w11i1i2 − 2w111i2 + w1111)xi1 xi2 (27)

B. Derivation of combining rules
If we hope to obtain any type of combining rules (i.e., a model

for a multisolute mixture that uses only single-solute–solvent binary
information), we need to express the coefficients of the mixed
terms (i.e., the terms containing the powers of more than one of
{x2, x3, . . . , xr}) of any order in terms of the coefficients of the
pure terms (i.e., the terms containing the powers of only one of
{x2, x3, . . . , xr}).

Note that Eq. (24), written for a multicomponent mixture,
inevitably contains terms with coefficients corresponding to purely
solute–solute interactions (e.g., terms with w223, w2345, etc.). Clearly,
these coefficients are not expressible in terms of the solvent–solute
binary coefficients, even with any additional (physically meaning-
ful) approximations. Therefore, to continue further, we make the
following simplifying assumption:

(vi) The interaction exchange energies of the solute species
with one another are negligible compared to the interac-
tion exchange energies of the solute species and the solvent

species. That is, the nonconfigurational Gibbs free energy
change of formation of a particle group made purely from
solutes is zero. This is equivalent of assuming that a mix-
ture made of any combination of the solute components only
behaves ideally.

Under assumption (vi), if one type of solute species is replaced by
another type of solute species in a certain particle group, the change
of the interaction energy of this group does not depend on the types
of the other solute species present in the group: it only depends on
the number of solvent particles in the group and the types of par-
ticles being exchanged. It is important to note that no restriction is
imposed on the concentrations of the species.

We can arrive at the mathematical implications of assumption
(vi) with the following thought experiment: Consider some number
of copies of the same n-tuple containing at least one solvent particle,
that is, consider all copies having the same composition as one sys-
tem. If we swap one solute particle of a certain type from one of the
n-tuples in this system with another solute particle of a different type
from a different n-tuple in this system, then the nonconfigurational
Gibbs free energy of the entire system will not change because of
assumption (vi). Clearly, we can repeat this particle swapping any
number of times without affecting the total (nonconfigurational)
energy of the system. Now, to ensure that we can reduce this sys-
tem of copies to a sum of n-tuples each containing the same number
of solvent particles and only one type of solute particles (i.e., binary
groups), we can make the initial system such that the number of the
copies is equal to the number of the solute particles in one n-tuple.
Consistent with the notation in Eq. (24), we can mathematically
summarize this realization as a decomposition of g in the following
way:

g1...1ik+1...im =
1

m − k

m

∑
j=k+1

g1...1ij...ij (28)

where the number of 1’s and the number of the variable indices in the
subscript of g are preserved from the left side of the equation to the
right side of the equation. Like in Eq. (24), each variable index here
can only represent a solute: ij ∈ [2, r]. The case m = k corresponds to
the pure n-tuple energy, so no decomposition exists in this case, and
we do not need to worry about the division by zero.

Using Eq. (9), it can be checked that this representation of g in
terms of the binary group energies implies the same decomposition
for w (see the supplementary material). That is, we can write

w1...1ik+1...im =
1

m − k

m

∑
j=k+1

w1...1ij...ij (29)

As an example, the following series of equalities holds for n = 4,
m = 4, and k = 2:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1123 =
1
2
(w1122 + w1133)

w1134 =
1
2
(w1133 + w1144)

w1124 =
1
2
(w1122 + w1144)

w1125 =
1
2
(w1122 + w1155)

⋮

(30)
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Substituting Eq. (29) into Eq. (24), after some reindexing and
regrouping (see the supplementary material), the equation for the
excess chemical potential can be expressed as

μex
1 =

n

∑
m=1

r

∑
i1 ,i2...im=2

1
m
⎛

⎝

m

∑
j=1

Qn,m
i j

⎞

⎠
xi1 xi2 . . . xim (31)

where

Qn,m
j =

zn(1 −m)
n

⎛
⎜
⎝

n

m

⎞
⎟
⎠

m

∑
k=0
(−1)k

⎛
⎜
⎝

m

k

⎞
⎟
⎠

w1...1j...j (32)

Qn,m
j is the mth order pure coefficient of the excess chemical poten-

tial expression of solute j in a degree-n expansion, and it can be
obtained by setting xi = 0 for all i except i = j in Eq. (24). Note that
the lower bound of the main sum in Eq. (31) is switched from m = 2
to m = 1 without affecting the result because the first-order pure
coefficients are zero by definition (i.e., Qn,1

j = 0 for any n).
In Eq. (32), the number of 1’s and j’s in the subscript of w

changes from one term of the sum to another as k varies. For
instance, the fourth- and third-order pure coefficients of component
2 in a degree-4 expansion are

