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Abstract

Q-learning can be difficult to use in continuous action spaces, because a diffi-

cult optimization has to be solved to find the maximal action. Some common

strategies have been to discretize the action space, solve the maximization with

a powerful optimizer at each step, restrict the functional form of the action-

values, or optimize a different entropy-regularized objective to learn a policy

proportional to action-values. Such methods however, can prevent learning ac-

curate action-values, be expensive to execute at each step, or find a potentially

suboptimal policy. In this thesis, we propose a new policy search objective that

facilitates using Q-learning and a new framework called Actor-Expert, that op-

timizes this objective. The Expert uses approximate Q-learning to update the

action-values towards optimal action-values. The Actor iteratively learns the

maximal actions over time for these changing action-values. We develop a Con-

ditional Cross Entropy Method (CCEM) for the Actor, where such a global op-

timization approach facilitates use of generically parameterized action-values

(Expert) with a separate policy (Actor). This method iteratively concentrates

density around maximal actions, conditioned on state. We demonstrate in a

toy environment that Actor-Expert with unrestricted action-value parameteri-

zation and efficient exploration mechanism succeeds while previous Q-learning

methods fail. We also demonstrate that Actor-Expert performs as well as or

better than previous Q-learning methods on benchmark continuous-action en-

vironments. We also show that it is comparable against Actor-Critic baselines,

suggesting a new distinction among methods that learn both value function
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and policy: learning action-values of the current policy or (optimal) action-

values decoupled from the policy.
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Parts of this thesis have been submitted as a journal paper. Lei Le and
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for the experiments in chapter 5. The rest is original work done by Sungsu
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Success is often achieved by those who don’t know that failure is inevitable.

(like our RL agents)

– Coco Chanel
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Chapter 1

Introduction

The physical world we live in is inherently continuous. In order to operate

well in this world, it is imperative that the intelligent tools/agents we develop

are able to handle continuous actions effectively, such as in robotics and in-

dustrial control applications. Not only is it important to learn in continuous

action spaces, it can also be advantageous due to smooth generalization across

actions. In this continuous action setting however, the action-selection process

can be expensive. Action-selection needs to be efficient to ensure that agents

are reactive and can make decisions quickly. This criteria is a deciding factor

when selecting between value-based algorithms — those that implicitly specify

a policy based on learned value functions — and policy-based algorithms —

those that directly learn a policy.

Policy-based methods are more commonly used for continuous actions, be-

cause action-selection is fast for commonly chosen policy parameterizations.

Policy-based methods explicitly optimize policy parameters, according to an

objective based on cumulative reward under the policy. They include policy

gradient methods like REINFORCE (Williams 1992), Actor-Critic (Degris,

Pilarski, et al. 2012; Sutton 1984) and also non-gradient based methods, such

as Cross Entropy for Policy Search (Mannor et al. 2003), CMA-ES (Hansen

et al. 2003), and Reward Weighted Regression (Peters et al. 2007). A com-

mon policy parameterization used with these policy-based methods is a Gaus-

sian distribution over actions, conditioned on a (complex) function of state.

Action-selection simply corresponds to sampling from this distribution, which
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is efficient.

Q-learning, on the other hand, only learn action-values which implicitly

specify a policy. Action-selection at each step corresponds to solving a poten-

tially difficult optimization problem over the continuous action space according

to the action-values. Q-learning though, has several advantages over current

policy-based methods. Q-learning is more natural to use off-policy, because

the agent attempts to find the best action by estimating action-values for the

optimal policy rather than the current policy. Off-policy updating enables the

use of past data with experience replay, which can significantly improve sam-

ple efficiency. Many policy-based methods, on the other hand, are on-policy

(Bhatnagar et al. 2008; Degris, Pilarski, et al. 2012; Mnih et al. 2016; Sutton

1984), or use an approximate1 off-policy update (Degris, White, et al. 2012;

Lillicrap et al. 2016; Silver et al. 2014; Wang et al. 2017). Secondly, empirical

evidence suggests value-based methods can be more effective in certain prob-

lems. In the game of Atari, for example, a policy gradient method with many

optimizations called ACER (Wang et al. 2017), needs parallel environment

simulations to match the performance of Q-learning with experience replay.

Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al. 2016) achieves

high performance in some benchmark environments, but also seems to suffer

from hyperparameter sensitivity (Duan et al. 2016; Henderson et al. 2017).

In this thesis, we explore how we can use sample-efficient value-based meth-

ods like Q-learning in continuous action spaces, by making action-selection

more efficient like policy-based methods.

1.1 Contribution

The list of contributions in this thesis is as follows:

• We develop a new algorithmic Q-learning framework with a policy, called

Actor-Expert, that optimizes a new policy search objective. Action-selection

becomes fast with an explicit Actor, and the learned action-values are unre-

1Sound off-policy variants have only been derived recently (Imani et al. 2018; Maei 2018),
with as yet little empirical investigation into their efficacy.
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stricted, more decoupled from the policy compared to Actor-Critic methods.

(Section 4.1, 4.2)

• We introduce an instance of the Actor-Expert framework using a Condi-

tional Cross Entropy Method (CCEM) for the Actor, that slowly learns

maximal actions over time. We extend the global optimization algorithm,

the Cross Entropy Method (Rubinstein 1999), to be conditioned on states

so that Actor iteratively increases the likelihood of near-maximal actions for

the Expert over time. (Section 4.3)

• We design a toy domain to highlight issues with existing Q-learning methods

designed for these continuous actions spaces. (Section 6.1)

• We provide an empirical comparison of Q-learning methods in continuous

action spaces, in several benchmark domains. (Section 8.1)

• We provide a preliminary comparison of methods that learn both a value-

function and policy, comparing Actor-Expert to Actor-Critic algorithms.

(Section 6.2, 8.2)
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Chapter 2

Background

This chapter explains fundamental concepts and notations in Reinforcement

Learning used frequently throughout the thesis. The first section covers the

basic notion and objective of Reinforcement Learning. The subsequent two

sections describe the two main branches of model-free Reinforcement Learning

for Control. Readers already familiar with Reinforcement Learning may skip

this chapter.

2.1 Reinforcement Learning Objective

In the Reinforcement Learning problem setting, an agent interacts with the

environment and receives some reward. The goal of the agent is to collect

as much reward as possible, maximizing the cumulative sum of rewards by

learning the optimal sequence of actions.

More formally, this interaction between the agent and the environment

can be formalized as a Markov decision process (MDP) specified by the tuple

< S,A, P, R, γ >. S is the state space and A is the action space, with P :

S × A × S → [0,∞] defining the one-step state transition dynamics, and

R : S × A × S → R defining the reward function. γ ∈ [0, 1) is the discount

factor, indicating how much importance we put in delayed future rewards.

At each time step t, the agent is in a state St ∈ S and takes an action At ∈
A. After taking the action, the environment transitions the agent to the next

state St+1 and gives a scalar reward Rt+1 according to P and R respectively.

The interaction between the agent and the environment is depicted in Figure
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2.1.

Figure 2.1: The agent-environment interaction in a Markov decision process.
Figure adapted from Sutton and Barto (2018).

The discounted return (sum of discounted rewards) given at each time step

is defined as:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞∑
k=0

γkRt+k+1 (2.1)

The discount factor γ ∈ [0, 1) is used to indicate preference for immediate

rewards over future rewards.

The objective of the agent can now be formally defined as maximizing the

expected discounted return Gt.

max
π

E[Gt] (2.2)

In order to maximize this, the agent has to learn a good policy π – a

mapping from states to a probability distribution of selecting one of the pos-

sible actions – that would lead to states that generate good rewards, not only

immediately but also in the long term.

There are two branches of learning this policy: value-based methods and

policy-based methods. Subsequent sections will explain and highlight the dif-

ferences between these two branches.

2.2 Value-based Methods

In value-based methods, agents learn value functions that encode a notion of

good states, states that lead to high return. The state-value function of state
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s under policy π, is defined as:

vπ(s)
.
= Eπ[Gt|St = s] = Eπ

[
∞∑
k=0

γkRt+k+1|St = s

]
, for all s ∈ S (2.3)

Similarly, the action-value function of state-action tuple (s, a) under policy

π is defined as:

qπ(s, a)
.
= Eπ [Gt|St = s, At = a] = Eπ

[
∞∑
k=0

γkRt+k+1|St = s, At = a

]
(2.4)

The action-value function qπ(s, a) explicitly includes the effect of taking an

action, and is more commonly used for control. These value functions all

satisfy a recursive relationship, also known as the Bellman equation (2.5),

that is used to iteratively learn and improve the value estimates. From Eq.

2.4, the Bellman equation for qπ is:

qπ(s, a)
.
= Eπ[Gt|St = s, At = a]

= Eπ[Rt+1 + γGt+1|St = s, At = a]

=

∫
S
P (s′|s, a) [R(s, a, s′) + γqπ(s′, a′)]ds′ (2.5)

For control however, the goal is not to learn the accurate value function for

a certain policy π but to learn the optimal value function of the optimal policy

π∗. The action-value function of the optimal policy, denoted q∗, is defined as:

q∗(s, a)
.
= max

π
qπ(s, a) (2.6)

This optimal action-value function also satisfies a recursive relationship, and

it is referred to as the Bellman optimality equation:

q∗(s, a)
.
=

∫
S
P (s′|s, a)

[
R(s, a, s′) + γmax

a′∈A
q∗(s

′, a′)

]
ds. (2.7)

Using Eq. 2.7, the optimal action-value function is typically learned iteratively

through Q-learning (Watkins 1989).

Action-values are learned as a parameterized function, where given a state-

action pair the function outputs a corresponding action-value. Action-value

functions can be parameterized by many different function approximators from
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simple linear features to complex neural networks. Given an action-value func-

tion Qθ parameterized by θ ∈ Rn, the general Q-learning update with function

approximation is:

θt+1 = θt + αδt∇θQθ(St, At)

where δt
.
= Rt+1 + γmax

a′∈A
Qθ(St+1, a

′)−Qθ(St, At)
(2.8)

The Q-learning update with function approximation (Eq. 2.8) can be inter-

preted as updating θ in a direction that minimizes a projected Bellman error

δ.

Q-learning is an off-policy algorithm, which learns the action-values for the

optimal policy while following a different behavior policy. After the optimal

action-value function is learned, the optimal policy is implicitly defined by

taking actions greedily — selecting actions with the highest action-value at

each state.

Q-learning can be easily generalized to continuous state spaces but not to

continuous action spaces. Due to the max operator in both the Q-learning

update and the implicitly induced policy, two difficult optimizations need to

be solved at each step. Qθ(s, ·) cannot be queried for all actions, and the opti-

mization can be difficult to solve, especially if Qθ(s, ·) is non-concave in a. For

real-time agents in particular, decisions need to made quickly at least during

the execution of policy, and the delay from the optimization over continuous

actions is impractical.

2.3 Policy-based Methods

The other branch called policy-based methods, tries to learn the policy di-

rectly instead of learning a value function. A policy πw is parameterized by

w ∈ Rm, and we typically use πw to represent a simple Gaussian or Gaussian

mixture distribution. In contrast to value-based methods, action selection

simply corresponds to sampling from the distribution πw(·|St).
The policy is learned by optimizing the parameters w with respect to a

certain performance measure J(w). This objective can be optimized with
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derivative-free methods (evolutionary methods) and policy gradient methods.

In the scope of this thesis, we focus on policy gradient methods, as they are

more efficient and scale well to the dimensionality of the policy parameters.

We will look at off-policy policy gradient methods in particular, that optimize

the off-policy objective (Degris, White, et al. 2012).

The off-policy objective J(w) is defined as:

J(w)
.
=

∫
S
d(s)

∫
A
Eπw [Rt+1|St = s, At = a]πw(a|s) da ds

=

∫
S
d(s)

∫
A
qπw(s, a)πw(a|s) da ds (2.9)

where d(s) is a different distribution from πw, usually set as the start state

distribution in episodic tasks. We wish to update w in a direction such that

this objective J(w) is maximized.

The gradient of this objective can be approximated as follows.

∇wJ(w) = ∇w

∫
S
d(s)

∫
A
qπw(s, a)πw(a|s) da ds

= ESt∼d
[∫
A
qπw(St, a)∇wπw(a|St) +∇wqπw(St, a)πw(a|St) da

]
(2.10)

≈ ESt∼d
[∫
A
qπw(St, a)∇wπw(a|St) da

]
= ESt∼d

[∫
A
πw(a|St)qπw(St, a)

∇wπw(a|St)
πw(a|St)

da

]
= ESt∼d,At∼πw

[
qπw(St, At)

∇wπw(At|St)
πw(At|St)

]
= ESt∼d,At∼πw [qπw(St, At)∇w ln πw(At|St)]

= ESt∼d,At∼πw [Gt∇w ln πw(At|St)] (2.11)

Degris, White, et al. 2012 omit the second term in Eq.2.10, which then

becomes analogous to the on-policy policy gradient (Sutton, McAllester, et al.

2000). Also note that qπw is the true action-value function. An unbiased esti-

mate of the gradient can be obtained using the sampled return Gt (Eq. 2.11),

which forms the basis of REINFORCE method for on-policy case (Williams

1992). REINFORCE uses the Monte Carlo return Gt to update policy param-

eters, which can have high variance and learn slowly.
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Instead, a more popular approach is to use bootstrapped estimates of the

return to lower variance and accelerate learning. This is done by replacing

Gt in Eq. 2.11 with one-step return Rt+1 + γV πw
θ (St+1). It is also common

to subtract a state-based baseline, usually V πw
θ (St). This method is called

the Actor-Critic algorithm (Sutton 1984; Degris, Pilarski, et al. 2012), which

learns an additional value function (Critic), where the Critic evaluates how

good an action is under the current policy (Actor).

There are many variants of Actor-Critic using different bootstrapped esti-

mates, and for our implementation we use Advantage function Qπw
θ (St, At) −

V πw
θ (St) in the Actor Update (Schulman, Moritz, et al. 2016). The update

rule for this variant is shown below:

Given a policy πw and action-value function Qπw
θ parameterized by w, θ ∈

Rn respectively,

wt+1 = wt + αw
t [Qπw

θ (St, At)− V πw
θ (St)]∇ ln πw(At|St)

θt+1 = θt + αθδt∇θQθ(St, At) (2.12)

where δt
.
= Rt+1 + γQθ(St+1, At+1)−Qθ(St, At)

These policy-based methods still learn value functions. The main dis-

tinction is that they learn an explicit policy. Further, the distinction from

Q-learning is that the Critic learns the value function of the current policy

rather than the optimal policy.

2.4 Conclusion

In this chapter we covered the basic concept of Reinforcement Learning and

its objective. We then described two control strategies: value-based methods

and policy-based methods. We explained why it can be difficult to apply Q-

learning in continuous action spaces. In the following chapter, we will discuss

previous attempts to apply Q-learning in continuous action spaces.
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Chapter 3

Existing Q-learning methods in
Continuous Action Spaces

In this chapter, we describe some existing approaches using Q-learning in

continuous action spaces. Previous strategies can be categorized into three

main types:

• Solving the maximization at each step

• Restricting the form of the action-values

• Using a soft Bellman operator

In the following sections we describe previous works related to each strat-

egy.

3.1 Solving the maximization at each step

The first strategy solves the maximization at each step by using cleverly dis-

cretized action spaces or with a sufficiently powerful optimizer. Santamaŕıa

et al. (1998), Millán et al. (2002), Kimura (2007), and Metz et al. (2017) dis-

cretize the action space so that the maximum action can be found more easily.

