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Abstract

Let G, H be locally compact groups and A(G) and B(H) be respectively the
Fourier algebra of G and Fourier Stieltjes algebra of H.

The first part of the thesis is dedicated to the study of completely bounded
algebra homomorphism of A(G) into B(H). It is shown that any such algebra
homomorphism can be described in terms of a piecewise affine map of a subset of
H into G, when (G and H are discrete groups with G amenable. This generalizes
a result of B. Host. As a consequence, for such G and H, a concrete description
of the range of a completely bounded algebra homomorphism of A(G) into A(H)
is obtained.

In the last part of the thesis we turn our attention to the Fourier algebras
associated to the coset spaces of a locally compact group G. For a compact
subgroup K of G, a description of the dual of A(G: K) is given. The natural
analogues of the spaces UBC(G), W(G), AP(G) in this new setting are defined.
We study the inclusion relationships that exist between these spaces. Their

behaviour with respect to the Arens product on their duals is also explored.
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Chapter 1
Introduction

This is a thesis in abstract harmonic analysis devoted to the study of properties
of the Fourier algebras, which are among the most important Banach algebras
arising from a locally compact group.

A topological group is a basic ingredient in abstract harmonic analysis. It
is born from the merging of an algebraic object, the group, with a topological
notion, a topology of our choice. To obtain a topological group, the topology
must be compatible with the group operation, which means that multiplication
and inverse taking are continuous operations. The topology we most often work
with is locally compact, and we call the group a locally compact group.

The algebras of functions associated to a locally compact group G are numer-
ous and intensely studied in harmonic analysis. Classical algebras of this type
are, for example, the group algebra, L!'(G) and the measure algebra, M(G). In
1964, P. Eymard introduced in [9] the non-commutative analogues of these two
algebras, namely the Fourier algebra, A(G), and the Fourier-Stieltjes algebra,
B(Q), of a locally compact group G.

The mappings between various topological algebras associated with a locally
compact group have been intensely studied from the early beginning of harmonic

analysis. The problem of determining all homomorphisms of group algebras of
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locally compact abelian groups has been studied by several authors including
A. Beurling and H. Helson [4], W. Rudin [38], [39] and P. J. Cohen [6]. Cohen
completely solved the problem for abelian group algebras in [6], where he showed
that the only homomorphisms of L!(G) into M (H) are essentially those induced
by piecewise affine maps of certain subsets of the dual group of H into the dual
group of G.

In the third chapter of the thesis we look at the analogous problem of deter-
mining all homomorphisms of the Fourier algebra of a locally compact group.
In 1986 B. Host proved that when G is abelian, any algebra homomorphism of
A(G) into B(H) can be described in terms of a piecewise affine map of a subset
of H into G ([24]). It is natural to ask whether or not this result holds true for
other classes of groups as well. This is precisely the goal of chapter 3.

We generalize B. Host’s result by employing the powerful machinery of op-
erator space theory. The results obtained in the recent years ([18], [19], [36],
[43]) illustrate the deep connections between the properties of Fourier algebras
and their operator space structure. Operator space theory is sometimes referred
to as “quantized” theory of operators. Perhaps the first and the most common
meaning of “quantization” originates in Heisenberg’s idea of approaching quan-
tum phenomena by replacing the functions of classical physics with matrices.
In a broader sense, it means the replacement of commuting objects with non-
commuting ones. This is by now a well-established and deep theory with roots
in, and remarkable applications to, C*-algebras and von Neumann algebras,
Banach spaces and non-commutative harmonic analysis. |

The Fourier algebras, seen as preduals of von Neumann algebras, have a nat-
ural operator space structure. In this context we consider completely bounded
algebra homomorphisms of A(G) into B(H). We show that the same descrip-
tion as that given by Host is possible for completely bounded algebra homomor-
phisms, when G and H are discrete groups with G amenable (Theorem 3.3.4).

In the last section of this chapter we explore a possible extension of this result

2
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to other classes of groups. _ ,

In Chapter 4, we api)ly the result of the prévious»chapter, to obtain a con-
crete describtion of the range of a completely bounded algebra homomorphism
of A(G) into A(H). In general, given two semisimple commutative Banach al-
gebras, A and B, and an algebra homomorphism ¢ : A — B the range of ¢ is

included in a well determined set, specifically

¢'(p) = 0= b(p) = 0
$* (1) = ¢*(02) = blio1) = b(w2) ¥, 01,92 € Tp

$(A) C{beB: :
where g is the spectrum of B and b is the Gelfand transform of b.

In the case when A = L'(G) and B = L'(H), with G, H two locally compact
abelian groups, A. Kepert proved in [25] that equality takes place in the above
inclusion. We prove that when .4 and B are the Fourier algebras of two discrete
groups G and H respectively, with G amenable, then the range of a completely
bounded algebra homomorphiSm ¢ is as large as it can possibly be, in other
words we have equality above (Theorem 4.3.1). Moreover, the same is true for
a bounded algebra homomorphism of A(G) into A(H) when G, H are locally
compact groups with G abelian, (Theorem 4.4.7).

The idea of the proof is close in spirit to the approach of Kepert. The
difficulties appear due to the fact that we are not dealing with abelian groups
anymore. The proof relies on our description of the completely bounded algebra
homomorphisms from A(G) to B(H) in terms 6f piecewise affine mdps. In
Section 2 we present preliminary results concerning piecewise affine maps which
will lead to the results in the next section. In Section 3 we reformulate the
above equality in terms of extensions of functions in A(G), using as an essential
tool our description of the completely bounded algebra homomorphisms from
A(G) to B(H). This comes down to the fact that Theorem 4.3.1 is equivalent to
Theorem 4.3.2. In Section 4 we proceed to prove Theorem 4.3.2 in three stages.

In the last chapter of the thesis we turn our attention to the Fourier al-

3
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gebras associated to the coset spaces of a locally compact group. In 1998, B.
Forrest defined in [16] the Fourier and Fourier-Stieltjes algebras, A(G/H) and
B(G/H) respectively, on the coset space G/H where H is a closed subgroup of
a locally compact group G. He has proved that for H compact it is possible to
extend many classical results to this new setting. Our goal is to continue this
investigation.

The algebras A(G/H) and B(G/H) can be identified with subalgebras of
B(G), denoted by A(G : H) and B(G : H) respectively. In the third section
of the chapter we study the dual space VN(G: K) of A(G: K), when K is a
compact subgroup of G. We give a description of the dual that leads to the fact
that VN(G: K) is a w*-closed left ideal in V N(G), the dual space of A(G). A
natural question that arises is whether or not one can characterize all w*-closed
left ideals of VIN(G) that are of this form. We provide such a characterization
in Section 4.

The last three sections of the chapter are dedicated to the natural ana-
logues in VN(G: K), of the space of uniformly continuous functionals on A(G),
UBC(G), the space of weakly almost periodic functionals on A(G), W (@), and
the space of almost periodic functionals on A(G), AP(G) ([8], [20]). We respec-
tively denote them by U BC(C?T( ), W(CTT( ) and AP(@ ). We obtain
results that are analogous to the ones in the classical case dﬁe té F. Dunkl and
D. E. Ramirez ([8]), B. Granirer ([20]) , A. T. Lau ([26]).

In Section 5 we present conditions under which various inclusion relation-
ships between these three spaces occur. Also, we prove that when G is amenable,
UBC (CTT( ) is isometrically isomorphic to a closed subspace of B(G: K)* (The-
orem 5.5.13). In Section 6, we explore the behaviour of these spaces with re-
spect to the Arens product on their duals. Among other things we characterizes
W((T_T( ) as the maximal subspace X of VN(G: K) for which the Arens prod-
uct makes sense on X* and the product is separately continuous with respect to

the weak* topology on bounded spheres (Proposition 5.6.7). In the last section

4
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we study operators which commute with the action of A(G: K) on subspaces of

VN(G: K).
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Chapter 2

Preliminaries and notations

2.1 (*-algebras and von Neumann algebras

A Banach algebra A is a Banach space together with a norm compatible algebra
structure, namely ||ab|| < ||a||||b}] for all a,b € A. An involution is an operation

z — x* on A, that satisfies
i) (@) =a

i) (a+b)* =a* +b*

i) (Aa)* = da*

iii) (ab)* = b*a*

for any a,b € A, X € C. An involutive Banach alerm_ ié a Banach algebra with
an isometric involuiton, that is ||a*|| = ||al| for any ac A Finally, we say that
A is a C*-algebra if we also have ||aa*|| = ||a|'2. ,

Given X a locally Hausdorff space, the Banach algebra Cy(X) of all contin-
uous complex functions vanishing at oo, with the usual *-algebraic operations
and the supremum norm is a C*-algebra. In fact, any commutative C*-algebra

essentially arises in this fashion. If # is a Hilbert space, then B(#) with the

6
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usual *-algébraic operations and the operator norm is another example of C*-
algebra.

A linear functional f on an involutive Banach algebra A is called positive
if f(aa*) > 0 for every a € A. In general, for a linear functional f, on an
involutive Banach algebra, the adjoint functional f* of f is defined by f*(a) =
-f(a_*), a€ A If f= f*wesay that f is self-adjoint or hermitian.

Given a C*-algebra A, the Jordan'decomposition of functionals tells us that

every hermitian functional f can be represented in the form
f=fr—f and |fl= 1+ 15

by some f*, f~ positive fﬁnctionals on A.

Given an involutive Banach algebra A, a representation of A is a *-homomorphism,
7 : A — B(H), of A into the algebra of bounded operators on a Hilbert space
H. We may associate with each positive functional f on A, a Hilbert space Hy;,

a vector £; € Hy and a representation 7y : A — B(H;) such that

f(z) =< ms(2)&s, &5 >

and ms(A)¢; is norm dense in #;.

A bounded approzimate identity for a Banach algebra A is a bounded net
{€a}aer in A such that ||eqa — a|| — 0 and ||ae, — al]| — 0 for every a € A.
If the net satisfies onlyvthe first (respectively, the second) condition it is called
a bounded left (respectively right) appro:t:imaté identity for A.

A von Neumann algebra M on a Hilbert space H is a C*-algebra on #, which
is closed under the weak operator topology, that is the topology determined by
the functionals

M—C: TH<Tn€>

for n,& € H. The abstract characterization of von Neumann algebras tells us

that von Neumann algebras are precisely the class of C*-algebras of B(#H) which
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can be identified with the dual space of some Banach space X. Given a von
Neumann algebra M, its predual is denoted by M.,.
If S is a collection of operators on a Hilbert space H, then its commutant is

the collection

S ={T € B(}) : TS = ST for all S € S}

The von Neumann’s double commutant theorem tells us that given a sélféadjoint
algebra R of operators on a Hilbert space H which contains the identity operator
I, the weak operator closure is equal to the double comutant algebra R”. A
x-subalgebra M of B(#) is von Neumann algebra iff M = M".

The second dual A** of a C*-algebra A, can be identified with a von Neu-

mann algebra and A is a C*-subalgebra of A**.

2.2 Harmonic Analysis

Let G be a locally compact group. We assume that a left Haar measure A on
G has been fixed and we denote by A the modular function. The integral of a

Borel measurable function f on G with respect to this measure is denoted by

/Gf(a:)dx.

Let LP(G) be the space of all complex valued measurable functions f on G such

that
[ 1f@pas <o, 1<p<oo)
G
Identifying functions that are equal A-almost everywhere, L”(G) is a Banach

space with norm

11l = ( / f@Pda)}, (f € P(G))

The space L!(G) is called the group algebra and it is a Banach algebra under

convolution

fro= [ s@as)at tor f.9 € 1C)

8
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L'(G) has an isométﬁc involution given by f*(s) = K%T)W
The C*-algebra of all essentially bounded complex valued Borel measur-
. able functions on G eduipped with the essential supremum norm is denoted
by L*(G). The C*-subalgebras of continuous bounded functions and the func-
tions vanishing at infinity on G are respectively C(G) and Cy(G). The space of
continuous functions with compact support is denoted with Cpo(G).

If f is a function on G and a € G, we define
of () = f(az)
fa(z) = f(z0)
fl@)=f@=™)
f@) =F)

for all z € G. |

A left invariant mean on G is a continuous linear functional m € L®(G) such

that
1l = m(1) =1
2. m(.f) =m(f) forall fe L*(G)andallacG.

A locally compact group that has left invariant mean is called amenable.
Compact groups and abelian groups are amenable. Many properties of G as well
as various properties of algebraic structures on G are shown to be equivalent
to amenability of G. The most comprehensive references for amenability are A.
Paterson’s A.M.S. monograph [33] and Pier’s book [34].

A continuous unitary representation of G is a continuous homomorphism
7 : G — U(H) where U(H) is the group of unitaries on a Hilbert space H, given
the relative weak operator topology from B(#). The left reqular representation

of G is denoted by A and is given by
A : G — B(IA(Q))

9
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Ms)(F)(@) = f(s-1z) for all 5,3 € G, f € L3(G)

Two representations {71, H1} and {ma, Ha} are said to be unitarily equivalent
if there exists a unitary operator U : Hi —> H; such that for Um(z) =
ma(z)U. Let L denote the set of equivalence classes of continuous unitary
representations of G. Each 7 € Y induces a continuous non-degenerate *-

representation of L'(G) by means of the formula

< n(f)e,p>= /G f(@) < 7(@)e, p > da

for each f € LY(G), &, u € H,. In fact, every non-degenerate *-representation of
L*(G) arises in this manner. Therefore we will also denote the set of equivalence
classes of non-degenerate *-representations of L!(G) with Z¢.

Now any representation {7, H} of G satisfies

la (O < Iflle (F € LYG))

so we may define a norm on L'(G) by

1llo~(@) = sup{llm(F)]| : 7 € Tq}

The completion of (L'(G), || - ||c~(s)) is a C*-algebra called the group C*-algebra
of G and it is denoted by C*(G).

The dual of C*(G) will be denoted by B(G). It is a linear space of con-
tinuous functions on G which becomes an algebra with respect to pointwisé
multiplication. B(G) is called the Fourier-Stieltjes algebra of G. B(G) may be
realized either as the space of coefficient functions of Eg,‘ that is, functions of
the form

u(z) =< w(z)é,p> form € Bg, &, p € Hy
or as the span of the continuous positive definite functions on G. A positive

function on G is a function f that for every z1,---,7, € G and Ay,---, A, € C

satisfies

Y]

10
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The set P(G) denotes the set of all contivnuous positive definite functions on G
and corresponds to the set of positive functionals on C*(G). Let || - ||p() be the

norm on B(Q) induced by C*(G) with the duality given by the formula

<uf>= /G w@) f@dzs  (uv€ B(G), f e L}G))

If u € P(G), then ||u||p@) = u(e). With |- |5 and pointwise multiplication
B(G) becomes a commutative, regular, semisimple Banach algebra.
The Fourier algebra of G, denoted by A(G), is the set of coefficient functions

of the left regular representation of G, that is

AG) = {u2) =< N9 >= [ He™ Wiy = (1+0)" : f.9€ LX)}

It is a || - || p(g) closed ideal in B(G). We will write || - || a(c) for the restriction
of || - |ae) to A(G). With this norm A(G) becomes a commutative, regular,
semisimple Banach algebra. It can also be realized as the norm closure in B(G)
of B(G) N Cy(G). The spectrum of A(G) is homeomorphic to G. Furthermore,
A(G)=B(G) if and only if G is compact.

