
Automatic Algorithm Selection in Videogame
Pathfinding

by

Devon Sigurdson

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Devon Sigurdson, 2018

Abstract

Videogames often use artificial intelligence to control characters in the game

world. In doing so, videogames require one or more agents to navigate

from their current location to some desired goal location without collisions.

We explore improving algorithm performance in both single and multi-agent

pathfinding (MAPF) through the use of algorithm portfolios and machine

learning algorithm selection. In the single agent setting we explore selecting

from different versions of a parametrized real-time heuristic search algorithm

focused on minimizing the distance the agent travels. In the MAPF setting

we select from three contemporary MAPF algorithms, Windowed Hierarchical

Co-operative A*, Flow Annotated Replanning, and Bounded Multi-agent A*

focused on maximizing the number of agents which reach their goal. We use

the travel distance and completion time as secondary objectives. Algorithms

will often have specific problem instance where their performance either excels

or deteriorates, enabling another algorithm to out perform it even if this other

algorithm is worse on average. Therefore, in this thesis, we investigate the

use of deep learning to automatically select the best algorithm from a portfo-

lio of algorithms for given problem instances. Empirical results show that an

off-the-shelf convolutional neural network is able to improve performance over

any single algorithm from our portfolio.

ii

Acknowledgements

This research was a collaborative process which included several researchers

providing advice and guidance. As such, I use the term we throughout as the

work was not done isolation.

The beginning part of this research was developed collaboratively by my-

self and Professor Vadim Bulitko. In particular, the research for single agent

automatic algorithm selection has been previously published (Sigurdson and

Bulitko, 2017).

The rest of this thesis was conducted in a collaborative manner with a

team of international researchers. I led the development of this research with

significant guidance and contributions from Professor Vadim Bulitko at the

University of Alberta, Professor William Yeoh at the University of Washing-

ton in St. Louis, Professor Carlos Hernandez at Universidad Andres Bello, and

Professor Sven Koenig at the University of Southern California. Together we

developed Bounded Multi-agent A*. The work has be published as well (Sig-

urdson, Bulitko, Yeoh, Hernandez, and Koenig, 2018).

Much of this thesis has been adapted directly from these publications. All

the development and data analytics was performed by me personally with

direction form my co-authors. The actual writing was a collaborative process

between my co-authors and I.

I appreciate support from British Petroleum, NSERC and Nvidia.

iii

Table of Contents

1 Introduction 1
1.1 Motivation and Applications 1
1.2 Contributions . 3

2 Problem Formulation 4
2.1 Pathfinding . 4

2.1.1 Multi-agent Pathfinding 4
2.1.2 Single-agent Pathfinding 6

2.2 Automatic Algorithm Selection 6

3 Related Work 8
3.1 Algorithm Selection Portfolio Formation 8
3.2 Algorithm Selection Granularity 9
3.3 Algorithm Selection Process 10

4 Single-Agent Pathfinding Algorithm Selection 12
4.1 Introduction . 12
4.2 Search Framework . 13
4.3 Space of Algorithms . 14
4.4 Our Approach . 15

4.4.1 Algorithm Selection Granularity 15
4.4.2 Portfolio Formation . 15
4.4.3 Automatic Algorithm Selection 17

4.5 Empirical Evaluation . 20
4.5.1 Per-genre Algorithm Selection 21
4.5.2 Per-game Algorithm Selection 22
4.5.3 Per-map Algorithm Selection 22
4.5.4 Per-problem Algorithm Section 23

4.6 Discussion . 24

5 Automatic Algorithm Selection for Multi-agent Pathfinding 25
5.1 Introduction . 25
5.2 MAPF Algorithms . 26

5.2.1 Windowed Hierarchical Cooperative A* 26
5.2.2 Flow Annotation Replanning 27
5.2.3 Bounded Multi-Agent A* 28

5.3 Our Approach . 29
5.3.1 Algorithm Selection Granularity 29
5.3.2 Portfolio Formation . 29
5.3.3 Automatic Algorithm Selection 30

5.4 Empirical Evaluation . 31
5.4.1 MAPF Problem Generation 31
5.4.2 Per-problem Algorithm Selection 32

iv

5.5 Discussion . 35

6 Discussion and Future work 36

7 Conclusion 37

References 38

Appendix A Bounded Multi-agent A* 42
A.1 Preface . 42
A.2 Introduction . 42
A.3 Problem Formulation . 43
A.4 Related Work . 45

A.4.1 A* . 45
A.4.2 Online MAPF Algorithms 46
A.4.3 Real-time Heuristic Search 48

A.5 Our Approach: BMAA* . 49
A.5.1 Procedure NPC-Controller 50
A.5.2 Procedure Search-Phase 51
A.5.3 Procedure Search . 52

A.6 Experimental Evaluation . 53
A.6.1 Aggregate Completion Rate Results 54
A.6.2 Per-Map Results . 56

A.7 Conclusions . 59

v

List of Tables

4.1 Summary of each granularities algorithm selection mapping . . 17
4.2 Results of per-genre selection 22
4.3 Results of per-game selection 23
4.4 Results of per-map selection 23
4.5 Results of per-problem selection 23

5.1 Algorithm performance on all problems. 33
5.2 Completion rate(%) by problem type. 35

A.1 Completion rates averaged over all MAPF instances for each map. 57
A.2 Completion times (in seconds) averaged over all MAPF in-

stances for each map. 58
A.3 Travel distances averaged over all MAPF instances for each map. 58

vi

List of Figures

1.1 Example of MAPF problem instances. Agents move from their
starting location (green) to their corresponding goal(red). . . . 2

4.1 Example for algorithm selection based off of which genre the
game belongs to. 18

4.2 Example for algorithm selection based off of which game the
map is from. 18

4.3 Example for algorithm selection on a per-map basis. 19
4.4 Example for algorithm selection on a per-problem bases. . . . 20

5.1 Example of Flow Annotations. 28
5.2 Multi-agent algorithm selection example. 30
5.3 Three resized sample MAPF problem types with start (green

pixels) and goals (red pixels): outside in (left), cross sides (cen-
tre), and switch sides (right). 32

5.4 Problem type definitions and examples. 33
5.5 Completion Rate % for the test problems averaged over 10 splits

of the data. 34

A.1 NPCs on a Dragon Age: Origins map. 44
A.2 Completion rates averaged over all MAPF instances. 54
A.3 Issue for FAR: One-cell-wide corridors. 55
A.4 Issue for BMAA*: Dead ends. 56
A.5 Unsolvable MAPF instance for the BMAA* versions, where the

triangular agent has to move to its red goal location while the
dark green square agents are already at their own goal locations
in a one-cell-wide corridor. 57

vii

Chapter 1

Introduction

We begin by first providing an overview of motivations for why we believe our

research is relevant outside the academic community and how its applications

can be used in Section 1.1. We then highlight the contributions that this thesis

provides in Section 1.2.

1.1 Motivation and Applications

Videogames are often populated with agents who move around and interact

with the environment. To do this, these agents are tasked with finding a path

from their current location to a goal located elsewhere. In general, the task

of finding a path from one point to another is known as search or pathfind-

ing. Pathfinding agents are typically guided by a heuristic estimate of each

state’s distance to the goal. The classical A* (Hart, Nilsson, and Raphael,

1968) guarantees the shortest path to the goal but is constrained to solving the

entire problem before the agent’s first steps can be taken. Learning Real-time

A* (LRTA*) (Korf, 1990) pioneered real-time heuristic search by enabling

the agent to move before it knows a complete path to the goal. It does so

by updating the agent’s heuristic beliefs as it searches towards the goal, and

limits planning to its neighbours. The limited information centres the search

around the agent (Koenig, 2001). This also allows for operating under a

real-time constraint as the agent begins navigating the environment indepen-

dently from the distance to the goal. The limited information and moving

prior to knowing how to reach the goal causes the agent to make suboptimal

1

plicable to videogames where the maps the agents navigate in can be very

diverse. Unreal Engine 4 is a popular videogame engine that has been used

to develop over 200 games (Epic Games, 2018), which range from fighting

games (e.g. TEKKEN 7 (Bandi Namco, 2017)), shooters (e.g. Gears of

War 4 (The Coalition, 2016), Fortnite (Epic Games, 2017)), to role-playing

games (e.g. Final Fantasy 7 Remake (Square Enix, 2019a), Kingdom Hearts

3 (Square Enix, 2019b)). It is a common trend seen among many engines,

including Unity and Frostbite, to be used for a wide variety of games. This

diversity should allow for selecting between multiple pathfinding algorithms to

improve results over a applying a single method to all algorithms. Moreover,

these game engines are often used by small teams that may not have exper-

tise in pathfinding algorithms and as such could benefit from an automated

approach that autonomously selects the best algorithm for their game based

on their games characteristics. This motivates our development of a practical

approach to automatic algorithm selection for videogame pathfinding.

1.2 Contributions

The thesis makes the following contributions. I demonstrate the ability for

automatic algorithm selection to select variants of parametrized Learning Real-

time Search in a single agent setting. I then extend our approach to the

multi-agent setting which can outperform the best single algorithm in their

portfolio. Additionally, I present a new high performance real-time multi-

agent algorithm.

3

Chapter 2

Problem Formulation

Given the nature of algorithm selection there are two problems that need to

be defined. The first problem is what the selected algorithms solve, in our

case single-agent real-time heuristic search (defined in Section 2.1.2) and the

multi-agent pathfinding problem (Section 2.1.1). The second problem is how

to actually make these selections (Section 2.2).

2.1 Pathfinding

2.1.1 Multi-agent Pathfinding

A search problem is defined by the pair (G,A). G = (N,E, c) is an undirected

weighted graph of nodes (N) connected to each other by edges E ⊂ N × N .

A = {a1, . . . , aj} is a set of NPC agents, where each agent ai ∈ A is specified

by a pair (ni
start, n

i
goal) that indicates its start node ni

start and its goal node

ni
goal. The set of edges includes self-loops: ∀n ∈ N [(n, n) ∈ E] which allows

all agents to remain at their current node (i.e., wait). We assume that all edge

weights are positive real numbers except self-loop edges which have a weight

of 0, as the agent does not travel any distance. Each edge (na, nb) ∈ E is

weighted by the distance or travel cost c(na, nb) = c(nb, na) >= 0. Each agent

begins in their start state ni
start and changes its current state by traversing

edges (i.e., taking actions). The cumulative cost of all edges it traverses prior

to reaching their goal state ni
goal is the solution cost or distance travelled. Each

agent has access to its own heuristic h where h(n) represents their estimate of

the remaining cost to travel from n to ni
goal. We do not assume the heuristic

4

to be admissible or consistent. The agent is free to update it in any way as

long as h(ni
goal) = 0. The initial heuristic h0 = h is included in the problem

description.

In our model, time advances in discrete steps. At time step t, every agent

ai occupies a node ni ∈ N , also referred to as ni
current when talking about

a specific agent’s location. When pathfinding, each agent generates a set of

moves it plans to execute from its current state. Agents provide these moves

to a controller which attempts to have the agent execute its plans one step at

a time. Plans are represented as a set of node pairs P = {(n, n′)}. The pairs

represent agent’s planned actions (i.e., edge traversals) meaning that when the

agent is on node n it intends to go to a neighbouring node n′ by traversing the

edge (n, n′) ∈ E. These traversals are instantaneous, meaning that a diagonal

move and a cardinal move both take a single time step. This simplification is

done to avoid problems that arise from agents being on the edge between nodes

on a diagonal traversals. A valid plan must contain a pair with ni
current as the

first element. Also, the agent is not allowed to have two different pairs with the

same first element (i.e., no ambiguous actions in a single node). Consequently,

the set P defines a partial mapping P : N → N .