However, the performance would vary on the granularity of discretization and

would not scale very well to higher dimensions.

Another approach is to use a sufficiently powerful optimizer that can effec-

tively approximate the maximal action. The most general purpose approach is

QT-Opt (Kalashnikov et al. 2018), which also uses the Cross Entropy Method
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(CEM) (Rubinstein 1999) that iteratively finds the optimum at each step. QT-

Opt performs a fixed number of iterations of CEM to find the approximate

maximum action.

These methods can be straightforward to implement and effective in small

dimensions. But maximizing the action at each step can become prohibitively

expensive which is especially infeasible for real-world applications requiring

efficient action-selection in high-dimensional spaces.

3.2 Restricting the action-value function

The second strategy restricts the class of action-value function so that the max-

imization is more tractable. This method facilitates efficient action selection

without the need of a separate policy.

For simple problems, the policy can be parameterized as a linear func-

tion. Millington (1991) learns a linear policy, with the coefficients generated

randomly from the probability density function parameterized by a radial ba-

sis function network. Differing from the discrete binnings in the previous

approach, the radial basis function network allows a soft boundary over the

continuous state space. However, this method would not scale well to complex

problems requiring more radial basis and non-linear policy.

Wire-fitting (Baird and Klopf 1993; Gaskett et al. 1999) learns a set of

action control points and its corresponding action-values C = {(ai, qi) : i =

1, ...,m} to approximate the action-value for each state. Action-values within

the continuous action space are then approximated by interpolating between

these set of points. This approximation forces the maximizing action to be

one of these action points, which can be found easily. However, the quality of

the action-value function is highly dependent on the number of control points,

and does not scale well to high dimensions.

Normalized Advantage Function (NAF) (Gu, Lillicrap, Sutskever, et

al. 2016) learns an action-value function that is constrained to be concave

and quadratic in terms of actions. More concretely, the action-value function

is decomposed into state-value function and advantage function (Baird 1993;
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Harmon et al. 1996a; Harmon et al. 1996b), q(St, At)
.
= v(St) + adv(St, At),

where the advantage function adv(St, At) is quadratic, and so concave. Due

to this parameterization, maximum action can be found immediately.

Partial Input Convex Neural Networks (PICNN) (Amos et al. 2017)

learns a more general function form than NAF. PICNN learns a concave action-

value function with respect to actions by restricting weights and activations to

be non-negative. The maximum action is found by an approximate gradient

ascent procedure from a random starting point. The action-value function is

more expressive than a quadratic, but the maximum action-selection process

is more expensive.

The methods in this second strategy make maximization more feasible at

the cost of restricting the learned action-value function. Wire-fitting assumes

interpolated action-values between the control points to be linear (or that the

control points are sufficiently granular) while NAF and PICNN assume the

action-value to be unimodal, which can be quite restrictive.

3.3 Using a Soft Bellman Operator

The last strategy avoids using the maximum operator in the update by opti-

mizing an entropy regularized objective. If the standard reinforcement learning

objective was to find a policy that maximizes
∑

t E(st,at)∼π[R(st, at, st+1)], the

new entropy regularized objective is to find a policy that maximizes∑
t

E(st,at)∼π[R(st, at, st+1) + αH(π(·|st))] (3.1)

H(π(·|St)) is the entropy of the policy, and α is a temperature hyperparameter

weighting the relative importance with respect to reward.

Methods using this entropy regularized objective learn soft action-values,

and define a policy using energy-based models of these soft action-values. The

policy is implicitly defined by these action-values, so it is still considered as a

value-based method. More concretely, the policy takes the following form:

π(at|st) ∝ exp(− 1

α
qsoftπ (st, at)) (3.2)
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Then under this new objective, the optimal policy can be shown to be equiv-

alent to the following (Haarnoja, Tang, et al. 2017):

πsoft∗ (at|st) = exp(
1

α
(qsoft∗ (st, at)− vsoft∗ (st))), (3.3)

where qsoft∗ (s, a)
.
=

∫
S
P (s′|s, a)

[
R(s, a, s′) + γvsoft∗ (s′)

]
ds (3.4)

vsoft∗ (s′)
.
= α log

∫
A
exp(

1

α
qsoft∗ (s′, a′))da′ (3.5)

Using the recursive soft optimal Bellman equation in Eq. 3.4, the qsoft∗ (s, a)

can be learned without the intractable max operator. Integration over actions

in Eq. 3.5 can be substituted by sampling:

vsoft∗ (St)
.
= α log

∫
A
exp(

1

α
q∗(St, a

′))da′ (3.6)

= α log

∫
A
π(a′|St)

[
exp( 1

α
q∗(St, a

′))

π(a′|St)

]
da

= α logEa′∼π(·|St)
[
exp( 1

α
q∗(St, a

′))

π(a′|St)

]
Soft Q-learning (SQL) (Haarnoja, Tang, et al. 2017) takes this approach.

The policy is parameterized as the exponential function of the negative action-

values (Gibbs distribution). Action-selection and the action-value update then

involves sampling from this policy, and SQL learns a state-conditioned stochas-

tic sampling network trained to approximate sampling from the energy-based

distribution. Sampling from the energy-based distribution can be expensive,

and sampling actions proportional to their action-values does not generate

a robust maximizing action. Furthermore, using the soft Bellman equation

optimizes over a different entropy-regularized objective; in cases where the

traditional value-based objective is preferred, this may not be desirable.

3.4 Conclusion

In this chapter we looked at several approaches to use Q-learning in contin-

uous action spaces. These methods however, put restrictions on action-value

functions, or is still inefficient during action-selection, or optimize a regularized
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objective. We wish to develop a Q-learning method with minimal assumptions

on action-values and which enables efficient action-selection.
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Chapter 4

The Actor-Expert Framework

In this chapter we introduce our main contribution, Actor-Expert, a new value-

based Q-learning framework in continuous action spaces. The action-value

function (Expert) is learned via (approximate) Q-learning. The policy (Actor)

is learned by optimizing a new policy objective, different from the typical policy

gradient objective in policy-based methods. By having a separate maximizing

policy (Actor), the agent can select actions efficiently, foregoing the expensive

maximization process and the need to restrict the action-value function.

In the following sections we begin by proposing a new policy search objec-

tive that this framework optimizes, and highlight its difference from the usual

policy gradient objective. We then describe the Actor-Expert framework in

detail, and introduce an instance of Actor-Expert by extending the Cross En-

tropy Method (CEM) (Rubinstein 1999) to be conditioned on states. We then

draw distinctions between existing methods that explicitly model both action-

values and a policy, such as Actor-Critic.

4.1 Actor-Expert Objective

In this section, we propose a new objective for the policy and contrast it to

the typical policy gradient objective of Actor-Critic. The new objective relies

on an expert to provide optimal action-value estimates. Given such estimates,

the goal of the policy is simple: concentrate probability around high-valued

actions in each state.

First consider learning a policy that returns the maximal actions for a
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given true optimal action-values, q∗. For a deterministic policy and assuming a

unique maximal action, the goal is to find π such that π(s) = arg maxa q∗(s, a).

In general, however, multiple actions could be optimal. Further, depending

on the policy parameterization, it is unlikely that π can return the maximal

action for every state. Rather, π will have to trade off accuracy across states.

More generally then, we can consider stochastic policies that approximately

concentrate probability around maximal actions. We define the following

weighted objective

JAE(w)
.
=

∫
S
d(s)

∫
A
q∗(s, a)πw(a|s) da ds (4.1)

for some weighting d : S → [0,∞) over states. This weighting reflects the sam-

pling distribution of states for updates, and impacts the trade-off in approxi-

mation. Typically, for off-policy objectives where data is gathered according

to another behaviour policy, d is the stationary distribution for that behaviour

policy.

The goal of the Actor πw is to concentrate density on maximal actions

within these states. For a policy that can perfectly represent a maximal action

in each state, if d(s) > 0 for all s ∈ S, then πw will become highly peaked

around the maximal action for each state. If the policy parameterization

enables delta distributions, then the set of optimal policies will be those that

put all density on the sets maxa q∗(s, a).

This objective appears similar to the corresponding off-policy policy gra-

dient objective introduced earlier, using d from a different distribution:

JAC(w)
.
=

∫
S
d(s)

∫
A
qπw(s, a)πw(a|s) da ds (4.2)

In practice, for both objectives JAE and JAC, the true action-value function

q∗ and qπw are not available and we approximate these action-value functions

by learning Q∗θ and Qπw
θ respectively. In Actor-Critic, the policy parameters

are adjusted to increase the density of actions under the action-values for the

current policy Qπw
θ . In Actor-Expert, the policy parameters are adjusted to

increase the density of actions that are currently thought to be optimal under

Q∗θ. The naming reflects this difference: the Critic provides feedback about
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the current policy whereas the Expert tells the policy which actions are high-

valued.1

The distinction—using Q∗θ rather than Qπw
θ —is subtle but results in funda-

mental differences. One difference is that the parameters for the action-values

and the policy are decoupled in JAE. In JAC, changes to πw both change the

weighting on actions and the action-values Qπw
θ themselves. For JAE, however,

changing πw does not change Q∗θ. We can take advantage of this decoupling to

provide a global optimization strategy for the Actor, because for convergence

we only need to show that the Actor tracks the changing Expert. Intuitively,

another benefit is that the Expert only concentrates on identifying optimal

action values, rather than wasting time evaluating a likely suboptimal policy.

In fact, JAE could incorporate any estimates identifying advantageous actions

decoupled from the policy.

4.2 Actor-Expert Framework

Actor-Expert is a general framework for obtaining a policy that maximizes JAE

(Eq. 4.1). The framework is summarized in Algorithm 1. Key choices within

this framework include: 1) how to approximate the Q-learning update; 2) how

to obtain the maximum action from the Actor; 3) how to select actions for

exploration; and 4) how to update the policy parameters according to JAE. We

provide specific choices for each of these components to make the algorithm

more concrete.

The Expert uses an approximate Q-learning update for Qθ. The exact

Q-learning target is difficult to obtain in a continuous action setting without

restricting action-values. Simply learning an explicit Actor does not solve the

maximization problem inside Q-learning target, since the stochastic policy πw

only concentrates around maximal actions and is an approximation. Nonethe-

less, we can take advantage of the Actor to reduce the computation burden.

1The term Actor-Critic has at times been used whenever explicit policies and action-
values are learned. For example, (Crites et al. 1995) show convergence of a modified Actor-
Critic algorithm that uses Q-learning updates instead of Sarsa updates, with the goal to
provide some theoretical characterization of Actor-Critic. In this work, we make the distinc-
tion highlighted above: a Critic does policy evaluation whereas an Expert does Q-learning.
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Algorithm 1: Actor-Expert

Initialize Actor parameters w and Expert parameters θ.
for t=1, 2, ... do
Observe St, take action At (e.g., At ∼ πw(·|St)), and observe Rt+1,
St+1

a′ ← estimated maximum action a′ from Actor . mode of πw(·|St)
ā′ ← gradient ascent on Qθ(s, ·) starting from a′ . can use ā′ ← a′

Update Expert θ, using Q-learning with
δt = Rt+1 + γQθ(St+1, ā

′)−Qθ(St, At)
Update Actor w to maximize JAE . e.g., Algorithm 4

We could use the Actor to provide its current estimate of the maximal action,

to use as a starting point to find the maximal action for the Q-learning update,

such as by gradient ascent.

The simplicity of obtaining the maximal action from the Actor depends

heavily on the policy parameterization. The Actor needs to return a mode of

πw(·|s). For a unimodal Gaussian, with mean and covariance a (nonlinear)

function of the state, the maximal action is simply the mean. For a bimodal

Gaussian, there is not such a simple solution. One of the two means is likely

to provide a reasonable approximation to a mode of the distribution. For a

more careful solution, a gradient ascent could be started from each of the two

means, which often results in global solutions (Carreira-Perpiñán 2000). In

our own experiments, we found using the mean with the higher coefficient in

the bimodal mixture model to be almost as effective; with more Gaussians in

the mixture, a more careful solution might be necessary.

To take exploratory actions, since the Actor π(·|St) is a stochastic policy,

we can simply sample from this policy. Note however that the framework is

agnostic to the exploration mechanism, and any other exploration methods

can be used.

The Actor can use a variety of updates to maximize JAE for the given

action-values Q∗θ. In the next section, we provide an instance of Actor-Expert

by extending a global optimization strategy Cross-Entropy Method condi-

tioned on states that optimizes JAE. We then conclude the chapter by drawing

some connections and distinctions to related methods that explicitly learn both
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value function and policy.

4.3 Conditional Cross Entropy Method for the

Actor

In this section, we develop a global optimization algorithm for the Actor, based

on the Cross Entropy Method (CEM) (Rubinstein 1999). Global optimization

strategies are designed to find the global optimum of a general function f(θ)

for some parameters θ. For example, for parameters θ of a neural network, the

objective function f may be the loss function on a sample of data. The ad-

vantage of these methods is that they do not rely on gradient-based strategies,

which are prone to getting stuck in local optima. Instead, they use randomized

search strategies that have optimality guarantees in some settings (Hu et al.

2012) and have also been shown to be effective in practice (Hansen et al. 2003;

Peters et al. 2007; Salimans et al. 2017; Szita et al. 2006).

4.3.1 Cross Entropy Method

Cross Entropy Method (CEM) (Rubinstein 1999) maintains a distribution p(θ)

over parameters θ, iteratively narrowing the range of plausible solutions. The

goal is to minimize the KL divergence between p(θ) to the uniform distribution

over parameters where the objective function f is maximal: I(f(θ) ≥ f ∗)

for f ∗ = maxθ f(θ). Practically, we do not have the threshold f ∗ nor the

uniform distribution I(f(θ) ≥ f ∗). Rather, the algorithm approximates both

iteratively.

At each iteration t, under the current threshold ft, the thresholded uniform

distribution is approximated with an empirical distribution, by sampling sev-

eral parameter vectors θ1, . . . , θN , and keeping those θ∗1, . . . , θ
∗
h with f(θ∗i ) ≥ ft

and discarding the rest. Normally ft is set as the top x% quantile value. KL

divergence is minimized between pt and this empirical uniform distribution

Î = {θ∗1, . . . , θ∗h}, for h < N .

This step corresponds to maximizing the likelihood of θ in set Î under

distribution pt. Iteratively, the distribution pt over θ narrows around higher
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valued θ. Sampling θ again from pt narrows the search over θ and makes it

more likely to produce a useful approximation to I(f(θ) ≥ ft).

An example of one iteration of CEM update is shown in Figure 4.1. From

pt(θ), 10 samples (θ1, . . . , θ10) are selected. The thresholded uniform distribu-

tion is approximated by taking the top 20% quantile of the samples (θ9 and

θ10). pt(θ) is updated such that it is more likely to sample the top 20% quantile

samples at the next iteration.

Figure 4.1: One iteration of CEM update

To make it more likely to find the global optimum, the distribution p0 is

initialized as a wide distribution, such as a Gaussian distribution with zero

mean µ0 = 0 and a diagonal covariance Σ0 of large magnitude. The threshold

ft is implicitly increased over time, using upper quantiles as further explained

below.