Let VN(G) denote the von Neumann subalgebra of B(L*(G)) generated by
either>{)\(w) :x € G} or by {Mf) : f € LY(G)}. 1t is called the group von
Neumann algebra of G. It can be identified with the dual of A(G), and the
duality is given by

<T,u>=<Tf,g >12)

if u is of the form u = (f *§)¥ € A(G), T € VN(G) and by
<T,u>=u(x)

if T = A(z) for some z € G.

The dual of B(G) it is also a von Neumann algebra called the big algebra of
G and it is denoted by W*(G).

When G is abelian A(G) and B(G) can be identified, via the Fourier trans-

form, with the commutative group algebra L' (") and the measure algebra M (T")

11 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



respectivelly, where I' is the dual group of G. The basic reférence on Fourier

and Fourier-Stieltjes algebras is [9].

2.3 Operator spaces

An operator space is a vector space V together with a family {|| ||»}» of Banach

space norms on M,(V) such that
A0
(0S1) [ B } = max{||A|ln, || Bllm}  for A € M,(V), B € M,,(V)
0
m+n

(082) |ladBll < llel - 1|4l - I8l for o, 8 € My, A € My(V)

In (0S2), M,, = M,,(C) and it is normed by identifying matrices with operators
on the Hilbert space C". The family of norms {|| || : Mp(V) — Rt} is called
an operator space structure.

The prototipical operator space is the space B(H) of all bounded operators
on a Hilbert space H. We identify M,(B(H)) = B(H"), where H" is the
Hilbertian direct sum of n copies of ’_H, by

&1 > k=1 016k
[ai;] — N ’
én D k=t Onii
Thus, any subspace of B(#) is naturally an operator space given the induced
operator space structure. Any C*-algebra A is an operator space when the
unique norm making each M, (A) a C*-algebra is chosen.
Given two operator spaces V, W and a linear map ¢: V — W, for each n,

we define the n®* amplification of ¢
¢" s My(V) — My(W)
by the means of the formula
¢ ([vi]) = [B(vs5)]

12
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We say that ¢ is completely bounded if

I$lles = sup{||¢]| : n € N} < 00

- Furthermore, ¢ will be called complete isometry if each ¢ is an isometry, and
complete contraction if each ¢(™ is a contraction. The family of completely
bounded maps, as above, will be denoted by CB(V,W). It is a linear space
with norm || - ||cp-

The épace CB(V,W) has a natural operator space structure given by the
identification M,(CB(V,W)) = CB(V, Mn(W)) via

(8] = (v [di0)

Note that M, (V) admits a natural operator space structure via the identification
M (M,) 2 M,,(V). A linear functional f on V is completely bounded if and
only if it is bounded, and ||f]| = ||f]|l- Thus V* is canonically an operator

space. If F = [fi;] € M,(V*), the norm || - ||, on M,(V*) is given by
1F N = sup{llLfis v)]llam : [ve] € Min(V), Il[wa]llm < 1 m € N}

Extending the result above for linear functionals we obtain that any linear
map T : V — A, where A is a commutative C*-algebra, is completely bounded
if and only if it is bounded, also with ||T|| = ||T]|- Thus any operator space
W that imbeds completely isometrically into a commutative C*-algebra, has
CB(V,W) = B(V,W) isometrically, for any operator space V. We say that
such W is a min space and write W = minW. Using adjoints, any operator
space V which imbeds completely isometrically into the dual of a commutative
C*-algebra, has the property that CB(V, W) = B(V, W) isometrically, for any
operator space W. We say that such a V is a max space and write V = max V.

Given dual operator spaces V and V* there can be defined two matrix pair-

ings

13
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the scalar pairing <,>: M,(V) x M,(V*) — C given by

< V,.’F >= Zfij(v,-j)

the matriz pairing <,>: M,(V) x M,(V*) — M, given by

<K V, .7: >= [fij(vk;)]

Let V' be an operator space. A new norm, denoted by || - ||1, is defined on
Ma(V) by |
| - ln : Ma(V) — [0, Oo)

WVl = inf{llellVIIIIBll2 = V = aVp}

where & € HS,,,8 € HS,,,V € M,(V) with r arbitrary and HS, being the
space of scalar matices with the Hilbert-Schmidt norm. We let T,(V) denote
the space M, (V) endowed with the norm || - ||;n. The following isometric
identifications take place

M,(V*) ~ T, (V)*
T.(V*) ~ M, (V)"

both given by the scalar pairing. ' »
Given a net Fy = [f}] € M,(V*), with X in a directed index set A, and
F =(fij] € M,(V*) the following are equivalent

1) Fy — F in the w*-topology
2) < F»,V >—< F,V > in the norm topolgy, for any V € T,(V)
3) < Fy,V >—< F,V > in the norm topblgy, for any V € T,,(V)

4) ,? — fi; in the w*-topology, for any ¢,5 =1,n

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Given a linear mappihg of operator spa;ces'qﬁ : V — W, we define
- Ta(9) : Ta(V) — Tn(W)

given by

To(¢)([vis]) = [8(vi5)]
Then ||¢™|| = ||Ta(4)||, so the completely bounded norm of ¢ can also be
calculated as |

I$lles = sup{IT(@)ll : € N}

If M is a von Neumann algebra, its predual M, is naturally an operator
space via the inclusion M, — M?*. Moreover, (M,)* & M completely isomet-
rically. _

If X and Y are two Banach spaces, denote their algebraic tensor product by
X®Y. If V and W are operator spaces, v = [v;;] € My(V) and w = [wy] €

M, (W), we let their tensor product v Q@ w in My,(V ® W), be given by the
doubly indexed matrlx

VRW = [’Uij ® wk,]
~ Given an element u in M, (V ® W), we define
l[ulla = inf{{lel/ljo[l[lw Bl : u = (v ® w)B}

where the infimum is taken over arbitrary decompositions with v € M,(V),w €

M(W),a € My g and B € Mpq,ﬁ(W) with p, ¢ € N arbitrary. We let
VarW= (oWl -l

and we define the operator space projective tensor product V&W to be the
completion of this space.
Given operator spaces V,W and Z, and p,g € N, each bilinear mapping

¢:V x W — Z determines a bilinear mapping
$PD : My(V) x My(W) — Mpe(2)

15
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where
P9 (v, w) = [p(vij, wki]

We say that ¢ is completely bounded (respectively completely contractive) if
I6les = sup{ll6”]] : p,q € N} = sup{¢!# : p e N} < oo

(respectively ||¢|lcc < 1). The family of all such completely bounded bilinear
mappings will be denoted by CB(V x W, Z.). It is a linear space with norm || ||c.
It has a natural operator space structure, given by the identification M,,(CB(V x
W, Z) = CB(V xW, M,,(Z)). The universal property of the operatof projective

tensor product is given by the completely isometric identification
CB(V®W,Z) = CB(V x W, Z)

A Banach algebra A which is also an operator space and it is such that
the multiplication m : A®A — A, given by m(a ® b) = ab, is completely

contractive, is called a completely contractive Banach algebra. -

16
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Chapter 3

Fourier 'algebra homomorphisms

3.1 Infroduction

Let G and H be locally compact groups. Given an algebra homomorphism
¢ : A(G) — B(H), we can always find aset Y C Handamapa:Y — G

such that
foa onY

OoﬂY

8(f) =

B. Host showed in ([24]) that if G and H are locally compact groups with G
abelian, then Y is in the coset ring of H and the map « is piecewise affine (see
Section 3.2). It is a natural question to consider whether or not the result holds
true for other classes of groups as well. This is precisely the goal of this chapter.

We take into account the operator structure of the Fourier algebras and
in this context we consider completely bounded algebra homomorphisms. We
show that Host’s description remains valid when G and H are discrete groups
with G amenable.

In Section 2 we introduce the coset ring of a locally compact group and
piecewise affine maps. In Section 3 we present the generalization of Host’s

characterization of homomorphisms between A(G) and B(H). The main result

17
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of this section is Theorem 3.3.4. In the last section we give a direction towards

a generalization of Theorem 3.3.4.

3.2 Piecewise affine maps

We start with the definitions of affine and piecewise affine m‘aps which will play
an important role in the sequel.

A set E C G is called a left coset in G if F is a left coset of some subgroup
Gy of G. The coset ring of G, denoted by £}(G), is the smallest ring of sets of
G which contains all open left cosets in G. As in the abelian case (see [37]) it
can be shown that F is a left coset in G if and only if EE-'E C E. Moreover,
if F is a left coset and v, € E, then Hy = E'E = 4, 'E is a subgroup of G
and E = yyH,.

Definition 3.2.1 Let G, H be locally compact groups and E C H a left coset.

A continuous map o : E — G 1is called affine if
a(2175 ' 53) = a(z1)e(zy) alzs)
for any 1, 10,23 € E.
Remark 3.2.2 There is a connection between affine maps and group homo-
morphisms as follows: « is an affine map if and only if for every 7o € FE, the

map

B:v'E—G
defined by
B(h) = a(yn)'a(wh) V hexn'E

is a group homomorphism.

Definition 3.2.3 Let G, H be locally compact groups andY C H a set. A map

«a:Y — G is said to be piecewise affine if

18
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(i) there are Y; € Q(H), i = 1,...,n, pairwise disjoint such that

(i) each Y; C K;, where K; is an open left coset in H

(iii) for each i, there is a; : Ki — G affine map such that aly, = ;.

Taking into account Remark 3.2.2, it is not hard to see that the above

~ definition is equivalent to the one given by B. Host in [24]:

Definition 3.2.4 Let o be as above. Then « is piecewise affine if

(1) there are Y; € Q(H), i = 1,...,n, pairwise disjoint such that

(1) each Y; C K; = g;H;, where K; is an open left coset in H
(i) for each i, there is a continuous homomorphism o; : H; — G and an

element g; € G such that a(y) = g;os(h;'y), y € Y.

Note that if G and H are abelian, the above definitions coincide with the

ones in the abelian case, as they can be found in [37].

Remark 3.2.5 (i) If E C G is a left coset, then it is a right coset as well,
and vice versa. Indeed, if 7y € E, then E = ~yHy with Hy = E7'E. Then
E = yHov; " v = (voHoYy )70 = Hiyo is a right coset in G.

(i) If E C G is a left coset in G and y € G, then Ey is left coset in G.
Indeed, if E = yoHo, then By = voHoy = voy(y ' Hoy) = YoyHi, which is a left

coset in G.

Let E be a closed coset of a locally compact group G and let f : E — C be
a function on E. For any v € E, we let ,-1f be the function f : E-!F — C

19
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given by ,-1f(z) = f(y 'z). We can define the Fourier Stieltjes aigebra on a
closed coset E C G and denote it by B(FE), as follows :

B(E) ={f: E — C| ,-1f belongs to B(E'E) for any vy € E}.

where B(E~'E) is the Fourier Stieltjes algebra of the locally compact group
E~'E. The topological and algebraic structure of B(E~1E) can be carried over
to B(E) so that B(E) is isomorphic to B(E~'E).

Recall that the coset ring of G can be viewed aé a family of characteristic
functions, that is

X € Q(G) if and only if 1x € B(G)

where 1x is the characteristic function of X ([24]). We will use this to give the

following definition for the coset ring of E.
Definition 3.2.6 A set X is in the coset ring of E if dnd only if 1x is in B(F).

Remark 3.2.7 It is not hard to see, given the definition of B(E), that X is in
the coset ring of F if and only if y"!X € Q(E~'E) for each v € E.

3.3 Characterization of Fourier algebra homo-
morphisms

Given a von Neumann algebra M, its predual M, is naturally an operator space
via the inclusion M, < M*. Moreover, (M,)* = M completely isometrically.

If G is a locally compact group, then the Fourier and Fourier-Stieltjes al-
gebra, A(G) and B(QG) respectively, have a natural operator space structure as
preduals of von Neumann algebras. For U = [u;;] € M,(A(G)) the norm is
given by

[Ulln = sup{l[Tia(us)lll : T = [Tua] € Mn(VN(G)), I T||m <1, m € N},

20
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and similarly for V = [v;;] e M, (B(G)) the norm is given by
Vil = SUP{”[Fkl(Uij)m_ . F = [Fy] € Mp(W*(G)), |Fllm <1, m € N}.

In each case the opérator ‘stru.c'tu're results in a completely contractive Ba-
nach algebra.
The following proposition will be used in the proof of the main theorem of

this section, Theorem 3.3.4.
Proposition 3.3.1 Let G, H be locally compact groups. The map
- §:B(G) — B(H x G)
| urlg-u
where (1g -u)(h, g) = u(g), zs completely contractive.

Before we present the proof, we give the following universality property (see

e.g. [40]).

Lemma 3.3.2 Letw: @ — W*(G) = C*(G)*™* be the universal representation
of a locally compact group G. If m : G — B(H,) is a continuous representation

of G, then there erists a unique w*-continuous *-homomorphism
6: W*(G) — n(G)"
such that m = 0o w.

Proof of Proposition 3.3.1 Let wgxg : H x G — W*(H x G) be the

universal representation of H X G. Let
i:HxG— G

(h,g) =g

be the canonical projection on G. Let wg : G — W*(G) be the universal

representation of G. Then wgoi: H x G — W*(G) is a representation of
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H x G. We apply Lemma 3.3.2 for wgxe and wg o and we get a unique

w*-continuous *-homomorphism
0: W*(H x G) — W*G)

such that wg o7 = 0 o wyxg. This map yields a complete contraction
6. : B(G) — B(H x G).

Our next claim is that 8, = S. To show this we will prove that we have

S* = 0. We have the formula
< S*(F),u >=< F,S(u) > for each F € W*(H x G).
Let F = wyxe(h,g) € W*(H x G). Then
< S (wrxg(h, 9)), u >=<wrxc(h, 9), 1n - u >= u(g) =< we(g),u >

and we get
S*(waxc(h, 9)) = we(g)- (3.1)
On the other hand, we know wg 0% = 0 o wgyxe. If we apply this to F' we

obtain

O(wixc(h, 9)) = (wg 0 i)(h, 9) = walg). (3.2)

Combining (3.1) and (3.2) we get
S*(WHXG(hv g)) = o(waG(h‘7 g)) V(h’a g) € HxG.

Since {wuxg(h,g) : h € H,g € G} generates W*(H x G) and S*,0 are w*-w*

continuous, it follows that S* = 8, as claimed. O

The next result is an immediate application of Proposition 3.3.1.
Corollary 3.3.3 The map
J: A(G) x B(H) — B(H x G)
(w,v) 2> w-v
where u - v(h, g) = u(g)v(h), is completely contractive.
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Proof As B(H x G) isa completely contractive operator algebra, the map
"B(H xG) x B(H xG) — B(H x G)

(w,v) »w-v

is completely contractive. Now, taking into account Proposition 3.3.1, the con-

clusion follows. , O

The next theorem is a generalization of Host’s characterization of algebra

homomorphisms between Fourier algebras.

Theorem 3.3.4 Let G, H be discrete groups. Suppose that G is amenable and
¢ : A(G) — B(H) is a completely bounded algebra homomorphism. Then there
erists Y € Q(H) and a piecewise affine map a: Y — G such that

uoa onyY
-]
» 0 off Y

Proof Let h € H. Define the following map
On: A(G) — C

u > ¢(u)(h)

Then ¢, is a multiplicative functional on A(G). Since the spectrum of A(G)
can be identified with G by point evaluation, if ¢, # 0 there is an element in
G, that we denote by a(h), such that ¢, = a(h) as elements of the spectrum of
A(G). Thus we have ¢(u)(h) = u(a(h)) whenever ¢, # 0 and zero otherwise.
The map

a:Y —G
h — a(h)

where Y = {h € H : ¢}, # 0}, satisfies the required equality. It remains to show
that Y € Q(H) and « is piecewise affine.