Q4,4
2 = −

3zn

4
w2222 + 3znw1222 −

9zn

2
w1122

+ 3znw1112 −
3zn

4
w1111 (33)

and

Q4,3
2 = −2znw1222 + 6znw1122 − 6znw1112 + 2znw1111 (34)

respectively.
Substituting the expression for μex

1 given by Eq. (31) into
Eq. (15) (written for the solvent), we can calculate μ1. However, if
we want to have a polynomial expression for μ1 as well, we need
to approximate ln (x1) [which will be present in Eq. (15) when it
is written for the solvent] by a suitable polynomial expression first.
This can be done by substituting x1 = 1 −∑r

j=2x j into ln (x1) and
writing its Taylor series expansion around∑r

j=2x j = 0 up to the nth
term:

ln (x1) = ln
⎛

⎝
1 −

r

∑
j=2

xj
⎞

⎠
≈ −

r

∑
j=2

xj −
1
2
⎛

⎝

r

∑
j=2

xj
⎞

⎠

2

−
1
3
⎛

⎝

r

∑
j=2

xj
⎞

⎠

3

− ⋅ ⋅ ⋅ −
1
n
⎛

⎝

r

∑
j=2

xj
⎞

⎠

n

= −
r

∑
i1=2

xi1 −
r

∑
i1 ,i2=2

1
2

xi1 xi2 −
r

∑
i1 ,i2 ,i3=2

1
3

xi1 xi2 xi3

− ⋅ ⋅ ⋅ −
r

∑
i1 ,i2...in=2

1
n

xi1 xi2 . . . xin

= −
n

∑
m=1

r

∑
i1 ,i2...im=2

1
m

xi1 xi2 . . . xim (35)

Chemical potential is more useful in practice when it is cal-
culated with respect to a reference state. For a solvent with added
solutes, one convenient reference state is the pure solvent system at
the same temperature and pressure for which the chemical poten-
tial is μ○1 . It is also convenient to express this change in chemical
potential in units of kBT to have a nondimensional equation. Thus,
substituting the results from Eq. (31) and Eq. (35) into Eq. (15)
(written for the solvent) and rearranging, we write the following:

μ1 − μ○1
kBT

= −
n

∑
m=1

r

∑
i1 ,i2...im=2

1
m

⎡
⎢
⎢
⎢
⎢
⎣

1 −
1

kBT
⎛

⎝

m

∑
j=1

Qn,m
i j

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

× xi1 xi2 . . . xim (36)

Because the quantity (μ1 − μ○1)/kBT appears frequently in calcula-
tions, it has been given different names in various forms. Some
notable ones are the relative activity1 of the solvent, defined as

a1 = exp(
μ1 − μ○1

kBT
) (37)

and the osmolality25,30 of the solvent, defined as

π = −
μ1 − μ○1
kBTM1

(38)

where M1 is the solvent’s molar mass. A more directly related
quantity is given as

π+ = −
μ1 − μ○1

kBT
(39)

which is usually referred to as the osmole fraction25,30 of the solvent.
Because of this simple relationship, we choose to express the change
in chemical potential as osmole fraction. Thus, after distributing
the 1 inside the brackets evenly into m terms and introducing
nondimensional coefficients, we can rewrite Eq. (36) as

π+ =
n

∑
m=1

r

∑
i1 ,i2...im=2

1
m
⎛

⎝

m

∑
j=1

Q̂n,m
i j

⎞

⎠
xi1 xi2 . . . xim (40)

where Q̂n,m
j is defined in terms of Qn,m

j through the relation

Q̂n,m
j =

1
m
−

Qn,m
j

kBT

=
1
m
+

zn(m − 1)
nkBT

⎛
⎜
⎝

n

m

⎞
⎟
⎠

m

∑
k=0
(−1)k

⎛
⎜
⎝

m

k

⎞
⎟
⎠

w1...1j...j (41)

and it can be described as the mole-fraction-based mth order pure
osmotic virial coefficient of component j in a degree-n expansion.
Equation (40) is a multivariate polynomial in r − 1 variables for
the change of the chemical potential of the solvent in the presence
of solutes. It is a form of the multisolute osmotic virial equation
derived using assumptions (i) through (vi). The physical meaning
of each coefficient of the polynomial can be inferred with the help of
Eqs. (41) and (9). One can also obtain2,4 other thermodynamic prop-
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erties of the solvent, such as its molar volume, heat content, etc., by
suitable differentiations of π+, which are not discussed here.

The arithmetic-average combining rules for the mixed-term
coefficients follow naturally from the structure of Eq. (40). The use-
fulness of such mixing rules is obvious: if one has data for the
chemical potential change of the solvent as a function of solute con-
centration with each solute separately, then the chemical potential of
the solvent in the presence of any combination of these solutes can
be predicted. In practice, this can be done by fitting a polynomial
to each binary solution dataset and taking the arithmetic average of
the appropriate coefficients to get the coefficients of the cross terms.
Alternatively, if no experimental data are available for certain bina-
ries, the pure osmotic virial coefficients can be found from a more
sophisticated model or molecular dynamics simulations.

The combining rules derived above based on assumption (vi)
neglect effects expected when the solutes are ions (e.g., solute dis-
sociation, charge screening). However, previous versions of the
multisolute osmotic virial equation have been successfully adapted
for use with salt solutes by incorporation of a single additional para-
meter, (kd)j for each salt j, that is obtained empirically from fitting
to experimental data [for each salt, replace xj with (kd)jx j in the
virial equation].27 The parameter (kd)j is called the “dissociation
constant of solute j” even though it empirically accounts for more
electrolyte effects than just dissociation. As noted earlier, in another
paper, we have empirically incorporated the dissociation constant
into the solution theory presented in this paper and investigated
whether the multisolute osmotic virial equation with the new com-
bining rules derived here can describe salt solutions.28 There it was
found that the predictions of the extended multisolute osmotic virial
equation were accurate for 11 ternary aqueous salt solutions and that
the new combining rules had superior performance to those devel-
oped previously by our group. In that work, the data for most single
salt–water solutions were fitted well by only quadratic or cubic poly-
nomials [i.e., requiring only (kd)j , Q̂n,2

j , and sometimes Q̂n,3
j for each

salt; see Sec. IV for interpretation of n].