CEM, although effective at finding the optimal set of parameters, only finds

the the optimal set parameters for a single optimization problem. Most of the

works using CEM in reinforcement learning have been aiming to learn a single-

best set of parameters that optimize towards higher roll-out returns (Mannor

et al. 2003; Szita et al. 2006). Our goal, however, is to use CEM (repeatedly)

to find maximizing actions a∗ at each state for Q(St, ·), rather than maximizing
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parameters θ∗ for Eπθ [G0] which is a single global optimization over returns.

Technically CEM could be run on each step to find the exact maximal

action for each current state, as QT-Opt (Kalashnikov et al. 2018) did, but

this is expensive and throws away prior useful information about the function

surface obtained when previous optimizations were executed.

4.3.2 Conditional Cross Entropy Method

We extend CEM to be (a) conditioned on state and (b) learned iteratively over

time. CEM is well-suited to be extended to a conditional approach for use in

the Actor, for two reasons. First and foremost, it is designed to be effective for

general (non-concave) functions, and the action-values are likely non-concave

with respect to actions. Second, it provides a natural stochastic Actor, since it

maintains a distribution p(·) over high-valued actions for each state. Sampling

from this distribution also provides a reasonable mechanism for exploration.

Conditional CEM (CCEM) iteratively executes CEM updates, across states.

To do so, it replaces the learned p(·) with π(·|St), where π(·|St) can be any

parametrized, multi-modal distribution. For a mixture model for example,

the parameters would be conditional means µi(St), conditional diagonal co-

variances Σi(St) and coefficients ci(St), for the ith component of the mixture.

At each step, we sample from the conditional mixture model, πwt(·|St),
to provide a set of actions a1, . . . , aN from which we construct the empirical

distribution Î(St) = {a∗1, . . . , a∗h} with Qθt(St, a
∗
i ) > ft. The policy parameters

wt are updated using a gradient ascent step on the log-likelihood of the actions

in Î(St).

The key step in this algorithm is to select the empirical distribution. A

standard strategy for CEM is to use the top quantile, which both avoids the

need to pick a threshold and provides a consistent number of points h for

the likelihood step. For a1, . . . , aN sampled from πwt(·|St), we select a∗i ⊂
{a1, . . . , aN} whereQ(St, a

∗
i ) are in the top (1−ρ) quantile values. For example,

for ρ = 0.2, approximately top 20% of actions are chosen, with h = dρNe.
Implicitly, ft is Qθ(St, a

∗
h) where a∗h is the action with the lowest value in this

top quantile. This procedure is summarized in Algorithm 2.
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There could be other strategies that produce a better estimate of the

thresholded uniform distribution. Consider action-values that are differen-

tiable in action. We can improve on the above procedure by performing a

small number of gradient ascent steps from ai to reach actions ãi with slightly

higher action-values. We could then select the top quantile of these improved

actions. The resulting empirical distribution would contain actions with higher

action-values on which to perform maximum likelihood. This additional gra-

dient ascent can be expensive, but could also reduce the number of actions

that need to be sampled. This procedure is summarized in Algorithm 3.

Algorithm 2: Quantile Empirical Distribution

Evaluate and sort in descending order:
Qθ(St, ai1) ≥ . . . ≥ Qθ(St, aiN )
. get top (1− ρ) quantile, e.g. ρ = 0.2
return Î(St) = {ai1 , . . . , aih} (where h = dρNe )

Algorithm 3: Optimized Quantile Empirical Distribution

Input: n = number of gradient descent steps (e.g., n = 10)
for i = 1, . . . , N do
ãi ← perform n steps of gradient ascent starting from Qθ(St, ai)

return Quantile Empirical Distribution({ã1, . . . , ã∗N})

The full update for the Actor using CCEM is summarized in Algorithm

4. This algorithm fits within the generical Actor-Expert framework described

earlier in Algorithm 1. The CCEM update also makes the Actor focus its

density around high-valued actions, weighted by action-values from the Expert.

However, slightly different from the original proposed objective, CCEM weighs

each actions above a threshold uniformly, potentially providing a more stable

update from the approximation errors of the Expert.

In this subsection we have extended CEM to be conditioned on states.

CEM is a sound approach to iteratively find the maximum for non-convex

functions, but it can be unclear whether the Actor using CCEM would behave

like the expected CEM optimizer across states. Readers are referred to Lim

et al. (2018) where a detailed analysis and the formal proof is provided.
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Algorithm 4: Conditional CEM for the Actor

Input: St and Qθ

Sample N actions ai ∼ πw(·|St)
Obtain empirical distribution Î(St) = {a∗1, . . . , a∗h}
by evaluating a1, . . . , aN on Qθ

. Increase likelihood for high-value actions
w← w + α 1

N

∑N
j=1 1aj∈Î(St)∇w ln πw(aj|St)

st
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<latexit sha1_base64="z/+tcOpZFl9p8IWm8NhlEGvmvy0=">AAAB83icbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VbC00oWy2m3bpZhN2X4QS+je8eFDEq3/Gm//GTZuDtg4sDDPv8WYnTKUw6LrfTmVtfWNzq7pd29nd2z+oHx51TZJpxjsskYnuhdRwKRTvoEDJe6nmNA4lfwwnt4X/+MS1EYl6wGnKg5iOlIgEo2gl348pjsMop7MBDuoNt+nOQVaJV5IGlGgP6l/+MGFZzBUySY3pe26KQU41Cib5rOZnhqeUTeiI9y1VNOYmyOeZZ+TMKkMSJdo+hWSu/t7IaWzMNA7tZJHRLHuF+J/XzzC6DnKh0gy5YotDUSYJJqQogAyF5gzl1BLKtLBZCRtTTRnammq2BG/5y6uke9H03KZ3f9lo3ZR1VOEETuEcPLiCFtxBGzrAIIVneIU3J3NenHfnYzFaccqdY/gD5/MHbMuR7A==</latexit><latexit sha1_base64="z/+tcOpZFl9p8IWm8NhlEGvmvy0=">AAAB83icbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VbC00oWy2m3bpZhN2X4QS+je8eFDEq3/Gm//GTZuDtg4sDDPv8WYnTKUw6LrfTmVtfWNzq7pd29nd2z+oHx51TZJpxjsskYnuhdRwKRTvoEDJe6nmNA4lfwwnt4X/+MS1EYl6wGnKg5iOlIgEo2gl348pjsMop7MBDuoNt+nOQVaJV5IGlGgP6l/+MGFZzBUySY3pe26KQU41Cib5rOZnhqeUTeiI9y1VNOYmyOeZZ+TMKkMSJdo+hWSu/t7IaWzMNA7tZJHRLHuF+J/XzzC6DnKh0gy5YotDUSYJJqQogAyF5gzl1BLKtLBZCRtTTRnammq2BG/5y6uke9H03KZ3f9lo3ZR1VOEETuEcPLiCFtxBGzrAIIVneIU3J3NenHfnYzFaccqdY/gD5/MHbMuR7A==</latexit><latexit sha1_base64="z/+tcOpZFl9p8IWm8NhlEGvmvy0=">AAAB83icbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VbC00oWy2m3bpZhN2X4QS+je8eFDEq3/Gm//GTZuDtg4sDDPv8WYnTKUw6LrfTmVtfWNzq7pd29nd2z+oHx51TZJpxjsskYnuhdRwKRTvoEDJe6nmNA4lfwwnt4X/+MS1EYl6wGnKg5iOlIgEo2gl348pjsMop7MBDuoNt+nOQVaJV5IGlGgP6l/+MGFZzBUySY3pe26KQU41Cib5rOZnhqeUTeiI9y1VNOYmyOeZZ+TMKkMSJdo+hWSu/t7IaWzMNA7tZJHRLHuF+J/XzzC6DnKh0gy5YotDUSYJJqQogAyF5gzl1BLKtLBZCRtTTRnammq2BG/5y6uke9H03KZ3f9lo3ZR1VOEETuEcPLiCFtxBGzrAIIVneIU3J3NenHfnYzFaccqdY/gD5/MHbMuR7A==</latexit><latexit sha1_base64="z/+tcOpZFl9p8IWm8NhlEGvmvy0=">AAAB83icbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VbC00oWy2m3bpZhN2X4QS+je8eFDEq3/Gm//GTZuDtg4sDDPv8WYnTKUw6LrfTmVtfWNzq7pd29nd2z+oHx51TZJpxjsskYnuhdRwKRTvoEDJe6nmNA4lfwwnt4X/+MS1EYl6wGnKg5iOlIgEo2gl348pjsMop7MBDuoNt+nOQVaJV5IGlGgP6l/+MGFZzBUySY3pe26KQU41Cib5rOZnhqeUTeiI9y1VNOYmyOeZZ+TMKkMSJdo+hWSu/t7IaWzMNA7tZJHRLHuF+J/XzzC6DnKh0gy5YotDUSYJJqQogAyF5gzl1BLKtLBZCRtTTRnammq2BG/5y6uke9H03KZ3f9lo3ZR1VOEETuEcPLiCFtxBGzrAIIVneIU3J3NenHfnYzFaccqdY/gD5/MHbMuR7A==</latexit>

µ1
<latexit sha1_base64="RX77uKFZGkbkW+xU+d+eRcCb/O8=">AAAB+3icbVBLSwMxGMz6rPW11qOXYBE8lV0R9Fj04rGCfUB3WbLZbBuax5JkxbL0r3jxoIhX/4g3/43Zdg/aOhAyzHwfmUycMaqN5307a+sbm1vbtZ367t7+waF71OhpmStMulgyqQYx0oRRQbqGGkYGmSKIx4z048lt6fcfidJUigczzUjI0UjQlGJkrBS5jSCWLNFTbq8i4Pks8iO36bW8OeAq8SvSBBU6kfsVJBLnnAiDGdJ66HuZCQukDMWMzOpBrkmG8ASNyNBSgTjRYTHPPoNnVklgKpU9wsC5+nujQFyX8ewkR2asl71S/M8b5ia9DgsqstwQgRcPpTmDRsKyCJhQRbBhU0sQVtRmhXiMFMLG1lW3JfjLX14lvYuW77X8+8tm+6aqowZOwCk4Bz64Am1wBzqgCzB4As/gFbw5M+fFeXc+FqNrTrVzDP7A+fwBf9+UuA==</latexit><latexit sha1_base64="RX77uKFZGkbkW+xU+d+eRcCb/O8=">AAAB+3icbVBLSwMxGMz6rPW11qOXYBE8lV0R9Fj04rGCfUB3WbLZbBuax5JkxbL0r3jxoIhX/4g3/43Zdg/aOhAyzHwfmUycMaqN5307a+sbm1vbtZ367t7+waF71OhpmStMulgyqQYx0oRRQbqGGkYGmSKIx4z048lt6fcfidJUigczzUjI0UjQlGJkrBS5jSCWLNFTbq8i4Pks8iO36bW8OeAq8SvSBBU6kfsVJBLnnAiDGdJ66HuZCQukDMWMzOpBrkmG8ASNyNBSgTjRYTHPPoNnVklgKpU9wsC5+nujQFyX8ewkR2asl71S/M8b5ia9DgsqstwQgRcPpTmDRsKyCJhQRbBhU0sQVtRmhXiMFMLG1lW3JfjLX14lvYuW77X8+8tm+6aqowZOwCk4Bz64Am1wBzqgCzB4As/gFbw5M+fFeXc+FqNrTrVzDP7A+fwBf9+UuA==</latexit><latexit sha1_base64="RX77uKFZGkbkW+xU+d+eRcCb/O8=">AAAB+3icbVBLSwMxGMz6rPW11qOXYBE8lV0R9Fj04rGCfUB3WbLZbBuax5JkxbL0r3jxoIhX/4g3/43Zdg/aOhAyzHwfmUycMaqN5307a+sbm1vbtZ367t7+waF71OhpmStMulgyqQYx0oRRQbqGGkYGmSKIx4z048lt6fcfidJUigczzUjI0UjQlGJkrBS5jSCWLNFTbq8i4Pks8iO36bW8OeAq8SvSBBU6kfsVJBLnnAiDGdJ66HuZCQukDMWMzOpBrkmG8ASNyNBSgTjRYTHPPoNnVklgKpU9wsC5+nujQFyX8ewkR2asl71S/M8b5ia9DgsqstwQgRcPpTmDRsKyCJhQRbBhU0sQVtRmhXiMFMLG1lW3JfjLX14lvYuW77X8+8tm+6aqowZOwCk4Bz64Am1wBzqgCzB4As/gFbw5M+fFeXc+FqNrTrVzDP7A+fwBf9+UuA==</latexit><latexit sha1_base64="RX77uKFZGkbkW+xU+d+eRcCb/O8=">AAAB+3icbVBLSwMxGMz6rPW11qOXYBE8lV0R9Fj04rGCfUB3WbLZbBuax5JkxbL0r3jxoIhX/4g3/43Zdg/aOhAyzHwfmUycMaqN5307a+sbm1vbtZ367t7+waF71OhpmStMulgyqQYx0oRRQbqGGkYGmSKIx4z048lt6fcfidJUigczzUjI0UjQlGJkrBS5jSCWLNFTbq8i4Pks8iO36bW8OeAq8SvSBBU6kfsVJBLnnAiDGdJ66HuZCQukDMWMzOpBrkmG8ASNyNBSgTjRYTHPPoNnVklgKpU9wsC5+nujQFyX8ewkR2asl71S/M8b5ia9DgsqstwQgRcPpTmDRsKyCJhQRbBhU0sQVtRmhXiMFMLG1lW3JfjLX14lvYuW77X8+8tm+6aqowZOwCk4Bz64Am1wBzqgCzB4As/gFbw5M+fFeXc+FqNrTrVzDP7A+fwBf9+UuA==</latexit>

