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[1] In this study, a Boolean classification was applied using novel methods to 3‐D
vegetation structural and topographic attributes found within flux footprint source/sink
areas measured by eddy covariance instrumentation. The purpose was to determine if the
spatial frequency of 3‐D attributes, such as canopy height, effective leaf area index, etc.,
found within 1 km resolution Moderate Resolution Imaging Spectroradiometer (MODIS)
pixels were significantly different from or similar to attributes sampled by flux footprints
originating from prevailing wind directions. A Kolmogorov‐Smirnov test was used for
the first time to apply confidence limits to individual MODIS pixels based on (1) the
spatial distribution of cumulative frequencies of attributes representative of those
sampled by eddy covariance and (2) temporal representation of MODIS pixels related to
area sampling frequency by eddy covariance based on wind direction. Structural and
topographic attributes at homogeneous Southern Old Aspen and heterogeneous Upland
Aspen sites are representative of 56% and 69% of a 1 km radius area surrounding the
tower and 21% and 47% of a 4 × 4 km area. Attributes found within the MODIS
“tower” pixel compare well with attributes most frequently sampled by eddy covariance
instruments at both sites. By classifying pixels using the Boolean approach,
correspondence between MODIS pixels and eddy covariance estimates of gross primary
production (GPP) explain up to 13% more variance than using pixels proximal to the
tower. This study, therefore, provides a method for choosing MODIS pixels that have
similar attributes to those found within footprints most frequently sampled by eddy
covariance.
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1. Introduction

[2] Exchanges of CO2 and water are often measured by
eddy covariance instruments within relatively homogeneous
ecosystems, where the spatial variability of vegetation

structural characteristics and ground surface topography is
minimal. Scalar fluxes transported from source/sink areas
within the ‘field of view’ of the eddy covariance system are
often assumed representative of site average characteristics,
regardless of wind direction and atmospheric turbulence.
Despite relatively high confidence in the efficacy of mea-
sured exchanges within homogeneous ecosystems (barring
meteorological and technical problems, etc. For example,
see the work of Baldocchi [2003]), varying degrees of
within site heterogeneity sampled by eddy covariance in-
struments may not be representative of heterogeneity found
within the larger region [Göckede et al., 2008]. Key land
cover types may be more heterogeneous than the ecosystems
measured by eddy covariance [Chen et al., 1999; Soegaard
et al., 2000; Vourlitis et al., 2000]. On the other hand,
deployment of eddy covariance instruments within hetero-
geneous (typical) ecosystems may also result in biased site
averages (e.g., because of prevailing wind directions and
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sampling of some attributes more than others) [Scanlon and
Albertson, 2003; Yoshio et al., 2005; Rebmann et al., 2005;
Nagy et al., 2006; Chasmer et al., 2008a] or technical
limitations of the eddy covariance methodology [Massman
and Lee, 2002].
[3] The use of flux footprint models has improved

understanding of the spatial and temporal distribution of
source/sink areas measured by eddy covariance instrumen-
tation, especially as footprints relate to wind speed and
direction [Schmid, 1994; Amiro, 1998; Finnigan, 2004;
Rebmann et al., 2005; Vesala et al., 2008]. The flux foot-
print is defined as the probability of flux contribution per
unit area upwind of the eddy covariance instrumentation
[Schmid, 1994; Kljun et al., 2002, 2004]. When combined
with remote sensing data, a footprint model provides spa-
tially contiguous information on vegetation structure,
topography, and possible source/sink influences on net
ecosystem production (NEP) [Rahman et al., 2001;
Rebmann et al., 2005; Kim et al., 2006; Chasmer et al.,
2008a; Chen et al., 2008]. Further, land surface heteroge-
neity, which may influence (or “contaminate”) flux scalars
originating from beyond the homogeneous area of interest
may be considered within a time series of flux measure-
ments on the basis of the location of a footprint [Rebmann et
al., 2005; Nagy et al., 2006].
[4] With over 500 sites containing eddy covariance and

meteorological instrumentation in operation worldwide,
assessment of their site representation within ecozones is
fundamental for both scaling to larger regions, and under-
standing fluxes within heterogeneous and/or rapidly
changing ecosystems (e.g., such as those found in Europe,
the discontinuous permafrost zone of the sub‐Arctic, areas
undergoing successional changes in vegetation, etc.)
[Göckede et al., 2008]. To this end, numerous studies have
combined footprint models with eddy covariance data, and
in some cases, spectral remote sensing data for quality
control [Aubinet et al., 2001; Rebmann et al., 2005; Nagy
et al., 2006; Göckede et al., 2008] assessment of biophy-
sical influences on fluxes [Rannik et al., 2000; Scanlon and
Albertson, 2003; Yoshio et al., 2005; Chasmer et al., 2008a]
and scaling [Soegaard et al., 2000; Vourlitis et al., 2000;
Chen et al., 2008; Chen et al., 2011]. However, use of
moderate to low‐resolution spectral remote sensing data
sometimes combined with footprint models is not without
limitations. Spectral vegetation indices can often be prob-
lematic for identifying canopy attributes and complexity
[e.g., Hall et al., 1995; Chen, 1996; Franklin et al., 1997;
Fassnacht et al., 1997; Treitz and Howarth, 1999; Eklundh
et al., 2001; Lu et al., 2004; Wang et al., 2005]. Further,
variability between pixels may or may not be associated
with land cover attributes.
[5] In this study, a Boolean classification methodology,

often used in spectral remote sensing data analysis, is
applied using innovative methods to ranges of 3‐D vegeta-
tion structural and topographic attributes measured using
airborne scanning light detection and ranging (lidar).
Structural vegetation and topographic characteristics inte-
grated within footprints originating from prevailing wind
directions are used to assess eddy covariance sampling
within a 1 km radius of eddy covariance instrumentation
within homogeneous and heterogeneous mature boreal

aspen stands. The classification is also applied to the local
region for assessing the validity of pixel GPP estimated
from the Moderate Resolution Imaging Spectroradiometer
(MODIS). A Kolmogorov‐Smirnov test is used to assign
confidence limits for the first time to MODIS pixels based
on attribute similarities sampled within the eddy covariance
field of view. The test is also used to determine the percent
frequency of eddy covariance instrument sampling periods
with which each pixel is representative. Therefore, quanti-
fication of MODIS pixel characteristics are directly com-
pared with areas most frequently sampled by eddy
covariance not necessarily representative of the entire 360°
1 km radius area.
[6] The specific objectives of this study are to (1) quantify

parts of the ecosystem that are sampled most frequently by
eddy covariance instrumentation; (2) assess heterogeneity of
vegetation structural and topographic characteristics with
increasing distances from eddy covariance instrumentation;
(3) use vegetation structural and topographical attributes
within footprint source/sink areas to classify site represen-
tation within and beyond the a 1 km radius of the eddy
covariance system; (4) compare GPP estimated using eddy
covariance methods with GPP estimated from MODIS; and
(5) assign confidence limits to MODIS pixels.

2. Site Description

[7] The heterogeneous Upland Aspen site was established
as part of research on the moraine landform of the Utikuma
Region Study Area [Devito et al., 2005; Ferone and Devito,
2004; Petrone et al., 2007; Brown et al., 2010] located
within the Western Boreal Plains ecozone (Figures 1a
and 1c). Eddy covariance instrumentation is situated at
the center of three major land cover types, which form a
pothole‐like hummock‐hollow terrain: (1) previously burned
(1962) upland composed of mostly trembling aspen, with
minimal balsam poplar (Populus balsamifera) and white
spruce (Picea glauca); (2) sparsely treed peatlands comprised
mainly of sparse black spruce (Picea mariana Mill.), some
larch (Larix laricina), understory vegetation (Labrador Tea
(Ledum groenlandicum), and mosses (Sphagnum and feath-
ermoss spp.); and (3) ponds which occur in association with
peatlands, with peat up to 40 m from the pond edge. Narrow
strips of riparian‐like vegetation occur at the peat–forestland
edge. Mean annual air temperature at Upland Aspen in
2006 (the year of study) was 1.3°C, which is higher than
the 1971–2000 mean annual temperature of 0.55°C measured
at Slave Lake and cumulative precipitation was 453 mm,
which is lower than the 30 year normal (515 mm) [Petrone
et al., 2007].
[8] Southern Old Aspen site [Sellers et al., 1997; Barr et

al., 2004; Bernier et al., 2006; Kljun et al., 2006] (Figures
1b and 1d) is characterized by a relatively homogeneous
forest stand containing mostly trembling aspen, approxi-
mately 10% balsam poplar (Populus balsamifera L.) and a
dense hazelnut (Corylus cornuta Marsh.) and green alder
(Alnus crispa (Alt.) Pursch) understory [Barr et al., 2006].
Mean annual air temperature at Southern Old Aspen in
2008 (the year of study) was 1.2°C, which is higher than
the 1971–2000 mean annual temperature of 0.4°C mea-
sured nearby at Waskesiu Lake (Environment Canada).
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Cumulative precipitation was 398 mm, which is lower than
the 30 year normal (467 mm).

