
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy subm itted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographicaily in this copy. Higher quality 6" x 9” black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NOTE TO USERS

This reproduction is the best copy available.

UMI'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U niversity o f A lberta

S e l e c t i v e D e p t h - F ir s t G a m e - T r e e S e a r c h

bv

Yngvi Bjornsson

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of D octor o f Philosophy.

Department of Computing Science

Edmonton. Alberta
Spring 2002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■♦I National Library
of Canada

Acquisitions and
Bibliographic Services
395 VIMKnglon Strata
Ottawa ON K1A0N4

Bibiioth6que nationals
du Canada

Acquisitions et
services bibliographiques
395. rue WaKngton
Ottawa ON K1A0N4
Canada

Yourmt Von rtttrtnet

O vrat Notrmr4Hrmct

The author has granted a non
exclusive Ucence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur a accorde une licence non
exclusive pennettant a la
Biblioth&que nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L’auteur conserve la propriete du
droit d’auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation.

0-612-68547-0

CanadS
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U niversity o f A lb e rta

L ib rary R elease Form

N am e o f A u th o r: Yngvi Bjornsson

T it le o f T hesis: Selective Depth-First Game-Tree Search

D egree: Doctor of Philosophy

Y ear th is D egree G ran ted : 2002

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly
or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the thesis, and except as herein before provided, neither the
thesis nor any substantial portion thereof may be printed or otherwise re
produced in any material form whatever without the author’s prior written
permission.

Yngvi Bjdrnsson
538RH Michener Park
Edmonton, Alberta
CANADA T6H 4M5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U n iv ers ity o f A lb e rta

F acu lty o f G ra d u a te S tud ies an d R esearch

The undersigned certify that they have read, and recommend to the Faculty
of Graduate Studies and Research for acceptance, a thesis entitled Selective
D e p th -F irs t G am e-T ree Search submitted by Yngvi Bjornsson in partial
fulfillment of the requirements for the degree of D o c to r o f Philosophy .

Dr. T.A. (Tony) Marsland
Supervisor

 — ^ ■ ----------------

Dr. Donald F. Beal
External Examiner

^ ̂ ^ 0*
Dr. Renee Elio

Jonathan Schaeffer

Dr. Gordon S waters

D ate : / /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Til foreldra minna.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A bstract

This thesis continues an ongoing study of algorithms for selective depth-first

expansion of game trees (for two-person zero-sum perfect-information board

games). The question we are primarily concerned with is: how should game-

plaving programs spend their search effort to maximize the quality of their
move decisions?

This is a challenging problem. Early attem pts at selective expansion of

game trees were not particularly successful, and were replaced by brute-force

full-width searches once technological advances in both hardware and software

made such approaches feasible. However, such brute-force methods are not

sufficient on their own to produce world-class game-plaving programs. There

fore. many new algorithms have been proposed for exploring game trees more

selectively. On the one hand, there are algorithms that traverse the game trees

in a best-first fashion but, unfortunately, these algorithms are neither time nor

space efficient and have thus not found a wide use in practice. On the other

hand, selective depth-first based search algorithms show more promise.

This work introduces several algorithmic enhancements to state-of-the-art

depth-first game-tree search. First of all, we show how speculative pruning

can, if applied in a controlled manner, improve the search efficiency of existing

game-tree search algorithms — without compromising the returned minimax

value. Secondly, a novel domain-independent method for speculative prun

ing of game trees is presented, and its promise demonstrated in two different

search domains. The method has been adapted by some of the world's leading

chess-playing programs with good success. Finally, we introduce a method for

automatically learning search-control parameters in two-person games, either

from online play or by offline analyzes of game positions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A cknowledgem ents

I owe my thanks to many people. Without their support and encouragement

this endeavor would not have been possible.

First and foremost. I want to thank my supervisor Tony Marsland for his

guidance, patience, and support over the years. I have been truly privileged to

tap into his wealth of knowledge and experience. I also like to thank the other

members of my supervisory committee: Renee Elio, Jonathan Schaeffer and

Gordon Swaters. Their invaluable suggestions greatly improved the quality

of this work. In particular, I am indebted to Jonathan for his numerous

suggestions, constructive criticism, and support over the years. I am also

grateful to my external examiner Don Beal. His careful reading and insightful

comments further improved the thesis.

The GAMES group at University of Alberta provided a truly unparalleled

environment for conducting research into games. Thank you to both past and

present members of the group that I have interacted with over the years. In

particular, Andreas Junghanns for the years we spent together working on T h e

T u r k and other game-playing programs; Darse Billings for open exchange of

ideas while working on the game Lines of Action; and Martin Muller for proof

reading a part of the thesis and for many enjoyable afternoon discussions over

a cup of coffee.

Finally, big thanks to my parents who have always been there for me.

Last and not least, very special thanks to my beautiful wife Gudrun and my

admirable son Daniel. Your love and support means more to me than words

can say. Thank you from the bottom of my heart!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table o f C ontents

1 Introduction 1

1.1 Game Playing and Search .. 2

1.2 C on tribu tions... 5

1.3 Organization ... 6

1.4 Publications.. 7

2 Gam e-Tree Search 9

2.1 The Game Tree and M in im a x .. 9

2.2 A Critical Tree and the a/3 Algorithm... 13

2.2.1 A Critical T r e e ... 14

2.2.2 The a(3 A lg o r i th m .. 14

2.3 Algorithmic Enhancem ents.. 16

2.3.1 Transposition T ab le .. 17

2.3.2 Iterative D eepening.. 18

2.3.3 Move O r d e r in g ... 19

2.3.4 Aspiration W in d o w s ... 19

2.3.5 Minimal-Window V a ria n ts .. 21

2.3.6 Quiescence Search.. 26

2.4 Best-First S e a rc h .. 27

3 Selective D epth-F irst Search 29

3.1 Speculative Pruning .. 29

3.1.1 Risk Assessment .. 30

3.1.2 Applicability .. 35

3.1.3 Cost Effectiveness.. 35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.4 Domain D ependency ... 36

3.2 Search Extensions.. 37

3.3 Related W o rk ... 37

3.3.1 The Null-Move H eu ris tic ... 37

3.3.2 ProbCut and M ulti-ProbC ut... 38

3.3.3 Singular Extensions... 39

3.3.4 Other M e th o d s ... 39

3.4 C onclusions.. 40

4 U ncertainty Cutoffs 41

4.1 Searching a Critical T r e e .. 42

4.2 Uncertainty Cutoffs - I d e a .. 43

4.3 Uncertainty Cutoffs - A lgorithm ... 47

4.4 Experimental R esu lts .. 51

4.5 C onclusions.. 54

5 M ulti-C ut a d Pruning 55

5.1 Multi-Cut I d e a .. 55

5.2 Multi-Cut Im plem entation... 57

5.3 Multi-Cut Parameters ... 60

5.4 Experimental R esu lts .. 61

5.4.1 Criteria S elec tion .. 62

5.4.2 Multi-Cut P a ra m e te r s .. 65

5.4.3 Multi-Cut in P ractice .. 68

5.5 Related W o rk ... 73

5.6 C onclusions.. 74

6 Learning Search Control 77

6.1 In troduction .. 77

6.2 Search Control .. 79

6.2.1 Search Extensions.. 79

6.2.2 A Unified V ie w ... 80

6.2.3 Fractional-Ply E x te n s io n s .. 82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 The Learning S y s tem ... 82

6.3.1 Training Experience .. 83

6.3.2 Target Function .. 85

6.3.3 Learning A lgorithm ... 86

6.4 Modeling the S e a r c h ... 89

6.4.1 Cost M o d e l .. 90

6.4.2 Approximating B(p, w) and its Partial Derivatives . . . 91

6.5 Experimental R esu lts ... 94

6.5.1 Test S u i t e ... 95

6.5.2 Game P lay in g ... 97

6.6 C onclusions.. 100

7 Learning Search Control Offline 102

7.1 In troduction ... 102

7.2 Offline vs. Online Learning.. 103

7.2.1 How to Estimate the G rad ien t.. 104

7.2.2 How Deep to Search?.. 104

7.2.3 Pros and Cons .. 105

7.3 A rchitecture.. 106

7.3.1 Game-Playing Program ... 107

7.3.2 Learning M o d u le .. 108

7.4 Experimental R esu lts .. 110

7.5 C onclusions.. 112

8 Concluding Rem arks 114

8.1 C onclusions.. 114

8.2 Future W ork.. 116

Bibliography 118

A Game-Tree Viewer 124

A.l V iew er... 124

A.2 L ibrary.. 126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B E stim ating B(w) - Exam ple 129

C G radient o f C ost M odel 132

D Test Suites 133

D.l Plaat Test Positions ... 134

D.2 Bratko-Kopec Test S u i t e ... 135

D.3 1001BWC Test S u i t e ... 136

D.4 ECM Test S u ite ... 136

D.5 Opening Position Test S u i t e .. 137

D.6 Dailey Opening Test S u i t e .. 139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Figures

2.1 2-ply-deep game tree... 13

3.1 Different risk assessment of subtrees.. 32

3.2 Different risk assessment of error propagation............................. 34

4.1 Critical tree... 43

4.2 Search overhead... 45

4.3 Example position and a corresponding search tree..................... 46

4.4 Efficiency comparison using the Plaat test positions.................... 52

4.5 Efficiency comparison using the Brato-Kopec test suite. . . . 54

5.1 Applying the mc-prune method at node N 57

5.2 Search efficiency when r = 2.. 66

5.3 Decision quality when r = 2.. 67

6.1 Search-extension schemes - a unified view.................................... 81

6.2 Identifying mistakes... 84

6.3 Approximating B{jp,w\ + A i)... 93

6.4 Learning results.. 95

7.1 The architecture of the offline learning system............................ 106

7.2 Comparison of online (upper) vs. offline (lower) learner. . . . I l l

A .l Screenshot of the game-tree viewer.. 126

B .l Depth of nodes in a game tree.. 130

B.2 Multiple depths of nodes in a game tree....................................... 130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Tables

4.1 Uncertainty cutoff results on the Plaat test positions........ 53

5.1 Comparison of different schemes for identifying False-cut-nodes. 64

5.2 Comparison of selected schemes using filtered data..................... 65

5-3 T m c (c , e , r) searches showing the performance of different multi-cut

parameter settings relative to a standard search, in both terms

of % of nodes searched (Nod%) and problems solved (Sol%). . 68

5.4 80 game multi-cut chess match results.................................. 69

5.5 622 game LOA match result... 71

5.6 311 mini-match LOA result.. 73

6.1 Learned weights... 98

6.2 Match results.. 100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Algorithm s

1 M M (P ,d) ... 11

2 a/3(P, d. q, 8) .. 16

3 ID — asp — a/3(P, maxdepth, margin) 20

4 or8 (P ,d ,a , 0) .. 22

5 P V S (P ,d ,a ,0) ... 23

6 M lV S (P ,d ,P) .. 24

7 N S(P , d, a, / ?) .. 25

8 M TD (P, depth, f) ... 26

9 u c P V S (P ,d ,a ,0) .. 48

10 u c M W S (P ,d ,/3 ,c u t) .. 49

11 m cM W S(P ,d , (3, c u t) .. 59

12 L S C .. 88

13 £ S C -o fflin e .. 109

14 ID — P V S(P ,d , maxdepth) ... 128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Life is a game, and the only game is real life.
- Anonymous

Ever since the dawn of civilization humans have been fascinated with

games; first and foremost for the entertainment value, but also as a mech

anism for abstracting more complex real-world scenarios. For example, some

of the ancient strategic board games that we know today are believed to have

military roots. Instead of having armies go to war, some of the planning and

other strategic elements essential for conducting a battle could be practiced

on a board.

Today games still serve as a useful mechanism for abstracting real-world

situations. In the same way as the chemists and physicists carry out their

experiments in closed laboratories where they have full control of their envi

ronment, the abstraction power of games provides the computer scientist with

an ideal controllable environment for conducting research. For example, game

playing is one of the oldest areas of investigation in artificial intelligence (AI)

and has been at the forefront of AI research ever since the birth of the first

computers, over half a century ago.

Finally, games are interesting on their own. It has proven remarkably

challenging task to program computers to play complex board games at the

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

same level as the best humans. Only in the last uecade or so have computers

been able to claim a victory over the best humans in non-trivial games of skill

such as checkers (in 1994 the program C h i n o o k became the official checker’s

World Champion) and chess (in 1997 D e e p B l u e defeated the reigning human

World Champion in a 6-game exhibition match). However, in other games such

as Go and shogi, humans are still head and shoulders above the best computer

players. Much additional research effort is needed before computers can play

these games at even a master level.

In recent years, commercial games such as role-playing, real-time strategy,

and sport games have become increasingly popular test bed for AI research.

These games pose new interesting research problems, such as real-time path

finding and behavioral models for non-playing characters. The entertainment

business is an important and integral part of today’s society, and the computer

games industry constitutes a sizable portion of that business — its revenues

exceeding those of the film industry [78]. Undoubtedly, for the unseeable

future, games will continue to play a prominent role in both AI research and

our everyday life.

1.1 G am e P laying and Search

Search is fundamental to problem solving. For example, systems for solving

planning, scheduling, optimization and constraint-satisfaction problems typ

ically rely on search to a great extend. The same is true for chess playing

programs and the like, where the search engine plays a central role in explor

ing possible move sequences several moves ahead. Unfortunately, the further

the programs look a head, the number of game positions they need to analyze

grows exponentially.

The prohibitive exponential growth prompted the early game-playing pro

grams to employ highly selective search algorithms. For any given game

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

position the programs explored only a selected subset of the possible move

c hoices. However, ever increasing advances in computer hardware made full-

width searches that examine every possible move choice more and more attrac

tive. By the late 1970s most programs employed such full-width search. On the

other hand, when playing chess and other similar games humans are adept at

simplifying the search process by reasoning about the choices and then select

ing a few prime candidates. Strong players can analyze forced continuations to

a great depth; often far deeper than a full-width program can accomplish (even

on modern computer hardware). Therefore, over the years various additional

enhancements have been introduced to allow' full-width searches to be more

selective. Interesting continuations are typically explored beyond the normal

search depth, while less interesting alternatives are terminated prematurely.

In chess, for example, it is common to resolve forced situations, such as checks

and recaptures, by searching them more deeply.

Nowadays selective-search strategies are an essential part of most game-

plaving programs. This is, in part, a consequent of the fact that further full-

width search (made possible by increased hardware speed) exhibits diminishing

returns in terms of an increased playing strength [40]. Instead, more selective

approaches show a better promise. For a brief period selective strategies that

expand game trees in a best-first fashion spurred a considerable interest among

the research community. However, it soon became apparent that the overhead

necessary for best-first expansion of game trees more than offsets the possible

benefits. Thus, best-first search strategies — while interesting in theory —

have not gained a widespread use in practice. Therefore, in the last decade

or so the focus has shifted and selective depth-first search strategies have

instead become one of the more active research areas in game-tree search

[2. 7. 2-5. 39, 17, 27].

O ne o f the most prominent example of this is the D e e p B l u e chess pro-

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gram. The success of the program can in part be explained by the impressive

hardware architecture, allowing the program to analyze on average over one-

hundred million chess positions per second. However, that on its own is not

sufficient. Additional search enhancements were necessary to best take advan

tage of the raw search speed. On the software side, the D e e p B l u e research

team designed innovative selective search algorithms based on extending forced

lines of play. The decision to use a highly non-uniform search was in part

prompted by the observation that strong chess players were on occasions able

to out-search previous versions of the program that employed a more uniform

search. In the D e e p B l u e teams words: “Our experiments showed that D e e p

B l u e typically sacrificed two ply of full-width search in order to execute the

selective search algorithms. The reason that this was deemed acceptable was

that D e e p B l u e had sufficient searching power that this loss of two ply still

left enough full-width search depth to satisfy our insurance needs." [27]. From

this one can deduce that around 95% of all game positions analyzed by the

program were in selectively extended lines!

A similar story can be told for most other world-class game-playing pro

grams. For example, LOGISTELLO, the Othello 1 program that dominated the

world scene for many years employed an aggressive pruning scheme during its

search. Not only did the program win almost every single computer Othello

competition it participated in, but one of its many accomplishments was to de

feat the human Othello World Champion in a 6-game match in 1997. winning

each and every game.

In this thesis we continue the ongoing investigation of selective expansion

of game trees. For practical reasons we limit the scope of the thesis to only

depth-first search. The fundamental question we are primarily concerned with

is: Given that there is a limited amount of time to make a move decision, how
‘Othello is a registered trademark of Tsukuda Original, licensed by Anjar Co.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

should game-playing programs best spend their search effort to maximize their

move decision quality?

1.2 C ontributions

This thesis enhances our understanding of selective depth-first game-tree search

and contributes to the state-of-the-art in several ways, including:

• An additional insight into speculative pruning is provided. Whereas

existing pruning methods are mainly concerned with the likelihood of an

erroneous pruning decision being made in a local subtree, we show that

it is equally important to assess the likelihood that an erroneous pruning

decision, if made, will propagate up the tree and thus affect the move

decision at the root.

• The above observation forms the basis of a new domain-independent

pruning method. Multi-Cut. We introduce the method here and experi

ment with it using two different games as a test bed. Our experimental

results demonstrate the promise of the method: the playing strength

of the programs we tested improves significantly. Additionally, to our

knowledge at least two of the top commercial chess programs have sub

sequently incorporated the method with good results.

• Over the decades new improved variants of depth-first game-tree search

algorithms have seen the light of day. These variants show a slight im

provement in search efficiency, that is, they explore fewer nodes while

reaching the same move decision. We show how speculative pruning —

if applied in a controlled manner — can even further improve the search

efficiency without affecting the move decision. We call the enhancement

Uncertainty Cutoffs.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• We introduce a novel method for learning search-extension parameters.

We show how the search-control problem can be formulated as a function

approximation task, thus allowing us to use standard machine-learning

methods for tuning the search-control parameters. The new learning

method can be applied during either online play or offline analyzes of

game positions. Furthermore, we have implemented and made publicly

available an abridged version of the learner as a stand-a-lone application.

It has the nice property that almost any search based game-playing pro

gram can be "plugged" into the learner as a separate module (requiring

only a few trivial modifications to the game-playing program itself).

• Finally, we developed and made public a software tool for visualizing

game trees. This tool has proved an invaluable aid to us in understand

ing and analyzing game trees and. in particular, debugging the search

process. Hopefully others will also find this software tool equally helpful.

1.3 O rganization

Chapter 2 gives an overview of the most common search techniques used in

(search-based) two-person games, emphasizing the methods that have with

stood the test of time and are being employed by most contemporary game-

playing programs.

In the next few chapters we investigate pruning as a way of adding selectiv

ity to full-width search. Chapter 3 focusses on such enhancements, the intent

of the chapter being twofold. First, to give an overview of existing pruning

methods and to identify their shortcomings. Second, to identify and sum

marize properties that are important to consider when pruning game trees,

thereby enhancing our understanding of pruning. The algorithms introduced

in later chapters were in part prompted by some of the insights gained during

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this investigation. In Chapter 4 we present Uncertainty Cutoffs, a minor en

hancement to standard game-tree search. Chapter 5 introduces Multi-Cut, a

new selective pruning method.

In addition to pruning, search extensions are commonly used to make full-

width search more selective. In the second half of the thesis we take a close

look at search extensions. Chapter 6 introduces a novel method for learning

control parameters in adversary search, in particular parameters for controlling

search extensions. In Chapter 7 a simplified version of the learning algorithm

is given. Although being more limited, in the sense that it is restricted to learn

during offline analyzes of game positions, it has other desirable properties.

Finally, in Chapter 8 we provide conclusions and discuss some of the out

standing research issues. The appendixes provide additional experimental data

and proofs. Furthermore, we present a software tool that we developed for vi

sualizing game trees, and give examples of its use.

1.4 P ublications

Chapter 4 is based on a paper "Searching With Uncertainty Cutoffs” that

appeared in the International Computer Chess Association Journal [19]. The

idea was first presented at the Advances in Computer Chess 8 conference,

Maastricht, 1996.

The Multi-Cut idea from Chapter 5 was first presented in 1998 at “The

First International Conference on Computers and Games”, Tsukuba, Japan

[14]. A revised and extended version was published in the Theoretical Com

puter Sciences journal [17]. An overview article of pruning in game-tree search,

including topics from Chapters 3 and 5. appeared in the Information Sciences

Journal [15].

Chapter 7 is based on an article "Learning Search Control in Adversary

Games” that was presented at a computer games conference in Paderbom,

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Germany in 1999. The conference proceedings were recently published as a

book “Advances in Computer Games 9" [16].

A paper, “Learning Control of Search Extensions'’, that is based on Chap

ter 8 was presented at the “Joint Conference on Information Sciences” , Re

search Triangle Park, North Carolina. March 8-14, 2002 [18].

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Gam e-Tree Search

The passion fo r playing chess is one of the most unaccountable
in the world. It slaps the theory of natural selection in the face.
It is the most absorbing of occupations. The least satisfying of
desires. A nameless excrescence upon life. It annihilates a
man. You have, let us say, a promising politician, a rising
artist that you wish to destroy. Dagger or bomb are archaic
and unreliable - but teach him, inoculate him with chess.

H.G. Wells, 'Certain Personal Matters’. 1898

We are concerned with two-person zero-sum perfect information board

games, such as chess, checkers, and Othello (and many others). In this chapter

we give an overview of game-tree search for that type of games. We will in

troduce the basic terminology as well as describing the best established search

methods and enhancements. We are primarily focused on the methods that

have withstood the test of time and are being employed (almost universally)

in contemporary game-playing programs. However, where appropriate we will

mention other (less successful) approaches and direct the reader to the relevant

literature.

2.1 The G am e Tree and M inim ax

The game-theoretic value (or game value for short) of a two-person zero-sum

perfect-information game is the outcome when both players play perfectly,

and can be found by recursively expanding all possible continuations from the

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

initial game state, until states with a known outcome are reached (so-called

terminal states). The minimax rule is then used to propagate those outcomes

back to the initial state [79]. Using the minimax rule, Max, the player to move

at the root, tries to optimize its gains by always returning the maximum of

its children's values. The other player, Min, tries to minimize Max’s gains

by always choosing the minimum value (thereby maximizing its own gains).

However, for zero-sum games one player’s gain is the others loss. Therefore,

by evaluating the terminal nodes from the perspective of the player to move

and negating the values as they back up the tree, the value at each interior

node can be treated as the merit for the player who’s turn it is to move in that

state. This formulation is referred to as negamax [44] and has the advantage of

being simpler and more uniform, since both players now are handled the same

way. that is. both maximize the backed-up values. We use this formulation in

all our subsequent discussion. The state space expanded this way is a tree,

often referred to as a game tree, where the root of the tree is the initial state

and terminal states are the leaf nodes.

In theory, at least, the value of a game can be found as described above.

However, the exponential growth of game trees expanded this way is pro

hibitively time expensive. For example, the number of nodes in the game tree

from the initial chess position is estimated to be around 10'13 [74], more than

the number of atoms in the universe! Therefore, in practice, game trees are

instead expanded only to a limited depth and the resulting leaf nodes are as

sessed. In that case the true value of the leaf nodes are generally not known,

so the assessment is instead an estimate that measures the "goodness" of the

state. This estimate is typically a scalar number and the higher the number,

the more likely the state is to lead to a win for the player to move in that state.

The exact meaning of the estimate is really not that important from the search

point of view — the purpose is simply to provide a ranking of the leaf nodes

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm 1 M M (P d)
1: i f d < 0 or /.sTcrininal(P) t h e n
2: r e tu r n evaluate(P)
3: e n d i f
4: best <-----oc
5: M <— generate Moves(P)
6: fo r a l l m, G M d o
7: make(P. m t)
8: V <r- - M M (P . d - l)
9: retract (P. m,)

10: i f u > best t h e n
11: best <— v
12: e n d i f
13: e n d fo r
14: r e t u r n best

to guide the search to the most desirable state. However, it is important to

understand that the values are estimates and may be in error. Despite that,

the estimates are traditionally treated as if they were true values and they are

propagated back up the tree in the same manner using the minimax rule. The

value backed up to the root this way is generally called the minimax value of

the game tree.

The minimax algorithm (in the negamax formulation) is outlined as Al

gorithm 1. The parameters P and d represent the current game state (game

position) and the remaining search depth, respectively. First, the algorithm

checks if the predefined search-depth limit is reached or if the current game po

sition is a terminal state (function isTerm inal{P)). In both cases the value of

the current position as assessed by the evaluate(P) function is returned (lines

1-3). The returned value is from the perspective of the side to move in that

position, a positive score indicating an advantage and a negative score a dis

advantage. Otherwise, the algorithm generates all possible moves (or actions)

from the current game position (function generateM oves(P)). and then iter

ates through the moves looking at each in a turn (lines 6-13). Within the loop.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the current game state P is updated by executing the current move (function

make(P,rrii)), and then the mmimax function is called recursively with the up

dated game state and the remaining reduced search depth as arguments. The

returned value is recorded in a variable, here called v. Referring back to our

discussion of negamax, we notice that the returned value is negated to make it

reflect the merit from the perspective of the player to move. The retract(P, rn,)

function restores the current game state by undoing the last move. The value

v is then compared to the previously known best value (recorded in variable

best), and if it is better (higher) it becomes the new best value. Finally, the

value of best is returned, indicating that this is the best value that the player

to move can achieve from that position. In the above (and subsequent) dis

cussion the terms game state and game position (or simply state and position)

are used interchangeably. Also, the notation introduced here will be used for

the remaining algorithms found in this thesis.