µ2
<latexit sha1_base64="P7XEepZCOXIBlEpTeRKVhDhoX8o=">AAAB+3icbVDNS8MwHE3n15xfdR69BIfgabRD0OPQi8cJ7gPWUtI03cKSpiSpOEr/FS8eFPHqP+LN/8Z060E3H4Q83vv9yMsLU0aVdpxvq7axubW9U99t7O0fHB7Zx82BEpnEpI8FE3IUIkUYTUhfU83IKJUE8ZCRYTi7Lf3hI5GKiuRBz1PiczRJaEwx0kYK7KYXChapOTdX7vGsCDqB3XLazgJwnbgVaYEKvcD+8iKBM04SjRlSauw6qfZzJDXFjBQNL1MkRXiGJmRsaII4UX6+yF7Ac6NEMBbSnETDhfp7I0dclfHMJEd6qla9UvzPG2c6vvZzmqSZJglePhRnDGoByyJgRCXBms0NQVhSkxXiKZIIa1NXw5Tgrn55nQw6bddpu/eXre5NVUcdnIIzcAFccAW64A70QB9g8ASewSt4swrrxXq3PpajNavaOQF/YH3+AIFjlLk=</latexit><latexit sha1_base64="P7XEepZCOXIBlEpTeRKVhDhoX8o=">AAAB+3icbVDNS8MwHE3n15xfdR69BIfgabRD0OPQi8cJ7gPWUtI03cKSpiSpOEr/FS8eFPHqP+LN/8Z060E3H4Q83vv9yMsLU0aVdpxvq7axubW9U99t7O0fHB7Zx82BEpnEpI8FE3IUIkUYTUhfU83IKJUE8ZCRYTi7Lf3hI5GKiuRBz1PiczRJaEwx0kYK7KYXChapOTdX7vGsCDqB3XLazgJwnbgVaYEKvcD+8iKBM04SjRlSauw6qfZzJDXFjBQNL1MkRXiGJmRsaII4UX6+yF7Ac6NEMBbSnETDhfp7I0dclfHMJEd6qla9UvzPG2c6vvZzmqSZJglePhRnDGoByyJgRCXBms0NQVhSkxXiKZIIa1NXw5Tgrn55nQw6bddpu/eXre5NVUcdnIIzcAFccAW64A70QB9g8ASewSt4swrrxXq3PpajNavaOQF/YH3+AIFjlLk=</latexit><latexit sha1_base64="P7XEepZCOXIBlEpTeRKVhDhoX8o=">AAAB+3icbVDNS8MwHE3n15xfdR69BIfgabRD0OPQi8cJ7gPWUtI03cKSpiSpOEr/FS8eFPHqP+LN/8Z060E3H4Q83vv9yMsLU0aVdpxvq7axubW9U99t7O0fHB7Zx82BEpnEpI8FE3IUIkUYTUhfU83IKJUE8ZCRYTi7Lf3hI5GKiuRBz1PiczRJaEwx0kYK7KYXChapOTdX7vGsCDqB3XLazgJwnbgVaYEKvcD+8iKBM04SjRlSauw6qfZzJDXFjBQNL1MkRXiGJmRsaII4UX6+yF7Ac6NEMBbSnETDhfp7I0dclfHMJEd6qla9UvzPG2c6vvZzmqSZJglePhRnDGoByyJgRCXBms0NQVhSkxXiKZIIa1NXw5Tgrn55nQw6bddpu/eXre5NVUcdnIIzcAFccAW64A70QB9g8ASewSt4swrrxXq3PpajNavaOQF/YH3+AIFjlLk=</latexit><latexit sha1_base64="P7XEepZCOXIBlEpTeRKVhDhoX8o=">AAAB+3icbVDNS8MwHE3n15xfdR69BIfgabRD0OPQi8cJ7gPWUtI03cKSpiSpOEr/FS8eFPHqP+LN/8Z060E3H4Q83vv9yMsLU0aVdpxvq7axubW9U99t7O0fHB7Zx82BEpnEpI8FE3IUIkUYTUhfU83IKJUE8ZCRYTi7Lf3hI5GKiuRBz1PiczRJaEwx0kYK7KYXChapOTdX7vGsCDqB3XLazgJwnbgVaYEKvcD+8iKBM04SjRlSauw6qfZzJDXFjBQNL1MkRXiGJmRsaII4UX6+yF7Ac6NEMBbSnETDhfp7I0dclfHMJEd6qla9UvzPG2c6vvZzmqSZJglePhRnDGoByyJgRCXBms0NQVhSkxXiKZIIa1NXw5Tgrn55nQw6bddpu/eXre5NVUcdnIIzcAFccAW64A70QB9g8ASewSt4swrrxXq3PpajNavaOQF/YH3+AIFjlLk=</latexit>

⌃2
<latexit sha1_base64="SIOm0+UOZDX/m359jlEKqS698eM=">AAAB/nicbVBLSwMxGMz6rPW1Kp68BIvgqewWQY9FLx4r2gd0lyWbTdvQPJYkK5Sl4F/x4kERr/4Ob/4bs+0etHUgZJj5PjKZOGVUG8/7dlZW19Y3Nitb1e2d3b199+Cwo2WmMGljyaTqxUgTRgVpG2oY6aWKIB4z0o3HN4XffSRKUykezCQlIUdDQQcUI2OlyD0OYskSPeH2yoN7OuRoGjUit+bVvRngMvFLUgMlWpH7FSQSZ5wIgxnSuu97qQlzpAzFjEyrQaZJivAYDUnfUoE40WE+iz+FZ1ZJ4EAqe4SBM/X3Ro64LhLaSY7MSC96hfif18/M4CrMqUgzQwSePzTIGDQSFl3AhCqCDZtYgrCiNivEI6QQNraxqi3BX/zyMuk06r5X9+8uas3rso4KOAGn4Bz44BI0wS1ogTbAIAfP4BW8OU/Oi/PufMxHV5xy5wj8gfP5A6JyleY=</latexit><latexit sha1_base64="SIOm0+UOZDX/m359jlEKqS698eM=">AAAB/nicbVBLSwMxGMz6rPW1Kp68BIvgqewWQY9FLx4r2gd0lyWbTdvQPJYkK5Sl4F/x4kERr/4Ob/4bs+0etHUgZJj5PjKZOGVUG8/7dlZW19Y3Nitb1e2d3b199+Cwo2WmMGljyaTqxUgTRgVpG2oY6aWKIB4z0o3HN4XffSRKUykezCQlIUdDQQcUI2OlyD0OYskSPeH2yoN7OuRoGjUit+bVvRngMvFLUgMlWpH7FSQSZ5wIgxnSuu97qQlzpAzFjEyrQaZJivAYDUnfUoE40WE+iz+FZ1ZJ4EAqe4SBM/X3Ro64LhLaSY7MSC96hfif18/M4CrMqUgzQwSePzTIGDQSFl3AhCqCDZtYgrCiNivEI6QQNraxqi3BX/zyMuk06r5X9+8uas3rso4KOAGn4Bz44BI0wS1ogTbAIAfP4BW8OU/Oi/PufMxHV5xy5wj8gfP5A6JyleY=</latexit><latexit sha1_base64="SIOm0+UOZDX/m359jlEKqS698eM=">AAAB/nicbVBLSwMxGMz6rPW1Kp68BIvgqewWQY9FLx4r2gd0lyWbTdvQPJYkK5Sl4F/x4kERr/4Ob/4bs+0etHUgZJj5PjKZOGVUG8/7dlZW19Y3Nitb1e2d3b199+Cwo2WmMGljyaTqxUgTRgVpG2oY6aWKIB4z0o3HN4XffSRKUykezCQlIUdDQQcUI2OlyD0OYskSPeH2yoN7OuRoGjUit+bVvRngMvFLUgMlWpH7FSQSZ5wIgxnSuu97qQlzpAzFjEyrQaZJivAYDUnfUoE40WE+iz+FZ1ZJ4EAqe4SBM/X3Ro64LhLaSY7MSC96hfif18/M4CrMqUgzQwSePzTIGDQSFl3AhCqCDZtYgrCiNivEI6QQNraxqi3BX/zyMuk06r5X9+8uas3rso4KOAGn4Bz44BI0wS1ogTbAIAfP4BW8OU/Oi/PufMxHV5xy5wj8gfP5A6JyleY=</latexit><latexit sha1_base64="SIOm0+UOZDX/m359jlEKqS698eM=">AAAB/nicbVBLSwMxGMz6rPW1Kp68BIvgqewWQY9FLx4r2gd0lyWbTdvQPJYkK5Sl4F/x4kERr/4Ob/4bs+0etHUgZJj5PjKZOGVUG8/7dlZW19Y3Nitb1e2d3b199+Cwo2WmMGljyaTqxUgTRgVpG2oY6aWKIB4z0o3HN4XffSRKUykezCQlIUdDQQcUI2OlyD0OYskSPeH2yoN7OuRoGjUit+bVvRngMvFLUgMlWpH7FSQSZ5wIgxnSuu97qQlzpAzFjEyrQaZJivAYDUnfUoE40WE+iz+FZ1ZJ4EAqe4SBM/X3Ro64LhLaSY7MSC96hfif18/M4CrMqUgzQwSePzTIGDQSFl3AhCqCDZtYgrCiNivEI6QQNraxqi3BX/zyMuk06r5X9+8uas3rso4KOAGn4Bz44BI0wS1ogTbAIAfP4BW8OU/Oi/PufMxHV5xy5wj8gfP5A6JyleY=</latexit>

⌃1
<latexit sha1_base64="swJS6/5aGoKhCMxcGB7Z9r0LAQU=">AAAB/nicbVBLSwMxGMzWV62vVfHkJVgET2VXBD0WvXisaB/QXZZsNm1D81iSrFCWgn/FiwdFvPo7vPlvzLZ70NaBkGHm+8hk4pRRbTzv26msrK6tb1Q3a1vbO7t77v5BR8tMYdLGkknVi5EmjArSNtQw0ksVQTxmpBuPbwq/+0iUplI8mElKQo6Ggg4oRsZKkXsUxJIlesLtlQf3dMjRNPIjt+41vBngMvFLUgclWpH7FSQSZ5wIgxnSuu97qQlzpAzFjExrQaZJivAYDUnfUoE40WE+iz+Fp1ZJ4EAqe4SBM/X3Ro64LhLaSY7MSC96hfif18/M4CrMqUgzQwSePzTIGDQSFl3AhCqCDZtYgrCiNivEI6QQNraxmi3BX/zyMumcN3yv4d9d1JvXZR1VcAxOwBnwwSVoglvQAm2AQQ6ewSt4c56cF+fd+ZiPVpxy5xD8gfP5A6DuleU=</latexit><latexit sha1_base64="swJS6/5aGoKhCMxcGB7Z9r0LAQU=">AAAB/nicbVBLSwMxGMzWV62vVfHkJVgET2VXBD0WvXisaB/QXZZsNm1D81iSrFCWgn/FiwdFvPo7vPlvzLZ70NaBkGHm+8hk4pRRbTzv26msrK6tb1Q3a1vbO7t77v5BR8tMYdLGkknVi5EmjArSNtQw0ksVQTxmpBuPbwq/+0iUplI8mElKQo6Ggg4oRsZKkXsUxJIlesLtlQf3dMjRNPIjt+41vBngMvFLUgclWpH7FSQSZ5wIgxnSuu97qQlzpAzFjExrQaZJivAYDUnfUoE40WE+iz+Fp1ZJ4EAqe4SBM/X3Ro64LhLaSY7MSC96hfif18/M4CrMqUgzQwSePzTIGDQSFl3AhCqCDZtYgrCiNivEI6QQNraxmi3BX/zyMumcN3yv4d9d1JvXZR1VcAxOwBnwwSVoglvQAm2AQQ6ewSt4c56cF+fd+ZiPVpxy5xD8gfP5A6DuleU=</latexit><latexit sha1_base64="swJS6/5aGoKhCMxcGB7Z9r0LAQU=">AAAB/nicbVBLSwMxGMzWV62vVfHkJVgET2VXBD0WvXisaB/QXZZsNm1D81iSrFCWgn/FiwdFvPo7vPlvzLZ70NaBkGHm+8hk4pRRbTzv26msrK6tb1Q3a1vbO7t77v5BR8tMYdLGkknVi5EmjArSNtQw0ksVQTxmpBuPbwq/+0iUplI8mElKQo6Ggg4oRsZKkXsUxJIlesLtlQf3dMjRNPIjt+41vBngMvFLUgclWpH7FSQSZ5wIgxnSuu97qQlzpAzFjExrQaZJivAYDUnfUoE40WE+iz+Fp1ZJ4EAqe4SBM/X3Ro64LhLaSY7MSC96hfif18/M4CrMqUgzQwSePzTIGDQSFl3AhCqCDZtYgrCiNivEI6QQNraxmi3BX/zyMumcN3yv4d9d1JvXZR1VcAxOwBnwwSVoglvQAm2AQQ6ewSt4c56cF+fd+ZiPVpxy5xD8gfP5A6DuleU=</latexit><latexit sha1_base64="swJS6/5aGoKhCMxcGB7Z9r0LAQU=">AAAB/nicbVBLSwMxGMzWV62vVfHkJVgET2VXBD0WvXisaB/QXZZsNm1D81iSrFCWgn/FiwdFvPo7vPlvzLZ70NaBkGHm+8hk4pRRbTzv26msrK6tb1Q3a1vbO7t77v5BR8tMYdLGkknVi5EmjArSNtQw0ksVQTxmpBuPbwq/+0iUplI8mElKQo6Ggg4oRsZKkXsUxJIlesLtlQf3dMjRNPIjt+41vBngMvFLUgclWpH7FSQSZ5wIgxnSuu97qQlzpAzFjExrQaZJivAYDUnfUoE40WE+iz+Fp1ZJ4EAqe4SBM/X3Ro64LhLaSY7MSC96hfif18/M4CrMqUgzQwSePzTIGDQSFl3AhCqCDZtYgrCiNivEI6QQNraxmi3BX/zyMumcN3yv4d9d1JvXZR1VcAxOwBnwwSVoglvQAm2AQQ6ewSt4c56cF+fd+ZiPVpxy5xD8gfP5A6DuleU=</latexit>

c1
<latexit sha1_base64="yRjoBq99koyFx8YvuYkRx/CJ8Y4=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpgfX9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AeujjYs=</latexit><latexit sha1_base64="yRjoBq99koyFx8YvuYkRx/CJ8Y4=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpgfX9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AeujjYs=</latexit><latexit sha1_base64="yRjoBq99koyFx8YvuYkRx/CJ8Y4=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpgfX9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AeujjYs=</latexit><latexit sha1_base64="yRjoBq99koyFx8YvuYkRx/CJ8Y4=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpgfX9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AeujjYs=</latexit>

c2
<latexit sha1_base64="tH/lnfdmPbXeWx2i9xfZDS+3iMU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpgQ1qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeO1nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qudWvfurSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPH+0njYw=</latexit><latexit sha1_base64="tH/lnfdmPbXeWx2i9xfZDS+3iMU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpgQ1qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeO1nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qudWvfurSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPH+0njYw=</latexit><latexit sha1_base64="tH/lnfdmPbXeWx2i9xfZDS+3iMU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpgQ1qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeO1nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qudWvfurSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPH+0njYw=</latexit><latexit sha1_base64="tH/lnfdmPbXeWx2i9xfZDS+3iMU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpgQ1qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeO1nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qudWvfurSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPH+0njYw=</latexit>

a
<latexit sha1_base64="b7/vCs5ze5KtVd66W3yyALYBfbk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipSQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/DXYzl</latexit><latexit sha1_base64="b7/vCs5ze5KtVd66W3yyALYBfbk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipSQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/DXYzl</latexit><latexit sha1_base64="b7/vCs5ze5KtVd66W3yyALYBfbk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipSQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/DXYzl</latexit><latexit sha1_base64="b7/vCs5ze5KtVd66W3yyALYBfbk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipSQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/DXYzl</latexit>

