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A bstract

This thesis continues an ongoing study of algorithms for selective depth-first 

expansion of game trees (for two-person zero-sum perfect-information board 

games). The question we are primarily concerned with is: how should game- 

plaving programs spend their search effort to maximize the quality of their 
move decisions?

This is a challenging problem. Early attem pts at selective expansion of 

game trees were not particularly successful, and were replaced by brute-force 

full-width searches once technological advances in both hardware and software 

made such approaches feasible. However, such brute-force methods are not 

sufficient on their own to produce world-class game-plaving programs. There

fore. many new algorithms have been proposed for exploring game trees more 

selectively. On the one hand, there are algorithms that traverse the game trees 

in a best-first fashion but, unfortunately, these algorithms are neither time nor 

space efficient and have thus not found a wide use in practice. On the other 

hand, selective depth-first based search algorithms show more promise.

This work introduces several algorithmic enhancements to state-of-the-art 

depth-first game-tree search. First of all, we show how speculative pruning 

can, if applied in a controlled manner, improve the search efficiency of existing 

game-tree search algorithms — without compromising the returned minimax 

value. Secondly, a novel domain-independent method for speculative prun

ing of game trees is presented, and its promise demonstrated in two different 

search domains. The method has been adapted by some of the world's leading 

chess-playing programs with good success. Finally, we introduce a method for 

automatically learning search-control parameters in two-person games, either 

from online play or by offline analyzes of game positions.
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Chapter 1 

Introduction

Life is a game, and the only game is real life.
- Anonymous

Ever since the dawn of civilization humans have been fascinated with 

games; first and foremost for the entertainment value, but also as a mech

anism for abstracting more complex real-world scenarios. For example, some 

of the ancient strategic board games that we know today are believed to have 

military roots. Instead of having armies go to war, some of the planning and 

other strategic elements essential for conducting a battle could be practiced 

on a board.

Today games still serve as a useful mechanism for abstracting real-world 

situations. In the same way as the chemists and physicists carry out their 

experiments in closed laboratories where they have full control of their envi

ronment, the abstraction power of games provides the computer scientist with 

an ideal controllable environment for conducting research. For example, game 

playing is one of the oldest areas of investigation in artificial intelligence (AI) 

and has been at the forefront of AI research ever since the birth of the first 

computers, over half a century ago.

Finally, games are interesting on their own. It has proven remarkably 

challenging task to program computers to play complex board games at the

1
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same level as the best humans. Only in the last uecade or so have computers 

been able to claim a victory over the best humans in non-trivial games of skill 

such as checkers (in 1994 the program C h i n o o k  became the official checker’s 

World Champion) and chess (in 1997 D e e p  B l u e  defeated the reigning human 

World Champion in a 6-game exhibition match). However, in other games such 

as Go and shogi, humans are still head and shoulders above the best computer 

players. Much additional research effort is needed before computers can play 

these games at even a master level.

In recent years, commercial games such as role-playing, real-time strategy, 

and sport games have become increasingly popular test bed for AI research. 

These games pose new interesting research problems, such as real-time path 

finding and behavioral models for non-playing characters. The entertainment 

business is an important and integral part of today’s society, and the computer 

games industry constitutes a sizable portion of that business — its revenues 

exceeding those of the film industry [78]. Undoubtedly, for the unseeable 

future, games will continue to play a prominent role in both AI research and 

our everyday life.

1.1 G am e P laying and Search

Search is fundamental to problem solving. For example, systems for solving 

planning, scheduling, optimization and constraint-satisfaction problems typ

ically rely on search to a great extend. The same is true for chess playing 

programs and the like, where the search engine plays a central role in explor

ing possible move sequences several moves ahead. Unfortunately, the further 

the programs look a head, the number of game positions they need to analyze 

grows exponentially.

The prohibitive exponential growth prompted the early game-playing pro

grams to employ highly selective search algorithms. For any given game

2
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position the programs explored only a selected subset of the possible move 

c hoices. However, ever increasing advances in computer hardware made full- 

width searches that examine every possible move choice more and more attrac

tive. By the late 1970s most programs employed such full-width search. On the 

other hand, when playing chess and other similar games humans are adept at 

simplifying the search process by reasoning about the choices and then select

ing a few prime candidates. Strong players can analyze forced continuations to 

a great depth; often far deeper than a full-width program can accomplish (even 

on modern computer hardware). Therefore, over the years various additional 

enhancements have been introduced to allow' full-width searches to be more 

selective. Interesting continuations are typically explored beyond the normal 

search depth, while less interesting alternatives are terminated prematurely. 

In chess, for example, it is common to resolve forced situations, such as checks 

and recaptures, by searching them more deeply.

Nowadays selective-search strategies are an essential part of most game- 

plaving programs. This is, in part, a consequent of the fact that further full- 

width search (made possible by increased hardware speed) exhibits diminishing 

returns in terms of an increased playing strength [40]. Instead, more selective 

approaches show a better promise. For a brief period selective strategies that 

expand game trees in a best-first fashion spurred a considerable interest among 

the research community. However, it soon became apparent that the overhead 

necessary for best-first expansion of game trees more than offsets the possible 

benefits. Thus, best-first search strategies — while interesting in theory — 

have not gained a widespread use in practice. Therefore, in the last decade 

or so the focus has shifted and selective depth-first search strategies have 

instead become one of the more active research areas in game-tree search 

[2. 7. 2-5. 39, 17, 27].

O ne o f  the most prominent example of this is the D e e p  B l u e  chess pro-

3
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gram. The success of the program can in part be explained by the impressive 

hardware architecture, allowing the program to analyze on average over one- 

hundred million chess positions per second. However, that on its own is not 

sufficient. Additional search enhancements were necessary to best take advan

tage of the raw search speed. On the software side, the D e e p  B l u e  research 

team designed innovative selective search algorithms based on extending forced 

lines of play. The decision to use a highly non-uniform search was in part 

prompted by the observation that strong chess players were on occasions able 

to out-search previous versions of the program that employed a more uniform 

search. In the D e e p  B l u e  teams words: “Our experiments showed that D e e p  

B l u e  typically sacrificed two ply of full-width search in order to execute the 

selective search algorithms. The reason that this was deemed acceptable was 

that D e e p  B l u e  had sufficient searching power that this loss of two ply still 

left enough full-width search depth to satisfy our insurance needs." [27]. From 

this one can deduce that around 95% of all game positions analyzed by the 

program were in selectively extended lines!

A similar story can be told for most other world-class game-playing pro

grams. For example, LOGISTELLO, the Othello 1 program that dominated the 

world scene for many years employed an aggressive pruning scheme during its 

search. Not only did the program win almost every single computer Othello 

competition it participated in, but one of its many accomplishments was to de

feat the human Othello World Champion in a 6-game match in 1997. winning 

each and every game.

In this thesis we continue the ongoing investigation of selective expansion 

of game trees. For practical reasons we limit the scope of the thesis to only 

depth-first search. The fundamental question we are primarily concerned with

is: Given that there is a limited amount of time to make a move decision, how
‘Othello is a registered trademark of Tsukuda Original, licensed by Anjar Co.

4
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should game-playing programs best spend their search effort to maximize their 

move decision quality?

1.2 C ontributions

This thesis enhances our understanding of selective depth-first game-tree search 

and contributes to the state-of-the-art in several ways, including:

•  An additional insight into speculative pruning is provided. Whereas 

existing pruning methods are mainly concerned with the likelihood of an 

erroneous pruning decision being made in a local subtree, we show that 

it is equally important to assess the likelihood that an erroneous pruning 

decision, if made, will propagate up the tree and thus affect the move 

decision at the root.

•  The above observation forms the basis of a new domain-independent 

pruning method. Multi-Cut. We introduce the method here and experi

ment with it using two different games as a test bed. Our experimental 

results demonstrate the promise of the method: the playing strength 

of the programs we tested improves significantly. Additionally, to our 

knowledge at least two of the top commercial chess programs have sub

sequently incorporated the method with good results.

•  Over the decades new improved variants of depth-first game-tree search 

algorithms have seen the light of day. These variants show a slight im

provement in search efficiency, that is, they explore fewer nodes while 

reaching the same move decision. We show how speculative pruning — 

if applied in a controlled manner — can even further improve the search 

efficiency without affecting the move decision. We call the enhancement 

Uncertainty Cutoffs.

5
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•  We introduce a novel method for learning search-extension parameters. 

We show how the search-control problem can be formulated as a function 

approximation task, thus allowing us to use standard machine-learning 

methods for tuning the search-control parameters. The new learning 

method can be applied during either online play or offline analyzes of 

game positions. Furthermore, we have implemented and made publicly 

available an abridged version of the learner as a stand-a-lone application. 

It has the nice property that almost any search based game-playing pro

gram can be "plugged" into the learner as a separate module (requiring 

only a few trivial modifications to the game-playing program itself).

•  Finally, we developed and made public a software tool for visualizing 

game trees. This tool has proved an invaluable aid to us in understand

ing and analyzing game trees and. in particular, debugging the search 

process. Hopefully others will also find this software tool equally helpful.

1.3 O rganization

Chapter 2 gives an overview of the most common search techniques used in 

(search-based) two-person games, emphasizing the methods that have with

stood the test of time and are being employed by most contemporary game- 

playing programs.

In the next few chapters we investigate pruning as a way of adding selectiv

ity to full-width search. Chapter 3 focusses on such enhancements, the intent 

of the chapter being twofold. First, to give an overview of existing pruning 

methods and to identify their shortcomings. Second, to identify and sum

marize properties that are important to consider when pruning game trees, 

thereby enhancing our understanding of pruning. The algorithms introduced 

in later chapters were in part prompted by some of the insights gained during

6
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this investigation. In Chapter 4 we present Uncertainty Cutoffs, a minor en

hancement to standard game-tree search. Chapter 5 introduces Multi-Cut, a 

new selective pruning method.

In addition to pruning, search extensions are commonly used to make full- 

width search more selective. In the second half of the thesis we take a close 

look at search extensions. Chapter 6 introduces a novel method for learning 

control parameters in adversary search, in particular parameters for controlling 

search extensions. In Chapter 7 a simplified version of the learning algorithm 

is given. Although being more limited, in the sense that it is restricted to learn 

during offline analyzes of game positions, it has other desirable properties.

Finally, in Chapter 8 we provide conclusions and discuss some of the out

standing research issues. The appendixes provide additional experimental data 

and proofs. Furthermore, we present a software tool that we developed for vi

sualizing game trees, and give examples of its use.

1.4 P ublications

Chapter 4 is based on a paper "Searching With Uncertainty Cutoffs” that 

appeared in the International Computer Chess Association Journal [19]. The 

idea was first presented at the Advances in Computer Chess 8 conference, 

Maastricht, 1996.

The Multi-Cut idea from Chapter 5 was first presented in 1998 at “The 

First International Conference on Computers and Games”, Tsukuba, Japan 

[14]. A revised and extended version was published in the Theoretical Com

puter Sciences journal [17]. An overview article of pruning in game-tree search, 

including topics from Chapters 3 and 5. appeared in the Information Sciences 

Journal [15].

Chapter 7 is based on an article "Learning Search Control in Adversary 

Games” that was presented at a computer games conference in Paderbom,

7
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Germany in 1999. The conference proceedings were recently published as a 

book “Advances in Computer Games 9" [16].

A paper, “Learning Control of Search Extensions'’, that is based on Chap

ter 8 was presented at the “Joint Conference on Information Sciences” , Re

search Triangle Park, North Carolina. March 8-14, 2002 [18].

8
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Chapter 2

Gam e-Tree Search

The passion fo r playing chess is one of the most unaccountable 
in the world. It slaps the theory of natural selection in the face. 
It is the most absorbing of occupations. The least satisfying of 
desires. A nameless excrescence upon life. It annihilates a 
man. You have, let us say, a promising politician, a rising 
artist that you wish to destroy. Dagger or bomb are archaic 
and unreliable - but teach him, inoculate him with chess.

H.G. Wells, 'Certain Personal Matters’. 1898

We are concerned with two-person zero-sum perfect information board 

games, such as chess, checkers, and Othello (and many others). In this chapter 

we give an overview of game-tree search for that type of games. We will in

troduce the basic terminology as well as describing the best established search 

methods and enhancements. We are primarily focused on the methods that 

have withstood the test of time and are being employed (almost universally) 

in contemporary game-playing programs. However, where appropriate we will 

mention other (less successful) approaches and direct the reader to the relevant 

literature.

2.1 The G am e Tree and M inim ax

The game-theoretic value (or game value for short) of a two-person zero-sum 

perfect-information game is the outcome when both players play perfectly, 

and can be found by recursively expanding all possible continuations from the

9
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initial game state, until states with a known outcome are reached (so-called 

terminal states). The minimax rule is then used to propagate those outcomes 

back to the initial state [79]. Using the minimax rule, Max, the player to move 

at the root, tries to optimize its gains by always returning the maximum of 

its children's values. The other player, Min, tries to minimize Max’s gains 

by always choosing the minimum value (thereby maximizing its own gains). 

However, for zero-sum games one player’s gain is the others loss. Therefore, 

by evaluating the terminal nodes from the perspective of the player to move 

and negating the values as they back up the tree, the value at each interior 

node can be treated as the merit for the player who’s turn it is to move in that 

state. This formulation is referred to as negamax [44] and has the advantage of 

being simpler and more uniform, since both players now are handled the same 

way. that is. both maximize the backed-up values. We use this formulation in 

all our subsequent discussion. The state space expanded this way is a tree, 

often referred to as a game tree, where the root of the tree is the initial state 

and terminal states are the leaf nodes.

In theory, at least, the value of a game can be found as described above. 

However, the exponential growth of game trees expanded this way is pro

hibitively time expensive. For example, the number of nodes in the game tree 

from the initial chess position is estimated to be around 10'13 [74], more than 

the number of atoms in the universe! Therefore, in practice, game trees are 

instead expanded only to a limited depth and the resulting leaf nodes are as

sessed. In that case the true value of the leaf nodes are generally not known, 

so the assessment is instead an estimate that measures the "goodness" of the 

state. This estimate is typically a scalar number and the higher the number, 

the more likely the state is to lead to a win for the player to move in that state. 

The exact meaning of the estimate is really not that important from the search 

point of view — the purpose is simply to provide a ranking of the leaf nodes

10
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A lgorithm  1 M M ( P d )
1: i f  d < 0 or /.sTcrininal(P) t h e n
2: r e tu r n  evaluate(P)
3: e n d  i f
4: best <-----oc
5: M  <— generate Moves(P)
6: fo r  a l l  m, G M  d o
7: make(P. m t)
8: V <r- - M M ( P . d - l )
9: retract (P. m,)

10: i f  u > best t h e n
11: best <— v
12: e n d  i f
13: e n d  fo r
14: r e t u r n  best

to guide the search to the most desirable state. However, it is important to 

understand that the values are estimates and may be in error. Despite that, 

the estimates are traditionally treated as if they were true values and they are 

propagated back up the tree in the same manner using the minimax rule. The 

value backed up to the root this way is generally called the minimax value of 

the game tree.

The minimax algorithm (in the negamax formulation) is outlined as Al

gorithm 1. The parameters P  and d represent the current game state (game 

position) and the remaining search depth, respectively. First, the algorithm 

checks if the predefined search-depth limit is reached or if the current game po

sition is a terminal state (function isTerm inal{P )). In both cases the value of 

the current position as assessed by the evaluate(P) function is returned (lines 

1-3). The returned value is from the perspective of the side to move in that 

position, a positive score indicating an advantage and a negative score a dis

advantage. Otherwise, the algorithm generates all possible moves (or actions) 

from the current game position (function generateM oves(P )). and then iter

ates through the moves looking at each in a turn (lines 6-13). Within the loop.

11
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the current game state P is updated by executing the current move (function 

make(P,rrii)), and then the mmimax function is called recursively with the up

dated game state and the remaining reduced search depth as arguments. The 

returned value is recorded in a variable, here called v. Referring back to our 

discussion of negamax, we notice that the returned value is negated to make it 

reflect the merit from the perspective of the player to move. The retract(P, rn,) 

function restores the current game state by undoing the last move. The value 

v is then compared to the previously known best value (recorded in variable 

best), and if it is better (higher) it becomes the new best value. Finally, the 

value of best is returned, indicating that this is the best value that the player 

to move can achieve from that position. In the above (and subsequent) dis

cussion the terms game state and game position (or simply state and position) 

are used interchangeably. Also, the notation introduced here will be used for 

the remaining algorithms found in this thesis.

Figure 2.1 shows a game tree for a hypothetical game as expanded by the 

minimax algorithm when called as M M  (A. 2 ) The root position A  is searched 

to the depth of 2 -ply (the term ply refers to a half-move, that is, a move by one 

side). Each node in the tree represents a game state and the edges between 

nodes represent moves leading from one state to the next. W ithout a loss of 

generality we assume that there are exactly 3 actions possible in each game 

state. The minimax algorithm expands the tree recursively in a left-to-right 

depth-first manner, first expanding move ai leading to game position B. There 

move b\ is expanded first, leading to position C  where the 2-ply depth limit is 

reached. The merit of position C  is now assessed using the evaluation function 

(evaluate[C)). Assume that it returns the value +5, indicating that position 

C is slightly advantageous for the player that has the move, in our case Max. 

The algorithm now backtracks, returning the value -1-5 back to the previous 

level (node B) where it becomes -5 (remember that in the negamax framework

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



♦ 5  4-9 4-8 4-2 4-4 4-8 4-8 - 2  0

Figure 2.1: 2-ply-deep game tree.

the values are negated as they are backed up so they always indicate the merit 

from the perspective of the player to move). At node B  moves 6 2  and 6 3  are 

expanded next in a similar fashion. In our example the moves 61 , 6 2? and 6 3  

get the values —5, —9, and —8 . respectively (from Min’s perspective). The 

maximum of these values, or -5. is propagated back up to A , where move a\ 

gets the value +5 (negated again). Next move a2 is expanded and so forth 

(the remaining nodes are expanded in the order F,G, H, I , J, K ,L  and M), 

finally resulting in the minimax value of +5 being determined at the root and 

a 1 being the move that leads to the maximal score.

2.2 A  C ritical Tree and th e a j3  A lgorithm

The minimax algorithm exhaustively explores all possible moves for both play

ers when determining the minimax value. However, it is not necessary to inves

tigate all the possible continuations in the game tree to determine its minimax 

value — only a subtree of the game tree needs to be explored, a so-called 

critical tree}
l The term minimal tree is also used to refer to this subtree. However, we prefer to use the 

term critical tree because for non-uniform trees a critical subtree is not necessarily minimal 
in the sense that it contains the fewest nodes.

13
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2.2.1 A  C ritical Tree

The minimax value of a game tree depends only on the value of nodes in a 

critical tree; no m atter how the remaining nodes are assessed, the minimax 

value at the root of the tree does not change! To better understand this, let 

us consider the tree in Figure 2.1 again. After searching the first move Max 

(the player at the root) knows that a value of -f5 can be achieved by playing 

the move ay. However, it is possible that Max could do even better by playing 

one of the alternative moves. Now Max considers the move <22 , Min replies 

with / i  and the resulting position G  is evaluated as +2 in favor of Max. Thus, 

if Max were to play move 0 2 , Min could limit Max's gains to a mere +2 by 

replying with move f i .  Consequently Max will clearly prefer move a\ over 

move ao, where Max is guaranteed a value of +5. There is indeed no need 

to explore replies to move 02  any further. Considering the remaining moves 

at F  is simply irrelevant, because move f\  is sufficient for refuting move <12. 

Intuitively, one can say tha t once a refutation to the opponent’s move is found 

there is no need to look for further refutations! Similar arguments can be 

used to show that move j$ a t node J  can be ignored. These moves and their 

subtrees, shown shaded in the figure, are thus not a part of a critical tree. It 

is worth mentioning that there can exist many different critical trees for any 

game tree. In our example, at node F  the move / 2 could equally well have 

replaced move f i  to form a different critical tree. YVe will discuss critical trees 

in some more detail in a later chapter where it becomes directly relevant to 

the concepts being introduced.

2.2.2 T h e a/9 A lgorithm

The a. 3  algorithm [23, 58] is based on the observation that the minimax value 

can be found by searching only a part of the game tree, namely an aforemen

tioned critical tree. As noted before, the minimax value of a game tree depends

14
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only on the nodes in a critical tree: no m atter how the other nodes are assessed, 

the minimax value of the tree does not change. The problem is that we do not 

know beforehand which nodes belong to a critical tree. However, during the 

search we can establish lower and upper bounds on the range of possible min- 

imax values that subtrees belonging to a critical tree must necessarily have. 

These bounds are then used to effectively prune the subtrees whose value falls 

outside the established range, knowing they cannot belong to a critical tree. 

Specifically, once we have searched at least one child of some node n, we have 

a lower bound on the actual minimax value of that node. Moreover, if this 

value exceeds the upper bound already established for subtrees belonging to a 

critical tree, the remaining children nodes of n need not be searched.

The a8  algorithm is shown as Algorithm 2. It keeps track of the afore

mentioned lower and upper bounds via two parameters named a  (alpha) and 

8 (beta), respectively. The a/3 routine is called recursively and because we 

use the negamax formulation, the return value and the bounds are negated in 

every call. Furthermore, the a  and 0  bounds are switched around, that way 

the parameter /3 is always an upper bound for the player to move, so we don’t 

need to distinguish between a  and /3 cutoffs (see below). The aforementioned 

pruning condition is checked at lines 12-14. If a move returns a value greater 

or equal to /3, the local search terminates at that particular node; this is often 

referred to as a /3-cutoff. To ensure that the minimax value of the tree will be 

found, the algorithm is initially called with the values of a and 0  as — oc and 

oc. respectively.

The number of nodes that the a.0 algorithm expands compared to minimax 

search depends on the order in which the moves are considered. Generally 

speaking, we want to explore good moves as early as possible; that way tight 

bounds are established early, thus allowing for more of the remaining search 

tree to be pruned via /3-cutoffs. In the worst case the ad  algorithm expands the
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A lgorithm  2 a3{P, d, a.@)
1: if d < 0 or isTerm inal(P) th e n
2: re tu rn  evaluate(P)
3: end  if
4: best <r- a
5: M  <— generateMoves(P)
6: for fill ml € M  do
7: rnnke(P. m*)
8: c «-----a 3 { P ,d -  1, —/3, - ■best)
9: retract(P, m*)

10: if v > best th e n
11: best <— v
12: if best > 3  th e n
13: re tu rn  best
14: end  if
15: end if
16: end  for
17: re tu rn  best

whole game tree exhaustively just like the minimax algorithm, whereas in the 

best case only a critical tree is expanded (in which case the number of nodes is 

approximately the square root of the number of nodes the minimax algorithm 

visits). Knuth and Moore provide an analysis of the search complexity of the 

a/3 algorithm [44].