3. Data Collection

3.1. Eddy Covariance Instrumentation and Data
Processing

[9] Eddy covariance instrumentation and data processing
methodologies for both sites are summarized in Table 1.
Half‐hourly gross ecosystem production (GEP) estimates
from eddy covariance data were examined from 10 June to
28 July 2006 and 2008 at Upland Aspen and Southern Old
Aspen, respectively (August not examined because of
missing data at Southern Old Aspen) (Table 1). GEP was
compared with MODIS GPP at both sites, assuming that
GPP and GEP are analogous (even though they are not
identical [Goulden et al., 1996]). GEP (herein referred to as
GPP) was estimated per half‐hourly period during the day
from net ecosystem production (NEP) and ecosystem res-
piration (Re) (GPP = NEP − Re). At Southern Old Aspen
and Upland Aspen, nighttime periods of Re = NEP when
photosynthesis was zero. During the daytime, Re was
determined using an empirical model based on temporal
variability of soil temperature (Tsoil) at 2 cm depth or air
temperature (Tair) measured at a height approximating two
thirds of the canopy height [e.g., Griffis et al., 2003; Barr et
al., 2006]. GPP data gaps were filled using flexible moving
window approaches at Southern Old Aspen [Barr et al.,
2004] and 14 d means at Upland Aspen [Falge et al.,

2001]. Average energy balance closure (Le + H/Rn − Qg,
where Qg is ground heat flux and Rn is net radiation) for
periods studied was 79% (Southern Old Aspen), and 76%
(Upland Aspen).

3.2. Overview of Footprint Methodology

[10] A simple flux footprint parameterization [Kljun et al.,
2004] was used to estimate temporally varying (30 min)
contribution areas and associated vegetation and topo-
graphical characteristics to eddy covariance instrumentation.
The parameterization is based on a full‐scale Lagrangian
particle model [Kljun et al., 2002], valid for a broader range
of atmospheric conditions than analytical methods [Schmid,
2002], but does not require the computing resources needed
by more complex numerical models [e.g., Foken and
Leclerc, 2004]. Measurements of wind direction, the
height of the eddy covariance system (z), height of the
planetary boundary layer (h), roughness length of vegetation
(z0), the standard deviation of the vertical wind velocity
(sw), and friction velocity (u*) were incorporated into the
parameterization [Kljun et al., 2004]. Richardson number
(Ri) was used to approximate average atmospheric stability
from Tair and wind speed per half‐hourly period [Monteith
and Unsworth, 1990]. Tables from the work of Gryning et
al. [1987] were used to approximate h based on a general-
ized stability factor estimated from Ri. Airborne lidar data
were used to estimate z0 and zero plane displacement (d)
based simply on canopy height (z0 = 1/10 height, d = 2/3
height) [Oke, 1996]. These (z0 and d) were averaged within

Figure 1. Location of Southern Old Aspen (SOA) and Upland Aspen (UA) sites in Saskatchewan and
Alberta, Canada. (a) Canopy height and (c) elevation within 1 km radius of the eddy covariance tower at
Upland Aspen. (b) Canopy height and (d) elevation within 1 km radius of the eddy covariance tower at
Southern Old Aspen. Black patches in Figure 1c are missing data because of absorption (or specular
reflection at wide scan angles) of laser reflections by water.
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10 degree wind sectors starting at 0 degrees (north), and
extending up to 100 m from the eddy covariance instru-
mentation. z0 and d were applied at half‐hourly periods to
the footprint parameterization depending on wind direction.
[11] Changes in u* and h can influence the length of

footprints, whereby increased u* and decreased h can result
in footprint shapes centering on areas closer to the eddy
covariance instrumentation (and vice versa). In areas of
heterogeneity and variable land surface patches, such as
those found at Upland Aspen, the use of this model might be
somewhat problematic. Footprint models such as Large
Eddy simulation (LES) [Foken and Leclerc, 2004] might
more accurately account for boundary layer turbulence
created by patches. However, these will be too computa-
tionally intensive for real‐time application of the model at
half‐hourly periods throughout the growing season at two
sites. Concentration on a few key periods would limit the
scalability of the eddy covariance sampling and land cover
classification, unless all scalar directions and ranges of
atmospheric turbulence could be accounted for (which may
exceed seasonal period applications of the model, anyways).
Despite these limitations, the parameterization used in this
study provides an approximate estimate of the source/sink
area in question as well as the location of the maximal
contribution to the measured flux.

3.3. Lidar Data Collection and Processing

[12] Airborne lidar surveys were parameterized, and data
were collected and processed by the authors during the
Upland Aspen and Southern Old Aspen campaigns on 28
August 2002 and 3 August 2008 (Table 2). Flux measure-
ments were approximately coincident with the lidar survey
at Southern Old Aspen, and four years following the lidar
survey at Upland Aspen. A subtraction of canopy heights at
Upland Aspen between August 2002 lidar data collection
and a repeat collection in 2008 illustrate minimal average
growth of <0.75 m in mature mixed wood upland stand near
the site and <0.62 m height increase in peatland areas
associated with open water where sites have not been pre-
viously disturbed. The Upland Aspen site was harvested in
2007. Lidar‐derived data layers of vegetation structural
characteristics and topography used in subsequent analyses
are described in Table 3.

3.4. MODIS

[13] The MODIS GPP product (MOD17) has a global
1 km pixel resolution with an 8 d cumulative repeat time
and is intended for seasonal to interannual assessment of
global vegetation productivity. The algorithm, described by
Running et al. [2004], incorporates MODIS‐estimated
fraction of PAR absorbed by the canopy (FPAR) and leaf

Table 2. Lidar Survey Specifications at Southern Old Aspen and Upland Aspen

Lidar Specifications Southern Old Aspen Upland Aspen

Model number of reflections per pulse ALTM 3100 (Optech Inc. Toronto, Canada) 4 ALTM 2050 (Optech Inc.) 2
Flying height above ground level (m) ∼700 m ∼1200 m
Scan angle from nadir (°) ±20 ±16
Pulse repetition frequency (kHz) 70 50
Percent overlap of scan lines 50 50
Density of returns with 50% overlap ≤25 per m3 ≤12 per m3

Table 1. Meteorological and Eddy Covariance (EC) Instrumentation and Data Processing Specifications

Eddy Covariance Instrumentation/Data
Processing Specifications Southern Old Aspen (References) Upland Aspen (References)

EC make and model of instruments below
‐ Sonic anemometer Model R3 Gill Instruments, Ltd. CSAT3, Campbell Scientific Inc.
‐ Infrared gas analyzer Model LI 6262, LI‐COR Inc. Model LI 7500, LI‐COR Inc.
‐ Type (open/closed) Closed path [Barr et al., 2006] Open path

EC measurement frequency (Hz) 20 20
Height of EC instruments (m) 39 25.5
Measured exchangesa H, Le, FNEE, u* [Barr et al., 2006] H, Le, FNEE, u*
u* threshold (m s−1) 0.35 0.35 [Petrone et al., 2007]
Correction procedures used Standard gap filling using flexible moving

window [Griffis et al., 2003; Barr et al.,
2004, 2006].