IV. DISCUSSION
In this section, we only discuss the derived polynomial model

written for a single-solute–solvent system and its coefficients. There-
fore, the validity of assumption (vi) and the resulting combining
rules presented in Sec. III are not required here.

A. Connection to the original single-solute osmotic
virial coefficients

The single-solute osmotic virial equation was first derived by
McMillan and Mayer3 from first principles, which expresses the
osmolality of a solution in terms of the molar concentration of a
solute. Later, Hill4 obtained the same result in molality and mole
fraction units by choosing different sets of independent variables
(i.e., different ensembles). Both methods are formally exact and nec-
essarily equivalent through a suitable change of variables (only true
if the virial expansions are kept as infinite sums; not true when
they are truncated). Here, we show that one can obtain the pure
osmotic virial coefficients derived in this work by applying the
random-mixing assumption to an exact model.

Let us look at the quadratic and cubic coefficients of a two-
component system, since these are the coefficients provided in Hill’s
original paper. The extension of the argument to higher-order coeffi-
cients is straight forward and will be omitted here. For a single-solute
solution, the polynomial expression is simply

π+ = x2 + C2x2
2 + C3x3

2 . . . (42)

and the corresponding second- and third-order coefficients from the
work of Hill are

C2 = N[
1
2
− exp(−

ω2

kBT
)] (43)

and

C3 = 4N2
[

1
2
− exp(−

ω2

kBT
)]

2

− 2N2
[

1
3
− exp(−

ω2

kBT
) + exp(−

ω3

kBT
)] (44)

respectively, where N = N1 +N2 is the total number of particles in
the system. We use here C’s (as in the paper of Hill) instead of Q̂’s
since they refer to coefficients derived within different theories. The
quantity ωi in Eqs. (43) and (44) is defined as the total Gibbs free
energy change for the following process: i number of systems, each
made of N − 1 solvent molecules and one solute molecule, being
rearranged into one system made of N − i solvent molecules with
i number of solute molecules, plus i − 1 number of pure solvent sys-
tems each with N solvent molecules. Approximating the entropy
term that is present in ωi with a random-mixing entropy term, the
exact configurational entropy change for this process can be written
explicitly, and ωi can be expressed as

ωi = ωnc
i − kBT

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ln
⎛
⎜
⎝

N

i

⎞
⎟
⎠
− i ln

⎛
⎜
⎝

N

1

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(45)

where ωnc
i is the nonconfigurational part of Gibbs free energy

change, and the second term is due to the configurational entropy
change for the process described above. Substituting Eq. (45) into
Eqs. (43) and (44), we get

C2 = N[
1
2
− (

1
2
−

1
2N
) exp(−

ωnc
2

kBT
)] (46)

and

C3 = 4N2
[

1
2
− (

1
2
−

1
2N
) exp(−

ωnc
2

kBT
)]

2

− 2N2
[

1
3
− (

1
2
−

1
2N
) exp(−

ωnc
2

kBT
)

+ (
1
6
−

1
2N
+

1
3N2 ) exp(−

ωnc
3

kBT
)] (47)

Retaining only the constant and linear terms in the Taylor series
expansion for the exponentials, these equations reduce to

C2 =
1
2
+

1
NkBT

⎛
⎜
⎝

N

2

⎞
⎟
⎠

ωnc
2 (48)
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and

C3 =
1
3
+

2
NkBT

⎛
⎜
⎝

N

3

⎞
⎟
⎠
(ωnc

3 − 3ωnc
2 ) (49)

respectively. We can express the ωnc
i ’s in terms of the alternative

parameters defined in this work, w1. . .12. . .2’s, using their respec-
tive definitions. Doing so, with some algebraic manipulation (see the
supplementary material), we find

C2 =
1
2
+

1
NkBT

⎛
⎜
⎝

N

2

⎞
⎟
⎠
(w1...122 − 2w1...12) = Q̂N,2

2 (50)

and

C3 =
1
3
+

2
NkBT

⎛
⎜
⎝

N

3

⎞
⎟
⎠
(w1...1222 − 3w1...122 + 3w1...12) = Q̂N,3

2 (51)

As indicated, Eqs. (50) and (51) are precisely what we can
obtain from Eq. (41) by taking n = N, which translates to setting
zn = 1 (each particle is shared by a single N-tuple, which is the entire
system). At first, it may seem problematic to set n = N1 +N2 because
we had to assume that n is much smaller than both N1 and N2 to be
able to write Eq. (11). However, this is allowed due to the different
system definitions employed: while we fix both N1 and N2 and seek
the chemical potentials, Hill fixes the total number of sites, N, and
the chemical potential difference, μ2 − μ1, to arrive at his osmotic
virial coefficients. In other words, we look at a large but finite closed
system which can only exchange heat and volume with a reservoir
(a piston–cylinder device), and Hill considers an open system with a
fixed number of sites in equilibrium with an infinite reservoir, while
effectively treating the system as a single interacting N-tuple.

B. On the size of n
Based on the connection established above, a natural question

arises: how big is the error due to the linear approximations of the
exponentials in the osmotic virial coefficients of Hill? To answer this,
let us consider a macroscopic system corresponding to N →∞ limit
in Eqs. (46) and (47). Since we expect the osmotic virial coefficients
to stay finite at this limit for any physical system far from critical-
ity, we deduce from Eqs. (46) and (47) that lim

N→∞
ωnc

2 = lim
N→∞

ωnc
3 = 0.