2.3 A lgorithm ic E nhancem ents

Over the years, a number of enhancements have been proposed to the basic a/3 

algorithm. The first class of enhancements extends the algorithm by improv

ing its search efficiency, mainly by trying to take advantage of a good move 

ordering. The goal is to make the algorithm behave as closely as possible to its 

best-casc behavior. However, these enhancements do not alter in any way the 

miniinax value returned by the algorithm. The second class of improvements 

enhances the decision quality of the algorithm by expanding selected continu

ations more deeply, while discarding other less promising lines. In this section
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we focus only on the first class of improvements. Later chapters discuss in 

detail the second type of improvements.

2.3.1 T ransposition Table

In chess and many other games, different move sequences can lead to identical 

positions. Therefore, the search space is strictly speaking not a tree, but 

rather a graph. However, depth-first search algorithms typically do not treat 

the search space as such, but instead use a big table, a so-called transposition 

table, to keep track of possible transpositions to duplicated subtrees. After 

exploring a game position, the search stores information about it in the table. 

If that position is encountered again in the search via an alternative move path, 

it may not be necessary to search it again — its value can be retrieved from the 

table. The use of transposition tables w as first introduced in the M a c - H a c k  

chess program [37]. The table is indexed by hashing game positions, using an 

efficient hashing function such as the one introduced by Zobrist in 1970 [83].

Because the transposition table can hold only a small fraction of the actual 

game positions encountered during the search, a replacement scheme is needed 

to decide which positions to keep in the table. One popular replacement 

scheme uses a two-level transposition table. This table stores two positions 

for each hash entry: the most recent position hashed into that entry, and 

the position that was searched the deepest. Typical information to store for 

each position in a transposition table is the value of the position, type of 

the value (i.e. true value, upper bound, or lower bound), the height of the 

subtree searched from that position, the best move in the position, and the 

full hash key. Additional information is sometimes kept; for example more 

sophisticated replacement schemes store an age stamp that records when an 

entry was inserted into the transposition table. For a detailed discussion of 

the use of transposition tables in games see Breuker [22].
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2.3.2 Iterative D eepening

When using a depth-first searc h it is necessary to decide beforehand how deeply 

to search. This makes it difficult to estimate how long the search will take. 

The original impetus behind using iterative deepening was simply to get a 

better time control mechanism. By gradually increasing the search depth one 

can better decide how long the search will take and when to stop the search. 

Iterative deepening first does a 1-ply search, then a 2-ply search, and so forth 

until the time allotted for the search is up. The time each successive iteration 

takes grows exponentially with the search depth, thus the effort spent in the 

earlier iterations is relatively small compared to the time for the last iteration. 

The additional search introduced by iterating on the search depth is therefore 

small. Furthermore, when used in combination with a transposition table, 

information about the previously seen best moves is kept between iterations. 

This leads to better move ordering (see next sub-section), most often result

ing in the iterative-deepening approach searching fewer nodes in total than 

the non-iterative approach! The (now legendary) chess program C h e s s  4 .5  

[75] was one of the first programs to use this technique, in the early 1970’s. 

The technique of iterative-deepening search later found its way into other A1 

domains, such as theorem-proving [76] and single-agent search [46].

Iterative deepening can also be applied at internal nodes in the search tree, 

a scheme referred to as internal iterative deepening [2]. However, programs 

generally do not apply the technique at every internal node, but rather at 

selective places. For example, internal iterative deepening is commonly applied 

on the principal variation (see later) if the best move is not found in the 

transposition table [2 ].
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2.3.3 M ove Ordering

As is well known, good move ordering is of paramount importance for the a/3 

algorithm to search efficiently. Therefore, many move-ordering schemes have 

been developed. One technique, especially useful when used in association with 

iterative deepening, is to store the best move in the transposition table. When 

a node is revisited on subsequent iterations, this move is always tried first. The 

rationale is that a move previously found to be good in a position is also most 

likely to be good when the position is searched to a greater depth. Another 

useful heuristic, in chess at least, is to try capture moves before non-capture 

moves, because often an easy refutation is found by an obvious capture.

The killer move [75] and the history heuristic [71] are two move-ordering 

schemes that are also widely used. The former keeps, for each depth level 

in the tree, a  list of moves that have most frequently caused a cutoff. When 

generating moves in any given position, the killer moves at the current level -  

if legal for that position -  are sorted such that they are early in the move list. 

The history heuristic keeps global information about moves, indexed by the 

side-to-move, and the from and to square. Whenever a move causes a cutoff it 

receives a credit. The closer the move is to the root of the search tree, the more 

credit it gets. The table keeps track of the accumulated credit of moves, and 

in any given position moves with a high credit are searched earlier than moves 

with a low credit. More recently there have been attempts to have programs 

automatically learn good move-ordering schemes [38, 47].

2.3.4 A sp iration  W indow s

The observation that the narrower the a 3 window the better the a/3 algorithm 

performs, because of additional cutoffs, led to the idea of an aspiration window 

search [23, 51]. Given that one can reasonably estimate a range where the 

minimax value is expected to lie, then instead of calling the a/3 algorithm
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A lgorithm  3 I D  — asp — a0(P, maxdepth. margin)
1 Q <------OO
2 0 i— Foe
3 fo r  depth 4— 1 to maxdepth
4 v 4— ot0{P, depth, a, 0)
5 i f  v <  a  t h e n
6 v 4— a0(P , depth, —00 , v)
7 e ls e  i f  v > 0  t h e n
8 v 4— a0(P , depth, v,  + 0 0 )
9 e n d  i f

10 a  4— v — margin
11 0  4-  v + margin
12 e n d  fo r

with an initial window of (—0 0 , + 0 0 ), a narrower window can be used. If the 

value returned by the search falls inside the estimated window, it is the true 

minimax value and considerable search effort may be saved. However, there 

is a possibility that the bound estimates are poor, in which case the search 

would return a value outside the aspiration window. If that happens, then 

the returned value, v, is not the minimax value, but instead a bound on the 

minimax value: an upper bound if the search fails low (v < a), a lower bound 

if it fails high (v > 0). To determine the correct minimax value the search 

must be repeated, this time with a more appropriate window. However, if we 

have a good estimate of the minimax value before starting the search, few re

searches are necessary and the savings resulting from having a narrow initial 

window will outweigh the additional search effort introduced by the occasional 

re-searches. We can usually get a reasonably accurate estimate on the minimax 

value, especially when using iterative deepening: simply use a narrow window 

around the minimax value returned by the previous search iteration, as shown 

in Algorithm 3. The algorithm demonstrates the use of aspiration window in 

association with iterative deepening. The root game position (P ) is iteratively 

searched to depth maxdepth, using an inspiration window of ±m argin  around 

the value returned from the previous iteration.
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A small enhancement to the a/3 algorithm, called fail-soft a8  [33J, is ben

eficial when used in association with aspiration-window search (and minimal- 

window search as we will see later). When failing to find any good move (i.e. 

no move has a value larger than a ) the basic ad  algorithm returns the value a . 

In such cases, the improvement introduced in fail-soft rv.3 is to return the value 

of the best move rather than a .  The benefit of this approach is that in case 

the backed-up value falls outside the initial search window, we have a tighter 

upper or lower bound on the correct minimax value, depending on whether 

we failed low or high, respectively. This is reflected in Algorithm 3 where the 

value u returned by the search is used as a bound for the re-search. The a/3 

algorithm with the fail-soft improvement embedded is shown as Algorithm 4 

below. Because the value of best can now possibly be lower than the value of 

a. we cannot use it as the upper bound for the recursive a  J  function call as we 

did before. Instead a new variable lower is introduced for that purpose, and 

it always keeps the maximum value of a  and best. The fail-soft enhancement 

has become an integral part of the a/3 algorithm — it costs nothing and can 

help prune the tree. In our future discussion we assume the a3  algorithm and 

its minimal-window variants are all fail-soft enhanced.

2.3.5 M in im al-W indow  Variants

The idea of an aspiration window can be taken even further. When the a/3 

algorithm is used with the aforementioned enhancements (e.g. iterative deep

ening, transposition tables, and a good move-ordering scheme) it first expands 

the path it believes is the best line of play and that turns out to be the case 

more often than not. This line, called the principal variation, is searched with 

a wide window, typically (—0 0 ,0 0 ) unless aspiration-window search is used. 

Now. because we really expect this to be the best line of play, all we want is to 

show that the alternative moves are inferior. To do so it is sufficient to search
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Algorithm  4 nfi(P, d , a, fi)
1: i f  d < 0 or isTerm inal(P) t h e n
2; r e tu r n  evaluate(P)
3: e n d  i f
4: best <------oc
5: lower a
6: M  <— generateMoves(P)
7: fo r  a ll m, € M  d o
8: make(P, rnfi
9: 111*«q:ei1 ■lower)

10: retract(P, mfi
11: i f  /• > best t h e n
12: best f— v
13: i f  best > fi t h e n
14: r e tu r n  best
15: e n d  i f
16: lower <— m ax(a, best)
17: e n d  i f
IS: e n d  for
19: r e tu r n  best

them with a minimal window around the score returned by the principal vari

ation. A window where the a  and fi parameters are set to be "consecutive” 

values is called a rninimal-window (sometimes also referred to as a zero-width- 

window or a null-window). The window is (v, v + e) where e is the smallest 

granularity of the value returned by the evaluation function. For example, if 

evaluate(P) returns only integer values, e would be set equal to 1 . This re

sults in efficient searches (because of the small window there will be additional 

cutoffs) and only occasionally, when an alternative move really turns out to 

be better, is a re-search with a wider window necessary. This idea was first 

proposed in the Principal Alpha-Beta algorithm [33], and the Scout algorithm 

[61]. They were later refined and reworked into the a3  framework, material

izing in the algorithms that are today almost universally used for searching 

game trees: Principal Variation Search [50] and NegaScout [64].

Algorithms 5 and 6  show the two functions that constitute the Principal
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Algorithm  5 P V S (P ,d ,a ,  8)
1 if  d  <  0 or i s T e r r n in a l ( P )  then
2 return e v a lu a te ( P )
3 end if
4 M  <— g e n e r a te M o v e s ( P )
5 m a k e ( P , m i)
6 best <------P \ ' S { P , d  — 1, —8 ,  —a )
7 re trac t .{P , m \ )
8 if  best >  3  then
9 return best

10 end if
11 lo w e r  <— m a x ( a .  best)
12 for all m t €  -V/|t >  1 do
13 m a k e (P .  rn,)
14 v  <------M \ V S ( P , d  — 1, —lo w e r)
15 if v >  lo w e r  and v  <  8  then
16 v  f -  - P V S ( P . d -  1 , - / 3 ,  - v )
17 end if
18 r e t r a c t ( P ,  m t )
19 if v >  best  then
20 best  <— v
21 if  best  >  3  then
22 return best
23 end if
24 l o w e r  <— m a x { a ,  best)
25 end if
26 end for
27 return best.

Variation Search  algorithm [52]. P V S ,  the main driver, explores the expected 

principal variation, while the M W S  part visits all the alternative nodes, using 

the lower bound established in P V S  to reduce its search effort. The algorithm 

starts by recursing down what it believes to be the principal variation (line 

6 ). Once the depth limit is reached it starts backtracking up again, but now 

the sibling moves are initially searched with a minimal window around the

value returned by the principal move (line 14).2 If the minimal-window search
2More precisely, because we are using the fail-soft enhancement, the alternatives are 

searched with the value of the current best move or a , whichever is the larger (recall our 
previous discussion of the use of the lower variable).
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A lgorithm  6 M W S{P,d .  J)
1: i f  d <  0 or isTerminal{P) t h e n  
2: r e t u r n  evaluate(P)
3: e n d  i f
4: best « oc
5: M  <— generate Moves(P)
6 : fo r  a l l  m l e  Af do 
7: m ake(P ,m i)
8 : v<-----M W S(P , d -  1 , — 3 +  e)
9: retract(P, m ,)

10: i f  v > best t h e n
11: best <— v
12: i f  best > ,3 t h e n
13: r e t u r n  best
14: e n d  i f
15: e n d  i f
16: e n d  fo r  
17: r e t u r n  best

(MWS) fails low that move has been proved inferior. Only occasionally one of 

the siblings returns a better value (fails high) and in that case the algorithm 

re-searches that move to establish a new principal variation (lines 15-17). The 

M W S  is basically a simplified a 3  search. Note that there is really no need to 

pass around the a  bound because it can be set to f3 — e.

Apart from Principal- Variation Search, the other algorithm of choice for 

searching game trees is NegaScout. The two algorithms are essentially equiv

alent search wise; they expand an identical tree .3 The latter is simply a more 

compact formulation, using one recursive routine instead of two. In later chap

ters where we introduce our new enhancements, we demonstrate them using 

the PVS/MW S algorithm, although they could equally well be implemented

in the NegaScout algorithm. For those who are curious about its formulation
3When the NegaScout algorithm was originally introduced it had a  small refinement 

added. If a  minimal-window search fails high with a remaining search depth of two or less, 
there is no need to re-search that move with a wider window to establish its correct minimax 
value. A value returned from such shallow trees, although outside the search window, is 
necessarily a  correct minimax value. However, this refinement is hardly ever used in practice, 
both because the node savings are negligible and, more seriously, it is not guaranteed to 
work correctly when used in combination with search extensions.
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A lgorithm  7 N S ( P ,d ,a ,3 )
1: i f  d < 0 or isTerm inal(P ) then  
2: r e t u r n  evaluate(P)
3: e n d  i f
4: M  4— generateM oves(P)
5: make(P,m.i)
6: bes t  4 N S ( P ,  d  — 1, —3, —a )
7: retract(P,m.i)
8: i f  b e s t  >  /3 t h e n  
9: r e t u r n  best

10: e n d  i f
11: l o w e r  4— m a x ( a ,  best)
12: fo r  a l l  rrii €  M \i >  1 d o  
13: make(P,m.i)
14: v 4 N S (P ,d  — 1, —lower -  L. -lower)
15: i f  v >  lo w e r  and v < 3 then
16: V-4------- N S (P ,d  — 1, —3, — v )

17: e n d  i f
18: retract(P, m,i)
19: i f  v  >  bes t  t h e n
20: bes t  4— v
21: i f  bes t  >  /3 t h e n
22: r e t u r n  best
23: e n d  i f
24: lo w e r  4— m a x ( a ,  best)
25: e n d  i f
26: e n d  fo r  
27: r e t u r n  bes t

we show the NegaScout algorithm as Algorithm 7, but without explanations 

(basically, it is identical to the PVS function except the MWS function calls 

are replaced with calls to the function itself).

Finally, the newest addition to the minimal-window a/5-variant family is 

M T D ( f )  [63], shown as Algorithm 8 . The algorithm is admirably simple and 

elegant: a driver that repeatedly calls minimal-window searches to gradually 

narrow the range between the lower and upper bounds. The additional ar

gument /  is the bound used for the initial minimal-window search, typically 

taken from the value returned by the previous iteration. Given that we have a
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A lgorithm  8 M TD (P,  depth, f )
1 v <— f
2 a <------o c
3 8 <— Foo
4 repeat
5 if  v = a  th en
6 bound 4— v +  e
7 else
8 bound <— v
9 end if

10 v <— M W S(P , depth, bound)
11 if  u < bound then
12 P  4— V
13 else
14 a  <r- V
15 end if
16 until a  = 8
17 return v

reasonably accurate initial guess, only a few minimal-window searches are nec

essary to zoom in on the correct minimax value. Although the algorithm has 

proved itself to search slightly more efficiently than its other more widespread 

minimal-window variants, it has not yet found itself in a wide practical use 

(there are some practical issues that need to be addressed when implementing 

the algorithm in a game-playing program, like how to retrieve the principal- 

variation and how to handle unreliable bounds caused by window dependent 

search extensions).

2.3.6  Q uiescence Search

Having searched an initial game position to the intended maximum depth, 

some of the positions that arise are volatile and hard to statically evaluate. 

For example in chess, if the last move was a capture and if we now statically 

evaluate the position without giving the opponent the opportunity to recap

ture. one will introduce a huge error in the evaluation. Therefore, usually all 

captures for both sides are played out before a position is statically evaluated.
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More generally, regardless of the game, moves that have the potential of dra

matically changing the static evaluation should be explored. By having the 

search only evaluate quiescence positions, the evaluation scores become more 

reliable.

Strictly speaking, this enhancement doesn’t belong to the category of en

hancements we present in this chapter. However, one can think of it as an 

extension to the evaluation function, and otherwise hidden from the search 

algorithm (in that case, we would need to pass the a  and -i search bound as 

arguments to evaluate(P)). Ever since the early days of computer chess the 

importance of searching these variations until quasi-stability is reached (before 

evaluating them) was recognized [74].

2.4 B est-F irst Search

The algorithms we described in this chapter traverse the game tree in a depth- 

first manner. That is, they fully explore each branch of the tree before turning 

their attention to the next. They all return the same minimax value; the 

primary difference is the search efficiency, where the more enhanced algorithms 

search a smaller tree (always at least the critical tree necessary for determining 

the minimax value is explored). There exists a different class of algorithms 

for searching game trees. These algorithms traverse the trees in a best-first 

fashion, and commonly search more selectively than depth-first methods. They 

temporarily stop exploring branches to visit other more interesting subtrees, 

possibly later returning to the abandoned branches to search them more deeply. 

However, these best-first algorithms are generally not time and space efficient 

and have therefore not found a wide use in practice. The best known of 

these algorithms are probably Stockman’s SSS* [77], Berliner’s B* [10, 11], 

McAllister’s Conspiracy Numbers [53, 72] and Palay's PB* [60]. We will not 

discuss these algorithms any further because we are only concerned with depth-
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first search enhancements. For an overview of these alternative approaches 

interested readers can for example see Junghanns’ review [4 3 ].
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Chapter 3 

Selective D epth-First Search

I  look one  m ove  ahead ... the best!
- Siegbert Tarrasch

Although the term selective search has most often been associated with 

best-first search, the depth-first algorithms can also be selective in practice. 

The selectivity is introduced by varying the search horizon, some branches are 

abandoned prematurely, while others are searched beyond the nominal depth. 

The former case is referred to as fo rw a rd  p ru n in g  (we prefer the term specu

la tive  p ru n in g  as it is more descriptive), and the second as search extensions.  

Collectively, we refer to the two cases as se lec tive  depth-first  search. As such, 

the search can return a value quite unlike that of a fixed-depth minimax search. 

In the case of speculative pruning, the full critical tree is not explored, and 

good moves may be overlooked. However, the rationale is that although the 

search occasionally goes wrong, the time saved by pruning non-promising lines 

is generally better used to search other lines deeper, i.e. the search effort is 

concentrated where it is more likely to benefit the quality of the search result.

3.1 Specu lative Pruning

The real task when doing speculative pruning is to identify move sequences 

that are worth considering more closely, and others that can be pruned with
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minimal risk of overlooking a good continuation. Several factors should be 

considered for effective pruning:

•  Risk assessment.

How safe is the pruning method? We want to minimize the risks that 

the speculative pruning introduces into the search.

•  Applicability.

To maximize the possible gains from pruning we would like to apply the 

method frequently in the tree, especially where there is a potential for 

big savings.

•  Cost effectiveness.

The investment of time and effort to decide whether to prune a node 

should be kept low. In any case, the savings achieved through pruning 

must exceed the additional effort introduced.

•  Domain dependency.

Ideally, we want a domain independent pruning method such that it can 

be applied in more than one specific game.

The above factors are by no means independent; improving one usually involves 

compromising another. For example, reducing the risks often means limiting 

the applicability, while improving cost effectiveness can introduce other risks. 

Finally the more general (domain independent) methods tend to be less effi

cient. A useful pruning heuristic must find the appropriate trade-off between 

the above factors, and this process may require careful tuning.

3.1.1 R isk  A ssessm ent

When using speculative pruning there is always some danger of overlooking 

good moves. We would like to minimize the risk of doing so. When deciding
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whether to examine a node JV, the basic question is: how likely is it that the 

subtree below iV includes a continuation that, if searched, would yield a new 

principal variation. For a new variation to emerge two things must occur; first 

the value returned to N  must exceed the best value found so far, and second 

the value must propagate to the root of the tree. This in turn implies that the 

pruning method should be able to:

•  predict with reasonable accuracy the range of values for node N , and

•  measure the likelihood that the anticipated value will back up to the 

root of the tree.

Existing speculative pruning methods address the first issue while ignoring the 

second one.

Error Introduction

For most subtrees, we are not so much interested in knowing the exact value 

of each particular node, but rather whether the value lies outside the bounds 

of the a/3 window. This is because we know that continuations that result in 

values outside the window can never become a part of the principal variation. 

When using a minimal-window search, the bound is the value of the current 

principal variation, so when comparing node values to the bound we are de

termining whether a better continuation is found. In that case we are simply 

interested in knowing if a value returned by searching a node further is at least 

as good as the fi bound, since then it causes a cutoff.

WTien predicting where the value of a node N  lies relative to the a/3 bounds, 

most pruning methods carry out a shallow search. They use the value returned 

to estimate the range in which the actual value of node N  is likely to be found 

when the node is searched more deeply. For example, a 5-ply search is used 

to predict the outcome of a 6-ply search. The outcome of the shallow search
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decides whether to search node N  further. If we are confident enough that 

further search will not yield an improvement, node N  is not expanded. The 

exact criteria used to relate the value of the shallow search to the anticipated 

return value of the deeper search varies with the pruning technique. Some 

approaches rely on statistical methods to define confidence intervals, while 

others simply use ad hoc heuristics. Error is introduced into the search when 

a wrong pruning decision is made.

Although values returned by shallow searches are usually reasonable es

timates of the values found by deeper searches, additional information can 

enhance the overall prediction capabilities of the pruning heuristics, thereby 

reducing the risk involved. For example, consider the tree in Figure 3.1. The

i *i

i ' , 'i ' < '/ * < '» ' i »i ' < >
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I   V

Figure 3.1: Different risk assessment of subtrees.

shaded area marks the parts of the tree searched to decide whether to prune 

nodes A  and B. Each pruning decision is made independently, based only on 

the outcome of the local search. However, information is lost by looking at 

each node in isolation. For example, when looking at move mn existing prun

ing methods are interested in knowing if the move will lead to a value that
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causes a cutoff, that is, in estimating the probability

P (v(m n) >  8 ).