Figure 2.1 shows a game tree for a hypothetical game as expanded by the

minimax algorithm when called as M M (A. 2) The root position A is searched

to the depth of 2 -ply (the term ply refers to a half-move, that is, a move by one

side). Each node in the tree represents a game state and the edges between

nodes represent moves leading from one state to the next. W ithout a loss of

generality we assume that there are exactly 3 actions possible in each game

state. The minimax algorithm expands the tree recursively in a left-to-right

depth-first manner, first expanding move ai leading to game position B. There

move b\ is expanded first, leading to position C where the 2-ply depth limit is

reached. The merit of position C is now assessed using the evaluation function

(evaluate[C)). Assume that it returns the value +5, indicating that position

C is slightly advantageous for the player that has the move, in our case Max.

The algorithm now backtracks, returning the value -1-5 back to the previous

level (node B) where it becomes -5 (remember that in the negamax framework

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

♦ 5 4-9 4-8 4-2 4-4 4-8 4-8 - 2 0

Figure 2.1: 2-ply-deep game tree.

the values are negated as they are backed up so they always indicate the merit

from the perspective of the player to move). At node B moves 6 2 and 6 3 are

expanded next in a similar fashion. In our example the moves 61 , 6 2? and 6 3

get the values —5, —9, and —8 . respectively (from Min’s perspective). The

maximum of these values, or -5. is propagated back up to A , where move a\

gets the value +5 (negated again). Next move a2 is expanded and so forth

(the remaining nodes are expanded in the order F,G, H, I , J, K ,L and M),

finally resulting in the minimax value of +5 being determined at the root and

a 1 being the move that leads to the maximal score.

2.2 A C ritical Tree and th e a j3 A lgorithm

The minimax algorithm exhaustively explores all possible moves for both play

ers when determining the minimax value. However, it is not necessary to inves

tigate all the possible continuations in the game tree to determine its minimax

value — only a subtree of the game tree needs to be explored, a so-called

critical tree}
l The term minimal tree is also used to refer to this subtree. However, we prefer to use the

term critical tree because for non-uniform trees a critical subtree is not necessarily minimal
in the sense that it contains the fewest nodes.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.1 A C ritical Tree

The minimax value of a game tree depends only on the value of nodes in a

critical tree; no m atter how the remaining nodes are assessed, the minimax

value at the root of the tree does not change! To better understand this, let

us consider the tree in Figure 2.1 again. After searching the first move Max

(the player at the root) knows that a value of -f5 can be achieved by playing

the move ay. However, it is possible that Max could do even better by playing

one of the alternative moves. Now Max considers the move <22 , Min replies

with / i and the resulting position G is evaluated as +2 in favor of Max. Thus,

if Max were to play move 0 2 , Min could limit Max's gains to a mere +2 by

replying with move f i . Consequently Max will clearly prefer move a\ over

move ao, where Max is guaranteed a value of +5. There is indeed no need

to explore replies to move 02 any further. Considering the remaining moves

at F is simply irrelevant, because move f\ is sufficient for refuting move <12.

Intuitively, one can say tha t once a refutation to the opponent’s move is found

there is no need to look for further refutations! Similar arguments can be

used to show that move j$ a t node J can be ignored. These moves and their

subtrees, shown shaded in the figure, are thus not a part of a critical tree. It

is worth mentioning that there can exist many different critical trees for any

game tree. In our example, at node F the move / 2 could equally well have

replaced move f i to form a different critical tree. YVe will discuss critical trees

in some more detail in a later chapter where it becomes directly relevant to

the concepts being introduced.

2.2.2 T h e a/9 A lgorithm

The a. 3 algorithm [23, 58] is based on the observation that the minimax value

can be found by searching only a part of the game tree, namely an aforemen

tioned critical tree. As noted before, the minimax value of a game tree depends

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

only on the nodes in a critical tree: no m atter how the other nodes are assessed,

the minimax value of the tree does not change. The problem is that we do not

know beforehand which nodes belong to a critical tree. However, during the

search we can establish lower and upper bounds on the range of possible min-

imax values that subtrees belonging to a critical tree must necessarily have.

These bounds are then used to effectively prune the subtrees whose value falls

outside the established range, knowing they cannot belong to a critical tree.

Specifically, once we have searched at least one child of some node n, we have

a lower bound on the actual minimax value of that node. Moreover, if this

value exceeds the upper bound already established for subtrees belonging to a

critical tree, the remaining children nodes of n need not be searched.

The a8 algorithm is shown as Algorithm 2. It keeps track of the afore

mentioned lower and upper bounds via two parameters named a (alpha) and

8 (beta), respectively. The a/3 routine is called recursively and because we

use the negamax formulation, the return value and the bounds are negated in

every call. Furthermore, the a and 0 bounds are switched around, that way

the parameter /3 is always an upper bound for the player to move, so we don’t

need to distinguish between a and /3 cutoffs (see below). The aforementioned

pruning condition is checked at lines 12-14. If a move returns a value greater

or equal to /3, the local search terminates at that particular node; this is often

referred to as a /3-cutoff. To ensure that the minimax value of the tree will be

found, the algorithm is initially called with the values of a and 0 as — oc and

oc. respectively.

The number of nodes that the a.0 algorithm expands compared to minimax

search depends on the order in which the moves are considered. Generally

speaking, we want to explore good moves as early as possible; that way tight

bounds are established early, thus allowing for more of the remaining search

tree to be pruned via /3-cutoffs. In the worst case the ad algorithm expands the

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm 2 a3{P, d, a.@)
1: if d < 0 or isTerm inal(P) th e n
2: re tu rn evaluate(P)
3: end if
4: best <r- a
5: M <— generateMoves(P)
6: for fill ml € M do
7: rnnke(P. m*)
8: c «-----a 3 { P ,d - 1, —/3, - ■best)
9: retract(P, m*)

10: if v > best th e n
11: best <— v
12: if best > 3 th e n
13: re tu rn best
14: end if
15: end if
16: end for
17: re tu rn best

whole game tree exhaustively just like the minimax algorithm, whereas in the

best case only a critical tree is expanded (in which case the number of nodes is

approximately the square root of the number of nodes the minimax algorithm

visits). Knuth and Moore provide an analysis of the search complexity of the

a/3 algorithm [44].

2.3 A lgorithm ic E nhancem ents

Over the years, a number of enhancements have been proposed to the basic a/3

algorithm. The first class of enhancements extends the algorithm by improv

ing its search efficiency, mainly by trying to take advantage of a good move

ordering. The goal is to make the algorithm behave as closely as possible to its

best-casc behavior. However, these enhancements do not alter in any way the

miniinax value returned by the algorithm. The second class of improvements

enhances the decision quality of the algorithm by expanding selected continu

ations more deeply, while discarding other less promising lines. In this section

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we focus only on the first class of improvements. Later chapters discuss in

detail the second type of improvements.

2.3.1 T ransposition Table

In chess and many other games, different move sequences can lead to identical

positions. Therefore, the search space is strictly speaking not a tree, but

rather a graph. However, depth-first search algorithms typically do not treat

the search space as such, but instead use a big table, a so-called transposition

table, to keep track of possible transpositions to duplicated subtrees. After

exploring a game position, the search stores information about it in the table.

If that position is encountered again in the search via an alternative move path,

it may not be necessary to search it again — its value can be retrieved from the

table. The use of transposition tables w as first introduced in the M a c - H a c k

chess program [37]. The table is indexed by hashing game positions, using an

efficient hashing function such as the one introduced by Zobrist in 1970 [83].

Because the transposition table can hold only a small fraction of the actual

game positions encountered during the search, a replacement scheme is needed

to decide which positions to keep in the table. One popular replacement

scheme uses a two-level transposition table. This table stores two positions

for each hash entry: the most recent position hashed into that entry, and

the position that was searched the deepest. Typical information to store for

each position in a transposition table is the value of the position, type of

the value (i.e. true value, upper bound, or lower bound), the height of the

subtree searched from that position, the best move in the position, and the

full hash key. Additional information is sometimes kept; for example more

sophisticated replacement schemes store an age stamp that records when an

entry was inserted into the transposition table. For a detailed discussion of

the use of transposition tables in games see Breuker [22].

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.2 Iterative D eepening

When using a depth-first searc h it is necessary to decide beforehand how deeply

to search. This makes it difficult to estimate how long the search will take.

The original impetus behind using iterative deepening was simply to get a

better time control mechanism. By gradually increasing the search depth one

can better decide how long the search will take and when to stop the search.

Iterative deepening first does a 1-ply search, then a 2-ply search, and so forth

until the time allotted for the search is up. The time each successive iteration

takes grows exponentially with the search depth, thus the effort spent in the

earlier iterations is relatively small compared to the time for the last iteration.

The additional search introduced by iterating on the search depth is therefore

small. Furthermore, when used in combination with a transposition table,

information about the previously seen best moves is kept between iterations.

This leads to better move ordering (see next sub-section), most often result

ing in the iterative-deepening approach searching fewer nodes in total than

the non-iterative approach! The (now legendary) chess program C h e s s 4 .5

[75] was one of the first programs to use this technique, in the early 1970’s.

The technique of iterative-deepening search later found its way into other A1

domains, such as theorem-proving [76] and single-agent search [46].

Iterative deepening can also be applied at internal nodes in the search tree,

a scheme referred to as internal iterative deepening [2]. However, programs

generally do not apply the technique at every internal node, but rather at

selective places. For example, internal iterative deepening is commonly applied

on the principal variation (see later) if the best move is not found in the

transposition table [2].

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.3 M ove Ordering

As is well known, good move ordering is of paramount importance for the a/3

algorithm to search efficiently. Therefore, many move-ordering schemes have

been developed. One technique, especially useful when used in association with

iterative deepening, is to store the best move in the transposition table. When

a node is revisited on subsequent iterations, this move is always tried first. The

rationale is that a move previously found to be good in a position is also most

likely to be good when the position is searched to a greater depth. Another

useful heuristic, in chess at least, is to try capture moves before non-capture

moves, because often an easy refutation is found by an obvious capture.

The killer move [75] and the history heuristic [71] are two move-ordering

schemes that are also widely used. The former keeps, for each depth level

in the tree, a list of moves that have most frequently caused a cutoff. When

generating moves in any given position, the killer moves at the current level -

if legal for that position - are sorted such that they are early in the move list.

The history heuristic keeps global information about moves, indexed by the

side-to-move, and the from and to square. Whenever a move causes a cutoff it

receives a credit. The closer the move is to the root of the search tree, the more

credit it gets. The table keeps track of the accumulated credit of moves, and

in any given position moves with a high credit are searched earlier than moves

with a low credit. More recently there have been attempts to have programs

automatically learn good move-ordering schemes [38, 47].

2.3.4 A sp iration W indow s

The observation that the narrower the a 3 window the better the a/3 algorithm

performs, because of additional cutoffs, led to the idea of an aspiration window

search [23, 51]. Given that one can reasonably estimate a range where the

minimax value is expected to lie, then instead of calling the a/3 algorithm

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm 3 I D — asp — a0(P, maxdepth. margin)
1 Q <------OO
2 0 i— Foe
3 fo r depth 4— 1 to maxdepth
4 v 4— ot0{P, depth, a, 0)
5 i f v < a t h e n
6 v 4— a0(P , depth, —00 , v)
7 e ls e i f v > 0 t h e n
8 v 4— a0(P , depth, v, + 0 0)
9 e n d i f

10 a 4— v — margin
11 0 4- v + margin
12 e n d fo r

with an initial window of (—0 0 , + 0 0), a narrower window can be used. If the

value returned by the search falls inside the estimated window, it is the true

minimax value and considerable search effort may be saved. However, there

is a possibility that the bound estimates are poor, in which case the search

would return a value outside the aspiration window. If that happens, then

the returned value, v, is not the minimax value, but instead a bound on the

minimax value: an upper bound if the search fails low (v < a), a lower bound

if it fails high (v > 0). To determine the correct minimax value the search

must be repeated, this time with a more appropriate window. However, if we

have a good estimate of the minimax value before starting the search, few re

searches are necessary and the savings resulting from having a narrow initial

window will outweigh the additional search effort introduced by the occasional

re-searches. We can usually get a reasonably accurate estimate on the minimax

value, especially when using iterative deepening: simply use a narrow window

around the minimax value returned by the previous search iteration, as shown

in Algorithm 3. The algorithm demonstrates the use of aspiration window in

association with iterative deepening. The root game position (P) is iteratively

searched to depth maxdepth, using an inspiration window of ±m argin around

the value returned from the previous iteration.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A small enhancement to the a/3 algorithm, called fail-soft a8 [33J, is ben

eficial when used in association with aspiration-window search (and minimal-

window search as we will see later). When failing to find any good move (i.e.

no move has a value larger than a) the basic ad algorithm returns the value a .

In such cases, the improvement introduced in fail-soft rv.3 is to return the value

of the best move rather than a . The benefit of this approach is that in case

the backed-up value falls outside the initial search window, we have a tighter

upper or lower bound on the correct minimax value, depending on whether

we failed low or high, respectively. This is reflected in Algorithm 3 where the

value u returned by the search is used as a bound for the re-search. The a/3

algorithm with the fail-soft improvement embedded is shown as Algorithm 4

below. Because the value of best can now possibly be lower than the value of

a. we cannot use it as the upper bound for the recursive a J function call as we

did before. Instead a new variable lower is introduced for that purpose, and

it always keeps the maximum value of a and best. The fail-soft enhancement

has become an integral part of the a/3 algorithm — it costs nothing and can

help prune the tree. In our future discussion we assume the a3 algorithm and

its minimal-window variants are all fail-soft enhanced.

2.3.5 M in im al-W indow Variants

The idea of an aspiration window can be taken even further. When the a/3

algorithm is used with the aforementioned enhancements (e.g. iterative deep

ening, transposition tables, and a good move-ordering scheme) it first expands

the path it believes is the best line of play and that turns out to be the case

more often than not. This line, called the principal variation, is searched with

a wide window, typically (—0 0 ,0 0) unless aspiration-window search is used.

Now. because we really expect this to be the best line of play, all we want is to

show that the alternative moves are inferior. To do so it is sufficient to search

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 4 nfi(P, d , a, fi)
1: i f d < 0 or isTerm inal(P) t h e n
2; r e tu r n evaluate(P)
3: e n d i f
4: best <------oc
5: lower a
6: M <— generateMoves(P)
7: fo r a ll m, € M d o
8: make(P, rnfi
9: 111*«q:ei1 ■lower)

10: retract(P, mfi
11: i f /• > best t h e n
12: best f— v
13: i f best > fi t h e n
14: r e tu r n best
15: e n d i f
16: lower <— m ax(a, best)
17: e n d i f
IS: e n d for
19: r e tu r n best

them with a minimal window around the score returned by the principal vari

ation. A window where the a and fi parameters are set to be "consecutive”

values is called a rninimal-window (sometimes also referred to as a zero-width-

window or a null-window). The window is (v, v + e) where e is the smallest

granularity of the value returned by the evaluation function. For example, if

evaluate(P) returns only integer values, e would be set equal to 1 . This re

sults in efficient searches (because of the small window there will be additional

cutoffs) and only occasionally, when an alternative move really turns out to

be better, is a re-search with a wider window necessary. This idea was first

proposed in the Principal Alpha-Beta algorithm [33], and the Scout algorithm

[61]. They were later refined and reworked into the a3 framework, material

izing in the algorithms that are today almost universally used for searching

game trees: Principal Variation Search [50] and NegaScout [64].

Algorithms 5 and 6 show the two functions that constitute the Principal

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 5 P V S (P ,d ,a , 8)
1 if d < 0 or i s T e r r n in a l (P) then
2 return e v a lu a te (P)
3 end if
4 M <— g e n e r a te M o v e s (P)
5 m a k e (P , m i)
6 best <------P \ ' S { P , d — 1, —8 , —a)
7 re trac t .{P , m \)
8 if best > 3 then
9 return best

10 end if
11 lo w e r <— m a x (a . best)
12 for all m t € -V/|t > 1 do
13 m a k e (P . rn,)
14 v <------M \ V S (P , d — 1, —lo w e r)
15 if v > lo w e r and v < 8 then
16 v f - - P V S (P . d - 1 , - / 3 , - v)
17 end if
18 r e t r a c t (P , m t)
19 if v > best then
20 best <— v
21 if best > 3 then
22 return best
23 end if
24 l o w e r <— m a x { a , best)
25 end if
26 end for
27 return best.

Variation Search algorithm [52]. P V S , the main driver, explores the expected

principal variation, while the M W S part visits all the alternative nodes, using

the lower bound established in P V S to reduce its search effort. The algorithm

starts by recursing down what it believes to be the principal variation (line

6). Once the depth limit is reached it starts backtracking up again, but now

the sibling moves are initially searched with a minimal window around the

value returned by the principal move (line 14).2 If the minimal-window search
2More precisely, because we are using the fail-soft enhancement, the alternatives are

searched with the value of the current best move or a , whichever is the larger (recall our
previous discussion of the use of the lower variable).

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm 6 M W S{P,d . J)
1: i f d < 0 or isTerminal{P) t h e n
2: r e t u r n evaluate(P)
3: e n d i f
4: best « oc
5: M <— generate Moves(P)
6 : fo r a l l m l e Af do
7: m ake(P ,m i)
8 : v<-----M W S(P , d - 1 , — 3 + e)
9: retract(P, m ,)

10: i f v > best t h e n
11: best <— v
12: i f best > ,3 t h e n
13: r e t u r n best
14: e n d i f
15: e n d i f
16: e n d fo r
17: r e t u r n best

(MWS) fails low that move has been proved inferior. Only occasionally one of

the siblings returns a better value (fails high) and in that case the algorithm

re-searches that move to establish a new principal variation (lines 15-17). The

M W S is basically a simplified a 3 search. Note that there is really no need to

pass around the a bound because it can be set to f3 — e.

Apart from Principal- Variation Search, the other algorithm of choice for

searching game trees is NegaScout. The two algorithms are essentially equiv

alent search wise; they expand an identical tree .3 The latter is simply a more

compact formulation, using one recursive routine instead of two. In later chap

ters where we introduce our new enhancements, we demonstrate them using

the PVS/MW S algorithm, although they could equally well be implemented

in the NegaScout algorithm. For those who are curious about its formulation
3When the NegaScout algorithm was originally introduced it had a small refinement

added. If a minimal-window search fails high with a remaining search depth of two or less,
there is no need to re-search that move with a wider window to establish its correct minimax
value. A value returned from such shallow trees, although outside the search window, is
necessarily a correct minimax value. However, this refinement is hardly ever used in practice,
both because the node savings are negligible and, more seriously, it is not guaranteed to
work correctly when used in combination with search extensions.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm 7 N S (P ,d ,a ,3)
1: i f d < 0 or isTerm inal(P) then
2: r e t u r n evaluate(P)
3: e n d i f
4: M 4— generateM oves(P)
5: make(P,m.i)
6: bes t 4 N S (P , d — 1, —3, —a)
7: retract(P,m.i)
8: i f b e s t > /3 t h e n
9: r e t u r n best

10: e n d i f
11: l o w e r 4— m a x (a , best)
12: fo r a l l rrii € M \i > 1 d o
13: make(P,m.i)
14: v 4 N S (P ,d — 1, —lower - L. -lower)
15: i f v > lo w e r and v < 3 then
16: V-4------- N S (P ,d — 1, —3, — v)

17: e n d i f
18: retract(P, m,i)
19: i f v > bes t t h e n
20: bes t 4— v
21: i f bes t > /3 t h e n
22: r e t u r n best
23: e n d i f
24: lo w e r 4— m a x (a , best)
25: e n d i f
26: e n d fo r
27: r e t u r n bes t

we show the NegaScout algorithm as Algorithm 7, but without explanations

(basically, it is identical to the PVS function except the MWS function calls

are replaced with calls to the function itself).

Finally, the newest addition to the minimal-window a/5-variant family is

M T D (f) [63], shown as Algorithm 8 . The algorithm is admirably simple and

elegant: a driver that repeatedly calls minimal-window searches to gradually

narrow the range between the lower and upper bounds. The additional ar

gument / is the bound used for the initial minimal-window search, typically

taken from the value returned by the previous iteration. Given that we have a

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm 8 M TD (P, depth, f)
1 v <— f
2 a <------o c
3 8 <— Foo
4 repeat
5 if v = a th en
6 bound 4— v + e
7 else
8 bound <— v
9 end if

10 v <— M W S(P , depth, bound)
11 if u < bound then
12 P 4— V
13 else
14 a <r- V
15 end if
16 until a = 8
17 return v

reasonably accurate initial guess, only a few minimal-window searches are nec

essary to zoom in on the correct minimax value. Although the algorithm has

proved itself to search slightly more efficiently than its other more widespread

minimal-window variants, it has not yet found itself in a wide practical use

(there are some practical issues that need to be addressed when implementing

the algorithm in a game-playing program, like how to retrieve the principal-

variation and how to handle unreliable bounds caused by window dependent

search extensions).

2.3.6 Q uiescence Search

Having searched an initial game position to the intended maximum depth,

some of the positions that arise are volatile and hard to statically evaluate.

For example in chess, if the last move was a capture and if we now statically

evaluate the position without giving the opponent the opportunity to recap

ture. one will introduce a huge error in the evaluation. Therefore, usually all

captures for both sides are played out before a position is statically evaluated.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

More generally, regardless of the game, moves that have the potential of dra

matically changing the static evaluation should be explored. By having the

search only evaluate quiescence positions, the evaluation scores become more

reliable.

Strictly speaking, this enhancement doesn’t belong to the category of en

hancements we present in this chapter. However, one can think of it as an

extension to the evaluation function, and otherwise hidden from the search

algorithm (in that case, we would need to pass the a and -i search bound as

arguments to evaluate(P)). Ever since the early days of computer chess the

importance of searching these variations until quasi-stability is reached (before

evaluating them) was recognized [74].

2.4 B est-F irst Search

The algorithms we described in this chapter traverse the game tree in a depth-

first manner. That is, they fully explore each branch of the tree before turning

their attention to the next. They all return the same minimax value; the

primary difference is the search efficiency, where the more enhanced algorithms

search a smaller tree (always at least the critical tree necessary for determining

the minimax value is explored). There exists a different class of algorithms

for searching game trees. These algorithms traverse the trees in a best-first

fashion, and commonly search more selectively than depth-first methods. They

temporarily stop exploring branches to visit other more interesting subtrees,

possibly later returning to the abandoned branches to search them more deeply.

However, these best-first algorithms are generally not time and space efficient

and have therefore not found a wide use in practice. The best known of

these algorithms are probably Stockman’s SSS* [77], Berliner’s B* [10, 11],

McAllister’s Conspiracy Numbers [53, 72] and Palay's PB* [60]. We will not

discuss these algorithms any further because we are only concerned with depth-

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

first search enhancements. For an overview of these alternative approaches

interested readers can for example see Junghanns’ review [4 3].

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Selective D epth-First Search

I look one m ove ahead ... the best!
- Siegbert Tarrasch

Although the term selective search has most often been associated with

best-first search, the depth-first algorithms can also be selective in practice.

The selectivity is introduced by varying the search horizon, some branches are

abandoned prematurely, while others are searched beyond the nominal depth.

The former case is referred to as fo rw a rd p ru n in g (we prefer the term specu

la tive p ru n in g as it is more descriptive), and the second as search extensions.

Collectively, we refer to the two cases as se lec tive depth-first search. As such,

the search can return a value quite unlike that of a fixed-depth minimax search.

In the case of speculative pruning, the full critical tree is not explored, and

good moves may be overlooked. However, the rationale is that although the

search occasionally goes wrong, the time saved by pruning non-promising lines

is generally better used to search other lines deeper, i.e. the search effort is

concentrated where it is more likely to benefit the quality of the search result.

3.1 Specu lative Pruning

The real task when doing speculative pruning is to identify move sequences

that are worth considering more closely, and others that can be pruned with

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

minimal risk of overlooking a good continuation. Several factors should be

considered for effective pruning:

• Risk assessment.

How safe is the pruning method? We want to minimize the risks that

the speculative pruning introduces into the search.

• Applicability.

To maximize the possible gains from pruning we would like to apply the

method frequently in the tree, especially where there is a potential for

big savings.

• Cost effectiveness.

The investment of time and effort to decide whether to prune a node

should be kept low. In any case, the savings achieved through pruning

must exceed the additional effort introduced.

• Domain dependency.

Ideally, we want a domain independent pruning method such that it can

be applied in more than one specific game.

The above factors are by no means independent; improving one usually involves

compromising another. For example, reducing the risks often means limiting

the applicability, while improving cost effectiveness can introduce other risks.

Finally the more general (domain independent) methods tend to be less effi

cient. A useful pruning heuristic must find the appropriate trade-off between

the above factors, and this process may require careful tuning.

3.1.1 R isk A ssessm ent

When using speculative pruning there is always some danger of overlooking

good moves. We would like to minimize the risk of doing so. When deciding

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

whether to examine a node JV, the basic question is: how likely is it that the

subtree below iV includes a continuation that, if searched, would yield a new

principal variation. For a new variation to emerge two things must occur; first

the value returned to N must exceed the best value found so far, and second

the value must propagate to the root of the tree. This in turn implies that the

pruning method should be able to:

• predict with reasonable accuracy the range of values for node N , and

• measure the likelihood that the anticipated value will back up to the

root of the tree.

Existing speculative pruning methods address the first issue while ignoring the

second one.

Error Introduction

For most subtrees, we are not so much interested in knowing the exact value

of each particular node, but rather whether the value lies outside the bounds

of the a/3 window. This is because we know that continuations that result in

values outside the window can never become a part of the principal variation.

When using a minimal-window search, the bound is the value of the current

principal variation, so when comparing node values to the bound we are de

termining whether a better continuation is found. In that case we are simply

interested in knowing if a value returned by searching a node further is at least

as good as the fi bound, since then it causes a cutoff.