This means that the larger the system the more accurate are the
linear approximations. That is, with increasing n, the present treat-
ment becomes asymptotically close to the exact treatment with a
random-mixing entropy term, applied to a macroscopic system. This
is because, even if one does not assume random mixing when cal-
culating the nonconfigurational Gibbs free energy of the system
(like in the exact treatment), the larger the particle groups the more
closely their number density will follow the multinomial distribu-
tion. In other words, provided that the system’s size is much larger
than the range of interactions between particles, by choosing a large
n the errors introduced due to Eq. (11) can be made vanishingly
small. This realization is not surprising because the assumption of
a single-phase system is the same as the homogeneity of the system
on large size scales (compared to the range of interactions of par-
ticles). Therefore, when compared to the exact treatment, the only

approximation in the present model with large n is due to the use of
the random-mixing entropy term.

Another valuable consequence to consider when n is large is the
potential for relaxation of assumptions (iii) and (iv). Consider, for
example, a two-component solution of protein in water, where the
sizes of the molecules, and hence, their coordination numbers differ
greatly. Naturally, the present approach would not be applicable in
the case of small n because zn would not be constant between the two
types of molecules. However, by choosing a large n such that each n-
tuple occupies a much bigger space than the protein molecule, the
discrepancy in zn can be made small. Also, note that when n = N
the formulation is independent of zn as demonstrated in Subsec-
tion IV A. Therefore, we expect the present model with sufficiently
large n would be a good approximation even for solutions containing
particles of different sizes.

In practice, if polynomials are fitted to binary experimental
data, the obtained coefficients would represent full interactions as
well as nonrandom entropy of mixing, as given in the framework
of the exact formulation [e.g., Eqs. (43) and (44)], which would also
include empirical corrections due to the truncation of the polyno-
mials. Therefore, no deliberate selection of n is required in this case
(assume n = N if interpreting the coefficients in our framework with
a random-mixing entropy term). Notice that the full model contains
terms up to Nth degree, however, truncating the polynomial after
the quadratic or cubic term typically describes the data well.25,28 It is
important to note that this truncation does not imply that only small
particle groups are considered, rather it implies that the higher order
terms of the polynomial are numerically negligible.

There might be situations, however, where it is desirable to pick
a value of n that is as small as possible while still capturing the non-
ideal behavior of the system accurately (e.g., due to computational
cost when calculating the virial coefficients from molecular dynam-
ics simulations). This is the same as finding the smallest system from
which the osmotic virial coefficients of the macroscopic system can
be inferred to within a desired accuracy. The decision of picking a
suitable n should be guided by the nature and range of the interac-
tions in a given system while considering factors such as the desired
accuracy and cost of computation. In general, a solvent with salts
would require a larger n compared to the same solvent with nonionic
solutes because of the presence of long-range forces in the former.

V. CONCLUSION
In this work, we considered a general multicomponent solution

model that assumes random mixing of the components at constant
pressure and temperature, but accounts for complex interactions in
arbitrarily large particle groups. Based on the model, the chemical
potential of the mixture components could be expressed as a multi-
variate polynomial with mole fractions of the solutes as variables.
It was demonstrated that, for a macroscopic system, the present
model with n = N can be alternatively derived from the formally
exact approach of Hill if the random-mixing entropy term is used.
This was done to highlight the equivalency of two seemingly differ-
ent theoretical approaches. It was also concluded that, if the model is
implemented with large particle groups, it does not require some of
the restrictive assumptions needed when considering small particle
groups.
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Furthermore, using the developed equations, we provided a
theoretical basis for multisolute osmotic virial equation combin-
ing rules. That is, assuming negligible solute–solute interactions, the
mixed-term coefficients of the polynomial could be written as the
arithmetic average of suitable pure-term coefficients. These rules
are practically useful for estimating the chemical potential of a sol-
vent in the presence of multiple solutes when no multicomponent
solution data are available. The model with the combining rules,
in some sense, provides the best estimate of the solvent chemical
potential within the context of the present theory when no multi-
component data are available. Of course, a better estimate would
be possible if one has information about the interaction exchange
energies of the solutes with one another and/or any multicomponent
solution data. It is important to note that the non-interacting solutes
assumption [i.e., assumption (vi)] and the use of the random-mixing
entropy term were sufficient to arrive at the proposed combining
rules, but we do not have a proof of their necessity. Comparison
of the predictions of the combining-rules approach to experimental
data from different kinds of multicomponent mixtures (e.g., elec-
trolyte solutions, polymer solutions, hydrocarbon solutions, their
combinations, etc.) might shed light on the extent of the applica-
bility of the combining rules and help researchers decide whether it
is worth looking for their generalizations.