To accomplish this we will use the following lemma from [37].
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Lemma 3.3.5 Let G, H be discrete groups and o : Y C H — G a map. Then
a is piecewise affine if and only if Go = {(y,a(y)): y € Y} € Q(H x G).

Returning to the proof, define the map
J : A(G) x A(G) — B(H x G)

(u,v) = (¢(u)) - v
Our first claim is that J is jointly completely bounded.
Indeed, let ny,n9 € N. Let

J®m2) 2 My, (A(G)) X My, (A(G)) — Muyn(B(H x G))

be the amplification. We will compute the norm of the amplification

U € Muy(AG), [Ully < 1
“J(m,nz)” = sup {”J(nl,nz)(U’ V)“nlng . ( ( )) “ ” } .

V € Mn, (A(G)), [[Vlny €1

Using the definition of the operator norm on the predual of a von Neumann

algebra, we have

17T, V) g, =
= sup{[|[< Fur, J (tij, v81) >lnsnan : F = [Filay € Mu(W*(H x G))}
= sup{[[[< Fut, $(2t) - 06t >llnsrnon : F = [Firlu € Ma(W*(H x G))}
= sup{[|[< vk - Fots #(ti5) >lninzn : F = [Fotls € Ma(W*(H x G))}
where all the suprema are taken over || F||, < 1.
In the above, the product v- F' with F' € W*(H x G) and v € A(G), is given

by | Q
v-F:B(H)— C, <'v-F,u>_=<'F,‘u¢v‘> for u € B(H)

and it is an element in W*(H). Then V - F € ann(W*(H )), where

V-F = v Fatlstpy
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with F = [Fy] € Mo(W*(B(H x G))),V = [un] € My,,(A(G)). Moreover, if
1F]l» < 1 and ||V]|n, < 1, by Corollary 3.3.3, we obtain that ||V - Fljn,n < 1.

Then the norm can be written as

’ £ =[E,p) € My, n(W*(H
uﬂm’"ﬂ(v,vmm=sup{n[< By 85) Sl s & 278 € Mo (V7 C0) }

E=V -F, ||€llngn <1
But now,

1< Brp, (i) >lnsnan < N6(ii)llng = 16" @)lny < 160 < oo

where the last inequality holds because ¢ is completely bounded. Therefore we

have
72| < Jllles

which shows that J is jointly completely bounded.
By the universal property of the operator projective tensor product, there

exists a completely bounded map
J: A(G)QA(G) — B(H x G)

such that J(u®v) = ¢(u) - v. From the identification A(G x G) ~ A(G)RA(G)

(See [12]), we obtain a map
Y:A(GxG) — B(H x Q)

such that ¥ (u - v) = ¢(u) - v, Vu,v € A(G).

Our next claim is that the following formula holds:
(W) (h,g) =w(a(h),q) for heY,geG. (3.3)
Clearly, if w =u . v with u,v € A(G), then
Y(w) =Y(u-v) = ¢(u) - v = P(w)(h, 9) = u(a(h)) - v(g) = w(a(h),g).
fw=> " w; where w; = u; - v;, then

pw)h,g) =Y vk, 9) = > wile(h), ) = w(e(h), 9).
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Now suppose that w = lim; 9;, where ¢; = Zf':l u;-vj. Then Y(w) = lim; P(w;).

In particular we have pointwise convergence, therefore

$(w) (b, 9) = lim () (h, 9) = limax(a(h) 9).

But since w = lim; ¥, it follows in particular that 1; converges pointwise to w,
and therefore lim; w;(a(h), g) = w(a(h), g). So Y(w)(h,g) = w(a(h), g) and our
last claim is proved.

The set A = {(z,z) : z € G} is an open subgroup in G x G, so the
characteristic function xao € B(G x G). Because G is amenable, we can find
{u;}; € A(G x G) such that |lu;}] <1 for all j and u; — xa pointwise .

Then ¥(u;)(h, g) ¢3) uj(a(h), g) — xa(a(h),g9) = xg, Therefore xg, is
the pointwise limit of a bounded net in B(H x G). By Corollary 2.25 from [9)
it follows that xg, € B(H X G), which is equivalent to G, € Q(H x G). O

Remark 3.3.6 We note that B. Host’s result is for continuous algebra homo-
morphisms as opposed to completely bounded algebra homomorphisms. How-
ever when G is abelian then A(G) has M AX operator space structure. In this
case every continuous homomorphism is automatically completely bounded, so
in particular, we see that Theorem 3.3.4 is a true generalization of Host’s result.
For the moment we are restricted to discrete groups, but there are hopes that

we can drop the assumption of discreteness (see §3.4).

In the case that ¢ : A(G) — B(H) has range inside A(H), the correspond-

ing map « is also proper, which means that it returns compacts to compacts.

Proposition 3.3.7 The homomorphism ¢ : A(G) — B(H) maps A(G) into
A(H) if and only if o~ Y(C) is compact for every compact set C of G.

Proof Suppose there is a compact set C C G such that a~!(C) is not compact.
Choose f € A(G) such that f =1 on C. Then, theset S={y €Y : f(a(y)) =
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1} contains a~*(C) which is closed, non-compact, therefore S is not compact.
| On the other hand, we can write S = ¢f~{1}. If S is not compact, it follows
 that of ¢ A(H), contradiction.

Conversely, suppose a~!(C) is compact for every compact C C G. If f €

A(G) we can find fa € A(G) N Co(G) such that

Then each f, o a has compact support, and so f,oa = ¢f, € A(H). Since
A(H) is closed in B(H) and ¢f, — ¢f, we obtain ¢f € A(H). O

3.4 Towards a generalization of Theorem 3.3.4

Let G, H be locally compact groups and ¢ : A(G) — B(H) a completely
bounded algebra homomorphism. In the previous section we have seen, in the
first part of the proof of Theorem 3.3.4, that there always exists a continuous

map «: Y C H — G such that

yow onyY

0 off Y

¢(u) =

Moreover, we have shown that when the groups G and H are discrete with G
amenable, the map « is piecewise affine.

A natural question that arises is whether there are other classes of groups
for which Theorem 3.3.4 hblds true, that is, the map « is piecewise affine. A
natural approach to answering this question is to build on the discrete case. This
is what we will do here. We show that the condition that « is piecewise affine
is equivalent to the complete boundedness of a certain algebra homomorphism
$. We also present a sufficient condition for ¢ to be completely bounded.

We begin with the construction of the new algebra homomorphism ¢, from
the given homomorphism ¢ : A(G) — B(H). Let G4 and Hy be the groups G
and H respectively, endowed with the discrete topology.
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Proposition 3.4.1 The map ¢ : A(G4) — B(I—Ig) given by

voa onyY

0 of Y

$(v) =
is a well defined algebra homomorphism.

To prove this, we first need a lemma, that is probably known, but we present

a proof here for the sake of completeness.

Lemma 3.4.2 Let G be a locally compact group. Then for any v € A(Gy)
there is a net {u;}; € A(G) such that ||u;]] < 2||v|| and u; s v, where
w* = 0(B(Gq), C*(Gy)).

Proof The left regular representation of G, A¢g viewed as a unitary represen-
tation of Gg4, weakly contains g, ([2]). Then, it follows that any positive
functional v associated with A\g, is w*-limit of a net {ta}a, where each u, is a
finite sum of positive functionals associated with Ag, with |Jua|| < ||v|| ([15]).
This means that any positive definite function v € A(Gy) is the w*-limit of such
a net {uy}q € A(G).

Let v € A(G4). Then v can be written as the sum of two hermitian elements

v+17v U=
2 27T T

v = v; + 102, Where v; =
By the Jordan decomposition, each v;, 7 = 1,2 can be written as
v1 = v{ — vy such that [[v]] = ||lvi" || + llv7 ||

vy = vy — vy such that [lv]l = [lof || + [lvz ]|

where each of v, v, are positive definite functions in A(Gy).
Let {u} }a, {ui}a € A(G),i = 1,2 be the nets corresponding respectively
to v}, v; as above:

[

uh, — o with [luf || < o),
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ug, ~— vy with |Juz|l < |lvy |-

Let uy = (uf, — uj,) + i(uf, — us,) € A(G). We claim that this net satisfies
the requirements of the lemma.

Indeed, clearly u, 2 v. Also, we have

luall < llufall + lluiall + lugall + llu|

A

i+ oz |+ llog Il + ez |

IN

l[oll+ ozl

ol + 413l ol + 11511
2 2

i

IA

AN

so the condition of the norm is satisfied as well. a

Proof of Proposition 3.4.1. We will show that ¢ is well defined, that is,
#(v) € B(H,) for any v € A(Gy).

By Lemma 3.4.2, if v € A(G,) there is a net {u;}; € A(G), ||u;ll < 2|v|
such that u; 2% v, where w* = o(B(Gq),C*(G4)). In particular, the net {u;};

converges pointwise to v and therefore we have
$(u;)(h) = uj(a(h)) — v(a(h)) = $(v)(h) for any v € A(Gq),h € Y

If h ¢ Y, then ¢(u;)(h) =0 = #(v)(h), hence @(v) is the pointwise limit of
¢(u;) € B(H). In conclusion, ¢(v) is the pointwise limit of a bounded net in
B(H), so by Corollary 2.25 of [9] it follows that it belongs to B(Hy). It can

easily be checked that ¢ is an algebra homomorphism. O

Remark 3.4.3 We should note that ¢(v) = pointwise — lim; ¢(u;)(v) is equiv-
alent to ¢(v) = w* — lim; $(u;)(v) since the groups are discrete and the net is

bounded.

In the next theorem we shall present the equivalence mentioned at the be-

ginning of the section.
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Theorem 3.4.4 Let G, H be locally compact groups such that G4 is amenable.
Let ¢ : A(G) — B(H) be a completely bounded algebra homomorphism, o :
Y ¢ H — G the continuous map corresponding to ¢ as above, and ¢ :
A(Gy) — B(H,) the algebra homomorphism constructed dsing a. Then the
following are equivalent:

1) o is piecewise affine

2) é is a completely bounded algebra homomorphism
Proof “1) = 2)” We will prove this in three steps:
i) «is a group homomorphism
i1) « is an affine map
i4i) « is a piecewise affine map.
The first step is given by the next lemma

Lemma 3.4.5 Let G, H be locally compact groups and ¢ : A(G) — B(H) an
algebra homomorphism defined by

P(u) =uoa
where a : H — G a group homomorphism. Then v is completely bounded.

Proof Let wg : H — W*(H) be the universal representatioh of H and Ag :

G — VN(QG) the left regular representation of G. Then
dgoa: H— VN(G)

is another representation of H. By Lemma 3.3.2, there is a w*-continuous *-

homomorphism

0: W*(H) — (\goa)(H) =VN(G)
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such that
Agoa=0owy. (3.4)

Let ¥* : W*(H) — V N(G) be the dual map of 3. Our claim is that § = *.
Indeed, let F = wy(h) € W*(H). Then, for u € A(G), we have on the one hand

(

<O0(F),u >.‘ = <B@owg(h),u> W Ag o a(h),u >

= < ela(h),u >= u(a(h), (3.5)
and on the other hand

<YP(F),u> = < F,9Y(u)>=<wgy(h),y¥(u) >
= Y(u)(h) = u(a(h)) (3.6)

Therefore we have equality
6(F) =¢*(F) forall F € {wyg(h):he H}.

Now, since # and ¥* are w*-continuous and equal on a w*-dense subset of
W*(H), it follows that they are equal everywhere and the claim is proved.
The map @ is a *-homomorphism between C*-algebras, so it is a completely
bounded map. It follows that 1¢* is completely bounded, which is equivalent to
saying that ¢) completely bounded, and the lemma is proved. 0

Using the previous lemma, we will prove the next step.

Lemma 3.4.6 Let G, H be locally compact groups and ¢ : A(G) — B(H) an

algebra homomorphism given by

uoa onyY
w(u)={
0 off Y

where a : Y C H — G is an affine map defined on an open coset Y in H.

Then 1) is a completely bounded map.
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Proof Let Y = «vH;, where v € H and H; is an open subgroup of H. Since «

is affine, by Remark 3.2.2, there is a group homomorphism
B:H = ’)'_IY — G

given by the formula _
Bh) = a(y) " alyha). | (3.7)

Let ¢y : A(G) — B(H;) be the algebra homomorphism defined by 3

Yi(u) =uop.

By Lemma 3.4.5, this is a completely bounded map. Given v € B(H;), denote
with ¢ the function on H that is equal to v on H; and is zero elsewhere. The
map o : B(H;) — B(H) that sends v into  is a complete isometry ([46]).
Then, the map

Y2 = 0oty : A(G) — B(H)

is a completely bounded map, given by

Pa(u) =

uof on'Hl
0 Ofle

Our claim is that 9 = L,-1 0ty 0 Ly(y), where Lq(y) : A(G) —> A(G) is the
translation on the left by a(y) on A(G), and L,-1 : B(H) — B(H) is the left
translation by v~! on B(H). Indeed, let y € Y = vH; and u € A(G). Then

(Ly-1 0920 Lag))@)(¥) = Loy-1($2(Lagr) (1)) (¥) = 2(Lag) () (v"'7)
= Loy (@)(B(y'y)) (since vy € Hy)
= u(e(B(r ) E ula()ar) " a®y))
= u(a(y)) =uoaly) =P(y). (3.8)

If y ¢ H; the same calculation as above shows that (L,-1 0 %3 0 La(y))(u)(y) =
0 = ¢(y). Therefore the claim is proved.
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As shown by P.J. Wood in ([46]), the translation maps L,-: and Lo, are
completely bounded. Hence, taking relation (3.8) into account, we obtain that

% is completely bounded. m]

The next lemma gives us the last stép of the proof.

Lemma 3.4.7 Let G, H be locally compact groups and v : A(G) — B(H) an

algebra homomorphism given by

uow ony

0 off Y

p(u) =

where a : Y C H — G 1is a piecewise affine map. Then i is a completely

bounded map.

Proof By the definition of a piecewise affine map, there are pairwise disjoint
sets Y; € Q(H), i = 1,...,n such that Y = U?Y; and for each ¢ there is an open
coset K, that contains Y;, and an affine map «; : K; — G such that o;|Y; = a.

For each i, let ¢; : A(G) — B(H) be the algebra homomorphism given by

uoa; on K;

0 OffK,j

Pi(u) =

By the previous lemma, this is a completely bounded map.

For any u € A(G), ¥(u) can be written as follows
Pu) =Y lyi(u) (3.9)
1

where 1y, is the characteristic function of YY,», which by ([24]) belongs to B(H).
Let w; : B(H) — B(H) be the map given by w;(v) = ly,v. This map
.is a completely bounded map, since B(H) is a completely contractive Banach

algebra. Now relation (3.9) can be rewritten as
Y= }: w; 0 Y;
. 1
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therefore 1, as a sum of completely bounded maps, is completely bounded.

The implication “1) = 2)”now follows from Lemma 3.4.7.