Having already searched moves and knowing that none of them

caused a cutoff, provides a strong indicator that move m n will also fail to 

do so. especially because the preliminary move-ordering scheme believes that 

move m.n is no better than the moves already considered. Instead one should 

compute the probability that move mn causes a cutoff, given that moves 

m \  /?/,,_[ have failed to do so. The probability can be expressed as:

P(v{m n) > 3  | v (m i) ,..., u(mn_[) < 8).

That is. the values of the moves are not independent of each other and, by 

assuming so, otherwise potentially useful information is ignored. Existing 

pruning methods and probability-based best-first search algorithms ignore the 

dependencies, or unrealistically assume the search values (or the error in the 

values) are independent of each other. Instead, the fa c t  that the values ten d  to  

be. dependen t should  be used to m ake m ore  in form ed  pruning decisions.

Error Propagation

Figure 3.2 shows two different game trees. The solid lines identify the parts 

of the tree that have already been visited, while the dotted lines correspond 

to nodes that have not been expanded. Assume that the search is currently 

situated at node N  and that the subtree resulting from playing move mi has 

already been searched. Furthermore, assume that a part of that subtree has 

been cu t away using some speculative pruning technique, and that the value 

returned is greater or equal to the 3 bound for node N. Therefore, a 3 cutoff 

o ccu rs and the value returned by move m t will back up to the root. From the 

root's perspective this branch is inferior to the current principal variation and
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fa) fb)

Figure 3.2: Different risk assessment of error propagation.

the search therefore continues to expand the other children of the root without 

switching principal variation.

If the pruned subtree in Figure 3.2(a) does not contain a better line, search 

effort has been saved. The case of interest here is: what if a better line is 

present? In Figure 3.2(a). if a better line is present but is overlooked, the 

value of mi is wrong and the error will propagate through node N  to the 

root. However, if alternatives to mi are present, as in Figure 3.2(b), it is 

possible that one of the alternative moves in [m2 , ..., m*] may contain a line 

that enables it to deliver a 3 cutoff at iV, acting as a substitute for mi, and 

thus preserving the value assigned at node N . Thus in Figure 3.2(b), an error 

introduced by incorrectly pruning the subtree below m t does not necessarily 

propagate to the root. This situation is common in practice: if the first movp 

fails to cause a cutoff, one of the alternative moves may do so. This means 

that even though the pruning below m t was flawed, the risk of affecting tin* 

move decision at the root is less in Figure 3.2(b) than in Figure 3.2(a), because
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one of the other moves m 2 .... m n might preserve the cutoff if mi changes its 

value. Thus, even  though an erroneous pruning  is m a d e  i t  w ill n o t  necessarily  

affect the m o ve  decis ion  at the root. This illustrates that, when assessing risk, 

pruning methods should not only take into account the expected return value 

of a pruned node, but also assess the likelihood that an erroneous pruning 

decision will propagate up the tree.

3.1.2  A pplicability

The most popular pruning heuristics used in two-person game-playing pro

grams have one thing in common: they apply frequently throughout the search 

tree, though not without restriction. The more frequently a pruning heuristic 

is applied in the search, especially at places where there is a high probability 

of big savings, the more potential it has for being effective. However, the ap

plicability is restricted, since pruning can only be done where it is expected to 

be safe. Depending on the heuristics used, this can differ substantially.

3.1 .3  C ost E ffectiveness

Although some pruning methods offer low risks and substantial savings in 

terms of nodes searched, the overhead needed to implement them is often 

prohibitive. The effort expended gathering and tracking in real-time the in

formation required by the heuristics may outweigh the potential time savings 

introduced by the pruning. An example of such a heuristic is the m eth od  o f  

analogies , a unique search reduction technique that was implemented in the 

pioneering K a is s a  chess program [1]. Although, the method offers almost 

risk-free pruning, the overhead of tracking how pieces influence each other 

originally proved too high for practical use in a competitive chess playing pro

gram. However, changes in software and hardware technology may improve 

the viability of such methods. It might also be possible to approximate the
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original heuristic by another that is less costly to maintain, and yet achieve 

most of the savings. Therefore the method of analogies is again a topic worthy 

of investigation.

3.1.4 D om ain  D ep en d en cy

Preferably we want domain independent pruning techniques. Those methods 

would not rely on such explicit knowledge as whether a king is in check, or 

whether a corner square is occupied. Instead the only information revealed 

to the search by the evaluation function is a numerical estimate of a  problem 

state’s quality. This clear separation of the search and the problem encourages 

more domain independent pruning methods. On the other hand the methods 

are then denied access to potentially useful information about the problem 

domain, thereby restricting their pruning capabilities. However, there is a 

wealth of information to be gathered about the problem by simply looking at 

the shape of the expanded search tree. This knowledge is accessible without 

having to uncover any additional domain-specific knowledge. We have already 

mentioned a few cases of interest as part of our risk-assessment discussion.

In practice, it is extremely difficult for pruning methods to be domain 

independent. As said earlier, there is a trade-off between generality and ef

fectiveness, and to achieve the full pruning capability we must exploit some 

special characteristics of the search space. Most existing speculative pruning 

methods are therefore domain specific. Even though methods like null-move 

and ProbCut (see later) do not use explicit knowledge about their domain, they 

make implicit assumptions that tie them down for use in one, or at best very 

few, two-person games. For example, the null-move heuristic is very effective 

in chess, but inappropriate for Othello. Conversely, ProbCut is the priming 

heuristic of choice in Othello but has not yet been shown useful in chess or 

checkers.
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To support our claim that the new pruning method we introduce in a 

later chapter is indeed domain independent, we experiment with it using two 

different games as a test bed.

3.2 Search E xtensions

The other side of selective search is search extensions. They are essential for 

improving decision quality of game-playing programs. For example, as men

tioned in the introduction, one of the fundamental design decisions behind the 

search scheme employed by the D e e p  B l u e  chess-playing program was based 

around search extensions. However, most programs employ ad hoc domain 

dependent extensions schemes. For example, in chess it is common to extend 

forcing moves that have the potential of greatly altering the positional evalu

ation, such as checks, re-captures, and pushed of a passed pawn. In the past 

it has been a tedious and painful process to fine-tune the different extension 

schemes, because the decision quality of the search can degrade when extend

ing too aggressively (because the search no longer reaches sufficient nominal 

depth). In a later chapter we introduce a novel method for automatically 

parameterizing search-extensions schemes. We will for most part postpone 

further discussion of search extensions until then.

3.3 R elated  W ork

In this section we give a brief overview of the most popular selective search 

enhancements used by contemporary game-playing programs.

3.3.1 T he N ull-M ove H euristic

In some games, such as Go, a legal move is to pass (to make no move). The 

only change to the game state is the side to move. This is called a null move. 

In games like chess, the null move is not legal. Nonetheless, it can be useful in
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the search to assume that a null move can be played. The idea of using null 

move in the search has been known for a long time [l], and is now used by 

most chess programs. However, the method did not get much attention in the 

literature until later [60, 5, 36, 6, 30].

When searching a position to depth d, before considering a legal move in 

that position a null move is made first. The position is then searched to a 

depth less than d, most often d — 1 or d — 2. If the resulting score is greater 

than d. a cutoff is made based on the shallow search result. The null move 

can be applied recursively in the tree. The underlying idea is that in chess it 

is almost always beneficial to make a move rather than to pass. Therefore, if 

the score received by giving up a move is still good enough to cause a cutoff, 

it is very likely that some of the legal moves will also cause a cutoff. Because 

the position was searched using a shallower search than we would otherwise, 

a considerable search effort is saved. In chess it is almost always safe to make 

the assumption that making a move will improve the position, but there are 

special cases in chess where this is not true. Zugzwang positions are the case 

in point, and are most likely to arise in the end game. Thus chess programs 

usually turn off the null-move heuristic when entering the end game. While the 

null-move heuristic works well in chess, it is useless in many other game-tree 

domains where zugzwang positions are common.

3.3.2 P robC ut and M ulti-P rob C u t

The ProbCut [24] heuristic uses shallow searches to predict the result of deep 

searches. In Othello, where the score of a position generally does not change 

significantly by searching deeper, this heuristic works very well. Therefore, if a 

shallow search predicts with a high confidence that a deeper search will produce 

a cutoff, a cutoff is made based only on the shallow search. A confidence 

interval of how good a predictor a shallow search is of a deeper search is
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calculated off-line bv searching a big database of positions that have been 

pre-classified into several different classes. A separate confident interval is 

calculated for each class. More recently, the method was further enhanced 

and the refined procedure named Multi-ProbCut [25].

3.3 .3  Singular E xtensions

In game-playing programs it is generally a good idea to search forced moves to 

a greater depth than other moves. Conventionally, search extension schemes 

rely on domain-specific knowledge to decide on the forcefulness of a move, for 

instance check evasions in chess. Another possibility, exploited by the singular 

extension heuristic [3], is to use the search itself to provide information about 

the forcefulness of a move. If a value returned by one move is significantly 

better than all others, that move is judged to be singular. Whenever a move 

is found to be singular, and it is likely to alter the outcome of the search if its 

value changes, the position arising from the move is re-searched one ply deeper. 

The idea of this search extension scheme is to allow the search to dynamically 

extend long forcing lines of play. Although the basic idea is simple, it requires 

extensive additional tuning and refining to get it to work smoothly in an actual 

game-plaving program. More recently this method has been further refined, 

for example to extend not only on singular moves but also binary, and trinary 

moves (i.e. only 2 or 3 good moves). The new refined scheme was successfully 

employed by D e e p  B l u e  [27].

3 .3 .4  O ther M ethods

In the early days of computer chess there was interest in speculative prun

ing methods. Today, most of these methods are of a limited practical use. 

Although not in common use today, some of these methods were quite novel 

(e.g. the aforementioned method of analogies [1]). Later some of these early
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speculative pruning methods further evolved and became popular, for exam

ple razoring [12] and futility pruning [75. 70]. When the null-move pruning 

technique became mainstream it superseded some of the earlier pruning meth

ods. In the last decade there has been revived interest in speculative pruning 

methods. Preliminary experimental results with a method named Fail-High 

Reductions have been reported [32], however, they didn’t offer much additional 

benefit when used alongside established pruning methods such as null-move 

pruning, thus limiting its usefulness. More recently, AEL  pruning was intro

duced [39]. This method is a collection of three pruning schemes: adaptive 

null-move pruning, extended futility pruning, and limited razoring; each en

hancing an older existing pruning scheme. It showed great promise in the 

chess program D a r k  T h o u g h t .

3.4  C onclusions

We have given an overview of existing selective search methods, and pinpointed 

some of their short-comings. As mentioned before, speculative pruning heuris

tics should be concerned with the question: What is the likelihood o f making an 

erroneous pruning decision and. if an erroneous decision is made, how likely is 

it to affect the principal variation ? The existing methods generally do not con

sider the second part of this question. When assessing risk, pruning methods 

should not only speculate whether a subtree contains a good continuation, but 

also determine if there are alternatives to any potentially overlooked continua

tion that could preserve the principal variation. To answer these questions the 

methods must consider each node in the context of its location in the game 

tree, instead of looking at each node (and the subtree below it) in isolation.

In a later chapter we present a new speculative pruning method that over

comes some of the aforementioned shortcomings.
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Chapter 4 

U ncertainty Cutoffs

O f chess it has been said that life is not long enough
for it. but that is the fault of life, not chess. ”

- William, Ewart Napier

In this chapter, we take a new look at pruning. A common scenario in 

a search is that expectations change. Uncertainty in the search results in 

changes of the principal variation (PV). When this happens, some branches 

are explored that, with hindsight, are unnecessary. There is an opportunity

here for savings. A new pruning technique, uncertainty cutoffs, is applied

at carefully selected places in the search tree. Bookmarks are kept where 

the pruning is done, so that one can tell if a backed-up value is a correct 

minimax value or an uncertain value. Even if speculative pruning is used in 

the search, it does not necessarily affect the reliability of the minimax value at 

the root of the search tree. If the pruning is only done in subtrees that turn 

out to be irrelevant for proving the rninimax value, a guaranteed value can be 

backed up to the root. The bookmarks tell us whether the pruning applied 

in the tree is affecting the reliability of the minimax value, thus giving us the 

opportunity to correct it by re-searching the subtrees containing the uncertain 

values. Hopefully, the gains of applying the pruning will outweigh the extra 

search overhead of occasional additional re-searches of uncertain values.
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Strictly speaking, this pruning method does not fall into the category of 

spcrulative-pruning methods because we have a way of telling when a value is 

uncertain and can rectify the situation by re-searching the node. The type of 

pruning introduced here is analogous to the additional pruning power intro

duced by minimal-window searches, where an artificial upper bound is used: if 

the search fails-low the gamble pays off, but if the search fails-high a re-search 

is necessary.

In the next section we take a second look at the critical tree that must 

be searched to prove the value of a game tree. This is followed by two sec

tions that describe the uncertainty cutoff pruning method, the idea and the 

implementation, respectively. Finally, we present our assessment and provide 

experimental results.

4.1 Searching a C ritical Tree

We have previously mentioned that to find the value of a game tree, at least 

a so-called critical tree must be searched. Here we take a closer look at the 

structure of a critical tree. The nodes of a critical tree can be categorized 

into three different types based on their properties, as shown in Figure 4.1. 

The light colored nodes in the picture belong to a critical tree. All moves 

have to be searched at pv-nodes (P) and all-nodes (A), but only one move is 

searched at cut-nodes (C). The dark colored nodes need not be searched, but 

some of them may be, depending on the quality of the move-ordering scheme 

used. Before searching a node we do not really know if a node will become a 

cut-nude or an all-node. Thus, before fully exploring nodes we refer to them 

as expected cut-nodes or expected all-nodes depending on if we believe they will 

ca u se  a cutoff or not.

The performance of the acj3 algorithm is affected by the order in which nodes 

in the tree are searched. In the best case only a critical tree is expanded. The
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Figure 4.1: Critical tree.

best move must be expanded first at pv-nodes (to get a good lower bound 

early), but at cut-nodes any move sufficiently good to cause a cutoff can be 

searched first.1 Because of the a/3 algorithm’s sensitivity to the move ordering, 

it is important to expand good moves as early as possible. Various heuristics to 

achieve good move ordering have been developed in the past (see Chapter 2). 

By using these heuristics in chess, for example, empirical evidence shows that 

over 90% of the cases where a cutoff occurs it is indeed caused by the first move. 

As mentioned in Chapter 2, enhanced a/3 variants like NegaScout and Principal 

Variation Search that employ minimal-window search take advantage of moves 

that are ordered such that good ones are more likely to be searched first. These 

algorithms have been shown, both theoretically [65] and empirically [70], to 

be more efficient than the original a/3 algorithm.

4.2 U ncertainty  Cutoffs - Idea

Current tree-search algorithms equipped with various search enhancements are 

searching quite efficiently. But there is still scope for improvement. Search

overhead from imperfect move ordering can be introduced in two ways:
1 Because of a non-uniform branching factor, search extensions and various possible trans

positions. the size of subtrees generated by different moves may vary considerably. In gen
eral. we would like to search first not only a move that returns a value that is sufficient to 
cause a cutoff, but also one that leads to the smallest subtree.
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•  at a cut-node, the first move does not cause a cutoff, or

•  at a pv-node. the first move is not the best.

Both these cases occur when there is uncertainty in the search — previous 

expectations are changing. In the first case additional moves must be searched 

until a move (if any) causes a cutoff. The subtrees of the sibling nodes searched 

prior to the node that caused the cutoff have been searched unnecessarily. In 

Figure -1.2 this search overhead is shown at node b as the shaded subtree 

T\. In the second case, assuming minimal-window search is used, when a 

new best move is found it must be re-searched with a normal window. The 

search overhead here consists primarily of the initial minimal-window search 

that failed high.2 Figure 4.2 shows the case when the third move searched 

at the root (i.e. c) fails high; the minimal-window search that is performed 

(the shaded subtree at c) is the search overhead and the subtree T> represents 

the necessary re-search. However, information stored in the transposition table 

during the minimal-window search efficiently guides the re-search, saving some 

move generations and node expansions.

At cut-nodes it is most important tha t the move which causes the cutoff 

be searched as soon as possible. To improve the prospect of choosing a move 

that will cause a cutoff, we make use of available move information (e.g. the 

transposition table entry and the history heuristic). However, while searching 

the subtree of this move we might, based on other information, start to believe 

that this move will not cause a cutoff. The question that we then face is 

whether to continue searching this sub-branch, or to stop and start searching 

a different candidate cutoff move nearer the root of the tree. This is the 

basic idea behind the pruning method introduced here. Instead of having only

the two scenarios (either expanding all children of a node or having a child
-The search efficiency is also somewhat degraded because prior sibling nodes have been 

searched with an inappropriate window.
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Figure 4.2: Search overhead.

cause a cutoff) a third scenario is now also possible, where only some of a 

node’s children are searched before we stop. This type of pruning shows some 

resemblance to the additional pruning possible when using a minimal-window 

search. Both uncertainty cutoffs and minimal-window search allow speculative 

cutoffs based on the expectation that an alternative move nearer the root of 

the tree is more likely to cause a cutoff than the move currently being explored. 

The difference is that uncertainty cutoffs make a speculative cutoff at expected 

cut-nodes (if they do not produce a cutoff quickly), whereas the artificial upper 

bound of a minimal-window search enables early cutoffs at expected all-nodes 

(if their lower bound happens to exceed or equal the artificial bound).

To illustrate this idea in practice, let us look at the chess position in Figure

4.3. Here it is White's turn to move. The pawn on e5 is threatened but White 

has several possible continuations. Assume that White has already found a 

tentative principal variation and is now thinking of l.e6 as an alternative move. 

Black s obvious reply l....i?xe6 fails to 2.JVc5, attacking both of Black's rooks. 

That threat, however, was beyond the search horizon of the previous search 

iteration, so the search expands the move l....Rxe6  first and White responds 

with 2..Wo (not necessarily the first move considered). In the resulting po

sition Black is faced with the problem of saving the rooks. Black has over
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Figure 4.3: Example position and a corresponding search tree.

25 legal moves but all fail to prevent White from capturing one of the rooks. 

Instead of exhaustively searching all the possible legal moves, we can abandon 

the others after only a few have been examined, and start to look at alterna

tives to l....f?xe6. A better move is easily found (e.g. 1..../5) and, assuming 

the new move generates a cutoff, then we save considerable search effort, but 

still return the same, correct minimax value. The search tree corresponding 

to this example is also shown in Figure 4.3. This tree is expanded during 

a minimal-window search, where the shaded area represents the part of the 

tree not searched because of the uncertainty cutoff. The savings arise because 

the sequence e6, Rxe6: Neb, “anything” looks like a new principal variation. 

Rather than exploring all the alternatives for “anything” we assume that a 

new principal variation is indeed emerging and so retreat up the tree, where 

we quickly refute the candidate principal variation with /5 .
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4.3 U ncerta in ty  Cutoffs - A lgorithm

Two fundamental questions must he considered when implementing the above 

pruning method: how to guarantee that a correct minimax value is returned, 

and how to make decisions about when to apply the pruning method. These 

questions will now be addressed.

Assume that the pruning method described above is applied in subtree 7\ 

of Figure 4.2, such that the value backed up to the root of 7 \ is not guaranteed 

to be the correct minimax value, i.e. the value is uncertain. The interesting 

case occurs when the value returned by 7\ does not cause a cutoff, but another 

child of b does. In that case the subtree T\ is not a part of the critical tree and 

any pruning made in there will not affect the true value in any way. Given 

that this value of the move causing the cutoff is not uncertain, then neither 

will the value returned by b. However, in cases where b fails low the value 

returned by b will be uncertain if any of its children's values are uncertain. If 

an uncertain value is backed up all the way to a pv-node, that node will have 

to be re-searched. By keeping track of how uncertain values are backed up in 

the tree, we can determine if the returned value for the search is guaranteed 

to be the correct minimax value or not.

Below we show how uncertaintv-cutoffs can be embedded into the Principal- 

Variation Search algorithm. Algorithms 9 and 10 show how we need to modify 

the P V S  and M W S  functions, respectively. In the ucP V S  (uncertainty cutoff 

P V S)  function line 14 has been modified to have the minimal-window search 

return if a backed-up value is uncertain, and lines 15-16 is the additional code 

to handle the re-search of uncertain values. Note that the returned value can

not even be used as a bound for the re-search. Otherwise the function is the 

same as the original P V S  function. When an uncertain value is backed up to 

a pv-node, its value is corrected by re-searching that node using the current
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A lgorithm  9 ucP V S(P ,d ,a ,  /3)
1: i f  d  < 0 or i s T e r m i n a l ( P )  t h e n
2: r e t u r n  e v a lu a t e ( P )
3: e n d  i f
4: M  4— g e n e r a te  M o v e s ( P )
5: m a k e { P , m \ )
6: bes t  <------u c P V S { P ,  d  — 1, —3, — cv)
7: r e t r a c t { P ,  m { )
8: i f  best  >  13 t h e n
9: r e t u r n  b es t

10: e n d  i f
11: lo w e r  4— m a x ( a ,  bes t)
12: fo r  a l l  m i  G M \ i  > 1 d o
13: m a h e {P ,  m i)
14: (v , u n c e r ta in )  <------u c M W S ( P ,  d  — 1. —lo w e r . t ru e )
15: i f  u n c e r ta in  t h e n
16: v <-----u c P V S ( P ,  d  — 1, —3, —lower)
17: e l s e  i f  v > lo w e r  and v < 3  t h e n
18: v 4-----u c P V S ( P ,  d  — 1, — — r)
19: e n d  i f
20: r e t r a c t { P , m {)
21: i f  v > b e s t  t h e n
22: bes t  4— v
23: i f  o e s i  >  p  t h e n
24: r e t u r n  bes t
25: e n d  i f
26: l o w e r  4— m a x ( a , best)
27: e n d  i f
28: e n d  fo r
29: r e t u r n  b es t

afi window. Therefore there is no need to keep track of uncertain values in 

the P V S  part of the algorithm. Thus the method represents a “safe” pruning 

mechanism.