In the event that the agent’s plan is not executable, either because another

agent is occupying the node where it wishes to move or because the plan does

not have an action planned for the agent’s current node, the agent waits in its

current node (i.e., traverses the self-loop). Agents can traverse edges with the

following restrictions: (i) two agents cannot swap locations in a single time

step and (ii) each node can be occupied by at most one agent at any time.

We use the following performance measures for MAPF problems: The

completion rate is the percentage of agents that are in their goal locations

when the runtime limit has been reached (Silver, 2005; Wang and Botea,

2008). The completion time for an agent is the amount of time (e.g. wall

clock) elapsed when that agent last reached its goal location. Completion

time measures the entire application (i.e planning, waiting, executing moves,

etc.) but is mainly comprised of the planning time. If an agent leaves its

goal and does not return the completion time is undefined. Finally, the travel

5

distance of an agent is the sum of the costs of the edges traversed by that

agent. We consider the mean of all agents’ travel distance and the mean of all

agents’ completion time as the performance measures in our MAPF problems.

Our primary metric to maximize is the completion rate (because players will

notice if NPCs do not reach their goal locations) but report on the other two

performance measures and use them for tie breaking.

As common in videogame pathfinding literature, our search graphs in this

thesis are based on rectangular grids with each grid cell being a single node in

the graph. Each grid cell has up to eight immediate neighbors. It is connected

to them via cardinal edges of cost 1 and diagonal edges of cost
√
2.

2.1.2 Single-agent Pathfinding

Single-agent search is a special case of multi-agent search where the number

of agents is set to one. In single-agent search we remove the ability to traverse

the self-loop. The objective for our single-agent pathfinding problem is to find

a real-time heuristic search algorithm that reduces the distance travelled by

the agent. In other words, we are looking to reduce the suboptimality α of

the agent, where α is the ratio between distance travelled by the agent ai and

shortest distance possible from ni
start to ni

goal. Lower ratios are desired, and a

suboptimality of 1 means the agent traversed the shortest possible path.

2.2 Automatic Algorithm Selection

An automatic algorithm selection optimization problem (Rice, 1976) is defined

by a tuple 〈I,P , Q〉, where I = {i1, i2, . . .} is a set of problem instances,

P = {p1, p2, . . .} is a portfolio of algorithms that can be used to solve each

instance i ∈ I and Q : P ×I → R is a function that returns the quality of the

solution found by an algorithm p ∈ P when solving problem instance i ∈ I.
A solution to this problem is a mapping π : I → P that maps each problem

instance i ∈ I to an algorithm p ∈ P . The quality of a solution π is the sum of

the qualities of the solutions found by the algorithm prescribed by π for each

6

problem instance:

Q(π) =
∑

i∈I

Q(π(i), i). (2.1)

A correct selection is one which maximizes performance out of potential al-

gorithms to choose from. The optimal solution is one that maximizes this

value:

π∗ = argmax
π

Q(π). (2.2)

For single-agent pathfinding we consider suboptimality as our quality met-

ric Q and portfolio P , where P is formed by selecting from a large set of

parametrized real-time heuristic search algorithms. For MAPF problem in-

stances I we consider a small portfolio P of MAPF algorithms, and we use

completion rate as our quality metric Q.1 We break ties in Q in favour of al-

gorithms that have short distances travelled, followed by algorithms that have

small completion time. Remaining ties are broken randomly.

Problem instances I can be grouped so that selections do not take place

for the individual problem i but rather for a a group I ′ ∈ I. In this scenario

the selection π is done to optimize the selection for the entire group rather

than a individual problem instance.

1We equivalently optimize the completion rate averaged over all instances in I instead
of the cumulative one in Equation 2.1 above.

7

Chapter 3

Related Work

Kotthoff (2014) recently provided a comprehensive survey on algorithm se-

lection. In their research they identify three questions regarding algorithm

selection that motivate our research:

• which algorithms to include in the algorithm selection portfolio;

• what granularity is selection performed at (i.e. how are problems

grouped);

• how to perform the algorithm selection process.

3.1 Algorithm Selection Portfolio Formation

There are several ways to determine which algorithms to include in a portfo-

lio. Portfolios can be hand-crafted by relying on domain expertise, randomly

formed from a pool of algorithms or systematically created. A portfolio should

be should be sufficiently diverse such that on wide range of problems at least

one algorithm achieves good performance. Domain expertise can be used to

either select or develop algorithms that are orthogonal from each other in

an attempt to create a diverse portfolio (Samulowitz and Memisevic, 2007).

Randomly selecting a subset of algorithms can be done to improve perfor-

mance over using a single algorithm based of prior knowledge (Vadim Bulitko,

2016b) and can be more effective than forming a group from solely the best

overall performing algorithms (Lu and Scott, 2004). Lelis et al. (2016) used

8

a systematic approach in selecting which heuristics to use for A* (Hart et al.,

1968). They proposed a greedy subsetting approach to systematically generate

their portfolio of heuristics. They formed a subset P ′ from a larger set P by

incrementally adding the heuristic p to P ′ which increased the performance

the most in conjunction with P ′. The process stopped when adding additional

heuristics provided no benefits. Conceptually, forming a portfolio of heuristics

or configurations of an algorithm is the same as portfolio of algorithms.

Vadim Bulitko (2016b) explored algorithm selection for videogames in their

selection of different configurations of a parametrized real-time heuristic search

algorithm for single-agent pathfinding. They started by generating a large set

of possible algorithms to chose from by randomly selecting from potential con-

figurations. They then examined what amount was actually needed by form-

ing their portfolio by randomly drawing a fixed percentage of algorithms from

their generated set of algorithms. This simple approach of randomly selecting

configurations to form a portfolio was able to still provide improvements over

always using the same algorithm for every problem instance.

3.2 Algorithm Selection Granularity

Vadim Bulitko (2016b)’s exploration of algorithm selection examined two gran-

ularities in which they would group the problem instances. The highest gran-

ularity they considered was grouping problems by what map they were on.

Selecting an algorithm for each group yielded improved results over using a

single algorithm for every problem. They then studied selecting algorithms

on individual single-agent pathfinding problems. This once again was able to

have increased performance over using a single algorithm. It was also better

than selecting algorithms on a per-map grouping.

Other fields also vary the granularity for which they conduct algorithm

selection. For example, SATzilla (Xu, Hutter, Hoos, and Leyton-Brown,

2008) is a satisfiability (SAT) solver to achieve state-of-the-art results using

algorithm selection. In designing their algorithm selection technique they con-

sidered four grouping of problems: Random, Handmade, Industrial, and All.

9

Their technique varied based on the problem grouping, mainly by including

different algorithms in their portfolio for each problem type.

3.3 Algorithm Selection Process

Vadim Bulitko (2016b)’s study on algorithm selection was able to have a clear

increase in performance at lower granularity because of the way each problem

instance was mapped to an algorithm. They took two approaches to selecting

an algorithm for a problem: (1) Exhaustively run each algorithm in your

portfolio and use the one with the best results. (2) Always use the algorithm

with best prior results.

Vadim Bulitko (2016b)’s algorithm selection technique operated in an off-

line manner, meaning in order to select an algorithm on a new set of problems

the portfolio must be evaluated on that problem. Some areas of game develop-

ment have sufficient knowledge of the problems ahead of time, such as which

maps will be in the game, to perform an exhaustive off-line search. How-

ever, procedural content generation is becoming more common, where maps

are generated at run-time and could prevent such approaches from working.

Furthermore, in order to see the gains from the more granular, per-problem,

selection another method must be used to facilitate the selection that is less

expensive than evaluating each algorithm in the portfolio.

I found no directly related work for alleviating this off-line drawback in se-

lecting videogame pathfinding algorithm selection. However, there is work in

related fields that could likely be used to address this problem. In particular,

the field of satisfiability solvers has been using predictive models in conjunc-

tion with algorithm portfolios to achieving state-of-the-art results. In order

for SATzilla (Xu et al., 2008) to achieve state-of-the-art results using algo-

rithm selection it had to facilitate the selection fast enough to not diminish the

performance gains of the selection. SATzilla used ridge regression to predict

the expected performance of its algorithms and selected the algorithm with

the best predict performance to solve the problem. The current state-of-the-

art in satisfiability solvers is Cost-sensitive Hierarchical Clustering (CSCH),

10

which again uses a prediction model to predict which solver to use (Malitsky,

Sabharwal, Samulowitz, and Sellmann, 2013). In particular, CSHC uses a ran-

dom forest model, where each tree votes for the best solver based on the SAT

problem. An other recent SAT approach converted the ACII representation

of the SAT problem to a grayscale image (Loreggia, Malitsky, Samulowitz,

and Saraswat, 2016). This image was than used by a convolutional neural net-

work to predict whether each algorithm in the portfolio would be able to solve

the SAT problem. The algorithm with highest predicted chance of solving

the problem was than used. This approach was able to achieve better results

than using the single best solver from the training data in the satisfiability

study (Loreggia et al., 2016).

This thesis explores techniques to facilitate algorithm selection in

videogame pathfinding that alleviates requirement of evaluating the portfolio

seen in Vadim Bulitko (2016b). We explore both systematic and hand-crafted

portfolios combined with image classifications to perform algorithm selection.

Videogames inherent visual nature should allow image classifiers to learn which

features are relevant to pathfinding algorithm performance.

11

Chapter 4

Single-Agent Pathfinding

Algorithm Selection

This chapter begins by providing an overview of the real-time heuristic search

framework we use as our pathfinding algorithm in Section 4.2 and the config-

urations we use to select our algorithms from (Section 4.3). We then propose

our portfolio formation technique (Section 4.4.2), and how we actually perform

the algorithm selection (Section 4.4.3). Results for our approach are reported

in Section 4.5, followed by a general discussion on how they can be improved

in Section 4.6.

4.1 Introduction

We started by expanding the work of Vadim Bulitko (2016b). Their work

formed its portfolio by randomly selecting a subset of algorithm configura-

tions from a large pool of algorithms and then evaluated their entire port-

folio to facilitate selecting the algorithm to use. We first start by replacing

their random approach to algorithm portfolio formation with a more system-

atic approach. Our portfolio is formed via greedy selection, similar to Lelis

et al. (2016), which maximizes the portfolio’s performance under the perfect

selector π∗. We examine the algorithm selection at the same per-map and

per-problem granularity as Vadim Bulitko (2016b). Additionally, we examine

two higher granularities, per-game and per-genre. Furthermore, we replace

their approach of evaluating each potential algorithm to make a selection with

12

a machine learning approach where an image classifier automatically selects

our algorithm.

4.2 Search Framework

We specifically select which parametrized real-time heuristic search algorithm

(Algorithm 1) (Vadim Bulitko, 2016b) to use. We use the same parametrized

algorithm as (Vadim Bulitko, 2016c) which fixes the lookahead at 1 (i.e.,

allow the agent to consider only the immediate neighbours of its current

node during the planning stage) and takes the following input parameters:

w,wc, b, lop, da, expendable.