“2) = 1)” Suppose that ¢ is completely bounded. We are then in the
hypothesis of Theorem 3.3.4 since G is amenable. Therefore, we obtain that
a:Y C Hy — G, is piecewise affine, seen as a map on the discrete groups. The
only thing left to show is that this remains true if we delete the “d” subscript.
This follows from an argument in [6] or [37], that can be adapted to the non-
abelian case without many modifications, since it is mostly topological and does
not depend on the abelian structure of the group. This completes the proof of

Theorem 3.4.4. O

The question that arises now is under what conditions is ¢ completely
bounded. In the remainder of this section we give a sufficient condition for

the completely bounded norm of ¢ to be finite.
Definition 3.4.8 We say that a locally compact group G has property (S) if
(S) for any V € T,(A(Gy)) there is a net {U}: € T,(A(G)) such that
U,V and Ul <2V (3.10)
where o, = o(Tp(B(G4)), Mn(C*(Gy))), n € N.

We note that for n = 1, relation (3.10) is satisfied for any locally compact
group, by Lemma 3.4.2. We will need the following remarks to calculate the

completely bounded norm of .

Remark 3.4.9 Given an operator space V, we have the following isometric
identification -
To(V*) = (Mo (V)"
given by .
F<FV>=Y fij(v)

ii=1
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where F = [fi;] € To(V*),V = [vi;] € Mp(V). For V = C*(G), we thus have
T,(B(G) = (Ma(C*(G)))"

Remark 3.4.10 By the previous remark, the norm of W € T,,(B(G)) is given
by

IWllr.8y) =sup{| < W, U > | : U = [uy] € M,(C*(@)), |[Ulln < 1}.
(3.11)

The next result shows that condition (S) is a sufficient condition for ¢ to be

completely bounded.

Theorem 3.4.11 Let G, H be locally compact groups. Let ¢ : A(G) — B(H)
be a completely bounded algebra homomorphism, a : Y C H — G the contin-
uous map corresponding to ¢ as above, and qz : A(Gg) — B(H,) the algebra
homomorphism constructed using . If G satisfies condition (S) then ¢ is a

completely bounded algebra homomorphism.
Proof For any n € N we define the map
Ta(9) : Ta(A(Ga) — Tu(B(Ha)), given by T(9)([vi]) = [(vis)).
The completely bounded norm of é can be calculated by means of the formula

Illes = sup{iTn(#)Il : n € N}

~

Next, we will compute the norm of the map 7;,(¢). We have

Il = “illllgl{llTn(az)(V)IlTn(B<Hd))¢V€Tn(A(Gd))}

L sup sup {| < Tu(@)(V), F > |: F € My(C*(Ha))}3.12)
Vi<t liFli<t

By property (S), for V = [v;] € T,(A(Gq)) there is a net {U = [u;]}: €
T,(A(G)) such that
U~V and el < 2|Vl

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where o, = 0(T,(B(Ga)), Ma(C*(Gyg))), n € N. Then we have
uﬁj SN v;; for any 7,5 =1,n.
By Remark 3.4.3, it follows that ¢(u};) AN ¢(vi;), which in turn implies that

To(8)(Ue) =2 To($)(V)

where w} = o(T,(B(Hy)), M,(C*(Hy))). The last relation means nothing other
than

<TW(@V), F >=lim < T,(¢)(th), F > (3.13)
for any F € M,(C*(Hy)).
We return now to the computation of the norm of T,(¢). Using (3.13),

relation (3.12) becomes

ITo(@)l = sup sup lim{| < To(#)(th), F > | : F € My(C*(Ha))}
IVI<IF|I<Y

Because ¢ is completely bounded, we have

T (8) (Ue) 1z (B(r)) = || To(D) (Ue) || (B2
1T (D) Iehell < llpllecsllLhel]
2/[8llellVIl < 2[Ifllet

| < Tn(6) (), F > |

IA A

IN

Therefore
I < 2lldllee = 18Il < 2l|ler < 00

which shows that q§ is completely bounded. 0
In conclusion we have proved the following theorem

Theorem 3.4.12 Let G, H be locally compact groups and ¢ : A(G) — B(H)
a completely bounded algebra homomorphism. If G4 is amenable and G satisfies

condition (S), then there is Y € Q(H) and a piecewise affine map a : Y C

H — G such that
uoa onyY
¢(u) =

0 ofl Y

It remains to be seen what classes of groups satisfy relation (S).
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Chapter 4

The rangé of Fourier algebra

homomorphisms

4.1 Introduction

The result we obtained in Chapter 3 is instrumental for the study of the range
of a completely bounded algebra homomorphism between the Fourier algebras
of two locally compact groups. The range of such a homomorphism sits inside
a well determined set. This pa.fticular situation is not exclusive to the Fourier
algebras, but takes place in a more general setting. More precisely, if A and B
are two commutative semisimplé Banach algebras and ¢ : A — B is an algebra

homomorphism then

$*(9) =0=>b(p) =0

#A)C<beB: _ . .
¢ (1) = 8°(2) = b(e1) = b(2) ¥, 01,92 € Ep

where b is the Gelfand transform of b, X is the spectrum of B.
We prove that when A and B are the Fourier algebras of two discrete groups
G and H respectively, with G amenable, then the range is as large as it can

possibly be, in other words we have equality above. Also, we show that the
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same description of the range can be achieved, if ¢ is a bounded algebra ho-
momorphism between two Fourier algebras, A(G) and B(H), when G, H are
locally compact groups with G abelian. The statement is similar to the one
obtained by A. Kepert ([25]) in the case when A = LY(G), B = L'(H) with G
and H two locally compact abelian groups. ‘

The idea of the proof is close in spirit to the approach of Kepert. The
difficulties appear due to the fact that we are not dealing with abelian groups
anymore. The proof relies on the description of the completely bounded algebra
homomorphisms from A(G) to B(H) in terms of piecewise affine maps.

Section 2 contains preliminary results concerning piecewise affine maps which
will lead to the results in the nexﬁ section. In Section 3 we present a, reduction
of the problem, which comes down to the fact that Theorem 4.3.1 is equivalent
to Theorem 4.3.2. In Section 4 we proceed to prove Theorem 4.3.2 in three

stages.

4.2 On piecewise affine maps

We present here some technical results which will allow us to get information
about the affine pieces of a piecewise affine map. The results are the non-abelian

analog of those found in [25].

Definition 4.2.1 If E is a left coset of a subgroup G in G, we deﬁne the index
of E to be the index of Gy in G. If E1, E, are cosets in G of the subgroups Gy
and G4 respectively, then the index of E1 m AE2 is defined to be the index of
G1N Gy in Gy.

When G is abelian any set in Q(G) is a finite disjoint union of sets in

m Ey C G open coset
(@) = E\JE):
1

E,, ...E,, open subcosets of infinite index in Fjy
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(see [6]). It is not a hard task to \}erify that this is valid for all locally compact
groups. The following algebraic result assures us that 0 ¢ Qy(G).

Lemma 4.2.2 ([31]) A group is not a finite union of cosets of infinite indez.

Remark 4.2.3 If U = Ep\ (U" Ex) € Q(G) then Aff(U), the coset generated
by U, is exactly Ep.
Indeed, for every y € E;'Ey, we have

.UnUy = (_EO\UEk)n(EOy\UEky)
= (Bo\|JE) (B \|JEwv)
= E\ (JEUUEw.

By Remark 3.2.5 (i) we have
Ery = (zGy)y = zyGy where Gy = y~'Gry C E; ' Ey

so it is a éubcoset of E();‘ Since G has infinite index in Ej 1Ey, so does G.
Therefore Exy is an open subcoset of infinite index in Ey. So, UNUy € Q(G).
Since @ ¢ Qo(G), it follows that UNUy # 0. Hence, if E is any coset containing
U, then

PAUNUyC ENEy
and therefore y € E‘lE. That is, E;'Ey C E~'E which is equivalent to

E() Q E. Thus EO = Aﬁ(U)

The next proposition is obtained by combining the above with the definition
of piecewise affine maps. From now on this is the way that we will look at

piecewise affine maps.

Proposition 4.2.4 Let Y € Q(H). Then v : Y — G is piecewise affine if
cand only if Y = UL, Y;, with Y1,....,Y, € Qo(H) and |y, has a continuous
affine extension v; : Aff (Y:) — G, for each s.
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We now present a few technical results.

Lemma 4.2.5 Let G be a locally compact group. Then

(i) for Y € Q(G) and Ey = Aff(Y), there is a finite subset F C Ej'E,
such that Eg =YF.

(1) for Y € Q(G) and A a compact subgroup of G, there is a finite set F C A
such that YA=YF, '

Proof (i) We will use induction by m to prove the statement for Y = Ey \.
(U Ex). If m =0, then Y = E; and we take F = {e}. Suppose the statement
is true for m—1. Let ¥; = Ey\ (U Ey). Then there is a finite set Fy C Ey'E,
such that Ey = Y F;. Now we look at the set Fl"lE,,:1 E,. Fi. This can be written

as follows :

F'E;'E.F, = U 2(E;'Ep)y = U (2E;'Enz'2)y

2€F L ye Ry zeF yel

= U G

zeF7 teF7I R

where G, = zE'E,2z7! C Ey 1Ey, which is of infinite index in Ey 1E,, since
E;'E,, is. This means that F;'E;'E,,F} is finite union of cosets of infinite
index in Ej'Ep. Since a group cannot be written as a finite union of cosets of
infinite index, it follows that there is v € Ey'Ey \ (Fy ' EZ EnFy). Therefore,

there is ¥ € Ey ' Ey such that |

En.FiNE,Fiy=0. (4.1)
Now put F' = Fy U Fy~. Since Y1 CY U E,;,, we have
Eo=Y,F, C (YUE,)F,=YF, UELF, C By,
Therefore equality h;)lds :

E() = YFl U EmFl. (42)
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_ Next, note that By C Eyy, since y € E;'E, an.d so we have
Eo‘ C Eyy = YFyUE,FvyCE,. |
Therefore equality holds | |
By =YFyUE, F1y. (4.3)
Combining (4.1),(4.2) and (4.3) we get
Eo=YFRUYFiy=Y(RUFAY) =YF.

and we are done.
(i) This follows from (i), as in [25).
0

The next proposition is the non-abelian analogue of Proposition 2.4 in [25].
The proof in [25] can be adapted without any modifications (using now Propo-

sition 4.2.5(3)). We include the proof for completeness.

Proposition 4.2.6 Let G, H be locally compact groups, Y € Qo(H) and ¢ :
Aff(Y) — G an affine map such that |y is proper. Then 1 is proper.

Proof It suffices to prove the proposition in the case that Af f(Y") is a subgroup
and 1/ is a homomorphism. The general case follows by translation. Under these
assumptions, by Proposition 4.2.5 (i), there is a finite set F C Aff(Y) such
that YF = Aff(Y). We have the following:

$7(C) = $NO)NAFFY) =) n (| Y)

yEF
= Y@ ©)nyy =k Crrnyy)
reF ' yeF
= Uk Cvr)ntly= @) Cve )
YEF veF
where we used the fact that (¢]y)~!(-) = ¢¥~!(-)NY. Now, since |y is proper,
it follows that ¢~!(C) is compact. 0

We end this section with the following corollary.
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Corollary 4.2.7 Suppose G, H are locally compact groups. ForY € Qo(H) let
Y :Y — G be a proper map with affine extension ' : Aff(Y) —> G. Then
Ey = ¢'(Aff(Y)) is a closed coset in G and (Y) € Q(E;). |

Proof Let Ey = Aff(Y), Ex = ¢/(Eyp). By Proposition 4.2.6 ' is proper. Thus
Y (Ey) = Ey is a closed coset in G. By Remark 3.2.2, since ¢’ is affine, for any
Y € Ejy, the map

B:7 ' Eo — G, B(h)=1v'(7)""¢ (1h)

is a group homomorphism.

Let A = Ker 8 = 759" {¢/'(70)}. Then A is a compact normal subgroup
of Hy := ;' Ey. Let Qa : Hy — Hy/A be the quotient map.

We have to show that ¥(Y) € Q(F;). From the definition of Q(E}), this is

equivalent to

Y W(Y) € QET Ey) Vy € By & (¥ ()Y (Y) € UETE) Vv € Eo.

We can rewrite the above using 3 :
Y (7)Y (V) = B(1'Y)

E{'Ey = B(Ho) ™' B(Ho) = B(Ho)

where the latter is obtained from the equality

B(Hp) = ¥/ (v0) "' (Eo) = 1/"(70)'1E1-
We can now write

BY) € UBY) & B(Y) € QB(HY)).

Once we show that B(v;'Y) € Q(B(H,)), we are done. By»Lemma 4.2.5 (i),
_there is F C Hy such that YA = Y F which is equivalent to 75 'Y A = g YF.
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First notice that ;'Y F € Q(Hp). Indeed, since Y € Q(E;'E,) so does
}),0— Y. By Remark 3.2.5, by multiplying on the right with elements of Hy we
stay in Q(Hy). Since F is finite we get that 5 'Y F € Q(H).

It is not hard to see that S0 Q3! : Hy/A — B(Hy) is a continuous bijective
homeomorphism (for details see Lemma 4.4.1). Denote by M the following set

M =Qu(%'Y) = Qul%'YA).
Since by above 75!YA = ;'Y F and the latter is in Q(H,), we obtain that
Y'Y A € Q(H,). Hence M € Q(Hy/A). But then
B(w'Y) =BoQy o Qu(1Y) = Bo Q5 (M) € Q(B(Hy)).
O

Define Q4(H) = Q(Hy), where Hy is H with the discrete topology, and
Q.(H) ={X C H: X closed and X € Q4(H)}. The next corollary now follows

easily.

Corollary 4.2.8 Let G, H be locally compact groups.
IfY € QH) and ¢ : Y — G is a proper, piecewise affine map, then
P(Y) € Q(G).

4.3 An equivalent theorem

In this section we study the range of completely bounded algebra homomor-
phisms between the Fourier algebra of two groups. We prove the following

result

Theorem 4.3.1 Let G,H be two discrete groups with G amenable. If ¢ :
A(G) — A(H) 1is a completely bounded algebra homomorphism, then

¢(A(G)):{feA(H):¢*(h1)=0=>f(h1)=0 }

¢*(h) = ¢*(ha) = f(h) = f(he) M,ha€ H
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Let us denote the right hand set by Us. Theorem 3.3.4 allows us to refor-

mulate the above equality in terms of extensions of functions in A(G).
Indeed, given amap a: Y C H — G, let k(a) be the set

| —0 of Y
Ka)=dgeam: 7 °

9(y1) = g(y2) whenever a(y1) = a(y)
Note that for g € k(c), the second condition implies that goa™! is well defined.
If « is the map from Theorem 3.3.4, it is not hard to see that

B(A(G)) C Uy C k(a).

Therefore, in order to prove Theorem 4.3.1, that is, to show the equality ¢(A(G)) =

Us, it suffices to prove
k(e) C ¢(A(G))-

Notice that the latter is now equivalent with the following : for any g € k(«),
goa~! has an extension in A(G).

Indeed, if g € k(a) C #(A(G)), then there is f.€ A(G) such that

| foa onbY
0 off Y

Therefore, g o & = flav) 50 g 0o @' has an extension in A(G). The other
direction follows similarly.

We should also remember that the map o corresponding to ¢: AG) —
A(H) is proper (see Proposition 3.3.7).