SUPPLEMENTARY MATERIAL

See the supplementary material for the details of the omitted
steps in the derivation.
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NOMENCLATURE
List of symbols

A set of all multisets each corresponding to a unique n-
tuple composition

a1 relative activity of the solvent
Aℓ element of A uniquely identified by its index ℓ; a

multiset
Ci ith order pure osmotic virial coefficient in the exact

treatment
G Gibbs free energy of the solution
Gc configurational Gibbs free energy of the solution
Gnc nonconfigurational Gibbs free energy of the solution
gAℓ

nonconfigurational Gibbs free energy of a parti-
cle group denoted by Aℓ averaged over all spatial
configurations

i, j, m, k dummy indices
ij element of the set {i1, i2, . . . , in}

{i1, i2, . . . , in} set of dummy indices used in repeated sums
kB Boltzmann constant
(kd)j “dissociation constant” of solute j
ℓ index used to uniquely identify elements of A
M1 molar mass of the solvent
n number of particles in groups/n-tuples
N total number of particles in a two-component

solution
NAℓ

number of n-tuples of composition Aℓ

N j number of particles of type j
P pressure of the solution
PAℓ

probability of formation of an n-tuple of composition
Aℓ

Qn,m
j mth order pure coefficient in the excess chemi-

cal potential expression of solute j in a degree-n
expansion

Q̂n,m
j mth order pure osmotic virial coefficient of compo-

nent j in a degree-n expansion
r number of components in the mixture
T absolute temperature of the solution
wAℓ

nonconfigurational Gibbs free energy change of
formation of an n-tuple of composition Aℓ

xj mole fraction of particles of type j
zn number of n-tuples sharing each particle
δij Kronecker delta
μj chemical potential per particle of type j in the mixture
μ○j chemical potential per particle of pure substance j
μex

j excess chemical potential per particle of type j in the
mixture

ξ j∣Aℓ
multiplicity of element j in the multiset Aℓ

π osmolality of the solvent
π+ osmole fraction of the solvent
ωi Gibbs free energy change of formation of a particle

group in the exact treatment
ωnc

i nonconfigurational part of ωi
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A. Detailed steps between equations (21) and (22) and equations 

(22) and (23) 

From the main text, equation (21) is 

 

𝜇ଵ
ୣ୶ ൌ

𝓏
𝑛

 𝑤ଵమ…𝑥మ𝑥య … 𝑥



మ,య…ୀଵ

െ
𝓏ሺ𝑛 െ 1ሻ

𝑛
 ൫𝑤భమ… െ 𝑤ଵమ…൯𝑥భ𝑥మ … 𝑥



మ,య…ୀଵ
భୀଶ

 

(S1) 

To get equation (22), the omitted steps are: 

Step 1) Separate the term containing 𝑥ଵ in the sum over 𝑖ଶ in equation (S1) from the rest and 

substitute 1 െ ∑ 𝑥

ୀଶ  for 𝑥ଵ to get  
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𝜇ଵ
ୣ୶ ൌ

𝓏
𝑛

 𝑤ଵଵయ… ቌ1 െ𝑥



ୀଶ

ቍ 𝑥య … 𝑥



య,ర…ୀଵ


𝓏
𝑛

 𝑤ଵమ…𝑥మ𝑥య … 𝑥



య,ర…ୀଵ
మୀଶ

െ
𝓏ሺ𝑛 െ 1ሻ

𝑛
 ൫𝑤భଵయ… െ 𝑤ଵଵయ…൯𝑥భ ቌ1



య,ర…ୀଵ
భୀଶ

െ𝑥



ୀଶ

ቍ 𝑥య … 𝑥

െ
𝓏ሺ𝑛 െ 1ሻ

𝑛
 ൫𝑤భమ… െ 𝑤ଵమ…൯𝑥భ𝑥మ … 𝑥



య,ర…ୀଵ
భ,మୀଶ

 

(S2) 

Step 2) Where present in equation (S2), split the expression ሺ1 െ ∑ 𝑥

ୀଶ ሻ into two terms and 

recover the consecutive labels by reindexing the sum over 𝑖ଵ ൌ 2 and 𝑖ଷ, 𝑖ସ … 𝑖 ൌ 1 as the sum 

over 𝑖ଶ ൌ 2 and 𝑖ଷ, 𝑖ସ … 𝑖 ൌ 1 to get 
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𝜇ଵ
ୣ୶ ൌ

𝓏
𝑛

 𝑤ଵଵయ…𝑥య𝑥ర … 𝑥



య,ర…ୀଵ

െ
𝓏
𝑛

 𝑤ଵଵయ…𝑥మ𝑥య … 𝑥



య,ర…ୀଵ
మୀଶ


𝓏
𝑛

 𝑤ଵమ…𝑥మ𝑥య … 𝑥



య,ర…ୀଵ
మୀଶ

െ
𝓏ሺ𝑛 െ 1ሻ

𝑛
 ൫𝑤ଵమ… െ 𝑤ଵଵయ…൯𝑥మ𝑥య … 𝑥



య,ర…ୀଵ
మୀଶ


𝓏ሺ𝑛 െ 1ሻ

𝑛
 ൫𝑤ଵమ… െ 𝑤ଵଵయ…൯𝑥భ𝑥మ … 𝑥



య,ర…ୀଵ
భ,మୀଶ

െ
𝓏ሺ𝑛 െ 1ሻ

𝑛
 ൫𝑤భమ… െ 𝑤ଵమ…൯𝑥భ𝑥మ … 𝑥



య,ర…ୀଵ
భ,మୀଶ

 

(S3) 

Step 3) Collect the terms over the same sums in equation (S3) to get 
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𝜇ଵ
ୣ୶ ൌ

𝓏
𝑛

 𝑤ଵଵయ…𝑥య𝑥ర … 𝑥



య,ర…ୀଵ

െ
𝓏ሺ𝑛 െ 2ሻ

𝑛
 ൫𝑤1𝑖2…𝑖𝑛 െ 𝑤11𝑖3…𝑖𝑛൯𝑥మ𝑥య … 𝑥



య…ୀଵ
మୀଶ

െ
𝓏ሺ𝑛 െ 1ሻ

𝑛
 ൫𝑤𝑖1𝑖2…𝑖𝑛 െ 2𝑤1𝑖2…𝑖𝑛



య,ర…ୀଵ
భ,మୀଶ

 𝑤11𝑖3…𝑖𝑛൯𝑥భ𝑥మ … 𝑥  

(S4) 

which is the same as equation (22). 