Rotation of vertical and horizontal wind
velocities to zero [Kaimal and Finnigan,
1994]. Gap filling based on mean for
14‐day periods [Falge et al., 2001].

Flux partitioning procedures FNEE = sum of EC flux at height z (39 m)
and rate of change of CO2 storage in air
column below z [Barr et al., 2006].

FNEE = sum of EC flux at height z (25.5 m)
and rate of change of CO2 storage in air
column below z

R = FNEE at night, adjusted for Tsoil or Tair

[Griffis et al., 2003; Barr et al., 2004, 2006].
R = FNEE at night, adjusted for Tsoil

[Griffis et al., 2003].
Application of surface energy balance

closure adjustment to EC data
Adjustment applied [Barr et al., 2006] Adjustment applied [Barr et al., 2002;

Finnigan et al., 2003]

aMeasured exchanges are sensible heat exchanges (H), latent heat exchanges (Le), net ecosystem exchange (FNEE), friction velocity (u*). R, ecosystem
respiration; Tsoil, soil temperature at 2cm depth; Tair, at two‐thirds canopy height.
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area index (LAI) (MOD15) with incoming PAR, minimum
Tair (24 h), and daytime average vapor pressure deficit
(VPD) modeled using a general circulation model (NASA
Data Assimilation Office (DAO)). Maximum biome‐specific
light use efficiency (LUE) is varied based on Tair and VPD
to arrive at a daily LUE estimate used in the GPP calcula-
tion. Daily LUE is multiplied by APAR (APAR = FPAR *
PAR) to estimate daily GPP.
[14] MOD17A2 (collection 5) [Zhao et al., 2005; Heinsch

et al., 2006; see also MODIS daily photosynthesis (Psn) and
annual net primary production (NPP) product (MOD17),
Theoretical basis document, Version 3, 1999, http://modis.
gsfc.nasa.gov/data/atbd/atbd_mod16.pdf] data were ob-
tained for a 4 km × 4 km area from DOY 152 to 209 2006
(Upland Aspen) and 2008 (Southern Old Aspen), coincident
with eddy covariance GPP estimates. Data were provided in

GeoTIFF format (WGS84, reprojected to UTM NAD83)
from Oak Ridge National Laboratory (ORNL) Distributed
Active Archive Center (DAAC).

4. Analytical Methods

4.1. Site Variability: Increasing 10 m Radius Domain
Areas

[15] Concentric rings centered on eddy covariance instru-
mentation at Southern Old Aspen and Upland Aspen are
used to determine average and ± s structural and topographic
characteristics within increasing (10 m radius) areas sur-
rounding the tower. The purpose is to determine the distance
at which average structural and topographic differences
begin to increase. The location of the maximum probability
of flux, determined from the footprint probability density

Table 3. Three‐Dimensional Canopy Structural and Topographic Layers Integrated With the Results of a Footprint Model and Used for
Classifying Same Vegetation Topographic Attributes Beyond a 1 km Radius Surrounding Eddy Covariance Instruments

Canopy
Structural or
Topographical

Metric Lidar Data Product Methodology Reference

Elevation (m) Digital elevation
model (DEM)

Inverse distance weighting algorithm
(IDW) of ground‐classified laser

reflections at 1 m

Hopkinson et al. [2005]

Canopy height (m) Canopy height
model (CHM)

Mean maximum canopy height using
IDW algorithm within a 2.5 m search
radius of classified canopy reflections

>0.5 m above the ground.

Hopkinson et al. [2005]

Canopy surface
(elevation +
canopy height)
(m)

Digital surface
model (DSM)

Digital surface model = elevation +
canopy height (m)

Hopkinson et al. [2005]

Canopy fractional
cover (%) below
understory

fcover50 at 0.5 m
above ground

Beer’s Law laser intensity method,
where fcover

¼ 1�
SIGroundSingle

SITotal

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SIGroundsingle

SITotal

r

SIFirst þ SISingle
SITotal

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SIIntermediate þ SILast

SITotal

r
0
BBB@

1
CCCA

where I = reflection intensity, and
“First,” etc., refers to the order of

reflections per pulse.

Hopkinson and
Chasmer [2009]

Canopy fractional
cover (%) above
1.3 m (height of
validation)

fcover130 at 1.3 m
above ground

Effective leaf area
index (m2 m−2)
above understory

LAIe130 LAIe = � ln 1�f cov er
k

� �
where k = extinction

coefficient (0.5 used for both sites).
Morrison et al. [2010]

Effective leaf area
index (m2 m−2) below
understory

LAIe50

Uplands and Lowlands Uplands and lowlands Ratio of uplands (1) to lowlands (−1) and
zero change (0) determined using a
low‐pass 100 m resolution filter of
the DEM (to identify <100 m area
landscape depressions found at
Southern Old Aspen and Upland
Aspen) and the residual deviation

(at 1 m resolution) from the
low‐pass surface.

This study

Zero plane displacement (m) d 5 m resampled 2/3 canopy height
(from CHM)

This study

Roughness length (m) z0 5 m resampled 1/10 canopy height
(from CHM)

This study
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Figure 2
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function (xmax) (average distance = 82 m and 78 m from the
tower at Southern Old Aspen and Upland Aspen) was used as
a baseline for comparison. This assumes that the location at
xmax represents 3‐D attributes that have the highest proba-
bility of sampling by eddy covariance instrumentation.

4.2. Lidar Data/Footprint Integration

[16] Lidar data layers were extracted from within foot-
prints at half‐hourly periods to determine: a) within‐site
structural vegetation and topographic characteristics most
frequently sampled by eddy covariance instrumentation; and
b) ranges of vegetation and topographic characteristics from
frequently sampled areas used to inform a local‐scale clas-
sification. The areal extent in x and y directions of the
source/sink areas determined from the modeled footprint
were converted to Universal Transverse Mercator (UTM)
coordinates for integration with lidar data layers [Chasmer
et al., 2008a]. Source weight functions up to the 80%
probability density function level were used to identify grid
cells (pixels) within the footprint that corresponded to 1 m
resolution gridded lidar data products. All vegetation and
topographical characteristics within the 80% footprint
probability density function were treated equally, therefore
source weights were not applied. A sensitivity analysis was
used to compare weighted versus unweighted (linear
averages) of within footprint attributes (canopy height, ele-
vation, LAIe50 and the ratio of uplands to lowlands) from
prevailing wind directions. The results of the sensitivity
analysis indicate that attributes within weighted versus
unweighted footprints are not significantly different at the
Upland Aspen site, except for the case of the ratio of up-
lands to lowlands, which are influenced by upland/lowland
positioning but have little influence on MODIS spectral
bands (because of the overhead canopy). At Southern Old
Aspen, significant differences in LAIe50 occur between
weighted versus unweighted footprints originating from
prevailing wind directions. This is due to the location of a
large wetland located in the area of the maximum weighting
(xmax). The use of reduced LAIe within the classification
because of the influence of the wetland will limit classified
areas and may not be representative of LAIe within closer
proximity of the eddy covariance instrumentation (also
within the range of xmax). Other attributes from prevailing
wind directions were not significantly different at Southern
Old Aspen, and therefore we have decided not to weight
footprints for MODIS pixel classification. The maximum
footprint extent was limited to 80% for optimal performance
of the model [Kljun et al., 2004]. At 90%, Kljun et al.
[2004] show a significant flattening of the probability den-
sity function curve and reduced performance of the param-
eterization. Numerous statistics were produced including:
average, maximum, minimum and standard deviation of all
pixels, per lidar data layer within each footprint.
[17] Footprint/lidar data integrations were applied

between 10:00 and 16:30 (local time) at half‐hourly inter-
vals. This shortened daytime period was used to avoid un-

certainties in flux storage within the air column below the
eddy covariance during stable atmospheric conditions [Yang
et al., 1999; Massman and Lee, 2002]. Periods of low u*
(<0.2 m s−1) were excluded, as well as periods measured
during precipitation events, and when the s of wind vectors
per half‐hour period exceeded 45°. Only measured turbu-
lence (nongap‐filled) was used in the footprint classification
analysis. Of the total number of half‐hourly footprint peri-
ods used at Southern Old Aspen, 14% of half‐hourly periods
were excluded. At Upland Aspen 6% were excluded. The
period of time of footprint extraction, although shortened
from daytime GPP periods compared with MODIS, does not
affect the GPP comparison because prevailing wind direc-
tions over 24 h versus footprint period extractions did not
vary greatly (Figure 2).