In conclusion, we see that Theorem 4.3.1 is in fact equivalent to the following

theorem

Theorem 4.3.2 Let G, H be discrete groups with G amenable and suppose that
a:Y C H — G is a proper piecewise affine map. Then for any g € k(a),

goa~! has an extension in A(G).
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For the sake of generality we will prove Theorem 4.3.2' below, which is stated

with a more general hypothesis than Theorem 4.3.2.

Theorem 4. 3 2' Let G, H be locally compact groups with G discrete and amenable
and suppose that a:Y C H — G is a proper piecewise affine map. Then for

any g € k(a), goa™ has an extension in A(G).

4.4 The range of the Fourier algebra homomor-
phisms

This section is dedicated to the proof of Theorem 4.3.2'. The proof consists of
the following three steps:

(i) Y an open coset and « an affine map
(it) Y € Q(H)
(1)) Y € Q(H) and a a pieceWise affine map

We start with the first case, Y an open coset and « an affine map, which is

a key step of the proof.

Lemma 4.4.1 Let G, H be locally compact groups with G discrete. LetY be an
open coset in H and o : Y — G a proper affine map. Then, for any g € k(a),
the map go o™ : a(Y) — C has an extension in A(G).

Proof Let v € Y. Then ;'Y is an open subgroup of H, and will be denoted
by Hy,. Consider the map 8: v;'Y — G, given by

B(h) = a(vo) 'a(yoh).

This is a proper group homomorphism. Also 3(Hy) is a closed and open sub-

group of G.
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Let g € k(). Consider ,,g(z) = g(7oz) the left translation of g by 9. Then
g has the following properties:

1) y9 € A(H)
2) 59 =0off 15'Y = Hy
8) g0 B! is well defined.

The first two are clear. To see the last one, suppose 8(h;) = B(hy). Then
a(yoh1) = a(yohs) which implies that g(yohi) = g(7ohs), since g € k(a), and
we are done.

To end the proof it suffices to show that ,,go 37! has an extensioh in A(G).
Indeed, if this happens, then there is f € A(G) such that

19 © ﬂ_l = flﬂ(Ho)'

Then the map 1f € A(G) will be the extension needed for go a™!. To see

a(70)”
this, let z = a(y) € a(Y). Then we have

o) @) = fla(n)™'2) = f(B(5'y))
= 19° 13_1(:6(7519)) 10 g(’)’o_ly)

= g(y) =goa(z).

We obtain goa™! =,,)-1 fla(y)-

Next we will show that ,,g o 87! has an extension in A(G).

Let A = Kerf. It is not hard to check that A = ;o {a(1)}. It follows
that A is a compact normal subgroup of Hy. Because of the definition of A and
the fact that g € k(a), it follows that g isrconstant on the cosets of A. Then
19 is constant on the cosets of A as well. Note that ,,g € A(H,) because of
2). Then, by a result due to Eymard (][9], Theorem 3.25) there is § € A(Ho/A) |
such that

g = goQa

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where )y : Hyp —>. Hy/A is the canonical map. _
Our next claim is that 8o Q} : H, /A — B(H,) is a well defined bijection.
Indeed, suppose that Qx(h;) = Qa(h2) where h; = 75 Yyi, 4; €Y. Then

hl—lhg eEAN& y{lyz € A.
Therefore, there is x € o {a(v)} such that y7'y, = 75 z. Now we have
B(hi) = (7o) el y0hs) = e(y0) " er(wi)-

On the other hand, a(y;) = a(y17; 'z) = a(yi)a(y) *a(z) = a(y;). Therefore
B(h1) = B(hs). So ﬂOQxl is well defined. Similarly it can be shown that B0Q7*
is bijective. Moreover, since (), is an open map and (3 is proper it follows that
BoQy! is a homeomorphism.

It follows that the map
@ : A(B(Ho)) — A(Ho/A)

f=fo(BoQyY)
is an isomorphism.

Therefore we have
w30 B =go(BoQ") ! € A(B(Hp))

since § € A(Hp/A). Since B(H,) is an open subgroup of G, by Theorem 3.21 of
[9], there is F' € A(G) such that ,,g0 87" = F|gn,), which concludes the proof.
a

Remark 4.4.2 We need the fact that G is discrete in order to apply Theorem
3.21 from [9]. If G is not discrete, the subgroup 8(H,) is only a closed subgroup
and the theorem cannot be applied. Nevertheless, if G is abelian we can apply
Theorem 2.7.4 of [37], and then Lemma 4.4.1 holds true for this case as well.
We will need this remark later in the proof of Theorem 4.4.7.
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We will now make use of Lemma 4.4.1 together with the results proved in
Section 4.2 on piecewise affine maps, to complete the second step of the proof

of Theorem 3.2'.

Lemma 4.4.3 Let G, H be locally compact groups with G discrete. Suppose
Y € Q(H) and o : Y —> G is a proper map that has an affine extension
ay : Aff(Y) — G. Then for any g € k(c), goa™! has an extension in A(G).

Proof Recall

Ma)=dgecam: -0 oY .
9(y1) = g(y2) whenever a(y1) = a(ys)

Let E = Aff(Y). By Proposition 4.2.6, o; is a proper map. As in Lemma
4.4.1 there is a compact normal subgroup A C E7'E. Let g € k(a). Define
g:H— Cby

3 — { g(BA-1) if heYA
0 if h¢YA
We claim that § is well defined on Y A.

Indeed, let h = y1 A = Y2 X2, ¥ €Y, A € A, i =1,2. We will show that
a(hATY) = a(hA;1), from which it will follow that g(hAT') = g(h);'), proving
the claim.

We have

Y1A1 = YPada = y{lyl = AgAfl € A.

Since A = v5 '~ {a(vy)} for some o € E, it follows that there is z € o~ {a(7o}
such that

Yz ' =7 = = Y 2
Then, since « is affine we get
a(y1) = a(y275'2) = a(y2)a(y) " alz) = aly).
and the claim is proved.
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The following two properties of § are straightforward and the third one can

be obtained in a similar way as that shown above.
i) g=gonY
i) § = 0 outside YA
iii) § isA constanf{'on left cosets of A
Moreover, since Y C F and A C E~'F we have YA C E, so we can say that
g=0 off E. (4.4)
From definition of A as the Ker(B;) and (%ii) it follows easily that
on(h) = 0y (hy) = §(ha) = §(ha). (4.5)

Our next claim is that
g € A(H). (4.6)

By Lemma 4.2.5 (i) we can find a finite set F' C A, such that YA =Y F =
User Y A Note that for each A € F we have

Glya(h) = g(hA™) = gr-1(h) € A(H).
Then
n k—1
9= glyau.ura, = Zgly,\k H Imya, € A(H)
’ k=1 j=1

by the above and the fact that Y\ € Q(H) for any A.
From (4.4),(4.5) and (4.6) we obtain that § € k(cy). Therefore we are in the

hypothesis of Lemma 4.4.1, so § o o; ! has an extension in A(G). Since §o a;!

is an extension of f o o™}, this concludes the proof. 0

Looking back at the decomposition in Proposition 4.2.4, if we have only one
piece we have proved the theorem. For the general case, when we have more
pieces, we have to put them together. The amenability of G is essential for this

step of the proof. The following lemma will allow us to glue everything together.
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Lemma 4.4.4 Let G be an amenable locally compact group. If X,Y € Q.(G)
then
I(X)+I(Y)=I(XNY).

where I(X) = {f € A(G) : flx =0}, closed ideal in A(G).

Proof By [18], Theorem 2.3, I(X) has a bounded approximate identity, there-
fore I(X) + I(Y) is a closed ideal in A(G) (see [38], Theorem 4.2). Given an
ideal F in A(G), we let Z(F) = {z € G : u(z) = 0 for any u € F}. Then

ZIX)+IY)) = XNY € Q(G).

But X NY is a set of spectral synthesis ([18], Lemma 2.2), that is I(X NY) is
the only ideal whose hull is X NY, giving I(X) + I(Y) = I(X NY). o

The next result follows immediately.

Lemma 4.4.5 Let G be a locally compact amenable group. If XY € Q.(G)
and g1, 92 € A(G) are such that

gilxny = g2lxny
then there exists g € A(G) such that glx = g1|x and gly = g2|y-

Proof By hypothesis it follows that g; —go € I(XNY'), so by Lemma 4.4.4, there
exists f1 € I(X), f2 € I(Y) such that fi—f> = gi—gz. Theng=g1—fr = g2~ f>

satisfies all of the requirements and we are done.
We are now ready to conclude the proof of Theorem 4.3.2'.
Proof of Theorem 4.3.2' By Proposition 4.2.4 there are disjoint sets Sy, ..., 5m

€ Qo(H) such that Y = | J]' S; and each alg, is proper with an affine extension
a; : Aff(S;)) — G.
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For each i, gxs; € k(als,) so by Lemma 4.4.3, there is g; € A(G) such that
gila(s) =90 a_l|a(s,-)

We have seen in Corollary 4.2.8 that a(S;) € Q.(G). Repeatedly applying
Lemma 4.4.5 we obtain f € A(G) such that

fla(Y) = gklasi V1 S 1 S n

Then flary) = g o a™! as required.

O

Theorem 4.3.2 is now proved as well, since it is a particular case of Theorem
4.3.2'. Since the former result is equivalent to Theorem 4.3.1, we have obtained

the result announced at the beginning of this section.

Remark 4.4.6 Theorem 3.3.4 has played a central role in the description of
the range of a completely bounded algebra homomorphism ¢ : A(G) — A(H).
We can obtain the same description of the range of a bounded algebra homo-
morphisms using now B. Host’s result and the hypothesis that G, H are locally

compact groups with G abelian.

Theorem 4.4.7 Let G, H be two locally compact groups. Suppose that G is
abelian and ¢ : A(G) — A(H) is an algebra homomorphism. Then

¢*(h1) =0= f(h1) =0

¢(A(G)) =< f€ A(H) :
¢*(h1) = ¢*(h2) = f(h1) = f(hs) hi,ho € H

Proof B. Host’s result ([24]) allows us to follow the same procedure as that
given in the proof of Theorem 4.3.1. The proof can be carried over without
many modifications. As we have noticed in Remark 4.4.2, Lemma 4.4.1 holds
for G abelian as well, therefore Lemma 4.4.3 follows immediately. Since G is
abelian, it is alsb amenable, so we can apply Lemma 4.4.5 to end the proof.

|
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Chapter 5

Dual Banach algebras associated
to the coset space of a locally

compact group

5.1 Introduction

Let G be a locally compact group and let H be a closed subgroup of G. B.
Forrest has defined in [16] the Fourier and Fourier-Stieltjes algebra associated to
the coset space of a locally compact group G, A(G/H) and B(G/H) respectively.
He has proved that when H compact it is possible to extend many classical
results to this new setting. Our goal is to continue this investigation.

Given a continuous function @ on G/H we can identify & with the continuous
function u on G defined by u = @ o g, where ¢ : G — G/H is the canonical
map. This provides us with an isomorphism between C(G/H) and C(G : H )s
the subalgebra of C(G) consisting of functions which are constant on the left
cosets of H in G. Under this isomorphism A(G/H) and B(G JH ) correspond to
two subspaces of C(G : H), denoted by A(G : H) and B(G : H).

In the third section we study the dual space VN(G: K) of A(G: K), when
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K is a compact subgroup of G. We give a description of the dual that leads to
the fact that VN(G: K) is a w*-closed left ideal in VN(G). A natural question
that arises is whether we can characterize all w*-closed left ideals of V.N (@)
that are of this form. We answer this question in Section 4.

P. Eymard [9] proved that VN(G) can be identified with the dual of A(G).
There is a natural module action of A(G) on VN (G) given by < ¢-T,v >=<
T, ¢y > for each ¢,7 € A(G) and T € VN(G). E. Granirer [20] defined
the subspace UBC/(G) as the norm closure of A(G) - VN(G). F. Dunkl and
D. Ramirez [8] have defined W (G) (reépectively AP(Q)), the space of weakly
almost periodic (respectively almost periodic) functionals on A(G), to be the
set of all T in VN(G) for which the operator from A(G) to VN(G) given by
¢~ ¢ - T is weakly compact (respectively compact).

The last three sections of this chapter are dedicated to the study of the
natural analogues of the Spaces UBC(G), W(G), AP(G) in VN(G: K), which
we denote by U BC(@ ) W((?T( ) and AP(CT:T( ) respectively. We obtain
results that are analogous to the ones in the classical case due to F. Dunkl
and D. E. Ramirez ([8]), E. Granirer ([20]) , A. T. Lau ([26]). The proofs are
motivated by the ones in [26], [20], [8]. We adapt them to our new setting.

In Section 5 we study thé various inclusion relationships that exist between
these spaces. Also, we prove that when G is amenable, UBC (ﬁ{ ) is isomet-
rically isomorphic to a closed subspace of B(G: K)* (Theorem 5.5.13).

In Section 6, we eXplore the behaviour of these spaces with respect to the
Arens product on their duals. Among other things, we characterize W(CTT( )
as the maximal subspace X of VN(G: K) for which the Arens product makes
sense on X* and the product is separately continuous with respect to the weak*
topology on bounded spheres (Proposition 5.6.7). In the last section we study
operators commuting with the action of A(G: K) on subspaces of VN(G: K).
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5.2 Preliminaries

Let G be a locally compact group. Let H be a closed subgroup of G. B. Forrest
defined in [16] the following sets: |

B(G: H)={ wu € B(G) : u constant on left cosets of H}
AG:H)={ ue B(G: H): ¢g(supp u) compact in G/H} "z

If H is normal, then A(G : H) ~ A(G/H), B(G : H) ~ B(G/H).
From now on K will denote a compact subgroup of G. We assume that a

measure fig/x has been chosen on the coset space G/K, | such that for every

(e
f € LYQG), T[N;f z)dr = ‘/G/K/ f(kz)dkdpg k(%)

...... S ST E S

Jesx Jx
where dk is a fixed left Haar measure on K. There exists a projection

Py : B(G) — B(G:K), Pr(u)(z) = /K u(zk)dk

such that Py restricted to A(G) is a projection onto A(G: K) (see [16]). We

can define a similar projection on L!(G),
P LHG) — NG, Pr(N@) = [ f(ak)dk
whose image is the set denoted by
LYG:K)={f € LY(G) : f is constant on left cosets of K }.

LY(G : K) is a closed subalgebra of LI(G) which is not self adjoint.

Similarly we can define

I%U@%+M®,%wm=ﬁﬂmﬂ

In this case the image is the set of all functions f € L!(G) that are constant on

the right cosets of K. The following results are straightforward calculations.

Proposition 5.2.1 Let f,g € Coo(G). Then:

o4
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i) Px(f*g)=fxPgg iYPE(fxg)=Pif*g

i) Pe(f) = (PRAY iy PR(fY) = (Prcf)"

iii) Px(f) = (Pgf) i) PR(f) = (P f)”

where f¥(z) = f(z7), f(z) = fl@). -

Proof Let f,g € coo(é). Given e G, we have on the one hand,

Pl o)) = [ (f * 9)(ak)dk = [ [ 1wk, 5)

and on the other hand, |
o (fx _ -1 — -1
(f * Pxg)(z) /G f(W)Pxg(y™ z)dy /G /K f(y)g(y™ zk)dkdy

= [ [ 1oty ak)dyar (52)
- JrJa. : _
Thus, from (5.1) and (5.2), we get the equality Px(f *g) = f * Pxg, which
proves ).