The uncertainty cutoffs themselves take place in the ucM W S  function, and 

uncertainty information about a value is backed up there. Basically, a backed- 

up value is uncertain at all-nodes if at least one of its values is uncertain 

(the variable uncertain  is used to record this). On the other hand, at cut- 

nodes the returned value is uncertain if and only if the move that caused the
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A lgorithm  10 ucMWS(P,d ,  fi,cut)
1: i f  (I <  0 or i s T e r m i n a l ( P )  t h e n  
2 : r e t u r n  e v a lu a te (P )
3: end  i f
-t: u n c e r ta in  <— f a l s e
3: best < oo
6: M  <— g e n e r a te M o v e s ( P )
7: fo r  a l l  nii €  M  d o  
S: m a k e ( P ,m i )
9: (u, uc) < u c M W S ( P ,  d  — 1, —0  +  e, -icut)

10: r e t r a c t ( P ,  m.i)
11: i f  v  >  bes t  t h e n
12: be s t  <— v
13: i f  best  >  p  t h e n
14: r e t u r n  (bes t ,u c )
15: e n d  i f
16: e n d  i f
17: i f  c u t  and d o U n c e r ta in t y C u t ( d ,  m i,  M )  t h e n
IS: r e t u r n  (b es t , tru e )
19: e l s e  i f  u c  t h e n
20: u n c e r ta in  <— t ru e
2 1: e n d  i f
22: end  fo r
23: r e t u r n  (b es t ,u n c e r ta in )

cutoff has an uncertain value (the variable uc tells if the value of the move just 

searched is uncertain). The implementation of the specific strategy for deciding 

exactly when to apply the uncertainty cutoffs may differ somewhat between 

games, thus we abstract it here in the doUncertaintyCut(d, mt, M ) function 

(we discuss some strategies a little later). Furthermore, we must be careful 

to specially mark uncertain nodes when inserting them into the transposition 

table, so that their re-use is restricted to suggesting the best move, and not to 

adjusting the search bounds or the search value.

The other fundamental question is where and when to apply the pruning 

heuristic. We cannot blindly apply the pruning everywhere in the tree, be

cause this would result in frequent re-searching of uncertain nodes, resulting 

in the search overhead of the re-searches exceeding the gains of the pruning.
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Basically, we would like to prune only in subtrees that are not likely to become 

a part of the minimal tree. What is needed is a good criteria for identifying 

these subtrees. Typically what happens is that the shape characteristics of the 

search tree change when we are searching on a path that is off the critical tree. 

Nodes that we expect to be cut-nodes start to behave like all-nodes and vice 

versa. This can be seen in Figure 4.2. For move c  to fail high (and therefore 

is no longer a part of the critical tree because of the re-search) it must be true 

that all children of c are searched and fail low. Because of the move ordering, 

the moves that are most likely to cause a cutoff are examined first, but if none 

of the promising cutoff candidate moves causes a cutoff, we have good reason 

to believe that the rest of the moves will also fail to do so. Therefore, after 

searching only some of the possible moves at c we may decide not to search 

the rest, i.e. we make an uncertainty cutoff, and return right away. This will 

cause node c  to be re-searched. The criteria used here to decide when to apply 

the pruning is as follows: i f  during a m in im a l-w in d o w  search, a node that is 

expected to be a cut-node does n o t  cause a cu to ff  af ter  searching so m e  num 

ber o f  m oves, then the rest o f  the m o v e s  are ignored. The number of moves 

looked at in each position can be determined in various ways: for example 

a fixed percentage of legal moves could be searched (or possibly a different 

more dynamic measure). Also, because we only test for uncertainty cutoffs if 

a notle is an expected cut-node, an extra parameter cu t  is passed down to the 

u c M W S  function. It is set to true if the node we are currently visiting is an 

expected cut-node. but is otherwise false. In a minimal-window search there 

are alternating layers of cut- and all-nodes (recall our discussion of the critical 

tree), thus the value of the cu t  parameter is negated in each recursive call.
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4.4  Experim ental R esults

The method was implemented in T h e  T u r k , an experimental chess program.3 

The program's search engine uses the Principal-Variation Search algorithm 

(P V S /M W S ). It also employs most search enhancements found in contem

porary chess programs. The move-ordering scheme generates capture moves 

first (most valuable piece captures generated first) and the history heuristic is 

used to sort the remaining moves. The best move previously found in a posi

tion is stored in the transposition table and searched first where applicable.

For our experiments we used the test positions published in Plant's PhD 

thesis [63] (the positions are also listed in Appendix D .l). The test positions 

were searched to a depth of 8-ply but, as in the previous mentioned work, 

with both search extensions and pruning enhancements disabled.' On the 

other hand, enhancements such as transposition tables, iterative deepening 

and quiescence search were used. Uncertainty cutoffs are done at expected 

cut-nodes after a fixed percentage of the legal moves are searched, with the 

proviso that capture moves are always searched. Furthermore, the pruning is 

not done if the remaining search depth is less or equal to one, because at these 

frontier nodes we have poor move-ordering information and, consequently, the 

best move can lie almost anywhere in the move list.

For different parameter values, the graphs in Figure 4.4 show how the 

uncertaintv-cutoff program performs relative to the same program without the 

cutoffs. The moves-looked-at ratio — the percentage of moves explored at ex

pected cut-nodes before making an uncertainty cutoff— is varied from 10-90% 

(the x-axis). The graph to the left shows the number of nodes searched by the

uncertainty-cutoff version compared with the unmodified program, whereas
3T he Turk was developed at the University of Alberta by Yngvi Bjornsson and Andreas 

Junghanns.
■‘Using these selective search techniques would make it difficult to measure the search 

efficiency, because radically different trees are possibly expanded from one run to the next.
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Figure 4.4: Efficiency comparison using the Plaat test positions.

the graph to the right shows the relative number of re-searches.

As can been seen from the graphs, when we apply the pruning too aggres

sively the total number of nodes searched is higher than nodes seen without the 

pruning. The reason is that too many incorrect pruning decisions are made, re

sulting in frequent re-searches to correct the uncertain minimax values. This 

is even more apparent when looking at the node-count information in con

junction with the re-search information, presented in the graph to the right: 

when only a small fraction of possible moves is explored, exponentially more 

re-searches are performed. However, as the moves-looked-at ratio increases, 

the number of additional re-searches drops rapidly. Also, more importantly, 

so does the number of total nodes searched. The two versions of the program 

break even at the 40% mark, from which point on the pruning “gamble” starts 

to pay off, that is, the uncertainty-cutoff version now searches fewer nodes 

in total. Clearly, the savings gained by pruning some of the sub-branches 

more than outweighs the extra search overhead introduced by the occasional 

re-searches. As the moves looked at ratio approaches 100%, the two versions 

converge to identical behavior as one would expect. Even though the data 

here are presented as savings in nodes searched, the run-time overhead with 

the method is negligible so the search time results are in the same ratio. 

Table 4.1 shows the search efficiency broken down by individual positions in
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Table 4.1: Uncertainty cutoff results on the Plaat test positions.

mu ves-looked-at ratio
P o s .# 0.1 0.2 0.3 0.4 0.5 0 .6 0.7 .8 0.9

1 115.84 114.71 109.68 100.78 105.88 99.10 101.04 102.31 108.48
2 129.46 131.56 129.60 110.94 102.49 97.54 97.00 98.70 100.59
3 118.92 113.76 110.65 111.23 98.71 92.66 96.40 97.82 99.04
4 109.20 96.19 94.10 79.21 92.43 79.05 87.99 92.56 98.50
5 110.43 109.94 103.21 92.50 93.22 89.75 93.99 98.00 100.97
6 121.70 116.10 113.15 93.89 89.85 91.17 99.50 100.14 101.19
7 114.83 106.94 101.70 101.19 100.08 100.10 99.90 99.68 99.95
8 96.47 92.24 95.44 88.03 83.22 83.89 86.26 88.75 93.33
9 131.58 117.48 111.23 98.40 95.34 95.38 99.67 100.32 100.56

10 132.69 114.89 133.60 126.14 116.20 105.03 96.07 97.85 98.80
11 126.44 132.45 139.92 151.30 149.97 96.28 97.82 97.31 98.49
12 127.78 100.50 100.26 100.09 94.34 95.32 97.90 97.20 98.46
13 129.18 97.05 95.10 81.70 92.81 86.21 89.21 92.00 95.34
14 141.12 119.19 96.91 89.49 96.15 90.66 92.89 94.81 97.10
15 134.72 112.25 108.04 98.12 98.50 98.40 98.66 98.98 99.47
16 110.11 106.40 103.48 99.77 100.81 99.81 99.88 99.93 99.99
17 116.98 118.02 103.46 103.27 103.24 102.58 99.84 99.85 99.92
18 104.75 90.03 87.20 84.27 80.12 85.87 86.93 89.99 94.82
19 134.93 121.19 103.79 107.62 101.51 99.94 99.45 99.28 99.52
20 131.57 110.30 104.64 99.42 104.66 96.10 97.98 97.30 98.83

Tot.% 119.68 109.10 106.33 99.46 98.82 9 2 .8 7 94.87 96.36 98.78
Avg.% 121.94 111.06 107.26 100.87 99.98 9 4 .2 4 95.92 97.14 99.17

the test suite. The table entries show the percentage of nodes searched relative 

to an unmodified program. The total savings at the bottom of the table are 

shown both as a  percentage of nodes searched in total, as well as the average 

percentage saving over all the positions (i.e. the percentage numbers shown in 

the table). It is interesting to note that for the optimal moves-looked-at ratio, 

in only few cases does the pruning cause more nodes to be searched, and then 

only marginally. On the other hand, the savings can be substantial.

As a further proof of concept, we ran identical set of experiments using a 

different test suite, the so-called Bratko-Kopec positions (see Appendix D.‘2). 

The performance graphs are produced in Figure 4.4, and yield similar results.
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Figure 4.5: Efficiency comparison using the Brato-Kopec test suite.

4.5 C onclusions

We introduced a new enhancement that improves the search efficiency of the 

Principal-Variation Search algorithm (and other a/3-like algorithms), while 

still backing up the correct minimax value. However, because move order

ing in chess programs is already very good, and programs are searching quite 

close to the critical tree (needed to prove the minimax value), the savings 

are necessarily relatively small. In other less researched game domains, where 

good move-ordering information is not as easily available, this enhancement 

may offer additional savings. Nonetheless, the efficiency improvement the new 

enhancement yields is comparable to what other similar search variants demon

strate, e.g. the efficiency gains NegaScout/PVS shows over a/3, or M TD (/) 

over NegaScout [63]. Thus, we view this new technique as yet another impor

tant step in a long line of algorithmic enhancements that aid a/3-based search 

in achieving close to optimal search behavior.

Improvements that only aim at improving the search efficiency, while still 

insisting that the correct minimax value be proved, will yield only marginal 

improvements. Therefore, we will shift our focus to speculative search en

hancements that do not necessarily prove the minimax value, but instead aim 

at improving the overall decision quality of the search.
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Chapter 5 

M ulti-Cut a/3 Pruning

When you see a good mo ve wait look for another.
- Emmanuel Lasker

This chapter introduces a new speculative pruning enhancement to the a/3 

algorithm. It is based on our earlier observation that pruning methods should 

not only consider the likelihood that a subtree contains a better continuation, 

but also how likely it is that an erroneous pruning decision will propagate back 

up the tree to influence the move decision at the root (see Chapter 3 for a more 

complete discussion).

5.1 M ulti-C ut Idea

In the traditional a/3-search, if a cutoff occurs there is no reason to examine 

that position further, and the search can return. For a new principal variation 

to emerge, every expected cut-node on the path from a leaf-node back to 

the root must become an all-node. In practice, however, it is common that 

if the first move does not cause a cutoff at an expected cut-node, one of 

the alternative moves will. Therefore, expected cut-nodes. where many moves 

rnay have good potential fo r causing a /3-cutoff, are less likely to become all

nodes. Consequently such lines are unlikely to become part of a new principal 

variation. This observation forms the basis for the new speculative pruning
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scheme we introduce here, called multi-cut a(3-pruning. Before explaining how 

it works. let us first define an mc-prune (multi-cut prune).

D efin ition  1 ( m c-prune) When searching node N  to depth d +  1 using an 

a 3 -like search, if  at least c of the first e children of N  return a value greater 

than or equal to 3 when searched to depth d — r, an mc-prune is said to occur 

and the local search returns.

Figure 5.1 illustrates the basic idea. At node iV, before searching move mi 

to its full depth d, like a normal or/3-search will, the first e successors of N  

are expanded to a reduced depth of d — r. If c of them return a value greater 

than or equal to ,3. an mc-prune occurs and the search returns the 3 value, 

otherwise the search continues as usual exploring move mt to the full depth 

d. The moves m2,...,m e are searched to depth (d — r) and represent the 

extra search overhead introduced by mc-prune. This overhead would not be 

incurred by normal a/3-search. On the other hand, the dotted area of the 

subtree resulting from move m.\ represents the savings that are possible if the 

mc-prune is successful. However, if the pruning condition is not satisfied, we 

are left with the overhead but no savings. Clearly, by searching the subtree 

of move mi to a shallower depth, there is some risk of overlooking a tactic 

that would result in mt becoming a part of the new principal variation. We 

are willing to take that risk, because we expect at least one of the c moves 

that return a value greater or equal to ft when searched to a reduced depth, 

would have caused a genuine /3-cutoff if searched to a full depth, d. If a shallow 

search returns a value good enough to cause a cutoff, that is generally a strong 

indicator that a deeper search will also cause a cutoff. The fact that we 

require more than one such shallow cutoff further reduces a risk of erroneous 

mc-pruning.
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d

r = search reduction 
e = number of moves examined 
c = number of cutoffs needed

Figure 3.1: Applying the mc-prune method at node N.

5.2 M ulti-C ut Im plem entation

Algorithm 11 lists the pseudo-code fora  minimal-window search (A/IT'S) rou

tine using multi-cut. The M IV S  routine is an integral part of the Principal 

Variation Search algorithm (see Chapter 2). The multi-cuts are applied only 

in the N W S  routine, whereas the P V S  routine is unchanged.

Multi-cut could equally well be implemented in a standard a 3 algorithm or 

a  different variant (e.g. NegaScout). For clarity we have omitted details about 

search extensions, transposition table look-ups, quiescence searches, null-move 

searches, and history heuristic updates that are irrelevant to our discussion. 

The parameter d is as before the remaining length of search for the position, 

and 3 is an upper bound on the value we can achieve. The new parameter. 

cut, is set to true if the node we are currently visiting is an expected cut-node. 

but is otherwise false. In a minimal-window search there are alternating layers 

of cut- and all-nodes, thus the value of the cut parameter is negated in each
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recursive call (information from the transposition table can also be used to tell 

if we expect a node to be a cut-node or not).

The routine starts by cheeking whether the search horizon is reached, and 

if so evaluates the position and returns its value (or calls a quiescence search). 

If we are using a fully enhanced search routine, we would next look for useful 

information about the position in the transposition table, followed by a null- 

move search. If the null-move does not cause a cutoff, a standard minimal- 

window search would follow (lines 20-30). However, when using multi-cut. 

the check for the pruning condition is inserted before we start exploring the 

possible moves (lines 6-L9). The parameters E, R , and C  are mc-prune specific 

and stand for: number of moves to expand (e), search reduction (r), and 

number of cutoffs needed (r). respectively (see Figure 5.1).

We do not check for the mc-prune condition at every node in the tree. 

First, we test for the condition only at expected cut-nodes (we would not 

anticipate it to be successful elsewhere). Second, multi-cut is not applied at 

levels of the search tree close to the horizon, thus reducing the time overhead 

involved in this method. We experimented with distances both closer to and 

further away from the horizon, and a distance of R  gave a good balance. 

Finally, there are some game-dependent restrictions that apply, but are not 

shown in the pseudo-code. In our experiments in the domain of chess (see 

later) the pruning is disabled when the end-game is reached, since there are 

usually few viable move options there and the mc-searches are therefore not 

likely to be successful. Also, the positional understanding of chess programs 

in the end-game is generally poorer than in the earlier phases of the game. 

The programs rely more heavily on the search to guide them in the ending, 

and any speculative-pruning scheme is therefore more likely to be harmful. 

Furthermore, the pruning is not done if the side-to-move is in check, or if 

search extensions have been applied for any of the three previous moves leading
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A lg o r i t h m  11  m cM W S(P . d. 3. cut)
R e q u ir e :

E  is the number of moves to expand when checking for mc-prune. 
C is the number of cutoffs to cause an mc-prune.
R  is the search depth reduction for mc-prune searches.

1 i f  d  < 0 or isTerm inal(P ) th en
2 r e t u r n  evaluate(P)
3 e n d  i f
4 best <------oo
5 M  «— generateM oves(P)
6 i f  d  >  R  and cut t h e n
7 C 4— 0
8 fo r  nii €  M  \ i =  1...... E  d o
9 make(P, m*)

10 v <------m cM W S (P , d — 1 — R. — J  +  e, ->cu£)
11 retract(P, mi)
12 i f  v > p  t h e n
13 c «— c +  1
14 i f  c = C  t h e n
13 r e t u r n  /?
16 e n d  i f
17 e n d  i f
18 e n d  fo r
19 e n d  i f
20 fo r  all mi € M  d o
21 make(P, mi)
22 v i-----m cM W S (P ,d  — 1. —3 + e. ->cut)
23 retract(P, mi)
24 i f  v > best t h e n
25 best <— v
26 i f  best > 0  t h e n
27 r e t u r n  best
28 e n d  i f
29 e n d  i f
30 e n d  fo r
31 r e t u r n  best
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to the cu rren t position. The presence of extensions usually indicates forced 

continuations, and pruning in such cases is often risky.

5.3 M ulti-C ut Param eters

It is not clear how to select the most appropriate values for the parameters c, 

e, and r. How they are set will affect both the efficiency and the error rate of 

the search. Each parameter influences the search in its own way:

•  Number of cutoffs (c):

The more cutoffs that are required for an mc-prune to occur, the safer 

the method is. On the other hand, the higher the value is, the larger the 

tree expanded. Not only does each check for an mc-prune require more 

nodes to be searched, but also fewer mc-prunings occur. Therefore, c 

should be set large enough for the method to be reasonably safe, but 

still small enough to offer substantial node savings.

•  Number of moves (e):

The e parameter tells how many moves to investigate when checking for 

an mc-prune. The higher e is, the more likely it is that the pruning 

condition will be met. On the other hand, each unsuccessful mc-prune 

search is a failed investment of search effort, offsetting some of the node 

savings from the additional pruning. The right balance between these 

two counter-acting effects will depend, among other things, on the qual

ity of the move ordering scheme used. The better the scheme, the closer 

we can set e to c.

•  Depth reduction (r):

The depth reduction factor r  will influence the best settings for c and
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e: the larger r  is, the larger c and e can he. Obviously, if the goal is 

to improve search efficiency, the depth reduced multi-cut searches must 

explore, in total, fewer nodes than the full depth search they replace. 

Therefore, if r  is very small there is not much flexibility in choosing 

larger values for c and e. On the other hand, search depth reduction 

that is too aggressive will make the search more error-prone.

From the above discussion we can see how intertwined the parameters are; 

altering one will bias the selection of the others. It is impossible to analytically 

determine the most appropriate settings for the parameters, because not only 

do they depend on different characteristics of the search space, but also on 

various properties of the game-playing program itself (e.g. the move-ordering 

scheme). We empirically determined a suitable setting of these parameters for 

our experiments (see next section).

5.4 E xperim ental R esu lts

To test the idea in practice, multi-cut a/3-pruning was implemented in two dif

ferent game-playing programs: first the chess program T h e  T u r k , and more 

recently in a Lines-of-Action program named YL. Three different kinds of ex

periments were conducted using the chess program. First, the feasibility of the 

idea was verified by correlating the number of promising move alternatives at 

cut-nodes to an actual cutoff occurring. Secondly, different multi-cut param

eter settings were experimented with both to give insight into how they alter 

the search, and to find an appropriate setting for the chess program. Finally, 

the improved playing strength of programs using the new pruning scheme was 

demonstrated via self-play matches, for both chess and Lines of Action.
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5.4.1 C riteria Selection

The multi-cut idea stands or falls with the hypothesis that nodes having many 

promising move alternatives are more likely to cause a .5-cutoff than those 

with few. Before arriving at the multi-cut implementation described earlier, 

we tested several different schemes of predicting which nodes are likely to 

deliver a J-cutoff. We will refer to any node where a tf-cutoff is anticipated as 

an expected cut-node. Only after searching the node do we know if it actually 

causes a cutoff: if it does we call it a True-cut-node. otherwise a False-cut-node. 

What we seek is a scheme that accurately predicts which expected cut-nodes 

are False. We experimented with four different ways of anticipating cut-nodes:

L. Number of legal moves (N M ):

The most straightforward approach is to assume that every move has the 

same potential for causing a /5-cutoff. Thus, the more children an ex

pected cut-node has, the more likely it is to be a True-cut-code. Although 

this assumption is not realistic, it serves as a baseline for comparison.

2. History heuristic (H H  > A):

A more sensible approach is to distinguish between good and bad moves, 

for example by using information from the history-heuristic table. Moves 

with a positive history-heuristic value are known to be useful elsewhere 

in the search tree. This method defines moves with a history-heuristic 

value greater than a constant A as potentially good. One advantage of 

this scheme is that no additional search is required.

3. Quiescence search (QSQ > 0 — 6):

Here quiescence search is used to determine which children of a cut- 

node have the potential for causing a cutoff. If the quiescence search 

returns a value greater than or equal to 0  — 5 then the child is considered
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promising. The constant 5, from here on called the d-cutoff margin, 

can be either positive or negative. Although this scheme may require 

additional search, it is likely to give a better estimate than the two 

aforementioned schemes.

4. Minimal-window search (M W S ( d  — r) > 0  — 6):

This scheme is much like the one above, except instead of using quies

cence search to estimate the merit of the children, a minimal-window 

search to a closer horizon at distance d — r is used.

To establish how well the number of promising moves, as judged by each of the 

above schemes, correlates to an expected cut-node being a True-cut-node or 

not, the program was instructed to gather statistics about cut-nodes. When 

the program visits an expected cut-node it calculates the number of promising 

move alternatives in the position according to each of the above schemes. 

Then, after searching the node to a full depth to determine if it really is a 

cut-node. information about the number of promising moves is logged to a file 

along with a Hag indicating whether the node is a True-cut-node.

The program gathered statistics on 100,000 nodes. The resulting data was 

classified into two categories, one with True-cut-nodes (expected cut-nodes 

that became cut-nodes). and the other with the False-cut-nodes (expected 

cut-nodes that became all-nodes). Approximately 2.5% of the expected cut- 

nodes fell into the latter category (i.e. were False-cut-nodes). Table 5.1 gives a 

summary statistic, contrasting the two categories. Each row in the table shows, 

for each category, the average number of promising moves (z) as judged by 

each classification scheme. The standard deviation (a) is also provided. We are 

looking for the sc heme that best separates the True- and False-cut-nodes. that 

is, where the averages are far apart and the standard deviation is low. Thus, 

by comparing the averages and the standard deviations for the two categories
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Table 5.1: Comparison of different schemes for identifying False-cut-nodes.