To get equation (23), the omitted steps are: 

Step 1) Separate the term containing 𝑥ଵ in the sum over 𝑖ଷ in equation (S4) from the rest and 

substitute 1 െ ∑ 𝑥

ୀଶ  for 𝑥ଵ to get 
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𝜇ଵ
ୣ୶ ൌ

𝓏
𝑛

 𝑤ଵଵଵర… ቌ1 െ𝑥



ୀଶ

ቍ𝑥ర𝑥ఱ … 𝑥



ర,ఱ…ୀଵ


𝓏
𝑛

 𝑤ଵଵయ…𝑥య𝑥ర … 𝑥



ర,ఱ…ୀଵ
యୀଶ

െ
𝓏ሺ𝑛 െ 2ሻ

𝑛
 ൫𝑤1𝑖21𝑖4…𝑖𝑛 െ 𝑤111𝑖4…𝑖𝑛൯𝑥మ ቌ1



ర,ఱ…ୀଵ
మୀଶ

െ𝑥



ୀଶ

ቍ 𝑥ర … 𝑥

െ
𝓏ሺ𝑛 െ 2ሻ

𝑛
 ൫𝑤1𝑖2…𝑖𝑛 െ 𝑤11𝑖3…𝑖𝑛൯𝑥మ𝑥య … 𝑥



ర,ఱ…ୀଵ
మ,యୀଶ

െ
𝓏ሺ𝑛 െ 1ሻ

𝑛
 ൫𝑤𝑖1𝑖21𝑖4…𝑖𝑛 െ 2𝑤1𝑖21𝑖4…𝑖𝑛



ర,ఱ…ୀଵ
భ,మୀଶ

 𝑤111𝑖4…𝑖𝑛൯𝑥భ𝑥మ ቌ1 െ𝑥



ୀଶ

ቍ𝑥ସ … 𝑥

െ
𝓏ሺ𝑛 െ 1ሻ

𝑛
 ൫𝑤𝑖1𝑖2…𝑖𝑛 െ 2𝑤1𝑖2…𝑖𝑛



ర,ఱ…ୀଵ
భ,మ,యୀଶ

 𝑤11𝑖3…𝑖𝑛൯𝑥భ𝑥మ … 𝑥  

(S5) 

Step 2) Where present in equation (S5), split the expression ሺ1 െ ∑ 𝑥

ୀଶ ሻ into two terms and 

recover the consecutive labels where needed by reindexing to get 
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𝜇ଵ
ୣ୶ ൌ

𝓏
𝑛

 𝑤ଵଵଵర…𝑥ర𝑥ఱ … 𝑥



ర,ఱ…ୀଵ

െ
𝓏
𝑛

 𝑤ଵଵଵర…𝑥య𝑥ర … 𝑥



ర,ఱ…ୀଵ
యୀଶ


𝓏
𝑛

 𝑤ଵଵయ…𝑥య𝑥ర … 𝑥



ర,ఱ…ୀଵ
యୀଶ

െ
𝓏ሺ𝑛 െ 2ሻ

𝑛
 ൫𝑤ଵଵయర… െ 𝑤ଵଵଵర…൯𝑥య𝑥ర … 𝑥



ర,ఱ…ୀଵ
యୀଶ


𝓏ሺ𝑛 െ 2ሻ

𝑛
 ൫𝑤ଵଵయర… െ 𝑤ଵଵଵర…൯𝑥మ𝑥య … 𝑥



ర,ఱ…ୀଵ
మ,యୀଶ

െ
𝓏ሺ𝑛 െ 2ሻ

𝑛
 ൫𝑤ଵమ… െ 𝑤ଵଵయ…൯𝑥మ𝑥య … 𝑥



ర,ఱ…ୀଵ
మ,యୀଶ

െ
𝓏ሺ𝑛 െ 1ሻ

𝑛
 ൫𝑤ଵమ… െ 2𝑤ଵଵయ…



ర,ఱ…ୀଵ
మ,యୀଶ

 𝑤ଵଵଵర…൯𝑥మ𝑥ଷ … 𝑥


𝓏ሺ𝑛 െ 1ሻ

𝑛
 ൫𝑤ଵమ… െ 2𝑤ଵଵయ…



ర,ఱ…ୀଵ
భ,మ,యୀଶ

 𝑤ଵଵଵర…൯𝑥భ𝑥మ … 𝑥

െ
𝓏ሺ𝑛 െ 1ሻ

𝑛
 ൫𝑤భమ… െ 2𝑤ଵమ…



ర,ఱ…ୀଵ
భ,మ,యୀଶ

 𝑤ଵଵయ…൯𝑥భ𝑥మ … 𝑥  

(S6) 

Step 3) Collect the terms over the same sums in equation (S6) to get 
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𝜇ଵ
ୣ୶ ൌ