4.3. Local to Regional Scaling: Lidar‐Based
Classification Using Within‐Footprint Attributes

[18] Each footprint has a unique ‘signature’ of vegetation
structural and topographical attributes sampled by eddy
covariance. Attribute ranges within half‐hourly footprints
originating from prevailing wind directions were classified
within and beyond a 1 km radius of the tower. Ranges of
vegetation and topographical attributes were individually
identified as the mean ± s of each 3‐D attribute (e.g., canopy
height, LAIe, etc.) from footprints (n footprints from pre-
vailing wind directions = 318, Southern Old Aspen; 664,
Upland Aspen). Three‐dimensional data layers were then
combined within a Boolean classification of layer intersec-
tion. All pixels within the range of attributes per layer (e.g.,
all canopy heights for all other areas that have ranges
between mean ± s found within footprints originating from
prevailing wind directions) were given an identifier of
1 (true). Those outside of that range were given an iden-
tifier of zero (false). Any pixels that contained one or more
“false” layers were excluded from the wider area classified.
All layers were treated equally in the classification.
[19] Table 4 shows mean ± s ranges of vegetation struc-

tural and topographic characteristics within footprints orig-
inating from prevailing wind directions compared with 1 km
site averages for Southern Old Aspen and Upland Aspen.
Lidar data layers (Table 3) used in the classification include:
elevation, canopy height, effective below understory leaf
area index (LAIe50), and percent uplands to lowlands based
on a 100 m × 100 m low‐pass filter.

4.4. MODIS Pixel Evaluation

[20] Eight‐day MODIS GPP was compared with 8 d
cumulative (gap‐filled) GPP observed throughout each day
using eddy covariance instrumentation. MODIS GPP com-
parisons were made using pixels that contained >50%
coverage of structural and topographic attributes determined
by the Boolean classification. This quantifies the percentage
of pixels that are representative of characteristics sampled
by eddy covariance instrumentation, for scaling and vali-
dation purposes. The lidar pixel domain resolution used for

Figure 2. Frequency of wind directions and wind speed at (a) Southern Old Aspen during footprint periods studied
and (b) at half‐hour intervals over 24 h, June, July, and August 2008. (c) Combined footprint areas grouped into prevailing
and low‐frequency wind origins used within the classification overlaid onto an index of aboveground biomass estimated
from canopy height times LAIe50 (unitless) at Southern Old Aspen. (d, e, f) Same as Figures 2a–2c but for Upland Aspen.
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comparison with 1 km resolution MODIS pixels is 1 m.
Pixels obtained during periods of poor quality control were
included to demonstrate improvements to GPP when other
pixels with similar 3‐D attributes were substituted.

4.5. Applying Confidence Limits to MODIS Pixels
Based on Footprint Sampling

[21] A Kolmorogov‐Smirnov test was used to assign
confidence limits to MODIS pixels based on differences
between within pixel 3‐D attributes and those sampled by
eddy covariance instruments. The Kolmogorov‐Smirnov
test is applied such that comparisons are made between
spatial cumulative frequency distribution of individually
binned 3‐D attributes within a) footprint sampling areas and
b) classified MODIS pixels. Attributes included in the test
were: canopy height (binned at 0.5 m intervals), LAIe50
(binned at 0.25 m2 m−2 intervals), and elevation (binned at
1 m intervals). Other attributes such as uplands and low-
lands and existence of understory were not included because
they have been divided into binary ratios. The footprint
‘domain’ area (from which attribute frequencies were
cumulated) was determined by tracing the area around all
footprints originating from within a range of wind direction
vectors. Wind direction vectors were divided into prevail-
ing, secondary peaks, and infrequently sampled areas based
on natural breaks in wind direction frequencies. Vegetation
structural/elevation attributes were then extracted in the
same manner as they were from footprints (but from one
large irregular polygon, instead of several hundred foot-
prints) and weighted equally. The cumulative frequency of
attributes found within footprint domain areas were then
compared with the same cumulative frequency of attributes
found within individual MODIS pixels. H0 assumes that
canopy height, or LAIe50 or elevation from prevailing wind
directions are not significantly different from (1) that found
in footprints originating from other wind direction domains
(e.g., secondary peaks) or (2) that found in MODIS pixels
with >50% coverage of Boolean classified lidar data layers.
If they are significantly different, then H0 is rejected. This
provides confidence limits to MODIS pixels whereby p
values of 0.01 and 0.05 indicate that there is very little
similarity between the attributes sampled by eddy covari-
ance instruments and those found within individual MODIS

pixels (HA). Nonsignificant p values >0.1 indicate that H0

cannot be rejected (therefore similarities exist).

5. Results

5.1. Frequency Distribution of Source/Sink
Contributions to Eddy Covariance

[22] Prevailing wind vectors at Southern Old Aspen,
between 10:00 and 16:30 (local time) during the period
studied, originated from between 130° and 160° (19% of the
time) and 280° and 340° (28% of the time), with 53% of
wind vectors originating from other directions (Figure 2).
The 80% probability density function of the total half‐
hourly CO2 flux, determined using the footprint model
parameterization [Kljun et al., 2004], extended from
between 300 m (highly convective) and 900 m (near neutral)
conditions in the direction of the wind vector (at a mea-
surement height of 39 m and an average zero plane dis-
placement of ∼10 m). In the cross‐wind direction (at 80%
probability density function), footprints extended to dis-
tances between ±50 m and ±200 m. The maximum proba-
bility of flux (xmax) occurred at distances between 70 m and
a maximum of 236 m from the eddy covariance tower
(average xmax = 82 m, for all flux measurements within the
study period).
[23] At Upland Aspen, prevailing wind vectors originated

from between 260° and 340°, 55% of the time, with highest
frequencies (28% of total) between 280° and 300°. A second
smaller peak in the frequency of wind origins occurred
between 190° and 260° (accounting for 19% of the total)
(Figure 2). The 80% probability density function of the total
half‐hourly flux extended from between 160 m and 600 m
during highly convective and near neutral atmospheric
conditions, respectively. In the cross‐wind direction, foot-
prints extended to distances between ±20 m and 115 m from
the wind vector. xmax occurred at distances between 40 m
and a maximum of 156 m (average distance of xmax = 78 m).
[24] Wind directions during footprint periods and over

24 h periods throughout June, July, and August did not
vary greatly in origin or frequency at either Southern Old
Aspen or Upland Aspen (Figures 2b and 2d).

Table 4. Vegetation Structural and Topographic Characteristics Based on Mean Maximum and Minimum Standard Deviations Charac-
teristic of Footprints Originating From Prevailing Wind Directionsa

Lidar‐Derived
Attributes

Southern Old
Aspen Attribute
Range Applied

Southern Old
Aspen Site
Average

Upland Aspen
Attribute Range

Applied
Upland Aspen
Site Average

Elevation (m) 550 – 565 555 653–660 655
Canopy height (m) 9.7 – 25.5 13.2 2.82 – 18.2 7.97
Canopy LAIe below understory,
including canopy

0.23 – 7.75 3.28 1.18 – 6.7 2.65

Ratio of uplands to lowlands
(between 0 and 1) based
on 100 m low‐pass filter
where < 0 = more lowlands and >
0 = more uplandsb

−0.03 – 0.60 −0.03 −0.2 – 0.67 −0.10

aSite average characteristics are also included for comparison.
bUplands and lowlands are also illustrated on maps.
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5.2. Site Vegetation Structural and Topographical
Characteristics