WTien predicting where the value of a node N lies relative to the a/3 bounds,

most pruning methods carry out a shallow search. They use the value returned

to estimate the range in which the actual value of node N is likely to be found

when the node is searched more deeply. For example, a 5-ply search is used

to predict the outcome of a 6-ply search. The outcome of the shallow search

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decides whether to search node N further. If we are confident enough that

further search will not yield an improvement, node N is not expanded. The

exact criteria used to relate the value of the shallow search to the anticipated

return value of the deeper search varies with the pruning technique. Some

approaches rely on statistical methods to define confidence intervals, while

others simply use ad hoc heuristics. Error is introduced into the search when

a wrong pruning decision is made.

Although values returned by shallow searches are usually reasonable es

timates of the values found by deeper searches, additional information can

enhance the overall prediction capabilities of the pruning heuristics, thereby

reducing the risk involved. For example, consider the tree in Figure 3.1. The

i *i

i ' , 'i ' < '/ * < '» ' i »i ' < >
 _ I V

Figure 3.1: Different risk assessment of subtrees.

shaded area marks the parts of the tree searched to decide whether to prune

nodes A and B. Each pruning decision is made independently, based only on

the outcome of the local search. However, information is lost by looking at

each node in isolation. For example, when looking at move mn existing prun

ing methods are interested in knowing if the move will lead to a value that

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

causes a cutoff, that is, in estimating the probability

P (v(m n) > 8).

Having already searched moves and knowing that none of them

caused a cutoff, provides a strong indicator that move m n will also fail to

do so. especially because the preliminary move-ordering scheme believes that

move m.n is no better than the moves already considered. Instead one should

compute the probability that move mn causes a cutoff, given that moves

m \ /?/,,_[have failed to do so. The probability can be expressed as:

P(v{m n) > 3 | v (m i) ,..., u(mn_[) < 8).

That is. the values of the moves are not independent of each other and, by

assuming so, otherwise potentially useful information is ignored. Existing

pruning methods and probability-based best-first search algorithms ignore the

dependencies, or unrealistically assume the search values (or the error in the

values) are independent of each other. Instead, the fa c t that the values ten d to

be. dependen t should be used to m ake m ore in form ed pruning decisions.

Error Propagation

Figure 3.2 shows two different game trees. The solid lines identify the parts

of the tree that have already been visited, while the dotted lines correspond

to nodes that have not been expanded. Assume that the search is currently

situated at node N and that the subtree resulting from playing move mi has

already been searched. Furthermore, assume that a part of that subtree has

been cu t away using some speculative pruning technique, and that the value

returned is greater or equal to the 3 bound for node N. Therefore, a 3 cutoff

o ccu rs and the value returned by move m t will back up to the root. From the

root's perspective this branch is inferior to the current principal variation and

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fa) fb)

Figure 3.2: Different risk assessment of error propagation.

the search therefore continues to expand the other children of the root without

switching principal variation.

If the pruned subtree in Figure 3.2(a) does not contain a better line, search

effort has been saved. The case of interest here is: what if a better line is

present? In Figure 3.2(a). if a better line is present but is overlooked, the

value of mi is wrong and the error will propagate through node N to the

root. However, if alternatives to mi are present, as in Figure 3.2(b), it is

possible that one of the alternative moves in [m2 , ..., m*] may contain a line

that enables it to deliver a 3 cutoff at iV, acting as a substitute for mi, and

thus preserving the value assigned at node N . Thus in Figure 3.2(b), an error

introduced by incorrectly pruning the subtree below m t does not necessarily

propagate to the root. This situation is common in practice: if the first movp

fails to cause a cutoff, one of the alternative moves may do so. This means

that even though the pruning below m t was flawed, the risk of affecting tin*

move decision at the root is less in Figure 3.2(b) than in Figure 3.2(a), because

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

one of the other moves m 2 m n might preserve the cutoff if mi changes its

value. Thus, even though an erroneous pruning is m a d e i t w ill n o t necessarily

affect the m o ve decis ion at the root. This illustrates that, when assessing risk,

pruning methods should not only take into account the expected return value

of a pruned node, but also assess the likelihood that an erroneous pruning

decision will propagate up the tree.

3.1.2 A pplicability

The most popular pruning heuristics used in two-person game-playing pro

grams have one thing in common: they apply frequently throughout the search

tree, though not without restriction. The more frequently a pruning heuristic

is applied in the search, especially at places where there is a high probability

of big savings, the more potential it has for being effective. However, the ap

plicability is restricted, since pruning can only be done where it is expected to

be safe. Depending on the heuristics used, this can differ substantially.

3.1 .3 C ost E ffectiveness

Although some pruning methods offer low risks and substantial savings in

terms of nodes searched, the overhead needed to implement them is often

prohibitive. The effort expended gathering and tracking in real-time the in

formation required by the heuristics may outweigh the potential time savings

introduced by the pruning. An example of such a heuristic is the m eth od o f

analogies , a unique search reduction technique that was implemented in the

pioneering K a is s a chess program [1]. Although, the method offers almost

risk-free pruning, the overhead of tracking how pieces influence each other

originally proved too high for practical use in a competitive chess playing pro

gram. However, changes in software and hardware technology may improve

the viability of such methods. It might also be possible to approximate the

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

original heuristic by another that is less costly to maintain, and yet achieve

most of the savings. Therefore the method of analogies is again a topic worthy

of investigation.

3.1.4 D om ain D ep en d en cy

Preferably we want domain independent pruning techniques. Those methods

would not rely on such explicit knowledge as whether a king is in check, or

whether a corner square is occupied. Instead the only information revealed

to the search by the evaluation function is a numerical estimate of a problem

state’s quality. This clear separation of the search and the problem encourages

more domain independent pruning methods. On the other hand the methods

are then denied access to potentially useful information about the problem

domain, thereby restricting their pruning capabilities. However, there is a

wealth of information to be gathered about the problem by simply looking at

the shape of the expanded search tree. This knowledge is accessible without

having to uncover any additional domain-specific knowledge. We have already

mentioned a few cases of interest as part of our risk-assessment discussion.

In practice, it is extremely difficult for pruning methods to be domain

independent. As said earlier, there is a trade-off between generality and ef

fectiveness, and to achieve the full pruning capability we must exploit some

special characteristics of the search space. Most existing speculative pruning

methods are therefore domain specific. Even though methods like null-move

and ProbCut (see later) do not use explicit knowledge about their domain, they

make implicit assumptions that tie them down for use in one, or at best very

few, two-person games. For example, the null-move heuristic is very effective

in chess, but inappropriate for Othello. Conversely, ProbCut is the priming

heuristic of choice in Othello but has not yet been shown useful in chess or

checkers.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To support our claim that the new pruning method we introduce in a

later chapter is indeed domain independent, we experiment with it using two

different games as a test bed.

3.2 Search E xtensions

The other side of selective search is search extensions. They are essential for

improving decision quality of game-playing programs. For example, as men

tioned in the introduction, one of the fundamental design decisions behind the

search scheme employed by the D e e p B l u e chess-playing program was based

around search extensions. However, most programs employ ad hoc domain

dependent extensions schemes. For example, in chess it is common to extend

forcing moves that have the potential of greatly altering the positional evalu

ation, such as checks, re-captures, and pushed of a passed pawn. In the past

it has been a tedious and painful process to fine-tune the different extension

schemes, because the decision quality of the search can degrade when extend

ing too aggressively (because the search no longer reaches sufficient nominal

depth). In a later chapter we introduce a novel method for automatically

parameterizing search-extensions schemes. We will for most part postpone

further discussion of search extensions until then.

3.3 R elated W ork

In this section we give a brief overview of the most popular selective search

enhancements used by contemporary game-playing programs.

3.3.1 T he N ull-M ove H euristic

In some games, such as Go, a legal move is to pass (to make no move). The

only change to the game state is the side to move. This is called a null move.

In games like chess, the null move is not legal. Nonetheless, it can be useful in

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the search to assume that a null move can be played. The idea of using null

move in the search has been known for a long time [l], and is now used by

most chess programs. However, the method did not get much attention in the

literature until later [60, 5, 36, 6, 30].

When searching a position to depth d, before considering a legal move in

that position a null move is made first. The position is then searched to a

depth less than d, most often d — 1 or d — 2. If the resulting score is greater

than d. a cutoff is made based on the shallow search result. The null move

can be applied recursively in the tree. The underlying idea is that in chess it

is almost always beneficial to make a move rather than to pass. Therefore, if

the score received by giving up a move is still good enough to cause a cutoff,

it is very likely that some of the legal moves will also cause a cutoff. Because

the position was searched using a shallower search than we would otherwise,

a considerable search effort is saved. In chess it is almost always safe to make

the assumption that making a move will improve the position, but there are

special cases in chess where this is not true. Zugzwang positions are the case

in point, and are most likely to arise in the end game. Thus chess programs

usually turn off the null-move heuristic when entering the end game. While the

null-move heuristic works well in chess, it is useless in many other game-tree

domains where zugzwang positions are common.

3.3.2 P robC ut and M ulti-P rob C u t

The ProbCut [24] heuristic uses shallow searches to predict the result of deep

searches. In Othello, where the score of a position generally does not change

significantly by searching deeper, this heuristic works very well. Therefore, if a

shallow search predicts with a high confidence that a deeper search will produce

a cutoff, a cutoff is made based only on the shallow search. A confidence

interval of how good a predictor a shallow search is of a deeper search is

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

calculated off-line bv searching a big database of positions that have been

pre-classified into several different classes. A separate confident interval is

calculated for each class. More recently, the method was further enhanced

and the refined procedure named Multi-ProbCut [25].

3.3 .3 Singular E xtensions

In game-playing programs it is generally a good idea to search forced moves to

a greater depth than other moves. Conventionally, search extension schemes

rely on domain-specific knowledge to decide on the forcefulness of a move, for

instance check evasions in chess. Another possibility, exploited by the singular

extension heuristic [3], is to use the search itself to provide information about

the forcefulness of a move. If a value returned by one move is significantly

better than all others, that move is judged to be singular. Whenever a move

is found to be singular, and it is likely to alter the outcome of the search if its

value changes, the position arising from the move is re-searched one ply deeper.

The idea of this search extension scheme is to allow the search to dynamically

extend long forcing lines of play. Although the basic idea is simple, it requires

extensive additional tuning and refining to get it to work smoothly in an actual

game-plaving program. More recently this method has been further refined,

for example to extend not only on singular moves but also binary, and trinary

moves (i.e. only 2 or 3 good moves). The new refined scheme was successfully

employed by D e e p B l u e [27].

3 .3 .4 O ther M ethods

In the early days of computer chess there was interest in speculative prun

ing methods. Today, most of these methods are of a limited practical use.

Although not in common use today, some of these methods were quite novel

(e.g. the aforementioned method of analogies [1]). Later some of these early

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

speculative pruning methods further evolved and became popular, for exam

ple razoring [12] and futility pruning [75. 70]. When the null-move pruning

technique became mainstream it superseded some of the earlier pruning meth

ods. In the last decade there has been revived interest in speculative pruning

methods. Preliminary experimental results with a method named Fail-High

Reductions have been reported [32], however, they didn’t offer much additional

benefit when used alongside established pruning methods such as null-move

pruning, thus limiting its usefulness. More recently, AEL pruning was intro

duced [39]. This method is a collection of three pruning schemes: adaptive

null-move pruning, extended futility pruning, and limited razoring; each en

hancing an older existing pruning scheme. It showed great promise in the

chess program D a r k T h o u g h t .

3.4 C onclusions

We have given an overview of existing selective search methods, and pinpointed

some of their short-comings. As mentioned before, speculative pruning heuris

tics should be concerned with the question: What is the likelihood o f making an

erroneous pruning decision and. if an erroneous decision is made, how likely is

it to affect the principal variation ? The existing methods generally do not con

sider the second part of this question. When assessing risk, pruning methods

should not only speculate whether a subtree contains a good continuation, but

also determine if there are alternatives to any potentially overlooked continua

tion that could preserve the principal variation. To answer these questions the

methods must consider each node in the context of its location in the game

tree, instead of looking at each node (and the subtree below it) in isolation.

In a later chapter we present a new speculative pruning method that over

comes some of the aforementioned shortcomings.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

U ncertainty Cutoffs

O f chess it has been said that life is not long enough
for it. but that is the fault of life, not chess. ”

- William, Ewart Napier

In this chapter, we take a new look at pruning. A common scenario in

a search is that expectations change. Uncertainty in the search results in

changes of the principal variation (PV). When this happens, some branches

are explored that, with hindsight, are unnecessary. There is an opportunity

here for savings. A new pruning technique, uncertainty cutoffs, is applied

at carefully selected places in the search tree. Bookmarks are kept where

the pruning is done, so that one can tell if a backed-up value is a correct

minimax value or an uncertain value. Even if speculative pruning is used in

the search, it does not necessarily affect the reliability of the minimax value at

the root of the search tree. If the pruning is only done in subtrees that turn

out to be irrelevant for proving the rninimax value, a guaranteed value can be

backed up to the root. The bookmarks tell us whether the pruning applied

in the tree is affecting the reliability of the minimax value, thus giving us the

opportunity to correct it by re-searching the subtrees containing the uncertain

values. Hopefully, the gains of applying the pruning will outweigh the extra

search overhead of occasional additional re-searches of uncertain values.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Strictly speaking, this pruning method does not fall into the category of

spcrulative-pruning methods because we have a way of telling when a value is

uncertain and can rectify the situation by re-searching the node. The type of

pruning introduced here is analogous to the additional pruning power intro

duced by minimal-window searches, where an artificial upper bound is used: if

the search fails-low the gamble pays off, but if the search fails-high a re-search

is necessary.

In the next section we take a second look at the critical tree that must

be searched to prove the value of a game tree. This is followed by two sec

tions that describe the uncertainty cutoff pruning method, the idea and the

implementation, respectively. Finally, we present our assessment and provide

experimental results.

4.1 Searching a C ritical Tree

We have previously mentioned that to find the value of a game tree, at least

a so-called critical tree must be searched. Here we take a closer look at the

structure of a critical tree. The nodes of a critical tree can be categorized

into three different types based on their properties, as shown in Figure 4.1.

The light colored nodes in the picture belong to a critical tree. All moves

have to be searched at pv-nodes (P) and all-nodes (A), but only one move is

searched at cut-nodes (C). The dark colored nodes need not be searched, but

some of them may be, depending on the quality of the move-ordering scheme

used. Before searching a node we do not really know if a node will become a

cut-nude or an all-node. Thus, before fully exploring nodes we refer to them

as expected cut-nodes or expected all-nodes depending on if we believe they will

ca u se a cutoff or not.

The performance of the acj3 algorithm is affected by the order in which nodes

in the tree are searched. In the best case only a critical tree is expanded. The

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.1: Critical tree.

best move must be expanded first at pv-nodes (to get a good lower bound

early), but at cut-nodes any move sufficiently good to cause a cutoff can be

searched first.1 Because of the a/3 algorithm’s sensitivity to the move ordering,

it is important to expand good moves as early as possible. Various heuristics to

achieve good move ordering have been developed in the past (see Chapter 2).

By using these heuristics in chess, for example, empirical evidence shows that

over 90% of the cases where a cutoff occurs it is indeed caused by the first move.

As mentioned in Chapter 2, enhanced a/3 variants like NegaScout and Principal

Variation Search that employ minimal-window search take advantage of moves

that are ordered such that good ones are more likely to be searched first. These

algorithms have been shown, both theoretically [65] and empirically [70], to

be more efficient than the original a/3 algorithm.

4.2 U ncertainty Cutoffs - Idea

Current tree-search algorithms equipped with various search enhancements are

searching quite efficiently. But there is still scope for improvement. Search

overhead from imperfect move ordering can be introduced in two ways:
1 Because of a non-uniform branching factor, search extensions and various possible trans

positions. the size of subtrees generated by different moves may vary considerably. In gen
eral. we would like to search first not only a move that returns a value that is sufficient to
cause a cutoff, but also one that leads to the smallest subtree.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• at a cut-node, the first move does not cause a cutoff, or

• at a pv-node. the first move is not the best.

Both these cases occur when there is uncertainty in the search — previous

expectations are changing. In the first case additional moves must be searched

until a move (if any) causes a cutoff. The subtrees of the sibling nodes searched

prior to the node that caused the cutoff have been searched unnecessarily. In

Figure -1.2 this search overhead is shown at node b as the shaded subtree

T\. In the second case, assuming minimal-window search is used, when a

new best move is found it must be re-searched with a normal window. The

search overhead here consists primarily of the initial minimal-window search

that failed high.2 Figure 4.2 shows the case when the third move searched

at the root (i.e. c) fails high; the minimal-window search that is performed

(the shaded subtree at c) is the search overhead and the subtree T> represents

the necessary re-search. However, information stored in the transposition table

during the minimal-window search efficiently guides the re-search, saving some

move generations and node expansions.

At cut-nodes it is most important tha t the move which causes the cutoff

be searched as soon as possible. To improve the prospect of choosing a move

that will cause a cutoff, we make use of available move information (e.g. the

transposition table entry and the history heuristic). However, while searching

the subtree of this move we might, based on other information, start to believe

that this move will not cause a cutoff. The question that we then face is

whether to continue searching this sub-branch, or to stop and start searching

a different candidate cutoff move nearer the root of the tree. This is the

basic idea behind the pruning method introduced here. Instead of having only

the two scenarios (either expanding all children of a node or having a child
-The search efficiency is also somewhat degraded because prior sibling nodes have been

searched with an inappropriate window.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.2: Search overhead.

cause a cutoff) a third scenario is now also possible, where only some of a

node’s children are searched before we stop. This type of pruning shows some

resemblance to the additional pruning possible when using a minimal-window

search. Both uncertainty cutoffs and minimal-window search allow speculative

cutoffs based on the expectation that an alternative move nearer the root of

the tree is more likely to cause a cutoff than the move currently being explored.

The difference is that uncertainty cutoffs make a speculative cutoff at expected

cut-nodes (if they do not produce a cutoff quickly), whereas the artificial upper

bound of a minimal-window search enables early cutoffs at expected all-nodes

(if their lower bound happens to exceed or equal the artificial bound).

To illustrate this idea in practice, let us look at the chess position in Figure

4.3. Here it is White's turn to move. The pawn on e5 is threatened but White

has several possible continuations. Assume that White has already found a

tentative principal variation and is now thinking of l.e6 as an alternative move.

Black s obvious reply l....i?xe6 fails to 2.JVc5, attacking both of Black's rooks.

That threat, however, was beyond the search horizon of the previous search

iteration, so the search expands the move l....Rxe6 first and White responds

with 2..Wo (not necessarily the first move considered). In the resulting po

sition Black is faced with the problem of saving the rooks. Black has over

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. &C<-'

anything

Figure 4.3: Example position and a corresponding search tree.

25 legal moves but all fail to prevent White from capturing one of the rooks.

Instead of exhaustively searching all the possible legal moves, we can abandon

the others after only a few have been examined, and start to look at alterna

tives to l....f?xe6. A better move is easily found (e.g. 1..../5) and, assuming

the new move generates a cutoff, then we save considerable search effort, but

still return the same, correct minimax value. The search tree corresponding

to this example is also shown in Figure 4.3. This tree is expanded during

a minimal-window search, where the shaded area represents the part of the

tree not searched because of the uncertainty cutoff. The savings arise because

the sequence e6, Rxe6: Neb, “anything” looks like a new principal variation.

Rather than exploring all the alternatives for “anything” we assume that a

new principal variation is indeed emerging and so retreat up the tree, where

we quickly refute the candidate principal variation with /5 .

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 U ncerta in ty Cutoffs - A lgorithm

Two fundamental questions must he considered when implementing the above

pruning method: how to guarantee that a correct minimax value is returned,

and how to make decisions about when to apply the pruning method. These

questions will now be addressed.

Assume that the pruning method described above is applied in subtree 7\

of Figure 4.2, such that the value backed up to the root of 7 \ is not guaranteed

to be the correct minimax value, i.e. the value is uncertain. The interesting

case occurs when the value returned by 7\ does not cause a cutoff, but another

child of b does. In that case the subtree T\ is not a part of the critical tree and

any pruning made in there will not affect the true value in any way. Given

that this value of the move causing the cutoff is not uncertain, then neither

will the value returned by b. However, in cases where b fails low the value

returned by b will be uncertain if any of its children's values are uncertain. If

an uncertain value is backed up all the way to a pv-node, that node will have

to be re-searched. By keeping track of how uncertain values are backed up in

the tree, we can determine if the returned value for the search is guaranteed

to be the correct minimax value or not.

Below we show how uncertaintv-cutoffs can be embedded into the Principal-

Variation Search algorithm. Algorithms 9 and 10 show how we need to modify

the P V S and M W S functions, respectively. In the ucP V S (uncertainty cutoff

P V S) function line 14 has been modified to have the minimal-window search

return if a backed-up value is uncertain, and lines 15-16 is the additional code

to handle the re-search of uncertain values. Note that the returned value can

not even be used as a bound for the re-search. Otherwise the function is the

same as the original P V S function. When an uncertain value is backed up to

a pv-node, its value is corrected by re-searching that node using the current

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm 9 ucP V S(P ,d ,a , /3)
1: i f d < 0 or i s T e r m i n a l (P) t h e n
2: r e t u r n e v a lu a t e (P)
3: e n d i f
4: M 4— g e n e r a te M o v e s (P)
5: m a k e { P , m \)
6: bes t <------u c P V S { P , d — 1, —3, — cv)
7: r e t r a c t { P , m {)
8: i f best > 13 t h e n
9: r e t u r n b es t

10: e n d i f
11: lo w e r 4— m a x (a , bes t)
12: fo r a l l m i G M \ i > 1 d o
13: m a h e {P , m i)
14: (v , u n c e r ta in) <------u c M W S (P , d — 1. —lo w e r . t ru e)
15: i f u n c e r ta in t h e n
16: v <-----u c P V S (P , d — 1, —3, —lower)
17: e l s e i f v > lo w e r and v < 3 t h e n
18: v 4-----u c P V S (P , d — 1, — — r)
19: e n d i f
20: r e t r a c t { P , m {)
21: i f v > b e s t t h e n
22: bes t 4— v
23: i f o e s i > p t h e n
24: r e t u r n bes t
25: e n d i f
26: l o w e r 4— m a x (a , best)
27: e n d i f
28: e n d fo r
29: r e t u r n b es t

afi window. Therefore there is no need to keep track of uncertain values in

the P V S part of the algorithm. Thus the method represents a “safe” pruning

mechanism.

The uncertainty cutoffs themselves take place in the ucM W S function, and

uncertainty information about a value is backed up there. Basically, a backed-

up value is uncertain at all-nodes if at least one of its values is uncertain

(the variable uncertain is used to record this). On the other hand, at cut-

nodes the returned value is uncertain if and only if the move that caused the

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm 10 ucMWS(P,d , fi,cut)
1: i f (I < 0 or i s T e r m i n a l (P) t h e n
2 : r e t u r n e v a lu a te (P)
3: end i f
-t: u n c e r ta in <— f a l s e
3: best < oo
6: M <— g e n e r a te M o v e s (P)
7: fo r a l l nii € M d o
S: m a k e (P ,m i)
9: (u, uc) < u c M W S (P , d — 1, —0 + e, -icut)

10: r e t r a c t (P , m.i)
11: i f v > bes t t h e n
12: be s t <— v
13: i f best > p t h e n
14: r e t u r n (bes t ,u c)
15: e n d i f
16: e n d i f
17: i f c u t and d o U n c e r ta in t y C u t (d , m i, M) t h e n
IS: r e t u r n (b es t , tru e)
19: e l s e i f u c t h e n
20: u n c e r ta in <— t ru e
2 1: e n d i f
22: end fo r
23: r e t u r n (b es t ,u n c e r ta in)

cutoff has an uncertain value (the variable uc tells if the value of the move just

searched is uncertain). The implementation of the specific strategy for deciding

exactly when to apply the uncertainty cutoffs may differ somewhat between

games, thus we abstract it here in the doUncertaintyCut(d, mt, M) function

(we discuss some strategies a little later). Furthermore, we must be careful

to specially mark uncertain nodes when inserting them into the transposition

table, so that their re-use is restricted to suggesting the best move, and not to

adjusting the search bounds or the search value.

The other fundamental question is where and when to apply the pruning

heuristic. We cannot blindly apply the pruning everywhere in the tree, be

cause this would result in frequent re-searching of uncertain nodes, resulting

in the search overhead of the re-searches exceeding the gains of the pruning.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Basically, we would like to prune only in subtrees that are not likely to become

a part of the minimal tree. What is needed is a good criteria for identifying

these subtrees. Typically what happens is that the shape characteristics of the

search tree change when we are searching on a path that is off the critical tree.

Nodes that we expect to be cut-nodes start to behave like all-nodes and vice

versa. This can be seen in Figure 4.2. For move c to fail high (and therefore

is no longer a part of the critical tree because of the re-search) it must be true

that all children of c are searched and fail low. Because of the move ordering,

the moves that are most likely to cause a cutoff are examined first, but if none

of the promising cutoff candidate moves causes a cutoff, we have good reason

to believe that the rest of the moves will also fail to do so. Therefore, after

searching only some of the possible moves at c we may decide not to search

the rest, i.e. we make an uncertainty cutoff, and return right away. This will

cause node c to be re-searched. The criteria used here to decide when to apply

the pruning is as follows: i f during a m in im a l-w in d o w search, a node that is

expected to be a cut-node does n o t cause a cu to ff af ter searching so m e num

ber o f m oves, then the rest o f the m o v e s are ignored. The number of moves

looked at in each position can be determined in various ways: for example

a fixed percentage of legal moves could be searched (or possibly a different

more dynamic measure). Also, because we only test for uncertainty cutoffs if

a notle is an expected cut-node, an extra parameter cu t is passed down to the

u c M W S function. It is set to true if the node we are currently visiting is an

expected cut-node. but is otherwise false. In a minimal-window search there

are alternating layers of cut- and all-nodes (recall our discussion of the critical

tree), thus the value of the cu t parameter is negated in each recursive call.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Experim ental R esults

The method was implemented in T h e T u r k , an experimental chess program.3

The program's search engine uses the Principal-Variation Search algorithm

(P V S /M W S). It also employs most search enhancements found in contem

porary chess programs. The move-ordering scheme generates capture moves

first (most valuable piece captures generated first) and the history heuristic is

used to sort the remaining moves. The best move previously found in a posi

tion is stored in the transposition table and searched first where applicable.