𝓏
𝑛

 𝑤ଵଵଵర…𝑥ర𝑥ఱ … 𝑥



ర,ఱ…ୀଵ

െ
𝓏ሺ𝑛 െ 3ሻ

𝑛
 ൫𝑤ଵଵయర… െ 𝑤ଵଵଵర…൯𝑥య𝑥ర … 𝑥



ర,ఱ…ୀଵ
యୀଶ

െ
𝓏ሺ2𝑛 െ 3ሻ

𝑛
 ൫𝑤ଵమ… െ 2𝑤ଵଵయ…



ర,ఱ…ୀଵ
మ,యୀଶ

 𝑤ଵଵଵర…൯𝑥మ𝑥ଷ … 𝑥

െ
𝓏ሺ𝑛 െ 1ሻ

𝑛
 ൫𝑤భమ… െ 3𝑤ଵమ…  3𝑤ଵଵయ…



ర,ఱ…ୀଵ
భ,మ,యୀଶ

െ 𝑤111𝑖4…𝑖𝑛൯𝑥భ𝑥మ … 𝑥  

(S7) 

which is the same as equation (23). 

B. Detailed steps between equations (28) and (29) 

Using the definition of 𝑤 given by equation (9), in the explicit notation, we can write  

 𝑤ଵ…ଵೖశభ… ൌ 𝑔ଵ…ଵೖశభ… െ
1
𝑛
ሺ𝑛 െ 𝑚  𝑘ሻ𝑔ଵ…ଵ   𝑔ೕ…ೕ



ୀାଵ

 (S8) 

noting that each variable index here can only represent a solute: 𝑖 ∈ ሾ2, 𝑟ሿ. If we look at a generic 

binary group containing the same number of solvent particles (i.e., 𝑛 െ𝑚  𝑘) and the same 

number of solute particles as above (i.e., 𝑚െ 𝑘), we have 
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 𝑤ଵ…ଵೕ…ೕ ൌ 𝑔ଵ…ଵೕ…ೕ െ
1
𝑛
ቂሺ𝑛 െ 𝑚  𝑘ሻ𝑔ଵ…ଵ  ሺ𝑚 െ 𝑘ሻ𝑔ೕ…ೕቃ (S9) 

Now, if we take the sum over the labels from 𝑗 ൌ 𝑘  1 to 𝑚 of both sides of equation (S9) and 

divide both sides by 𝑚 െ 𝑘, we have 

 

1
𝑚 െ 𝑘

 𝑤ଵ…ଵೕ…ೕ



ୀାଵ

ൌ
1

𝑚 െ 𝑘
 𝑔ଵ…ଵೕ…ೕ



ୀାଵ

െ
1
𝑛
ሺ𝑛 െ𝑚  𝑘ሻ𝑔ଵ…ଵ   𝑔ೕ…ೕ



ୀାଵ

 

(S10) 

Using equation (28), we can substitute for the first term on the right-hand side of equation (S10) 

and obtain 

 

1
𝑚 െ 𝑘

 𝑤ଵ…ଵೕ…ೕ



ୀାଵ

ൌ 𝑔ଵ…ଵೖశభ… െ
1
𝑛
ሺ𝑛 െ 𝑚  𝑘ሻ𝑔ଵ…ଵ   𝑔ೕ…ೕ



ୀାଵ

 

(S11) 

Comparing equations (S11) and (S8), we get 
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 𝑤ଵ…ଵೖశభ… ൌ
1

𝑚െ 𝑘
 𝑤ଵ…ଵೕ…ೕ



ୀାଵ

 (S12) 

which is the same as equation (29). 

C. Detailed steps to arrive at equation (31) using equations (24) and 

(29) 

Given equation (29), we want to show that the following holds for the sum appearing in equation 

(24): 

 ሺെ1ሻ ቀ
𝑚
𝑘 ቁ𝑤ଵ…ଵೖశభ…



ୀ

ൌ
1
𝑚
ሺെ1ሻ ቀ

𝑚
𝑘ቁ𝑤ଵ…ଵೕ…ೕ



ୀ



ୀଵ

 (S13) 

which would give us the sum over 𝑄’s when multiplied by the coefficient 
𝓏ሺଵିሻ


ቀ
𝑛
𝑚ቁ (omitted 

here). 

Starting with the left-hand side of equation (S13), we substitute for 𝑤ଵ…ଵೖశభ… using its 

decomposition given by equation (29): 

 ሺെ1ሻ ቀ
𝑚
𝑘 ቁ𝑤ଵ…ଵೖశభ…



ୀ

ൌ ሺെ1ሻ ቀ
𝑚
𝑘ቁ

1
𝑚െ 𝑘

 𝑤ଵ…ଵೕ…ೕ



ୀାଵ



ୀ

 (S14) 

Now, we extend the sum from 𝑗 ൌ 𝑘  1 to 𝑚 to 𝑗 ൌ 1 to 𝑚 by noting 
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 𝑤ଵ…ଵೕ…ೕ



ୀଵ

ൌ  𝑤ଵ…ଵೕ…ೕ



ୀାଵ

𝑤ଵ…ଵೕ…ೕ



ୀଵ

 (S15) 

Since we at most need 𝑚 െ 𝑘 distinct labels for the indices of 𝑤 on the left-hand side of equation 