[25] Ground surface elevations at Southern Old Aspen
within 1 km of the tower range from 541 to 571 m. This
includes a southwest ridge that rises approximately 20 m
above the surrounding terrain. Footprints originating from
prevailing wind directions have, on average, taller trees
(7%), higher LAIe130 (30%), denser understory (LAIe50 =
5%), and fewer low‐lying areas compared with footprints
originating from dominant southeasterly directions. Attri-

butes are less than 6% different from the site average. At
Upland Aspen, ground elevation varies between 638 m
(southeast) and 680 m (northeast). Uplands rise 7 m to 21 m
above the surrounding terrain. Prevailing wind vectors
between 280° and 300° are characterized by shorter than
average canopy heights (11%) reduced LAIe50 (17%) and a
greater proportion of low‐lying areas.
[26] Figure 3 shows average vegetation structural and

topographic variability with increasing (10 m radius)
domain areas from eddy covariance instrumentation (±1s as

Figure 3. Site variability determined based on average and ±1s (a, b) elevation, (c, d) canopy height,
and (e, f) below understory (including canopy) LAIe at Southern Old Aspen and Upland Aspen, respec-
tively. Deviation from zero is determined based on canopy structural and elevation differences at average
footprint xmax, per site (82 m, Southern Old Aspen, and 78 m, Upland Aspen) compared with averages
(and ±1s) within 10 m radius increments in concentric rings centered on eddy covariance instrumentation.
The temporal range of footprint xmax is also included to show area ranges of greatest sampling by eddy
covariance.
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error bars). Elevation variability within the temporal range
of footprint xmax varies by less than 1.5 m at Southern Old
Aspen, and up to 6 m at Upland Aspen (Figures 3a and 3b).
Negative elevation differences at distances greater than
220 m at Southern Old Aspen and within the range of
footprint xmax at Upland Aspen indicate that both sites are
located on uplands. Elevation s increases with increasing
distance, as expected, because of the integration of larger
areas containing greater ranges of topographic attributes. At
Upland Aspen, percentage area of uplands to lowlands is
approximately equal at radii beyond 200 m.
[27] Canopy heights at Southern Old Aspen are greatest

within rings closest to the tower but decrease with distance.
This is caused by increased spacing between trees and the
inclusion of shorter vegetation (between trees) in the canopy
height model (Figures 3c and 3d). Average canopy heights
do not vary greatly within the range of footprint xmax

(average = 2 m, s = 4m). At Upland Aspen, differences in
average canopy heights between concentric rings and foot-

print xmax do not increase after ∼150 m. The sharp difference
in canopy heights within the range of footprint xmax at
Upland Aspen is due to peatlands/wetlands located within
50 to 100 m eddy covariance instrumentation. Vegetation
heights increase by up to 0.5 m on average from 300 m,
because of upland aspen forests northeast of the tower.
[28] Average below canopy LAIe50 varies by less than

0.3 m2 m−2 at both sites, despite wide ranges of LAIe50
estimated from lidar. At Southern Old Aspen, LAIe50 is
greatest within 20 m to 30 m of eddy covariance instru-
mentation, and decreases from between 30 m and 50 m
because of canopy gaps. Unlike canopy height, LAIe50 does
not vary greatly from that at average footprint xmax. At
Upland Aspen, a small reduction in average LAIe50 (0.20) at
140 m to 170 m occurs because of peatlands, wetlands and
ponds. These results indicate that lower than average ele-
vation and canopy height biases exist beyond footprint xmax

at both sites. This can have implications for flux sampling
during periods of near‐neutral atmospheric stability.

Figure 4. Classification of vegetation structure and topographical attributes within a 1 km radius of the
eddy covariance instrumentation at (a) Southern Old Aspen and (b) Upland Aspen based on the footprint
domain area originating from prevailing wind directions. Classified attributed ranges (Table 4) are
grouped into above and below average elevation. Green sections represent areas that have the same range
of vegetation structural and elevation characteristics found within the prevailing footprint domain area,
applied to a 4 × 4 km area at each site. Graduated gray backgrounds represent elevation (m).

CHASMER ET AL.: A 3‐D CLASSIFICATION FOR SCALING G02026G02026

10 of 19



5.3. Classification of Footprint Signatures: Site
and MODIS Pixel Representation

[29] Figure 4 shows the results of the Boolean classifi-
cation (defined in Table 4). Approximately 21% (Southern
Old Aspen, Figure 4a) and 47% (Upland Aspen, Figure 4b)

of the 4 × 4 km area surveyed by lidar were representative of
structural characteristics within footprints from prevailing
wind vectors. Within a 1 km radius area surrounding eddy
covariance instrumentation, 56% (Southern Old Aspen) and
69% (Upland Aspen) of the area was within the range of

Figure 5. Semitransparent Moderate Resolution Imaging Spectroradiometer (MODIS) cumulative
(DOY 161–209) gross primary production (GPP) georeferenced to the 4 × 4 km area surveyed by lidar
at (a) Southern Old Aspen and (b) Upland Aspen. Numbered pixels have greater than 50% area coverage
within 3‐D attribute ranges sampled from prevailing wind directions by eddy covariance instrumentation.
Eight‐day cumulative GPP estimated from eddy covariance and MODIS are shown at (c) Southern Old
Aspen and (d) Upland Aspen. Time series of 8 d cumulative GPP from MODIS and eddy covariance es-
timates at (e) Southern Old Aspen and (f) Upland Aspen.
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attributes classified within footprints originating from pre-
vailing wind directions.
[30] Figures 5a and 5b shows cumulative MODIS (pixels

with >50% structural characteristics represented within
footprints) and eddy covariance‐estimated GPP over 8 d
periods from DOY 161 to 209 at Southern Old Aspen and
Upland Aspen. GPP estimated from cumulative gap‐filled
eddy covariance data at Southern Old Aspen in 2008 (DOY
161–209) was 614 gC m−2 64 d−1 whereas MODIS esti-
mated 319 gC m−2 64 d−1 (Figure 5c). At Upland Aspen,
eddy covariance estimates of GPP for the same period in
2006 was 486 gC m−2 64 d−1 whereas MODIS estimated
434 gC m−2 d−1 (average pixels 3 and 6) (Figure 5d).
Approximately 87% of the MODIS ‘Southern Old Aspen
tower’ pixel is representative of site attributes sampled by
eddy covariance instrumentation from prevailing wind di-
rections. Pixels 2 and 3 (Figure 5a), have similar attributes
and are less than 15% mixed. At Upland Aspen, the tower
was located between two pixels (3, 6). These represented
80% and 71% of site attributes within flux footprints from
prevailing wind directions, respectively. Other pixels,
including 1, 9, and 10, have greater than 80% coverage of
ranges of site attributes.
[31] Can the application of a footprint‐based classifica-

tion of vegetation structural and topographical character-
istics improve the relationship between eddy covariance
estimates of GPP and the MODIS GPP product? Table 5
shows coefficient of variation (r2), the slope of the rela-
tionship (intercept = 0), and the root mean square error
(RMSE) for relationships between eddy covariance esti-
mated GPP and i) MODIS tower pixel GPP; ii) average
GPP of 3 × 3 MODIS pixels, including the tower pixel;
and iii) average GPP of MODIS pixels selected using the
footprint‐based classification.
[32] Classification of pixels based on within footprint

three‐dimensional land cover attributes from prevailing
wind directions improves correlation between MODIS pix-
els and estimates of GPP from eddy covariance and mete-
orological instrumentation. However, average GPP from
classified pixels is only marginally better than GPP esti-
mated at the tower pixel (r2 improves by 2% and 7% at

Southern Old Aspen and Upland Aspen, respectively).
Strong relationships between tower pixel GPP and eddy
covariance‐estimated GPP indicate that geolocation errors
of tower pixels [e.g., Wolfe et al., 2002] did not negatively
influence GPP relationships because of similar land cover
attributes beyond tower pixels. Relationships between
average GPP of pixels identified using the footprint classi-
fication method and 3 × 3 MODIS pixels is a significant
improvement at Southern Old Aspen (12% increased
explanation of variance) because of land cover heterogeneity
within north and southwest pixels, and a lesser improvement
(7% increased explanation of variance) at Upland Aspen
because of pixel similarity. This indicates that comparisons
between larger area averaging of MODIS pixels (3 × 3, or,
for example, 7 × 7 [Heinsch et al., 2006], 25 × 25 [Turner et
al., 2006]) and eddy covariance estimates of GPP may
reduce correspondence at some sites. If averaging over
multiple pixels is required to obtain a more robust rela-
tionship, selection of nearby pixels based on land cover
attributes sampled frequently by eddy covariance instru-
mentation as opposed to averaging between the nine
MODIS pixels most proximal to the flux tower will likely
improve relationships, however this requires further testing
and may be site‐specific.