The agent will deploy depression avoidance (Hernandez and Baier,

2012) techniques if the parameter da = true, as shown in line 5. If used then

line 5 will have the agent’s set of local neighbouring nodes L(ncurrent) tem-

porarily set to include nodes which have minimal amounts of learning(|h(n)−
h0(n)|) (Vadim Bulitko, 2016a). This is done to prevent frequent node revis-

itation by discouraging agents from revisiting the same nodes right away.

Line 7 consists of the learning rule which utilizes weighted heuris-

tics (Vadim Bulitko, 2016c; Rivera et al., 2013; Rivera, Baier, and Hernández,

2015) and lateral learning (Vadim Bulitko and Sampley, 2016). These parame-

ters are controlled with w,wc, lop, and b. The learning operator is represented

by lop which consists of min, max, median, and mean. w weighs the heuristic

update, which can increase the speed at which the heuristic value converges

to h∗, but higher weights can lead to inadmissible heuristics that are larger

than h∗. wc is another weighting control that weights the cost of traversing

from the current node to the neighbouring nodes. The lateral learning portion

of line 7 is defined by the agent’s neighbourhood L
f
b as the b fraction of the

neighbourhood L(ncurrent) with minimum f values:

L
f
b (n) = (n1, ..., nbb|L(ncurrent)|c) (4.1)

where (n1, ..., nbb|L(ncurrent)|c, ..., n|L(ncurrent)|) is the immediate neighbourhood

sorted in the ascending order by their f values. A b value of 1 represent

13

the full neighbourhood, while a value of 0 represents the single neighbour with

lowest f value.

When the control parameter expendable is active and a node is deemed

expendable (Guni Sharon, Sturtevant, and Felner, 2013) then it is pruned

from the graph, as shown in line 9. In order for a node to be expendable all its

immediate neighbours must be reached from each other within the immediate

neighbourhood (denoted by ε(ncurrent)), as well as learning must have occurred

in line 7. The agent moves to its new node in line 10.

Algorithm 1: Parametrized Real-time Heuristic Search

input : search problem (N,E, c, nstart, ngoal, h),
control parameters (w,wc, b, lop, da, expendable)

1 t← 0
2 ncurrent ← nstart

3 while ncurrent 6= ngoal do

4 if da then

5 L(ncurrent)← Lmin learning(ncurrent)

6 hprev ← h(ncurrent)
7 h(ncurrent)←

max
{

h(ncurrent), w · lopn∈Lf
b
(ncurrent)

(wc · c(ncurrent, n) + h(n))
}

8 if expendable & h(ncurrent)− hprev > 0 & ε(ncurrent) then
9 remove ncurrent from the search graph;

10 ncurrent ← argminn∈L(ncurrent)(c(ncurrent, n) + h(n))

11 t← t+ 1

4.3 Space of Algorithms

We use the same control parameters as Vadim Bulitko (2016c) and repro-

duce them here for the reader’s convenience: w ∈ [1, 10], da ∈ {true, false},
expendable ∈ {true, false}, lop ∈ {min, avg,median,max}, b ∈ [0, 1] which

defines a six-dimensional space of real-time heuristic search algorithms. While

the space of algorithms that we select from are variations of the parameterized

search algorithm, seen in Algorithm 1, conceptually these can be thought of as

separate algorithms and some of the combinations were originally developed

as standalone algorithms.

14

4.4 Our Approach

We use the three questions Kotthoff (2014) proposed for algorithm selection to

guide our approach. First step is to identify at what granularity the selection

will take place, second is to determine the algorithms to include in the portfolio

for each granularity, and lastly how will the actual selection be made for each

granularity.

4.4.1 Algorithm Selection Granularity

Before defining which algorithms to include in our portfolio and how to select

them we determined at which granularity to select them. We will always

perform our selection once at the start of a problem and use that choice for the

remainder of the problem. We chose to examine four granularities, including

two used by Vadim Bulitko (2016b):

• Per-genre: The algorithm selection is determined by the videogame

genre the input is from.

• Per-game: The algorithm selection is determined by which videogame

the input is from.

• Per-map: The algorithm selection is determined by examining the map

the agent will be traversing.

• Per-problem: The algorithm selection is determined by examining both

the map and specific problem the agent will be solving.

Per-genre and per-game rely on predefined labels that are assigned based

upon specific videogame characteristics.

4.4.2 Portfolio Formation

We create potential algorithms A by drawing parametrizations uniform ran-

domly from the algorithm space defined in Section 4.3. Each of these algo-

rithms is then ran on a set of problems I. We use the results of how these

15

algorithms performed to create the portfolio of algorithms that our selection

procedure will pick from.

The large performance gains seen in state-of-the-art algorithms come from

specialized algorithms that excel at a very specific set of problems, often at

the cost of general performance (Vadim Bulitko, 2016b). Using a randomly

formed algorithm portfolio was suitable for Vadim Bulitko (2016b) because

they always selected the best algorithm from the portfolio and so as long as

one algorithm in the portfolio performed well it did not matter if the rest

were poor performers. Since our algorithm selection is done in an on-line

fashion, where we are not guaranteed to select the optimal algorithm for a

given problem, we must attempt to ensure only high performing and diverse

algorithms are able to be selected.

To reduce the potential harm from selecting an suboptimal algorithm we

reduce the portfolio to a subset of high performing and complementary algo-

rithms. Similar to Lelis et al. (2016), we form our subset of algorithms using

a greedy portfolio formation shown in Algorithm 2.

Algorithm 2 forms a portfolio by greedily adding the algorithm which max-

imizes the portfolios performance under the perfect selector π∗. The algorithm

takes a set of algorithms A with a target portfolio size n indicating the maxi-

mum number of members in the portfolio. If none of the remaining algorithms

increase the portfolio’s performance under π∗ than the portfolio does not in-

crease. The subset of algorithms is represented by the set P and initialized to

a empty set in line 1. Line 3 finds algorithm a from the set of algorithms A

which has the lowest suboptimality in combination with portfolio P defined

by f . The algorithm is then added to the set in line 4.

Algorithm 2: Greedy Portfolio Formation
input : A, n
output: P

1 P ← ∅
2 for i ∈ {1, . . . , n} do
3 a← argmin

a∈A
f(P, a)

4 P ← P ∪ {a}

16

4.4.3 Automatic Algorithm Selection

We can now create the mapping π of our problem instance i ∈ I to our

algorithm p ∈ P . For each of the granularities our process varies slightly, but

uses the same general idea to create π. Our automatic algorithm selector π

is a traditional image classifier, where given some input image the classifier

predicts the corresponding label. For us the input is a visual representation of

pathfinding problem instance and the label is used to determine the algorithm

to use for the input.

Table 4.1: Summary of each granularities algorithm selection mapping

Approach Input Output Additional Mapping Section
per-genre map genre {(genre, p ∈ P)} 4.5.1
per-game map game {(game, p ∈ P)} 4.5.2
per-map map p ∈ P N/A 4.5.3
per-problem map + start &

goal
p ∈ P N/A 4.5.4

Per-genre: For our per-genre selection we use a black and white image of

the map that the agent will be traversing, where white represents impassable

obstacles and black represents open nodes. We determine the best algorithm to

use for each videogame genre in Itraining. Each genre in Itraining is then mapped

to the corresponding algorithm that performed best for that genre. We then

train a convolutional neural network (CNN) image classifier to predict which

genre each map in Itraining belongs to. When using this approach to determine

which algorithm to use for a problem, an image representing the map the agent

will be traversing is the input for the network to predict the genre the map

belongs. The algorithm mapped to that genre is then ran on all problems

on that map. We can see an example of the per-genre selection processes in

Figure 4.1.

Per-game: Our per-game selection is similar to per-genre selection. We use

the same black and white image of the map the agent will be traversing. We

determine the best algorithm to use for each videogame game in Itraining. Each
game in Itraining is then mapped to the corresponding algorithm that performed

17

Figure 4.1: Example for algorithm selection based off of which genre the game
belongs to.

best for that game. We then train a CNN to predict which game each map in

Itraining belongs to. When using this approach to determine which algorithm to

use the image representing the map the agent will traverse is inputted into the

network which predicts the game the map belongs to. The algorithm mapped

to that game is then ran on all subsequent problems on that map. We can see

an example of the per-game selection processes in Figure 4.2.

Figure 4.2: Example for algorithm selection based off of which game the map
is from.

Per-map: We use the same black and white image of the map the agent

will be traversing. We then use Algorithm 2 to form our portfolio P . In

the previous two granularities there was only one algorithm assigned to each

label and as such did not need to use Algorithm 2. For each map in Itraining
we assign the label representing the best performing algorithm on that map

from P . We then train a CNN to predict which algorithm to use for each

map in Itraining. When using this approach to determine which algorithm to

use the image representing the map the agent will traverse is inputted into

the network which predicts the algorithm that will perform best on that map.

The predicted algorithm is then ran on all subsequent problems on that map.

We can see an example of the per-map selection processes in Figure 4.3.

18

Removing predefined labels allows for grouping maps based on the algo-

rithms that perform best on them and not some predefined label. For a game

designer to use this approach they would require intimate knowledge of each

algorithm in their portfolio’s performance and how it relates to the maps they

have been used on. The trained network instead will learn the features related

to each algorithm’s performance.

Figure 4.3: Example for algorithm selection on a per-map basis.

Per-problem: Our per-problem selection differs greatly from the previous

selections. We use the same black and white image of the map the agent will

be traversing as the base for our input. We additionally add a 3 × 3 green

pixel at the start and a 3× 3 red pixel at the goal and add a single-pixel-wide

line connecting the start and goal. We also reduced the problems to a single

map I ′training ∈ Itraining. We did so to simplify the problem classification to

only having the configurations of start and goals locations change and not the

map itself. We use Algorithm 2 to form our portfolio P . For each problem in

I ′training we assign the label representing the best performing algorithm from

P on that problem. We then train a CNN to predict which algorithm to use

for each problem in I ′training. When using this approach to determine which

algorithm to use the image representing the problem the agent will be solving is

inputted into the network, which then predicts the algorithm that will perform

best on that problem. The predicted algorithm is then ran on that problem.

We can see an example of the per-problem selection process in Figure 4.4.

Per-problem selection has the most potential for improvement as it is our

19

most granular selection. It provides the network details about the exact prob-

lem the algorithm is solving. It would be difficult to imagine a way for a game

designer to use this approach without some automated selection process as

there would likely be far too many problems for them to specify an algorithm

manually on a per-problem bases.

We provide a summary table of each granularities approach in Table 4.1.

Per-genre and per-game require additional mapping as they use a prior ap-

proach to determine the algorithm to use aided by automatic classification of

the input. Per-map and per-problem do not require any additional mapping as

they select the algorithm to use directly. The input to the network is the same

for the per-map, per-genre, and per-game, with per-problem adding additional

information to input.

Figure 4.4: Example for algorithm selection on a per-problem bases.