Method True-cut-nodes 
x a

False-cut-nodes 
x  a

N M 35.60 11.74 24.83 14.46
H H >  0 22.27 8.87 16.35 9.77
H H  > 100 9.15 5.72 7.13 5.33
QSQ > a 20.48 15.03 0.32 1.44
QS() > 3-25 23.70 14.08 1.66 4.20
MWS(d-2)  > 3 20.62 14.88 0.17 0.55
MWS(d-2)  > 3-25 23.75 14.00 1.46 3.75

we can determine the scheme that best predicts which expected cut-nodes are 

False-cut-nodes.

In Table 5.1, it is interesting to note that even a simplistic scheme like 

looking at the number of legal moves shows a difference in the averages. How

ever, the difference is relatively small and the standard deviation is high. The 

history heuristic schemes have lower standard deviation, but unfortunately the 

averages are too similar. This renders them useless. The methods that rely 

on search, QS()  and M W S Q ,  do much better, especially those where S (the 

/3-cutoff margin) is set to zero.1 Not only are the averages for the two groups 

far apart, but the standard deviation is also very low. From the data in Table 

5.1 these two schemes look almost equally effective.

Therefore, to discriminate between them further, we filtered the data for

the False-cut-nodes looking only at non-zero data points (that is, we only

consider data points where at least one promising move alternative is found

by either scheme). The result using the filtered data  is given in Table 5.2.

Now we can see more clearly that the minimal-window (MIVS)  scheme is a

better predictor of False-cut-nodes. Not only does it show fewer false promises

on average, but the standard deviation is also much lower. This means that
lIn The Turk, a S value of 25 is equivalent to a quarter of a pawn.
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Table 5.2: Comparison of selected schemes using filtered data.

Method False-cut-nodes 
x a

QS{) > 3 
M WS { d  -  2) > 3

2.31 3.20 
1.45 0.86

it infrequently shows False-cut-nodes as having more than several promising 

move alternatives. Even in the worst case there never were more than 6 moves 

listed as promising, whereas for the QS{) scheme at least one position had 32 

wrong indicators.

The above experiments clearly support the hypothesis that there is a way to 

discriminate between nodes that are likely to become true cut-nodes and those 

that are not. As a result, we selected the shallow minimal-window searches 

(MWS) as the scheme for finding promising moves in multi-cut a/?-pruning.

5.4.2 M u lti-C u t Param eters

Experiments were performed with different instantiations of the multi-cut pa

rameters, not only to provide a better insight into how they alter the search 

behavior, but also to find the most appropriate parameter setting for the pro

gram. The program was tested against a suite of over one thousand tactical 

chess problems [66]. For each run different multi-cut parameter settings were 

used, and information was collected about both the total number of nodes 

explored, and the number of problems solved. The program was instructed 

to search to a nominal depth of 7-ply. and use normal search extensions and 

null-move search reductions. Basically, we are looking for the parameters that 

give the most node reductions, while still solving the same number of problems 

as the original program does.

Figure 5.2 shows the search effort under a range of parameter settings. 

The search effort is given as a percent of nodes searched by the standard
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Figure 5.2: Search efficiency when r = 2.

version of the program. The depth reduction was fixed at 2, but the c and 

e parameters were allowed to vary from 2 - 6  and 2 — 12, respectively. We 

also experimented with different depth reduction factors, but we found that a 

value of r  =  1 offers only limited node savings, while values of r  > 2 were too 

error prone (see Table 5.3). As expected, the fewest nodes are examined for 

small values of c. For example, the program with c = 2 and e =  12 searches 

over 40% fewer nodes than the original program. However, the node savings 

decrease rapidly as c increases, breaking roughly even at c =  4, and searching 

considerately more nodes for higher values. We also see how e influences the 

search, although these changes are more subtle. An interesting observation is 

that for low values of c the total number of nodes decreases as e increases, 

but the opposite is true for higher values of c. This can be explained by the 

counter-acting effects we discussed earlier. For low values of c, we observe 

more mc-prunings as e increases, and the extra cutoffs more than offset the 

additional search overhead of each mc-prune search. However, for larger values 

of c there are far fewer additional cutoffs, and the increased cost of each mc- 

prune search starts to show. From looking only at this graph, one can deduce
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Figure 5.3: Decision quality when r = 2.

that a low value of c and a relatively high value for e results in the best search 

efficiency. However, we still have to look at the other side of the coin, namely 

the error rates associated with the different parameter settings.

Figure 5.3 shows a similar graph, except here we are looking at the percent

age of problems solved (as compared to the standard version of the program). 

Most notable is the steep increase in the percentage of problems solved as c is 

increased from 2 to 3. However, increasing c further only yields slow improve

ment. There is also a slight trend towards improved accuracy as e is decreased, 

at least for the smaller values of c. This is understandable, since by decreasing 

e the criterion for mc-prune is being set more conservatively.

From the above data, setting c =  3 and e somewhere in the high range of 

8 — 12 looks the most promising. These settings give a substantial node savings 

(about 20%), while still solving over 99% of the problems that the standard 

version does. The data charting the two above graphs is provided in Table

5.3.
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Table 5.3: T„ir(r_vx) searches showing the performance of different multi-cut 
parameter settings relative to a standard search, in both terms of % of nodes 
searched (Xod%) and problems solved (Sol%).

r r; r. Noib/c Sol% r c e Nod% Sol% r c e \od% Sol%
1 2 2 92.05 98.10 2 2 2 77.28 98.10 3 2 2 79.21 96.80
L 2 4 93.33 97.60 2 2 4 70.48 97.40 3 2 4 71.60 95.80
I 2 6 93.02 97.20 2 2 6 67.61 97.20 3 o 6 67.71 95.80
I 2 8 91.71 97.20 2 2 8 61.56 97.20 3 2 8 63.17 95.50
I 2 10 92.10 96.80 2 2 10 60.04 97.00 3 2 10 60.57 95.20
1 2 12 93.39 96.80 2 2 12 59.38 96.80 3 2 12 57.13 95.10
I 3 4 134.17 99.20 2 3 4 87.46 99.50 3 3 4 86.07 97.70
1 3 6 144.14 99.20 2 3 6 84.41 99.30 3 3 6 82.92 97.50
I 3 8 150.31 98.90 2 3 8 82.60 99.20 3 3 8 79.30 97.50
1 3 10 153.00 98.70 2 3 10 81.66 99.10 3 3 10 75.86 97.10
I 3 12 157.34 98.50 2 3 12 79.95 99.20 3 3 12 72.21 97.00
I 4 4 175.38 99.40 2 4 4 100.14 99.70 3 4 4 98.33 98.60
1 4 6 194.19 99.40 2 4 6 98.86 99.60 3 4 6 94.20 97.90
1 4 8 210.41 99.30 2 4 8 98.50 99.40 3 4 8 89.96 97.90
1 4 10 222.67 99.10 2 4 10 98.51 99.20 3 4 10 87.39 97.70
1 4 12 234.33 99.00 2 4 12 98.04 99.20 3 4 12 84.89 97.60
1 5 6 227.73 99.50 2 5 6 109.63 99.80 3 5 6 97.23 98.50
L 5 8 252.26 99.60 2 5 8 109.93 99.80 3 5 8 94.95 98.10
1 5 10 276.16 99.50 2 5 10 110.67 99.70 3 5 10 92.02 97.90
1 5 12 286.82 99.40 2 5 12 110.88 99.60 3 5 12 90.24 97.80
1 6 6 239.81 99.70 2 6 6 113.77 99.90 3 6 6 100.97 99.20
1 6 8 269.33 99.70 2 6 8 116.40 99.90 3 6 8 99.42 98.30
I 6 10 312.24 99.70 2 6 10 118.61 99.90 3 6 10 100.24 98.30
1 6 12 335.51 99.70 2 6 12 120.23 99.90 3 6 12 95.66 98.00

5.4.3 M u lti-C u t in  P ractice

Ultimately, we want to show that game-playing programs using the new prun

ing method can achieve increased playing strength. Although the aforemen

tioned experiments are useful in giving insight into the feasibility of the idea 

and the behavior of the search, they do not tell how beneficial the new method 

is in practice. For that actual games are needed. Generally, when using a 

speculative-pruning scheme, playing games is the only way to show the ap

propriate balance between improved search efficiency and added risk of over

looking good continuations. We experimented with multi-cut in two different 

game-playing programs, a chess program and a Lines-of-Action program.
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Table 5.4: 80 game multi-cut chess match results.

Tmc(3,io,2) versus T
Time control Score Winning %
40 moves in 5 minutes 46 - 34 57.5
40 moves in 15 minutes 42 - 38 52.5
40 moves in 25 minutes 43.5 - 36.5 54.4
40 moves in 60 minutes 4 3 -3 7 53.8
In total 320 games: 174.5 - 145.5 54.5

C h e s s

Two versions of the T h e  T u r k  were matched against each other, one using 

multi-cut pruning and the other not. Four matches, with 80 games each, were 

played using different time controls. To prevent the programs from playing 

the same game over and over, forty well-known opening positions were used 

as a starting point (see Appendix D.5). The programs played each opening 

once from the white side and once as black. Table 5.4 shows the match results. 

T  represents the unmodified version of the program and Tmc(Cie r) the version 

with multi-cut implemented. We experimented with the case e =  10, r = 2. 

and c =  3 (i.e. 10 moves searched with a depth reduction of 2-ply and with 3 

cutoffs required to achieve the mc-prune condition).

The multi-cut version shows a definite improvement over the unmodified 

version, scoring overall 175.5 vs. 145.5 points. In tournament play this winning 

percentage would result in about 35 points difference in the players’ perfor

mance rating. Although this single set of experiments doesn’t allow us to 

quantify the exact strength difference between the two versions (for that far 

more games are needed, preferably against many different opponents), we can  

state with over 90% statistical significance that the multi-cut version is the 

stronger.

Finally , as an add itional insight, T h e  T u r k  gathered sta tistics  about the
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behavior of the multi-cut pruning. The search spends about 25%-30% of its 

time (in terms of nodes visited) in shallow multi-cut searches, and an mc-prune 

occurs in about 45%-50t/c of its attempts. Obviously, the tree expanded using 

multi-cut pruning differs significantly from the tree visited when it is not used.

Lines o f A ction

One of the strengths of the multi-cut method is that it does not use any game- 

specific knowledge (although the multi-cut parameters might need to be set 

differently depending on the game): thus, it is tempting to state that it can 

equally well be employed in other games. However, one has to be extremely 

careful with statements like that. Sometimes improvements that at first sight 

appear to be game independent, nonetheless turn out to be restricted to use 

in only one specific game. Often they depend on some hidden properties of 

the search space, present only in that particular game.

To see if multi-cut is beneficial in games other than chess, we implemented 

it in a Lines of Action (LOA) game-playing program. The program, YL, is the 

gold-medal winner from the 2000 and 2001 Computer Olympiad [13, 20], and 

has indisputably established itself as one of the strongest LOA player in the 

world (including both human and computer players). The game was invented 

by Claude Soucie in the 1960’s, but has only recently attracted the attention 

of the AI community [81]. The game is played on an 8x8 checkers/chess board. 

Each player starts with 12 pieces on the board and the first player to connect 

all of them into one group wins. The rules of the game are described in 

the well-known book A Gamut of Games [67], but are also accessible on the 

World-Wide-VVeb.

As in the chess experiments, we matched two versions of the program 

against each other, one using multi-cut and the other not (but otherwise iden

tical). The multi-cut parameters e =  3, c =  3, and r  =  2 were chosen. The
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Table 5.5: 622 game LOA match result.

versus Y L
Program Game results Score %
Y  LmC( 3,3,2)

Y L
+328 =16 -278 
+278 =16 -328

336 - 286 
286 - 336

54.02
45.98

reason for setting e =  3 (as opposed to 10 in the chess experiment), is that 

the average branching factor in LOA is somewhat less than in chess; in a 

typical middle-game position there are generally between 20-30 legal move al

ternatives, whereas in chess the range is more like 30-40 moves. To prevent 

the programs from re-playing the same game over again, different opening 

positions were used as starting points. Unlike in chess, an established set 

of standard opening moves has not been established in LOA. This posed a 

problem when selecting which opening positions to use in our self-play ex

periments. To be objective we rejected the idea of pre-selecting the opening 

positions; instead we generated from the initial game state all possible game 

positions two moves into the game (one move for each side). This results in 

311 different start positions. Because each program plays both sides of the 

opening, the self-play match consisted of 622 games in total. All games were 

played on Intel Pentium III computers using 30 minutes a game time controls. 

For each game the opposing programs played on the same computer, taking 

turns playing a move (the thinking-on-opponents-time feature was turned off 

to prevent the programs from competing for CPU time).

The outcome of the match is shown in Table 5.5. We see that the multi

cut version won 328 games, drew 16 games, and lost 278 games, resulting 

in a significant winning margin of 336 vs. 286 points. We also investigated 

how aggressively the multi-cut method prunes the game tree. For the same 

nominal search depth, the multi-cut program searches only roughly two-thirds
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the nodes of the unmodified version. Thus, given the same amount of time, 

the program reaches deeper nominal search depths on average. The benefits 

of that clearly outweigh the effects of occasionally introducing a pruning error 

in the search.

One drawback of the approach used to select the opening lines is that we 

run the risk that many of the openings are lopsided, that is, directly from 

the opening one side establishes sufficient advantage to handily win the game. 

This would clearly favor the weaker program by making the outcome of the 

match look closer than it would otherwise be. We tried to estimate how 

profound this problem is in Lines of Action.2 In Table 5.6 we view the games 

as 311 independent mini-matches, where each mini-match consists of the two 

games played from the same opening position. The multi-cut versions wins 

69 of these mini-matches and loses 42. However, it is striking to see how 

many of them end in a draw, mainly because the same side (color) wins both 

the games. This could be an indication that a high number of the opening 

positions are unusually lopsided. If this really is the case we would need to find 

an independent and objective way to eliminate these openings. Nonetheless, 

despite the high number of drawn matches, the multi-cut version wins 64% 

more matches than the unmodified program. Assuming that the multi-cut 

version is the stronger, as the result clearly indicates, we would expect the 

winning percentage to be even higher if all lopsided positions were eliminated 

from the test suite.

The second advantage of looking at the data as mini matches is that it 

allows us to perform a standard statistical test to see if the performance im

provement of the multi-cut version is statistically significant. If the unmodified

version of the program played 311 mini-matches against itself, the expected
*In tournament checkers, opening positions are selected at random in a similar way. 

However, some o f the openings have been removed (banned) because they lead to an easy  
win for one side.
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Table 5.6: 311 mini-match LOA result..

YLmc(3 ,3 ,2 ) versus YL
Program Match results %
^ ^ m c(3 ,3 ,2 )

Y L
+69 =200 -42 
+42 =200 -69

+22.2 =64.3 -L3.5 
+  13.5 =64.3 -22.2

outcome would be that they all end in a draw because the second game would 

be an exact replica of the first.3 Thus, we can use a student-t statistical test to 

compare the mean of the win-draw-loss distribution of the multi-cut program 

to the expected distribution of a YL vs. YL match (all draws). YVe performed 

the test, and based on that we can state with over 99% statistical significance 

(t=2.5861, p=0.0099) that the mean of the former distribution is higher. This 

demonstrates with a high confidence that the multi-cut version is definitely 

stronger.

5.5 R elated  W ork

The idea of exploring additional moves at cut-nodes is not entirely new. There 

exist at least two other variants of the a(3 algorithm that explore more than one 

alternative at cut-nodes, although the resulting information is used differently 

in our work.

The Singular Extensions algorithm [3] extends "singular" moves more deeply 

than others.'1 A move is defined as singular if its evaluation is higher than all 

its siblings by some specified margin, called the singular margin. Moves that 

fail high. i.e. cause a cutoff, automatically become candidates for being singu

lar (the algorithm also checks for singular moves at pv-nodes). To determine

if a candidate move that fails-high really is singular, all its siblings are ex-
3 Because the program used real time-controls, there is a slight possibility that in excep

tional circumstances some games would not be repeated, resulting in an occasional mini- 
rnatch to end in a win for either side.

'The algorithm is also briefly explained in Chapter 2.
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plorcd to a reduced depth. The move is declared singular only if the value of 

all the alternatives is significantly lower (as defined by the singular margin) 

than the value of the principal variation. Singular moves are "remembered” 

and extended one additional ply on subsequent iterations. One might think 

of multi-cut as the complement of singular-extensions: instead of extending 

lines where there is seemingly only one good move, it prunes lines where many- 

promising (refutation) moves are available.

The Alpha-Beta-Conspiracy algorithm [54] is essentially an ad-search that 

uses conspiracy depth, instead of classical ply depth, to decide when to stop 

searching a branch. The conspiracy depth is updated at each node in the 

tree, but instead of reducing the depth always by one ply, it can be reduced 

by a fraction of a ply, all depending on how many good alternative moves 

there are. The fewer alternatives, the smaller will be the conspiracy depth 

reduction. Quiescence searches are used to establish the number of good al

ternative moves. This algorithm encourages forced lines to be searched more 

deeply. Another distinct feature of the algorithm is that two separate conspir

acy depth parameters are used, one for each player. At each level, only the 

conspiracy depth parameter for the player to move is updated. The search 

explores a branch until either both conspiracy depths parameters converge to 

zero, or alternatively, when the conspiracy depth for the player to move is zero 

and a static evaluation delivers a cutoff. However, empirical results using this 

algorithm are not favorable.

5.6 C onclusions

We have shown that there is a strong correlation between the number of 

promising move alternatives available a t an expected cut-node, and the node 

becoming a True-cut-node. We introduced a new pruning method, multi-cut. 

that exploits this correlation. Furthermore, to show the promise of the idea.
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we implemented and experimented with the technique in two different game- 

playing programs. Our experimental results give rise to optimism. In match 

play using two different games as a test bed, the versions using the new prun

ing method consistently outplayed the unmodified program versions. Our new 

search method, while expanding a tree that is radically different from that of 

the algorithm, significantly improved the playing strength of the two game 

programs we used for our experiments.

The multi-cut method is still relatively new, and has likely not yet matured 

to the state of achieving its full potential. For that, much more tuning and 

testing is needed (years of experience has shown that it usually takes a long 

time for a new search enhancements to fully evolve and its potential to be 

fully realized). There is definitely scope for improvement through further tun

ing and enhancement. For example, one promising avenue for improvement 

is to parameterize the pruning using variables instead of constants for c. e. 

and r; that way their valups r»n be adjusted dynamically as the game/search 

progresses. Another possibility, to minimize the risk even further, is to use 

a layered, multi-cut: that is, require that a multi-cut occurs on a least two 

different places along the search path before pruning takes place. With pro

grams searching deeper and deeper every year, that approach starts looking 

more feasible. Also, the multi-cut method does not utilize any game-specific 

knowledge, we deliberately made this decision to make the approach as do

main independent as possible. This is both a strength and a weakness. It is 

quite possible that the performance of the method can be further enhanced by 

looking at domain-specific properties.

Our experiments show that there is room for innovative domain-independent 

pruning methods, based on exploiting the structure of a critical tree. The 

multi-cut method as described and implemented here — although promising 

— is not the only way of using the information about the number of good
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move alternatives at cut-nodes, and by no means necessarily the best. The 

multi-cut method, to the best of our knowledge, has been successfully adopted 

by some of the world's strongest commercial chess programs.
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Chapter 6 

Learning Search Control

Tactics is knowing what to do when there is something to do; 
strategy is knowing what to do when there is nothing to do.

-Savielly Tartakower

In the previous chapters we investigated methods for reducing the size of 

the search tree. The rationale behind these methods is that by exploring less 

deeply continuations that look futile, more time may be invested in exploring 

interesting lines more deeply. In this chapter we look at search extensions, an 

alternative way of adding selectivity to depth-first search.

6.1 Introduction

In the domain of planning and scheduling, machine learning methods have 

been applied successfully to improve both the search efficiency [57, 55] and, 

more recently, the quality of the produced plans [62, 31]. These methods work 

primarily by deriving and refining control rules. Unfortunately, such a rule- 

based approach is not feasible for learning search control in two-person games 

such as chess, checkers, and Othello. First of all, many decades of experience 

have proven that it is difficult to produce search-control rules that generalize 

well from one game position to the next. Secondly, in competitive play the 

game-playing programs must meet external time constraints, often having only
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a few minutes to decide on a move. Efficiency is therefore of paramount 

importance and the overhead of manipulating complex search-control rules 

can easily outweigh the possible benefits.1 This calls for a different approach 

for learning search control.

In view of the above, it is not surprising that machine learning in games has 

not focused so much on the search as on other aspects of the game, where exist

ing learning techniques are more readily applicable. For example, many differ

ent schemes exist for learning evaluation function parameters [68, 69, 9, 25, 4], 

and more recently, work is being done on dynamic adjustment of opening-books 

[26, 42]. However, attem pts to improve the search efficiency in two-person 

games have not been particularly successful. For example, explanation-based 

learning [57] and case-based reasoning [45] approaches, although interesting, 

have yet to demonstrate an overall improvement in the search efficiency. Also, 

early attem pts to use patterns to guide the search were only moderately suc

cessful [80]. In games like Go, where search is of a lesser importance, some 

success has been achieved recently by learning search-control rules [28]. For 

an overview of methods for learning in games see. for example, Fiirnkranz 

[.34. .35].

In addition to the above approaches, some of the search enhancements 

already widely employed in adversary search may be viewed as simple forms of 

learning. Two such enhancements are the history-heuristic [71] and permanent 

hash-table entries [73]. The former enhancement keeps a table storing a merit 

value for each move indicating how well it has done so far. This information is 

used to improve move ordering during the search. The latter method is a simple 

form of rote learning: the program simply keeps track of losing positions from

previous games, such that it can avoid repeatedly losing games in the same
'For example, the top competitive chess programs typically explore close to a million 

chess positions per second on contemporary PCs.
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fashion. More recently there have been attem pts to improve move-ordering 

schemes for several games using specifically trained neural networks [38, 47].

In this chapter we introduce a novel method for learning search control in 

two-person games. The method is equally suited to learn either during online 

play, or by analyzing game positions offline. Before we describe the learning 

system it is worthwhile to briefly review search-control strategies in two-person 

game's.

6.2 Search Control

As previously discussed, or/3-based algorithms are almost universally employed 

by game-playing programs in board games such as chess, checkers, and Othello. 