To prove i)' we proceed similarly and calculate

Pi(f+9)(@) = /K (f * g) (k) dk = /K /G f@ov Ryl (5.3)

and also . A
(PLf * g)() = /G Py f(v)g(y~"w)dy = / /K F(ky)g(y~"w)dkdy
- /K /G f(ky) gy~ ) dydk (5.4)

= / / f(y)g(y~'kz)dydk (change of variable y = k~'y)
KJa

Therefore we have equality.
We will prove only one of the remaining equalities and the other ones can

be proved by similar calculations. To prove i), let z € G. Then
Pelr)e) = [ flaobde= [ £t an
K
= [tk = (P (o)

and Which concludes the proof. 0
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5.3 The space VN(G: K)

Let I'x be the Banach space adjoint of the projeétion Pg : A(G) — A(G:K).
We then have ‘
Tk :VN(G) — VN(G)
< FK(T),’)’ >=<T, Pgy > (55)

for every v € A(G) and T € VN(G). ,
We denote by VN(G: K) the w*-closure of A\(L!}(G: K)), where ) is the left
regular representation of G. This is a w*-closed subalgebra of V N(G) which is

not closed under involution in general.
Lemma 5.3.1 (i) Tk is a projection of VN(G) onto VN(G:K).
(1) Furthermore, we have VN(G: K) ~ A(G: K)* isomorphically.

Proof (i) Indeed, let us assume that T = A(p), where u is a measure in M(G)
and let us view the Haar measure on K, dk, as an element px of M(G). We

then have for every u € A(G)
<Tx(M)u> = <A(u),Peu>= /G Preu(z)du(z) = /G /K w(zk) dug (k) dp(z)

= [ [ ulok)d(k)due) =< M ¢ ) u >
GJ@G

Therefore T'x (T) = A(p * pk). In particular, for u = py with f € LY(G) we
obtain that ‘

Pr(g)) = Aty * i) = M * ) = NP (f)) € MIA(G: K)).

Therefore Tx(A(L}(G))) = A(L1(G: K)). Since VN(G) = A(L}(G))~*" and the
map Iy is w*-w* continuous, it follows that Tx(VN(G)) = AM(LY(G: K))™" =
VN(G: K) and we have proved the claim.

(ii) Clearly we have Kerl'x = A(G: K )+. Then

VN(G) =Tx(VN(G: K)) ® KerTx = VN(G: K) ® A(G: K)*
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and hence VN(G: K) ~ VN(G)/A(G: K)* ~ A(G: K)*. O

Remark 5.3.2 We explain now, in more detail, the isomorphism from Lemma
5.3.1 (ii). Let Ty € VN(G: K). As an element in VN(G), Ty can be seen as a
functional on A(G). Then the functional on A(G:K) given by the isomorphism
is nothing else than the restriction of Ty to A(G: K).
Conversely, if we start with a functional Fy € A(G: K)*, it can be extended
to a functional F on A(G). If Tr € VN(G) is the operator given by the duality
“A(G)* ~ VN(G), then the corresponding operator T, in VN(G: K) is given
by Tx(Tr). o ’

It is known that VN(G) is an A(G)-module with the multiplication given
by the duality VN(G) ~ A(G)* as follows

A(G) x VN(G) — VN(G)

(0, T)=o-T

where < ¢ - T,y >=< T, ¢y > for every v € A(G). The next result shows that
VN(G: K), as a subspace of VN(G), is invariant under this multiplication with
respect to A(G: K).

Proposition 5.3.3 Let K be a compact subgroup of a locally compact group
G.Then

A(G:K)VN(G:K) C VN(G: K).

Proof Let z = A(f), f € LYG:K) and ¢ € A(G: K). Let Ty = ¢ - z. We will
show that Ty € VN(G: K).
For every v € A(G), we have

<To,y >=< 2,907 >=< X({f), o7 >= /Gf(t)w(t)'y(t)dt-

o7
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Let v = (h * §)¥ with h, g € Cyo(G). On the one hand we have

<Tur> = [ 1000 ( / ;,-(y)hv(y—it)dy) dt
- [G /G F(&)o(&)5(w)h(ty)dydt
= /G ( /G f(t)cp(t)h(t“ly)dt) 9(y)dy

- / (Fo * ) ()3(w)dy
= < fo*h,g>.

On the other hand < Tp, (h * §)¥ >=< Toh,g >. Therefore < Tyh,g >=<
fo*h,g >, for every h, g € Cpo(G). It follows that

Toh = foxh=Afe)h - whichis Ty = A(fy).

Since fo € LY(G: K), it follows that T, € VN(G: K).
Now, let z € VN(G: K). Then there is a net {4}, € L'(G: K) such that

Let ¢ € A(G: K). Then ¢ - z, AN ¢ - z. Indeed,
<P Ty Y = Ty P >—< T, PY >=< 9+ T, > |

By the above ¢ - 4, € VN(G: K) and since VN(G: K) is w*-closed, it follows
that ¢ - z € VN(G: K). o

Remark 5.3.4 Let v € A(G:K), T € VN(G:K). As a consequence of the
above result and of the duality A(G:K)* ~ VN(G:K), we can define two
module actions of A(G: K) on VN(G: K) by

1) ¢ - T as above, viewing ¢ € A(G),T € VN(G)
<-T,y>=<T,¢py> forall y € A(G)
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" 2) ¢ oT given by the duality A(G: K)* ~ VN(G: K)

<yxoT,yx >=<T,pyx > for all yx € A(G:K).

Clearly ¥ o T = % - T|s(g:k), so by Remark 5.3.2 and Proposition 5.3.3, the
corresponding operators in VN(G) and VN(G: K) are the same:

T1/;0T = FK(T,/,.T) = Ton

Therefore the above multiplications are the same. In the sequel when we talk
about the module action of A(G: K) on VN(G: K) we will use any of these two,

as necessary.

We now give a description of VN(G: K) and we show that it is a left ideal
of VN(G).

Theorem 5.3.5 Let K be a compact subgroup of a locally compact group G.
Then: |

i) VN(G:K)={T € VN(G) : <T,y>=<T,Pxy> forallvyec A(G)}
i) VN(G:K) ={T € VN(G) : T =TTk}

where Tk : L*(G) — L*(G), Tk f(x) = [ f(kz)dk. In particular, it follows
that VN(G: K) = VN(G)Tk, which implies that VN(G: K) is a left ideal in
VN(G).

Proof i) Let T € VN(G: K). Then
Pr(T)=T ie. <Tk(T),y>=<T,y> foreachyec A(G).
This means that < T, Pxy >=<T,v > for each v € A(G). Therefore

VN(G:K)C{T € VN(G) : < T,y >=<T,Pxy >}

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Conversely, let T € VN(G) such that < T,y >=< T, Pxy >. Then
<Tk(T),y >=<T,Pxy >=<T,y> for each v € A(G)

and therefore I'x (T') = T, which means that T €VN (G:K).
ii) Let T € VN(G:K). Let u € A(G) such that u = (h % k)" with h,k €
Coo(G). By %), T satisfies '

<Tu>=T,Pxu>. (5.6)

Using Proposition 5.2.1 we have
Pyu=Pyl(h+ B)] = [P(h+ )Y = [PRh+ Y = (g4 F)¥
where g := Pgh. Then
<T,Pxu>=<T,(g%k) >=<Tg,k > (5.7)

Combining (5.6) and (5.7) we get

<Th,k >=<Tg,k>
which is equivalent to

<Th,k >=<TPixh,k> & Th=TPrh & ‘T=TTK

Conversely, let T € VN(G) such that T' = TTxk. For any h, k € Cy(G) we

have
< Th,k >=<TPyhk> & <T,(h*k)Y >=<T,(Pihxk) >.

Hence we get that < T,u >=< T, Pxu > where u = (h % k).

Since elements of the form u = (h % k)" are dense in A(G), we get that
<T,y>=<T,Pgy> for each v € A(G)

which shows that T' € A(G). The last part of the statement follows easily using
i). E O
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Remark 5.3.6 From the proof we obtain the following formula for the projec-
tion I K

I'(T) =TTk foreach T € VN(G)

5.4 Left ideals of the form VN(G: K) in VN(G)

In this section we will characterize all w*-closed left ideals in V N(G) that are
of the form VN(G: K), for some compact subgroup K of G.

Note that as the predual of a von Neumann algebra, A(G) becomes a right
V N(G)-module, with the multiplication

A(G) x VN(G) — A(G)

(6, T) - ¢poT where <@oT,T >=<¢ TT >

and a left VN(G)-module with
VN(G) x A(G) — A(G)

(T,¢) > Top where <Tod T >=<¢,T'T>.

A set A C A(G) is said to be right (respectively left) invariant if
AoVN(G) C A (respectively VN(G) oA C A).

Remark 5.4.1 Let E be a projection in VN(G). Then A = Fo A(G) is a right
invariant subspace of A(G). Indeed, it is easy to see that (Eo¢)oT = Eo(¢oT).

Furthermore, we have the following characterization of E o A(G) :
EoA(G)={p€ A(G): < ¢,T >=< $,TE> for cach T € VN(Q)}. (5.8)
Define Pg to be the projection on A(G) given by

Pg : A(G) — A(G)
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o Eod

Let I'g be the Banach space adjoint of Pg
Fg:VN(G) — VN(G)
<Tg(T),y>=<T,Pgy> foreach T € VN(G), v € A(G).
Remark 5.4.2 i) Note that I'g is a projection onto VN(G)E. Indeed, we have
<Tg(T),y >=<T,Pgy >=<T,Eoy>=<TE,y> for each v € A(G)

which implies that I'g(T) = TE and therefore the image of I'p is VN(G)E.
#) Furthermore, Kerl'g = E o A(G)* = VN(G)(I — E).

Proposition 5.4.3 Let G be a locdlly compact group and let E be a projection
in VN(G). The following are equivalent

(i) E o A(G) is a subalgebra of A(G)
i) VN(G)(I - E) is invariant under the module action of EoA(G) on VN(QG).

Proof i) = i) Suppose E o A(G) is an algebra. Let ¢; = E o ¢;, | w; €
A(G), i =1,2. Then p1p, must be in E o A(G), so by (5.8), we must have

< 192, T >=< 199, TE > VYT € VN(G).
On the one hand ,
< 1o, T >=< o, ;T >=< E ¢ 952,(,017" >=< P, (;plT)E > . (5.9)
On the other hand,
< 192, TE >=< 3, p1(TE) >=< 3, [p1(TE)|E > . (5.10)
Since @, is arbitrary, by combining (5.9) and (5.10), we obtain that

(@1T)E = [p1(TE)|E  or equivalently T'gp(¢1T) = Te(p1Tu(T))
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for all T € VN(G), ¢; € E o A(G). This means that
T — 1Tu(T) € KerT'g

and therefore ¢, (T —T'g(T")) € VN(G)(I — E) for all T € VN(G), ¢1 € A(G).

Hence, we have shown that
(Eo A(G))-VN(G)(I — E) CVN(G)(I - E).

it) = i) This follows similarly. O

Remark 5.4.4 If E = Tk, then E ¢ A(G) = Tk ¢ A(G) = A(G: K) since
< Tgop, T >=< ¢, TTk >=< ¢, T'g(T) >=< Pxp,T > for eachT € VN(G).

Since A(G: K) is clearly an algebra, it follows from the previous proposition

that VN(G)(I — Tx) is invariant with respect to A(G: K) = Tk ¢ A(G).

We denote by C the following operator :
C:L*G) — L*G)
h+sh
It can be shown that CVN(G)C = VN(G) (see [44]). We can define an anti-

automorphism w as follows:
w:VN(G) — VN(G), w(T)=CT*C.
This defines an involution § on A(G) as follows
<M T >=<w(T),p>.
Remark 5.4.5 If T' = A(s), s € G, then
<@L A(s) >= < As), 0 > & ¢ = p(s)
so this involution is nothing else but the complex conjugation of functions.
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Proposition 5.4.6 Let G be a locally compact group and let E be a projection
in VN(G). The following are equivalent:

i) E o A(G) is closed under the involution §

) E has the property that CE = ECE.

Proof i) = i) Let ¢ = Eo¢, € EoA(G). Then, by hypothesis, ¢! € Eo A(G)

which means
< T>=< TE> forany T € VN(G).

Equivalently,

<p,CTC >=<¢,CTEC >

The conjugation can be removed, and so we get < ¢,CTC >=< ¢,CTEC >
for all T € VN(G). Taking into account that ¢ = E o ¢; we get that

< ¢1,CTCE >=< ¢,,CTECE >
which can be rewritten, using that C? = 1, as
< ¢1,CTCE >=< ¢,,CTC(CECE) > .
The last equality shows that E satisfies
<1 oCTC,E >=< ¢, 0CTC, CECE >

for each ¢, € A(G) and T € VN(G).
Now, since CVN(G)C = VN(G), it follows that CTC spans all of VN(G)

if T does, and therefore we have
<¢p0T,E>=< ¢ oT,CECE > for each T € VN(G).
Because ¢; ¢ T spans all of A(G) we obtain that E satisfies the identity
<,E >=<¢,CECE > forall ¢ € A(G).
In conclusion, we obtain that E = CECE which is equivalent to CE = ECE.

it) = 1) This follows similarly. O
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Remark 5.4.7 Note that if E = Tk, then it satisfies the condition #) of Propo-
sition 5.4.6.

~ 'We now characterize all w*-closed left ideals in V. N(G) which are of the form

VN (G K), for some compact subgroup K of G.

Theorem 5.4.8 Let G be a locally compact group. Let J be a w*-closed left ideal
in VN(G), given by the projection E, that is, J = VN(G)E. Also, suppose that

i) VN(G)(I — E) is invariant with respect to E o A(G), and
i) CE = ECE, that is E(f) = E(E(f)).

Then there exists a compact subgroup K of G such that J = VN(G: K) (or
equivalently, E = Tk ).

Proof Given a von Neumann algebra M, there is a one to one correspondence
between w*- closed left ideals and right invariant subspaces of the predual M,

(see Theorem 2.9, [45]). If we let M = VN(G), M, = A(G), then the map

w* — closed left right invariant
F:J: — ¢ A:
ideal in VN(G) subspace of A(G)
J=VN(G)Ew— J' = (I - E)o A(G)
is a bijection. Denote by G the following one-to-one map:
G:{I-E)cA(G) : EeP(VN(G)} —={E-A(G) : E€ P(VN(G))}

(I — E) o A(G) » E o A(G)

where P(VN(G)) is the set of all projections in VN(G). And finally, let H

denote the following map:

2. A : self adjoint right invariant
. subalgebra of A(G)

} — {K : compact subgroup of G}
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A Kp={s€G: As)op=pVpe A}.
By Theorem 9 in [44], H is a one-to-one map.
Notice that under our assumptions, by Proposition 5.4.3 and Proposition

5.4.6, E o A(G) is a self adjoint right invariant subalgebra of A(G). So, if we
denote by J the following set ‘

{ J = VN(G)E such that E(h) = E(E(R)) }
J=<¢J€VN(QG): _ ,
and (E o A(G))(VN(G)(I - E)) C VN(G)(I - E)

then the map
A:J — {K : K compact subgroup of G}

A=HoGo(F|T)

is one-to-one. Moreover, if we denote by Jx = {VN(G: K) : K C G compact subgroup}
we have Jx C J and

A(Jk) = {K : K compact subgroup in G}

Indeed, the fact that Jx C J follows from Remark 5.4.4 and Remark 5.4.7.
The equality follows from fact that:

AMVN(G: Ko)) = H(G(U —Tk,) 0 A(G)))
= H(Tk, o A(G))
= H(A(G: Kp))
= Ko

for every Ky C G compact subgroup.
Given the fact that the map A is injective, we get that J = Jk. O

5.5 The subspaces UBC(G-K), W(G: K) and AP(G: K)

Let G be a locally compact group and let K be a compact subgroup of G. In -
[20] E. Granirer defined the subspace UBC(G) as the norm closure of A(G) -
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VN(G). We define the analogue of UBC(G), to be the norm closure of A(G: K)-
VN(G: K) in VN(G), and we denote it by UBC(G: K).