4.5 Empirical Evaluation

For all of our evaluations we use AlexNet, a readily available deep neural net-

work, as our image classifier1 included in MATLAB 2017a Neural Network

Toolbox. We chose AlexNet as it commonly available in many deep learning

frameworks, such as PyTorch, Cognitive Neural Tool Kit, TensorFlow, MAT-

LAB and other deep learning frameworks (Facebook, 2017; Google, 2017;

Microsoft, 2017; Vedaldi and Lenc, 2015). We want our approach to be acces-

sible to game developers who likely would not have an extensive background

1pre-trained on the ImagenNet dataset

20

in artificial intelligence. The input for our classifications is a 227× 227 colour

pixel image which represents the problem. For all selections the image is bicu-

bically resized to fit this input.

The search problems are on the 342 maps in the MovingAI bench-

marks (Sturtevant, 2012). For per-genre, per-game, and per-map selections

each map has 50 problems created with randomly connected start and goals.

This provides a benchmark of 17100 (342 × 50) search problems. We create

1000 configurations to be ran on the problems as defined in Section 4.4.2. Our

problem based selection was limited to a single map, Lak506d, from Dragon

Age: Origins and we used the 1169 problems that are provided for that map

from the MovingAI benchmark. The map was chosen for its relatively similar

size to the network as well as containing a large number of problems in the

MovingAI benchmark. We provide a visualization of this map in Figure 4.4.

For each of the different granularities we evaluate our approach using 20

random partitions of the problem set I in to Itraining and Itesting. For per-

genre, per-game, and per-map the split is done for entire maps. Where Itraining
consists of 256 (75%) random maps of the possible 342 maps and Itesting has

the remaining 86 (25%) maps. For per-problem selection the 1169 problem

instances I are split randomly with 877 (75%) being used for training and

292 (25%) being used for testing. We compare our network based selection π

to the perfect classifier π∗ and the best single pathfinding algorithm for each

granularity.

4.5.1 Per-genre Algorithm Selection

Moving AI contains role-playing games (RPG) and real-time strategy (RTS)

games. The best performing algorithm on RPG and RTS maps are not guar-

anteed to be different, but were in our case. There are 231 role-playing game

maps in Moving AI from Baldur’s Gate II (BioWare, 1998) and Dragon Age:

Origins (BioWare, 2009). The remaining 111 maps are from the real-time

strategy games from StarCraft (Blizzard Activision, 1998) and WarCraft III

(Blizzard Entertainment, 2002).

Our genre classification achieved an average accuracy of 96 ± 2.2%. The

21

average suboptimality achieved by our network π and the perfect selector π∗

was 12.33± 1.0 while the suboptimality achieved by using the algorithm that

performed best across Itraining, which we refer to as prior, was 12.58 ± 1.1

in comparison. Using the network resulted in better performance in 14 out

of 20 of the splits of I. It is worth noting here that π∗ is a network which

predicts the genre correctly every time and not a network that predicts the

best algorithm.

Table 4.2: Results of per-genre selection

Algorithm Selection Type Accuracy Suboptimality
Prior N/A 12.58± 1.1
π 96± 2.2% 12.33± 1.0
π∗ 100± 0.0% 12.33± 1.0

4.5.2 Per-game Algorithm Selection

We next consider the task of selecting the best algorithm from our 1000 possible

algorithms for each of the four Moving AI games in our 256 map training set.

The best single algorithm is the algorithm which did best across all 256 maps.

π∗ is again a classifier with 100% accuracy meaning it always picks the correct

game the map is from but not necessarily the best algorithm for that map. In

each of our 20 splits of I there was always at least one map from each game

in both Itraining and Itesting
Our ability to classify which game a map belonged to obtained a lower

accuracy than the genre classification with a accuracy of 90 ± 3.1%. The

average suboptimality for π∗ is 12.52 ± 1.3, our network selection resulted in

an average suboptimality of 12.54 ± 1.3, and using the best single algorithm

achieved a suboptimality of 12.72 ± 1.2. Selecting an algorithm dynamically

resulted in better performance 13 out of the 20 trials.

4.5.3 Per-map Algorithm Selection

π∗ in this scenario represents both a classifier with perfect accuracy and the

lower bound for suboptimality achievable when using our map-based selec-

22

Table 4.3: Results of per-game selection

Algorithm Selection Type Accuracy Suboptimality
Prior N/A 12.72± 1.2
π 90± 3.1% 12.54± 1.3
π∗ 100± 0.0% 12.52± 1.3

tions. The per-map selection with a portfolio size of 2 achieved an accuracy of

55± 5.3% for selecting the best algorithm to use for a given map out of the 2

algorithms. The average result of the network selected algorithms were a sub-

optimality of 12.20± 1.2 in comparison to the best single algorithm achieving

a result of 12.27± 1.3. π∗ achieved a suboptimality of 11.27± 1.1. π achieved

better results than the best single algorithm on Itraining on 12 out of the 20

trials.

Table 4.4: Results of per-map selection

Algorithm Selection Type Accuracy Suboptimality
Prior N/A 12.27± 1.3
π 55± 5.3% 12.20± 1.2
π∗ 100± 0.0% 11.27± 1.1

4.5.4 Per-problem Algorithm Section

Our testing was limited to lak506d, a map from Dragon Age: Origins, which

was slightly smaller (207 × 196) than our network input. There are 1169

problems on the map. Using a portfolio size of 2 again the suboptimality

achieved by the network was 14.20±0.7 in contrast to the best single algorithm

achieving 14.77 ± 0.5. The accuracy of network was 70 ± 2.3%. π∗ had a

suboptimality of 11.35 ± 0.5. π achieved a better average performance than

using the best single algorithm from I ′training on 18 out of the 20 trials.

Table 4.5: Results of per-problem selection

Algorithm Selection Type Accuracy Suboptimality
Prior N/A 14.77± 0.5
π 70± 2.3% 14.2± 0.7
π∗ 100± 0.0% 11.35± 0.5

23

4.6 Discussion

Our initial hypothesis that an off-the-shelf neural network could be used to

select which algorithm to use from a portfolio of algorithm without running

them can be done such that using the selections would increase performance

over using the best algorithm based off prior knowledge was verified in our

initial testing. We saw that an off-the-shelf network was able to pick up the

differences between maps to successfully classify which genre and which game

a map was from. Its ability to select which algorithm to use directly without

these predefined labels was less successful. The accuracy for the predefined

labels were above 90% while per-map and per-problem achieved 55% and 70%

respectively.

The results for using the algorithm based off prior information, π and

π∗ were in line with previous work (Vadim Bulitko, 2016b), in that more

granular selections yield greater room for performance increases. The room

for improvement between using the single best algorithm and π∗ in the per-

genre, per-game and per-map were relatively small with per-map only having a

difference of 12.27 and 11.27, respectively. Per-problem however, offers a larger

potential for improvement, seen in Table 4.5. Here the best single algorithm

achieves a suboptimality of 14.77±0.5 and represents the best possible outcome

for a per-map selection on that map, as it would be the correct choice of a

per-map algorithm selection on that map. Performing the selection on a per-

problem granularity could result in a substantial improvement in suboptimality

to 11.35± 0.52.

This motivated us to pursue improving the ability for a network to select

algorithms on a per-problem basis. We did not want to use custom networks

. We wanted our approach to allow for easy adoption by game developers

and not one that requires an advance understanding of image classification or

neural networks.

2Large suboptimality values are impractical. Path lengths can be decreased via increasing
the lookahead from an agent’s immediate neighbours. We restricted the lookahead as there is
a dominant strategy for decreasing suboptimality with a lookahead of infinity which results
in A*’s path.

24

Chapter 5

Automatic Algorithm Selection

for Multi-agent Pathfinding

In this chapter we provide an overview of the three MAPF algorithms used

in our portfolio (Section 5.2) and why we selected them (Section 5.3.2). We

explain how we perform our selection in Section 5.3.3. We then explain our

testing environment in Section 5.4.1 and our results in Section 5.4.2.

5.1 Introduction

In developing our portfolio, which contained two contemporary MAPF al-

gorithms Flow Annotated Replanning and Windowed Hierarchical Coop-

erative A*, we created a complementary algorithm Bounded Multi-Agent

A* (BMAA*). BMAA* is a real-time multi-agent pathfinding algorithm. We

provide a brief description below and reproduce Sigurdson et al. (2018) in

Appendix A for the reader convenience.

We forgo the portfolio formation technique of Chapter 4 in favour of a

hand-crafted portfolio. We did so based on our experience using these MAPF

algorithms where each algorithm had clear scenarios where they performed

well, in contrast to selecting configurations. We also synthetically generate

MAPF problems based off common videogame scenarios. This was done to

create a more diverse set of examples for how each algorithm might perform

in these scenarios.

25

5.2 MAPF Algorithms

While researchers have proposed a number of algorithms to solve MAPF prob-

lems (de Wilde, ter Mors, and Witteveen, 2013; G. Sharon, Stern, Felner, and

Sturtevant, 2015; C. Wang and Botea, 2011), in this chapter, we focus on using

methods that are better suited for environments where agents must take ac-

tions within a very small amount of time (e.g., videogames). These algorithms

are not guaranteed to have every agent reach their goal. There are algorithms,

such as Conflict Based Search(CBS) G. Sharon et al., 2015, which has comple-

tion guarantees but require finding a complete solution before moving. This

can leave the agents frozen in place has the solutions is being planned. The

nature of videogames can have an agent’s goal change in a moments notice ren-

dering the paths obsolete causing the planning to restart. This makes CBS,

and other similar algorithms, impractical for use in videogames and thus not

considered in our experiments.

The more agents there are on a map the more difficult it is to have all

agents reach their goal. We therefore focus on increasing the completion rate

to have more agents reach their goal. Game designers can increase the like-

lihood of all agents reaching their goal by reducing the number of agents.

Our portfolio is comprised of three scalable A*-based algorithms: Windowed

Hierarchical Cooperative A* (WHCA*) (Silver, 2005), Flow Annotation Re-

planning (FAR) (Wang and Botea, 2008), and Bounded Multi-Agent A*

(BMAA*) (Sigurdson et al., 2018). We choose these algorithms because they

use different strategies to solve MAPF problems and, as a result, can excel on

different MAPF problems.

5.2.1 Windowed Hierarchical Cooperative A*

Silver (2005) proposed a family of A*-based algorithms for solving MAPF

problems: In Cooperative A*, each agent runs an A* search in a three di-

mensional graph (x-coordinate, y-coordinate, and time) to reach its goal and

shares its plan with other agents through reservation tables. Therefore, the

agents are able to avoid collisions since each agent knows where all the other

26

agents will be and when they will be there. To improve scalability, Hierarchi-

cal Cooperative A* uses hierarchical search, where each agent uses the length

of the shortest path found in an abstracted state space as a guiding heuristic.

Finally, to further improve scalability, Windowed Hierarchical Cooperative A*

limits the search depth of each agent to within a window. Once a partial path

within the window is found, the agent follows it and searches for the next

partial path by shifting the window along the current path.

5.2.2 Flow Annotation Replanning

Like WHCA*, Flow Annotation Replanning (FAR) (Wang and Botea,

2008) also takes account of other agents plans. However, instead of searching

for a new path when the current one is blocked, agents in FAR simply wait at

their current nodes until they can reserve their next set of moves in a reser-

vation table. FAR also detects deadlocks, where agents would wait on each

other indefinitely, and forces them to move away from their current nodes and

to replan their paths.