µ1<latexit sha1_base64="RX77uKFZGkbkW+xU+d+eRcCb/O8=">AAAB+3icbVBLSwMxGMz6rPW11qOXYBE8lV0R9Fj04rGCfUB3WbLZbBuax5JkxbL0r3jxoIhX/4g3/43Zdg/aOhAyzHwfmUycMaqN5307a+sbm1vbtZ367t7+waF71OhpmStMulgyqQYx0oRRQbqGGkYGmSKIx4z048lt6fcfidJUigczzUjI0UjQlGJkrBS5jSCWLNFTbq8i4Pks8iO36bW8OeAq8SvSBBU6kfsVJBLnnAiDGdJ66HuZCQukDMWMzOpBrkmG8ASNyNBSgTjRYTHPPoNnVklgKpU9wsC5+nujQFyX8ewkR2asl71S/M8b5ia9DgsqstwQgRcPpTmDRsKyCJhQRbBhU0sQVtRmhXiMFMLG1lW3JfjLX14lvYuW77X8+8tm+6aqowZOwCk4Bz64Am1wBzqgCzB4As/gFbw5M+fFeXc+FqNrTrVzDP7A+fwBf9+UuA==</latexit><latexit sha1_base64="RX77uKFZGkbkW+xU+d+eRcCb/O8=">AAAB+3icbVBLSwMxGMz6rPW11qOXYBE8lV0R9Fj04rGCfUB3WbLZbBuax5JkxbL0r3jxoIhX/4g3/43Zdg/aOhAyzHwfmUycMaqN5307a+sbm1vbtZ367t7+waF71OhpmStMulgyqQYx0oRRQbqGGkYGmSKIx4z048lt6fcfidJUigczzUjI0UjQlGJkrBS5jSCWLNFTbq8i4Pks8iO36bW8OeAq8SvSBBU6kfsVJBLnnAiDGdJ66HuZCQukDMWMzOpBrkmG8ASNyNBSgTjRYTHPPoNnVklgKpU9wsC5+nujQFyX8ewkR2asl71S/M8b5ia9DgsqstwQgRcPpTmDRsKyCJhQRbBhU0sQVtRmhXiMFMLG1lW3JfjLX14lvYuW77X8+8tm+6aqowZOwCk4Bz64Am1wBzqgCzB4As/gFbw5M+fFeXc+FqNrTrVzDP7A+fwBf9+UuA==</latexit><latexit sha1_base64="RX77uKFZGkbkW+xU+d+eRcCb/O8=">AAAB+3icbVBLSwMxGMz6rPW11qOXYBE8lV0R9Fj04rGCfUB3WbLZbBuax5JkxbL0r3jxoIhX/4g3/43Zdg/aOhAyzHwfmUycMaqN5307a+sbm1vbtZ367t7+waF71OhpmStMulgyqQYx0oRRQbqGGkYGmSKIx4z048lt6fcfidJUigczzUjI0UjQlGJkrBS5jSCWLNFTbq8i4Pks8iO36bW8OeAq8SvSBBU6kfsVJBLnnAiDGdJ66HuZCQukDMWMzOpBrkmG8ASNyNBSgTjRYTHPPoNnVklgKpU9wsC5+nujQFyX8ewkR2asl71S/M8b5ia9DgsqstwQgRcPpTmDRsKyCJhQRbBhU0sQVtRmhXiMFMLG1lW3JfjLX14lvYuW77X8+8tm+6aqowZOwCk4Bz64Am1wBzqgCzB4As/gFbw5M+fFeXc+FqNrTrVzDP7A+fwBf9+UuA==</latexit><latexit sha1_base64="RX77uKFZGkbkW+xU+d+eRcCb/O8=">AAAB+3icbVBLSwMxGMz6rPW11qOXYBE8lV0R9Fj04rGCfUB3WbLZbBuax5JkxbL0r3jxoIhX/4g3/43Zdg/aOhAyzHwfmUycMaqN5307a+sbm1vbtZ367t7+waF71OhpmStMulgyqQYx0oRRQbqGGkYGmSKIx4z048lt6fcfidJUigczzUjI0UjQlGJkrBS5jSCWLNFTbq8i4Pks8iO36bW8OeAq8SvSBBU6kfsVJBLnnAiDGdJ66HuZCQukDMWMzOpBrkmG8ASNyNBSgTjRYTHPPoNnVklgKpU9wsC5+nujQFyX8ewkR2asl71S/M8b5ia9DgsqstwQgRcPpTmDRsKyCJhQRbBhU0sQVtRmhXiMFMLG1lW3JfjLX14lvYuW77X8+8tm+6aqowZOwCk4Bz64Am1wBzqgCzB4As/gFbw5M+fFeXc+FqNrTrVzDP7A+fwBf9+UuA==</latexit> µ2<latexit sha1_base64="P7XEepZCOXIBlEpTeRKVhDhoX8o=">AAAB+3icbVDNS8MwHE3n15xfdR69BIfgabRD0OPQi8cJ7gPWUtI03cKSpiSpOEr/FS8eFPHqP+LN/8Z060E3H4Q83vv9yMsLU0aVdpxvq7axubW9U99t7O0fHB7Zx82BEpnEpI8FE3IUIkUYTUhfU83IKJUE8ZCRYTi7Lf3hI5GKiuRBz1PiczRJaEwx0kYK7KYXChapOTdX7vGsCDqB3XLazgJwnbgVaYEKvcD+8iKBM04SjRlSauw6qfZzJDXFjBQNL1MkRXiGJmRsaII4UX6+yF7Ac6NEMBbSnETDhfp7I0dclfHMJEd6qla9UvzPG2c6vvZzmqSZJglePhRnDGoByyJgRCXBms0NQVhSkxXiKZIIa1NXw5Tgrn55nQw6bddpu/eXre5NVUcdnIIzcAFccAW64A70QB9g8ASewSt4swrrxXq3PpajNavaOQF/YH3+AIFjlLk=</latexit><latexit sha1_base64="P7XEepZCOXIBlEpTeRKVhDhoX8o=">AAAB+3icbVDNS8MwHE3n15xfdR69BIfgabRD0OPQi8cJ7gPWUtI03cKSpiSpOEr/FS8eFPHqP+LN/8Z060E3H4Q83vv9yMsLU0aVdpxvq7axubW9U99t7O0fHB7Zx82BEpnEpI8FE3IUIkUYTUhfU83IKJUE8ZCRYTi7Lf3hI5GKiuRBz1PiczRJaEwx0kYK7KYXChapOTdX7vGsCDqB3XLazgJwnbgVaYEKvcD+8iKBM04SjRlSauw6qfZzJDXFjBQNL1MkRXiGJmRsaII4UX6+yF7Ac6NEMBbSnETDhfp7I0dclfHMJEd6qla9UvzPG2c6vvZzmqSZJglePhRnDGoByyJgRCXBms0NQVhSkxXiKZIIa1NXw5Tgrn55nQw6bddpu/eXre5NVUcdnIIzcAFccAW64A70QB9g8ASewSt4swrrxXq3PpajNavaOQF/YH3+AIFjlLk=</latexit><latexit sha1_base64="P7XEepZCOXIBlEpTeRKVhDhoX8o=">AAAB+3icbVDNS8MwHE3n15xfdR69BIfgabRD0OPQi8cJ7gPWUtI03cKSpiSpOEr/FS8eFPHqP+LN/8Z060E3H4Q83vv9yMsLU0aVdpxvq7axubW9U99t7O0fHB7Zx82BEpnEpI8FE3IUIkUYTUhfU83IKJUE8ZCRYTi7Lf3hI5GKiuRBz1PiczRJaEwx0kYK7KYXChapOTdX7vGsCDqB3XLazgJwnbgVaYEKvcD+8iKBM04SjRlSauw6qfZzJDXFjBQNL1MkRXiGJmRsaII4UX6+yF7Ac6NEMBbSnETDhfp7I0dclfHMJEd6qla9UvzPG2c6vvZzmqSZJglePhRnDGoByyJgRCXBms0NQVhSkxXiKZIIa1NXw5Tgrn55nQw6bddpu/eXre5NVUcdnIIzcAFccAW64A70QB9g8ASewSt4swrrxXq3PpajNavaOQF/YH3+AIFjlLk=</latexit><latexit sha1_base64="P7XEepZCOXIBlEpTeRKVhDhoX8o=">AAAB+3icbVDNS8MwHE3n15xfdR69BIfgabRD0OPQi8cJ7gPWUtI03cKSpiSpOEr/FS8eFPHqP+LN/8Z060E3H4Q83vv9yMsLU0aVdpxvq7axubW9U99t7O0fHB7Zx82BEpnEpI8FE3IUIkUYTUhfU83IKJUE8ZCRYTi7Lf3hI5GKiuRBz1PiczRJaEwx0kYK7KYXChapOTdX7vGsCDqB3XLazgJwnbgVaYEKvcD+8iKBM04SjRlSauw6qfZzJDXFjBQNL1MkRXiGJmRsaII4UX6+yF7Ac6NEMBbSnETDhfp7I0dclfHMJEd6qla9UvzPG2c6vvZzmqSZJglePhRnDGoByyJgRCXBms0NQVhSkxXiKZIIa1NXw5Tgrn55nQw6bddpu/eXre5NVUcdnIIzcAFccAW64A70QB9g8ASewSt4swrrxXq3PpajNavaOQF/YH3+AIFjlLk=</latexit>

⇡(a|st) = c1 N (µ1,⌃1)

+ c2 N (µ2,⌃2)
<latexit sha1_base64="VYxwlKwM94IiuThrB/C8LDpLkx4="></latexit><latexit sha1_base64="VYxwlKwM94IiuThrB/C8LDpLkx4="></latexit><latexit sha1_base64="VYxwlKwM94IiuThrB/C8LDpLkx4="></latexit><latexit sha1_base64="VYxwlKwM94IiuThrB/C8LDpLkx4="></latexit>

Q(st,at)
<latexit sha1_base64="AiBXMzF1JAr1gCXdD+RTozyC/R8=">AAACBnicbVDLSsNAFL2pr1pfUZciDBahgpREBF0W3bhswT6gDWUynbRDJ5MwMxFK6MqNv+LGhSJu/QZ3/o2TNoJWDwyce869zL3HjzlT2nE+rcLS8srqWnG9tLG5tb1j7+61VJRIQpsk4pHs+FhRzgRtaqY57cSS4tDntO2PrzO/fUelYpG41ZOYeiEeChYwgrWR+vZho9ILsR75QaqmfX2KvitsqpO+XXaqzgzoL3FzUoYc9b790RtEJAmp0IRjpbquE2svxVIzwum01EsUjTEZ4yHtGipwSJWXzs6YomOjDFAQSfOERjP150SKQ6UmoW86syXVopeJ/3ndRAeXXspEnGgqyPyjIOFIRyjLBA2YpETziSGYSGZ2RWSEJSbaJFcyIbiLJ/8lrbOq61Tdxnm5dpXHUYQDOIIKuHABNbiBOjSBwD08wjO8WA/Wk/Vqvc1bC1Y+sw+/YL1/AehBmME=</latexit><latexit sha1_base64="AiBXMzF1JAr1gCXdD+RTozyC/R8=">AAACBnicbVDLSsNAFL2pr1pfUZciDBahgpREBF0W3bhswT6gDWUynbRDJ5MwMxFK6MqNv+LGhSJu/QZ3/o2TNoJWDwyce869zL3HjzlT2nE+rcLS8srqWnG9tLG5tb1j7+61VJRIQpsk4pHs+FhRzgRtaqY57cSS4tDntO2PrzO/fUelYpG41ZOYeiEeChYwgrWR+vZho9ILsR75QaqmfX2KvitsqpO+XXaqzgzoL3FzUoYc9b790RtEJAmp0IRjpbquE2svxVIzwum01EsUjTEZ4yHtGipwSJWXzs6YomOjDFAQSfOERjP150SKQ6UmoW86syXVopeJ/3ndRAeXXspEnGgqyPyjIOFIRyjLBA2YpETziSGYSGZ2RWSEJSbaJFcyIbiLJ/8lrbOq61Tdxnm5dpXHUYQDOIIKuHABNbiBOjSBwD08wjO8WA/Wk/Vqvc1bC1Y+sw+/YL1/AehBmME=</latexit><latexit sha1_base64="AiBXMzF1JAr1gCXdD+RTozyC/R8=">AAACBnicbVDLSsNAFL2pr1pfUZciDBahgpREBF0W3bhswT6gDWUynbRDJ5MwMxFK6MqNv+LGhSJu/QZ3/o2TNoJWDwyce869zL3HjzlT2nE+rcLS8srqWnG9tLG5tb1j7+61VJRIQpsk4pHs+FhRzgRtaqY57cSS4tDntO2PrzO/fUelYpG41ZOYeiEeChYwgrWR+vZho9ILsR75QaqmfX2KvitsqpO+XXaqzgzoL3FzUoYc9b790RtEJAmp0IRjpbquE2svxVIzwum01EsUjTEZ4yHtGipwSJWXzs6YomOjDFAQSfOERjP150SKQ6UmoW86syXVopeJ/3ndRAeXXspEnGgqyPyjIOFIRyjLBA2YpETziSGYSGZ2RWSEJSbaJFcyIbiLJ/8lrbOq61Tdxnm5dpXHUYQDOIIKuHABNbiBOjSBwD08wjO8WA/Wk/Vqvc1bC1Y+sw+/YL1/AehBmME=</latexit><latexit sha1_base64="AiBXMzF1JAr1gCXdD+RTozyC/R8=">AAACBnicbVDLSsNAFL2pr1pfUZciDBahgpREBF0W3bhswT6gDWUynbRDJ5MwMxFK6MqNv+LGhSJu/QZ3/o2TNoJWDwyce869zL3HjzlT2nE+rcLS8srqWnG9tLG5tb1j7+61VJRIQpsk4pHs+FhRzgRtaqY57cSS4tDntO2PrzO/fUelYpG41ZOYeiEeChYwgrWR+vZho9ILsR75QaqmfX2KvitsqpO+XXaqzgzoL3FzUoYc9b790RtEJAmp0IRjpbquE2svxVIzwum01EsUjTEZ4yHtGipwSJWXzs6YomOjDFAQSfOERjP150SKQ6UmoW86syXVopeJ/3ndRAeXXspEnGgqyPyjIOFIRyjLBA2YpETziSGYSGZ2RWSEJSbaJFcyIbiLJ/8lrbOq61Tdxnm5dpXHUYQDOIIKuHABNbiBOjSBwD08wjO8WA/Wk/Vqvc1bC1Y+sw+/YL1/AehBmME=</latexit>

Figure 4.2: Actor-Expert with an Actor learning a bimodal Gaussian mixture.
The Actor learns the conditional mixture distribution πw(·|St) parameterized
with coefficients ci, means µi an diagonal covariances Σi. Such multimodal
stochastic Actor provides a natural exploration mechanism to gather data for
the Expert. The Expert learns the action-value function Qθ(St, At), where the
action comes in through late fusion.

We conclude with a description of the actual implementation of Actor-

Expert using CCEM. Figure 4.2 depicts an example architecture of Actor-

Expert. The Actor and the Expert share the first neural network layer to

learn a shared representation of the state, and learn separate functions con-

ditioned on that state. Here we could have used separate networks for Actor

and Expert, but chose to merge the two networks to reduce the number of

parameters to closely match other value-based baseline methods.

The Actor parameterizes the policy using a Gaussian mixture model. To

prevent the diagonal covariances Σ from exploding or vanishing, we bound
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it between [e−2, e2] using a tanh layer. To obtain the approximate maximal

action from the Actor, we simply use the mean with the highest coefficient.

The generic Actor-Expert algorithm shows online updates for each new sample,

but experience replay can be easily incorporated storing observed data and

updating with mini-batches from the buffer at each time step. The update

to Qθ is generic, and can incorporate modifications to Q-learning, like target

networks. We do not, however, use target networks for updating πw.

4.4 Relationship to Other Algorithms with Ex-

plicit Policies and Action-values

In previous sections we have described the Actor-Expert objective and frame-

work, along with an instance of Actor-Expert using Conditional Cross Entropy

Method. Here we explain its distinction with other methods that also learn

an explicit value function and a policy.

Soft Q-learning (SQL) mentioned in Chapter 3 explicitly learns a policy to

sample actions proportional to the soft action-values (Haarnoja, Tang, et al.

2017), while the approximate optimal action-value function is learned using

the soft optimal bellman operator avoiding the hard maximization problem.