Remark 5.5.1 (i) When K is normal we have UBC(CT:T{) o~ UBC(CT/?{),
the space of bounded uniformly continuous functionals on CT/?( as defined by
E. Granirer in {20], based on the fact that A(G: K) ~ A(G/K) and VN(G: K) =~
VN(G/K) when K is normal.

(ii) Using Proposition 5.3.3 , we get that

UBC(G-K) C VN(G:K)

(#ii) Since A(G: K) C A(G) and VN(G: K) C VN(G) it follows that
UBC(G:K) c UBC(G)

(iv) U BC(CT:T( ) is a linear subspace. This follows by arguing as in [20].
Indeed, it is not hard to see that

A(G: K) = A(G: K) M5©)

where A.(G: K) = {u € B(G: K) : supp u compact}. Then A.(G: K)-VN(G: K)
is dense in UBC(CT:T(). Let uiT1, ueTy € A(G: K) - VN(G: K). Our claim is
that ;T + us T3 € A(G: K) - VN(G: K).

Let K; = supp u;, K2 = supp uy compact sets and put F' = K; UK. Let O
be an open set such that F C O and O is compact. There exists u € A(G: K)
such that u(F) = 1 and u = 0 outside O, 0 < v < 1. Then

U1T1 + U2T2 = u(u1T1 + u2T2) € AC(GZ K) . VN(G K)

Therefore A.(G: K) - VN(G: K) is linear space. Now U BC’(C?T( ), its linear

closure, is a linear space as well.
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Theorem 5.5.2 Let G be a locally compact group and K a compact subgrbup
such that G/K is an amenable coset space. Then A(G: K)VN(G: K) is closed.
In particular, UBC((T:T() = A(G: K)VN(G: K).

Proof If G/K is an amenable coset space then A(G: K) has bounded approxi-
mate identity (see [16]). Since, by Proposition 5.3.3, VN(G: K) is a left Banach
A(G: K)-module, we can apply the Cohen’s factorization theorem ([23], vol2,
p.268) and we conclude the proof. O

Remark 5.5.3 When K = {e} this was proved by E. Granirer ([20], Proposi-
tion 1).

Definition 5.5.4 Let G be a locally compact group and K a compact subgroup
of G. We define

— T € VN(G:K) : A(G: K) — VN(G: K) weakl ¢
W(G:K):{ (G:K) : A( ¢)H¢T (G: K) weakly compac }

Remark 5.5.5 (i) It is easy to see that W(G)NVN(G:K) C W(CTT()
(1) If K is normal then W(CTT() ~ W(CT/?()

Definition 5.5.6 Let G be a locally compact group qnd K a compact subgroup
of G. We define

AP(@) _ T € VN(G:K) : A(G: K) — VN(G: K) is compact .
¢ ¢T
Remark 5.5.7 We have AP(CT:-T( ) C W((TT( ). Also, when K is normal then

AP(G-K) ~ AP(G/K).

The next two propositions present conditions under which various inclusion
relationships between these three spaces occur. The results are similar to the
ones in the classical case, that are proved in the work of E. Granirer ([20]), and

our proofs are similar to the ones given there.
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Proposition 5.5.8 Let G ‘b'e a locally compact group and K a subgroup such
that G/K is an amenable coset space. Then
W(G:K) c UBC(G- K)

Proof Since G/K is an amenable coset space it follows from [16] that A(G: K)
has a bounded approximate identity {e,}, such that |le,]] < 1 for every a.
We claim that, for any T € W(CT:?(), eaT —= T in the topology o =
o(VN(G: K), A(G:K)) .

Indeed, by the definition of the module action of A(G: K) on VN(G: K) we
have

<eu v >=<T,eqvk > .

On the other hand, e,y,—k since {e, }o is a bounded approximate identity.

Therefore we obtain
< eqT,y >—=3< T,y > for all v, € A(G: K)

and the claim is proved.

The set {eaT : |leal] < 1} is weakly relatively compact, since T € W(CT?{ )s
so there is Tp € VN(G:K) such that e,,T £, Ty weakly. In particular,
it converges in the o topology. But then we must have T = Ty. Therefore
€asT -2, T weakly. Therefore T is in the closure of A(G: K)VN(G: K) in the
weak topology, which is equal to the norm closure of A(G: K)V N(G: K), that
is UBC(G: K). D

Proposition 5.5.9 Let G be a locally compact group and K a compact open

subgroup. Then
UBC(G:K) c AP(G:K).

In particular, it follows that UBC(CT:T() C W(CTT{)
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Proof For a € @, let 1,x be the characteristic function of aK. Sinée K is open
we have 1,x € A(G: K) (it has compact support and is constant on the cosets
of K). Our first claim is that for T € VN(G: K), 1.xT € AP((TT{)

Let g € G. Define the map

ly: A(G) — A(G)
u > lg(u)
where I,(u)(z) = u(gxz). Then the dual map is [ : VN(G) — VN(G). K I is
the identity operator in V. N(G) it can be shown that < I,u >= u(e) for any
u € A(G). Let ¢ € A(G: K). Then for any v € A(G: K) one has

<¢-(LexT),y> = < LgT,7¢>=<T,v¢lax >
= < T,y(a)p(a)lax > (v, ¢ are constants on cosets of K)
= $(a)T (Lax)v(a) = ()T (Lax)lo(I) (7)
(since y(a) = l(I)(7))

So ¢ (1axT) = [6(a)T (Lax)lI5(I)- If ||¢]| < 1, then
¢ - (LaxT) € {ale] : o] < |T(Luk)[} = {oTh : lo| < |T(Lax)l}

and the last set is a compact set in VN(G). Therefore {¢-(1T) : l|¢l| <1, ¢ €
A(G: K)} is a compact set in VN(G: K) which proves that 1,47 € AP(@T( ).
| Our second claim is that if T € VN(G:K) and h € A.(G: K) then hT €
AP(ET( ). Since h € A.(G: K), q(supp u) C G/K is compact. By hypothesis
G/K is discrete, therefore g(supp ) is finite, so we can write it as g(supp u) =
UP_,&; where £; = ;K € G/K. Since h is constant on thé left cosets of K,

there are o; € C such that '
n .
h= Z ailxi K
=1
Then hT = Y, &1,k T, so it is linear combination of compact operators, and

therefore is itself a compact operator.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Our last claim is that for T € VN(G:K) and ¢ € A(G: K) we have ¢T €
AP(CT:?( ). There is {¢n}n € Ac(G: K) such that ¢, —> ¢ in norm. So for
v € A(G: K), ||v|]| £ 1 we have | '

1< (n=9) Tyu> | <|<T,(én =) > | < [Tlldn— Sllo]

which implies that [|(¢n — @) - T|| < ||¢n — S|||IT}l. Thus ¢,T —> ¢T in the
operator (uniform) norm (as operators from A(G) to VN(G)). Since norm
limits of compact operators are compact, it follows that ¢T" € AP(CT:T{ ).

We have shown that A(G: K )VN (G:K) C AP(@( ). Consequently, we
obtain UBC(G: K) C AP(G: K). | 0

Corollary 5.5.10 If G/K is an amenable coset space and K is compact and
open, then | '

UBC(G:K) = W(G-K) = AP(G-K).

Proof This follows from Proposition 5.5.8 and Proposition 5.5.9 O

B. Forrest has defined in [16] the space C*(G: K) to be the closure of
LYG:K) in C*(G) in the || - ||c+(¢) norm. This is a non-selfadjoint subalge-
bra of C*(G) and one can show that [C*(G: K)]* = B(G: K). We define now
the following subspace of VN(G: K)

C;(G: K) = {Mf): f € L}G: K)} Mvnex

Remark 5.5.11 When G/K is amenable we have C*(G: K) ~ C}(G: K) since

in this case the two norms agree.

Proposition 5.5.12 Let G be a locally compact group and K a compact sub-
group. Then
C;(G: K) c UBC(G:K).

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Proof Let f € Cy(G: K) such that supp f = F C G. Choose ¢ € A(G: K)

such that ¢(t) =1 on F. Then

<@ A(f), 7y >=<A(f), d7y >= / F&)pH)Y()dt = / FOv()dt =< A(f),7 >
e G

for any v € A(G: K). Therefore ¢-A(f) = AMf) so A(f) € A(G: K)VN(G:K) C
UBC(G: K). 1t follows that C}(G: K) C UBC(G: K). O

Suppose that G is an amenable locally compact group. Then z € UBC (é)

is of the form z = ¢ - y with ¢ € A(G),y € VN(G), and the map '
£:B(G) — C
< &, >=<vy,¢-19 > forany ¢ € B(G)
is well defined (see [26]). Now let 2 € U BC((T:T{ ) € UBC(G) be of the form
Tk = @k - Yk With ¢ € A(G: K), yr € VN(G: K). Define
Zr: B(G:K) — C
Ip = jle(G:K) that is , < If,’QL’ >=< Y, ¢k . '(/1 > for all ’l/) € B(G' K)

Clearly i € B(G: K)* and it is well defined since Zj is well defined.

Now, we can define the map

Ty : UBC(G: K) — B(G: K)*
T

The next theorem proves that when G is amenable, UBC (CTT{ ) is isomet-

rically isomorphic to a closed subspace of B(G: K)*. This theorem is proved for

K = {e} by A. Lau in [26] (Theorem 4.6). Our proof is motivated by the one

given there.

Theorem 5.5.13 Let G be an amenable locally compact group and let K be

a compact subgroup of G. Then Il is an isometry onto a closed subspace
of B(G: K)*, such that g estends the natural embedding of C*(G:K) into
B(G: K)*. Furthermore, if G is compact then Ilx is onto.
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Proof Let z € UBC(G:K), s = ¢y with ¢ € A(G:K) and y € VN(G: K).
We show first that ||z|| = [|Z]|. We have

|2l = sup{] <y,%¢>|: ¢ € B(G:K),|[¢[| <1}

and
all = sup{] <y, 79> |+ 7€ AG:K), iyl < 1}
Cleal;ly, since A(G: K) C B(G: K), we have ||z|| < ||F|].

To showlfthe converse inequality, we use the fact that A(G: K) has a bounded
approximate identity bounded by 1, since G is amenable (see [16]). Then,
for any § > 0 there is ¢y € A(G:K) and yo € VN(G: K) with ||dol] < 1
such that ||z — yo|| < & and z = ¢oyo (Prop 32.50, [23], vol II). Hence, for
W € B(G:K), ||| < 1 we have ' |

| <Z&¢>|=]<yod¥ > | < lwoll < llz} + 6

which implies

2l < Nzl + 6 = [l = ||z}

Therefore, Il is a linear isometry.

Now notice that C*(G: K) ~ C3(G: K) since G is amenable, and, since
C*(G:K) — B(G:K)*, it makés sense to say that IIx extends the natural
embedding C*(G: K) — B(G: K)*.

Let z = A(f) with f € Cpo(G: K), and denote the support of f by F. Let
¢ € A(G: K) such that ¢(t) =1 on F. Then z = ¢ - z. Hence

< B >=< 3, ¢ >= / FOS(Eyp(t)dt = / eyt =< 2, >

for ¢ € B(G: K). This shows that IIx agrees with the natural embedding on a
dense set of C*(G: K), and hence it must agree on C*(G: K).
Now we prove the last statement of the theorem. Suppose that G is compact.

Then 1 € A(G), therefore it is also in A(G: K). Then any z € VN(G: K) can be
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written as 1 -z so we have VN(G: K) C UBC(CET(). This gives VN(G: K) =
UBC(CT:?'). Moreover we have A(G: K) = B(G: K). Then

M (UBC(G-K)) = Mx(VN(G: K)) = A(G: K)* = B(G: K)*

and therefore Il is onto. ‘ : O

e —

5.6 The Banach algebras UBC(@()*, W(G: K)*,
and AP(G/:T()*

In this section we shall define on each of the dual spaces UBC (CTT( ) W(CTT( )
and AP(CT:T( )* the Arens product which turns them into a Banach algebra.
The results obtained in this and the next section are generalizations of the
those proved by A. Lau in [26], for K = {e}. The proofs are close in spirit to
the ones given there.

We start with a few deﬁnitions..
Definition 5.6.1 A subset X C VN(G: K) is K-topologically invariant if
AG:K)X C X

If X is a K-topologically invariant subspace of VN(G: K) we say that X is
K -topologically introverted if for each m € X*, x € X the map

mez:AG:K)—C

<mQ@um,y>=<my-z>

defines an element of X.

Remark 5.6.2 Let 0; = o(VN(G: K), A(G: K)) and 02 = o(VN(G), A(G))
restricted to VN(G: K). Then o1 = 02. '
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Indeed, let {T;}; € VN(G: K) be such that it converges in the o,-topology to
T, which means that < T},y >—=< T,y > for any v € A(G). In particular, the
above is true for any v € A(G: K) C A(G). This means that {T;}; converges in
the oy topology to T. Therefore o2 > 0;. To show the other direction, suppose

that {T;}; converges in the o;-topology to T'. This means that
< Ty >—=< T,y > for any v, € A(G: K).

Now, let v € A(G). By Theorem 5.3.5 we have that < T},y >=< T;, Pry >.

Therefore
< Ty >=< T;, Pey >—< T, Pyy >=< T,y > for any v € A(G),

so we obtain that o < oy, and the assertion is proved. We will denote both

topologies by o.

Next we give a characterization of the K-topologically introverted subspaces
of VN(G: K).

Lemma 5.6.3 Let X be a K-topologically invariant subspace of VN(G: K).
Then X is K-topologically introverted if and only if K (x)a CX foranyrze X
where K(z) = {¢-z: ¢ € A(G: K), ||4]| < 1}.

Proof “=” Suppose X is K-topologically introverted. Let y € K(z) . Then
there is a net {¢,} C A(G: K), ||¢q]| < 1 such that ¢4z — y in the o-topology

which means that
< ¢o - T,y >2<y,y > forall v € A(G: K).
Let m be a w*-cluster point of {¢,} in VN(G)* . Then

< @o,z2 >—<m,z > for all z € VN(G: K)
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Then for any v € A(G: K)

<y,v> = 1i£n< Do T,y >= li;n< z, 9oy >
= lic£n< VTP >=< M,y T >=<mMmO T,y >,
soy=m®z € X. Hence K(z) C X. ‘

“<” Now suppose that K(z) C X. Let m € VN(G:K)*, ||m| = 1. By
Goldstein’s theorem, the unit ball of A(G: K) is w*-_densé in the unit ball of
VN(G: K)*, so there is a net {@,}, in the unit ball of A(G: K) such that it
converges to m in the w*-topology.

Then < mOz,y >=<m,y-z >=limg < @g,y:z >=lim, < ¢o-z,7y> s0
MmO =0 —limg¢,-z. Since ¢, -z € K(z) it follows that mO = € K(z) C X.
a

The next theorem provides us with examples of K-topologically introverted

subspaces of VN(G: K).