(S13) and the sum from 𝑗 ൌ 𝑘  1 to 𝑚 is chosen arbitrarily, we can reindex the terms in the 

second sum on the right-hand side of equation (S15) by splitting each term into a sum over index 

labels 𝑘  1 to 𝑚. That is, we can write 

 

𝑤ଵ…ଵೕ…ೕ



ୀଵ

ൌ  𝑤ଵ…ଵೕ…ೕ



ୀାଵ


1

𝑚െ 𝑘
 𝑤ଵ…ଵ…



௧ୀାଵ



ୀଵ

ൌ

ൌ  𝑤ଵ…ଵೕ…ೕ



ୀାଵ


1

𝑚 െ 𝑘
 𝑤ଵ…ଵ…



ୀଵ



௧ୀାଵ

ൌ  𝑤ଵ…ଵೕ…ೕ



ୀାଵ


𝑘

𝑚 െ 𝑘
 𝑤ଵ…ଵ…



௧ୀାଵ

ൌ
𝑚

𝑚 െ 𝑘
 𝑤ଵ…ଵೕ…ೕ



ୀାଵ

 

(S16) 

Rearranging this result and substituting it back into equation (S14), we obtain equation (S13): 
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ሺെ1ሻ ቀ
𝑚
𝑘 ቁ𝑤ଵ…ଵೖశభ…



ୀ

ൌ ሺെ1ሻ ቀ
𝑚
𝑘 ቁ

1
𝑚 െ 𝑘

ቌ
𝑚 െ 𝑘
𝑚

𝑤ଵ…ଵೕ…ೕ



ୀଵ

ቍ



ୀ

ൌ
1
𝑚
ሺെ1ሻ ቀ

𝑚
𝑘 ቁ𝑤ଵ…ଵೕ…ೕ



ୀ



ୀଵ

 

(S17) 

D. Detailed steps between equations (48) and (50) and equations 

(49) and (51) 

According to the definition before equation (45), 𝜔ଶ
୬ୡ in equation (48) and (49) is defined as the 

nonconfigurational Gibbs free energy change for the following process: 2 systems, each made of 

𝑁 െ 1 solvent molecules and 1 solute molecule, being rearranged into 1 system made of 𝑁 െ 2 

solvent molecules with 2 solute molecules, plus 1 pure solvent system with 𝑁 solvent particles. 

Similarly, 𝜔ଷ
୬ୡ in equation (49) is defined as the nonconfigurational Gibbs free energy change for 

the following process: 3 systems, each made of 𝑁 െ 1 solvent molecules and 1 solute molecule, 

being rearranged into 1 system made of 𝑁 െ 3 solvent molecules with 3 solute molecules, plus 2 

pure solvent system with 𝑁 solvent particles. Based on these definitions, denoting the solute by 

the subscript 2, we can write 

 𝜔ଶ
୬ୡ ൌ 𝑔ଵ…ଵଶଶ  𝑔ଵ…ଵ െ 2𝑔ଵ…ଵଶ (S18) 

and 
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 𝜔ଷ
୬ୡ ൌ 𝑔ଵ…ଵଶଶଶ  2𝑔ଵ…ଵ െ 3𝑔ଵ…ଵଶ (S19) 

where 𝑔’s denote the energies of the respective groups made of 𝑁 particles each, consistent with 

our notation (i.e., 𝑁-tuple energies). We can recast equations (S18) into the following form: 

 

𝜔ଶ
୬ୡ ൌ 𝑔ଵ…ଵଶଶ െ

1
𝑁
ሾሺ𝑁 െ 2ሻ𝑔ଵ…ଵ  2𝑔ଶ…ଶሿ

െ 2 ൜𝑔ଵ…ଵଶ െ
1
𝑁
ሾሺ𝑁 െ 1ሻ𝑔ଵ…ଵ  𝑔ଶ…ଶሿൠ

ൌ 𝑤ଵ…ଵଶଶ െ 2𝑤ଵ…ଵଶ 

(S20) 

which is the same equivalence used in equation (50), and recast equation (S19) into the following 

form: 

 

𝜔ଷ
୬ୡ ൌ 𝑔ଵ…ଵଶଶଶ െ

1
𝑁
ሾሺ𝑁 െ 3ሻ𝑔ଵ…ଵ  3𝑔ଶ…ଶሿ

െ 3 ൜𝑔ଵ…ଵଶ െ
1
𝑁
ሾሺ𝑁 െ 1ሻ𝑔ଵ…ଵ  𝑔ଶ…ଶሿൠ

ൌ 𝑤ଵ…ଵଶଶଶ െ 3𝑤ଵ…ଵଶ 

(S21) 

Combining equations (S20) and (S21) into the expression present in equation (49), we have 

 
𝜔ଷ
୬ୡ െ 3𝜔ଶ

୬ୡ ൌ 𝑤ଵ…ଵଶଶଶ െ 3𝑤ଵ…ଵଶ െ 3ሺ𝑤ଵ…ଵଶଶ െ 2𝑤ଵ…ଵଶሻ

ൌ 𝑤ଵ…ଵଶଶଶ െ 3𝑤ଵ…ଵଶଶ  3𝑤ଵ…ଵଶ 
(S22) 

which is the same equivalence used in equation (51). The arguments above can be generalized to 

relate any order coefficients expressed in terms of 𝜔୬ୡ to the respective coefficients expressed in 
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terms of 𝑤’s. We will not show this here to keep the scope of the supplementary material consistent 

with that of the main text. 