For our experiments we used the test positions published in Plant's PhD

thesis [63] (the positions are also listed in Appendix D .l). The test positions

were searched to a depth of 8-ply but, as in the previous mentioned work,

with both search extensions and pruning enhancements disabled.' On the

other hand, enhancements such as transposition tables, iterative deepening

and quiescence search were used. Uncertainty cutoffs are done at expected

cut-nodes after a fixed percentage of the legal moves are searched, with the

proviso that capture moves are always searched. Furthermore, the pruning is

not done if the remaining search depth is less or equal to one, because at these

frontier nodes we have poor move-ordering information and, consequently, the

best move can lie almost anywhere in the move list.

For different parameter values, the graphs in Figure 4.4 show how the

uncertaintv-cutoff program performs relative to the same program without the

cutoffs. The moves-looked-at ratio — the percentage of moves explored at ex

pected cut-nodes before making an uncertainty cutoff— is varied from 10-90%

(the x-axis). The graph to the left shows the number of nodes searched by the

uncertainty-cutoff version compared with the unmodified program, whereas
3T he Turk was developed at the University of Alberta by Yngvi Bjornsson and Andreas

Junghanns.
■‘Using these selective search techniques would make it difficult to measure the search

efficiency, because radically different trees are possibly expanded from one run to the next.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

! » - ■ - > - - - - - - - - - - . - - - - - - - - - - - - - I - - - - - - - - - - - - - - - - 11 T -

I S O •

©■1,5 •
>

I »• ■
A ^ ”
C toe » ------------------------------- :— —--3
aS - •

•0 ■
a s , * * ■ * - ■ ■ * • -

s t o a j o a s o o o t o i o w t a o
% of moves looked at

Figure 4.4: Efficiency comparison using the Plaat test positions.

the graph to the right shows the relative number of re-searches.

As can been seen from the graphs, when we apply the pruning too aggres

sively the total number of nodes searched is higher than nodes seen without the

pruning. The reason is that too many incorrect pruning decisions are made, re

sulting in frequent re-searches to correct the uncertain minimax values. This

is even more apparent when looking at the node-count information in con

junction with the re-search information, presented in the graph to the right:

when only a small fraction of possible moves is explored, exponentially more

re-searches are performed. However, as the moves-looked-at ratio increases,

the number of additional re-searches drops rapidly. Also, more importantly,

so does the number of total nodes searched. The two versions of the program

break even at the 40% mark, from which point on the pruning “gamble” starts

to pay off, that is, the uncertainty-cutoff version now searches fewer nodes

in total. Clearly, the savings gained by pruning some of the sub-branches

more than outweighs the extra search overhead introduced by the occasional

re-searches. As the moves looked at ratio approaches 100%, the two versions

converge to identical behavior as one would expect. Even though the data

here are presented as savings in nodes searched, the run-time overhead with

the method is negligible so the search time results are in the same ratio.

Table 4.1 shows the search efficiency broken down by individual positions in

52

a oas

30

3 0
a o
z to
3 0

q too
^ 190
O 140ae ’»ta

tooM0 to a a 40 00 40 m 40 •00
%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.1: Uncertainty cutoff results on the Plaat test positions.

mu ves-looked-at ratio
P o s .# 0.1 0.2 0.3 0.4 0.5 0 .6 0.7 .8 0.9

1 115.84 114.71 109.68 100.78 105.88 99.10 101.04 102.31 108.48
2 129.46 131.56 129.60 110.94 102.49 97.54 97.00 98.70 100.59
3 118.92 113.76 110.65 111.23 98.71 92.66 96.40 97.82 99.04
4 109.20 96.19 94.10 79.21 92.43 79.05 87.99 92.56 98.50
5 110.43 109.94 103.21 92.50 93.22 89.75 93.99 98.00 100.97
6 121.70 116.10 113.15 93.89 89.85 91.17 99.50 100.14 101.19
7 114.83 106.94 101.70 101.19 100.08 100.10 99.90 99.68 99.95
8 96.47 92.24 95.44 88.03 83.22 83.89 86.26 88.75 93.33
9 131.58 117.48 111.23 98.40 95.34 95.38 99.67 100.32 100.56

10 132.69 114.89 133.60 126.14 116.20 105.03 96.07 97.85 98.80
11 126.44 132.45 139.92 151.30 149.97 96.28 97.82 97.31 98.49
12 127.78 100.50 100.26 100.09 94.34 95.32 97.90 97.20 98.46
13 129.18 97.05 95.10 81.70 92.81 86.21 89.21 92.00 95.34
14 141.12 119.19 96.91 89.49 96.15 90.66 92.89 94.81 97.10
15 134.72 112.25 108.04 98.12 98.50 98.40 98.66 98.98 99.47
16 110.11 106.40 103.48 99.77 100.81 99.81 99.88 99.93 99.99
17 116.98 118.02 103.46 103.27 103.24 102.58 99.84 99.85 99.92
18 104.75 90.03 87.20 84.27 80.12 85.87 86.93 89.99 94.82
19 134.93 121.19 103.79 107.62 101.51 99.94 99.45 99.28 99.52
20 131.57 110.30 104.64 99.42 104.66 96.10 97.98 97.30 98.83

Tot.% 119.68 109.10 106.33 99.46 98.82 9 2 .8 7 94.87 96.36 98.78
Avg.% 121.94 111.06 107.26 100.87 99.98 9 4 .2 4 95.92 97.14 99.17

the test suite. The table entries show the percentage of nodes searched relative

to an unmodified program. The total savings at the bottom of the table are

shown both as a percentage of nodes searched in total, as well as the average

percentage saving over all the positions (i.e. the percentage numbers shown in

the table). It is interesting to note that for the optimal moves-looked-at ratio,

in only few cases does the pruning cause more nodes to be searched, and then

only marginally. On the other hand, the savings can be substantial.

As a further proof of concept, we ran identical set of experiments using a

different test suite, the so-called Bratko-Kopec positions (see Appendix D.‘2).

The performance graphs are produced in Figure 4.4, and yield similar results.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

II
© !*[

<00 0 *0 ao « so to n
% ol moves looked at

ID *00
% of moves looked at

Figure 4.5: Efficiency comparison using the Brato-Kopec test suite.

4.5 C onclusions

We introduced a new enhancement that improves the search efficiency of the

Principal-Variation Search algorithm (and other a/3-like algorithms), while

still backing up the correct minimax value. However, because move order

ing in chess programs is already very good, and programs are searching quite

close to the critical tree (needed to prove the minimax value), the savings

are necessarily relatively small. In other less researched game domains, where

good move-ordering information is not as easily available, this enhancement

may offer additional savings. Nonetheless, the efficiency improvement the new

enhancement yields is comparable to what other similar search variants demon

strate, e.g. the efficiency gains NegaScout/PVS shows over a/3, or M TD (/)

over NegaScout [63]. Thus, we view this new technique as yet another impor

tant step in a long line of algorithmic enhancements that aid a/3-based search

in achieving close to optimal search behavior.

Improvements that only aim at improving the search efficiency, while still

insisting that the correct minimax value be proved, will yield only marginal

improvements. Therefore, we will shift our focus to speculative search en

hancements that do not necessarily prove the minimax value, but instead aim

at improving the overall decision quality of the search.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

M ulti-Cut a/3 Pruning

When you see a good mo ve wait look for another.
- Emmanuel Lasker

This chapter introduces a new speculative pruning enhancement to the a/3

algorithm. It is based on our earlier observation that pruning methods should

not only consider the likelihood that a subtree contains a better continuation,

but also how likely it is that an erroneous pruning decision will propagate back

up the tree to influence the move decision at the root (see Chapter 3 for a more

complete discussion).

5.1 M ulti-C ut Idea

In the traditional a/3-search, if a cutoff occurs there is no reason to examine

that position further, and the search can return. For a new principal variation

to emerge, every expected cut-node on the path from a leaf-node back to

the root must become an all-node. In practice, however, it is common that

if the first move does not cause a cutoff at an expected cut-node, one of

the alternative moves will. Therefore, expected cut-nodes. where many moves

rnay have good potential fo r causing a /3-cutoff, are less likely to become all

nodes. Consequently such lines are unlikely to become part of a new principal

variation. This observation forms the basis for the new speculative pruning

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scheme we introduce here, called multi-cut a(3-pruning. Before explaining how

it works. let us first define an mc-prune (multi-cut prune).

D efin ition 1 (m c-prune) When searching node N to depth d + 1 using an

a 3 -like search, if at least c of the first e children of N return a value greater

than or equal to 3 when searched to depth d — r, an mc-prune is said to occur

and the local search returns.

Figure 5.1 illustrates the basic idea. At node iV, before searching move mi

to its full depth d, like a normal or/3-search will, the first e successors of N

are expanded to a reduced depth of d — r. If c of them return a value greater

than or equal to ,3. an mc-prune occurs and the search returns the 3 value,

otherwise the search continues as usual exploring move mt to the full depth

d. The moves m2,...,m e are searched to depth (d — r) and represent the

extra search overhead introduced by mc-prune. This overhead would not be

incurred by normal a/3-search. On the other hand, the dotted area of the

subtree resulting from move m.\ represents the savings that are possible if the

mc-prune is successful. However, if the pruning condition is not satisfied, we

are left with the overhead but no savings. Clearly, by searching the subtree

of move mi to a shallower depth, there is some risk of overlooking a tactic

that would result in mt becoming a part of the new principal variation. We

are willing to take that risk, because we expect at least one of the c moves

that return a value greater or equal to ft when searched to a reduced depth,

would have caused a genuine /3-cutoff if searched to a full depth, d. If a shallow

search returns a value good enough to cause a cutoff, that is generally a strong

indicator that a deeper search will also cause a cutoff. The fact that we

require more than one such shallow cutoff further reduces a risk of erroneous

mc-pruning.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

d

r = search reduction
e = number of moves examined
c = number of cutoffs needed

Figure 3.1: Applying the mc-prune method at node N.

5.2 M ulti-C ut Im plem entation

Algorithm 11 lists the pseudo-code fora minimal-window search (A/IT'S) rou

tine using multi-cut. The M IV S routine is an integral part of the Principal

Variation Search algorithm (see Chapter 2). The multi-cuts are applied only

in the N W S routine, whereas the P V S routine is unchanged.

Multi-cut could equally well be implemented in a standard a 3 algorithm or

a different variant (e.g. NegaScout). For clarity we have omitted details about

search extensions, transposition table look-ups, quiescence searches, null-move

searches, and history heuristic updates that are irrelevant to our discussion.

The parameter d is as before the remaining length of search for the position,

and 3 is an upper bound on the value we can achieve. The new parameter.

cut, is set to true if the node we are currently visiting is an expected cut-node.

but is otherwise false. In a minimal-window search there are alternating layers

of cut- and all-nodes, thus the value of the cut parameter is negated in each

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

recursive call (information from the transposition table can also be used to tell

if we expect a node to be a cut-node or not).

The routine starts by cheeking whether the search horizon is reached, and

if so evaluates the position and returns its value (or calls a quiescence search).

If we are using a fully enhanced search routine, we would next look for useful

information about the position in the transposition table, followed by a null-

move search. If the null-move does not cause a cutoff, a standard minimal-

window search would follow (lines 20-30). However, when using multi-cut.

the check for the pruning condition is inserted before we start exploring the

possible moves (lines 6-L9). The parameters E, R , and C are mc-prune specific

and stand for: number of moves to expand (e), search reduction (r), and

number of cutoffs needed (r). respectively (see Figure 5.1).

We do not check for the mc-prune condition at every node in the tree.

First, we test for the condition only at expected cut-nodes (we would not

anticipate it to be successful elsewhere). Second, multi-cut is not applied at

levels of the search tree close to the horizon, thus reducing the time overhead

involved in this method. We experimented with distances both closer to and

further away from the horizon, and a distance of R gave a good balance.

Finally, there are some game-dependent restrictions that apply, but are not

shown in the pseudo-code. In our experiments in the domain of chess (see

later) the pruning is disabled when the end-game is reached, since there are

usually few viable move options there and the mc-searches are therefore not

likely to be successful. Also, the positional understanding of chess programs

in the end-game is generally poorer than in the earlier phases of the game.

The programs rely more heavily on the search to guide them in the ending,

and any speculative-pruning scheme is therefore more likely to be harmful.

Furthermore, the pruning is not done if the side-to-move is in check, or if

search extensions have been applied for any of the three previous moves leading

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lg o r i t h m 11 m cM W S(P . d. 3. cut)
R e q u ir e :

E is the number of moves to expand when checking for mc-prune.
C is the number of cutoffs to cause an mc-prune.
R is the search depth reduction for mc-prune searches.

1 i f d < 0 or isTerm inal(P) th en
2 r e t u r n evaluate(P)
3 e n d i f
4 best <------oo
5 M «— generateM oves(P)
6 i f d > R and cut t h e n
7 C 4— 0
8 fo r nii € M \ i = 1...... E d o
9 make(P, m*)

10 v <------m cM W S (P , d — 1 — R. — J + e, ->cu£)
11 retract(P, mi)
12 i f v > p t h e n
13 c «— c + 1
14 i f c = C t h e n
13 r e t u r n /?
16 e n d i f
17 e n d i f
18 e n d fo r
19 e n d i f
20 fo r all mi € M d o
21 make(P, mi)
22 v i-----m cM W S (P ,d — 1. —3 + e. ->cut)
23 retract(P, mi)
24 i f v > best t h e n
25 best <— v
26 i f best > 0 t h e n
27 r e t u r n best
28 e n d i f
29 e n d i f
30 e n d fo r
31 r e t u r n best

•59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to the cu rren t position. The presence of extensions usually indicates forced

continuations, and pruning in such cases is often risky.

5.3 M ulti-C ut Param eters

It is not clear how to select the most appropriate values for the parameters c,

e, and r. How they are set will affect both the efficiency and the error rate of

the search. Each parameter influences the search in its own way:

• Number of cutoffs (c):

The more cutoffs that are required for an mc-prune to occur, the safer

the method is. On the other hand, the higher the value is, the larger the

tree expanded. Not only does each check for an mc-prune require more

nodes to be searched, but also fewer mc-prunings occur. Therefore, c

should be set large enough for the method to be reasonably safe, but

still small enough to offer substantial node savings.

• Number of moves (e):

The e parameter tells how many moves to investigate when checking for

an mc-prune. The higher e is, the more likely it is that the pruning

condition will be met. On the other hand, each unsuccessful mc-prune

search is a failed investment of search effort, offsetting some of the node

savings from the additional pruning. The right balance between these

two counter-acting effects will depend, among other things, on the qual

ity of the move ordering scheme used. The better the scheme, the closer

we can set e to c.

• Depth reduction (r):

The depth reduction factor r will influence the best settings for c and

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e: the larger r is, the larger c and e can he. Obviously, if the goal is

to improve search efficiency, the depth reduced multi-cut searches must

explore, in total, fewer nodes than the full depth search they replace.

Therefore, if r is very small there is not much flexibility in choosing

larger values for c and e. On the other hand, search depth reduction

that is too aggressive will make the search more error-prone.

From the above discussion we can see how intertwined the parameters are;

altering one will bias the selection of the others. It is impossible to analytically

determine the most appropriate settings for the parameters, because not only

do they depend on different characteristics of the search space, but also on

various properties of the game-playing program itself (e.g. the move-ordering

scheme). We empirically determined a suitable setting of these parameters for

our experiments (see next section).

5.4 E xperim ental R esu lts

To test the idea in practice, multi-cut a/3-pruning was implemented in two dif

ferent game-playing programs: first the chess program T h e T u r k , and more

recently in a Lines-of-Action program named YL. Three different kinds of ex

periments were conducted using the chess program. First, the feasibility of the

idea was verified by correlating the number of promising move alternatives at

cut-nodes to an actual cutoff occurring. Secondly, different multi-cut param

eter settings were experimented with both to give insight into how they alter

the search, and to find an appropriate setting for the chess program. Finally,

the improved playing strength of programs using the new pruning scheme was

demonstrated via self-play matches, for both chess and Lines of Action.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.1 C riteria Selection

The multi-cut idea stands or falls with the hypothesis that nodes having many

promising move alternatives are more likely to cause a .5-cutoff than those

with few. Before arriving at the multi-cut implementation described earlier,

we tested several different schemes of predicting which nodes are likely to

deliver a J-cutoff. We will refer to any node where a tf-cutoff is anticipated as

an expected cut-node. Only after searching the node do we know if it actually

causes a cutoff: if it does we call it a True-cut-node. otherwise a False-cut-node.

What we seek is a scheme that accurately predicts which expected cut-nodes

are False. We experimented with four different ways of anticipating cut-nodes:

L. Number of legal moves (N M):

The most straightforward approach is to assume that every move has the

same potential for causing a /5-cutoff. Thus, the more children an ex

pected cut-node has, the more likely it is to be a True-cut-code. Although

this assumption is not realistic, it serves as a baseline for comparison.

2. History heuristic (H H > A):

A more sensible approach is to distinguish between good and bad moves,

for example by using information from the history-heuristic table. Moves

with a positive history-heuristic value are known to be useful elsewhere

in the search tree. This method defines moves with a history-heuristic

value greater than a constant A as potentially good. One advantage of

this scheme is that no additional search is required.

3. Quiescence search (QSQ > 0 — 6):

Here quiescence search is used to determine which children of a cut-

node have the potential for causing a cutoff. If the quiescence search

returns a value greater than or equal to 0 — 5 then the child is considered

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

promising. The constant 5, from here on called the d-cutoff margin,

can be either positive or negative. Although this scheme may require

additional search, it is likely to give a better estimate than the two

aforementioned schemes.

4. Minimal-window search (M W S (d — r) > 0 — 6):

This scheme is much like the one above, except instead of using quies

cence search to estimate the merit of the children, a minimal-window

search to a closer horizon at distance d — r is used.

To establish how well the number of promising moves, as judged by each of the

above schemes, correlates to an expected cut-node being a True-cut-node or

not, the program was instructed to gather statistics about cut-nodes. When

the program visits an expected cut-node it calculates the number of promising

move alternatives in the position according to each of the above schemes.

Then, after searching the node to a full depth to determine if it really is a

cut-node. information about the number of promising moves is logged to a file

along with a Hag indicating whether the node is a True-cut-node.

The program gathered statistics on 100,000 nodes. The resulting data was

classified into two categories, one with True-cut-nodes (expected cut-nodes

that became cut-nodes). and the other with the False-cut-nodes (expected

cut-nodes that became all-nodes). Approximately 2.5% of the expected cut-

nodes fell into the latter category (i.e. were False-cut-nodes). Table 5.1 gives a

summary statistic, contrasting the two categories. Each row in the table shows,

for each category, the average number of promising moves (z) as judged by

each classification scheme. The standard deviation (a) is also provided. We are

looking for the sc heme that best separates the True- and False-cut-nodes. that

is, where the averages are far apart and the standard deviation is low. Thus,

by comparing the averages and the standard deviations for the two categories

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.1: Comparison of different schemes for identifying False-cut-nodes.

Method True-cut-nodes
x a

False-cut-nodes
x a

N M 35.60 11.74 24.83 14.46
H H > 0 22.27 8.87 16.35 9.77
H H > 100 9.15 5.72 7.13 5.33
QSQ > a 20.48 15.03 0.32 1.44
QS() > 3-25 23.70 14.08 1.66 4.20
MWS(d-2) > 3 20.62 14.88 0.17 0.55
MWS(d-2) > 3-25 23.75 14.00 1.46 3.75

we can determine the scheme that best predicts which expected cut-nodes are

False-cut-nodes.

In Table 5.1, it is interesting to note that even a simplistic scheme like

looking at the number of legal moves shows a difference in the averages. How

ever, the difference is relatively small and the standard deviation is high. The

history heuristic schemes have lower standard deviation, but unfortunately the

averages are too similar. This renders them useless. The methods that rely

on search, QS() and M W S Q , do much better, especially those where S (the

/3-cutoff margin) is set to zero.1 Not only are the averages for the two groups

far apart, but the standard deviation is also very low. From the data in Table

5.1 these two schemes look almost equally effective.

Therefore, to discriminate between them further, we filtered the data for

the False-cut-nodes looking only at non-zero data points (that is, we only

consider data points where at least one promising move alternative is found

by either scheme). The result using the filtered data is given in Table 5.2.

Now we can see more clearly that the minimal-window (MIVS) scheme is a

better predictor of False-cut-nodes. Not only does it show fewer false promises

on average, but the standard deviation is also much lower. This means that
lIn The Turk, a S value of 25 is equivalent to a quarter of a pawn.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.2: Comparison of selected schemes using filtered data.

Method False-cut-nodes
x a

QS{) > 3
M WS { d - 2) > 3

2.31 3.20
1.45 0.86

it infrequently shows False-cut-nodes as having more than several promising

move alternatives. Even in the worst case there never were more than 6 moves

listed as promising, whereas for the QS{) scheme at least one position had 32

wrong indicators.

The above experiments clearly support the hypothesis that there is a way to

discriminate between nodes that are likely to become true cut-nodes and those

that are not. As a result, we selected the shallow minimal-window searches

(MWS) as the scheme for finding promising moves in multi-cut a/?-pruning.

5.4.2 M u lti-C u t Param eters

Experiments were performed with different instantiations of the multi-cut pa

rameters, not only to provide a better insight into how they alter the search

behavior, but also to find the most appropriate parameter setting for the pro

gram. The program was tested against a suite of over one thousand tactical

chess problems [66]. For each run different multi-cut parameter settings were

used, and information was collected about both the total number of nodes

explored, and the number of problems solved. The program was instructed

to search to a nominal depth of 7-ply. and use normal search extensions and

null-move search reductions. Basically, we are looking for the parameters that

give the most node reductions, while still solving the same number of problems

as the original program does.

Figure 5.2 shows the search effort under a range of parameter settings.

The search effort is given as a percent of nodes searched by the standard

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

100

80
— - V

60

Figure 5.2: Search efficiency when r = 2.

version of the program. The depth reduction was fixed at 2, but the c and

e parameters were allowed to vary from 2 - 6 and 2 — 12, respectively. We

also experimented with different depth reduction factors, but we found that a

value of r = 1 offers only limited node savings, while values of r > 2 were too

error prone (see Table 5.3). As expected, the fewest nodes are examined for

small values of c. For example, the program with c = 2 and e = 12 searches

over 40% fewer nodes than the original program. However, the node savings

decrease rapidly as c increases, breaking roughly even at c = 4, and searching

considerately more nodes for higher values. We also see how e influences the

search, although these changes are more subtle. An interesting observation is

that for low values of c the total number of nodes decreases as e increases,

but the opposite is true for higher values of c. This can be explained by the

counter-acting effects we discussed earlier. For low values of c, we observe

more mc-prunings as e increases, and the extra cutoffs more than offset the

additional search overhead of each mc-prune search. However, for larger values

of c there are far fewer additional cutoffs, and the increased cost of each mc-

prune search starts to show. From looking only at this graph, one can deduce

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%

100

98

Figure 5.3: Decision quality when r = 2.

that a low value of c and a relatively high value for e results in the best search

efficiency. However, we still have to look at the other side of the coin, namely

the error rates associated with the different parameter settings.

Figure 5.3 shows a similar graph, except here we are looking at the percent

age of problems solved (as compared to the standard version of the program).

Most notable is the steep increase in the percentage of problems solved as c is

increased from 2 to 3. However, increasing c further only yields slow improve

ment. There is also a slight trend towards improved accuracy as e is decreased,

at least for the smaller values of c. This is understandable, since by decreasing

e the criterion for mc-prune is being set more conservatively.

From the above data, setting c = 3 and e somewhere in the high range of

8 — 12 looks the most promising. These settings give a substantial node savings

(about 20%), while still solving over 99% of the problems that the standard

version does. The data charting the two above graphs is provided in Table

5.3.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.3: T„ir(r_vx) searches showing the performance of different multi-cut
parameter settings relative to a standard search, in both terms of % of nodes
searched (Xod%) and problems solved (Sol%).

r r; r. Noib/c Sol% r c e Nod% Sol% r c e \od% Sol%
1 2 2 92.05 98.10 2 2 2 77.28 98.10 3 2 2 79.21 96.80
L 2 4 93.33 97.60 2 2 4 70.48 97.40 3 2 4 71.60 95.80
I 2 6 93.02 97.20 2 2 6 67.61 97.20 3 o 6 67.71 95.80
I 2 8 91.71 97.20 2 2 8 61.56 97.20 3 2 8 63.17 95.50
I 2 10 92.10 96.80 2 2 10 60.04 97.00 3 2 10 60.57 95.20
1 2 12 93.39 96.80 2 2 12 59.38 96.80 3 2 12 57.13 95.10
I 3 4 134.17 99.20 2 3 4 87.46 99.50 3 3 4 86.07 97.70
1 3 6 144.14 99.20 2 3 6 84.41 99.30 3 3 6 82.92 97.50
I 3 8 150.31 98.90 2 3 8 82.60 99.20 3 3 8 79.30 97.50
1 3 10 153.00 98.70 2 3 10 81.66 99.10 3 3 10 75.86 97.10
I 3 12 157.34 98.50 2 3 12 79.95 99.20 3 3 12 72.21 97.00
I 4 4 175.38 99.40 2 4 4 100.14 99.70 3 4 4 98.33 98.60
1 4 6 194.19 99.40 2 4 6 98.86 99.60 3 4 6 94.20 97.90
1 4 8 210.41 99.30 2 4 8 98.50 99.40 3 4 8 89.96 97.90
1 4 10 222.67 99.10 2 4 10 98.51 99.20 3 4 10 87.39 97.70
1 4 12 234.33 99.00 2 4 12 98.04 99.20 3 4 12 84.89 97.60
1 5 6 227.73 99.50 2 5 6 109.63 99.80 3 5 6 97.23 98.50
L 5 8 252.26 99.60 2 5 8 109.93 99.80 3 5 8 94.95 98.10
1 5 10 276.16 99.50 2 5 10 110.67 99.70 3 5 10 92.02 97.90
1 5 12 286.82 99.40 2 5 12 110.88 99.60 3 5 12 90.24 97.80
1 6 6 239.81 99.70 2 6 6 113.77 99.90 3 6 6 100.97 99.20
1 6 8 269.33 99.70 2 6 8 116.40 99.90 3 6 8 99.42 98.30
I 6 10 312.24 99.70 2 6 10 118.61 99.90 3 6 10 100.24 98.30
1 6 12 335.51 99.70 2 6 12 120.23 99.90 3 6 12 95.66 98.00

5.4.3 M u lti-C u t in P ractice

Ultimately, we want to show that game-playing programs using the new prun

ing method can achieve increased playing strength. Although the aforemen

tioned experiments are useful in giving insight into the feasibility of the idea

and the behavior of the search, they do not tell how beneficial the new method

is in practice. For that actual games are needed. Generally, when using a

speculative-pruning scheme, playing games is the only way to show the ap

propriate balance between improved search efficiency and added risk of over

looking good continuations. We experimented with multi-cut in two different

game-playing programs, a chess program and a Lines-of-Action program.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.4: 80 game multi-cut chess match results.