To reduce the likelihood of agents blocking each other, FAR annotates at

each node with the direction that agents at that node should follow. These an-

notations combined creates “highways,” where agents can quickly move from

one end of the map to another without ever stopping to wait for other agents.

Figure 5.1 shows an example map annotated by FAR which uses the following

strategy: It first creates an edge-less annotated graph G′ that has the same set

of nodes as the original graph G. Then, edges are added to G′ in alternating

directions, that is, even-numbered rows are assigned west-bound edges and

odd-numbered rows are assigned east-bound edges. Similarly, even-numbered

columns are assigned north-bound edges and odd-numbered columns are as-

signed south-bound edges. Additional edges are added in special cases. For

example, nodes on corridors that are only one-node wide retain their bi-

directional connectivity. Self-loops are always retained as agents always have

the ability to wait, however self-loops are not considered in the search.

27

5.3 Our Approach

We once again are motivated by the three questions raise by Kotthoff

(2014) that must be addressed to solve our algorithm selection problem de-

fined in Section 2. Theses questions are key to being successful in algorithm

selection: (1) Which granularity to perform the selection? (2) What algo-

rithms to include in the portfolio P of algorithms? (3) How will the mapping

π decide which algorithm p ∈ P to use for the problem i ∈ I be performed?

5.3.1 Algorithm Selection Granularity

For multi-agent pathfinding we only considered selecting an algorithm at the

per-problem granularity. We decided to focus only on the per-problem granu-

larity as it has the most potential for improvement out of the four previously

examined granularities.

5.3.2 Portfolio Formation

Ideally, the the portfolio of algorithms should be sufficiently diverse so that

for each possible problem instance, there exists at least one algorithm in the

portfolio that does well on that problem instance. Larger portfolios, however,

may slow down the learning process as well as result in lower performance due

to selection errors. Therefore, in this chapter, we consider a relatively small but

diverse set of algorithms: Windowed Hierarchical Cooperative A* (WHCA*),

Flow Annotation Replanning (FAR), and Bounded Multi-Agent A* (BMAA*)

as described in Section 5.2. We choose BMAA* because we anticipate that it

will do well in problem instances where well-informed heuristics are available.

In problem instances where heuristics are more substantially misleading, it

performs poorly as it runs only bounded-depth searches to find partial paths for

the agents, which may be in the wrong direction. Conversely, FAR computes

complete paths, but has a limited gridlock breaking procedure that can lead

to failure in particularly congested problems. Finally, we choose WHCA*

as it can solve particularly tricky problems as it communicates agents plans

and takes them into account through a windowed cooperative search. Doing

29

Figure 5.2: Multi-agent algorithm selection example.

so, however, is computationally expensive and is not always necessary. We

forwent the previous systematic approach in favour of a hand-craft approach

because our experience using multi-agent pathfinding suggested that each of

three aforementioned algorithms should have specific problems where they

excel. We likely could have used the systematic approach to tune each of

the algorithms in our portfolio, but instead used the authors’ recommend

configurations which were consistent with our preliminary experiments.

5.3.3 Automatic Algorithm Selection

Similar to the case of single-agent pathfinding, we treat the MAPF algorithm-

selection problem as an image classification problem. Thus, we classify each

image (a representation of a MAPF problem instance) with respect to a fixed

set of possible labels (algorithms from the portfolio).

In order to provide MAPF problem instances as inputs to the CNN, we

represent each problem instance as an image, where blocked and unblocked

node are represented by white and black pixels, respectively. A partial agent

specification is also provided as part of the input, represented by a single pixel.

A start location is indicated with a green pixel and a goal location with a red

pixel (Figure 5.2). The mapping between a specific agent’s start and goal is

anonymized as there is no information in the images as to between which goal

belongs to which agent. We resize the image to that of the network input.

30

5.4 Empirical Evaluation

We again use AlexNet (Krizhevsky, Sutskever, and Hinton, 2012)to solve the

image classification problem. We choose a deep learning approach with the

anticipation that it will be able to learn to recognize important features of

the problem (e.g., topologies of the map, distribution of agents, etc.) and

exploit them automatically (Sigurdson and Bulitko, 2017). We once again

choose AlexNet as it is a common, readily-available CNN, which requires no

additional engineering.

We use 20 video-game maps from Baulder’s Gate II available in the Movin-

gAI benchmark (Sturtevant, 2012). This included the 10 largest maps from

the game used to originally evaluate FAR (Wang and Botea, 2008) and 10

additional small and mid-sized maps. We included more maps to get a more

diverse set of maps ranging from 564 traversable nodes to 51586 nodes in size.

We fixed the number of agents to 300 for each MAPF problem. For each map

we created 20 MAPF problems for each of the problem types defined in Sec-

tion 5.4.1. If an agent is not at their goal at the 30 second time limit then its

goal achievement time is artificially set to 30 seconds.

We split the dataset randomly into 70% for training and the other 30%

for testing. All of the performance metrics are reported for the test set. We

perform this splitting over 10 trials and report the results averaged over the

10 trials.

5.4.1 MAPF Problem Generation

Rather than using only randomly selected start and goals, we generated differ-

ent types of MAPF problems. We ensure that start and goals are in the same

connected component for all the problems generated. These problem types

are intended to represent some common videogame scenarios. For example,

agents swapping sides is commonly seen in many strategy games where agents

are trying to reach an opposing team’s base. Tight to wide happens when

there is a common spawn location and some general area that the agents are

trying to reach. These are not intended to represent all scenarios that occur in

31

Figure 5.4: Problem type definitions and examples.

Table 5.1: Algorithm performance on all problems.

Completion Rate(%) Distance Completion Time (s)

π∗ 80.8 ± 0.8 283.1± 7.5 15.5± 0.2
π 76.6± 1.2 261.0± 8.8 16.2± 0.4
BMAA* 65.7± 0.7 465.7± 5.9 14.4 ± 0.2

FAR 66.1± 1.0 405.7± 10.1 15.9± 0.2
WHCA* 54.6± 1.1 88.3 ± 1.7 21.7± 0.2
Worst 44.3± 0.7 328.6± 11.0 19.7± 0.2

On the distance travelled metric, which breaks completion rate ties, π

significantly improves upon BMAA* and FAR with a 44% (from 465.7 to

33

Figure 5.5: Completion Rate % for the test problems averaged over 10 splits
of the data.

260.9) and 36% (405.7 to 260.9) reduction, respectively. However, the best

single algorithm on this metric is WHCA* with 88.3. Our distance metric is

recorded for all agents and not just agents who reach their goal. In other words,

an algorithm that never moves the agents would have the smallest distance

despite not completing the task. As distance was only for breaking ties in our

model, this was not of great concern.

On the goal achievement time metric, BMAA* is better than π with a

11.1% (from 16.2s to 14.4s) improvement. On this metric, BMAA* is followed

up by WHCA* with a goal achievement time of 15.9s and FAR with 21.7s. The

reason why both WHCA* and FAR are slower despite the agents travelling

smaller distances than BMAA* is that many of the agents end up waiting for

other agents due to their use of reservation tables. WHCA* also performs a

more expensive three-dimensional search.

Over the 10 splits of the training and test data, BMAA*, FAR, and

WHCA* was the best choice for an average of 283.5 (33.8%), 258.9 (31.0%),

34

Table 5.2: Completion rate(%) by problem type.

Problem Type BMAA* FAR WHCA*

Random 79.4 75.3 68.9
Cross sides 69.4 83.7 56.4
Swap sides 64.4 48.5 34.5
Inside out 76.7 75.3 59.9
Outside in 73.3 72.3 60.7
Tight to tight 33.8 37.8 36.7
Tight to wide 59.2 71.0 54.9

and 296.6 (35.3) problems, respectively. The neural network predicted

BMAA*, FAR, and WHCA* to be the best choice for an average of 269.0,

249.4, and 321.6 problems, respectively. The networks selected the correct

algorithm 72.9% of the time.

WHCA* is often the best choice despite its low completion rate, 54.6± 1.1

(%) across all problem types. WHCA* distance travelled makes it the best

choice on problems where all three algorithms achieve 100% completion rate.

This leads to its frequent choosing despite its completion rate.

5.5 Discussion

We demonstrated that using an off-the-shelf deep neural network to automat-

ically select MAPF algorithms from a portfolio can improve the performance

over the individual algorithms in that portfolio. This approach is promising

since it does not require designing new MAPF algorithms. Furthermore, with

deep learning, human designers do not even have to hand-craft a set of features

to describe MAPF problem instances. As a result, this process is accessible

to a broad range of game developers. Similar ideas were recently explored for

SAT/CSP solver selection (Loreggia et al., 2016). However, our approach

simplifies the process one step further by using an off-the-shelf deep neural

network (AlexNet) in place of a custom-built CNN.

35

Chapter 6

Discussion and Future work

Our current approach uses actual videogame maps but not the actual problems

that were ran on those maps. Additionally, videogame maps can be arbitrary

sizes and may not be suitable to simple resizing. Future work will extend the

evaluation to more realistic problems by data mining from actual gameplay

logs, as well as address a more diverse set of maps which may not be suitable to

resizing. We will investigate assigning algorithms to agents as the pathfinding

problems progress through out the course of a game. We will also examine a

per-agent basis (at least a per-agent-cluster basis) assignment, as one algorithm

is unlikely to be the best choice for all agents within a MAPF problem.

Another area we will explore is understanding the features the network

is learning. Understanding the reasoning behind why the network makes a

certain decision can help guide future development of algorithms as one learns

in which scenarios an algorithm fails.

36

Chapter 7

Conclusion

We demonstrated that an off-the-shelf deep neural network can be used to

perform algorithm selection for videogame pathfinding. We demonstrated that

this can be done for selecting parameters for an algorithm as well as selecting

between different algorithms. The results demonstrated a significant improve-

ment in the more difficult multi-agent pathfinding environment. Furthermore,

we proposed a systematic approach to creating a portfolio of algorithms as

well as demonstrated the robustness of our approach to different performance

metrics (suboptimality and completion rate).

This approach is promising as it does not require developing custom net-

works to yield improved results. Our overall goal of being able to use machine

learning to select which algorithm to use so that using a portfolio of algorithm

is better than any of the individual algorithms was successful. Videogame

engines should be able to harness the benefits of algorithm selection without

using expensive sampling approaches or requiring the developer to have inti-

mate knowledge of the intricacies of the available algorithms. Games within a

single engine are diverse indicating that in practice there should be room for

performance gains via algorithm selection.

In conclusion, this thesis we presented a systematic approach to greedy

algorithm portfolio formation, creating a mapping π successful enough to im-

prove results over contemporary search algorithms. Additionally we developed

BMAA*, a new real-time heuristic search pathfinding algorithm.

37

References

Bandi Namco. (2017). Tekken 7. Retrieved June 28, 2018, from https://tk7.
tekken.com/

BioWare. (1998). Baldur’s Gate. November 30, 1998. Interplay. Retrieved from
http://www.bioware.com/bgate/

BioWare. (2009). Dragon Age: Origins.
Björnsson, Y., Bulitko, V., & Sturtevant, N. (2009). TBA*: Time-bounded A*.

In Proceedings of the international joint conference on artificial intelli-

gence (pp. 431–436).
Blizzard Activision. (1998). StarCraft. Released: March 31, 1998. Interplay.

