| I* ~ Nationaf Library
L. KlCanada;

du. Canada

Canadian Theses Service

" . Ottawa, Canada
T KIAONA . \

o NOTICE ’
The quality of thus microfiche is heavlly dependent upon the
quahty of the ongqnal thesis submitted for microfilming Every
effort has been made to ensure the'highest quality of reproduc-
tion pogsibde ! & ' .

If pages are missmg contact the university which granted the
dﬁagree
Some pages may have Iﬂd!SUnCt print aagecvally if tRe ongmal
pages were typed with a poor.typewriter ribbon or if thie univer-
‘sity sent us an inferior phorocooy :
. ! Y
PreviOUSN copyrighted. matenals (journal articles, published
tests, etc.) are not filmed.

Reproduction in full or in part of this fiim is governed by the

Canadian Copyright Act: R.S.C. 1970..c.. C-30. Please read -

the authorization forms which accompany this thesis.

'THIS DISSERTATION -
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

NL 339 {r 86/01

" Bibliothéque nationale

sne qQui a confere le grade

Services des théses canadiennes’

‘ . NI

o

Vo | AVIS '"

La qualité de cette sgicrofiche depend grandement de’ Ig quahte
de lathese s_0urn e au microfiimage. Nous avons tout fait pour

“assurer une qualité supérieure de reproduction.

Pl - - -

S'it rnanque des pages. veu»llez cornmunlquer avec I'univer-’
- N ‘ .
7 . : -

La quaiité d'impression de’certaines pages oeu’i laisser-a
deésirer, surtout si les pages ofiginales ont élé dactylographiées
al'aide d'un ruban usé ou si 'université nous a fait parvenir
une photocopie de qualité intérieure -

w, ~

Les ddcumems‘our font déja I'objet d'un droit d'auteur (articles

de revue, examens publiés. etc.) ne sont pas microfilmés.

La reproduction, méme partielle, de ce microfilm est soumise
ala Loi canadienne sur le droit d'auteur. SRC 1970, ¢. G-30.
Veuillez prendre connaissance des formules d'autorisation qui
accompagnent cette these *

. LATHESE A ETE
MICROFILMEE TELLE QUE
NOUS L'AVONS REGUE

~

Canad"',

. * National Library: Bibliothéque nationale = - . il -
of Canada du Canada 6 . > ,
‘ - N . [. N . i .
// / Ottawa, Canada : . - B :
T K1A ON4 ' : " I ; 6-315-233098-7
- ' B ’ T ‘ N
\ CANADIAN THESES ON MICROFICHE SERVI(\F — SERVICE DES THESF“?: CANADIENNES SUR MICROFICHE
. B " PERMISION TO MICROFILM AUTORISATION(DE MICROFIDWER
. Please prmt ort pe Ecrite én lettres moulées ou dactyloqraphter . ‘) T
o : AUTHOR AUTEUR . ? \ N
FA'}ll»‘NﬁiAlAlhO of Author. ~ Nom camplet de I'auteur T o o S o o
'.\y:;\"}*;A'\ - NSRS Lob § v
'.Date of B]rth - Da!v dre r;anss:mc(: . o : ' a ‘ ’:Camadmn Cltu”on - Citoyen uélrl(‘i(il()[l
. ; : ! L ,
(EYRTE A \“ [{ ' ' .) : . l Yes O : ' ‘Y fN(‘) Ny
Country of Birth - Lieu de naissafice . . Permanent Address. - Residence lixe W
; o - R L
~ . ; ’
[L | \'\' i L S O A 4 i LA
. 4~ *
N * A N S [N Vo + ¥ A
N i ‘
:] THESIS ~ THESE '
e e i S - SR e U
Tmo nf Thps«s - Titre de la thes(. o .
s ’ . - . .
. '1 ‘ r '/ ‘ v e . - v - /‘ » -
v T ’
- . r A t 'h
///") vy Vo hd .r i - .
- t
) . . ’ » 5
LY
- AN
~ N . - . . . ' ,/ -
Deqgree for which thesis was presented - . Year this degrek conferred . ,
Grade pour lequel ¢ elte these fut présentee) - CAnnee m)me/r hon de e cprade:
‘ \ ' o N / : v i :
l‘er»f’rs{ty - Uinwersite N - 7 T Name o Sifpe:r nsorl Nom du directeur de th;ée'
.)) &
. | , oy) ' Ve - o +
AUTHORIZATION AUTORISATION S) ~
Permission 1s hereby grante‘d to the NATIONAL LIBR’ARY OF CANADA to , L'autonsation est par fa presente accordee a la BIBLIOTHEQUE NATIONALE
microfilm this thesis dnd to lend or sell copies of the film. . DU CANADA de microfilmer cette these ot de préter ou de vendre des ex-
émplaires du fiim.
Trw uu"v)v reserves other pubhcation nghts, and neither the thesis .nor extery-
. sve extracts from n may be printed ar otherwise reproduced wnhout c/r(> © Lautewr se reserve les autres dronts de nubhication. ni iy theése: m do mpqs ex
author s wntten pnrrmqsuon traits. de celle-ci ne dowvent étre imprimes Ouautrement reproduits sans .
’ Fautorisation m“rute de Vauteur . B
} ; . ATTACH FORM TO THES!S VE&LLEZ JOINDRE CE FORMULAIRE A LA THESE] ‘ ’
’Srlgnéu‘)re ‘) -_ o N _7“, T v /" 7 YD:IKM L B T ‘ .
. . i . y ; R N
. O - I L U (S
NL T s 0%) . . R ‘ . //'}