Tmc(3,io,2) versus T
Time control Score Winning %
40 moves in 5 minutes 46 - 34 57.5
40 moves in 15 minutes 42 - 38 52.5
40 moves in 25 minutes 43.5 - 36.5 54.4
40 moves in 60 minutes 4 3 -3 7 53.8
In total 320 games: 174.5 - 145.5 54.5

C h e s s

Two versions of the T h e T u r k were matched against each other, one using

multi-cut pruning and the other not. Four matches, with 80 games each, were

played using different time controls. To prevent the programs from playing

the same game over and over, forty well-known opening positions were used

as a starting point (see Appendix D.5). The programs played each opening

once from the white side and once as black. Table 5.4 shows the match results.

T represents the unmodified version of the program and Tmc(Cie r) the version

with multi-cut implemented. We experimented with the case e = 10, r = 2.

and c = 3 (i.e. 10 moves searched with a depth reduction of 2-ply and with 3

cutoffs required to achieve the mc-prune condition).

The multi-cut version shows a definite improvement over the unmodified

version, scoring overall 175.5 vs. 145.5 points. In tournament play this winning

percentage would result in about 35 points difference in the players’ perfor

mance rating. Although this single set of experiments doesn’t allow us to

quantify the exact strength difference between the two versions (for that far

more games are needed, preferably against many different opponents), we can

state with over 90% statistical significance that the multi-cut version is the

stronger.

Finally , as an add itional insight, T h e T u r k gathered sta tistics about the

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

behavior of the multi-cut pruning. The search spends about 25%-30% of its

time (in terms of nodes visited) in shallow multi-cut searches, and an mc-prune

occurs in about 45%-50t/c of its attempts. Obviously, the tree expanded using

multi-cut pruning differs significantly from the tree visited when it is not used.

Lines o f A ction

One of the strengths of the multi-cut method is that it does not use any game-

specific knowledge (although the multi-cut parameters might need to be set

differently depending on the game): thus, it is tempting to state that it can

equally well be employed in other games. However, one has to be extremely

careful with statements like that. Sometimes improvements that at first sight

appear to be game independent, nonetheless turn out to be restricted to use

in only one specific game. Often they depend on some hidden properties of

the search space, present only in that particular game.

To see if multi-cut is beneficial in games other than chess, we implemented

it in a Lines of Action (LOA) game-playing program. The program, YL, is the

gold-medal winner from the 2000 and 2001 Computer Olympiad [13, 20], and

has indisputably established itself as one of the strongest LOA player in the

world (including both human and computer players). The game was invented

by Claude Soucie in the 1960’s, but has only recently attracted the attention

of the AI community [81]. The game is played on an 8x8 checkers/chess board.

Each player starts with 12 pieces on the board and the first player to connect

all of them into one group wins. The rules of the game are described in

the well-known book A Gamut of Games [67], but are also accessible on the

World-Wide-VVeb.

As in the chess experiments, we matched two versions of the program

against each other, one using multi-cut and the other not (but otherwise iden

tical). The multi-cut parameters e = 3, c = 3, and r = 2 were chosen. The

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.5: 622 game LOA match result.

versus Y L
Program Game results Score %
Y LmC(3,3,2)

Y L
+328 =16 -278
+278 =16 -328

336 - 286
286 - 336

54.02
45.98

reason for setting e = 3 (as opposed to 10 in the chess experiment), is that

the average branching factor in LOA is somewhat less than in chess; in a

typical middle-game position there are generally between 20-30 legal move al

ternatives, whereas in chess the range is more like 30-40 moves. To prevent

the programs from re-playing the same game over again, different opening

positions were used as starting points. Unlike in chess, an established set

of standard opening moves has not been established in LOA. This posed a

problem when selecting which opening positions to use in our self-play ex

periments. To be objective we rejected the idea of pre-selecting the opening

positions; instead we generated from the initial game state all possible game

positions two moves into the game (one move for each side). This results in

311 different start positions. Because each program plays both sides of the

opening, the self-play match consisted of 622 games in total. All games were

played on Intel Pentium III computers using 30 minutes a game time controls.

For each game the opposing programs played on the same computer, taking

turns playing a move (the thinking-on-opponents-time feature was turned off

to prevent the programs from competing for CPU time).

The outcome of the match is shown in Table 5.5. We see that the multi

cut version won 328 games, drew 16 games, and lost 278 games, resulting

in a significant winning margin of 336 vs. 286 points. We also investigated

how aggressively the multi-cut method prunes the game tree. For the same

nominal search depth, the multi-cut program searches only roughly two-thirds

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the nodes of the unmodified version. Thus, given the same amount of time,

the program reaches deeper nominal search depths on average. The benefits

of that clearly outweigh the effects of occasionally introducing a pruning error

in the search.

One drawback of the approach used to select the opening lines is that we

run the risk that many of the openings are lopsided, that is, directly from

the opening one side establishes sufficient advantage to handily win the game.

This would clearly favor the weaker program by making the outcome of the

match look closer than it would otherwise be. We tried to estimate how

profound this problem is in Lines of Action.2 In Table 5.6 we view the games

as 311 independent mini-matches, where each mini-match consists of the two

games played from the same opening position. The multi-cut versions wins

69 of these mini-matches and loses 42. However, it is striking to see how

many of them end in a draw, mainly because the same side (color) wins both

the games. This could be an indication that a high number of the opening

positions are unusually lopsided. If this really is the case we would need to find

an independent and objective way to eliminate these openings. Nonetheless,

despite the high number of drawn matches, the multi-cut version wins 64%

more matches than the unmodified program. Assuming that the multi-cut

version is the stronger, as the result clearly indicates, we would expect the

winning percentage to be even higher if all lopsided positions were eliminated

from the test suite.

The second advantage of looking at the data as mini matches is that it

allows us to perform a standard statistical test to see if the performance im

provement of the multi-cut version is statistically significant. If the unmodified

version of the program played 311 mini-matches against itself, the expected
*In tournament checkers, opening positions are selected at random in a similar way.

However, some o f the openings have been removed (banned) because they lead to an easy
win for one side.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.6: 311 mini-match LOA result..

YLmc(3 ,3 ,2) versus YL
Program Match results %
^ ^ m c(3 ,3 ,2)

Y L
+69 =200 -42
+42 =200 -69

+22.2 =64.3 -L3.5
+ 13.5 =64.3 -22.2

outcome would be that they all end in a draw because the second game would

be an exact replica of the first.3 Thus, we can use a student-t statistical test to

compare the mean of the win-draw-loss distribution of the multi-cut program

to the expected distribution of a YL vs. YL match (all draws). YVe performed

the test, and based on that we can state with over 99% statistical significance

(t=2.5861, p=0.0099) that the mean of the former distribution is higher. This

demonstrates with a high confidence that the multi-cut version is definitely

stronger.

5.5 R elated W ork

The idea of exploring additional moves at cut-nodes is not entirely new. There

exist at least two other variants of the a(3 algorithm that explore more than one

alternative at cut-nodes, although the resulting information is used differently

in our work.

The Singular Extensions algorithm [3] extends "singular" moves more deeply

than others.'1 A move is defined as singular if its evaluation is higher than all

its siblings by some specified margin, called the singular margin. Moves that

fail high. i.e. cause a cutoff, automatically become candidates for being singu

lar (the algorithm also checks for singular moves at pv-nodes). To determine

if a candidate move that fails-high really is singular, all its siblings are ex-
3 Because the program used real time-controls, there is a slight possibility that in excep

tional circumstances some games would not be repeated, resulting in an occasional mini-
rnatch to end in a win for either side.

'The algorithm is also briefly explained in Chapter 2.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

plorcd to a reduced depth. The move is declared singular only if the value of

all the alternatives is significantly lower (as defined by the singular margin)

than the value of the principal variation. Singular moves are "remembered”

and extended one additional ply on subsequent iterations. One might think

of multi-cut as the complement of singular-extensions: instead of extending

lines where there is seemingly only one good move, it prunes lines where many-

promising (refutation) moves are available.

The Alpha-Beta-Conspiracy algorithm [54] is essentially an ad-search that

uses conspiracy depth, instead of classical ply depth, to decide when to stop

searching a branch. The conspiracy depth is updated at each node in the

tree, but instead of reducing the depth always by one ply, it can be reduced

by a fraction of a ply, all depending on how many good alternative moves

there are. The fewer alternatives, the smaller will be the conspiracy depth

reduction. Quiescence searches are used to establish the number of good al

ternative moves. This algorithm encourages forced lines to be searched more

deeply. Another distinct feature of the algorithm is that two separate conspir

acy depth parameters are used, one for each player. At each level, only the

conspiracy depth parameter for the player to move is updated. The search

explores a branch until either both conspiracy depths parameters converge to

zero, or alternatively, when the conspiracy depth for the player to move is zero

and a static evaluation delivers a cutoff. However, empirical results using this

algorithm are not favorable.

5.6 C onclusions

We have shown that there is a strong correlation between the number of

promising move alternatives available a t an expected cut-node, and the node

becoming a True-cut-node. We introduced a new pruning method, multi-cut.

that exploits this correlation. Furthermore, to show the promise of the idea.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we implemented and experimented with the technique in two different game-

playing programs. Our experimental results give rise to optimism. In match

play using two different games as a test bed, the versions using the new prun

ing method consistently outplayed the unmodified program versions. Our new

search method, while expanding a tree that is radically different from that of

the algorithm, significantly improved the playing strength of the two game

programs we used for our experiments.

The multi-cut method is still relatively new, and has likely not yet matured

to the state of achieving its full potential. For that, much more tuning and

testing is needed (years of experience has shown that it usually takes a long

time for a new search enhancements to fully evolve and its potential to be

fully realized). There is definitely scope for improvement through further tun

ing and enhancement. For example, one promising avenue for improvement

is to parameterize the pruning using variables instead of constants for c. e.

and r; that way their valups r»n be adjusted dynamically as the game/search

progresses. Another possibility, to minimize the risk even further, is to use

a layered, multi-cut: that is, require that a multi-cut occurs on a least two

different places along the search path before pruning takes place. With pro

grams searching deeper and deeper every year, that approach starts looking

more feasible. Also, the multi-cut method does not utilize any game-specific

knowledge, we deliberately made this decision to make the approach as do

main independent as possible. This is both a strength and a weakness. It is

quite possible that the performance of the method can be further enhanced by

looking at domain-specific properties.

Our experiments show that there is room for innovative domain-independent

pruning methods, based on exploiting the structure of a critical tree. The

multi-cut method as described and implemented here — although promising

— is not the only way of using the information about the number of good

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

move alternatives at cut-nodes, and by no means necessarily the best. The

multi-cut method, to the best of our knowledge, has been successfully adopted

by some of the world's strongest commercial chess programs.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Learning Search Control

Tactics is knowing what to do when there is something to do;
strategy is knowing what to do when there is nothing to do.

-Savielly Tartakower

In the previous chapters we investigated methods for reducing the size of

the search tree. The rationale behind these methods is that by exploring less

deeply continuations that look futile, more time may be invested in exploring

interesting lines more deeply. In this chapter we look at search extensions, an

alternative way of adding selectivity to depth-first search.

6.1 Introduction

In the domain of planning and scheduling, machine learning methods have

been applied successfully to improve both the search efficiency [57, 55] and,

more recently, the quality of the produced plans [62, 31]. These methods work

primarily by deriving and refining control rules. Unfortunately, such a rule-

based approach is not feasible for learning search control in two-person games

such as chess, checkers, and Othello. First of all, many decades of experience

have proven that it is difficult to produce search-control rules that generalize

well from one game position to the next. Secondly, in competitive play the

game-playing programs must meet external time constraints, often having only

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a few minutes to decide on a move. Efficiency is therefore of paramount

importance and the overhead of manipulating complex search-control rules

can easily outweigh the possible benefits.1 This calls for a different approach

for learning search control.

In view of the above, it is not surprising that machine learning in games has

not focused so much on the search as on other aspects of the game, where exist

ing learning techniques are more readily applicable. For example, many differ

ent schemes exist for learning evaluation function parameters [68, 69, 9, 25, 4],

and more recently, work is being done on dynamic adjustment of opening-books

[26, 42]. However, attem pts to improve the search efficiency in two-person

games have not been particularly successful. For example, explanation-based

learning [57] and case-based reasoning [45] approaches, although interesting,

have yet to demonstrate an overall improvement in the search efficiency. Also,

early attem pts to use patterns to guide the search were only moderately suc

cessful [80]. In games like Go, where search is of a lesser importance, some

success has been achieved recently by learning search-control rules [28]. For

an overview of methods for learning in games see. for example, Fiirnkranz

[.34. .35].

In addition to the above approaches, some of the search enhancements

already widely employed in adversary search may be viewed as simple forms of

learning. Two such enhancements are the history-heuristic [71] and permanent

hash-table entries [73]. The former enhancement keeps a table storing a merit

value for each move indicating how well it has done so far. This information is

used to improve move ordering during the search. The latter method is a simple

form of rote learning: the program simply keeps track of losing positions from

previous games, such that it can avoid repeatedly losing games in the same
'For example, the top competitive chess programs typically explore close to a million

chess positions per second on contemporary PCs.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fashion. More recently there have been attem pts to improve move-ordering

schemes for several games using specifically trained neural networks [38, 47].

In this chapter we introduce a novel method for learning search control in

two-person games. The method is equally suited to learn either during online

play, or by analyzing game positions offline. Before we describe the learning

system it is worthwhile to briefly review search-control strategies in two-person

game's.

6.2 Search Control

As previously discussed, or/3-based algorithms are almost universally employed

by game-playing programs in board games such as chess, checkers, and Othello.

The search efficiency of the algorithm can be improved in a couple of ways:

either by improving the move ordering (expand fewer nodes of the game tree)

or. alternatively, by being more selective of how deeply to explore each line of

play (can find a good solution in an early iteration). We previously mentioned

a few move-ordering strategies, but here we are only concerned with selectively

deciding which nodes to search deeper or shallower.

6.2.1 Search E xtensions

The number of nodes visited by the aft algorithm grows exponentially with

the search depth. The question now becomes: how can a program best use

the available time to find a good move? Although the basic formulation of

the algorithm explores all continuations the same number of plies, it has

long been evident that this is not the best search strategy. Ideally, interesting

continuations are explored more deeply while less interesting alternatives are

terminated prematurely. In chess, for example, it is common to resolve forced

situations, such as checks and recaptures, by searching them more deeply. The

search efficiency — and consequently the move-decision quality — of the a 3

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm is greatly influenced by the choices of which lines are investigated

deeply and which are not. Therefore, the design of a search-extension scheme is

fundamental to any game-playing program using an a/3-like algorithm. Several

studies have been conducted to quantify the relative importance of various

extension schemes [3, 82, 8]. Unfortunately, the more elaborate the search-

extension scheme, the more difficult it is to parameterize to achieve its full

search-efficiencv potential. In here we introduce a method for automatically

tuning these parameters.

6.2.2 A Unified V iew

Although they are all based on the same principles, the specific search-extension

schemes employed by the various game-playing programs differ somewhat from

one program to the next. Therefore, to make our learning system as widely

applicable as possible, we introduce a unified framework that attempts to en

capsulate the various implementations.

Figure 6.1 shows an example game tree that is being searched to an arbi

trary depth, say d!. For any node x in a tree, let Px stand for the move path

leading from the root of the tree to that node. For example, the path Ph

consists of the move sequence connecting nodes A-B-E-F-G-H. In our unified

framework, a function D(P,w) decides how far to expand each line of play.

The current move path is expanded until:

D(PX, w) > d '.

The function takes the current move path as its first argument and returns

its depth. Note that the depth of the path is not necessarily the same as its

length. The length is simply the number of moves on the path, whereas the

depth can be determined by whatever criteria we like. When a path's depth

is less than its length, the path will be extended beyond the nominal search

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.1: Search-extension schemes - a unified view.

horizon. Search reductions occur when the opposite is true. The special case

where the depth of each move path equals its length results in a search strategy

that explores all continuations the same fixed number of plies. The second

argument of D. iU. is a vector of search-control parameters that influence the

depth calculations. These parameters are made explicit because they are the

ones we want to learn. In practice, there are probably additional parameters

that must be passed to the function, such as the root game position and the

a and 0 search bounds. However, to simplify our notation we do not show

them, but we may assume arbitrary many such parameters (as long as they

are not a function of w). The only restriction we put on the depth function is

that it is monotonically non-decreasing, that is, the depth of a move path will

never decrease by adding more moves to the end of the path.

Our framework is quite general and incorporates most of the different search

extension schemes known to us. On the other hand, when implementing a

competitive garne-playing program, one typically does not have an explicit

function for calculating the depth of the move path at each frontier node —

instead the depth is updated incrementally. However, this does not pose a

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem as long as there exists a conceptually equivalent formulation in the

form of a depth function.

6.2 .3 F ractional-P ly E xtensions

Now we show how a commonly used search-extension scheme, often referred to

as fractional-ply extensions [49, 41]. can be trivially formulated within the uni

fied framework (the game-playing program we use for our experiments employs

this type of extension scheme). The existence of predefined move classes is as

sumed, where each class has a weight associated with it. Examples of move

classes in chess could be checking moves, recaptures, and advanced passed-

pawn pushes. During the search, each move is categorized as belonging to one

of the move classes, and the depth of the current move path is the sum of

the class weights of the moves on the path. Referring back to Figure 6.1, the

numbers on the paths show the class weight of each move. For example, the

depth of path Pp is 1.0 + 2.0 + 1.0 = 4.0, and similarly the depth of Ph is 4.5.

More formally, if we assume that there are N predefined classes, the depth

function becomes:
h>ngth(P)

D(P, iu) = ^ Wi | i = Class(mj)
j = i

where m j is the j- th move on the path, the vector w contains the weights for

each of the N move classes (the element tc, is the weight of class number i).

The Class(mi) function categorizes each move as belonging to one of the move

classes 1,..., N . The search-control parameters to be tuned are the weights of

the move classes.

6.3 T he Learning System

The main advantage of the general framework above is that search-control

learning can now be viewed as a function-approximation task, namely approx-

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

imating the D(P, w) function. In other words, the task of the learning system

is to find the most appropriate weight vector w. As with all such tasks, we

must decide on the training experience, the exact representation of the target

function (i.e. the function we are trying to approximate), and the algorithm

for adjusting the weights.

6.3.1 Training Experience

We want the game-playing program to learn from its mistakes and adapt the

search behavior accordingly. However, for that to be possible the program must

first recognize when it makes a mistake. For human players this is generally not

that difficult a task. Experienced players will identify where they went wrong

in a post-mortem analysis of a game: the player might have over-estimated his

or her chances in a particular position, may have chosen a dubious plan, or

simply overlooked some tactical continuations. On the other hand, identifying

mistakes is a challenging task for a computer player. Obviously, if the program

loses a game in an abrupt fashion it is clear that a mistake was made, but to

pin-point exactly what move or moves were the cause of the defeat is not trivial.

This problem is sometimes referred to as the credit assignment problem, and

it’s hard in the general case. However, there are situations where mistakes can

be identified with a high degree of certainty.

Figure 6.2 shows a search tree for a game in progress: the moves connected

by the solid lines have already been played, and currently the program is

searching game position C. Based on the search the program determines the

principal continuation to be m1,....mn (shown as dotted lines), and assesses the

position as having a value vc- Now. assume that when it was the program’s

turn to move at position A the assessment was significantly higher, or

Vc < UA - T

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4
m

m

/ m

\ m

Figure 6.2: Identifying mistakes.

where r is a positive constant representing the significance margin. The pro

gram now evaluates its chances much poorer than just a move ago; clearly

something must have gone wrong! But what caused this undesirable change

of fortune? One of two things could be responsible. It might be that position

.4 was already bad but that the program just didn’t realize it. Alternatively,

it could be that position A was fine and the move rnA was a mistake — and

only now does the program see the bad consequences of that move. However,

in either case, position A was assessed incorrectly. Thus, .4 is referred to as

a critical position, and the move sequence m.\. rnB, m t, ...,mn is known as

the solution path of the position. The basic assumption that we make here is

that if the search is to correctly assess position .4. its solution path (SA) must

be fully explored..2 This implies that the game tree for position .4 needs to be

explored to the depth of its solution path. Critical positions and their solution
-Note, this is not a sufficient condition for correctly assessing the position, because other

lines in the game tree might also need to be explored more deeply. We are only assuming
this to be a necessary condition.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

paths form the training input for our learning system. Many existing problem

test suites consist of a collection of game positions and their corresponding

solution paths, meaning that they can also serve as a training input for our

learning method.

It is interesting to note that it is not instructive to learn from cases where

the positional estimate increases from position .4 to C. The reason is that the

in-between move made by the opponent, that is move mg. might simply be

a blunder. The search might have explored that move at position .4 deeply

enough to correctly discard it as a bad move, in which case there is no need

to change the search parameters.

6.3.2 Target Function

The function we want to approximate is the depth function D(P. w). However,

it is not clear how the training experience from the above example helps us do

exactly that. Although we know position .4 and its solution path, there is no

information about the “correct” depth for the path. This renders supervised

learning methods practically useless. Instead, we must go about this indirectly.

One way of reformulating the problem is to ask: which weight vector results in

the search expanding the fewest nodes possible to find the given solution path?

Given our previous assumption, we know that to find the solution the position

must be expanded to at least the depth of its solution path. Therefore, we alter

the question slightly to: when expanding the position to the depth of its solution

path, which weight vector causes the search to expand the fewest nodes possible?

Answering this question is not trivial since changing the weights affects not

only the solution path but also other parts of the search. Without actually

performing the search we have no way of telling how many nodes it will take

to explore position .4 that deeply (and during a game we cannot revisit the

position to search it again).

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Suppose that we have a cost model

C(p , w, d)

that predicts how many nodes it takes to search position p to depth d using

weight vector w. We could use this cost model to answer the question we posed

above, that is. predicting the number of nodes it takes to expand position A

to the depth of its solution path as:

C (A ,w ,D (S a , w)).

More generally, given a set of training samples, T, where each sample is a pair

< Pt-St > consisting of a game position (pt) and a solution path (St). we are

interested in finding the weight vector w that minimizes the total number of

nodes (as estimated by the cost model) that it takes to “solve" all the samples.

In other words we want to minimize the function:

F{w) = y ' C (p t,w ,D (S t,w)).
teT

If the function C{p, uj,d) were known this could be done numerically, or even

analytically. However, for games of any complexity it is practically impossible

to analytically model this function. Not only does it depend on the weight

vector but also on various positional features. A key observation here is that it

is not necessary to formally model the function over the entire search space to

be able to minimize it. When using a hill-climbing-like method, it is sufficient

to be able to approximate it for any individual point in the search space.

Fortunately, we have a way of doing that, as we show in section Section 6.4.

but let us first concentrate on the learning algorithm.

6.3 .3 Learning A lgorithm

A standard hill-climbing method, gradient-descent [56], is used to minimize

F{w). Although the method guarantees finding a global minimum only for

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

concave functions, nonetheless, in practice it is a highly effective heuristic ap

proach to optimization and forms the basis of various learning systems (e.g.

the back-propagation rule in artificial neural networks). The graclient-descent

method starts with some initial setting for the weight vector w, and then re

peatedly iterates over all the training samples, each time updating the weight

vector in the opposite direction of the gradient. The gradient of F{tu) speci

fies the direction of weight changes that produce the steepest increase in the

value of F(w). Therefore, by adjusting the parameters in the opposite direc

tion, one expects the value of the function to incrementally decrease at each

iteration. This process is continued until some termination condition is met.

The condition could be as simple as doing a fixed number of iterations, or a

more elaborate one like: continue until the progress becomes negligible. The

gradient provides the sign and relative size of each weight change, while the

step size — that is. how much the weights are altered — is controlled by the

learning rate p.. The learning rate is typically decreased after each iteration

to avoid stepping over the minimum and to ensure eventual convergence. The

exact procedure for decreasing p depends on the search domain, and is often

determined by trial and error.