The search efficiency of the algorithm can be improved in a couple of ways: 

either by improving the move ordering (expand fewer nodes of the game tree) 

or. alternatively, by being more selective of how deeply to explore each line of 

play (can find a good solution in an early iteration). We previously mentioned 

a few move-ordering strategies, but here we are only concerned with selectively 

deciding which nodes to search deeper or shallower.

6.2.1 Search E xtensions

The number of nodes visited by the aft algorithm grows exponentially with 

the search depth. The question now becomes: how can a program best use 

the available time to find a good move? Although the basic formulation of 

the algorithm explores all continuations the same number of plies, it has 

long been evident that this is not the best search strategy. Ideally, interesting 

continuations are explored more deeply while less interesting alternatives are 

terminated prematurely. In chess, for example, it is common to resolve forced 

situations, such as checks and recaptures, by searching them more deeply. The 

search efficiency — and consequently the move-decision quality — of the a 3
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algorithm is greatly influenced by the choices of which lines are investigated 

deeply and which are not. Therefore, the design of a search-extension scheme is 

fundamental to any game-playing program using an a/3-like algorithm. Several 

studies have been conducted to quantify the relative importance of various 

extension schemes [3, 82, 8]. Unfortunately, the more elaborate the search- 

extension scheme, the more difficult it is to parameterize to achieve its full 

search-efficiencv potential. In here we introduce a method for automatically 

tuning these parameters.

6.2.2 A  Unified V iew

Although they are all based on the same principles, the specific search-extension 

schemes employed by the various game-playing programs differ somewhat from 

one program to the next. Therefore, to make our learning system as widely 

applicable as possible, we introduce a unified framework that attempts to en

capsulate the various implementations.

Figure 6.1 shows an example game tree that is being searched to an arbi

trary depth, say d!. For any node x  in a tree, let Px stand for the move path 

leading from the root of the tree to that node. For example, the path Ph 

consists of the move sequence connecting nodes A-B-E-F-G-H. In our unified 

framework, a function D(P,w) decides how far to expand each line of play. 

The current move path is expanded until:

D(PX, w) > d '.

The function takes the current move path as its first argument and returns 

its depth. Note that the depth of the path is not necessarily the same as its 

length. The length is simply the number of moves on the path, whereas the 

depth can be determined by whatever criteria we like. When a path's depth 

is less than its length, the path will be extended beyond the nominal search
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Figure 6.1: Search-extension schemes - a unified view.

horizon. Search reductions occur when the opposite is true. The special case 

where the depth of each move path equals its length results in a search strategy 

that explores all continuations the same fixed number of plies. The second 

argument of D. iU. is a vector of search-control parameters that influence the 

depth calculations. These parameters are made explicit because they are the 

ones we want to learn. In practice, there are probably additional parameters 

that must be passed to the function, such as the root game position and the 

a  and 0  search bounds. However, to simplify our notation we do not show 

them, but we may assume arbitrary many such parameters (as long as they 

are not a function of w). The only restriction we put on the depth function is 

that it is monotonically non-decreasing, that is, the depth of a move path will 

never decrease by adding more moves to the end of the path.

Our framework is quite general and incorporates most of the different search 

extension schemes known to us. On the other hand, when implementing a 

competitive garne-playing program, one typically does not have an explicit 

function for calculating the depth of the move path at each frontier node — 

instead the depth is updated incrementally. However, this does not pose a
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problem as long as there exists a conceptually equivalent formulation in the 

form of a depth function.

6.2 .3  F ractional-P ly E xtensions

Now we show how a commonly used search-extension scheme, often referred to 

as fractional-ply extensions [49, 41]. can be trivially formulated within the uni

fied framework (the game-playing program we use for our experiments employs 

this type of extension scheme). The existence of predefined move classes is as

sumed, where each class has a weight associated with it. Examples of move 

classes in chess could be checking moves, recaptures, and advanced passed- 

pawn pushes. During the search, each move is categorized as belonging to one 

of the move classes, and the depth of the current move path is the sum of 

the class weights of the moves on the path. Referring back to Figure 6.1, the 

numbers on the paths show the class weight of each move. For example, the 

depth of path Pp is 1.0 +  2.0 + 1.0 = 4.0, and similarly the depth of Ph is 4.5. 

More formally, if we assume that there are N  predefined classes, the depth 

function becomes:
h>ngth(P )

D(P, iu) =  ^  Wi | i =  Class(mj)
j = i

where m j  is the j- th  move on the path, the vector w contains the weights for 

each of the N  move classes (the element tc, is the weight of class number i). 

The Class(mi) function categorizes each move as belonging to one of the move 

classes 1,..., N .  The search-control parameters to be tuned are the weights of 

the move classes.

6.3 T he Learning System

The main advantage of the general framework above is that search-control 

learning can now be viewed as a function-approximation task, namely approx-
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imating the D(P, w) function. In other words, the task of the learning system 

is to find the most appropriate weight vector w. As with all such tasks, we 

must decide on the training experience, the exact representation of the target 

function (i.e. the function we are trying to approximate), and the algorithm 

for adjusting the weights.

6.3.1 Training Experience

We want the game-playing program to learn from its mistakes and adapt the 

search behavior accordingly. However, for that to be possible the program must 

first recognize when it makes a mistake. For human players this is generally not 

that difficult a  task. Experienced players will identify where they went wrong 

in a post-mortem analysis of a game: the player might have over-estimated his 

or her chances in a particular position, may have chosen a dubious plan, or 

simply overlooked some tactical continuations. On the other hand, identifying 

mistakes is a challenging task for a computer player. Obviously, if the program 

loses a game in an abrupt fashion it is clear that a mistake was made, but to 

pin-point exactly what move or moves were the cause of the defeat is not trivial. 

This problem is sometimes referred to as the credit assignment problem, and 

it’s hard in the general case. However, there are situations where mistakes can 

be identified with a high degree of certainty.

Figure 6.2 shows a search tree for a game in progress: the moves connected 

by the solid lines have already been played, and currently the program is 

searching game position C. Based on the search the program determines the 

principal continuation to be m1,....mn (shown as dotted lines), and assesses the 

position as having a value vc- Now. assume that when it was the program’s 

turn to move at position A  the assessment was significantly higher, or

Vc  <  UA -  T 
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Figure 6.2: Identifying mistakes.

where r  is a positive constant representing the significance margin. The pro

gram now evaluates its chances much poorer than just a move ago; clearly 

something must have gone wrong! But what caused this undesirable change 

of fortune? One of two things could be responsible. It might be that position 

.4 was already bad but that the program just didn’t realize it. Alternatively, 

it could be that position A  was fine and the move rnA was a mistake — and 

only now does the program see the bad consequences of that move. However, 

in either case, position A  was assessed incorrectly. Thus, .4 is referred to as 

a critical position, and the move sequence m.\. rnB, m t, ...,mn is known as 

the solution path of the position. The basic assumption that we make here is 

that if the search is to correctly assess position .4. its solution path (SA) must 

be fully explored..2 This implies that the game tree for position .4 needs to be

explored to the depth of its solution path. Critical positions and their solution
-Note, this is not a sufficient condition for correctly assessing the position, because other 

lines in the game tree might also need to be explored more deeply. We are only assuming 
this to be a necessary condition.
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paths form the training input for our learning system. Many existing problem 

test suites consist of a collection of game positions and their corresponding 

solution paths, meaning that they can also serve as a training input for our 

learning method.

It is interesting to note that it is not instructive to learn from cases where 

the positional estimate increases from position .4 to C. The reason is that the 

in-between move made by the opponent, that is move mg. might simply be 

a blunder. The search might have explored that move at position .4 deeply 

enough to correctly discard it as a bad move, in which case there is no need 

to change the search parameters.

6.3.2 Target Function

The function we want to approximate is the depth function D(P. w). However, 

it is not clear how the training experience from the above example helps us do 

exactly that. Although we know position .4 and its solution path, there is no 

information about the “correct” depth for the path. This renders supervised 

learning methods practically useless. Instead, we must go about this indirectly. 

One way of reformulating the problem is to ask: which weight vector results in 

the search expanding the fewest nodes possible to find the given solution path? 

Given our previous assumption, we know that to find the solution the position 

must be expanded to at least the depth of its solution path. Therefore, we alter 

the question slightly to: when expanding the position to the depth of its solution 

path, which weight vector causes the search to expand the fewest nodes possible? 

Answering this question is not trivial since changing the weights affects not 

only the solution path but also other parts of the search. Without actually 

performing the search we have no way of telling how many nodes it will take 

to explore position .4 that deeply (and during a game we cannot revisit the 

position to search it again).

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Suppose that we have a cost model

C(p , w, d)

that predicts how many nodes it takes to search position p to depth d using 

weight vector w. We could use this cost model to answer the question we posed 

above, that is. predicting the number of nodes it takes to expand position A 

to the depth of its solution path as:

C (A ,w ,D (S a , w )).

More generally, given a set of training samples, T, where each sample is a pair 

< Pt-St > consisting of a game position (pt) and a solution path (St). we are 

interested in finding the weight vector w that minimizes the total number of 

nodes (as estimated by the cost model) that it takes to “solve" all the samples. 

In other words we want to minimize the function:

F{w) = y ' C ( p t,w ,D (S t,w)).
teT

If the function C{p, uj,d) were known this could be done numerically, or even 

analytically. However, for games of any complexity it is practically impossible 

to analytically model this function. Not only does it depend on the weight 

vector but also on various positional features. A key observation here is that it 

is not necessary to formally model the function over the entire search space to 

be able to minimize it. When using a hill-climbing-like method, it is sufficient 

to be able to approximate it for any individual point in the search space. 

Fortunately, we have a way of doing that, as we show in section Section 6.4. 

but let us first concentrate on the learning algorithm.

6.3 .3  Learning A lgorithm

A standard hill-climbing method, gradient-descent [56], is used to minimize 

F{w). Although the method guarantees finding a global minimum only for
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concave functions, nonetheless, in practice it is a highly effective heuristic ap

proach to optimization and forms the basis of various learning systems (e.g. 

the back-propagation rule in artificial neural networks). The graclient-descent 

method starts with some initial setting for the weight vector w, and then re

peatedly iterates over all the training samples, each time updating the weight 

vector in the opposite direction of the gradient. The gradient of F{tu) speci

fies the direction of weight changes that produce the steepest increase in the 

value of F(w). Therefore, by adjusting the parameters in the opposite direc

tion, one expects the value of the function to incrementally decrease at each 

iteration. This process is continued until some termination condition is met. 

The condition could be as simple as doing a fixed number of iterations, or a 

more elaborate one like: continue until the progress becomes negligible. The 

gradient provides the sign and relative size of each weight change, while the 

step size — that is. how much the weights are altered — is controlled by the 

learning rate p.. The learning rate is typically decreased after each iteration 

to avoid stepping over the minimum and to ensure eventual convergence. The 

exact procedure for decreasing p  depends on the search domain, and is often 

determined by trial and error.

Our implementation is outlined as Algorithm 12 below. The algorithm 

starts by initializing the search control parameters (wi) to 1 (lines 2-4). and 

then repeatedly iterates over the test suite data T  (consisting of game positions 

pt and corresponding solution paths S t). In our experiments, for simplicity, 

a fixed number of iterations is done. Before starting each iteration we ini

tialize the variables that record the total node-count information (lines 7-10). 

The variable nodes indicates the total number of nodes that our cost model 

predicts it will take to solve all the problems in the test suite, whereas each 

Anodesi stores how much this node count would change if we were to alter 

the corresponding search control parameters, Wi. The node-count information
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A lgorithm  12 LSC
1: / /  Initialize in 
2: fo r  i =  1, N  d o  
3: W i  4— 1
4: e n d  fo r
5: / /  Iterate until a sufficiently good uj is found.
6: w h i l e  not terminate d o  
7: nodes <— 0
8: fo r  i =  l , N  d o
9: Anodesi <— 0

10: e n d  fo r
11: fo r  a l l  (p t , St) €  T  d o
12: nodes = nodes +  C(pt, w, D(St, w))
13: fo r  i =  1, N  d o
14: A nodes i <— Anodes, + dC(pt, w ,D (S t, w))/dwi
15: e n d  fo r
16: e n d  fo r
17: fo r  i =  1, iV d o
18: Wi 4— Wi — p A wmax {Anodesi/nodes)
19: e n d  fo r
20: fi <— Decrease(p)
21: e n d  w h i l e

accumulates as we go through the test suite sample by sample (lines 11-16). 

The gradient (line 14) is used to tell how much the node count will change if a 

weight were to be altered. After finishing looking at all the game positions the 

search control parameters are updated proportionally to how much a change 

in them will affect the total node count (lines 17-19). The Awmax constant is 

used for controlling the step size. Basically, a parameter change that causes 

100% increase in the node count would result in a weight change of exactlv 

■AtUmax (given a learning rate of 1.0). Larger or smaller node count changes 

are adjusted proportionally. Finally, before starting the next iteration, the 

learning rate (p. parameter) is decreased.

A detail one might have noticed is that there is no direct reference to the 

actual game-playing program in the learning algorithm, only to the cost model. 

How can that be? The answer is that our cost model uses the game-playing
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program to provide information about how many nodes the search actually 

expands.

Although we show the algorithm here as operating on an existing test 

suite of training samples, it is also suitable for learning from online game play. 

Then, instead of updating the weight vector after each iteration, it is updated 

after each training sample (or a subset of samples). This is a more convenient 

approach when learning during online game play, since we want to update the 

weights either immediately after encountering a critical position (see Section 

6.3.1) or, alternatively, between games. This approach is sometimes referred 

to as incremental gradient-descent [56]. When using an incremental version 

of the algorithm it is important to use a slower learning rate (a smaller /i) 

to make sure the weights are not changed drastically based only on a single 

learning sample. An alternative approach would be to copy to a log file all 

critical positions and solution paths encountered during online play, and then 

learn offline from the resulting test suite using Algorithm 12.

6.4 M odeling th e  Search

So far we have assumed the existence of a cost model, but at the same time 

implied that it is impossible to accurately model the search. This seems para

doxical. However, as we mentioned before, it is not necessary to formally 

model the search over the entire search space. When traversing the hypothesis 

space of possible weight vectors, the gradient-descent algorithm requires infor

mation about only a  few individual points in the search space. Fortunately, 

we have a way of approximating these points by using actual searches!
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6.4.1 C ost M od el

The cost model assumed by the learning algorithm returns an estimate of 

how many nodes the search expands when position p is explored to depth d? 

Because the node count typically grows exponentially with increased search 

depth, the cost function must be of the basic form:

C{p, w, d) =  B{p, tv)d. (6.1)

The B(p,w) function measures the growth rate of the search. For example, 

B(p, w) =  4 means that it takes 4 times its many nodes to search position p 

to depth d +  1 than to depth d. Even though the game trees themselves are 

highly irregular, the model above can be used as long as the growth rate is 

almost constant with respect to the search depth.

It is important to understand how altering the search-control parameters 

tc affects the node-count estimate. Recall that for any given position p and 

corresponding solution path 5, we are interested in knowing

C(p, w, D(S, uj)).

Modifying any weight has two fundamental effects:

•  the exponential growth rate B(p, w) changes, and

•  the required search depth D (S , w) is affected.

Typically, these two are counter-acting, for example, a change that reduces the 

depth of the solution path also tends to inflate the growth rate of the search. 

Intuitively, one would expect that altering the weights such that the required

search depth is reduced would result in the smallest node count. However, it is
3Alternatively, one could measure the running time of the algorithm. However, that 

measure is a little more problematic because of hardware dependence, and non-deterministic 
behavior when running experiments on a multi-user platform. In any case, the number of 
nodes explored per second by the search algorithm is fairly constant within each phase of 
the game, and so these two measures are approximately equivalent.
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quite possible that the modified weights will affect the exponential growth of 

the search in such a way that the estimated node count for the reduced search 

depth will indeed be higher than the one before. The right balance needs to 

be found.

Algorithm 12 needs to know the partial derivatives of C'(p. tv, D(S, w)) (see 

Appendix C for details), or

The depth function D (S,w)  is assumed to be known in our model, and so 

are its derivatives. For example, in the fractional-ply extension scheme we 

mentioned earlier, the derivatives are simply the number of moves on S  that 

belong to the i-th move class). The only unknown quantities in the above 

equation are therefore the B(p,w)  function and its partial derivatives.

6.4 .2  A pproxim ating B(p, w) and its Partial D erivatives

In our cost model the growth-rate function B(p, w) is constant with respect 

to the search depth.4 Therefore, by knowing the node count for only a single 

search depth we can determine the growth rate. For instance, in the example 

given in Figure 6.2 we know how deeply position A was actually explored, say 

to depth dA, and how many nodes were expanded, say nA. Presumably, dA is 

less than the depth of the solution path of position A. Now. by substituting 

dA and nA in for d and C(p,w,d)  in equation 6.1. respectively, we get:

'Note that this does not imply that the search trees need to be of a uniform width or 
height, only that the average number of nodes ratio between a d+ L and a d plv deep search is 
approximately constant. This is the case in most games we work on. albeit, there are minor 
fluctuations between even and odd search depths. This is not an issue but, if necessary, one 
could trivially adjust the estimates to account for this.

dC'{p. w. D(S, w )) 
dwt

+  ln(5(p. id))C(p, w,D(S, w))( D(S, w) dB(p, w) 
B(p, w) dwt

nA =  B(p, w)dA => B{p, w) — n'[A . (6.3)
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The resulting approximation of the growth rate will allow us to use the cost 

model, and we can now estimate how many nodes the search will explore when 

expanding position .4 to the depth of its solution path. Because, in practice, 

the growth rate is not truly constant, this in only an estimate. Nonetheless, 

given that the depth is reasonably close to the depth of the solution path, 

the estimate will be sufficiently accurate (the experimental result provided in 

Chapter 7 further supports this claim).

The partial derivatives are more problematic. Recall that the partial 

derivatives simply state how much the value of the function is expected to 

change if each weight is increased by a small amount, they can be approxi

mated as:
dB{p, w) {B(p,w + X )  -  B(p, w))

=  J ,  ( 6 ' 4 )

where A, is a vector whose the i — th element equal to Si and all the other 

elements zero. This requires us, though, to know the value of each of the 

B(p. ir, -I- A,). One approach to come up with these values is to perform V 

(number of weight parameters) additional searches using a differently altered 

weight vector each time, and then use equation (6.3) to estimate the growth 

rate of the search for each of the altered weight vectors. Unfortunately, this is 

not feasible because of our requirement that the learning system be used during 

online play. Instead, during the normal search we simultaneously estimate for  

each of the :V altered weight vectors how many nodes would be expanded if they 

were used. In addition to the normal depth, separate depths and node counts 

are recorded for each of the modified weight vectors (uji + A,). The node-count 

information gathered this way allows us to estimate each of the B(p. (c, + A,) 

in the same way as before using equation (6.3).

This process is illustrated in Figure 6.3 for the fractional-ply extension 

scheme (see Figure 6.1). Assume that the tree shown is expanded using weight 

vector w = {1.0.2.0,0.5}, that is, there are three move classes with weights
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Figure 6.3: Approximating B(p, W\ +  A t).

1.0, 2.0, and 0.5. respectively. The dark shaded area shows the subtree we 

would expect the search to expand when using an altered weight vector {1.0 -f 

<Ji, 2.0,0.5} (d'i > 0). At position G, for example, if the depth D{pg. iv + Ai) 

exceeds the search-depth limit, node H  would not be expanded. Therefore 

it is not included in the total node count for that weight vector. The node- 

count information for the other two modified weight vectors is simultaneously 

gathered in the same way (not shown in the figure). A detailed example of 

this technique is given in Appendix B.

Note that this approach only approximates how many nodes are searched: 

if we really were to use a modified weight vector different values would be 

propagated up the tree, likely causing another set of branches to be expanded 

in some of the subtrees. Nonetheless, this approximation gives us a pretty 

good idea about the sensitivity of the search to changes in the search-control 

parameters. For this approximation to work, each of the weights must be 

altered such that the move paths become shorter — otherwise, the actual 

search would terminate before the altered depths reach the search-depth limit. 

In the previous example this means adding a positive constant to each of the

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



weights. However, because we do not put any restrictions on the form of the 

depth function, in other extension schemes this might imply that a weight must 

be reduced. One can even envision schemes where changing a parameter in 

either direction causes some move paths to shorten but others to lengthen. In 

such cases it might be possible to replace the troublesome parameter with two 

new ones, such that a parameter adjustment now causes consistent changes 

in the move path depths. When that is impossible, it might be necessary as 

a last resort to explore some paths in the tree beyond the depth the actual 

weight vector does, although, this would impose undesirable overhead on the 

search.

6.5 E xperim ental R esults

To obtain practical exp erien ce  with the learning method we implemented it in 

the chess program C r a f t y  [41].° T h e program uses a  fractional-ply based ex 

tension scheme with five different move categories: checks, re-captures, forced- 

replies to checks (i.e. only one legal rep ly), advanced passed pawn-pushes, and 

null-move threats. The last m ove-class, null-move threats, does not fit directly 

into the framework we in troduced earlier. The reason is that a move can only 

be classified into this category  by actually performing a null-move search. 

Thus, to keep things simple, we chose to disable it in our experiments. VVe ran 

two independent sets of experim ents. In the first, the program was trained 

using an existing suite o f  chess-problem s, while in the second the program

learned during actual gam e play.

5C rafty  is one of the strongest, if not the strongest, of the chess programs whose source 
code is publicly available. On the online chess servers it consistently ranks among the highest 
rated players, out-performing both some of the commercial chess programs and strong chess 
masters. The source code is publicly available via ftp at ftp.ds.uab.edu/pub/hyatt. Our 
learning scheme was originally implemented in version 16.4 and later re-implemented in 
versions 16.17. The results reported here are based on that latter version.
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Figure 6.4: Learning results.

6.5.1 T est Suite

Within the computer-chess com m unity  it is com m on practice to benchmark 

the performance of chess programs against standard test suites. In the first 

set of experiments we observed the perform ance improvement of the program 

as it learned using the well-known ECM test suite [48]. This suite consists of 

879 (mostly tactical) middle-game chess positions. Initially, the weights of the 

move categories were set to 1.0 , and allowed to vary within the range [0.1,2.0]. 

For each of the problems, if the right move was not found after examining half 

a million nodes the search was stop ped .