5.4. Applying Confidence Limits to Within Site
Sampling and MODIS Pixel Comparisons

[33] Cumulative frequency distributions of ground eleva-
tion, canopy height, and LAIe50 footprint domain areas
originating from prevailing, secondary peaks, and lesser
sampled areas (Figure 2) are shown in Figure 6 at Southern
Old Aspen and Upland Aspen. At Southern Old Aspen,
footprints originating from wind directions between 130°–
160° (19% of the time) have significantly different (p =
0.01) structural characteristics than those originating from
prevailing wind directions (280°–340°, 28% of the time)
because of greater spatial frequencies of shorter canopies
and higher LAIe50. Elevation characteristics vary greatly
throughout the site (p = 0.01), because of a large ridge in
the southwest part of the site, bogs, and low‐lying hollows
in the southeast. At Upland Aspen, attribute differences
between footprints from prevailing wind directions (260°–
340°, 55% of the time) and those originating from sub-
dominant (340°–190°, 31%) and lower‐frequency wind
directions (190°–260°, 14%) did not have significantly
different canopy heights (Figure 6). However, LAIe50 differed
significantly (p = 0.05) between prevailing wind directions
from the northwest, and lower frequencies of footprints
originating from south of the site. Differences were due to
higher frequencies of short vegetation with high LAIe50,
located near ponds and in riparian areas west of the tower
(Figure 6f). Elevation characteristics within different wind
frequency domains were also significantly different (p = 0.01)
because of locations of some ponds/wetlands, and low‐lying/
upland areas.
[34] Table 6 (Southern Old Aspen) and Table 7 (Upland

Aspen) show confidence limits applied using a Kolmogor-
ov‐Smirnov test to differences in the spatial frequencies of
vegetation structural (canopy height, LAIe50) and elevation
attributes found within a) MODIS pixels and b) wind
direction footprint domains. At Southern Old Aspen,
MODIS pixels 1 and 2 contain significantly different spatial

Table 5. Comparison Between GPP Estimated Using Eddy
Covariance Methodology and Three MODIS Pixel Methodsa

Comparison Statistic Southern Old Aspen Upland Aspen

MODIS Tower Pixel GPP
r2 0.81 0.69
Slope 0.53 0.85
RMSE 37.13 8.87

Average GPP of 3 × 3 MODIS Pixels
r2 0.71 0.69
Slope 0.53 0.84
RMSE 38.14 10.16

Average GPP of Footprint‐Classified MODIS Pixels
r2 0.83 0.76
Slope 0.55 0.83
RMSE 37.12 8.47

aComparison statistics include coefficient of variation (r2), slope
(intercept = 0), and root mean square error (RMSE) (g C m−2 8 d−1)
(based on MODIS pixels with “very good” and “best possible” quality
control flags).
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frequencies of binned elevation, canopy heights, and
LAIe50, compared with that measured by eddy covariance
instrumentation, from all footprint domains. Pixels 3, 4, and
5 (tower pixel) do not have significantly different attributes
from those found within most footprint domains (excluding
footprints originating from between 130 and 160 degrees);
therefore H0 cannot be rejected. Pixel 6 contains spatially
similar frequencies of canopy height and LAIe50 sampled
from footprint areas originating from between 160° and
340° (sampled ∼62% of the time by eddy covariance
instrumentation). To this end, MODIS pixels 3, 4, and 5 are
representative of eddy covariance instrument sampling 86%
of the time, if elevation is excluded. If we choose average
GPP from these three pixels to compare with GPP estimates
from eddy covariance, the relationship improves slightly (r2

= 0.85, slope = 0.55, RMSE = 37.25 g C m−2 8 d−1) when
compared with average GPP using all footprint‐classified
pixels (Table 5). The frequency of elevations found within
MODIS pixels are often very different from those sampled
by eddy covariance instrumentation within footprint do-

mains. Elevation may be a secondary driver of fluxes,
whereby differences in vegetation structural characteristics,
elevation, and soil moisture may autocorrelated to some
extent. This needs to be explored further.
[35] At Upland Aspen, most MODIS pixels determined by

the Boolean classification as having similar ranges of veg-
etation structural and elevation attributes as those found
within prevailing wind directions, often do not have the
same cumulative frequency of spatial canopy height or
elevation attributes (Table 7). MODIS pixel 2 is most sim-
ilar to footprint domains (sampled 46% of the time). Despite
the differences in elevation and canopy height frequencies
between MODIS pixels and footprint domain areas, LAIe50
is not significantly different for 6 of 11 MODIS pixels
examined. This may be an important consideration, as
MODIS spectra are not directly sensitive to canopy height or
topography (although canopy shadowing and soil wetness
will have some influence on mixed pixel spectra). However,
based on the average GPP of these six pixels, where LAIe50
was the only similar attribute, relationships with eddy

Figure 6. Frequency distributions of 3‐D attributes (elevation, canopy height) and below understory
LAIe at (a, c, e) Southern Old Aspen and (b, d, f) Upland Aspen. Cumulative frequency distributions
derived from these curves (not shown) were used to test attribute differences within MODIS pixels.
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covariance estimates of GPP were reduced (r2 = 0.60, slope
= 0.83, RMSE = 10.74) (Table 5).

6. Discussion

6.1. Site Structural Characteristics: Implications of
Sampling During Near‐Neutral Atmospheric Conditions
[36] Kljun et al. [2002, 2004] show that the shape of the

footprint varies with atmospheric stability, whereby near‐
neutral atmospheric conditions result in a flattening of the
footprint curve and increased footprint length. The opposite
occurs during strongly convective periods. At Southern Old
Aspen and Upland Aspen, increased convectivity results in
sampling of canopy structural and topographic attributes
closer to the tower. Increased stability results in sampling of
other land cover types further from the tower, such as
peatlands, wetlands, and low‐lying areas. However, based
on the sensitivity analysis performed on weighted versus
unweighted footprints, the influence of landscape attributes
located closer to the eddy covariance tower were not greatly

different from those located further away from the tower, for
most wind directions. Approximately 17% (Southern Old
Aspen) and 26% (Upland Aspen) of 24 h u* (June, July and
August) measured using eddy covariance instruments occur
during periods of stable stratification.

6.2. Site Representation and Scaling to MODIS Pixels

[37] In this study, MODIS underestimates GPP at both
sites compared with eddy covariance estimates, however,
the underestimation was greater at Southern Old Aspen than
Upland Aspen. Differences between eddy covariance‐esti-
mated GPP and MODIS GPP could be due to atypical fluxes
during the period of study that cannot be accounted for by
the MODIS GPP algorithm, subsampling of specific char-
acteristics within footprints by eddy covariance, mixed pixel
influences on spectral responses, atmospheric constituents,
geolocation errors, etc. [Wolfe et al., 2002; Heinsch et al.,
2006; Coops et al., 2007; Chasmer et al., 2009]. At
Southern Old Aspen cumulative gap‐filled GPP during
June, July, and parts of August 2008 (where data were
available) was 8.3 gC m−2 d−1, while average GPP from
1996 to 2009 for the same period was 7.8 gC m−2 d−1.
Minimum GPP was 6.3 gC m−2 d−1 (June, July, August)
2004, following three years of drought [Kljun et al., 2006]
and maximum GPP was 9.4 gC m−2 d−1 2006, following
two wet years. Unfortunately, temporal representation of
GPP fluxes could not be assessed at Upland Aspen because
fluxes were measured only during 2006.
[38] Subsampling of parts of the MODIS pixel within the

eddy covariance field of view [Turner et al., 2005; Heinsch
et al., 2006], especially from prevailing wind directions may
not be entirely representative of the MODIS tower pixel in
some cases. At Southern Old Aspen, footprints originating
from prevailing wind directions encompassed large pro-
portions of the tower pixel. This resulted in high corre-
spondence between the tower pixel and measurements made
by eddy covariance from prevailing wind directions, despite
significant underestimation of GPP by MODIS at this site
(Table 5). At Upland Aspen, footprints from prevailing wind
directions often contained peatlands and wetlands, which
had mixtures of shorter trees with low LAIe50. MODIS
tower pixels were slightly less representative of attributes
measured from prevailing wind directions because of a
mismatch in scale between (smaller) footprints and the area