Our implementation is outlined as Algorithm 12 below. The algorithm

starts by initializing the search control parameters (wi) to 1 (lines 2-4). and

then repeatedly iterates over the test suite data T (consisting of game positions

pt and corresponding solution paths S t). In our experiments, for simplicity,

a fixed number of iterations is done. Before starting each iteration we ini

tialize the variables that record the total node-count information (lines 7-10).

The variable nodes indicates the total number of nodes that our cost model

predicts it will take to solve all the problems in the test suite, whereas each

Anodesi stores how much this node count would change if we were to alter

the corresponding search control parameters, Wi. The node-count information

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm 12 LSC
1: / / Initialize in
2: fo r i = 1, N d o
3: W i 4— 1
4: e n d fo r
5: / / Iterate until a sufficiently good uj is found.
6: w h i l e not terminate d o
7: nodes <— 0
8: fo r i = l , N d o
9: Anodesi <— 0

10: e n d fo r
11: fo r a l l (p t , St) € T d o
12: nodes = nodes + C(pt, w, D(St, w))
13: fo r i = 1, N d o
14: A nodes i <— Anodes, + dC(pt, w ,D (S t, w))/dwi
15: e n d fo r
16: e n d fo r
17: fo r i = 1, iV d o
18: Wi 4— Wi — p A wmax {Anodesi/nodes)
19: e n d fo r
20: fi <— Decrease(p)
21: e n d w h i l e

accumulates as we go through the test suite sample by sample (lines 11-16).

The gradient (line 14) is used to tell how much the node count will change if a

weight were to be altered. After finishing looking at all the game positions the

search control parameters are updated proportionally to how much a change

in them will affect the total node count (lines 17-19). The Awmax constant is

used for controlling the step size. Basically, a parameter change that causes

100% increase in the node count would result in a weight change of exactlv

■AtUmax (given a learning rate of 1.0). Larger or smaller node count changes

are adjusted proportionally. Finally, before starting the next iteration, the

learning rate (p. parameter) is decreased.

A detail one might have noticed is that there is no direct reference to the

actual game-playing program in the learning algorithm, only to the cost model.

How can that be? The answer is that our cost model uses the game-playing

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

program to provide information about how many nodes the search actually

expands.

Although we show the algorithm here as operating on an existing test

suite of training samples, it is also suitable for learning from online game play.

Then, instead of updating the weight vector after each iteration, it is updated

after each training sample (or a subset of samples). This is a more convenient

approach when learning during online game play, since we want to update the

weights either immediately after encountering a critical position (see Section

6.3.1) or, alternatively, between games. This approach is sometimes referred

to as incremental gradient-descent [56]. When using an incremental version

of the algorithm it is important to use a slower learning rate (a smaller /i)

to make sure the weights are not changed drastically based only on a single

learning sample. An alternative approach would be to copy to a log file all

critical positions and solution paths encountered during online play, and then

learn offline from the resulting test suite using Algorithm 12.

6.4 M odeling th e Search

So far we have assumed the existence of a cost model, but at the same time

implied that it is impossible to accurately model the search. This seems para

doxical. However, as we mentioned before, it is not necessary to formally

model the search over the entire search space. When traversing the hypothesis

space of possible weight vectors, the gradient-descent algorithm requires infor

mation about only a few individual points in the search space. Fortunately,

we have a way of approximating these points by using actual searches!

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4.1 C ost M od el

The cost model assumed by the learning algorithm returns an estimate of

how many nodes the search expands when position p is explored to depth d?

Because the node count typically grows exponentially with increased search

depth, the cost function must be of the basic form:

C{p, w, d) = B{p, tv)d. (6.1)

The B(p,w) function measures the growth rate of the search. For example,

B(p, w) = 4 means that it takes 4 times its many nodes to search position p

to depth d + 1 than to depth d. Even though the game trees themselves are

highly irregular, the model above can be used as long as the growth rate is

almost constant with respect to the search depth.

It is important to understand how altering the search-control parameters

tc affects the node-count estimate. Recall that for any given position p and

corresponding solution path 5, we are interested in knowing

C(p, w, D(S, uj)).

Modifying any weight has two fundamental effects:

• the exponential growth rate B(p, w) changes, and

• the required search depth D (S , w) is affected.

Typically, these two are counter-acting, for example, a change that reduces the

depth of the solution path also tends to inflate the growth rate of the search.

Intuitively, one would expect that altering the weights such that the required

search depth is reduced would result in the smallest node count. However, it is
3Alternatively, one could measure the running time of the algorithm. However, that

measure is a little more problematic because of hardware dependence, and non-deterministic
behavior when running experiments on a multi-user platform. In any case, the number of
nodes explored per second by the search algorithm is fairly constant within each phase of
the game, and so these two measures are approximately equivalent.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

quite possible that the modified weights will affect the exponential growth of

the search in such a way that the estimated node count for the reduced search

depth will indeed be higher than the one before. The right balance needs to

be found.

Algorithm 12 needs to know the partial derivatives of C'(p. tv, D(S, w)) (see

Appendix C for details), or

The depth function D (S,w) is assumed to be known in our model, and so

are its derivatives. For example, in the fractional-ply extension scheme we

mentioned earlier, the derivatives are simply the number of moves on S that

belong to the i-th move class). The only unknown quantities in the above

equation are therefore the B(p,w) function and its partial derivatives.

6.4 .2 A pproxim ating B(p, w) and its Partial D erivatives

In our cost model the growth-rate function B(p, w) is constant with respect

to the search depth.4 Therefore, by knowing the node count for only a single

search depth we can determine the growth rate. For instance, in the example

given in Figure 6.2 we know how deeply position A was actually explored, say

to depth dA, and how many nodes were expanded, say nA. Presumably, dA is

less than the depth of the solution path of position A. Now. by substituting

dA and nA in for d and C(p,w,d) in equation 6.1. respectively, we get:

'Note that this does not imply that the search trees need to be of a uniform width or
height, only that the average number of nodes ratio between a d+ L and a d plv deep search is
approximately constant. This is the case in most games we work on. albeit, there are minor
fluctuations between even and odd search depths. This is not an issue but, if necessary, one
could trivially adjust the estimates to account for this.

dC'{p. w. D(S, w))
dwt

+ ln(5(p. id))C(p, w,D(S, w))(D(S, w) dB(p, w)
B(p, w) dwt

nA = B(p, w)dA => B{p, w) — n'[A . (6.3)

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The resulting approximation of the growth rate will allow us to use the cost

model, and we can now estimate how many nodes the search will explore when

expanding position .4 to the depth of its solution path. Because, in practice,

the growth rate is not truly constant, this in only an estimate. Nonetheless,

given that the depth is reasonably close to the depth of the solution path,

the estimate will be sufficiently accurate (the experimental result provided in

Chapter 7 further supports this claim).

The partial derivatives are more problematic. Recall that the partial

derivatives simply state how much the value of the function is expected to

change if each weight is increased by a small amount, they can be approxi

mated as:
dB{p, w) {B(p,w + X) - B(p, w))

= J , (6 ' 4)

where A, is a vector whose the i — th element equal to Si and all the other

elements zero. This requires us, though, to know the value of each of the

B(p. ir, -I- A,). One approach to come up with these values is to perform V

(number of weight parameters) additional searches using a differently altered

weight vector each time, and then use equation (6.3) to estimate the growth

rate of the search for each of the altered weight vectors. Unfortunately, this is

not feasible because of our requirement that the learning system be used during

online play. Instead, during the normal search we simultaneously estimate for

each of the :V altered weight vectors how many nodes would be expanded if they

were used. In addition to the normal depth, separate depths and node counts

are recorded for each of the modified weight vectors (uji + A,). The node-count

information gathered this way allows us to estimate each of the B(p. (c, + A,)

in the same way as before using equation (6.3).

This process is illustrated in Figure 6.3 for the fractional-ply extension

scheme (see Figure 6.1). Assume that the tree shown is expanded using weight

vector w = {1.0.2.0,0.5}, that is, there are three move classes with weights

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.3: Approximating B(p, W\ + A t).

1.0, 2.0, and 0.5. respectively. The dark shaded area shows the subtree we

would expect the search to expand when using an altered weight vector {1.0 -f

<Ji, 2.0,0.5} (d'i > 0). At position G, for example, if the depth D{pg. iv + Ai)

exceeds the search-depth limit, node H would not be expanded. Therefore

it is not included in the total node count for that weight vector. The node-

count information for the other two modified weight vectors is simultaneously

gathered in the same way (not shown in the figure). A detailed example of

this technique is given in Appendix B.

Note that this approach only approximates how many nodes are searched:

if we really were to use a modified weight vector different values would be

propagated up the tree, likely causing another set of branches to be expanded

in some of the subtrees. Nonetheless, this approximation gives us a pretty

good idea about the sensitivity of the search to changes in the search-control

parameters. For this approximation to work, each of the weights must be

altered such that the move paths become shorter — otherwise, the actual

search would terminate before the altered depths reach the search-depth limit.

In the previous example this means adding a positive constant to each of the

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

weights. However, because we do not put any restrictions on the form of the

depth function, in other extension schemes this might imply that a weight must

be reduced. One can even envision schemes where changing a parameter in

either direction causes some move paths to shorten but others to lengthen. In

such cases it might be possible to replace the troublesome parameter with two

new ones, such that a parameter adjustment now causes consistent changes

in the move path depths. When that is impossible, it might be necessary as

a last resort to explore some paths in the tree beyond the depth the actual

weight vector does, although, this would impose undesirable overhead on the

search.

6.5 E xperim ental R esults

To obtain practical exp erien ce with the learning method we implemented it in

the chess program C r a f t y [41].° T h e program uses a fractional-ply based ex

tension scheme with five different move categories: checks, re-captures, forced-

replies to checks (i.e. only one legal rep ly), advanced passed pawn-pushes, and

null-move threats. The last m ove-class, null-move threats, does not fit directly

into the framework we in troduced earlier. The reason is that a move can only

be classified into this category by actually performing a null-move search.

Thus, to keep things simple, we chose to disable it in our experiments. VVe ran

two independent sets of experim ents. In the first, the program was trained

using an existing suite o f chess-problem s, while in the second the program

learned during actual gam e play.

5C rafty is one of the strongest, if not the strongest, of the chess programs whose source
code is publicly available. On the online chess servers it consistently ranks among the highest
rated players, out-performing both some of the commercial chess programs and strong chess
masters. The source code is publicly available via ftp at ftp.ds.uab.edu/pub/hyatt. Our
learning scheme was originally implemented in version 16.4 and later re-implemented in
versions 16.17. The results reported here are based on that latter version.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ftp://ftp.ds.uab.edu/pub/hyatt

0 > .. 1 3 ------------------------------------ * » — —*■ ■ * >
i * j « s • r • • i9 ♦* *3 ij •+ <i i : i « s • r • t to it u is

iteration number iteration number

Figure 6.4: Learning results.

6.5.1 T est Suite

Within the computer-chess com m unity it is com m on practice to benchmark

the performance of chess programs against standard test suites. In the first

set of experiments we observed the perform ance improvement of the program

as it learned using the well-known ECM test suite [48]. This suite consists of

879 (mostly tactical) middle-game chess positions. Initially, the weights of the

move categories were set to 1.0 , and allowed to vary within the range [0.1,2.0].

For each of the problems, if the right move was not found after examining half

a million nodes the search was stop ped .

In Figure 6.4, the graph to the left shows the program s improvement from

one iteration to the next. The dotted line shows the percentage of problems

solved (out of the 879), and the solid line shows the total number of nodes

searched relative to the first iteration (306 million nodes). The learning algo

rithm minimizes the total number of nodes required to solve the problems. The

increase in problems solved follows indirectly as a side effect! The performance

improves significantly as we can see. After only a few iterations the values have

converged and the total node count is reduced to 74% (230M) of the original,

at which level 57% (508) of the problems are solved correctly as opposed to

39% (346) in the beginning. The right-hand graph, on the other hand, shows

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

how the move class parameters evolve. The check extension weight rapidly

drops to the minimum value, i.e. 0.1. This indicates that check moves are

a particularly important category for extensions. The other weights also de

crease, but more gradually, and finally converge to a value between 0.6 and

0.9 (more specifically the forced-replies, re-captures, and passed-pawn pushes

classes have values of 0.68, 0.84, 0.91 respectively). The weight for the re

capture class is still oscillating around its optimal value. The reason is that

we used a fixed learning rate, as opposed to decreasing it between iterations.

Decreasing the learning rate can sometimes lead to a premature and false con

vergence of the parameters, something we wanted to avoid. On the other hand,

by keeping the learning rate fixed one can experience oscillating behavior like

this, where the method steps around the minimum without agreeing on one

specific parameter value.

Many test suites, including the one we used, provide only the best-move for

each position instead of the complete solution sequence. Because our learning

method requires that the full solution-path be known, we had to make some

compromises. If the best move returned by the program agrees with the move

suggested by the test suite, we assume that the principal-variation given by the

program represents the correct solution path. This path is stored and used in

the current and all subsequent iterations. However, if the move returned does

not agree with the test suite and there is no previously stored solution path

for that particular problem, we simply ignore the problem. As a consequence,

in each iteration we are minimizing the total number of nodes needed to solve

only a subset of the problems in the test suite, that is, for those problems

for which we have been able to derive a solution path. However, this subset

gradually increases with each iteration and hopefully converges to a significant

portion of the total test suite. A different approach that we could have taken is

to find solution paths for the positions in the test suite, by pre-searching them

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to a much greater depth. The drawback of that approach is that a few of the

more difficult problems require extremely deep searches to be solved. These

few problems would dominate the total node count needed to solve all the

problems. This is undesirable, and the compromise approach we take avoids

this problem altogether.

6.5.2 G am e P laying

In the second set of experiments the program learned from playing games,

instead of using a test suite of game positions. A version of the program using

the learning scheme played 100 games against an unmodified version of the

chess program (with a 5 minute time limit for each side for completion of an

entire game). As before, the move class weights of the learner are initialized

to 1.0. The program learns from critical positions encountered during the

game. The threshold for a position to be considered critical is an evaluation

drop of 1/3 of a pawn. Once the game position of the learner is considered

to be lost (the position evaluation is more than 3 pawns down) the learning

is disabled for the rest of the game. The reason is that once the position

is already significantly worse, it is almost inevitable that one will lose more

material and eventually the game. To learn from such losing examples is not

particularly instructive.

The chess program used in the experiments distinguishes between three

different game phases: the opening, the middle-game, and the end-game. The

program evaluates game positions differently depending on which game phase

it is in. but search extensions are done the same way in all phases. However,

by automating the tuning-process of the weights we can easily learn a different

set of weights for each game phase. Thus, our learning program is set up to use

three different set of weights, one for each game phase. In our experiments,

we diil not receive any learning samples in the opening phase. This is not

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.1: Learned weights.

Move class Hand-set weights Learned weights
Middle-game End-game

Checks 0.00 0.30 0.10
Re-cap t,u res 0.25 0.10 0.10
Forced-replv 0.25 0.10 0.15
Passed-pawn push 0.25 0.47 0.25

surprising because the opening phase is typically rather short and the resulting

positions are usually equal in value.

Table 6.1 shows the learned weights for middle game and end-game play,

and how they compare to the weights used by the unmodified program (hand-

tuned bv the author of C r a f t y , a leading computer-chess expert). The

learned weights differ substantially from the hand set ones. Also of interest

is how the learned weights for the middle and endgame differ. We note that

check extensions and passed-pawn pushes are extended more aggressively in

the entl-game. as one might hypothesize. To evaluate the quality of the learned

weights, we matched six different versions of the program against each other.

The only difference between the versions was the value of the search-control

parameters. Each match consisted of 100 games played at time controls of five

minutes per game.6 To prevent the programs from repeating move sequences

in the opening, each game was started from a different, well-established open

ing position (see Appendix D.6). The programs played each starting position

once as White and once as Black.

The first program version, Coniine» uses the learned weights shown in Table

6.1. For the opening-phase the same weights are used as for the middle-

game. The C ' e c m version uses the weights learned by using the ECM test
6The matches were played on Intel PII/400 and PH I/450 computers. Each match was

played on a single computer. In the chess-program, all the default parameter settings were
used, except that pondering (thinking on opponent’s time) was turned off. Otherwise, the
programs would compete for the computer’s CPU time.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

suite as training input, whereas the Chand version uses the hand-set weights.

The three remaining programs treat all the move-extension classes the same.

In the C 100 version all the weights are set to 1.00, which is the same as not

using any search extensions. The Coio version extends aggressively on all move

classes (all weights set to 0.10), whereas the Coso version uses more conservative

extensions (all weights set to 0.50). The result of the matches is shown in Table

6.2. The program using the parameters learned from game play performs the

best overall, scoring 282.5 points out of the 500 games. The program using

the parameters learned from the test suite does not do as well. This is not

too surprising. Most test suites focus on the tactical abilities of programs.

Although tactics are important, the test suites sometimes overemphasize their

importance compared to actual game play. As expected, the program using

no extensions (C100) performs by far the worst. On the other hand, it is

interesting to see how close the other programs performance is, even though

they are using quite different weight vectors. The C h a n d , C o l o , ^oso ah end up

with a similar score. It is a little surprising to see how well the C050 version

does, intuitively we would have thought it would rank lower. The fact that

this version outranks the C01o and the C e c m versions shows that in actual

game play it is not necessarily good to extend too aggressively, resulting in

many irrelevant lines being searched too deeply. Although this might improve

the tactical ability of the program, it hurts the positional play and the overall

performance.

Unfortunately, we have no way of telling what the optimal weight vector

is, and thus we cannot really say how close to optimal the learned weights

are. However, based on the above results, we can state with over 90% confi

dence that the program using the weights learned from game playing performs

better than the program using the hand-set weights.7 The extension-scherne
‘Student’s t-test was used to compare the mean of the score-distribution of the two

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.2: Match results.

vs Coniine Cijnl) Chtind Co io C e c m Cioo Points
Coniine
Co50
Chand
Co 10
C e c m
C too

45.5-54.5
49-51
46-54

40.5-59.5
36.5-63.5

54.5-45.5

46.5-53.5
50.5-49.5

47-53
34-66

51-49
53.5-46.5

50-50
49.5-50.5
35.5-64.5

54-46
49.5-50.5

50-50

51.5-48.5
35.5-64.5

59.5-40.5
53-47

50.5-49.5
48.5-51.5

42-58

63.5-36.5
66-34

64.5-35.5
64.5-35.5

58-42

282.5
267.5
260.5
259.5
246.5
183.5

employed by our test program is a relatively simple one, using only a few pa

rameters. These parameters have been hand-tuned to reasonable values, and

thus the opportunity for drastic improvement is small. On the other hand, the

benefits of automatic tuning to become increasingly relevant for more sophis

ticated extension schemes that require the tuning of many parameters.

6.6 C onclusions

In this chapter we introduced a method for automatically tuning search-control

parameters in adversary search. By using a cost model to model the search,

the learning task can be formulated as a function approximation task, allowing

us to use well-established machine learning techniques for determining the

most appropriate parameter vector. The learning method was implemented

and tested in a strong chess-program, where it learned a parameter vector

tha t outperformed other parameter vectors, including one chosen by a leading

computer-chess expert.

Automated tuning of search-control parameters opens up many new op

portunities for improved search-control schemes. Traditionally, the effort it

takes to hand-tune complex extension schemes — possibly using many dis

parate parameters — imposes a limitation on how complex the schemes can

be in practice. However, by automating the tuning process it is possible to
programs.

LOO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

experiment with more sophisticated schemes. This is a logical next step. One

can envision schemes that use many more move classes, where each class is not

only dependent on the phase of the game hut also on other positional features.

For example, different extensions would apply for open vs. closed positions,

or positions where the king is exposed!

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Learning Search Control Offline

Chess is 99% tactics.
- R. Teichmann

In the previous chapter we introduced a general framework for learning

search control in adversary search. Based on the framework, we designed and

implemented a method for learning search extensions either during online play

or by analyzing game positions offline. We experimented with the method

in a chess program, where it demonstrated its usefulness by learning search-

cxtension parameters that outperformed all other parameters we tried. On

the down-side, it was quite an involved task to incorporate this method into

a game-playing program. The subject of this chapter is how to alleviate that

problem.

7.1 Introduction

The main drawback of the learning method we introduced in the previous

chapter is how intrusive it is. Substantial modifications and additional code are

introduced into the game-playing program. To be able to estimate the partial

derivatives that drive the learning algorithm, the game-plaving program needs

to record separate search-depth and node-count information for each search-

extension parameter. In practice, these modifications are not always trivial to

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

implement efficiently. It is important not to introduce too much additional

computational overhead — otherwise the playing strength of the game-playing

program is compromised. This can be a challenging task, especially in a highly

optimized program. For one thing, the changes must he implemented deep

inside the core of the search engine. To make matters even worse, competitive

world-class game-playing programs typically consist of highly optimized code

(where software engineering coding principles are mercilessly sacrificed for the

sake of additional search speed). This makes code modification even more

difficult, and can potentially discourage people from using our method.

In this respect, a less intrusive learning approach is desirable, where the

learning module is better separated from the game-playing program itself.

Preferably, only minimal (if any) changes should be required to the game-

playing program. Fortunately, there is a way of doing this by removing the

previous preference that the game-playing program learn during online play.

That is, if we limit its use to offline analyzes of game positions, we can separate

the learning module from the game-playing engine.

7.2 Offline vs. Online Learning

There are at least two fundamental differences between online and offline learn

ing that affect the way we approach the problem. When learning offline:

• we need not be as concerned with performance overhead incurred by the

learning method, and

• we may assume that the correct move is known for each position in our

training set (see later).

The above properties simplify the offline learning task considerably.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2.1 How to E stim ate th e G radient

When designing our online learner, one of the main challenges was how to

efficiently estimate the gradient that drives the learning algorithm. We came

up with a way of doing this in real-time during the actual search. However,

during offline learning the computational overhead is much less of an issue.

Therefore, a different and much simpler approach is possible.

Instead of trying to estimate what effects different parameter settings have

during a search, it is now possible to obtain this information directly sim

ply by performing a separate search after each parameter change. The offline

learning module will call the search engine repeatedly for each game posi

tion in the training set, each time using a slightly different parameter setting.

This alternative way of estimating the gradient (partial derivatives), although

clearly more computationally expensive, has a big benefit of being more mod

ular. This key factor allows us to implement the learning algorithm without

modifying the search engine.

7.2.2 How D eep to Search?

In the online version, learning is triggered when critical positions are encoun

tered. However, we do not truly know how deep a search is needed to discover

the correct continuation in the critical position (for that matter, we do not even

know what the correct continuation is!). This poses an additional challenge

in the online learning approach, that is solved by assuming that the program

must fully explore a so called critical solution path to avoid playing an inferior

move (see previous chapter). This assumption turns out to be reasonable in

practice although, as we pointed out, it is not necessarily always true.

On the other hand, during offline learning there is no need to make such

an assumption. We can require that all the training samples in the test suite

be labeled with information about what the best move is. The game positions

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can be analyzed beforehand to determine what the best move is by computer

or human analyzes (or a combination thereof). Now, instead of indirectly

approximating how deep a search is needed to find the correct move, the offline

method simply instructs the game-playing program to explore the position

until either the suggested move is found, or an imposed search limit is reached.

7.2.3 P ros and C ons

We are clearly limiting the usefulness of the learning system by restricting

its use to only offline play. For example, when meeting a previously unseen

opponent in a match spanning a series of games, a program enhanced with

online learning capabilities can adjust its play based on experience gained in

earlier match games. For example, one respected source for ranking chess pro

grams by their playing strength is the Swedish Rating List, published by the

Swedish Chess Computer Association (SSDF) both online and in the Inter

national Computer Games Association journal. To determine the programs

relative playing strength, they are matched against each other, each encounter

consisting of a long series of games. Online learning is clearly beneficial in

such settings.

On the other hand, if given an opportunity to practice against an opponent

beforehand, the learning can equally well be done offline. Lost games can

be analysed by a human or a computer player, and a test suite constructed

consisting of those positions where a deeper search would have avoided playing

the inferior move. These positions could serve as a training data for the offline

learner, and the learned search-extension parameters be employed in future

encounters with that opponent. Thus, depending on the situation, restricting

the learning to offline analysis might not be a serious limitation. Furthermore,

the main attraction of the offline learning method is that it can be implemented

with only minimal modifications to the game-playing program.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3 A rchitecture

Figure 7.1 shows the basic architecture of the offline learning system. One

of the main design objectives behind this architecture is to keep the learning

module as separate as possible from the game-playing program, thus minimiz

ing the amount of changes needed to the game-playing program itself. The

learning system consists of three main parts: the learning module, the game-

playing engine (that is now a separate process) and, finally, a pre-generated

database of training examples (where each example consists of a game position

and information about what is the best move in that position).

The learning module, which is also the main driver, reads in the game

positions from the database (or test suite) and then repeatedly calls the game-

playing engine, asking it to solve each of the positions using different search

control parameters. In the following subsections we describe each of the com

ponents in a more detail.

setboard r3k///2R//K
se tparam 0.1 0.2
gountil e6 500000

Learning
module

r3k///2R//K e6

Figure 7.1: The architecture of the offline learning system.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3.1 G am e-P laying Program

The learning module tells the game-playing program which game position to

search, what the best move is in that position, and what search-control pa

rameters to use. In return, the game-playing program informs the learning

module about how many nodes were expanded during the search. The only

change required to the game-playing program is to augment its command in

terface to support this interaction. This means implementing the following

three commands:

• se t b o a rd position

Set the current game state to he position. The learning module is indif

ferent to the representation of a game state or position (it simply relays

this information from the database), but the game-playing program must

understand the format. This command also resets the state of the game

engine such that a new search can be performed independently of previ

ous searches (e.g. the transposition table and other history information

must be cleared). No return value is expected.

• s e tp a ra m w i W2 ... wn

Specify the values of the search-control parameters. The arguments

w i,...,w n are real numbers and represent the values that the search-

control parameters take. The game-playing program can scale these

parameters or map them to integers (if the program’s internal represen

tation requires so). No return value is expected.