Retrieved from https://starcraft.com/en-us/
Blizzard Entertainment. (2002). Warcraft III: Reign of chaos. July 3, 2002.

Blizzard Entertainment. Retrieved from http://www.blizzard.com/war3
Bulitko, V. [Vadim]. (2016a). Evolving real-time heuristic search algorithms.

In Proceedings of the synthesis and simulation of living systems.
Bulitko, V. [Vadim]. (2016b). Per-map algorithm selection in real-time heuris-

tic search. In Proceedings of the aaai conference on artificial intelligence

and interactive digital entertainment (pp. 143–148).
Bulitko, V. [Vadim]. (2016c). Searching for real-time search algorithms. In

Proceedings of the international symposium on combinatorial search.
Bulitko, V. [Vadim], & Lee, G. (2006). Learning in real time search: A unifying

framework. Journal of Artificial Intelligence Research, 25, 119–157.
Bulitko, V. [Vadim], & Sampley, A. (2016). Weighted lateral learning in real-

time heuristic search. In Proceedings of the symposium on combinatorial

search.
Cohen, L., Uras, T., Kumar, T., Xu, H., Ayanian, N., & Koenig, S. (2016).

Improved solvers for bounded-suboptimal multi-agent path finding. In
Proceedings of the international joint conference on artificial intelligence

(pp. 3067–3074).
Cserna, B., Bogochow, M., Chambers, S., Tremblay, M., Katt, S., & Ruml, W.

(2016). Anytime versus real-time heuristic search for on-line planning.
In Ninth annual symposium on combinatorial search.

de Wilde, B., ter Mors, A., & Witteveen, C. (2013). Push and Rotate: Co-
operative multi-agent path planning. In Proceedings of the international

conference on autonomous agents and multiagent systems (pp. 87–94).

38

Epic Games. (2017). Fortnite. Retrieved June 28, 2018, from https://www.
epicgames.com/fortnite/

Epic Games. (2018). Unreal 4 games wiki. Retrieved June 22, 2018, from https:
//wiki.unrealengine.com/Category:Games

Facebook. (2017). Pytorch. GitHub. Retrieved June 28, 2018, from https://
github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

Google. (2017). Tensorflow. GitHub. Retrieved June 28, 2018, from https :
//github.com/tensorflow/models/blob/master/research/slim/nets/
alexnet.py

Hart, P., Nilsson, N., & Raphael, B. (1968). A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems

Science and Cybernetics, 4 (2), 100–107.
Hernandez, C., & Baier, J. (2012). Avoiding and escaping depressions in

real-time heuristic search. In Journal of artificial intelligence research

(pp. 523–570). JAIR’43.
Hernández, C., & Baier, J. (2012). Avoiding and escaping depressions in real-

time heuristic search. Journal of Artificial Intelligence Research, 43, 523–
570.

Hernandez, C., Botea, A., Baier, J., & Bulitko, V. (2017). Online bridged
pruning for real-time search with arbitrary lookaheads. In Proceedings of

the international joint conference on artificial intelligence (pp. 510–516).
Ishida, T. (1997). Real-time search for learning autonomous agents. Springer

Science & Business Media.
Koenig, S. (2001). Agent-centered search. AI Magazine, 22 (4), 109.
Koenig, S., & Likhachev, M. (2006). Real-time adaptive A*. In Proceedings of

joint conference on autonomous agents and multiagent systems (pp. 281–
288). doi:10.1145/1160633.1160682

Koenig, S., & Ma, H. (2017). Ai buzzwords explained: Multi-agent path find-
ing(mapf). AI Matters.

Koenig, S., & Sun, X. (2009). Comparing real-time and incremental heuristic
search for real-time situated agents. Journal of Autonomous Agents and

Multi-Agent Systems, 18 (3), 313–341.
Korf, R. (1990). Real-time heuristic search. Artificial Intelligence, 42 (2–3),

189–211.
Kotthoff, L. (2014). Algorithm selection for combinatorial search problems: A

survey. AI Magazine, 48–60.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification

with deep convolutional neural networks. In Proceedings of advances in

neural information processing systems (pp. 1097–1105).
Lawrence, R., & Bulitko, V. [V.]. (2013). Database-driven real-time heuristic

search in video-game pathfinding. IEEE Transactions on Computational

Intelligence and AI in Games, 5 (3), 227–241. doi:10.1109/TCIAIG.2012.
2230632

Lelis, L., Franco, S., Abisrror, M., Barely, M., Zilles, S., & Holte, R. (2016).
Heuristic subset selection in classical planning. (pp. 3185–3191).

39

Loreggia, A., Malitsky, Y., Samulowitz, H., & Saraswat, V. (2016). Deep learn-
ing for algorithm portfolios. In Proceedings of the aaai conference on

artificial intelligence (pp. 1280–1286). Phoenix, Arizona.
Lu, H., & Scott, P. (2004). Groups of diverse problem solvers can outper-

form groups of high-ability problem solvers. Proceedings of the Na-

tional Academy of Sciences, 101 (46), 16385–16389. doi:10.1073/pnas.
0403723101. eprint: http://www.pnas.org/content/101/46/16385.full.
pdf

Malitsky, Y., Sabharwal, A., Samulowitz, H., & Sellmann, M. (2013). Algo-
rithm portfolios based on cost-sensitive hierarchical clustering. In Ijcai.

Microsoft. (2017). Cntk. GitHub. Retrieved June 28, 2018, from https : / /
github . com / Microsoft / CNTK / tree / master / Examples / Image /
Classification/AlexNet

Rice, J. (1976). The algorithm selection problem. In Proceedings of advances

in computers,vol. 15 (pp. 65–118).
Rivera, N., Baier, J., & Hernández, C. (2013). Weighted real-time heuristic

search. In International conference on autonomous agents and multi-

agent systems, AAMAS (pp. 579–586). Retrieved from http://dl.acm.
org/citation.cfm?id=2485012

Rivera, N., Baier, J., & Hernández, C. (2015). Incorporating weights into real-
time heuristic search. Artificial Intelligence, 225, 1–23. doi:10.1016/j.
artint.2015.03.008

Samulowitz, H., & Memisevic, R. (2007). Learning to solve qbf. In Proceedings

of the 22nd national conference on artificial intelligence (pp. 255–260).
Vancouver, British Columbia, Canada.

Sharon, G. [G.], Stern, R., Felner, A., & Sturtevant, N. (2015). Conflict-based
search for optimal multi-agent pathfinding. Artificial Intelligence, 219,
40–66.

Sharon, G. [Guni], Sturtevant, N. R., & Felner, A. (2013). Online detection
of dead states in real-time agent-centered search. In Proceedings of the

symposium on combinatorial search (pp. 167–174). Retrieved from http:
//www.aaai.org/ocs/index.php/SOCS/SOCS13/paper/view/7226

Sigurdson, D., & Bulitko, V. [Vadim]. (2017). Deep learning for real-time
heuristic search algorithm selection. In Proceedings of the aaai conference

on artificial intelligence and interactive digital entertainment (pp. 108–
114).

Sigurdson, D., Bulitko, V., Yeoh, W., Hernandez, C., & Koenig, S. (2018).
Real-time multi-agent pathfinding. In Proceedings of ieee conference on

computational intelligence and games (In press).
Silver, D. (2005). Cooperative pathfinding. In Proceedings of the aaai con-

ference on artificial intelligence and interactive digital entertainment

(pp. 117–122).
Square Enix. (2019a). Final fantasy vii remake. Retrieved June 28, 2018, from

https://www.ffvii-remake.square-enix.com/

40

Square Enix. (2019b). Kingdom hearts iii. Retrieved June 28, 2018, from https:
//www.kingdomhearts.com/

Sturtevant, N. R. (2012). Benchmarks for grid-based pathfinding. Transactions
on Computational Intelligence and AI in Games, 4 (2), 144–148. Re-
trieved from http://web.cs.du.edu/∼sturtevant/papers/benchmarks.pdf

The Coalition. (2016). Gears of war 4. Retrieved June 28, 2018, from https:
//gearsofwar.com/en-au/games/gears-of-war-4

Vedaldi, A., & Lenc, K. (2015). MatConvNet – convolutional neural networks
for MATLAB. In Proceeding of the ACM international conference on

multimedia (pp. 689–692).
Wang, C., & Botea, A. (2011). MAPP: A scalable multi-agent path planning

algorithm with tractability and completeness guarantees. Journal of Ar-
tificial Intelligence Research, 42, 55–90.

Wang, & Botea. (2008). Fast and memory-efficient multi-agent pathfinding. In
Proceedings of the international conference on automated planning and

scheduling (pp. 380–387).
Xu, L., Hutter, F., Hoos, H., & Leyton-Brown, K. (2008). Satzilla: Portfolio-

based algorithm selection for sat. In Journal of artificial intelligence re-

search.

41

Appendix A

Bounded Multi-agent A*

Reproduced from the proceedings of the IEEE conference on Computational

Intelligence and Games 2018.

A.1 Preface

In our research developing an accessible approach to automatic algorithm se-

lection we decided to create an algorithm that would pair well with two well

known MAPF methods: Flow Annotated Replanning, and Windowed Hier-

archical A*. The algorithm we created ended up preforming favourably with

these two algorithms and as such motivated us to push the research to a pub-

lishable state. We reproduce it here instead of the body of thesis to keep the

body focused on algorithm selection and not a specific algorithm.

A.2 Introduction

Pathfinding is a core task in many video games, for example, to allow non-

player characters (NPCs) to move to given goal locations on a known sta-

tionary map. A* (Hart et al., 1968) is a classic algorithm for single-agent

pathfinding. The artificial intelligence algorithms in video games, however,

often need to find collision-free paths for several agents to their given goal lo-

cations. Figure A.1 illustrates multi-agent pathfinding (MAPF) (Koenig and

Ma, 2017) on a map from the Dragon Age: Origins video game, where NPCs

(green dots) have to move to their given goal locations (red dots).

42

The constraints on MAPF algorithms depend on the application. For ex-

ample, real-time strategy games, such as StarCraft (Blizzard Activision, 1998),

require the NPCs to move simultaneously in real time, which limits the amount

of time available to compute the next moves for all NPCs before they need

to start moving. Video games can generate maps procedurally to create new

game levels on the fly, which makes it impossible to preprocess the maps.

Players can often re-task NPCs at will or the map can change, rendering their

previously calculated paths obsolete on a moment’s notice. Finally, game set-

tings can limit the amount of coordination allowed among characters in the

game (such as sharing their paths or heuristic values), and some characters

might not even be under the complete control of the system (because they are

on an opposing team).

These constraints motivated our development of Bounded Multi-Agent A*

(BMAA*) — a MAPF algorithm that operates in real time, loses only a small

amount of search in case players re-task NPCs or the map changes and neither

requires explicit inter-agent coordination, complete control of all NPCs nor

preprocessing of maps. BMAA* works as follows: Every agent treats the other

agents as (moving) obstacles, runs an individual real-time heuristic search that

searches the map around its current location within a given lookahead to select

the next move and updates heuristic values assigned to locations to avoid

getting stuck. We show how BMAA* can be enhanced by, first, adding flow

annotations from the MAPF algorithm FAR (Wang and Botea, 2008) (that

impose move directions similar to one-way streets) and, second, allowing agents

to push other agents temporarily off their goal locations, when necessary, if

agents are allowed to send each other move requests. In our experiments,

BMAA* has higher completion rates and smaller completion times than FAR,

thus demonstrating the promise of real-time heuristic search for MAPF.