Follow-up work on Soft Actor-Critic (SAC) (Haarnoja, Zhou, et al. 2018)

uses policy iteration, where the action-value function for the current policy is

learned using soft Sarsa algorithm.2

Both SQL and SAC maintain an explicit policy that learns the distribu-

tion proportional to their learned soft action-values. They minimize the KL

divergence between the parameterized policy and the energy distribution of

their action-value function. The energy distribution would concentrate around

high-valued actions, and consequently the Actor for SQL and SAC would also

concentrate around high-valued actions similar to the Actor-Expert. How-

ever, the policies are inherently tied to the energy distribution with the level

of concentration determined by the temperature parameter in their soft value

2The algorithm is unlike most Actor-Critic algorithms because it does not attempt to
approximate the policy gradient. Rather, it is a Sarsa algorithm that learns an explicit pa-
rameterized policy to simplify the greedification step when learning with continuous actions.
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updates. The proportionally sampled action from SQL can be a poor approx-

imation of the maximizing action. Actor-Expert on the other hand allows for

any policy that optimizes JAE in Eq. 4.1.

SQL is closer to the Actor-Expert framework than SAC in that SQL at-

tempts to learn the approximate soft optimal action-value while SAC learns

action-value for the current policy. However both methods optimize for the

entropy regularized objective; in some cases the optimal solution may be the

same as the original objective but unlikely to hold in general.

There are several Actor-Critic methods that use (approximate) Q-learning

updates, making the algorithms look similar to Actor-Expert algorithms, such

as Deterministic Policy Gradient (DPG) (Silver et al. 2014) and NFQCA

(Hafner et al. 2011). They are both policy gradient methods, but because

the policy is deterministic, (a) the action-value update resembles a Q-learning

update and (b) the policy update changes the policy to output a higher-value

action according to its current action-values.

The Actor in DPG can be seen as an approximate maximizer, similar to

the Actor in Actor-Expert, as it executes gradient ascent on the action-values.

Because π is updated to output higher-valued actions, π has been regarded as

an approximate maximizer, and thus the policy evaluation step using At+1 =

π(St+1), as approximate Q-learning. Nonetheless, because the update still

uses the action generated by π directly, it is still better thought of as policy

evaluation — Sarsa — update. A variant of DPG using π(St+1) such that the

action from the policy and the maximal action for the action-value upate is

more decoupled, would make this more explicitly an approximate Q-learning

update.

Overall, most of these related methods are estimating Qπ for the action-

values, whereas our proposal in Actor-Expert is to explicitly consider action-

values that attempt to estimate the optimal action from a state, potentially

agnostic to the current policy. When approximations are introduced, or de-

terministic policies are learned, there can be some overlap in the methods,

despite different intents. The method that is most similar to the intent behind

Actor-Expert is SQL, because it explicitly uses a (soft) Q-learning update and
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learns a policy to take actions according to those action-values.

4.5 Conclusion

This chapter presented the Actor-Expert framework that facilitates the use

of Q-learning in continuous action spaces. Different from previous Q-learning

methods, the framework decouples action-value function and action-selection

by introducing a separate policy (Actor). This Actor optimizes a new policy

search objective different from conventional policy gradient objective, concen-

trating probability on high-valued actions based on the estimates given by

the Expert (action-value function). The framework also decouples the action-

values learned from the policy, so that a more optimal action-value function

can be learned, potentially agnostic to the current policy. Using our proposed

Actor-Expert with CCEM, we provide empirical results to show its advantages

in the following chapter.
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Chapter 5

Experiment Setup

In Chapters 6 to 9 we provide empirical results for previous Q-learning meth-

ods and Actor-Expert, as well as an investigation into choices in Actor-Expert.

In this chapter we provide details on the experimental setup, describing the

environments and algorithms used in the experiments. We design a toy envi-

ronment to highlight issues with restricting the action-value function. We also

evaluate all methods on four higher-dimensional benchmark environments, to

validate that Actor-Expert performs comparably to other methods in more

complex problems.

5.1 Environments

We first design a bimodal toy environment to highlight the limitation of re-

stricting the functional form of action-values. This toy environment has a

single state S0 and a ⊂ [−2, 2], where the true q∗—shown in Figure 5.1—is a

function of two radial basis functions centered at a = −1.0 and a = 1.0, with

an unequal reward of 1.0 and 1.5 respectively. This is a bandit setting with a

single state, so the true optimal action-value function is equal to the expected

reward.

For high-dimensional benchmark domains, we use one environment from

OpenAI Gym (Brockman et al. 2016)—Pendulum—and three environments

from MuJoCo (Todorov et al. 2012)—HalfCheetah, Hopper and Ant. The

environment properties are summarized in Table 5.1. All domains are episodic,

with discount factor γ = 0.99.
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Figure 5.1: Optimal Action-values for the Bimodal Environment.

Environment
State
dim.

Action
dim.

Action
range

Description

Pendulum
(version v0)

3 1 [-2,2] The goal of the agent is to swing the pendu-
lum up to the top and stay upright, spending
least amount of energy.

HalfCheetah
(version v2)

17 6 [-1,1] The goal of the agent is to move forward as
much as possible with a cheetah-like figure.

Hopper
(version v2)

11 3 [-1,1] The goal of the agent is to move forward as
much as possible with a monoped figure.

Ant
(version v2)

111 8 [-1,1] The goal of the agent is to move forward as
much as possible with an ant-like quadroped.

Table 5.1: Benchmark Environment descriptions.

5.2 Algorithms

We compare against several Q-learning algorithms designed for continuous

actions, including QT-Opt, Wire-Fitting, NAF, PICNN, and Soft Q-learning.

We also evaluate other algorithms that learn both value function and policy —

namely Actor-Critic algorithms: DDPG, Actor-Critic, and Soft Actor-Critic.

These Actor-Critic algorithms are mainly included as baselines, providing some

preliminary insights into Actor-Expert compared to Actor-Critic. The main

goal of these experiments is to compare the utility of Actor-Expert compared

to other methods based on Q-learning.

For exploration, we use two different approaches, depending on whether the

method has a stochastic exploration policy mechanism. QT-Opt, NAF, Actor-

Critic, and Soft Actor-Critic have their own stochastic exploration mechanism.
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For all other methods without a stochastic exploration policy mechanism like

PICNN, Wire-fitting, Soft Q-learning, and DDPG, we add time-correlated

OU noise (Lillicrap et al. 2016; Wawrzyński 2015) to the greedy action for

exploration. OU noise is temporally correlated stochastic noise generated by

Ornstein-Uhlenbeck process (Uhlenbeck et al. 1930). We set the parameters

in the process to µ = 0.0, θ = 0.15, σ = 0.2.

5.2.1 Q-learning methods

QT-Opt (Kalashnikov et al. 2018): Unlike Actor-Expert, QT-Opt uses Cross

Entropy Method to rather simply resolve the maximization from scratch at

each step. Greedy action is obtained by executing two iterations of Cross

Entropy Method with 64 samples on the action-values and fitting a Gaussian

policy to the top 10%. This method provides a useful baseline to gauge if the

Conditional CEM algorithm provides benefits, or if the main benefit is simply

from using a CEM approach. The original work fits a unimodal Gaussian

policy, but we also try fitting a bimodal Gaussian mixture policy to match

Actor-Expert.

Wire-fitting (Baird and Klopf 1993; Gaskett et al. 1999): Action-values

are restricted by the number of action control points. We use 100 action control

points for the Bimodal Environment and 1000 for Benchmark domains. Greedy

action is selected by finding the maximal action among the control points.

OU noise is used for exploration instead of epsilon-greedy used in the original

paper.

Normalized Advantage Function (NAF) (Gu, Lillicrap, Sutskever,

et al. 2016): Action-values are restricted as a quadratic concave function.

Maximal action µ(s) is implicitly found as a closed-form solution through this

constrained action-value function. Exploratory action is selected by sampling

from a Gaussian with the learned mean µ(s) and learned covariance Σ(s), with

initial exploration scale swept in {0.1, 0.3, 1.0}.
Partially Input Convex Neural Networks (PICNN) (Amos et al.

2017): Action-values are restricted to be concave with respect to actions.

Without an explicit policy nor a closed-form solution for maximal action, the
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greedy action is obtained by five iterations of bundle entropy method (approx-

imate gradient ascent) from a randomly initialized action as suggested in the

original paper. For exploration we use OU noise.

Soft Q-learning: This is an Actor-Expert-like method that optimizes a

different entropy regularized objective. Greedy action is obtained by sampling

from its policy which is proportional to its learned soft action-values. The

action-values are learned via Soft optimal Bellman updates, and the tempera-

ture is subsumed into the reward according to the paper. Hence we sweep over

reward scale factors of {1, 10, 100, 1000}. We use 30 samples for the empirical

estimate of soft values and SVGD update, to match the sampling process in

Actor-Expert. OU noise is used for exploration.

Actor-Expert/Actor-Expert+: We test two versions of Actor-Expert,

Actor-Expert using the Quantile Empirical Distribution (Alg. 2) and Actor-

Expert+ using the Optimized Quantile Empirical Distribution (Alg. 3). We

use a bimodal Gaussian mixture for both Actors, with N = 30 and ρ = 0.2

for Actor-Expert and N = 10 and ρ = 0.6 for Actor-Expert+. For benchmark

environments, it was even effective—and more efficient—for Actor-Expert+ to

sample only 1 action (N = 1), with ρ = 1.0.

To select the maximal action in Actor-Expert using πw, we used the sim-

ple heuristic of selecting the mean with the highest coefficient in the Gaussian

mixture. We found this choice was sufficient in these experiments, without

needing to more carefully use πw to find the maximum. We provide some

empirical justification later in Chapter 9. Note that this choice only disadvan-

tages Actor-Expert, and none of the competitors. Future experiments with

Actor-Expert could investigate improved strategies for using πw to find the

maximal action.

5.2.2 Actor-Critic methods

Actor-Critic: We use the variant Actor-Critic update defined in Eq. (2.12),

except by using Eπ[Qπ(s, A)] as an estimate of V π
θ (s) for the Actor update. We

use a sampled average 1
n

∑n
i=1Q

π(s, ai) to approximate Eπ[Qπ(s, A)], where ai

is sampled from the current policy πw, and n = 30.
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Using the off-policy objective (Eq. (2.9)) also enables us to use experience

replay to match the sample-efficiency of q-learning methods, though techni-

cally the policy gradient under off-policy sampling is no longer correct (De-

gris, White, et al. 2012). Action-values are updated using Sarsa1 on transition

(St, At, Rt+1, St+1), where action At+1 is sampled from πw(·|St+1) for the tar-

get in the update: Rt+1 +γQπ(St+1, At+1). The policy is updated by sampling

only states St from the buffer, and computing the gradient using an action

a sampled from the policy πw(·|s): ∇w log π(a|s)[Qπ(s, a)− 1
n

∑n
i=1Q

π(s, ai)].

The exploratory action is taken by sampling from the policy.

Deep Deterministic Policy Gradient (DDPG)(Lillicrap et al. 2016):

This Actor-Critic method learns a deterministic policy, and its output is se-

lected as the greedy action. The policy is updated using a deterministic policy

gradient theorem (Silver et al. 2014), and the action-values for this policy is

learned by using Rt+1 + γQπ(St+1, π(St+1)) as target. OU noise is used for

exploration.

Soft Actor-Critic(Haarnoja, Zhou, et al. 2018): Similar to Soft Q-learning

(Haarnoja, Tang, et al. 2017) this method also optimizes an entropy regular-

ized objective. But Soft Actor-Critic learns the action-values of the current

policy, and instead of learning an approximate sampling network for the en-

ergy distribution, a Gaussian stochastic policy is learned by minimizing the

KL divergence to the energy distribution. A Gaussian mixture policy could

also be learned, but we follow the original paper where it chooses to learn the

Gaussian policy to update the policy with a lower variance estimator using the

reparameterization trick. Soft Actor-Critic learns a total of three networks:

Qπ, Vπ and π, where Vπ is learned to stabilize learning. We however do not

employ other techniques used to improve performance, such as learning two

Q-functions. We subsume the temperature parameter into the reward, and

sweep over reward scale factors of {1, 10, 100, 1000}. Like Actor-Critic, we

also sample from the policy to take exploratory actions.

1Though typically used on-policy, Sarsa can be used for off-policy policy evaluation by
simply sampling At+1 ∼ πw(·|St+1) for the update, but not in the environment. See (Sutton
and Barto 2018, Section 6.6) for more details.
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5.3 Experimental Settings

Agent performance is evaluated every n steps of training, by executing the cur-

rent policy without exploration for 10 episodes. We use offline performance

evaluation, because Q-learning learns the optimal policy off-policy. The per-

formance is averaged over 30 runs for the Bimodal Environment and Pendulum

Environment, and 10 runs for other benchmark environments, with different

fixed seeds for each run.

We sweep over learning rates – policy: {1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-

3, 1e-2}, and action-values: {1e-3, 5e-3, 1e-2, 5e-2, 1e-1, 5e-1, 1e0}, and

other relevant hyperparameters for each agent. For higher benchmark do-

mains (HalfCheetah, Hopper, and Ant) we do a coarser sweep over learning

rates – policy: {1e-3, 1e-4, 1e-5}, action-values: {1e-2, 1e-3, 1e-4}, as ex-

haustive parameter sweep is computationally expensive. Best hyperparameter

settings for all agents are reported in Appendix A.

All agents use a neural network of two layers with 200 hidden units each,

ReLU activations between each layer and tanh activation for action outputs.

To allow fair comparison to Q-learning methods with similar number of param-

eters, the two networks in the Actor-Expert share the first layer, and branch

out into two separate layers as described in the earlier chapter. When compar-

ing to Actor-Critic methods with two separate networks, we also separate the

networks for the Actor and the Expert to match the number of parameters.

All agents use an experience replay buffer and target networks, as is com-

mon when using neural networks for function approximation. We use a mini-

batch size of 32, with buffer size = 106 and soft target network update(τ =

0.01).

5.4 Conclusion

In this chapter we described the environments and the algorithms to be eval-

uated in detail. In the following three chapters we will present our empirical

results.
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Chapter 6

Comparison in the Bimodal
Environment

In this chapter, we compare algorithms in the toy Bimodal Environment intro-

duced in the previous chapter. We first compare among Q-learning methods,

and then provide results for algorithms learning both value-functions and poli-

cies.

6.1 Comparison of Q-learning methods

The Bimodal Environment has a single optimal action, so Q-learning should

be able to find the optimal policy that selects this action. Despite this, a

Q-learning agent could fail to find this optimal policy if its action-values are

restrictive. Such action-values will be incapable of representing true action-

values, and may either converge to a poor approximation that tries to balance

error for these two regions or will continue to oscillate between the two regions.

We hypothesize then, that the Q-learning agents that put such restrictions on

the action-values will often fail in this environment.