• g o u n til move n

This command instructs the game-playing program to search the current

game position until the program agrees that move is the best continu

ation in the given position, or an imposed search limit of n nodes is

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reached. The number of nodes actually searched must be returned, and

also a flag indicating whether the suggested move was found by the

search. The return string has the following format:

nodes flag count

where fla g is set to 1 if the problem was solved, otherwise 0. The count

tells how many nodes were expanded by the search (for an unsolved

position count is the node-count limit n).

We assume that the game-playing program reads its commands from standard

input and writes to standard output. Each instruction is followed by a newline

or return character, and the return string is printed to standard output.

Compared to the changes required by the online learner, it is quite trivial

to implement the above commands. First of all. they are done to the command

interface as opposed to deep inside the search-engine core. Furthermore, many

game-playing programs already have commands built-in with similar capabil

ities, e.g. a command to set up a game position, a command for specifying

the value of a (search) parameter, and a command to perform a search. Thus,

implementing the above three commands is typically as simple as mapping

them onto already supported interface commands.

7.3.2 Learning M od u le

The learning module is also the main driver. It first spawns off the game-

playing program as a separate process. All communication between the learn

ing module and the game-playing engine is done via Unix-domain sockets

(pipes) that have been redirected to the game programs standard input/output

Thus, no special process communication support needs to be added to the

game-plaving engine. The database contains a collection of game positions,

where each position is labeled with information about the correct move choice.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 13 LSC-offline
1: for i = 1. N d o
2 : U\ <— 1.0
3: e n d for
4: / / Iterate until a sufficiently good w is found.
5: w h ile not terminate d o
6: nodes <— 0

7: fo r i = l ,N d o
8: nodeSi <— 0
9: e n d for

10: for a l l (p t ,m t) € T d o
11: nodes = nodes + GetNodecount(pt, m t , w . n)
12: for i = 1, N d o
13: Wt <— Wi + S
14: nodesi nodes,- 4- GetNodecount(pt, m t, w. n)
15: U!t <— Wi — 6
16: e n d for
17: e n d for
18: fo r i = l , N do
19: wt < - wt — p A w max ((nodesi — nodes)/ nodes)
20: e n d for
21: p <— Decrease(p)
22. e n d w h ile

These positions are read from the database and used as training data. Finally,

the learning component (shown as Algorithm 13 below) is invoked. The learn

ing. as before, is based on the gradient-descent algorithm. It is almost identical

to the learning algorithm we described for the online learning system — the

most noticeable difference being how the gradient is found.

The outermost loop iterates until the parameter values converge. The

nodes variable records the cumulative node count over all the test positions.

The variables nodesi, i = 1 ,2,..., N (where N is the number of search-extension

parameters) similarly record the cumulative node count for each altered pa

rameter vector. These variables are reset to zero at the beginning of each

iteration. Next the algorithm loops over all the training samples, where each

sample consists of a game position (pt) and the best move for that position

(m t). For each position, the game-playing program is called several times:

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

once using the current parameter vector w, and then N times using a slightly

altered weight vector. At. the i-th call, the i-th parameter of the weight vector

is modified by a small amount S. Whereas during the online learning experi

ment we had to be careful to increment the parameters (to be able to estimate

the effects of a change), here it does not m atter all that much whether a

parameter is increased or decreased. One approach is to modify the param

eter in the direction it is currently moving. That is, if the parameter was

decreased at the end of the previous learning iteration, then also decrease it

slightly when estimating the gradient (and vice versa). The implementation

details of how to interact with the game-playing program are hidden in the

GetNodcrmint{pt, m t, w, n) function. This function sends the three commands

described earlier (set.boa.rd pt, setparam w, and gountil m t n). and then waits

until it receives the expected return string (“nodes ...”). Upon receiving the

return string the requested node count information is extracted and returned.

At the end of the learning iteration the parameter vector w is modified in

the direction opposite to the gradient (the gradient is determined as before

by the cumulative node count information). The resulting parameter vector is

then used on the subsequent iteration. This continues until a sufficiently good

parameter vector is determined. The p. and the Awmax variables are the same

as in Chapter 6.

7.4 E xperim ental R esu lts

We tested the new offline leaning method using an experimental setup similar

to the one used in the previous chapter. That is, the weights of the move

categories were initialized to 1.0 and allowed to vary within the range [0.1.2.0],

an upper limit of half a million nodes was imposed on each search, and the

values of p and A w,nax were both set to 1.0. Also the ECM test suite [48] was

used its a training input.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

toe

*o
S *0

1 "
«e

*o— soc(Q
S
8

to

0
• t % » 10
iteration num ber

2 Jt S

12
t t

QJa> a*
1 #7 0)2 a§ 29 •*
®

o “
E „

02

e x 3 4 I
iteration number

J

12
1 I
I

00
® * *
£ 0 7
<n
2 o«3
2 “
s ••
E

02

01

0
21 3 4 S

iteration number
1

toe

•e

C » «0
1 "

30

»e
e

I J 4 t » * 0 •»
iteration num ber

t 2 3 '2 13 IS<4

Figure 7.2: Comparison of online (upper) vs. offline (lower) learner.

The result of the experiment is shown in Figure 7.2. The two lower graphs

show the new offline learning algorithm, whereas the two upper graphs show

the corresponding results from the online learning in the previous chapter (we

regenerate the graphs from Figure 6.4 here to make performance comparison

between the two methods easier). The left graphs show the search efficiency

in terms of number of nodes searched and the number of problems solved, rep

resented by a solid and a dotted line, respectively. The right graphs, on the

other hand, demonstrate how the move-class weights evolve. As in Chapter 6

the learning algorithm tries to minimize the number of nodes required to solve

the problems, and the increase in the number of problems solved follows indi

rectly as a side effect. The new offline learner was stopped after 12 iterations

because it was clear that the values had already converged.

Beforehand we had hypothesized that given the same training data the

offline learning method might outperform the online learner. The reason is

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that the offline learner works with accurate node-count information, whereas

our online learner uses estimates. What is remarkable about this result is that

both learning methods perform equally well! In the end, both solve the same

fraction of the problems (57%) and search approximately the same number of

nodes (229M). This is reassuring and adds credibility to the claim that the

approximate information used by the online learner is sufficiently good for use

in practice.

Finally, by comparing the weights learned by the two methods, we see that

they differ slightly. However, the difference doesn’t affect the performance:

both the weights vectors perform equally well. It is quite possible, that both

are local optima. More importantly, the check extensions and the forced reply

extensions — the two move types that seem to be the most critical to extend

on (have the lowest weights) — do converge to close to identical values. The

two remaining move-classes. passed-pawns and re-captures only influence the

total node count weakly.

7.5 C onclusions

We introduced an alternative method for learning search extensions. One

of the main appeals of this approach is that it offers an easy way to tune

search-control parameters in almost any search-based game-playing program.

Moreover, the garne-playing program itself needs only minimal modifications.

The changes are as simple as augmenting the game-playing program’s interface

with the three high-level commands introduced earlier, and the program can

then be “plugged” into the learning module.

On the other hand, this ease of use comes with a price. Probably the most

serious drawback of the approach introduced here is that it can learn only

from analyzing game positions offline, whereas the method we introduced in

the previous chapter can also learn during online play. There are two addi-

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tional disadvantages with the new offline approach. First, it requires annotated

training data, that is, the correct move in each test position must be known.

Secondly, it is computationally more expensive than the method we introduced

earlier. However, if sufficient computer resources are available, the method is

trivial to parallelize. All searches within one iteration can be executed in par

allel — the only synchronizing point is at the end of the iteration. Another

possible performance optimization is to use shallow searches to estimate the

gradient. We will as before do an additional search for each parameter, how

ever. the search can be more shallow because we only need it for determining

the growth rate. We will then, as we did in the online method, use our cost

model to predict total number of nodes a full search would require.

Which of the two methods for learning search-control parameters is more

appropriate depends on the situation. If online learning is required the method

introduced in the previous chapter should be used, whereas if offline learning

is sufficient, the method introduced in this chapter is to be preferred. Finally,

it is worth mentioning that the offline learning method is not assuming that

the search-control parameters it is learning are necessarily used for controlling

search extensions. On the contrary, the method can be used to learn any type

of parameters that influence the search process, for example move-ordering

parameters.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Concluding Remarks

Don’t worry, kids. You'll find work. After all, my machine will
need strong chess-player programmers. You will be the first.

- Mikhail Botvinnik, ca. 1963 (said to some of his chess
students when claiming that his chess program would

eventually become the World Champion).

In this chapter we conclude the research by briefly summarizing the main

research issues and achievements. Finally, we prov ide pointers for future re

search directions.

8.1 C onclusions

In this thesis we investigated selective depth-first expansion of game-trees. Ad

ditional full-width search exhibits diminishing returns in terms of an increase

in playing strength, so simply searching deeper and deeper in a (semi-) uniform

way is not necessarily the best way to harvest the ever increasing hardware

speed. Instead, it shows more promise to use the additional computing power

to selectively expand the game trees [27]. The question we were primarily con

cerned with in this work was: how should game-playing programs best spend

their search effort to maximize their move decision quality i

The first step was to gain additional insight into speculative pruning. Chap

ter 3 summarizes those findings. Essentially, speculative pruning methods

should be concerned with the question: What is the likelihood of making an

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

erroneous pruning decision and, i f an erroneous decision is made, how likely is

it to affect the principal variation? Surprisingly most pruning methods totally

ignore the second part of the question. To answer this question the methods

must consider each node in the context of its location in the game tree, instead

of looking at each node and the subtree below it in isolation.

This is exactly what the new pruning method we introduce in Chapter 5

does. In both chess and Lines of Action, game-playing programs employing

the new multi-cut pruning method demonstrate significant increase in play

ing strength. Furthermore, because the method doesn't rely on game-specific

knowledge, it has the potential of being useful in many other games as well.

In Chapter 4 we showed that speculative search, if done in a controlled

way. can be used to improve on the search efficiency of cvd-like algorithms,

while not affecting the move decision. Over the years several variants of the

standard a 3 algorithm have been introduced, each demonstrating a slight

improvement in search efficiency over the previous ones. We like to think of our

new enhancement, uncertainty cutoffs, as an addition to this line of variants.

The improvement in search efficiency, although relatively small, is comparable

to the improvement each of the previously published variants demonstrates

over the previously established state of the art.

In most game-playing programs, search extensions are necessary for achiev

ing top performance. Unfortunately, parameterizing and tuning the various

search-extensions schemes to get a well balanced search is a difficult, tedious,

and time consuming task. Extending too aggressively will degrade the overall

performance because too much time is spent on exploring irrelevant continu

ations too deeply at the cost of not reaching sufficient nominal depth. On the

other hand, extending too conservatively can result in overlooking important

tactics. In Chapter 6 and 7 we introduced a method for learning search-control

parameters in adversary search, focusing on search extensions in particular. By

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

using a cost function to model the search, the learning task can be formulated

as a function approximation task, allowing us to use well-established machine

learning techniques for determining the most appropriate parameter values.

The learning method were tested in the domain of chess, where it learned a

parameter vector that outperformed other parameter vectors, including one

chosen by a leading computer-chess expert. By automating the tedious tuning

process, it becomes feasible to experiment with far more sophisticated exten

sion schemes, using many more parameters.

8.2 Future W ork

There are still many unexplored avenues for further research, for example:

• The multi-cut method as described and implemented here is not the only

way of reasoning about how likely an erroneous pruning decision is to

influence the move decision at the root, and by no means necessarily the

best. We hope that this work will pave the road for new speculative

pruning methods utilizing such information.

• The multi-cut method does not utilize any game-specific knowledge. We

deliberately made this decision to make the approach as domain inde

pendent as possible. This is both a strength and a weakness. It is quite

possible that the performance of the method can be further enhanced by

looking at domain-specific properties.

• The multi-cut method and the singular-extension method complement

each other in various ways, while sharing much of the same computa

tional overhead. It is worth looking into combining the two schemes,

possible getting the benefits of both while “sharing the cost".

• The method we introduced for learning search-control parameters is not

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

necessarily specific to adversary search. The only assumption we make

here is that there exists a parameterizable depth function that controls

how deeply each branch of the tree is expanded. It is definitely worth

experimenting with it in other tree-search domains; single-agent search

is one that comes to mind.

• In this work we assume that the basic search-control features are given,

and the task of the learning method is to tune parameters for deciding

their relative importance. Research into methods for discovering or con

structing new search-control features for use in two-person games is a

difficult task, but might be a rewarding avenue for future research.

Finally, in the same way as a carpenter needs a good set of tools to do

his or her work, anyone planning on doing a research in the area of game-tree

search requires adequate tools for visualizing and analyzing the search space.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] G. M. Adelson-Velskiy. V. L. Arlazarov, and M. V. Donskoy. Some meth
ods of controlling the tree search in chess programs. Artificial Intelligence.
6(4):361-371, 1975.

[2] T. S. Anantharaman. .4 Statistical Study of Selective Min-Max Search
in Computer Chess. PhD thesis. Carnegie-Mellon University, Pittsburgh,
PA, 1990.

[3] T. S. Anantharaman. M. S. Campbell, and F. Hsu. Singular exten
sions: Adding selectivity to brute-force searching. Artificial Intelligence.
43(1):99-109, 1990.

[4] J. Baxter, A. Tridgell, and L. Weaver. Learning to play chess using tem
poral differences. Machine Learning. 40(3):243-263, 2000.

[5] D. F. Beal. Experiments with the null move. In Advances in Computer
Chess 5, pages 65-89. Elsevier Science Publishers B.V., 1989. D. F. Beal
(editor).

[6] D. F. Beal. A generalised quiescence search algorithm. Artificial Intelli
gence., 43:85-98, 1990.

[7] D. F. Beal. The Nature of Mini Max Search. PhD thesis, Department of
Computer Science, Universiteit Maastricht, Maastricht, The Netherlands.
1999.

[8] D. F. Beal and M. C. Smith. Quantification of search extension benefits.
ICCA Journal, 18(4):205-218. 1995.

[9] D. F. Beal and M. C. Smith. Learning piece values using temporal differ
ences. ICCA Journal, 20(3):147-151, 1997.

[10] H. J. Berliner. The B* tree search algorithm: A best-first proof procedure.
Artificial Intelligence, 12(1):23- 40. 1979.

[11] H. J. Berliner. B* probabilitv-based search algorithm. Artificial Intelli
gence, 86(1):97-156, 1996.

[12] J. Birmingham and P. Kent. Tree-searching and tree-pruning techniques.
In Advances in Computer Chess 1. pages 89-107, Edinburgh, 1977. Edin
burgh University Press. M. R. B. Clarke (editor).

[13] Y. Bjomsson. YL wins Lines of action tournament. ICCA Journal.
23(3):178-179, 2000.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[14] Y. Bjornsson and T. A. Marsland. Multi-cut pruning in alpha-beta search.
In Proceedings of The First International Conference on Computers and
Games (CG ’98). Lecture Notes in Computer Science, special issue Com
puters and Games, pages 15-24. Springer Verlag, 1999.

[15] Y. Bjornsson and T. A. Marsland. Risk management in game-tree prun
ing. Information Sciences Journal, 122:23-41, 2000.

[16] Y. Bjornsson and T. A. Marsland. Learning search control in adversary
games. In Advances in Computer Games 9. H.J. van den Herik and B.
Monien (editors), pages 157-174. University of Maastricht/University of
Paderborn, 2001.

[17] Y. Bjornsson and T. A. Marsland. Multi-cut alpha-beta pruning in game-
tree search. Theoretical Computer Science, 252:177-196, 2001.

[18] Y. Bjornsson and T. A. Marsland. Learning control of search extensions.
In Proceedings o f the Joint Conference on Information Science (JCIS ’02),
pages 446-449, 2002.

[19] Y. Bjornsson, T. A. Marsland, J. Schaeffer, and A. Junghanns. Searching
with uncertainty cut-offs. ICCA Journal. 29(l):29-37, March 1997. Ap
peared also in book Advances in Computer Chess 8, H.J. van den Herik
and Jos Uiterwijk (editors).

[20] Y. Bjornsson and M. H. M. Winands. YL wins Lines of action tournament.
ICGA Journal, 24(3):180-181, 2001.

[21] I. Bratko and M. Gams. Error analysis of the minimax principle. In
Advances in Computer Chess 3, pages 1-16. Pergamon Press, 1981.

[22] D. M. Breuker. Memory versus Search m Games. PhD thesis, Universiteit
Maastricht, Maastricth, The Netherlands. 1998.

[23] A. L. Brudno. Bounds and valuations for abridging thee search of esti
mates. Problems of Cybernetics. 10:225-241. 1963. Originally appeared
in Problemy Kibemetiki, vol. 10. pp. 141-150 (in Russian).

[24] M. Buro. ProbCut: An effective selective extension of the alpha-beta
algorithm. ICCA Journal, 18(2):71 76, 1995.

[25] M. Buro. Experiments with multi-probcut and a new high-quality eval
uation function for Othello. In Games in A I Research, pages 77-96,
Maastricht, The Netherlands, 2000. Universiteit Maastricht. H.J. van
den Herik, H. Iida (editors).

[26] M. Buro. Towards opening book learning. In Games in A I Research,
pages 47-54, Maastricht, The Netherlands. 2000. Universiteit Maastricht.
H.J. van den Herik, H. Iida (editors).

[27] M. S. Campbell, A. J. Hoane Jr., and F. Hsu. D e e p B l u e . Artificial
Intelligence, 134:57-83, 2002.

[28] T. Cazenave. Generation of patterns with external conditions for the
game of Go. In Advances in Computer Games 9, H.J. van den Herik and
B. Monien (editors), pages 275-293. University of Maastricht/University
of Paderborn, 2001.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[29] D. Dailey and C. E. Leiserson. Using ClLK to write multiprocessor chess
programs. In Advances in Computer Games 9. H.J. nan den Herik and
B. Monien (editors), pages 25-52. University of Maastricht/University of
Paderborn, 2001.

[30] C’. Donninger. Null move and deep search: Selective serach heuristics for
obtuse chess programs. ICCA Journal. 16(3): 137-143, 1993.

[31] T. A. Estlin and R. J. Mooney. Learning to improve both efficiency
and quality of planning. In Proceedings of the Fifteenth International
Conference on Artificial Intelligence (UCA l-91). 1997.

[32] R. Feldmann. Fail-high reductions. In Advances in Computer Chess 8,
June 1997.

[33] J. P. Fishburn. Analysis of Speedup in Distributed Algorithms, volume 14
of Computer Science: Distributed Database Systems, chapter 4 - Parallel
Alpha-Beta Search, pages 11-54. UMI Research Press. 1984. Revision of
thesis (PhD) - University of Wisconsin, Madison, 1981.

[34] J. Fiirnkranz. Machine learning in computer chess: The next generation.
ICCA Journal, 19(3):147-161, 1996.

[35] J. Fiirnkranz. Machines That Learn To Play Games, chapter Machine
Learning in Games: A Survey, pages 11-59. Nova Science Publishers,
Inc., Huntington, New York, 2001. J. Fiirnkranz and M. Kubat (editors).

[36] G. Goetsch and M. S. Campell. Experiments with the null-move heuris
tic. In T.A. Marsland and J. Schaeffer, editors. Computers, Chess, and
Cognition, pages 159-168, New York, 1990. Springer-Verlag.

[37] R. D . Greenblatt, D . E. Eastlake III, and S. D . Crocker. The G r e e n -
b l a t t chess program. In Proceedings of the Fall Joint Computer Confer
ence, pages 801-810. AFIPS Press, 1967.

[38] K. Greer. Computer chess move-ordering schemes using move influence.
Artificial Intelligence, 120:235-250, 2000.

[39] E. A. Heinz. Scalable Search in Computer Chess. Vieweg Verlag, Germany,
2000 .

[40] E. A. Heinz. Self-play, deep search and diminishing returns. ICGA Jour
nal. 24(2):75-79, June 2001.

[41] R. M. Hyatt. Crafty - chess program. 1996. ftp.cis.uab.edu/pub/hyatt.

[42] R. M. Hyatt. Book learning a methodology to tune an opening book
automatically. ICCA Journal, 22(1):3-12, 1999.

[43] A. Junghanns. Are there practical alternatives to alpha-beta? ICCA
Journal, 21:14-32, March 1997.

[44] D. E. Knuth and R. W. Moore. An analysis of alpha-beta pruning. Arti
ficial Intelligence, 6(4):293-326, 1975.

[45] J. Kolodner. Case-Based Reasoning. Morgan Kaufmann Publishers, San
Mateo, CA, 1993.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ftp://ftp.cis.uab.edu/pub/hyatt

[46] R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree
search. Artificial Intelligence, 27(1):97~109, 1985. reprinted in Chapter 6
of Expert Systems, A Software Methodology for Modern Applications, P.G.
Raeth (Eel.). IEEE Computer Society Press. Washington D.C’.. 1990. pp.
380-389.

[47] V. Koscis and J. Uiterwijk. Learning move ordering in chess. In Proceed
ings of the CMG Sixth Computer Olympiad Computer Games Workshop,
July 2001.

[48] X. Krogius, A. Livsic, B. Parma, and M. Taimanov. Encyclopedia of
Chess Middlegames. 1980.

[49] D. Levy, D. Broughton, and M. Taylor. The sex algorithm in computer
chess. ICCA Journal, 12(1):10-21, 1989.

[50] T. A. Marsland. Relative efficiency of alpha-beta implementations. In
Proceedings of the International Joint Conference on Artificial Intelli
gence (IJCAI-83), pages 763-766, Karlsruhe, Germany. August 1983.

[51] T. A. Marsland. Computer Chess and Search, pages 224 '241. Encyclo
pedia of Artificial Intelligence. John Wilev Sc Sons. Inc.. Chicester, UK,
1992.

[52] T. A. Marsland. Computer Chess and Search, pages 224 241. Encyclo
pedia of Artificial Intelligence. John Wilev Sc Sons. Inc.. Chicester, UK,
1992.

[53] D. A. McAllester. Conspiracy numbers for min-max searching. Artificial
Intelligence, 35:287-310, 1988.

[54] D. A. McAllester and D. Yuret. Alpha-beta-conspiracy search. 1993. URL:
http://\v\v\v.research.att.com /~dmac/abc.ps.

[55] S. Minton. Learning Effective Search Control Knowledge: An
Explanation-based Approach. Kluwer Academic Publishers. Boston. MA.
1988.

[56] T. M. Mitchell. Machine Learning, pages 92-94. WCB McGraw-Hill,
1997.

[57] T. M. Mitchell, R. Keller, and S. Kedar-Cabelli. Explanation-based gen
eralization: A unifying view. Machine Learning, l(l):47-80. 1986.

[58] A. Newell, J. C. Shaw, and H. A. Simon. Chess playing programs and
the problem of complexity. IBM Journal of Research and Development,
pages 320-335, October 1958. Reprinted in [59].

[59] A. Newell. J. C. Shaw, and H. A. Simon. Chess-playing programs and the
problem of complexity. In Edward A. Feigenbauin and Julian Feldman,
editors. Computers and Thought, pages 39^-70, 1963.

[60] A. J. Palav. Searching with probabilities. PhD thesis. Carnegie-Mellon
Univ.. Boston, Mass., 1983. See also (1985), book same title, Pitman.

[61] J. Pearl. Asymptotical properties of minimax trees and game searching
procedures. Artificial Intelligence, 14(2):113-138. 1980.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http:///v/v/v.research.att.com/~dmac/abc.ps

[62] M. A. Perez. Representing and learning quality-improving search control
knowledge. In Proceedings of the Thirteenth International Conference on
Machine Learning, pages 382-390, Bari, Italy, July 1996.

[63] Aske Plaat. Research Re: search & Re-search. PhD thesis. Tinbergen
Institute and Department of Computer Science, Rotterdam. Netherlands.
June 1996.

[64] A. Reinefeld. An improvement to the Scout tree search algorithm. ICCA
Joiimal. 6(4):4—14. 1983.

[65] A. Reinefeld and T. A. Marsland. A quantitative analysis of minimal
window search. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI-87), pages 951-953, 1987.

[66] F. Reinfeld. 1001 Brilliant Ways to Checkmate. Sterling Publishing Co..
New York. N. J., 1955. Reprinted by Melvin Powers Wilshire Book Com
pany.

[67] S. Sackson. .4 Gamut of Games. Pantheon Books, New York. 1982.

[68] A. L. Samuel. Some studies in machine learning using the game of check
ers. IBM Journal of Research and Development, 3(3):210-229. 1959.

[69] A. L. Samuel. Some studies in machine learning using the game of checkers
II. IBM Journal of Research and Development, 11(6):601-617. 1965.

[70] J. Schaeffer. Experiments in Search and Knowledge. PhD thesis. De
partment of Computing Science, University of Waterloo, Canada. 1986.
Available as University of Alberta technical report TR86-12.

[71] J. Schaeffer. The history heuristic and alpha-beta search enhancements
in practice. IEEE Transactions on Pattern Analysis and Machine Intel
ligence. PAMI-11(1):1203-1212, November 1989.

[72] J. Schaeffer. Conspiracy numbers. Artificial Intelligence, 43:67 84. 1990.

[73] T. Scherzer, L. Scherzer, and D. Tajden. Computers, Chess, and Cog
nition, chapter 12 — Learning in Bebe, pages 197-216. Springer-Verlag,
New York, NY, 1990.

[74] C. E. Shannon. Programming a computer for playing chess. Philosophical
Magazine. 41:256-275, 1950.

[75] D. J. Slate and L. R. Atkin. Chess Skill in Man and Machine, chapter
4. CHESS 4.5 - Northwestern University Chess Program, pages 82 118.
Springer-Verlag. New York, NY. 1977.