In Figure 6.4, the graph to the left shows the program s improvement from 

one iteration to the next. The dotted line shows the percentage of problems 

solved (out of the 879), and the solid line shows the total number of nodes 

searched relative to the first iteration (306 million nodes). The learning algo

rithm minimizes the total number of nodes required to solve the problems. The 

increase in problems solved follows indirectly as a side effect! The performance 

improves significantly as we can see. After only a few iterations the values have 

converged and the total node count is reduced to 74% (230M) of the original, 

at which level 57% (508) of the problems are solved correctly as opposed to 

39% (346) in the beginning. The right-hand graph, on the other hand, shows
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how the move class parameters evolve. The check extension weight rapidly 

drops to the minimum value, i.e. 0.1. This indicates that check moves are 

a particularly important category for extensions. The other weights also de

crease, but more gradually, and finally converge to a value between 0.6 and 

0.9 (more specifically the forced-replies, re-captures, and passed-pawn pushes 

classes have values of 0.68, 0.84, 0.91 respectively). The weight for the re

capture class is still oscillating around its optimal value. The reason is that 

we used a fixed learning rate, as opposed to decreasing it between iterations. 

Decreasing the learning rate can sometimes lead to a premature and false con

vergence of the parameters, something we wanted to avoid. On the other hand, 

by keeping the learning rate fixed one can experience oscillating behavior like 

this, where the method steps around the minimum without agreeing on one 

specific parameter value.

Many test suites, including the one we used, provide only the best-move for 

each position instead of the complete solution sequence. Because our learning 

method requires that the full solution-path be known, we had to make some 

compromises. If the best move returned by the program agrees with the move 

suggested by the test suite, we assume that the principal-variation given by the 

program represents the correct solution path. This path is stored and used in 

the current and all subsequent iterations. However, if the move returned does 

not agree with the test suite and there is no previously stored solution path 

for that particular problem, we simply ignore the problem. As a consequence, 

in each iteration we are minimizing the total number of nodes needed to solve 

only a subset of the problems in the test suite, that is, for those problems 

for which we have been able to derive a solution path. However, this subset 

gradually increases with each iteration and hopefully converges to a significant 

portion of the total test suite. A different approach that we could have taken is 

to find solution paths for the positions in the test suite, by pre-searching them
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to a much greater depth. The drawback of that approach is that a few of the 

more difficult problems require extremely deep searches to be solved. These 

few problems would dominate the total node count needed to solve all the 

problems. This is undesirable, and the compromise approach we take avoids 

this problem altogether.

6.5.2 G am e P laying

In the second set of experiments the program learned from playing games, 

instead of using a test suite of game positions. A version of the program using 

the learning scheme played 100 games against an unmodified version of the 

chess program (with a 5 minute time limit for each side for completion of an 

entire game). As before, the move class weights of the learner are initialized 

to 1.0. The program learns from critical positions encountered during the 

game. The threshold for a position to be considered critical is an evaluation 

drop of 1/3 of a pawn. Once the game position of the learner is considered 

to be lost (the position evaluation is more than 3 pawns down) the learning 

is disabled for the rest of the game. The reason is that once the position 

is already significantly worse, it is almost inevitable that one will lose more 

material and eventually the game. To learn from such losing examples is not 

particularly instructive.

The chess program used in the experiments distinguishes between three 

different game phases: the opening, the middle-game, and the end-game. The 

program evaluates game positions differently depending on which game phase 

it is in. but search extensions are done the same way in all phases. However, 

by automating the tuning-process of the weights we can easily learn a different 

set of weights for each game phase. Thus, our learning program is set up to use 

three different set of weights, one for each game phase. In our experiments, 

we diil not receive any learning samples in the opening phase. This is not
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Table 6.1: Learned weights.

Move class Hand-set weights Learned weights
Middle-game End-game

Checks 0.00 0.30 0.10
Re-cap t,u res 0.25 0.10 0.10
Forced-replv 0.25 0.10 0.15
Passed-pawn push 0.25 0.47 0.25

surprising because the opening phase is typically rather short and the resulting 

positions are usually equal in value.

Table 6.1 shows the learned weights for middle game and end-game play, 

and how they compare to the weights used by the unmodified program (hand- 

tuned bv the author of C r a f t y , a leading computer-chess expert). The 

learned weights differ substantially from the hand set ones. Also of interest 

is how the learned weights for the middle and endgame differ. We note that 

check extensions and passed-pawn pushes are extended more aggressively in 

the entl-game. as one might hypothesize. To evaluate the quality of the learned 

weights, we matched six different versions of the program against each other. 

The only difference between the versions was the value of the search-control 

parameters. Each match consisted of 100 games played at time controls of five 

minutes per game.6 To prevent the programs from repeating move sequences 

in the opening, each game was started from a different, well-established open

ing position (see Appendix D.6). The programs played each starting position 

once as White and once as Black.

The first program version, Coniine» uses the learned weights shown in Table

6.1. For the opening-phase the same weights are used as for the middle-

game. The C ' e c m  version uses the weights learned by using the ECM test
6The matches were played on Intel PII/400 and PH I/450 computers. Each match was 

played on a single computer. In the chess-program, all the default parameter settings were 
used, except that pondering (thinking on opponent’s time) was turned off. Otherwise, the 
programs would compete for the computer’s CPU time.
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suite as training input, whereas the Chand version uses the hand-set weights. 

The three remaining programs treat all the move-extension classes the same. 

In the C 100 version all the weights are set to 1.00, which is the same as not 

using any search extensions. The Coio version extends aggressively on all move 

classes (all weights set to 0.10), whereas the Coso version uses more conservative 

extensions (all weights set to 0.50). The result of the matches is shown in Table

6.2. The program using the parameters learned from game play performs the 

best overall, scoring 282.5 points out of the 500 games. The program using 

the parameters learned from the test suite does not do as well. This is not 

too surprising. Most test suites focus on the tactical abilities of programs. 

Although tactics are important, the test suites sometimes overemphasize their 

importance compared to actual game play. As expected, the program using 

no extensions (C100) performs by far the worst. On the other hand, it is 

interesting to see how close the other programs performance is, even though 

they are using quite different weight vectors. The C h a n d , C o l o ,  ^oso ah end up 

with a similar score. It is a little surprising to see how well the C050 version 

does, intuitively we would have thought it would rank lower. The fact that 

this version outranks the C01o and the C e c m  versions shows that in actual 

game play it is not necessarily good to extend too aggressively, resulting in 

many irrelevant lines being searched too deeply. Although this might improve 

the tactical ability of the program, it hurts the positional play and the overall 

performance.

Unfortunately, we have no way of telling what the optimal weight vector 

is, and thus we cannot really say how close to optimal the learned weights 

are. However, based on the above results, we can state with over 90% confi

dence that the program using the weights learned from game playing performs

better than the program using the hand-set weights.7 The extension-scherne
‘Student’s t-test was used to compare the mean of the score-distribution of the two
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Table 6.2: Match results.

vs Coniine Cijnl) Chtind Co io C e c m Cioo Points
Coniine
Co50
Chand
Co 10 
C e c m  
C  too

45.5-54.5 
49-51 
46-54

40.5-59.5
36.5-63.5

54.5-45.5

46.5-53.5
50.5-49.5 

47-53 
34-66

51-49
53.5-46.5

50-50
49.5-50.5
35.5-64.5

54-46
49.5-50.5 

50-50

51.5-48.5
35.5-64.5

59.5-40.5 
53-47

50.5-49.5
48.5-51.5

42-58

63.5-36.5 
66-34

64.5-35.5
64.5-35.5 

58-42

282.5
267.5
260.5
259.5
246.5
183.5

employed by our test program is a relatively simple one, using only a few pa

rameters. These parameters have been hand-tuned to reasonable values, and 

thus the opportunity for drastic improvement is small. On the other hand, the 

benefits of automatic tuning to become increasingly relevant for more sophis

ticated extension schemes that require the tuning of many parameters.

6.6 C onclusions

In this chapter we introduced a method for automatically tuning search-control 

parameters in adversary search. By using a cost model to model the search, 

the learning task can be formulated as a function approximation task, allowing 

us to use well-established machine learning techniques for determining the 

most appropriate parameter vector. The learning method was implemented 

and tested in a strong chess-program, where it learned a parameter vector 

tha t outperformed other parameter vectors, including one chosen by a leading 

computer-chess expert.

Automated tuning of search-control parameters opens up many new op

portunities for improved search-control schemes. Traditionally, the effort it 

takes to hand-tune complex extension schemes — possibly using many dis

parate parameters — imposes a limitation on how complex the schemes can

be in practice. However, by automating the tuning process it is possible to 
programs.

LOO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



experiment with more sophisticated schemes. This is a logical next step. One 

can envision schemes that use many more move classes, where each class is not 

only dependent on the phase of the game hut also on other positional features. 

For example, different extensions would apply for open vs. closed positions, 

or positions where the king is exposed!
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Chapter 7 

Learning Search Control Offline

Chess is 99% tactics.
- R. Teichmann

In the previous chapter we introduced a general framework for learning 

search control in adversary search. Based on the framework, we designed and 

implemented a method for learning search extensions either during online play 

or by analyzing game positions offline. We experimented with the method 

in a chess program, where it demonstrated its usefulness by learning search- 

cxtension parameters that outperformed all other parameters we tried. On 

the down-side, it was quite an involved task to incorporate this method into 

a game-playing program. The subject of this chapter is how to alleviate that 

problem.

7.1 Introduction

The main drawback of the learning method we introduced in the previous 

chapter is how intrusive it is. Substantial modifications and additional code are 

introduced into the game-playing program. To be able to estimate the partial 

derivatives that drive the learning algorithm, the game-plaving program needs 

to record separate search-depth and node-count information for each search- 

extension parameter. In practice, these modifications are not always trivial to
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implement efficiently. It is important not to introduce too much additional 

computational overhead — otherwise the playing strength of the game-playing 

program is compromised. This can be a challenging task, especially in a highly 

optimized program. For one thing, the changes must he implemented deep 

inside the core of the search engine. To make matters even worse, competitive 

world-class game-playing programs typically consist of highly optimized code 

(where software engineering coding principles are mercilessly sacrificed for the 

sake of additional search speed). This makes code modification even more 

difficult, and can potentially discourage people from using our method.

In this respect, a less intrusive learning approach is desirable, where the 

learning module is better separated from the game-playing program itself. 

Preferably, only minimal (if any) changes should be required to the game- 

playing program. Fortunately, there is a way of doing this by removing the 

previous preference that the game-playing program learn during online play. 

That is, if we limit its use to offline analyzes of game positions, we can separate 

the learning module from the game-playing engine.

7.2 Offline vs. Online Learning

There are at least two fundamental differences between online and offline learn

ing that affect the way we approach the problem. When learning offline:

•  we need not be as concerned with performance overhead incurred by the 

learning method, and

•  we may assume that the correct move is known for each position in our 

training set (see later).

The above properties simplify the offline learning task considerably.
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7.2.1 How to E stim ate th e  G radient

When designing our online learner, one of the main challenges was how to 

efficiently estimate the gradient that drives the learning algorithm. We came 

up with a way of doing this in real-time during the actual search. However, 

during offline learning the computational overhead is much less of an issue. 

Therefore, a different and much simpler approach is possible.

Instead of trying to estimate what effects different parameter settings have 

during a search, it is now possible to obtain this information directly sim

ply by performing a separate search after each parameter change. The offline 

learning module will call the search engine repeatedly for each game posi

tion in the training set, each time using a slightly different parameter setting. 

This alternative way of estimating the gradient (partial derivatives), although 

clearly more computationally expensive, has a big benefit of being more mod

ular. This key factor allows us to implement the learning algorithm without 

modifying the search engine.

7.2.2  How D eep to  Search?

In the online version, learning is triggered when critical positions are encoun

tered. However, we do not truly know how deep a search is needed to discover 

the correct continuation in the critical position (for that matter, we do not even 

know what the correct continuation is!). This poses an additional challenge 

in the online learning approach, that is solved by assuming that the program 

must fully explore a so called critical solution path to avoid playing an inferior 

move (see previous chapter). This assumption turns out to be reasonable in 

practice although, as we pointed out, it is not necessarily always true.

On the other hand, during offline learning there is no need to make such 

an assumption. We can require that all the training samples in the test suite 

be labeled with information about what the best move is. The game positions
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can be analyzed beforehand to determine what the best move is by computer 

or human analyzes (or a combination thereof). Now, instead of indirectly 

approximating how deep a search is needed to find the correct move, the offline 

method simply instructs the game-playing program to explore the position 

until either the suggested move is found, or an imposed search limit is reached.

7.2.3  P ros and C ons

We are clearly limiting the usefulness of the learning system by restricting 

its use to only offline play. For example, when meeting a previously unseen 

opponent in a match spanning a series of games, a program enhanced with 

online learning capabilities can adjust its play based on experience gained in 

earlier match games. For example, one respected source for ranking chess pro

grams by their playing strength is the Swedish Rating List, published by the 

Swedish Chess Computer Association (SSDF) both online and in the Inter

national Computer Games Association journal. To determine the programs 

relative playing strength, they are matched against each other, each encounter 

consisting of a long series of games. Online learning is clearly beneficial in 

such settings.

On the other hand, if given an opportunity to practice against an opponent 

beforehand, the learning can equally well be done offline. Lost games can 

be analysed by a human or a computer player, and a test suite constructed 

consisting of those positions where a deeper search would have avoided playing 

the inferior move. These positions could serve as a training data for the offline 

learner, and the learned search-extension parameters be employed in future 

encounters with that opponent. Thus, depending on the situation, restricting 

the learning to offline analysis might not be a serious limitation. Furthermore, 

the main attraction of the offline learning method is that it can be implemented 

with only minimal modifications to the game-playing program.
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7.3 A rchitecture

Figure 7.1 shows the basic architecture of the offline learning system. One 

of the main design objectives behind this architecture is to keep the learning 

module as separate as possible from the game-playing program, thus minimiz

ing the amount of changes needed to the game-playing program itself. The 

learning system consists of three main parts: the learning module, the game- 

playing engine (that is now a separate process) and, finally, a pre-generated 

database of training examples (where each example consists of a game position 

and information about what is the best move in that position).

The learning module, which is also the main driver, reads in the game 

positions from the database (or test suite) and then repeatedly calls the game- 

playing engine, asking it to solve each of the positions using different search 

control parameters. In the following subsections we describe each of the com

ponents in a more detail.

setboard  r3k///2R//K 
se tparam  0.1 0.2 
gountil e6  500000

Learning
module

r3k///2R//K e6

Figure 7.1: The architecture of the offline learning system.
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7.3.1 G am e-P laying Program

The learning module tells the game-playing program which game position to 

search, what the best move is in that position, and what search-control pa

rameters to use. In return, the game-playing program informs the learning 

module about how many nodes were expanded during the search. The only 

change required to the game-playing program is to augment its command in

terface to support this interaction. This means implementing the following 

three commands:

•  se t b o a rd  position

Set the current game state to he position. The learning module is indif

ferent to the representation of a game state or position (it simply relays 

this information from the database), but the game-playing program must 

understand the format. This command also resets the state of the game 

engine such that a new search can be performed independently of previ

ous searches (e.g. the transposition table and other history information 

must be cleared). No return value is expected.

•  s e tp a ra m  w i W2 ... wn

Specify the values of the search-control parameters. The arguments 

w i,...,w n are real numbers and represent the values that the search- 

control parameters take. The game-playing program can scale these 

parameters or map them to integers (if the program’s internal represen

tation requires so). No return value is expected.

•  g o u n til move n

This command instructs the game-playing program to search the current 

game position until the program agrees that move is the best continu

ation in the given position, or an imposed search limit of n nodes is
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reached. The number of nodes actually searched must be returned, and 

also a flag indicating whether the suggested move was found by the 

search. The return string has the following format:

nodes flag  count

where fla g  is set to 1 if the problem was solved, otherwise 0. The count 

tells how many nodes were expanded by the search (for an unsolved 

position count is the node-count limit n).

We assume that the game-playing program reads its commands from standard 

input and writes to standard output. Each instruction is followed by a newline 

or return  character, and the return string is printed to standard output.

Compared to the changes required by the online learner, it is quite trivial 

to implement the above commands. First of all. they are done to the command 

interface as opposed to deep inside the search-engine core. Furthermore, many 

game-playing programs already have commands built-in with similar capabil

ities, e.g. a command to set up a game position, a command for specifying 

the value of a (search) parameter, and a command to perform a search. Thus, 

implementing the above three commands is typically as simple as mapping 

them onto already supported interface commands.

7.3.2 Learning M od u le

The learning module is also the main driver. It first spawns off the game- 

playing program as a separate process. All communication between the learn

ing module and the game-playing engine is done via Unix-domain sockets 

(pipes) that have been redirected to the game programs standard input/output 

Thus, no special process communication support needs to be added to the 

game-plaving engine. The database contains a collection of game positions, 

where each position is labeled with information about the correct move choice.
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Algorithm  13 LSC-offline
1: for i =  1. N  d o
2 : U\  <— 1.0
3: e n d  for
4: / /  Iterate until a sufficiently good w is found.
5: w h ile  not terminate d o  
6: nodes  <— 0

7: fo r  i =  l ,N  d o
8: nodeSi <— 0
9: e n d  for

10: for  a l l  (p t ,m t ) €  T  d o
11: nodes  =  nodes +  GetNodecount(pt, m t , w . n)
12: for  i =  1, N  d o
13: Wt <— Wi +  S
14: nodesi nodes,- 4- GetNodecount(pt, m t, w. n)
15: U!t <— Wi — 6
16: e n d  for
17: e n d  for
18: fo r  i =  l , N  do
19: wt < -  wt — p  A w max ( ( nodesi — nodes)/ nodes)
20: e n d  for
21: p <— Decrease(p)
22. e n d  w h ile

These positions are read from the database and used as training data. Finally, 

the learning component (shown as Algorithm 13 below) is invoked. The learn

ing. as before, is based on the gradient-descent algorithm. It is almost identical 

to the learning algorithm we described for the online learning system — the 

most noticeable difference being how the gradient is found.

The outermost loop iterates until the parameter values converge. The 

nodes variable records the cumulative node count over all the test positions. 

The variables nodesi, i =  1 ,2,..., N  (where N  is the number of search-extension 

parameters) similarly record the cumulative node count for each altered pa

rameter vector. These variables are reset to zero at the beginning of each 

iteration. Next the algorithm loops over all the training samples, where each 

sample consists of a game position (pt) and the best move for that position 

(m t). For each position, the game-playing program is called several times:
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once using the current parameter vector w, and then N  times using a slightly 

altered weight vector. At. the i-th call, the i-th parameter of the weight vector 

is modified by a small amount S. Whereas during the online learning experi

ment we had to be careful to increment the parameters (to be able to estimate 

the effects of a change), here it does not m atter all that much whether a 

parameter is increased or decreased. One approach is to modify the param

eter in the direction it is currently moving. That is, if the parameter was 

decreased at the end of the previous learning iteration, then also decrease it 

slightly when estimating the gradient (and vice versa). The implementation 

details of how to interact with the game-playing program are hidden in the 

GetNodcrmint{pt, m t, w, n ) function. This function sends the three commands 

described earlier (set.boa.rd pt, setparam w, and gountil m t n). and then waits 

until it receives the expected return string (“nodes ...” ). Upon receiving the 

return string the requested node count information is extracted and returned.

At the end of the learning iteration the parameter vector w is modified in 

the direction opposite to the gradient (the gradient is determined as before 

by the cumulative node count information). The resulting parameter vector is 

then used on the subsequent iteration. This continues until a sufficiently good 

parameter vector is determined. The p. and the Awmax variables are the same 

as in Chapter 6.

7.4 E xperim ental R esu lts

We tested the new offline leaning method using an experimental setup similar 

to the one used in the previous chapter. That is, the weights of the move 

categories were initialized to 1.0 and allowed to vary within the range [0.1.2.0], 

an upper limit of half a million nodes was imposed on each search, and the 

values of p and A w,nax were both set to 1.0. Also the ECM test suite [48] was 

used its a training input.
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Figure 7.2: Comparison of online (upper) vs. offline (lower) learner.

The result of the experiment is shown in Figure 7.2. The two lower graphs 

show the new offline learning algorithm, whereas the two upper graphs show 

the corresponding results from the online learning in the previous chapter (we 

regenerate the graphs from Figure 6.4 here to make performance comparison 

between the two methods easier). The left graphs show the search efficiency 

in terms of number of nodes searched and the number of problems solved, rep

resented by a solid and a dotted line, respectively. The right graphs, on the 

other hand, demonstrate how the move-class weights evolve. As in Chapter 6 

the learning algorithm tries to minimize the number of nodes required to solve 

the problems, and the increase in the number of problems solved follows indi

rectly as a side effect. The new offline learner was stopped after 12 iterations 

because it was clear that the values had already converged.

Beforehand we had hypothesized that given the same training data the 

offline learning method might outperform the online learner. The reason is
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that the offline learner works with accurate node-count information, whereas 

our online learner uses estimates. What is remarkable about this result is that 

both learning methods perform equally well! In the end, both solve the same 

fraction of the problems (57%) and search approximately the same number of 

nodes (229M). This is reassuring and adds credibility to the claim that the 

approximate information used by the online learner is sufficiently good for use 

in practice.

Finally, by comparing the weights learned by the two methods, we see that 

they differ slightly. However, the difference doesn’t affect the performance: 

both the weights vectors perform equally well. It is quite possible, that both 

are local optima. More importantly, the check extensions and the forced reply 

extensions — the two move types that seem to be the most critical to extend 

on (have the lowest weights) — do converge to close to identical values. The 

two remaining move-classes. passed-pawns and re-captures only influence the 

total node count weakly.

7.5 C onclusions

We introduced an alternative method for learning search extensions. One 

of the main appeals of this approach is that it offers an easy way to tune 

search-control parameters in almost any search-based game-playing program. 

Moreover, the garne-playing program itself needs only minimal modifications. 

The changes are as simple as augmenting the game-playing program’s interface 

with the three high-level commands introduced earlier, and the program can 

then be “plugged” into the learning module.

On the other hand, this ease of use comes with a price. Probably the most 

serious drawback of the approach introduced here is that it can learn only 

from analyzing game positions offline, whereas the method we introduced in 

the previous chapter can also learn during online play. There are two addi-
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tional disadvantages with the new offline approach. First, it requires annotated 

training data, that is, the correct move in each test position must be known. 

Secondly, it is computationally more expensive than the method we introduced 

earlier. However, if sufficient computer resources are available, the method is 

trivial to parallelize. All searches within one iteration can be executed in par

allel — the only synchronizing point is at the end of the iteration. Another 

possible performance optimization is to use shallow searches to estimate the 

gradient. We will as before do an additional search for each parameter, how

ever. the search can be more shallow because we only need it for determining 

the growth rate. We will then, as we did in the online method, use our cost 

model to predict total number of nodes a full search would require.