We plot the average performance of the best setting for each agent over 30

runs, in Figure 6.1. Actor-Expert methods (Actor-Expert and Actor-Expert+)

converged most reliably and quickly to the optimal policy, and having a bi-

modal policy seemed to perform slightly better than a unimodal policy. Actor-

Expert+ performance was affected more when using a unimodal policy. All

the methods that restrict the functional form for action-values failed in many
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Figure 6.1: Q-learning methods evaluated on the Bimodal Environment. Each
faded line represents one run while the dark line represents the average. Note
that the restriction on action-value was critical, while Actor-Expert methods
with bimodal policy performed well. As long as the action-values can be ac-
curately learned, the policy can concentrate density around the single optimal
action without being skewed by the suboptimal high-value region. QT-Opt
and Wire-Fitting converged reliably to either optimal or suboptimal policy.
Soft Q-learning was an exception however, and this may have been due to
stochastic greeady action-selection process, proportional to its action-values.

runs. NAF and PICNN struggled to converge to neither the optimal nor sub-

optimal policy, resulting in much worse performance. When PICNN and NAF

start to increase value for one action center, they necessarily have to decrease

the action-values around the other action center because the action-values are
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concave. Consequently, when the agents explore and observe higher reward

for an action than they predict, it can skew the action-value estimates.

This was particularly visible for NAF with initial exploration scale=1.0.

Due to large exploration, the agent sees both large rewards and tries to fit

a large quadratic function encompassing both, resulting in the maximal ac-

tion centered around action=0.0 with reward 0.0. For smaller exploration

scale=0.1, the limited exploration allows the agent to converge more often to

either of the action centers, sometimes finding the optimal action and some-

times finding the suboptimal action. Oscillation behavior between the two

action centers was not observed, because the agent learns not through purely

online samples but through experience batches from the replay buffer.

For PICNN, the agent did not seem to robustly converge to either optimal

or suboptimal actions even though it has a more general functional form than

NAF. From our own visual observation of the videos of the learned action-

values over time, the action-values do manage to center around the optimal

action for some runs. But even in these ideal runs, the action-values were

quite pointed and as a result, the optimization over actions oscillated around

the maximal action. It is nonetheless clear that PICNN suffers from restricted

action-values, because in about half of the runs, it settled around the subop-

timal action.

Soft Q-learning is capable of learning correct soft action-values but it failed

to stably converge to a good policy. Soft Q-learning learns a sampling network

that learns to sample actions proportional to the learned action-value energy

distribution. Actions sampled from this sampling network is taken as the

maximizing action. Thus, the greedy action-selection is stochastic and also

depends on whether there are suboptimal actions that also have high action-

values. Furthermore, on certain runs we observed only a single peak in the

learned soft action-value function. We hypothesize this is due to using a limited

exploration strategy of adding OU noise to the greedy action, making it more

likely to miss a better state-action.

Wire-Fitting and QT-Opt were also capable of correctly modeling action-

values, but both surprisingly converged to the suboptimal policy quite often.
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Figure 6.2: Evaluating the effects of exploration on the Bimodal Environ-
ment. Performance degradation is observed for using OU noise instead of the
stochastic policy for exploration, but it is minor compared to the effect of
restricting the action-values.

This may also be due to the lack of efficient exploration mechanism, particu-

larly using OU noise rather than having an explicit stochastic Actor in Wire-

Fitting or learning an Actor per-step using CEM, rather than across steps

in QT-Opt. To test this hypothesis, we run additional experiments to better

separate the effects of restricting the functional form of the action-values and

the type of exploration used.

In Figure 6.2, we test variants of Actor-Expert, using OU noise or combin-

ing with restricted action-values. We also include QT-Opt with OU noise and

an idealized Q-learning agent (Optimal Q-learning), where we discretize the

action space finely (in increments of 0.001) and evaluated all action values to

find the exact maximal action-value/action at each time step. The action-value

function is parameterized by a neural network, with architecture identical to

other methods. This idealized agent removes confounding factors in restricting

actions and in finding optimal actions, and just reflects any issues with OU

noise exploration.

The performance is worse when Actor-Expert uses OU noise for explo-

ration, but for the majority of runs it still converges to the optimal policy.

Once we use a restricted action-value for Actor-Expert, by using the same net-

work architecture as PICNN for the action-values, then performance becomes

almost as bad as PICNN. Furthermore, even the ideal Optimal Q-learning
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failed to learn the optimal policy for all runs, due to local exploration with

OU-noise.

There are several other interesting points, in addition to this main outcome.

Actor-Expert outperforms QT-Opt, either when selecting actions from the

stochastic actor or when using OU-noise for exploration. This validates the

utility of learning the maximizer with CCEM, rather than re-optimizing with

CEM on each step.

This experiment has shown that having a stochastic policy for exploration

is helpful. We perform further analysis into this when we compare Actor-

Expert methods with other methods that learn both value function and policy

in the later sections.

So far these results overall suggest that it is both useful to have a more

general form for the action-values and an explicit Actor for exploration.

6.2 Comparison of Methods that Learn Both

a Value-function and a Policy

In this section, we provide a comparison between Actor-Expert methods and

Actor-Critic methods. These methods all learn both a value-function and a

policy, and can shed light on the differences between Actor-Expert and Actor-

Critic methods. As mentioned earlier, for this comparison we do not use

the branching architecture of Actor-Expert and use separate networks for the

Actor and the Expert to keep the number of parameters as similar as possible.

In Figure 6.3 we observe that Actor-Expert methods converge more often to

optimal action-values while other methods do not. Methods with a stochastic

action-selection during evaluation (Actor-Critic, Soft Actor-Critic, and Soft

Q-learning) seemed to be especially noisy and have worse performance than

methods with deterministic action-selection during evaluation. DDPG has

a deterministic policy and converged stably, to either the optimal action or

suboptimal action.

Actor-Critic performed worse than Actor-Expert and was noisy. The per-

formance seemed to be particularly sensitive to the bounds of its variance.
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Figure 6.3: Evaluating methods that learn both value-function and policy on
the Bimodal Environment. Actor-Expert methods converge robustly while
other methods do less so. Methods that use a deterministic action-selection
during evaluation seem to do better than those that use stochastic action-
selection.

Even when the action-value is peaked around the optimal action and the pol-

icy correctly tracks it, during evaluation the action sampled from the policy

can be far from the optimal action, leading to an average reward of less than

1.5. For Actor-Critic and Soft Actor-Critic in this Bimodal Environment we

allowed a lower variance bound with a wider range: [e−4, e4] in order to obtain

better performance. There was little difference in using unimodal or bimodal

policy for Actor-Critic and Soft Actor-Critic.
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6.3 Hyperparameter Sensitivity to Learning

Rates

In this section, we provide analysis of sensitivity to learning rate parameter for

each methods. Hyperparameter sensitivity curve shows how robust a method is

to changes in hyperparameters. For the range of learning rate that we sweeped

over, we select other hyperparameters with the best result. In Figure 6.4 we

plot sensitivity curve of action-value learning rate for Q-learning methods.

Actor-Expert methods, QT-OPT, and OptimalQ do not have pointed peaks,

indicating they are less sensitive and perform equally well for a larger range

of action-value learning rates. Other methods like WireFitting, NAF, Soft

Q-learning, and PICNN seemed more sensitive to action-value learning rates.

In Figure 6.5 we plot action-value and policy learning rates for Actor-

Expert and Actor-Critic methods. Most methods seemed less sensitive to

action-value learning rates. For policy learning rates, most methods preferred

learning rates between range 5e−4 and 5e−3, while Soft Q-learning performed

the best with a low policy learning rate.
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Figure 6.4: Sensitivity curve for action-value learning rates. Actor-Expert
methods, QT-Opt, and OptimalQ seemed less sensitive to action-value learning
rates.

39



Learning Rate

Action-value Learning Rate 
(Actor-Expert/Critic methods)

1.5

Avg. Return
Per 

Episode

1e-3 5e-3 1e-2 5e-2 1e-1 5e-1 1e0

1.25

1.0

0.75

0.5

0.25

0.0

Learning Rate

Policy Learning Rate 
(Actor-Expert/Critic methods)

1.5

1e-5 5e-5 1e-4 5e-4 1e-3 5e-3 1e-2

1.25

1.0

0.75

0.5

0.25

0.0

Soft Q-learning

Actor-Critic

Soft Actor-Critic

DDPG

Actor-Expert+ Actor-Expert

Actor-Expert+

Actor-Expert

DDPG

Soft Q-learningActor-Critic

Soft Actor-Critic

Figure 6.5: Sensitivity curve for action-value and policy learning rates. Soft
Q-learning prefers much smaller policy learning rate than other methods.

6.4 Conclusion

In this chapter, we presented experimental results in the Bimodal Environemnt.

We found that restricting action-value functions can be detrimental and often

lead to suboptimal performance. Having a stochastic Actor policy also helped

with exploration, which many previous Q-learning methods lack. Actor-Expert

however, does not constrain the action-value function and has a stochastic

Actor policy that allowed it to almost always learn the optimal policy. Fur-

thermore, Actor-Expert converged more reliably to the optimal policy than

QT-Opt, validating that Conditional CEM seems more effective as well as be-

ing efficient than performing CEM at each step. We also provided sensitivity

analysis on the learning rates, validating the sweep range as well as looking at

how sensitive each method was to its learning rates.
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Chapter 7

Comparison in the Pendulum
Environment

In this chapter we move from the previous bandit setting and compare al-

gorithms in a reinforcement learning setting on the Pendulum environment.

Each episode terminates after 200 steps. We perform the same hyperparam-

eter sweeps and 30 runs. The results are smoothed over a moving window

average of size 10.

7.1 Comparison of Q-learning methods

Comparison of Q-learning algorithms is shown in Figure 7.1. Wire-fitting is

omitted from these plots, as it performed poorly on Pendulum.

Most Q-learning algorithms performed well in this domain, except for

PICNN which seemed to converge to a suboptimal policy and Soft Q-learning

which failed to learn a good policy.

NAF and PICNN which restrict action-value function performed well, which

might indicate that the true action-value function happen to match this pa-

rameterization and is unimodal. We hypothesize that Soft Q-learning did not

perform well because this environment requires precision and stochasticity is

harmful.
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Figure 7.1: Comparison of Q-learning methods and Actor-Expert evaluated on
Pendulum environment. Results are averaged over 30 runs and smoothed over
a moving window average of size 10. The shaded region represents standard
error.

7.2 Comparison of Methods that Learn Both

Value-function and Policy

Next we provide a comparison between Actor-Expert methods and Actor-

Critic methods, methods that learn both value-function and policy, shown in

Figure 7.2.

All Actor-Critic methods (DDPG, Actor-Critic, and Soft Actor-Critic) do

not reach the same level of performance as Actor-Expert methods by the end of

training. Furthermore they tend to exhibit larger standard error than Actor-

Expert methods.

Interestingly, Soft Q-learning and Soft Actor-Critic performed similarly

worse, and we again believe it is due to their preference of stochasticity when

optimizing an entropy-regularized objective.

7.3 Hyperparameter Sensitivity to Learning

Rates

In this section we provide similar hyperparameter sensitivity analysis in Pen-

dulum environment. Figure 7.3 shows the sensitivity curve for action-value

learning rates in Q-learning methods. All methods except Soft Q-learning
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Figure 7.2: Comparison of Actor-Expert methods with Actor-Critic methods
on Pendulum environment, smoothed over a moving window average of size
10. The shaded region represents standard error.

showed similar sensitivity. For NAF, better performance may have been ob-

tained by using an action-value learning rate lower than 1e− 3.

Figure 7.4 shows the sensitivity curve for action-value and policy learning

rates in Actor-Expert and Actor-Critic methods. Both Soft Q-learning and

Soft Actor-Critic showed different sensitivity curve from rest of the methods

and seemed to be less sensitive to learning rate hyperparameters, but then

their performances were quite worse compared to other methods.

Compared to sensitivity curve in Bimodal Environment, all methods seemed

to favor lower learning rates, likely due to higher dimensional state space and

environment complexity.

7.4 Conclusion

In this chapter we presented results on Pendulum environment, extending our

comparison of methods from the bandit setting to a reinforcement learning set-

ting. Actor-Expert methods performed well compared to all other methods,

especially compared to Actor-Critic methods. Q-learning methods mostly con-

verged to the optimal policy, even methods that also restricted the action-value

function. The true action-value function may have been unimodal and easy

to solve; in the next chapter we run experiments on even higher-dimensional
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Figure 7.3: Sensitivity curve for action-value learning rates in Q-learning meth-
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Figure 7.4: Sensitivity curve for action-value and policy learning rates in
Actor-Expert/Critic methods.

benchmark environments to further validate Actor-Expert methods.
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Chapter 8

Demonstration in Benchmark
Environments

In this chapter we compare algorithms in three additional higher-dimensional

continuous action space environments. For these domains, hyperparameter

sweeps and runs become more computationally expensive. In HalfCheetah,

Hopper, and Ant environment we do coarser learning rate sweeps with 10

runs. Similar to Pendulum the results are smoothed over a moving window

average of size 10. We also include previous results in Pendulum in the plots

for better overview. The results for these three additional higher dimensional

environments serves to provide a sanity check that Actor-Expert scales and

suggest its competitiveness.

8.1 Comparison of Q-learning methods

We evaluate Q-learning algorithms, with results shown in Figure 8.1. Actor-

Expert methods (Actor-Expert and Actor-Expert+) perform consistently well

across all environments. Other methods that perform well in one environment

does not perform as well in other environments.

NAF and PICNN have the poorest performance. NAF converges to a

good policy only in Pendulum, and performs poorly in other environments

and especially suffers in Hopper and Ant. PICNN learns slowly and seems to

learna suboptimal policy in Pendulum, and otherwise is generally only better

than NAF and similar to QT-Opt.
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Figure 8.1: Comparison of Q-learning methods and Actor-Expert evaluated
on benchmark environments. Results are smoothed over a moving window
average of size 10. The shaded region represents standard error.

Of note is that we do not see the same instability in PICNN as we saw

in Bimodal environment. This may be because for locomotion environments

like HalfCheetah, Hopper, and Ant, precision is not necessary and selecting

approximately good actions is enough to achieve reasonable performance, or

because the action-values were less pointed for these environments.

Soft Q-learning although suffering in Pendulum, does surprisingly well in

other environments. This could also be because locomotion environments do

not require precision and stochasticity induced by the entropy term can even

be desirable to learn a more robust policy.

Actor-Expert methods also consistently outperform or match QT-Opt,

again suggesting that using CCEM to learn a maximizer with CEM is more

effective than simply using CEM to approximate the maximal action on each

step. This provides some evidence that it is effective to learn a maximizer—an

Actor—using CCEM. It is possible that QT-Opt would match, or even out-

perform Actor-Expert given more optimization iterations of CEM in QT-Opt.

This would, however, significantly increase the computational complexity as

compared to Actor-Expert and likely be prohibitively expensive in higher di-
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Figure 8.2: Comparison of Actor-Expert methods with Actor-Critic methods
on benchmark environments, smoothed over a moving window average of size
10. The shaded region represents standard error.

mensional environments.

8.2 Comparison of Methods that Learn Both

Value-function and Policy

We also provide a comparison between Actor-Expert methods and Actor-Critic

methods, methods that learn both value-function and policy, shown in Figure

8.2.

Soft Q-learning and Soft Actor-Critic perform well in HalfCheetah but not

as much in other environments. They especially suffer in Pendulum which

we hypothesize is due their preference of stochasticity when the environment

requires precision.

Actor-Critic performs well only in Pendulum, while failing to learn as good

policy in other domains. We hypothesize that one of the reasons Actor-Expert

outperforms Actor-Critic is that during evaluation Actor-Critic selects action

sampled from its stochastic policy, whereas Actor-Expert selects a determinis-

tic greedy action (of taking the mean with the higher coefficient). This suggests
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that a stochastic Actor for exploration is useful but that a deterministic pol-

icy during execution can obtain better performance, which was also observed

in the previous bimodal environment. This is further supported by DDPG

outperforming Actor-Critic in all environments.