[76] M. E. Stickel and W. M. Tyson. An analysis of consecutively bounded
depth-first search with applications in automated deduction. In Pro
ceedings of the International Joint Conference on Artificial Intelligence
(IJCAI-85). pages 1073-1075, Los Angeles, California, 1985.

[77] G. C. Stockman. A minimax algorithm better than alpha-beta? Artificial
Intelligence. 12(2): 179-196, 1979.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[78] D. Takahashi. Gaines get serious. Red Herring: The Business of Tech
nology, (87):64-70. December 2000.

[79] J. von Neumann and O. Morgenstern. Theory of Games and Economic
Behaviour. Princeton University Press. Princeton, 1944. Second edition.

[80] D. E. Wilkins. Using knowledge to control tree searching. Artificial In
telligence, 18:1-51. 1982.

[81] M. H. M. Winands. Analysis and implementation of Lines of action. Mas
ter’s thesis, Department of Computer Science, Universiteit Maastricht.
Maastricht, The Netherlands, 2000.

[82] C. Ye and T. A. Marsland. Experiments in forward pruning with limited
extensions. ICCA .Journal, 15(2):55-66, 1992.

[83] A. L. Zobrist. A hashing method with applications for game playing.
Technical Report 88. University of Wisconsin at Madison, Madison, WI.
1970. Reprinted in the ICCA Journal 13, no. 2 (1990), pp. 69-73.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix A

Game-Tree Viewer

The Game Tree Viewer is a tool we developed for visualizing game trees.

Game programs now-a-days expand huge search trees, typically consisting of

millions of nodes. To verify the correctness of the search, programmers try to

spot inconsistencies by analyzing logs generated by their programs. However,

given the size of these logs this approach is becoming increasingly unfeasible.

A graphical tool for viewing the logs makes the task more manageable.

We used the game-tree viewer both to understand better the search process,

and to help track down errors. One example of its usefulness is that a serious

search bug that had gone undetected in our chess program (T h e T u r k) for

almost two years, was spotted almost immediately when the expanded search

trees were viewed graphically. The game-tree viewer toolkit consists of two

main parts: a library for writing game trees to a file, and a viewer to interpret

and view graphically the data in the file. The library code is linked into the

game-playing program, whereas the viewer is a stand-a-lone application.

A .l V iew er

The viewer is written in Tcl/Tk using extensions provided by the Tix shell.

The core part of the viewer does not include any game-specific code. Instead

it relies on plug-ins for interpreting the data, thus allowing a modular design.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For example, vve have added plug-ins for several different games, e.g. chess,

Chinese-chess, Othello and Sokoban (a single-agent puzzle game).

The viewer displays a single search tree at a time. For example, a program

that uses iterative-deepening at the root performs multiple searches (each pro

gressively deeper). It would thus generate several game-tree files (one for each

search). Figure A .l shows an example screen-shot of the game-tree viewer.

In this particular example the viewer is used to browse a shallow search tree

generated by a chess program. The left half of the screen displays the search

tree in an hierarchical fashion. The look-and-feel is almost identical to how

directory structures are viewed using file managers. For example, one can ex

pand and collapse the branches as needed. This is important because — as

mentioned above — a typical search tree is generally huge. The viewer stores

in memory only the branches of the tree that are currently expanded in the

viewer, once a branch is collapsed the memory is returned. To get a faster

access to the game-tree file during the interactive browsing, an index into the

file is created at the time of start-up. This is done in the background such that

the user can immediately start browsing the parts of the tree already indexed.

Also, to further enhance the access time, a script is provided that does a one

time pre-processing of the game-tree file. The script reorganizes the entries in

the file such that the nodes are ordered in a breath-first fashion (as opposed to

the depth-first fashion generated by the game-playing program). Using these

optimizations the viewer can effortlessly handle game-tree files consisting of

several millions of nodes.

In the right half of the screen a selected game position is displayed. A

position is selected by clicking on the corresponding node in the tree hierarchy

(shown as highlighted). A display located beneath the board shows various

logistics about the search path leading from the selected game position to

the root of the tree. For each position on the path the display shows the

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure A.l: Screen shot of the game-tree viewer.

move leading to that position, the value of the node, the type of the node

(P=principal-variation node, N=minimal-window node, Q=quiescence node),

and the lower and upper bounds used when searching the node. For example,

from this small example one can see that the move d2d.A was in the start-

position initially considered as the main line (the bullets in front of the moves

have a different color indicating the type of the move, e.g. principal variation

moves are displayed as red). However, when the move 61c3 was considered,

it failed-high, was re-searched (the move appears twice in the move list), and

yielded a new principal variation. We can also see that during the re-search

the search window was tightened from 14 to 15, most likely by retrieving better

information from the transposition table.

A . 2 Library

The library code is written in the C' programming language and is linked into

the game-playing program. It is responsible for recording the tree traversal

and for incrementally writing the game tree out to a file. It consists of the

following functions:

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• int gtv-New(void)

This function is called once to allocate memory and to initialize various

internal data structures. No other game-tree library function can be

invoked prior to this function being called.

• int gtv-startTree(int no, char startpos\\)

Create a new game-tree file identified by the number no (the file name

will be tree_no.gtv). The parameter startpos is a string encoded in FEN

notation indicating the start position of the search.

• int gtv_enterNode(Move move, Value alpha, Value beta, int type)

Add a new node to the tree. The last move leading to this node is move,

the search bounds used are alpha and beta, and the node is of type type.

• void gtv.exitNode(Move move)

As the search backtracks this function is used to record the return value.

• void gtvstopTree(void)

Close the game-tree file.

• void gtv-Delete(void)

Called once at the very end to perform cleanup.

The above function calls are embedded into the search routines of the game-

playing program. As an example we show how to embed the functions into

a Principal Variation Search algorithm using an iterative-deepening driver at

the root (the pseudo code for the M W S function is not shown, but the game-

tree library calls are embedded in a similar way as in P \ ’S). Furthermore,

these functions are implemented as macros and are only activated if the code

is compiled with a U S E .G T V flag defined. If not, the pre-processor will omit

the gtv code.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm 14 ID — P Y S(P,d,maxdepth)
1: fo r depth <— I to maxdepth d o
2: gtv.startTree(depth, toFENString(P))
3: u <— PVS(P. depth, —oo,oo)
4: gtv.stopTree()
5: e n d fo r
6:
7: f u n c t io n P V S (P , d . a , 3)
8: gtv.enter Node (last Move(P), a, f3, pvnode)
9: i f d < 0 or isTerminal(P) t h e n

10: u = evaluate (P)
11: gtv.exit Node(v)
12: r e tu r n v
13: e n d i f
14: M generateMoves(P)
15: make(P.ni\)
16: best < P V S(P .d — 1, —5, —a)
17: retract(P. nii)
18: i f best. > J t h e n
19: gtv jexi t Node (best)
20: r e tu r n b e s t
21: e n d i f
22: lower «— max(a, best)
23: fo r a l l m , £ M\i > 1 d o
24: make(P .ml)
25: v i------M W S (P .d — 1, —lower)
26: i f v > lower and v < ft t h e n
27: v i -----P V S (P .d — 1, —/3, —v)
28: e n d i f
29: retract(P, m t)
30: i f v > best t h e n
31: best i— v
32: i f best > 3 t h e n
33: gt.vjexitNode(best)
34: r e tu r n best
35: e n d i f
36: lower i— max(a,best)
37: e n d i f
38: e n d for
39: gtv.exit Node (be st)
40: r e t u r n best

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix B

Estim ating B(w) - Exam ple

In Chapter 6 the introduced a method for learning search control during actual

game play. One of the challenges using this method is to estimate efficiently

in real-time the effects changing each of the search control parameters has on

the growth rate of the search. In the aforementioned chapter we outlined the

technique used to do the estimation; in here we illustrate the technique using

actual data.

Figure B.l shows a search tree expanded using a depth threshold of 2.0. In

this example there are only two move-classes: the first has fractional-ply weight

of 0.4 (pictured using dotted lines) and the second a weight of 1.0 (pictured

using solid lines). We use the vector w = {0.4,0.1} to represent these weights.

The number besides each node shows the depth of the node. As soon as the

depth equals (or exceeds) the depth threshold the node is evaluated and the

search backtracks. A count of the total number of nodes expanded is also kept.

In this example 17 nodes are expanded, thus the growth rate of the search is

B{ w)20 = 17 =► B{t?) = 4.123

The problem we face is that we also need to simultaneously approximate

the growth rate of the search if the parameter vectors tvx = (0.4 + <J, 1.0} and

w-f = {0.4,1.0+(5} were instead used to expand the tree (needed for calculating

the gradient). This is done by recording for each parameter vector a separate

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure B .l: Depth of nodes in a game tree.

depth and count of number of nodes expanded. Figure B.2 demonstrates this

process using 5 = 0.1.

(1.0,1.0,1.1) (1 .0 , 1 .0 . 1 . 1)

O (1 .4 ,1 .5 .1 .5)
(2.0,2.0,2.2) (2.0.2.0.2.2)

(1.8,2.0.1.9) (1 .8 ,2 .0 ,1 .9)
(2.4,2.5,2.6)

(2.2. — .2.31 (2.8.— .3.0) (2.8.— .3.0) (2.8.—.3.0)

Figure B.2: Multiple depths of nodes in a game tree.

Instead of only one depth, each node has now three depths associated

with it. Each of the depths is recorded by a different weight vector, that is,

ir = {0.4. i.0}. iut = {0.5,1.0} and u/2 = {0.4,1.1}. respectively. In the figure,

the' leftmost depth of a triplet is the same as used in Figure B.l. As before it

determines when to stop expanding the branches in the search tree. The two

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

other auxiliary depths are used only for deciding whether or not to include a

node in the total node count for the alternative weight vectors. That is, as

soon as a depth reaches the threshold limit, the search stops counting nodes

in the subtree below as being expanded by that weight vector. For example,

in the figure the shaded nodes are not included in the total node count for

vector <C|. because the Wi depth has already reached 2.0. The rationale is that

if we were using that weight vector to expand the tree, this branch would not

be explored this deeply. On the other hand, in this example the tc2 weights

expand exactly the same tree as w. Thus,

B i m) 20 = 11 = > B(u/i) = 3.317

B(w)20 = 17 => B (w2) = 4.123

This is. of course, only an approximation of the size of the actual trees

explored if the alternative weight vectors were instead used. The reason for

this is that different evaluations would be backed up the tree, possibly causing

different branches of the tree to be explored. However, this technique can be

used with little overhead during the search, and works well in practice.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix C

Gradient o f Cost M odel

The cost model used in Chapter 6 has the basic form:

C(p, w, d) = B(p, w)'1

Furthermore, we used the partial derivative of

C(p,w,D{S,w))

in our learning algorithm. Below we showed how we derived the partial deriva

tives:

dC'jp. w, D{S, w)) = d(B(p,vS)D(s^)
diut dwi

dwi
Q̂ £D{S,u!) In B{p,i3)j

&Wi
_ D(s,vj) inB(p,iS) d (P (5 , w) In B(p. ic))

dvn
n i - -.^d{D{S, w) hi B{p. tc))= C{p, w, D(S, w))------------— ------------

r,, m e -n5 (ln B(p. w)) d{D(S,w)) \= C(p ,w ,D(S ,w)) I D (S ,w) — h — In B(p,w) 1

r,, - n , a 1 OB{p.w) d(D{S, w)) \
= C(p, w, D (S ,«,)) (£>(S, to B{p, W) j

- n / c ^ { D (S , w) d B (P.,V) , d{D(S, w)) n ,= C{p, w, D(S, W)) + ^ la B(p, w) J

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix D

Test Suites

This appendix lists the various test positions used in our experiments. Some

of the test suites we used are far too large to reproduce here, in which case,

we provide a reference to where they are published. The first three chess

test suites listed consist mainly of tactical game positions. Whereas such test

suites are good as a first line of defense for testing the soundness of new ideas,

ultimately, playing games is the most reliable way of measuring how different

enhancements affect a program’s playing strength. The next two suites consist

of the opening positions used as a starting point in our computer vs. computer

matches. A different starting positions was used for each encounter to prevent

the programs from repeatedly playing the same game.

To our knowledge, there do not yet exists any standard opening positions

for the game Lines-of-Action. In our experiments we generated from the initial

game state all possible game positions 2-ply into the game (one move for each

side). This results in 311 different start positions, after symmetrical positions

were excluded.

In the following sections we show diagrams of the game position in each

of the test suites. The caption above each diagram shows the number of the

test position (within the test suite) and which side there is to move in that

position.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D .l P laat Test Positions

These positions were used by Aske Plaat in his thesis work [63]. They are

taken from the same game, thus providing positions representative of different

stages of a game.

#1 White

ia sb a mim
i * m m %
n m n

_
& ffl B

#2 White #3 White #4 White

. m w . i m
a < v a m k

m 9)££!
IS A -ib

P ^ - ’QAB
“ •; ;?i ^

#5 White
^ a W IH W T
: m m k k
m * m m a" ~i =a

3 A « i :
? ro 0 a
B e a r s , : , an - SB? fri

#6 White
i l i f

#7 White #8 White

*a a a a ■ r
1 2 , 8 1 1 I

[s2 ■: a—0 J3L.
rs m m z r

a a i i .n*?*
0 a s i

z * m i
KB 28 *A £I

53 saA ^
l"-Q ' S £

. a e s - s z s
E L - f c Z ^

#9 White

r i s " * '
“ B V
_ « A S
S i A $1 &TAB gj a
_ g y p -

I B s w S T

s *

#10 White

t* a A » _ Sa r
I3eH<

a a - ■

#11 White

a

#12 White
I a a
a MAX m

~ ~ m m
m i mA 1

■ ••-.a ^ zs
n a n s

#13 White

■■I
a s a
-

■ a ® p As
_J2
h a n

#14 White
W ~ E _
» “ * * «

a a s a s a j
a s a | I * b

p r e _
a i!

O I o ^

#15 White #16 White
■ a a * a i

h s a i a
■ a m m

~ SAS3
B A 2 M

i m a £
SI i- : ain a n ^

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#17 White

1 1 1

#18 White
X Uir-iiim s* s i i i s m

i§ * ; ^ 1 1 5 3 '#
; e 3 8 1 0 E
m s.,a v;

22 2§3.2;
o _ _ i “ “

#19 White #20 White

m m
m m

1 2 1 0 m

D .2 Bratko-K opec Test Su ite

The Bratko-Kopec test suite [21] consists of a mixture of tactical and positional

chess positions, 24 in total.

#1 B la c k #2 W hite #3 B la c k #4 W hite
SS 1 « s IB_M [XSAS+S K

s m s is
s is m m

3 bXbSbai i j r i i i i
B4 IB r i a s s

m m m ^ H_BlO 39
‘ 8 a-a-a LSCs s «W - 13 W> 32Tb_Ĥ 0 1 m B O S Si

. m m „® i E! a i I; to

S O 3a iA ® B B flfEI

#5 Whit e
SKO

#6 W hite

n n ^ i i
m m t m m
1 * O O
m ' m b m

m m m a
- a - a m
i a ■ «i

#7 W hite # 8 W hite
a r a131

S I S
W1

a s

#9 W hite

m

#10 B la ck
r U T a f l s i l
S I S M A M

m*m S I S
i m m m
m m s s

S3-^:;SS--ia
s &• a a

n g ®

#11 W hite # 1 2 B la c k

SfSf
S £K -

s o

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#13 White #14 White #15 White #16 White
i U J * m h H b ab

#17 B la c k

i "
H

#21 W hite

* *1
&AM £ 1

S S A 'A ; l i S
u _ m ■

"B 28 S?
m oa is- su s

#18 B la c k
"EW 1

* A J S A
' SiAJg

i •§_ & m

□ .£ .9 B -Pa a

2 2 B la c k
j i i r « r a

u b * b a b

w
ffl; ss
IV? '

B s «

«®S“
f t *

3T-
% &

#19 B la c k

#23 B la c k

■ A S
B A

s V 3

2 0 W hite

2 4 W hite

D .3 1001BW C Test Suite

This test suite consist of 1001 checkmate problems, taken from Reinfeld’s book

1001 Brilliant Ways to Checkmate [66]. It is far too big to list here but the

book has been reprinted many times and is still widely available.

D .4 ECM Test Su ite

This test suite is taken from the Encyclopedia of Chess Middlegames book by

Krogius et al. [48]. It consists or 879. mainly tactical, middle-game positions.

Many of the problems in this test suite are quite challenging, for both humans

and chess-playing programs.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D.5 O pening P osition Test Suite

This is a home-cooked test suite we used in our early experiments (before we

received Dailey’s opening test suite, listed next). It consists of 40 well-known

chess opening positions. We used this suite as starting positions in T h e T u r k

self-play matches described in Chapter 5.

#1 W hite

A S M ■
m i m

a -

2 W hite
“I I

I 1 I A 1 A

#3 W hite #4 W hite
I m*.W+& fe|
12 A * M k M A

m m t m i
m m i ® om si s m
i s i a _/A ^ ■ o ■ a
iz

K

#5 W hite
fxMXl

#6 W hite #7 W hite

■■a
si are?

& m m i m
8

ii- 31 38
ibb e . a a

a ‘̂ A a A ain g?yg a

#8 W hite

#9 W hite # 1 0 W hite

IE

#11 W hite
I E I W 3 r S 5 a
l l f l i i l l

a m& a m ao ■ a a a
i s a a■••■a a oa0 o sect as

#12 W h ite

3

#13 W hite # 1 4 W hite

m a

#15 W hite
i S I K m
f c A - : ? a A S A

38*53 ^ASfl
^ ? v : A ?5 »£? ^ jfi
SI *27? ^
S’* S i ”/.V » 1 .--1

#16 W hite

A

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#17 White #18 White
wim a a a a

^ ' i a m

n
v.--i

i ’ ' -ri y
0

£ 0

?*» £'3\W// v *^r?

a "

#19 White
iraiFlil
a i a i a a a

a h a h ^ s
I Si ^Aiu;
B - a & s
I 0 S3 0

[4 0n s?a@ 0,;

#20 White

H P

#21 W hite
H S I W
a a b . .

Si * A _
a a h a

* ■ • 0 .
gg 0 0

• • s a ■

;H SSHba »

#22 W hite #23 W hite
Lxa.*.w*a at

JAH S I A
_ a _ a a a

AA33
u a a

#24 W hite

B

#25 W hite
a i

'A A S A B A S A

#26 W hite

5~s ml£3«r-<
B

* v

0 _
a a - 0 A j

L_EE21M

#27 W hite
i x » A . a # a a «
H A * HAHA

“l a s m w. ham a
' Q a i

0^*3*mi 0

#28 W hite
I I

« K

#29 W hite
p ^ l i T l
a A a a a A H A

a*
&S 0

S - .

a J t t a

#30 W hite #31 W hite
m m s m s m m
h a h b a h a

■ i i a ^ s
■ H A S £a 0 a i3 s a a ,

0 a 3 - d
b bpb a b«

#32 W hite

■ ?0

33 W hite #34 W hite

MAM MAMA
1 9 A

_ a a
0 i l0 i

Li ^HvjU 0 ;

#35 B la c k
[ilittii

: *

#36 W hite

4*L "4*i
9E 395 3S Saaa a

^ a a
0 ?i 0

 - a s.wOla 0'fygri 0;

■ ■HAa ha
a

0
■ ifls a

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#37 White
i®A^ 1SAXA:p; §8
S' "•■• A

as s £ m
m si m m
■■ a ts s m
U . g l ^ g " .

#38 White

m

#39 White
[I B B R E S l l

U * A
S $

#40 White

m j a q a a
T gM feg

AAA! A
I s . :* _

'W*. ■

i m m _ a--.a a -a ET- awfl %

D .6 D ailey O pening Test Suite

Don Dailey, a co-author of the massively parallel chess program CiLK [29],

assembled this collection of well-established chess opening positions. He gen

erously made it available to us, for which we are grateful. Xot only is it

more extensive than the opening suite we used previously, but it is also highly

desirable to use independently produced test data when conducting research.

#1 W hite
n r e n r s insCAA j£A2A^ . M 13 ______ -V3 OR vmm SsAH '2a a a? ^
■ c a " a " • a a ••■a •■■■a

#2 W hite

a4 a

#3 W hite
orapirilTiAHA*A

#4 W hite
m + m

a A * A a A « A
i l i l I

x a m
m n m m

m a n ~~
n w '

S3 m -ye

#5 W hite
I W i a 7 £ ~ ~ l
“ X A ^A X A
l u u k m m
~ v a m

_ "-b a ^ a a a* .a

#6 W hite

SA

nm

#7 W hite #8 W hite
f g r m s m s mHAX XAMA

8 M B M. ~
s a
IS a

i m _ _
■a a-'-or^Ht f lB u

#9 W hite
i¥5W W l I EXAv £AAA

_ ■<’Tj m

fS X A ^ &
»>T"i- -.5̂

^ o a - -V:
e t £

r?

#10 W hite
pHifx s a a r
« f l r

#12 W hite
*i i l x A imHihirXXAAi *?A«A

Q i i i u»kix m suEu m 8
e0 h a ■si m a

- y i ^ 'T *s - a nV ‘ CS'-‘ §?2
s a . - s ■ o 3 B- 3

wm.*sj -

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#33 White

m

#34 White
IH iiil

m t w kW- A 3 H
i m m m
SU .B M ^i ^ o - a

. b & a - a
t f r M S B 3 s

#35 White #36 White

a

■ ■

+<£ m

iH B i - a
B*flg ■ :;

3 7 W hite #38 W hite
fS M k w s m i
k a ^ a s a x a

^ * § 8 S A 3
5 a a a
a s s a

a e a - ' . a
23 g.*.B

O £3 >.a

#39 W hite #40 W hite

a

a ■■ a

#41 W hite #42 W hite
pliiiAi
»AS£ 38A3A
„ S siAii mm * a s mU 5! 5§
IB "g a aa ■ a a ■•• a
n

#43 W hite #44 W hite

i S |
a v

4 5 W hite

K

#46 W hite
Ifi~Vifl|
« A 3 SAHA

a a a i
S S S3 £

18 O SAffiss e a-- a
• a • a 3 - o

n

#47 W hite #48 W hite
fe+ai

U S A

a

4 9 W hite #50 W hite #51 W hite #52 W hite

HHfiES
W l *a - a m ■

a m n - r m ■a is a •■■a
r r a y ? a : . a »

■ *

□
a i

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#113 White
j w n s w M n t
f a u s b a b a

y£*K m m
& -A A , 1 , m

~M “‘ £ " ' £ f ‘l
£ §*
;:‘is S3 s ' s

r&~ a e w ^ .:

#114 White #115 White
« 9

a ?

#116 White
. i S I E F i r W a
a a # ^ a b a

i i

£ A 3 S ;
s g i i

a a a ^ Q
n j s r

1 1 7 W hite #118 W hite # 1 1 9 W hite
ll& lX 'H +gfifta
~: 3S S A B A

m + ; m •“
: ’# a o &
m o <g■ a as

5 '« J5 O
jS 'ag fo iC T :;

a 0

a #120 W hite
l i g ju a + B m
B a b a s a b a m*m a a

m m mm m m a
i m m ms a has

O

#12 1 W hite
i f W l
B A B B ^ A B A

£< ^ A «
m m i m m

a & s a
: 5fif S-' 53
a s S---0

i K j r a g L j a a

12 2 W hite

K
1 2 3 W hite

m
H A

#124 W hite
x B i i l l+ a i m
0 A m BABA

M A m j B A a
t « A 8 *
<£ a - a a

» p m m
A ~SJ' '£3:'.

51 a f f i g j a i

1 2 5 W hite
[I M i a i r l “ a
BABA33ABA

m m m —

: . e
••sa («

1 SJJOi - not «£»' ■<*»
. _ 0 - a a - ^ aran .a. m

#126 W hite
aar

1 2 7 W hite

0

#128 W hite

* a a a r
n n m *

1 2 9 W hite
x n m + m
“ A.SABABA

B i£AB “
m m m
•■■ s £ *1

a - a*" 33'A ' A' p
V .‘.-'..■..■.-ft rV£__a.-_--e a*

#130 W hite # 131 W hite

I

0
H

#132 W hite
j f i j a m a i
H A B BABA

Bl B B A B
i a a a
& B 0

! 3? O ' mo a
II-

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#153 White

i *

#154 White
l i f t a *
I S A 'A k i m i

m nZ„'. A r.j: 53

a ^ V a ^ ' a
m w n - m
•"S t t .~M ■

#155 White #156 W hite
lllif M

1 5 7 W hite #1 5 8 W hite # 1 5 9 W hite # 16 0 W hite

0

i l k - t i i m i m
M kW W k M k

m m m i m
i m m m% a m i
1 £i 36- SB\n m+.n ••• o p arsa as

1 6 1 W hite #162 W hite #16 3 W hite #164 W hite
I X f t j L ' i h l r f g ■m m im im i

S •’d A ft &
l i e >2
m & m

" 51 £ S*
? -v o o

1 6 5 W hite #16 6 W hite
g s i a r a s a mumim mi

m m m H• n '« r - i
«s -m

s s m tea £ .3 3Aa---ss a • a
ns_BWfg.:.T:

#16 7 W hite
I I

#1 6 8 W hite
l i i W
n i s i

• 1S1V

1 6 9 W hite #1 7 0 W hite #171 W hite
QKftAttift it
n A & ftl!A « A

_ m i B m
m a n %

0 5 33
-2 2

■ ■

#1 7 2 W hite
J T l i

I A » A

W.-.K

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without

#193 White #194 White #195 White #196 White

» » J j B
mkm

i ^ m m m u m m
a m wfijs
4 0 ffiABTc

a u * m sm m w-m ■n m a--.ar r zzxm m?i I S S

#197 W hite # 1 9 8 W hite #199 W hite
mriiB
MkW m i n i

H J B J U B

#2 0 0 W hite

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