Table 6. Kolmogorov‐Smirnov Significance Levels (p Values) of
Cumulative Frequency Differences Between 3‐D Spatial Attributes
Within Footprint Sampled Domain Areas (Originating From Clus-
tered Wind Directions) and MODIS Pixels at Southern Old Aspena

Wind Directions P1 P2 P3 P4 P5 P6

DEM
280–340 0.01 0.01 >0.2 0.01 >0.2 0.01
130–160 >0.2 >0.2 0.01 0.01 0.01 0.01
340–130 0.01 0.01 0.01 0.01 0.01 0.01
160–280 0.01 0.01 0.01 >0.2 0.01 >0.2

CHM
280–340 0.01 0.05 >0.2 >0.2 >0.2 >0.2
130–160 0.01 0.01 0.01 0.01 0.01 0.01
340–130 0.01 0.1 >0.2 >0.2 0.15 0.01
160–280 0.01 >0.2 >0.2 >0.2 >0.2 >0.2

LAIe
280–340 0.05 0.05 >0.2 >0.2 >0.2 >0.2
130–160 0.01 0.01 >0.2 >0.2 >0.2 >0.2
340–130 0.01 0.01 >0.2 >0.2 >0.2 >0.2
160–280 0.01 0.01 >0.2 >0.2 >0.2 >0.2

aDEM, elevation; CHM, canopy height; LAI–LAIe, below understory
effective. Significance levels (p values) <0.05 (boldface) indicate that
footprint domains have significantly different cumulative frequencies per
structure type, whereas p ≥ 0.2 (italics) show that these are not
significantly different. P1, P2, etc., are defined in Figure 5.

Table 7. Kolmogorov‐Smirnov Significance Levels (p Values) of Cumulative Frequency Differences Between 3‐D Spatial Attributes
Within Footprint Sampled Domain Areas (Originating From Clustered Wind Directions) and MODIS Pixels at Upland Aspena

Wind Directions P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

DEM
260–340 0.01 0.01 0.01 0.01 0.01 >0.2 0.01 0.01 0.01 0.01 0.01
340–190 0.01 0.01 0.01 0.01 0.01 0.01 >0.2 0.01 0.05 0.01 0.05
190–260 0.01 0.15 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

CHM
260–340 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
340–190 0.01 0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
190–260 0.01 0.15 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

LAIe
260–340 0.01 >0.2 >0.2 0.1 >0.2 0.01 >0.2 0.01 0.01 0.01 0.15
340–190 >0.2 0.15 >0.2 >0.2 >0.2 >0.2 >0.2 >0.2 >0.2 >0.2 >0.2
190–260 >0.2 0.05 >0.2 >0.2 >0.2 >0.2 >0.2 >0.2 >0.2 >0.2 >0.2

aDEM, elevation; CHM, canopy height; LAI–LAIe, below understory effective. Significance levels (p values) <0.05 (boldface) indicate that footprint
domains have significantly different cumulative frequencies per structure type, whereas p ≥ 0.2 (italics) show that these are not significantly different. P1,
P2, etc., are defined in Figure 5.
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contained within the MODIS tower pixels. This resulted in
less explanation of variance by MODIS pixels, but also
reduced differences between eddy covariance and MODIS
estimates of GPP. MODIS often underestimates GPP in
highly productive ecosystems and overestimates GPP in
low‐productivity sites [e.g., Turner et al., 2005; Heinsch et
al., 2006; Coops et al., 2007]. At Upland Aspen, there are
relatively equal proportions of forested uplands, peatlands,
and riparian areas which are averaged within MODIS pixels
resulting in reduced biomass (determined from spectral
vegetation indices) used in the MODIS GPP algorithm.
Further, sampling of low‐lying areas by eddy covariance
instruments may have reduced 8 d cumulative GPP, making
it more comparable to that of MODIS.
[39] High‐frequency sampling by eddy covariance

instrumentation of areas of hazelnut/aspen understory within
footprints from prevailing wind directions at Southern Old
Aspen may have also resulted in greater eddy covariance
estimates of GPP when compared with MODIS GPP. The
understory comprises of 39% of the total area within a 1 km
radius of eddy covariance instrumentation (determined from
airborne lidar), and is sampled approximately 26% of the
time, over 24 h periods during June, July, and August. Black
et al. [1996] and Grant et al. [1999] estimate that the
understory at Southern Old Aspen sequesters approximately
60% of the C sequestered by the canopy. Therefore, sam-
pling of areas that have this vigorous understory by eddy
covariance instrumentation will likely increase GPP esti-
mates when compared with MODIS pixel GPP.
[40] Is there an optimal pixel resolution that should be used

for scaling fluxes measured by eddy covariance instrumen-
tation? From the results of the MODIS pixel comparison
with eddy covariance estimates of GPP (Table 5), we find
that the use of low‐resolution (1 km) MODIS pixel is ade-
quate for scaling GPP variability throughout the growing
season (despite significant underestimation of flux) at
Southern Old Aspen. At this site, footprints originating from
prevailing wind directions sample much of what the MODIS
pixel observes. Slight within‐pixel heterogeneity will be
averaged both within the footprint and within the MODIS
pixel, so long as small areas of heterogeneity (for example,
wetlands and other features) do not significantly alter NEP
measured by eddy covariance instrumentation. Selection of
MODIS pixels containing the same attributes as that mea-
sured by eddy covariance from prevailing wind directions
improves the explanation of variance of GPP at both sites
when compared to using the tower pixel alone and the
average of 3 × 3 MODIS pixels. Within heterogeneous
ecosystems, use of higher resolutions may be more appro-
priate so that the distribution and influence of land cover
types within footprints and lower‐resolution MODIS pixels
can be assessed [e.g., Chasmer et al., 2009].

6.3. Implication for Research

[41] The idea that fluxes sampled by eddy covariance will
be influenced, to some extent, by canopy structural and
topographic characteristics is not new. Several studies have
observed wind direction influences on NEP related to can-
opy structure [e.g., Rannik et al., 2000; Aubinet et al., 2001;
Scanlon and Albertson, 2003; Yoshio et al., 2005; Chasmer
et al., 2008a]. Further, meteorological driving mechanisms
related to photosynthesis and respiration, are often affected

by vegetation structure and topography [e.g., Baldocchi et
al., 1997; Chen et al., 2002; Griffis et al., 2003; Gaumont‐
Guay et al., 2006; Khomik et al., 2006; Pomeroy et al.,
2008]. Ecosystem structure, flux scalars, and the frequency
of sampling of ecosystem parts by eddy covariance may
have significant implications for satellite product evaluation
[e.g., Turner et al., 2006].
[42] The development and application of a new method

for classifying vegetation structural and topographic char-
acteristics observed by eddy covariance instrumentation (via
the combination of a flux footprint model and lidar data)
shows great promise for efficient comparisons between
satellite vegetation products and eddy covariance‐based
estimates of vegetation production. The spatial frequency of
land cover attributes within MODIS classified pixels were
also compared with sampling of the same attributes found
within various footprint wind direction domains using a
Kolmogorov‐Smirnov test. The application of this test
provides users with an index of confidence that frequencies
of 3‐D attributes found within MODIS pixels are the same
or different from those sampled by eddy covariance instru-
ments. Where MODIS pixels do have similar attributes to
those sampled by eddy covariance, additional confidence
can be applied to temporal frequencies of eddy covariance
sampling. For example, at Southern Old Aspen, MODIS
pixels 3, 4, and 5 are representative of 3‐D land cover at-
tributes sampled by eddy covariance instruments 86% of the
time. This will improve our understanding of the complex
relationships between MODIS pixel GPP and that measured
by eddy covariance instruments.