Theorem 5.6.4 Let G be a locally compact group and K a compact subgroup.
The subspaces UBC (CTT{ )s W(CTT{ ), AP (CTT{ ) are K -topologically introverted.

Proof It is easy to see that these spaces ar’e'K -topologically invariant. We will
show that they are K-topologically introverted. We start with UBC (CTT( )-

Letm € UBC(C?T(‘)* andz € UBC(@(),&: = vz withy € A(G: K),z €
VN(G: K). Then

<mOz,Y> = <m,y-z>=<my(1-2) >=<m, (1) 2>
= <Mz, >=<Y(MmO2),y>.

Therefore m ® = = y(m ® z) € A(G: K)VN(G: K) c UBC(G: K).

Now suppose that z € UBC (CTT( ). Then there is a net {z4}, that belongs
to A(G: K)VN(G: K), such that

|zo — z|| = O.
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Then |m ©z — m O z,|| < |lm] - ||z — za|| = 0. By the above each m © z, €
UBC (CT?( ) so the first claim is proved.

"~ We will show next that W((TT{ ) is K-topologically introverted. In fact we
will show that anbe -topologically invariant closed subspace X C W(CTT( ) is
K-topologically introverted.

Let x € X. Then

K(@)={¢-v: 4 € AC:K), ll4 <1)

is weakly relatively compact since z € W(C?:-T( ). Therefore K(z) is compact.
Since the weak topology is stronger than ultraweak topology, it follows that they
coincide on W Now since K(z) is a convex set we have f(_(_;;j”'” = f(—x_)w
So we get that K(z) = K(z)”'”. (%)

7l

Now since K(z) C X and X is norm closed, we have that K(z)

c X.
Taking (x) into account we get K (z) C X. By Lemma 5.6.3, it follows that X
is K-topologically introverted. a

Remark 5.6.5 We know that AP((T:T( ) C W(G{T( ). By the proof above, it
follows that AP(CT:T( ) is K-topologically introverted as well.

Arens has showed that given a Banach algebra B, it is possible to define a
multiplication on B** that extends the multiplication on B. In the case that
B = A(G: K) and m,n € VN(G: K)*, the Arens product m ® n is defined by

the formula
<moOn,z>=<m,nOz > for each z € VN(G: K).

The same formula makes sense when VN(G: K) is replaced by a K-topologically
invariant and K-topologically introverted subspace X of VN(G: K). This turns
U BC(@ )%, W(G{T( )*, and AP(ET( )* into Banach algebras.

If G is amenable and ¢ € B(G: K), let ¢ denote the functional on UBC (CT?( )
defined by

< ¢z >=<Tlgz, ¢ >=<37,¢ > (5.11)
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for any z € UBC(CT:T{).
The next proposition lists some properties of the Arens product on UBC ((TT{ ).

Proposition 5.6.6 Let G be a locally compact group and let K a compact sub-
group.

i) For eachm € UBC((?T()* the map n — n ©m is weak*-weak* continuous.
i) If G is amenable, then for each ¢ € B(G: K) the map
UBC(G:K)* — UBC(G:K)*

m—=¢oOm

is weak*-weak* continuous.
it) If G is amenable and ¢,y € B(G: K) then q;\:y =607.

Proof ) Trivial

i1) Our first claim is that
<¢Omz>=<m,¢p-z>forallz ¢ UBC(C?T()

when m € UBC(G: K)*, ¢ € B(G: K).
Indeed, if £ =y - 2 with vy € A(G: K) and z € VN(G: K), then

moz = v(mo z).
Then,

<¢Omzr> = <dmoOz>=<d,1%(moz) >
= < (MmO 2)),¢>=<m0 2 7¢ >

= <m, (’YO¢)7 z >=<m, ¢(70z) >=<m, ¢ T >

and the claim is proved.
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Next we will see that the map
UBC(G:K)* — UBC(G: K)*

m q~5® m
is weak*-weak™ continuous. Let {mo} € U BC(C?T( )* such that

weak™

Mo — Mie <My, >—><m,z> for alleUBC(C?T().
Now lethUBC(CiT(). Then
<$®ma,x >=< My, - T >——)<m,¢-:v>=<$®m,x>

ii5) Let ¢, v € B(G: K). Let z € UBC(G:K), z = 7o - 2, with o € A(G: K)
and z € VN(G: K). Then
<$OF,z> = <$70z>=<dn(702) >
< (WA 2)),¢>=<702,7¢ >
= <7, (¢)z >=< (%) 2,7 >=< z,¢77 >
= < Foz, ¢y >=< ¢,z >
Therefore q;\jy = ¢ ® 4 and we are done. m|

The next theorem characterizes W(CT-T{ ) as the maximal subspace X of
VN(G: K) for which the Arens product makes sense on X* and the product is

separately continuous with respect to the weak*-topology on bounded spheres.

Proposition 5.6.7 Let X be a closed K -topologically invariant and K -topologically
introverted subspace of VN(G: K). The following are equivalent:

i) X C W(G:K).

i1) The product in X* is separately continuous with respect to the weak™ topology

on bounded spheres.
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i) X* is a commutative Banach algebra.

Proof i) = i) It is clear that for any m € X* the map n > nOm s
weak*-weak* continuous from X* to X*.

Next we will prove that the map n r—) m ® n is weak*-weak* continuous
from X* to X*, for any m € X*. Let {ny} be a net in X* converging to some

n € X* in the weak*-topology
ne — n and ||ng|| < M, ||n|| £ M.
We may assume M = 1. For each z € X, we hé.ve
Ne ® £ — n O z in the topology o(VN(G: K), A(G: K)).

Let K(z) = {¢-z: ¢ € A(G) and ||¢|| < 1}. Then K(z) is relatively compact
in the weak topology of VN(G). If —K_(:c—)a is the closure in the o-topology, it
follows that the weak topology coincides with the o-topology on K_(ﬁw Then
Ko =K@

Consequently, the net {n,} which is in K (z) , also converges to n©z in the

weak topology. So, if m € X*, we have
<MONG, T >=<M,Ne QT >=2<MnOTr>=<mQOn,c >

for any z € X. Hence the map n — m ® n is weak*-weak™ continuous.

i) = 1) Let m € X* and <y be the restriction of an element in A(G) to X.
Let {¢.} € A(G: K) be a net such that

< Gyt >—<m,z >V € X and ||¢a]| < |Iml]].
Then we have
<mOY,z>=ImM<¢O7,z>=lMm< YO ¢g,z >=<yO M,z >
o a

Hence m©y=y0Om.
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A second application of i) and the weak* density of A(G: K)(restricted to
X) in X* shows that m ® v =y ©@ m for each m,n € X*.

i13) => i) Suppose that X* is a commutative Banach algebra. Let z € X
and consider the map

p: X" — X

mt—)m@mv

w*

We will show that p is weak*-weak continuous. Let m, € X* such that m, —

(

m. For each n € X* we have < mo @ z,n >=<n O mqy, T >z—l-z)< Mo O N, T >.

But
<M, ON,T>—=><mOnn,x >zg)<n®m,x >=<{mQzx,Nn>

and we can conclude that p is weak*-weak continuous.
Then the set {m © z : m € X* and ||m|| < 1} is relatively compact in the
weak topology of X (hence of VN(G: K)). Since

{p0z:9€ AG)and ||¢|| <1} C {mOz:m € X* and |m| < 1},

it follows that = € W (G- K). O

Theorem 5.6.8 Assume that G is amenable. Then the map
Q: B(G: K) — UBC(G: K)"

$r ¢

where < ¢,z >=< I.(x),¢ > forz € UBC(CT:T(), is a linear isometry and
an algebra homomorphism. The image of B(G: K) under Q is contained in
the centre of the algebra U BC(@T( )*. Furthermore, if G/K is discrete, then
UBC(@T( )* is commutative.
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Proof That Q@ is an algebra homomorphism follows from Proposition 5.6.6 ii3).
Now if ¢ € B(G: K) and z € UBC(G: K), llz]l <1 we have .

| < ¢,z >|=|<k(z),¢ >< [Tk (@)llI4ll = llzllligll < gl

which implies ||| < [|9||- ,
On the other hand, since C*(G: K) C UBC(CT:T( ) and I extends the

natural embeddihg, we have < ¢,z >=< ¢,x»> for € C*(G: K). Hence

11l = llgl- .
If m € UBC(G: K)*, let {$5} € A(G: K) be such that

b =5 m.
Then, if y € B(G: K),z € UBC’(@T() we have

<mMOF> = <mFOz>=lim< ¢o, 7Oz >
= lim < ¢, © 7,z >=lim < doy,z >
e o

= lim<'y<?>a,:1: >=lim<7y®q~5a,x >=<yOm,zx>.
« a

Therefore 7 € Z(UBC/(G: K)*).

For the last statement, notice that if G/K is discrete, then by Proposition
5.5.9, it follows that UBC(@T() C W(CTT{) By ‘Proposition 5.6.7 now it
follows that UBC (ﬁ{ )* is commutative. O

5.7 Operators commuting with the action by
A(G: K) on subspaces of VN(G: K)

Let X be a K-topologically invariant subspace of VN(G: K). We say that an
operator T': X — X commutes with the action by A(G: K) if

T(¢-x)=¢-T(x) for all ¢ E-A(G:K), z€X
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We will give a characterization of the space of all such operators in terms of the
dual of certain subspaces of UBC (CTT{ )-

Now assume that G is vamenable'. Thén, Cohen’s factorization theorem
and the existence of bounded approximate identities in A(G: K), show that
A(G:K) - X is a closed linear subspace of VN(G). Moreover', A(G:K)- X is
K-topologically introverted if X is.

For each m € (A(G: K) - X)*, define

mp: X — X, <mg(z),y>=<m,y-z>
for any v € A(G:K) and z € X.

Lemma 5.7.1 Assume that G i3 amenable. Then

(i) mp commutes with the action of A(G:K) on X
() [Imc]l = |Iml|.

Proof (i) Let ¢ € A(G: K). Then
<mp(¢-z),y >=<m,y-(¢-z) >=<m,(yd) -z >

and
< ¢-my(z),y >=< my(z), 19 >=<m,(v¢) -z >.

Therefore we obtain mip(¢ - z) = ¢ - mp(z).
(i) Clearly ||m.]| < ||m||. To prove the converse inequality, let {¢o} be an
approximate identity in A(G: K) with ||¢a|| < 1. For each z € A(G: K) - X we

have ||¢, - 2 — z|| = 0. Hence
Ime(2| 2 | <mp(2), o > | =] <my¢a-2>| = | <m,z>|

Therefore ||mg|| > ||m]|. O
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Theorem 5.7.2 Assume that G is amenable. Let X be a K -topologically in- .
variant and K -topologically introverted subspace of VN(G: K). Then the map

T: (A(G:K)X)*—){T:X—)X|T(¢'x):¢-T(x) for all ¢ € A(G: K)}
m > my

is a linear isometry and algebra homomorphism onto the space of all bounded

linear operators commuting with the action of A(G: K) on X.

Proof By Lemma 5.7.1 it is sufficient to show that 7 is onto. Let T : X — X
be such that it commutes with the action of A(G:K) on X, and let {¢q}o be
an approximate identity of A(G: K). Then T maps A(G: K)X into A(G: K)X.
Let m be a weak* cluster point of the net {T*(¢q)}o in A(G: K)X*. Then,
for z € X and v € A(G: K), we have
<T(z),y> = lim<T(z),doy >=lm <7y -T(z), o >
= lim < T(y-2),¢q >=1lim < y-z,T*(ds) >
[+ a
= <7y-z,m>=<mg(z),y>.
Therefore T = my,.
To see that 7 is an isomorphism, let m,n € (A(G: K)X)*. Then for each
v€ AG:K)and z € X,
<(nomy(x),y> = <nOm,y-z>=<n,m(y0Oz) >

= <n,y-my(z) >=<nr(mg(z)),y > .

Therefore we obtain (n ® m) = ng(mg). O

Corollary 5.7.3 If G is amenable and X is a K-topologically invariant and
K -topologically introverted closed subspace of UBC (CT?( ), then

X*~{T: XX |T(y-z)=7 -T(z) forall y € A(G: K)}
isometrically and algebra isomorphically.
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Proof It suffices to show A(G:K)-X = X. Now, let z € X and {$a}a be
a bounded approximate identity for A(G: K). Then |¢a -  — z|| = 0. Since
A(G: K) - X is closed, it follows that z € A(G: K) - X and we are done. I

Corollary 5.7.4 If G is amenable, then
UBC(G:K)* ~ {T : VN(G:K) = VN(G: K) | T(v-z) = vT(z) Vv € A(G: K)}
isometrically and algebra isomorphically.

Corollary 5.7.5 If G is amenable, then B(G: K) is isometric and algebra iso-

morphic to the space of all bounded operators commuting with action of A(G: K)
“on C*(G: K). '
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Chapter 6

Open Questions

Question 1. What classes of groups satisfy property (S)? (see Definition 3.4.8)
All we know is that for n = 1, relation (3.10) is satisfied for any locally
compact group by Lemma 3.4.2. For these groups a generalization of Theorem

3.3.4 holds true, as it was seen in the discussion in Section 3.4.

Question 2. Let G, H be two locally compact groups, let ¢ : A(G) — B(H)
a completely bounded algebra homomorphism and ¢ : A(Gq) — B(H,) be
the map constructed from ¢ as in Section 3.4. Under what conditions is d~>
completely bounded? A
The answer to this question would provide us with an hypothesis under

which Theorem 3.3.4 also holds true.

Question 3. Let G, H be locally compact groups and ¢ : A(G) — A(H) a
completely bounded algebra hbmomorphism. When does the following equality

hold true:

¢(A(G))={feA(H):¢*(hl)=0:>f(h1):0 }

¢*(h1) = ¢*(h2) = f(h1) = f(ha) P, he € H
We have proved in Theorem 4.3.1 that if G and H are discrete groups with
G amenable, this is true. To apply the methods of Chapter 4, we need G to be
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amenable in order to ensure the existence of bounded approximate identities in
ideals of A(G) (see [18]), and to ensure that given a closed subgroup Gy of G,
the map u > u|g, from A(G) into A(G)) is onto. Moreover, a generalization
of Theorem 3.3.4 is instrumental, so the answers to Questioﬁ 1 and Question 2

will be very useful.

Question 4. In [30] V. Losert showed that a locally compact group is
amenable if and only if each multiplier on the Fourier algebra A(G) is given by
a function from the Fourier-Stieltjes algebra B(G). Can we say the same in the
context of the Fourier algebra associated to the coset space G/K, for a compact
subgoup K of a locally compact group G?

In [16], B. Forrest showed one direction, namely if G/K is an amenable
coset space, then each multiﬁlier on the Fourier algebra A(G/K) is given by
a function from the Fourier-Stieltjes algebra B(G /K). The inverse direction is

still open.

Question 5. In Theorem 5.5.2 it is shown that if G/K is an amenable
coset space then A(G: K)VN(G:K) is closed. In particular, it follows that
UBC(G:K) = A(G: K)VN(G: K). Is the converse true?

For K = {e} the converse was proved by A. Lau and V. Losert in [28]
(Proposition 7.1). V. Losert’s theorem [30] which was mentioned above plays a
key role in the proof. A positive answer to Question 4, would give us hope for

a positive answer here as well.
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