Which of the two methods for learning search-control parameters is more 

appropriate depends on the situation. If online learning is required the method 

introduced in the previous chapter should be used, whereas if offline learning 

is sufficient, the method introduced in this chapter is to be preferred. Finally, 

it is worth mentioning that the offline learning method is not assuming that 

the search-control parameters it is learning are necessarily used for controlling 

search extensions. On the contrary, the method can be used to learn any type 

of parameters that influence the search process, for example move-ordering 

parameters.
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Chapter 8 

Concluding Remarks

Don’t worry, kids. You'll find work. After all, my machine will 
need strong chess-player programmers. You will be the first.

-  Mikhail Botvinnik, ca. 1963 (said to some of his chess 
students when claiming that his chess program would 

eventually become the World Champion).

In this chapter we conclude the research by briefly summarizing the main 

research issues and achievements. Finally, we prov ide pointers for future re

search directions.

8.1 C onclusions

In this thesis we investigated selective depth-first expansion of game-trees. Ad

ditional full-width search exhibits diminishing returns in terms of an increase 

in playing strength, so simply searching deeper and deeper in a (semi-) uniform 

way is not necessarily the best way to harvest the ever increasing hardware 

speed. Instead, it shows more promise to use the additional computing power 

to selectively expand the game trees [27]. The question we were primarily con

cerned with in this work was: how should game-playing programs best spend 

their search effort to maximize their move decision quality i

The first step was to gain additional insight into speculative pruning. Chap

ter 3 summarizes those findings. Essentially, speculative pruning methods 

should be concerned with the question: What is the likelihood of making an
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erroneous pruning decision and, i f  an erroneous decision is made, how likely is 

it to affect the principal variation? Surprisingly most pruning methods totally 

ignore the second part of the question. To answer this question the methods 

must consider each node in the context of its location in the game tree, instead 

of looking at each node and the subtree below it in isolation.

This is exactly what the new pruning method we introduce in Chapter 5 

does. In both chess and Lines of Action, game-playing programs employing 

the new multi-cut pruning method demonstrate significant increase in play

ing strength. Furthermore, because the method doesn't rely on game-specific 

knowledge, it has the potential of being useful in many other games as well.

In Chapter 4 we showed that speculative search, if done in a controlled 

way. can be used to improve on the search efficiency of cvd-like algorithms, 

while not affecting the move decision. Over the years several variants of the 

standard a 3 algorithm have been introduced, each demonstrating a slight 

improvement in search efficiency over the previous ones. We like to think of our 

new enhancement, uncertainty cutoffs, as an addition to this line of variants. 

The improvement in search efficiency, although relatively small, is comparable 

to the improvement each of the previously published variants demonstrates 

over the previously established state of the art.

In most game-playing programs, search extensions are necessary for achiev

ing top performance. Unfortunately, parameterizing and tuning the various 

search-extensions schemes to get a  well balanced search is a difficult, tedious, 

and time consuming task. Extending too aggressively will degrade the overall 

performance because too much time is spent on exploring irrelevant continu

ations too deeply at the cost of not reaching sufficient nominal depth. On the 

other hand, extending too conservatively can result in overlooking important 

tactics. In Chapter 6 and 7 we introduced a method for learning search-control 

parameters in adversary search, focusing on search extensions in particular. By
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using a cost function to model the search, the learning task can be formulated 

as a function approximation task, allowing us to use well-established machine 

learning techniques for determining the most appropriate parameter values. 

The learning method were tested in the domain of chess, where it learned a 

parameter vector that outperformed other parameter vectors, including one 

chosen by a leading computer-chess expert. By automating the tedious tuning 

process, it becomes feasible to experiment with far more sophisticated exten

sion schemes, using many more parameters.

8.2 Future W ork

There are still many unexplored avenues for further research, for example:

•  The multi-cut method as described and implemented here is not the only 

way of reasoning about how likely an erroneous pruning decision is to 

influence the move decision at the root, and by no means necessarily the 

best. We hope that this work will pave the road for new speculative 

pruning methods utilizing such information.

•  The multi-cut method does not utilize any game-specific knowledge. We 

deliberately made this decision to make the approach as domain inde

pendent as possible. This is both a strength and a weakness. It is quite 

possible that the performance of the method can be further enhanced by 

looking at domain-specific properties.

•  The multi-cut method and the singular-extension method complement 

each other in various ways, while sharing much of the same computa

tional overhead. It is worth looking into combining the two schemes, 

possible getting the benefits of both while “sharing the cost".

•  The method we introduced for learning search-control parameters is not
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necessarily specific to adversary search. The only assumption we make 

here is that there exists a parameterizable depth function that controls 

how deeply each branch of the tree is expanded. It is definitely worth 

experimenting with it in other tree-search domains; single-agent search 

is one that comes to mind.

•  In this work we assume that the basic search-control features are given, 

and the task of the learning method is to tune parameters for deciding 

their relative importance. Research into methods for discovering or con

structing new search-control features for use in two-person games is a 

difficult task, but might be a rewarding avenue for future research.

Finally, in the same way as a carpenter needs a good set of tools to do 

his or her work, anyone planning on doing a research in the area of game-tree 

search requires adequate tools for visualizing and analyzing the search space.
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A ppendix A  

Game-Tree Viewer

The Game Tree Viewer is a tool we developed for visualizing game trees. 

Game programs now-a-days expand huge search trees, typically consisting of 

millions of nodes. To verify the correctness of the search, programmers try to 

spot inconsistencies by analyzing logs generated by their programs. However, 

given the size of these logs this approach is becoming increasingly unfeasible. 

A graphical tool for viewing the logs makes the task more manageable.

We used the game-tree viewer both to understand better the search process, 

and to help track down errors. One example of its usefulness is that a serious 

search bug that had gone undetected in our chess program ( T h e  T u r k ) for 

almost two years, was spotted almost immediately when the expanded search 

trees were viewed graphically. The game-tree viewer toolkit consists of two 

main parts: a library for writing game trees to a file, and a viewer to interpret 

and view graphically the data in the file. The library code is linked into the 

game-playing program, whereas the viewer is a stand-a-lone application.

A .l  V iew er

The viewer is written in Tcl/Tk  using extensions provided by the Tix shell. 

The core part of the viewer does not include any game-specific code. Instead 

it relies on plug-ins for interpreting the data, thus allowing a modular design.
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For example, vve have added plug-ins for several different games, e.g. chess, 

Chinese-chess, Othello and Sokoban (a single-agent puzzle game).

The viewer displays a single search tree at a time. For example, a program 

that uses iterative-deepening at the root performs multiple searches (each pro

gressively deeper). It would thus generate several game-tree files (one for each 

search). Figure A .l shows an example screen-shot of the game-tree viewer. 

In this particular example the viewer is used to browse a shallow search tree 

generated by a chess program. The left half of the screen displays the search 

tree in an hierarchical fashion. The look-and-feel is almost identical to how 

directory structures are viewed using file managers. For example, one can ex

pand and collapse the branches as needed. This is important because — as 

mentioned above — a typical search tree is generally huge. The viewer stores 

in memory only the branches of the tree that are currently expanded in the 

viewer, once a branch is collapsed the memory is returned. To get a faster 

access to the game-tree file during the interactive browsing, an index into the 

file is created at the time of start-up. This is done in the background such that 

the user can immediately start browsing the parts of the tree already indexed. 

Also, to further enhance the access time, a script is provided that does a one 

time pre-processing of the game-tree file. The script reorganizes the entries in 

the file such that the nodes are ordered in a breath-first fashion (as opposed to 

the depth-first fashion generated by the game-playing program). Using these 

optimizations the viewer can effortlessly handle game-tree files consisting of 

several millions of nodes.

In the right half of the screen a selected game position is displayed. A 

position is selected by clicking on the corresponding node in the tree hierarchy 

(shown as highlighted). A display located beneath the board shows various 

logistics about the search path leading from the selected game position to 

the root of the tree. For each position on the path the display shows the
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Figure A.l: Screen shot of the game-tree viewer.

move leading to that position, the value of the node, the type of the node 

(P=principal-variation node, N=minimal-window node, Q=quiescence node), 

and the lower and upper bounds used when searching the node. For example, 

from this small example one can see that the move d2d.A was in the start- 

position initially considered as the main line (the bullets in front of the moves 

have a different color indicating the type of the move, e.g. principal variation 

moves are displayed as red). However, when the move 61c3 was considered, 

it failed-high, was re-searched (the move appears twice in the move list), and 

yielded a new principal variation. We can also see that during the re-search 

the search window was tightened from 14 to 15, most likely by retrieving better 

information from the transposition table.

A . 2 Library

The library code is written in the C' programming language and is linked into 

the game-playing program. It is responsible for recording the tree traversal 

and for incrementally writing the game tree out to a file. It consists of the 

following functions:
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•  int gtv-New(void)

This function is called once to allocate memory and to initialize various 

internal data structures. No other game-tree library function can be 

invoked prior to this function being called.

•  int gtv-startTree(int no, char startpos\\)

Create a new game-tree file identified by the number no (the file name 

will be tree_no.gtv). The parameter startpos is a string encoded in FEN 

notation indicating the start position of the search.

•  int gtv_enterNode(Move move, Value alpha, Value beta, int type)

Add a new node to the tree. The last move leading to this node is move, 

the search bounds used are alpha and beta, and the node is of type type.

•  void gtv.exitNode(Move move)

As the search backtracks this function is used to record the return value.

•  void gtvstopTree(void)

Close the game-tree file.

•  void gtv-Delete(void)

Called once at the very end to perform cleanup.

The above function calls are embedded into the search routines of the game- 

playing program. As an example we show how to embed the functions into 

a Principal Variation Search algorithm using an iterative-deepening driver at 

the root (the pseudo code for the M W S  function is not shown, but the game- 

tree library calls are embedded in a similar way as in P \ ’S). Furthermore, 

these functions are implemented as macros and are only activated if the code 

is compiled with a U S E .G T V  flag defined. If not, the pre-processor will omit 

the gtv code.
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A lgorithm  14 ID  — P Y  S(P,d,maxdepth)
1: fo r  depth <— I to maxdepth d o  
2: gtv.startTree(depth, toFENString(P))
3: u <— PVS(P.  depth, —oo,oo)
4: gtv.stopTree()
5: e n d  fo r  
6:
7: f u n c t io n  P V S ( P , d . a ,  3)
8: gtv.enter Node (last Move(P), a, f3, pvnode) 
9: i f  d <  0 or isTerminal(P)  t h e n  

10: u =  evaluate (P)
11: gtv.exit Node(v)
12: r e tu r n  v
13: e n d  i f
14: M  generateMoves(P)
15: make(P.ni\)
16: best < P V S(P .d  — 1, —5, —a)
17: retract(P. nii)
18: i f  best. >  J  t h e n  
19: gtv jexi t Node (best)
20: r e tu r n  b e s t
21: e n d  i f
22: lower «— max(a, best)
23: fo r  a l l  m , £ M\i > 1 d o  
24: make(P .ml)
25: v i------M W S (P .d  — 1, —lower)
26: i f  v > lower and v < ft t h e n
27: v i -----P V S (P .d  — 1, —/3, —v)
28: e n d  i f
29: retract(P, m t)
30: i f  v > best t h e n
31: best i— v
32: i f  best > 3 t h e n
33: gt.vjexitNode(best)
34: r e tu r n  best
35: e n d  i f
36: lower i— max(a,best)
37: e n d  i f
38: e n d  for
39: gtv.exit Node (be st)
40: r e t u r n  best
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A ppendix B  

Estim ating B(w) - Exam ple

In Chapter 6 the introduced a method for learning search control during actual 

game play. One of the challenges using this method is to estimate efficiently 

in real-time the effects changing each of the search control parameters has on 

the growth rate of the search. In the aforementioned chapter we outlined the 

technique used to do the estimation; in here we illustrate the technique using 

actual data.

Figure B.l shows a search tree expanded using a depth threshold of 2.0. In 

this example there are only two move-classes: the first has fractional-ply weight 

of 0.4 (pictured using dotted lines) and the second a weight of 1.0 (pictured 

using solid lines). We use the vector w = {0.4,0.1} to represent these weights. 

The number besides each node shows the depth of the node. As soon as the 

depth equals (or exceeds) the depth threshold the node is evaluated and the 

search backtracks. A count of the total number of nodes expanded is also kept. 

In this example 17 nodes are expanded, thus the growth rate of the search is

B{ w)20 =  17 =► B{t?) = 4.123

The problem we face is that we also need to simultaneously approximate 

the growth rate of the search if the parameter vectors tvx = (0.4 +  <J, 1.0} and 

w-f =  {0.4,1.0+(5} were instead used to expand the tree (needed for calculating 

the gradient). This is done by recording for each parameter vector a separate
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Figure B .l: Depth of nodes in a game tree.

depth and count of number of nodes expanded. Figure B.2 demonstrates this 

process using 5 =  0.1.

(1.0,1.0,1.1) ( 1 .0 , 1 .0 . 1 . 1)

O (1 .4 ,1 .5 .1 .5)
(2.0,2.0,2.2) (2.0.2.0.2.2)

(1.8,2.0.1.9) (1 .8 ,2 .0 ,1 .9 )
(2.4,2.5,2.6)

(2.2. — .2.31 (2.8.— .3.0) (2.8.— .3.0) (2.8.—.3.0)

Figure B.2: Multiple depths of nodes in a game tree.

Instead of only one depth, each node has now three depths associated 

with it. Each of the depths is recorded by a different weight vector, that is, 

ir =  {0.4. i.0}. iut =  {0.5,1.0} and u/2 =  {0.4,1.1}. respectively. In the figure, 

the' leftmost depth of a triplet is the same as used in Figure B.l. As before it 

determines when to stop expanding the branches in the search tree. The two
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other auxiliary depths are used only for deciding whether or not to include a 

node in the total node count for the alternative weight vectors. That is, as

soon as a depth reaches the threshold limit, the search stops counting nodes

in the subtree below as being expanded by that weight vector. For example, 

in the figure the shaded nodes are not included in the total node count for 

vector <C|. because the Wi depth has already reached 2.0. The rationale is that 

if we were using that weight vector to expand the tree, this branch would not 

be explored this deeply. On the other hand, in this example the tc2 weights 

expand exactly the same tree as w. Thus,

B i m ) 20 =  11 = >  B(u/i) =  3.317

B(w)20 = 17 =>  B ( w2) =  4.123

This is. of course, only an approximation of the size of the actual trees 

explored if the alternative weight vectors were instead used. The reason for 

this is that different evaluations would be backed up the tree, possibly causing 

different branches of the tree to be explored. However, this technique can be 

used with little overhead during the search, and works well in practice.
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A ppendix C 

Gradient o f Cost M odel

The cost model used in Chapter 6 has the basic form:

C(p, w, d) = B(p, w)'1 

Furthermore, we used the partial derivative of

C(p,w,D{S,w))

in our learning algorithm. Below we showed how we derived the partial deriva

tives:

dC'jp. w, D{S, w)) =  d(B(p,vS)D(s^ )  
diut dwi

dwi
Q̂ £D{S,u!) In B{p,i3)j 

&Wi
_  D(s,vj) inB(p,iS) d (P (5 , w) In B(p. ic))

dvn
n i  -  -.^d{D{S, w) hi B{p. tc))= C{p, w, D(S, w))------------— ------------

r,,  m e  -n5 (ln B(p. w)) d{D(S,w)) \= C(p ,w ,D(S ,w))  I D (S ,w )  —  h —  In B(p,w)  1

r,,  -  n , a 1 OB{p.w) d(D{S, w)) \
=  C(p, w, D (S ,«,)) (£>(S, to B{p, W) j

-  n / c  ^ { D ( S , w ) d B ( P.,V) , d{D(S, w)) n ,= C{p, w, D(S, W)) +  ^  la B(p, w) J
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A ppendix D  

Test Suites

This appendix lists the various test positions used in our experiments. Some 

of the test suites we used are far too large to reproduce here, in which case, 

we provide a reference to where they are published. The first three chess 

test suites listed consist mainly of tactical game positions. Whereas such test 

suites are good as a first line of defense for testing the soundness of new ideas, 

ultimately, playing games is the most reliable way of measuring how different 

enhancements affect a program’s playing strength. The next two suites consist 

of the opening positions used as a  starting point in our computer vs. computer 

matches. A different starting positions was used for each encounter to prevent 

the programs from repeatedly playing the same game.

To our knowledge, there do not yet exists any standard opening positions 

for the game Lines-of-Action. In our experiments we generated from the initial 

game state all possible game positions 2-ply into the game (one move for each 

side). This results in 311 different start positions, after symmetrical positions 

were excluded.

In the following sections we show diagrams of the game position in each 

of the test suites. The caption above each diagram shows the number of the 

test position (within the test suite) and which side there is to move in that 

position.
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D .l  P laat Test Positions

These positions were used by Aske Plaat in his thesis work [63]. They are 

taken from the same game, thus providing positions representative of different 

stages of a game.

#1 White

ia sb a  mim 
i * m  m  %
n  m n

_
& ffl B

#2 White #3 White #4 White

.  m w . i m  
a < v a  m k

m 9)££!
IS A -ib

P ^ - ’QAB
“  •; ;?i ^

#5 White
^ a W IH W T  
: m  m k k  
m * m  m  a" ~i =a

3 A « i :
? ro  0  a  
B e a r s , : ,  an  - SB? fri

#6 White
i l i f

#7 White #8 White

*a a a  a ■ r
1 2 , 8 1 1  I  

[s2 ■: a—0  J3L.
rs m m  z r

a  a i i  .n*?* 
0  a  s  i

z  *  m i
KB 28 *A £I 

53 saA ^ 
l"-Q ' S  £

. a e s -  s z s  
E L - f c Z  ^

#9 White

r i s " * '
“  B  V 
_ « A S
S i  A  $1 &TAB gj a
_  g y p -

I B s w  S T

s *

#10 White

t* a A » _ Sa r
I3eH<

a  a -  ■

#11 White

a

#12 White
I a  a  
a  MAX m

~  ~  m m  
m i mA 1

■ ••-.a ^  zs
n a n s

#13 White

■■I
a s  a
-

■  a ®  p  As
_J2
h  a  n

#14 White
W ~ E  _
» “ * * «  

a  a  s  a s a j  
a  s a | I * b

p r e  _  
a  i!

O  I  o  ^

#15 White #16 White
■  a  a * a i  

h  s a i  a
■  a  m m

~  SAS3 
B A 2 M

i m  a  £
SI i- : ain a n ^
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#17 White

1 1 1

#18 White
X Uir-iiim s* s i  i  i  s  m

i§  * ; ^ 1 1 5 3 '#  
; e  3 8 1 0  E
m s.,a v;

22 2§3.2;
o _ _ i  “  “

#19 White #20 White

m  m
m  m

1 2 1 0  m

D .2  Bratko-K opec Test Su ite

The Bratko-Kopec test suite [21] consists of a mixture of tactical and positional 

chess positions, 24 in total.

#1 B la c k #2 W hite #3  B la c k #4  W hite
SS 1  « s IB_M [XSAS+S K

s m s is  
s is  m m

3  bXbSbai i j r i i i i
B4 IB r i  a s s

m m m  ^ H_BlO 39
‘ 8  a-a-a LSCs s «W - 13 W> 32Tb_Ĥ 0 1 m B O S Si

. m m „® i E! a i I; to

S O 3a iA ® B B flfEI

#5  Whit e
SKO

#6 W hite

n n ^ i i
m  m t m  m
1 *  O O
m ' m  b  m 

m m  m a 
- a - a  m  
i  a  ■  «i

#7 W hite # 8  W hite
a r a131 

S I S  
W1

a  s

#9  W hite

m

#10 B la ck
r U T a f l s i l
S I S  M A M  

m*m S I S
i m m m 
m  m  s  s

S3-^:;SS--ia  
s  &• a  a

n  g  ®

#11  W hite # 1 2  B la c k

SfSf
S £K -

s o
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#13 White #14 White #15 White #16 White
i U J *  m h H b ab

#17  B la c k

i "
H

#21 W hite

*  *1 
&AM £  1

S S A 'A ;  l i S
u _ m  ■

"B 28 S?
m  oa is- su s

#18  B la c k
"EW 1

* A J S A
'  SiAJg 

i •§_ &  m

□ .£ .9  B  -Pa a

# 2 2  B la c k
j i i r « r a  

u b * b a b

w
ffl;  ss
IV? '

B s «

«®S“
f t *

3T-
% &

#19 B la c k

#23 B la c k

■  A S
B A

s V 3

# 2 0  W hite

# 2 4  W hite

D .3 1001BW C  Test Suite

This test suite consist of 1001 checkmate problems, taken from Reinfeld’s book 

1001 Brilliant Ways to Checkmate [66]. It is far too big to list here but the 

book has been reprinted many times and is still widely available.

D .4  ECM  Test Su ite

This test suite is taken from the Encyclopedia of Chess Middlegames book by 

Krogius et al. [48]. It consists or 879. mainly tactical, middle-game positions. 

Many of the problems in this test suite are quite challenging, for both humans 

and chess-playing programs.
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D.5 O pening P osition  Test Suite

This is a home-cooked test suite we used in our early experiments (before we 

received Dailey’s opening test suite, listed next). It consists of 40 well-known 

chess opening positions. We used this suite as starting positions in T h e  T u r k  

self-play matches described in Chapter 5.

#1 W hite

A S M  ■
m i m

a -

# 2  W hite
“I I

I 1 I A 1 A

#3 W hite #4  W hite
I m*.W+& fe|
12 A *  M k M A

m m t m  i
m  m i ®  om si s  m 
i  s  i  a  _/A ^ ■ o ■ a
iz

K

#5 W hite
fxMXl

#6  W hite #7 W hite

■■a
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8

ii- 31 38 
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a  ‘̂ A a A ain g?yg a
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#9  W hite # 1 0  W hite

IE
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I E I W 3 r S 5 a
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3
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m  a
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S’* S i ”/.V » 1 .--1
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A
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#17 White #18 White
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#37 White
i®A^ 1SAXA:p; §8
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D .6 D ailey O pening Test Suite

Don Dailey, a co-author of the massively parallel chess program CiLK [29], 

assembled this collection of well-established chess opening positions. He gen

erously made it available to us, for which we are grateful. Xot only is it 

more extensive than the opening suite we used previously, but it is also highly 

desirable to use independently produced test data when conducting research.
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