A.3 Problem Formulation

A MAPF problem is defined by a pair (G,A). G = (N,E, c) is an undirected

weighted graph of nodes N connected via edges E ⊆ N × N . The costs c(e)

43

We use the following performance measures: The completion rate is the

percentage of agents that are in their goal locations when the runtime limit

has been reached (Silver, 2005; Wang and Botea, 2008). The completion time

for an agent is the time step when that agent last reached its goal location. If

an agent leaves its goal and does not return the completion time is undefined.

Finally, the travel distance of an agent is the sum of the costs of the edges

traversed by that agent. We consider the mean of all agents’ travel distance

and the mean of all agents’ completion time as the performance measures

in our MAPF problems. These performance measures cannot be optimized

simultaneously. Their desired trade-off can be game specific. We choose to

maximize the completion rate (because players will notice if NPCs do not

reach their goal locations) but report on the other two performance measures

as well.

A.4 Related Work

We now review search algorithms that are related to BMAA*, focusing on

pathfinding with heuristic search algorithms, which use heuristic values to

focus their search.

A.4.1 A*

A* (Hart et al., 1968) provides the foundation for our BMAA* and many other

MAPF algorithms, even though it was developed for single-agent pathfinding.

An A* search for an agent explores the search space starting at its current node.

The exploration is informed by heuristic values and driven toward nodes with

a low estimate of the estimated cost of moving from the current node via them

to the goal node. Algorithm 3 shows the pseudo-code for a version of A* that

finds a cost-minimal path for agent ai from its current node ni
curr to its goal

node ni
goal under mild assumptions about the graph and the heuristic values.1

1In our pseudo-code, First returns a node with the smallest f -value in the open list
(breaking ties in favor of a node with the largest g-value, with any remaining ties broken by
first-in first-out); Pop removes a node with the smallest f -value from the open list (breaking
ties in favor of a node with the largest g-value) and returns it; Add adds an element to a

45

It maintains two lists of nodes, namely the closed and open lists. The closed

list is initially empty (line 2), and the open list contains the current node (line

3). The closed list is an unordered set of nodes that A* has already expanded.

The open list is an ordered set of nodes that A* considers for expansion. A*

always expands a node in the open list with the lowest f -value next, where

the f -value of node n is f(n) = g(n) + h(n). Its g-value g(n) is the cost of

the lowest-cost path from the current node to node n discovered so far, and

its h-value h(n) (or, synonymously, heuristic value) is the heuristic estimate of

the cost of a lowest-cost path from node n to the goal node. (The g-values are

initially zero for the start node and infinity for all other nodes.) A* removes

node n from the open list and adds it to the closed list (lines 9 and 10). It

then expands the node by iterating over all of its neighbors n′. It updates the

g-value of node n′ if node n′ has not yet been expanded (i.e., it is not yet in the

closed list) and the g-value of node n′ can be decreased due to the fact that the

cost of the path from the current node via node n to node n′ is smaller than

the g-value of node n′ (because the search has then discovered a lower-cost

path from the current node to node n′) (line 17). In this case, it also updates

the parent of node n′ to node n (line 17) and adds it to the open list if it is

not already in it (line 19). A* continues its search until either the open list is

empty (line 5) or the node about to be expanded is the goal node (line 6). In

the former case, no path exists from the current node to the goal node. In the

latter case, the path P that is obtained by repeatedly following the parents

from the node about to be expanded to the current node is a cost-minimal

path from the current node to the goal node in reverse (line 7).

A.4.2 Online MAPF Algorithms

We focus on online MAPF algorithms, where there entire problem is not re-

quired to be solved before agents begin moving. since we are interested in

MAPF algorithms that operate in a short amount of time, lose only a small

amount of search in case players re-task NPCs or the map changes and nei-

ther require explicit inter-agent coordination, complete control of all NPCs

list; and GetNeighbors returns all neighboring nodes of a node in the graph.

46

Algorithm 3: A*.

1 P ← ()
2 closed← ∅
3 open← {ni

curr}
4 g(ni

curr)← 0
5 while open 6= ∅ do
6 if open.First() = ni

goal then

7 calculate P
8 break

9 n← open.Pop()
10 closed.Add(n)
11 for n′ ∈ n.GetNeighbors() do
12 if n′ 6∈ closed then

13 if n′ 6∈ open then

14 g(n′)←∞
15 if g(n′) > g(n) + c(n, n′) then
16 g(n′)← g(n) + c(n, n′)
17 n′.parent← n
18 if n′ /∈ open then

19 open.Add(n′)

nor preprocessing of maps. We describe only the most suitable online MAPF

algorithms below.

Windowed Hierarchical Cooperative A* (WHCA*) (Silver, 2005) finds

collision-free paths for all agents for their next window of moves. It shares

the paths of all agents up to the given move limit through a reservation table,

which adds a time dimension to the search space and thus results in expensive

searches. Beyond the move limit, WHCA* simply assumes that every agent

follows the cost-minimal path to its goal node and thus ignores collisions among

agents. The move limit needs to be sufficiently large to avoid conflicts among

agents, resulting in searches that might exceed the amount of time available

to compute the next moves for all NPCs before they need to start moving.

Furthermore, WHCA* requires all NPCs to be under its complete control.

Flow Annotated Replanning (FAR) (Wang and Botea, 2008) combines the

reservation table from WHCA* with flow annotations that make its searches

less expensive since no time dimension has to be added to the search space.

47

Each agent has to reserve its next moves before it executes them. Agents

do not incorporate these reservations into their search but simply wait until

other agents that block them have moved away, similar to waiting at traffic

lights. FAR attempts to break deadlocks (where several agents wait on each

other indefinitely) by pushing some agents temporarily off their goal nodes.

However, agents can still get stuck in some cases. The flow annotations of

FAR (Wang and Botea, 2008) change the edges of the original graph G in

order to reduce the number of collisions among agents. They effectively make

the undirected original graph directed by imposing move directions on the

edges, similar to one-way streets, which reduces the potential for head-to-head

collisions among agents. This annotation is done on a grid in a way so that any

node remains reachable from all nodes from which it could be reached on the

original graph, as follows: The new graph initially has no edges. The first row

of nodes is connected via westbound edges, the second row is connected via

eastbound edges, and so on. Similarly, the first column of nodes is connected

via northbound edges, the second column is connected via southbound edges,

and so on. Sink nodes (with only in-bound edges) and source nodes (with only

out-bound edges) are handled by adding diagonal edges adjacent to them.

If sink and source nodes are in close proximity of each other, the diagonal

edges can end up pointing at each other and result in a loss of connectivity,

in which case additional undirected edges are added around them. Corridor

edges (that is, edges on paths whose interior nodes have degree two) of the

original graph remain undirected, which is important in case the corridor is the

only connection between two components of the original graph. A standard

implementation of A* is then used to search for a path to the goal in this

restricted graph.

A.4.3 Real-time Heuristic Search

Video games often require NPCs to start moving in a short amount of time,

which may not be possible with any of the search algorithms reviewed above

since they need to compute a complete path before an agent can execute

the first move. Real-time heuristic search (RTHS) algorithms, on the other

48

hand, perform a constant amount of search per move regardless of the size of

the map or the distance between the start and goal nodes. They have been

studied for single-agent pathfinding (Vadim Bulitko and Lee, 2006; Cserna

et al., 2016; Ishida, 1997; Koenig and Sun, 2009), starting with the seminal

work by Korf (Korf, 1990). They need to compute only the prefix of a path

before the agent can execute the first move — and repeat the operation until

the agent reaches the goal node. To avoid cycling forever without reaching the

goal node due to the incompleteness of the searches, the algorithms update

the heuristic values over time by making them locally consistent (Korf, 1990),

incrementally building the open and closed lists (Björnsson, Bulitko, and

Sturtevant, 2009) or ignoring parts of the map (Hernandez, Botea, Baier, and

Bulitko, 2017). There are two benefits to using RTHS algorithms in video

games. First, an NPC can start moving in a short amount of time. Second,

only a small amount of search is lost in case a player re-tasks NPCs or the

map changes.

A well-known RTHS algorithm Real-Time Adaptive A* (RTAA*) (Koenig

and Likhachev, 2006) performs an A* search, limited to a given number of

node expansions. RTAA* then uses the f -value of the node A* was about to

expand to update the heuristic values of all expanded nodes (that is, all nodes

in the closed list closed) as shown in Procedure Update-Heuristic-Values in

Algorithm 6. The agent then moves along the path from its current node to

the node A* was about to expand, limited to a given number of moves — and

RTAA* repeats the operation.

A.5 Our Approach: BMAA*

Our Bounded Multi-Agent A* (BMAA*) is a MAPF algorithm where every

agent runs its own copy of RTAA*. BMAA* satisfies our requirements: It

operates in real-time, loses only a small amount of search in case players re-

task NPCs or the map changes. Additionally, it does not requires explicit

inter-agent coordination, complete control of all NPCs or preprocessing of

maps. The design of BMAA* is modular to allow for extensions by adding or

49

changing modules. For example, BMAA* can be enhanced by, first, adding

flow annotations from FAR and, second, allowing agents to push other agents

temporarily off their goal nodes, when necessary, if agents are allowed to send

each other move requests.

We parameterize BMAA* as follows in the spirit of recent research in the

context of Parameterized Learning Real-Time A* (Vadim Bulitko, 2016a):

First, expansions is the limit on the number of node expansions of the A*

search of RTAA*. Second, vision is the distance within which agents can see

other agents. Third, moves is the number of moves that each agent makes

along its path before RTAA* determines a new path for the agent. Fourth,

push is a Boolean flag that determines whether agents can push other agents

temporarily off their goal nodes. Finally, flow is a Boolean flag that determines

whether RTAA* uses the flow annotations from FAR.

A.5.1 Procedure NPC-Controller

Algorithm 4 shows the pseudo-code for the central NPC controller. The time

step time is initialized to zero at the start of BMAA*, and the central NPC

controller is then invoked at every time step with A, the set of agents cur-

rently under the control of the system. In the search phase, the central NPC

controller lets every agent under the control of the system use the Procedure

Search-Phase shown in Algorithm 5 to find a prefix of a path from its current

node to its goal node (line 2, Algorithm 4). In the subsequent execution phase,

the central NPC controller iterates through all agents under the control of the

system: First, it retrieves the node that the agent should move to next, which

is the successor node of the current node of the agent on its path (line 5, Algo-

rithm 4). Second, if the desired node is blocked by an agent that has reached

its own goal node already and agents can push other agents temporarily off

their goal nodes (push = true), it can push the blocking agent to any neigh-

boring node (line 7, Algorithm 4). The blocking agent returns to its own goal

node in subsequent time steps since all agents always execute RTAA* even if

they are in their goal nodes. Finally, it moves the agent to the desired node

if that node is (no longer) blocked (line 9, Algorithm 4) and increments the

50

Algorithm 4: BMAA*’s NPC Controller.
input : A

1 forall ai ∈ A do

2 ai.Search-Phase()

3 forall ai ∈ A do

4 if ai.P (ni
curr) is defined then

5 n← ai.P (ni
curr)

6 if push ∧ n is blocked by agenta j then

7 aj .PushAgent()

8 if nis not blocked by an agent then

9 ai.MoveTo(n)

10 time ← time + 1

current time step (line 10, Algorithm 4).