6.4. Improvements From Previous Integration
Methods

[43] Several studies have indicated a need for remote
sensing‐based assessments of site heterogeneity for site
selection [e.g., Goulden et al., 2010] and eddy covariance
representation [e.g., Chen et al., 2011] using spectral veg-
etation indices. Spectral vegetation indices from moderate
resolution satellites such as Landsat provide an excellent
means for examining site heterogeneity, however in some
cases, the cause for the pixel variability is unknown. For
example, correlations between the normalized difference
vegetation index and biophysical attributes vary between
species types, seasons, years, and sensors [e.g., Hall et al.,
1995; Chen, 1996; Franklin et al., 1997; Eklundh et al.,
2001; Lu et al., 2004; McMillan and Goulden, 2008].
Spectral bands can be significantly affected by solar zenith
angle [Hall et al., 1995], shadowing and soil reflectance
[Treitz and Howarth, 1999], stand structure [Wang et al.,
2005], and saturation of the normalized difference vegeta-
tion index at LAI > ∼3.5 m2 m−2 [Fassnacht et al., 1997;
Wang et al., 2005]. This should not, however, exclude the
use of spectral vegetation indices for examining site het-
erogeneity or eddy covariance instrument representation, but
some caution is warranted. Airborne scanning lidar, on the
other hand, provides direct measurements of canopy and
understory structure, and topographical variability at high
resolutions (nominally 1 m) and does not suffer from the
same geometrical/optical problems of spectral systems. It
should be noted, however, that lidar data sets have their own
limitations, but are often not problematic within a wide
range of forest ecosystems. Vegetation heights can be un-
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derestimated within grassland and low‐shrub environments
where only one return is recorded [e.g., Hopkinson et al.,
2005] and within some forests where crown apices repre-
sent a small surface area. This results in the reflection of
pulses from the sides of the crown as opposed to the very
top [Gaveau and Hill, 2003]. Estimates of canopy fractional
cover may be biased in dense canopies where laser returns
cluster near the tops of trees [e.g., Chasmer et al., 2006].
This can be especially problematic with earlier generation
single‐ or dual‐return lidar systems.
[44] Alternative methods for examining eddy covariance

sampling representation within and beyond flux footprints
should also consider other types of high‐resolution spectral
remote sensing data sets [e.g., St‐Onge et al., 2004]. Struc-
tural vegetation attributes, canopy morphology as a function
of spectral reflectance and shadowing, canopy gaps, topo-
graphic variability from digitized topographic maps, etc., can
also be used as layers within classifications similar to the
classification methodology and Kolmogorov‐Smirnov test
used in this study. The degree to which high‐resolution
spectral data can mimic site characteristics measured using
airborne lidar has been compared in a few studies [e.g.,
Tickle et al., 2006; Véga and St‐Onge, 2008] but should be
explored further with respect to classifying areas sampled
using eddy covariance instruments.

6.5. Limitations and Uncertainty

[45] 1. CO2 measurement uncertainties by eddy covariance
instrumentation occur during periods of stable atmospheric
conditions, when transfers of CO2 fluxes by nonturbulent
exchanges are not detected by the eddy covariance. These
limitations were reduced within the footprint analysis, and to
some extent when estimating GPP (where u* > 0.2 were
used, and periods less than this were gap‐filled). Other
limitations include (1) assumption of near‐neutral atmo-
spheric stability; (2) an inability to consider the full com-
plexity of the eddy covariance equations; (3) terrain
influences [Massman and Lee, 2002]; and (4) energy balance
closure [Barr et al., 2006]. Barr et al. [2006] suggest that a
correction to the energy balance may be applied to CO2

fluxes in order to increase them relative to the percentage
underestimated when the energy balance cannot be closed.
[46] 2. Footprint uncertainty in heterogeneous ecosystems,

such as Upland Aspen, result in an inability to properly
characterize the exact source/sink area measured by eddy
covariance. Simple footprint models, such as the footprint
parameterization used here [Kljun et al., 2004] are confined
to spatially homogeneous flow. Complex footprint models
of Kljun et al. [2002], the basis for the footprint parame-
terization used in this study, can account for heterogeneity
within the landscape. However, these models are not often
applied over long time series data sets because they are
computationally intensive.
[47] 3. Uncertainties in the location of source/sink areas,

based on averaging all three‐dimensional attributes within
the footprint area, ignores weighting of attributes by the
probability density function. A sensitivity analysis com-
paring weighted versus unweighted footprints does not
greatly influence attributes averaged within the 80% foot-
prints at these sites, however, this should be checked at other
sites. Future studies will include weighting of topographical
and structural attributes according to the probability density

function. This would effectively tie the most important or
influential attributes (e.g., local canopy height, area of
understory cover, ratio of the area of uplands to lowlands) to
measured fluxes, after the removal of influences from
atmospheric driving mechanisms.
[48] 4. Roughness length (z0) and zero plane displacement

(d) were determined from lidar and averaged within 10°
wind vectors, up to 100 m from the eddy covariance (area of
greatest probability of flux).
[49] 5. MODIS pixel geolocation errors can increase

uncertainty in the location of pixels and reflectance spectra
used to estimate GPP [Wolfe et al., 2002].
[50] 6. Soil characteristics such as soil moisture, soil type,

and soil temperature were not included, but will have sig-
nificant influences on the spatial variability of fluxes
[Gaumont‐Guay et al., 2006]. Lidar topographical indices
may be used with a radiative transfer model to estimate
ground surface moisture and temperature regimes, but
should be tested with measurements.

7. Conclusions

[51] The marriage of plot measurements with eddy covari-
ance data and low‐resolution remote sensing data products is
particularly difficult because of differing spatial and temporal
scales [Heinsch et al., 2006; Turner et al., 2006]. Yet these
comparisons are required to assess global validity of satellite‐
based products. In this study, a Boolean classification of
ranges of 3‐D attributes found within footprints was used to
classify within and beyond site vegetation structural and
topographic variability found within MODIS pixels. Confi-
dence limits were assigned on a per‐MODIS pixel basis by
comparing cumulative frequencies of binned 3‐D attributes
within pixels to those found within footprints originating from
prevailing wind (and other domain) directions. The integration
of lidar data with a footprint model for scaling to low‐
resolution MODIS pixels can have important implications
for (1) vegetation structural and topographic influences on
the variability of NEP sampled from wind scalars within
footprints [Chasmer et al., 2008a]; (2) identifying landscape
features within footprint frequently sampled areas; (3) clas-
sifying the spatial patterns of landscape heterogeneity within
and beyond the fetch of the eddy covariance instrumentation;
and (4) evaluating the influence of spatial vegetation het-
erogeneity (patches) and eddy covariance sampling on
lower‐resolution remote sensing products such as those from
MODIS.
[52] Airborne scanning lidar instruments are especially

useful because they directly measure within and below
canopy 3‐D properties. Therefore, lidar data provide infor-
mation that is the same as many plot or transect‐level veg-
etation structure measurements [e.g., Hopkinson et al., 2005;
Chasmer et al., 2008b], but samples the entire region sur-
veyed. Despite the benefits of lidar for local to regional
scaling, contracted data collections can be expensive. In
recent years, however, lidar data collections have become
more widespread within industry (e.g., forestry, oil and gas)
and government agencies (e.g., Canadian Forestry Service,
U.S. Department of Agriculture). This has enabled large‐
scale mapping of natural resources for monitoring and
extraction purposes. Often, data are publicly available.
Numerous eddy covariance flux tower sites have already
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been surveyed by lidar at some point during their operation
(e.g., >9 known sites in Canada, several in Europe, USA,
Scandinavia, and Australia). If lidar data do not exist, the
methods used in this study could be applied to less expen-
sive high‐resolution aerial photography, GIS data layers, or
satellite imagery.
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