8.3 Conclusion

In this chapter we presented experimental results on benchmark environments,

suggesting the competitiveness of Actor-Expert compared to other methods.

Compared to previous Q-learning methods Actor-Expert consistently performs

well in all environments. Compared to other methods with both value-function

and policy similar conclusion was drawn, with additional insight that using a

deterministic policy for evaluation seems to perform better than methods with

a stochastic policy. The results suggest that the Actor-Expert framework can

be valuable in exploring approximate Q-learning methods in continuous action

spaces. However, further investigation is still required to discern the differences

in learning Q∗ and Qπ.
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Chapter 9

Investigating Particular Choices
in Actor-Expert

In this chapter, we provide more experimental analysis of Actor-Expert meth-

ods. We first justify our choice of using the mean of the Gaussian as a heuristic

to estimate the maximizing action. Then we compare the effect of sharing the

representation layer. Lastly, we explore ways to improve Actor-Expert by

augmenting the CEM update in the Actor.

9.1 Using the Mean of the Gaussian as the

Estimate for Maximizing Action

Here we provide justification on using the mean of the Gaussian with the higher

mixing coefficient as a heuristic for obtaining the maximizing action in Actor-

Expert. We compare our results on Pendulum and HalfCheetah. Maximizing

action-value and its corresponding action is needed in two occasions: during

Q-learning update and during evaluation. To assess whether using the mean

of the Gaussian with the higher mixing coefficient is sufficient, we performed

maximum 10 gradient ascent steps from the mean to find a better action-value

target and its action. The result is shown in Figure 9.1.

We strongly controlled the seeds during the run, and thus there is little

randomness in the transitions except through different action-selection by the

agent. For both environments, the error bars overlap and there is no significant

difference between using gradient ascent and not using gradient ascent during
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Figure 9.1: Actor-Expert with better maximizing action and target action-
value. We compare the effect of using a better maximizing action/action-value
by performing gradient ascent during the Q-learning update and evaluation.

the Q-learning update or evaluation. Overall, we can only conclude that there

is little gain when performing expensive gradient ascents to obtain a better

maximizing action. Simply taking the mean can be a viable alternative to

obtaining a reasonable maximizing action.

In our previous experiments with methods that learn both action-values

and a policy, we had observed that methods with a stochastic action-selection

for evaluation(Actor-Critic, Soft Actor-Critic, Soft Q-learning) perform worse

than methods with a deterministic action-selection (Actor-Expert, DDPG).

To test this further, we evaluate Actor-Critic and Soft Actor-Critic by taking

the mean of the parameterized Gaussian policy, serving as an estimate for the

maximizing action similar to Actor-Expert. For Actor-Critic we use bimodal

Gaussian mixture to match Actor-Expert so we take the mean with the higher

coefficient. The comparison is shown in Figure 9.2 and Figure 9.3. By using

the mean, Actor-Critic and Soft Actor-Critic perform much better, similar and

sometimes even better than Actor-Expert methods.

In Actor-Critic methods, evaluating actions should normally be selected

by sampling from the current policy as the action-value functions are learned

with respect to this policy. By taking the mean, the methods resemble Actor-

Expert more where the Actor merely helps to find the maximizing action. If

the action-values were to be learned from this maximizing action instead of

from the sampled actions it would become an Actor-Expert method.

The results in this section suggests that using the mean of the Gaussian pol-
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Figure 9.2: Comparison of Actor-Critic and Soft Actor-Critic taking samples
or taking the mean from the parameterized policy in Bimodal Environment
during evaluation.
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Figure 9.3: Comparison of Actor-Expert methods with Actor-Critic methods
(taking the mean during evaluation) on benchmark environments. The dot-
ted lines represent previous results of taking samples from the policy during
evaluation.

icy serves as a reasonable estimate of the maximizing action. Using the mean

for evaluation in Actor-Critic methods also greatly improved performance, sug-

gesting the benefit of using the Actor to aid in finding the maximizing action

rather than using the Actor directly.
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9.2 Effect of Sharing the Representation Layer

In previous experiments we had modified the architecture of Actor-Expert

methods to match the number of parameters when comparing against Q-

learning methods and Actor-Critic methods. In this section we check if there is

a noticeable performance difference due to changes in the architecture. In Fig-

ure 9.4, sharing the first layer seems to perform better in Pendulum, HalfChee-

tah, and Hopper while having a separate layer seems to perform better in Ant.

All in all, there does not seem to be a significant performance difference be-

tween the two architectures used.
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Figure 9.4: Actor-Expert sharing the representation layer or having a separate
layer.

9.3 Adding Uniform Sampling to the Cross

Entropy Method

Up to now, when using CEM, we have been using samples from the Actor.

CEM is a global optimizer that converges robustly to an optimum if there is

a non-zero probability of selecting each action in the action space. However

in practice, we parameterize the Actor with a Gaussian mixture, where the
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covariance matrix may not be large enough initially or shrink too quickly.

To mitigate this effect and help the Actor find the maximizing action more

robustly, we substitute 20% of the samples with uniform samples. The result

is shown in Figure 9.5, and we see some performance gains in Pendulum and

HalfCheetah, but not as much in Hopper and Ant. For other environments,

the total number of samples and the augmented uniform samples may not have

been enough to see the effect due to their high dimensionality.
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Figure 9.5: Actor-Expert augmented with uniform samples during the Cross
Entropy Method update.

9.4 Conclusion

In this chapter we investigated particular design choices in Actor-Expert and

analyzed its effects on performance. Using the mean of the Gaussian policy

seemed to be a reasonable alternative to approximate the maximizing action.

Sharing or separating the first layer also seemed to have similar performance.

Lastly, we found that adding uniform random samples in CEM provided small,

but mostly negligible gains. The results from this section validate our design

choices in implementing Actor-Expert.
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Chapter 10

Conclusion and Future Works

In this thesis, we have introduced a new framework called Actor-Expert, to

facilitate the use of Q-learning in continuous action spaces. Value-based meth-

ods such as Q-learning, have been traditionally difficult to apply to continuous

action spaces due to the hard optimization problem. Q-learning however of-

fers some advantages over policy-based methods such as high sample-efficiency

and use of off-policy samples. Previous value-based approaches for continuous

control have typically restricted the action-value form, discretized the action

space or used a different entropy-regularized reinforcement learning objective

to make the maximization over actions easier.

Actor-Expert presents a different solution by decoupling action-selection

from action-value representation. We introduce an Actor that optimizes a new

policy objective, learning to identify maximal actions for the Expert action-

values. This facilitates the use of Q-learning in continuous control, as the

agent can quickly select actions without having to solve a potentially expensive

optimization problem. The learned action-values are also decoupled from the

learned policy, allowing the agent to learn optimal action-values, less reliant

on the policy. We have also developed a practical instance of the Actor-Expert

framework, by introducing a Conditional Cross Entropy Method to iteratively

find greedy actions conditioned on states.

We then showed from empirical experiments that it can be problematic to

restrict the action-value function, with failure from Q-learning methods using

constrained action-value function to learn non-unimodal action-values. We
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also found that having a stochastic policy Actor helped with exploration, that

many previous Q-learning methods lacked. Actor-Expert methods are able to

robustly find the optimal policy even when the true action-value function is

bimodal, and perform as well as or better than previous Q-learning methods

in several benchmark environments.

Overall, our results provide evidence that Actor-Expert with CCEM is

a promising strategy for using Q-learning in continuous action spaces. It can

learn to select greedy actions for multimodal action-values and provides a more

effective exploration mechanism by sampling from its resulting distribution

without any external exploration parameters to tune.

We also compared against methods that learn both the value function and

policy. Most of the known methods belong to a class of policy-gradient meth-

ods called Actor-Critic methods, and we showed that Actor-Expert performs

comparably. During evaluation, modifying the Actor-Critic methods to take a

deterministic action by using the mean as the approximate maximizing action

improved performance as well.

Like the Actor-Critic framework, we hope for the Actor-Expert framework

to facilitate further development in optimizing our proposed policy objective.

The separation into an Actor and a Critic enabled the two components to be

optimized in a variety of ways, facilitating algorithm development. Actor can

incorporate different update mechanisms to achieve better sample efficiency

(Kakade 2001; Mnih et al. 2016; Peters et al. 2008; Wu et al. 2017) or stable

learning (Schulman, Levine, et al. 2015; Schulman, Wolski, et al. 2017). Critic

can be used as a baseline or control variate to reduce variance (Greensmith

et al. 2004; Gu, Lillicrap, Ghahramani, et al. 2017; Schulman, Moritz, et

al. 2016), and improve sample efficiency by incorporating off-policy samples

(Degris, White, et al. 2012; Lillicrap et al. 2016; Silver et al. 2014; Wang et al.

2017). Preliminary comparison between Actor-Critic methods suggested that

with more improvements Actor-Expert methods can outperform Actor-Critic

methods. We hope our framework can spur more research into development

of better Actor-Expert algorithms and exploring further benefits of Q-learning

in continuous action spaces.
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Our Actor-Expert framework also suggests that the key distinction for con-

trol algorithms is learning Q∗ or Qπ. Typically, a separation is made between

value-based (Q-learning) methods and policy-based methods. This separation

however, becomes grey, particularly with methods like Actor-Critic that use

both parameterized policies and parameterized values. Introducing a param-

eterized policy (Actor) into Q-learning methods provides another point in a

spectrum between value-based and policy search methods, further undermin-

ing this distinction.

Instead, the new policy objective for the Actor in Actor-Expert highlights

that a potentially more important distinction between control algorithms is

whether the agent estimates the action-values of the current policy (Qπ) or the

action-values of the optimal policy (Q∗) — decoupled from the policy. Since we

can only do approximate Q-learning, we are technically not learning the action-

values of the optimal policy, but a policy in between. Any estimate of the

action-values — as long as it is decoupled from the policy — is in fact sufficient

to fit into our framework. This distinction has of course featured prominently

when distinguishing Q-learning and Sarsa wihin value-based methods; here we

suggest this remains the key distinction even when moving to learning explicit

policies. In our current approach we provide a heuristic in using the mean

with the highest coefficient to approximate the maximal action.

In our future work, within the Actor-Expert framework, we hope to explore

better alternatives to approximate the maximizing action, and different ways

to update the Actor. In our instance of Actor-Expert, one limitation is that

the quality of performance is closely related to the number of samples used

in the updates. As the dimensions scale, there would be more computational

burden to perform the Actor updates. Fortunately, with the introduction of a

separate Actor, the action-selection process is unaffected and is still efficient

during evaluation.

Actor-Expert framework also suggested that the new distinction is in learn-

ing a decoupled action-value function, similar to Q-learning and Sarsa. Ex-

ploring how Expected Sarsa fits into the spectrum could also be an interesting

direction to explore.
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Appendix A

Experiment Best
Hyperparameters

In this section we report the best hyperparameter settings for the evaluated

environments. We swept over policy (Actor) learning rate, action-value (Ex-

pert/Critic) learning rate, and other algorithm specific parameters.

Algorithm Actor LR Expert/Critic LR Others

Actor-Expert (together) 5e-3 5e-2 -
Actor-Expert (separate) 1e-3 1e-1 -
Actor-Expert+ (together) 5e-3 1e-1 -
QT-Opt - 1e-1 -
Actor-Expert (with PICNN) 1e-3 1e-2 -
PICNN - 5e-2 -
NAF - 1e-2 exploration scale (0.1)
Wire-fitting - 1e-1 control points (100)
Optimal Q - 1e-1 discretization (1e-3)
Soft Q-learning 5e-5 1e-1 reward scale (1000)
Actor-Critic (sample action) 5e-4 5e-2 -
Actor-Critic (mean action) 1e-3 5e-2 -
DDPG 5e-3 1e-1 -
Soft Actor-Critic (sample action) 1e-2 1e-1 reward scale (10)
Soft Actor-Critic (mean action) 1e-3 5e-1 reward scale (100)

Table A.1: Bimodal Environment
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Algorithm Actor LR Expert/Critic LR Others

Actor-Expert (together) 5e-4 1e-2 -
Actor-Expert (separate) 5e-4 5e-3 -
Actor-Expert+ (together) 5e-4 5e-3 -
Actor-Expert+ (separate) 1e-3 1e-2 -
QT-Opt - 5e-3 -
PICNN - 5e-3 -
NAF - 1e-3 exploration scale (1.0)
Soft Q-learning 5e-3 1e-1 reward scale (100)
Actor-Critic (sample action) 1e-3 1e-2 -
Actor-Critic (mean action) 5e-4 1e-2 -
DDPG 5e-4 1e-2 -
Soft Actor-Critic (sample action) 1e-2 1e-2 reward scale (10)
Soft Actor-Critic (mean action) 5e-5 1e-2 reward scale (10)

Table A.2: Pendulum

Algorithm Actor LR Expert/Critic LR Others

Actor-Expert (together) 1e-4 1e-3 -
Actor-Expert (separate) 1e-4 1e-3 -
Actor-Expert+ (together) 1e-4 1e-3 -
Actor-Expert+ (separate) 1e-4 1e-3 -
QT-Opt - 1e-3 -
PICNN - 1e-3 -
NAF - 1e-3 exploration scale (0.3)
Soft Q-learning 1e-4 1e-3 reward scale (10)
Actor-Critic (sample action) 1e-4 1e-3 -
Actor-Critic (mean action) 1e-4 1e-3 -
DDPG 1e-4 1e-3 -
Soft Actor-Critic (sample action) 1e-4 1e-3 reward scale (10)
Soft Actor-Critic (mean action) 1e-4 1e-3 reward scale (10)

Table A.3: HalfCheetah
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Algorithm Actor LR Expert/Critic LR Others

Actor-Expert (together) 1e-5 1e-3 -
Actor-Expert (separate) 1e-4 1e-3 -
Actor-Expert+ (together) 1e-5 1e-3 -
Actor-Expert+ (separate) 1e-5 1e-3 -
QT-Opt - 1e-3 -
PICNN - 1e-4 -
NAF - 1e-3 exploration scale (1.0)
Soft Q-learning 1e-4 1e-4 reward scale (1)
Actor-Critic (sample action) 1e-4 1e-3 -
Actor-Critic (mean action) 1e-5 1e-3 -
DDPG 1e-5 1e-3 -
Soft Actor-Critic (sample action) 1e-4 1e-3 reward scale (10)
Soft Actor-Critic (mean action) 1e-5 1e-3 reward scale (10)

Table A.4: Hopper

Algorithm Actor LR Expert/Critic LR Others

Actor-Expert (together) 1e-5 1e-3 -
Actor-Expert (separate) 1e-5 1e-3 -
Actor-Expert+ (together) 1e-4 1e-4 -
Actor-Expert+ (separate) 1e-5 1e-3 -
QT-Opt - 1e-3 -
PICNN - 1e-4 -
NAF - 1e-3 exploration scale (0.1)
Soft Q-learning 1e-3 1e-4 reward scale (100)
Actor-Critic (sample action) 1e-4 1e-3 -
Actor-Critic (mean action) 1e-5 1e-3 -
DDPG 1e-5 1e-3 -
Soft Actor-Critic (sample action) 1e-5 1e-4 reward scale (10)
Soft Actor-Critic (mean action) 1e-5 1e-3 reward scale (10)

Table A.5: Ant
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