Algorithm 5: Search-Phase

1 if Search.P(ni
curr) is undefined or time ≥ limit then

2 Search()
3 if Search.open 6= ∅ then
4 n← Search.open.First()
5 f ← g(n) + h(n)
6 Update-Heuristic-Values(Search.closed, f)
7 limit← time +moves

Algorithm 6: Update-Heuristic-Values
input : closed, f

1 for n ∈ closed do

2 h(n)← f − g(n)

A.5.2 Procedure Search-Phase

Algorithm 5 shows the pseudo-code for the search phase. It finds a new prefix

of a path from the current node of the agent to its goal node when it has

reached the end of the current path, the current node is no longer on the path

(for example, because the agent has been pushed away from its goal node), or

the agent has already executedmoves moves along the path. (The “expiration”

time step limit for the path keeps track of the last condition on line 1 and is

51

Algorithm 7: Search

1 P ← ()
2 exp← 0
3 closed← ∅
4 open← {ni

curr}
5 g(ni

curr)← 0
6 while open 6= ∅ do
7 if open.First() = ni

goal ∨ exp ≥ expansions then

8 calculate P
9 break

10 n← open.Pop()
11 closed.Add(n)
12 for n′ ∈ n.GetNeighbors(flow) do
13 d← distance(ni

curr, n
′)

14 if n′ is blocked by an agent ∧d ≤ vision then

15 if n′ 6= ni
goal then

16 continue

17 if n′ 6∈ closed then

18 if n′ 6∈ open then

19 g(n′)←∞
20 if g(n′) > g(n) + c(n, n′) then
21 g(n′)← g(n) + c(n, n′)
22 n′.parent← n
23 if n′ /∈ open then

24 open.Add(n′)

25 exp← exp + 1

set on line 7.) If so, then it uses Procedure Search in Algorithm 7 to execute an

RTAA* search (line 2) and uses Procedure Update-Heuristic-Values to update

the heuristic values afterward (lines 4-6).

A.5.3 Procedure Search

Algorithm 7 shows the pseudo-code for an A* search, as discussed before,

but with the following changes: First, each agent maintains its own heuristic

values across all of its searches. Second, the search also terminates after it

has expanded expansions nodes. Thus, the path P obtained on line 8 by

repeatedly following the parents from the node about to be expanded to the

current node is now only the prefix of a path from the current node of the

52

agent to its goal node. Finally, GetNeighbors returns a node’s neighbours

that are not blocked by stationary obstacles. However, other agents within

the straight-line distance vision within which agents can see other agents are

treated as obstacles as long as they do not block its goal node. Thus, the

corresponding nodes are immediately discarded (lines 14-16). If RTAA* uses

the flow annotations from FAR (flow = true), then GetNeighbors returns

only those neighboring nodes of a node of the graph which are reachable from

the node via the flow annotations from FAR. The flow annotations are not

computed in advance but generated the first time the node is processed and

then cached so that they can be re-used later.

A.6 Experimental Evaluation

We experimentally evaluate four versions of BMAA* both against FAR and

against A*-Replan, which is equivalent to FAR with no flow annotations.

BMAA* cannot push other agents temporarily off their goal locations (push =

false) and uses no flow annotations (flow = false), BMAA*-c can push other

agents temporarily off their goal locations, BMAA*-f uses flow annotations,

and BMAA*-f-c combines both features. All BMAA* versions use the pa-

rameters lookahead = 32 , moves = 32 and vision =
√
2. We choose these

parameters on the basis of preliminary experiments. Increasing lookahead of-

ten decreases the travel distance at the cost of increasing the search time per

move. Increasing vision often reduces the completion rate since it makes agents

react to far-away agents. FAR and A*-Replan use a reservation size of three,

as suggested by the creators of FAR, meaning that agents must successfully re-

serve their next three moves before they execute them. All MAPF algorithms

use the octile heuristic values as heuristic values (or, in case of BMAA*, to ini-

tialize them), are coded in C# and are run on a single Intel Broadwell 2.1Ghz

CPU core with 3GB of RAM and a runtime limit of 30 seconds per MAPF

instance, which is sufficiently large to allow for full A* searches.

We evaluate them on ten maps from the MovingAI benchmark set (Sturte-

vant, 2012). We use three maps from Dragon Age: Origins (DAO), three maps

53

Figure A.2: Completion rates averaged over all MAPF instances.

from W arCraft III (WCIII), three maps from Baldur’s Gate II (BGII) (resized

to 512×512) and one map from Baldur’s Gate II in its original size. We create

ten MAPF instances for each map with the number of agents ranging from

25 to 400 in increments of 25 and from 400 to 2000 in increments of 200. We

assign each agent unique randomly selected start and goal locations which are

reachable from each other in the absence of other agents.

A.6.1 Aggregate Completion Rate Results

Figure A.2 shows the completion rates of all MAPF algorithms averaged over

all MAPF instances on all maps. The completion rates of all MAPF algorithms

decrease as the number of agents increases because the congestion and amount

of search (since every agent has to search) increase. A higher congestion makes

it more difficult for agents to reach their goal locations, and a higher amount

of search makes it more likely that the runtime limit is reached.

All BMAA* versions have substantially higher completion rates than FAR

54

200 since most agents then reach their goal locations. We assign the remaining

agents a completion time of 30 seconds. Table A.2 shows that BMAA*-f

has the lowest completion times on five maps and BMAA* has the lowest

completion times on the remaining four maps.

Table A.2: Completion times (in seconds) averaged over all MAPF instances
for each map.

Map Name A*-Replan BMAA* BMAA*-c BMAA*-f BMAA*-f-c FAR Overall

BGII-AR0414SR (320*281) 2.8 1.2 5.1 2.2 5.6 3.8 3.5
BGII-AR0414SR (512*512) 8.8 3.6 6.6 3.0 6.8 12.9 7.0
BGII-AR0504SR (512*512) 12.3 8.6 12.7 6.3 12.5 16.0 11.4
BGII-AR0701SR (512*512) 12.7 4.0 5.4 3.2 4.5 15.0 7.5
WCIII-blastedlands (512*512) 8.8 1.4 1.5 2.2 2.3 21.0 6.2
WCIII-duskwood (512*512) 12.5 4.1 5.8 3.7 5.5 21.1 8.8
WCIII-golemsinthemist (512*512) 11.1 4.2 5.9 3.0 4.2 19.0 7.9
DAO-lak304d (193*193) 4.5 6.7 15.1 7.9 11.4 3.2 8.1
DAO-lak307d (84*84) 0.2 0.2 0.2 0.5 0.3 0.6 0.3
DAO-lgt300d (747*531) 8.3 .4 1.6 2.2 2.4 10.5 4.4

Overall 8.2 3.5 6.0 3.4 5.5 12.3 6.5

Per-Map Travel Distance Results

We again limit the number of agents to 200 since most agents then reach their

goal locations. We assign the remaining agents their travel distances when

the runtime limit is reached. Table A.3 shows that FAR has the lowest travel

distances on nine maps.

Table A.3: Travel distances averaged over all MAPF instances for each map.

Map Name A*-Replan BMAA* BMAA*-c BMAA*-f BMAA*-f-c FAR Overall

BGII-AR0414SR (320*281) 663 554 557 620 639 130 527
BGII-AR0414SR (512*512) 661 1538 1557 2080 2115 224 1363
BGII-AR0504SR (512*512) 407 2167 2231 3671 3783 227 2089
BGII-AR0701SR (512*512) 562 973 967 1267 1287 322 896
WCIII-blastedlands (512*512) 299 376 376 775 784 268 480
WCIII-duskwood (512*512) 367 1179 1188 1712 1737 257 1073
WCIII-golemsinthemist (512*512) 530 1205 1206 1371 1369 285 994
DAO-lak304d (193*193) 2154 1425 1460 1258 1295 148 1290
DAO-lak307d (84*84) 578 38 39 125 95 47 154
DAO-lgt300d (747*531) 435 403 404 592 603 289 454

Overall 666 986 998 1347 1371 225 932

58

A.7 Conclusions

Our paper considered an important problem faced by artificial intelligence in

many video games, namely MAPF. We reviewed recent related work and ar-

gued for the use of real-time heuristic search. We then contributed a new

real-time MAPF algorithm, BMAA*, which is of modular design and can be

enhanced with recent flow-annotation techniques. BMAA* has higher com-

pletion rates and smaller completion times than FAR at the cost of longer

travel distances, which is a good trade-off since NPCs reaching their goal lo-

cations via possibly longer paths is less noticeable by players than NPCs not

reaching their goal locations at all. Finally, we discussed what makes MAPF

difficult for different algorithms, paving the road to per-problem algorithm se-

lection techniques in the spirit of recent research in the context of single-agent

pathfinding (Vadim Bulitko, 2016b; Sigurdson and Bulitko, 2017).

Overall, BMAA* demonstrates the promise of real-time heuristic search for

MAPF. Its main shortcoming is its large travel distances compared to the ones

of FAR. Several recent RTHS techniques attempt to reduce the travel distances

for single-agent pathfinding (Vadim Bulitko and Sampley, 2016) and thus

might also be able to reduce the travel distances for BMAA*. Examples include

search space reduction techniques (Hernández and Baier, 2012; Hernandez et

al., 2017), precomputation techniques (Cohen et al., 2016; Lawrence and

Bulitko, 2013) and initialization techniques for the heuristic values, which

might help to reduce the dead-end problem shown in Figure A.4.

59

	Introduction
	Motivation and Applications
	Contributions

	Problem Formulation
	Pathfinding
	Multi-agent Pathfinding
	Single-agent Pathfinding

	Automatic Algorithm Selection

	Related Work
	Algorithm Selection Portfolio Formation
	Algorithm Selection Granularity
	Algorithm Selection Process

	Single-Agent Pathfinding Algorithm Selection
	Introduction
	Search Framework
	Space of Algorithms
	Our Approach
	Algorithm Selection Granularity
	Portfolio Formation
	Automatic Algorithm Selection

	Empirical Evaluation
	Per-genre Algorithm Selection
	Per-game Algorithm Selection
	Per-map Algorithm Selection
	Per-problem Algorithm Section

	Discussion

	Automatic Algorithm Selection for Multi-agent Pathfinding
	Introduction
	MAPF Algorithms
	Windowed Hierarchical Cooperative A*
	Flow Annotation Replanning
	Bounded Multi-Agent A*

	Our Approach
	Algorithm Selection Granularity
	Portfolio Formation
	Automatic Algorithm Selection

	Empirical Evaluation
	MAPF Problem Generation
	Per-problem Algorithm Selection

	Discussion

	Discussion and Future work
	Conclusion
	References
	Appendix Bounded Multi-agent A*
	Preface
	Introduction
	Problem Formulation
	Related Work
	A*
	Online MAPF Algorithms
	Real-time Heuristic Search

	Our Approach: BMAA*
	Procedure NPC-Controller
	Procedure Search-Phase
	Procedure Search

	Experimental Evaluation
	Aggregate Completion Rate Results
	Per-Map Results

	Conclusions