- | Canadi

/= The University of Alberta-

)

v | N

An Event _Baséd Dialogue Specification for
Automatic'Generation of User Interfaces
A ; , .

ot

by
Meng-Song CHI A

' -) A thesis
submitted to Lhe Faculty\qjj{-aduate Studies and Rcsearc})

in partial fulfillment of the requirements for the degree -
- of Master of Science

~

‘Department of Computing Science

H) &

Edmonton, Alberta
o Fall, 1985 -

THE UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Meng-Song CHIA

TITLE OF THLbIS An Event Based Dialogue Specification for ,
Autom'nlc Generatton of User lnterfaces ' \V

L

DEGREE FOR WHICH THIS THESIS WAS PRESENTED: Master of Science

VEAR THIS DEGREE GRANTED: 1985

/

Permission is hereby granted to The University of Alberta Library to
roproduce single copies of tlm thesis and to lend or sell such copies for prn ate,
scholarly ¢r scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor
exfensive extracts from it may be printed or othermse reproduced without the
author's yltten permission.

k(_.).-—"\"

(Signed) ST e VTS SO
Permanent Address:
[.ot 241, Central Avenue
Central Road East

- Kuching, Sarawak | :
Malaysia) :

Dated 17 May 1985 : _ .

N 1

THE l”ﬁl\'lﬂl(.\'l'l‘\' OF ALBERTA .

1ﬁj“A('UL'I‘Y OF GRADUATE STUDIES /\Nf) RESEARCH
, g - :

-

N ¥

¢ The undersigned certify that they have read, and recommend to the
g y v, ‘

\ , ' . . ‘ . C o . Nt .
Faculty of Graduate Studies and Research, for acceptance, a thesisentitled AnEvent
Based Dialogue'Speciﬁcat_ion for Automatic Generation of User Interfaces

submitted by Meng-Song CHIA in partial fulfillment of the requirements for the .

v

degree of Master of Science.

To my parents

ABSTRACT | /

/

/

o

This thesis presents an event based specification language for designing and

irxx;)l:'riloxltillg flexible human-computer dialogues. This language allows a user inter-
i : ‘ ‘ . o

face (lo.ﬂigx{r to give a high-level specification of a user interface in a dewice indepen-
» . o ' ., .

dent manner. The specification 'is used to generate code for the user interface. The
event language is part of a user interface management system (UIMS) developed at the
4 1

“University of Alberta. The UIMS is based .on the Seeheim model of user interfaces

that was developed at the Secheim workshop. The Séeheim model divides the user

.
'

interface into three components. The rationale for building & UIMS and a survey of a

number of different UIMSs are also discussed.

The important contribution of this thesis is that the event language provided is
capable of supporting multi-threaded dialogues. The language can be used in the

design and implementation of user interfaces for solving real npplicaiion'pro?)léms and

it also serves as a vehicle forexperimenting with user interfaces.

Acknowledgements

'

-

“irst of all 1 would like to thank my supervisor, Dr., Mark Green, for introducing me to

this topic and offering valuable advice, encouragement, and criticism at each stage of

.

, my rescarch. He has suffered through many drafts of this thesis, and improved.its

readibilityy, [am also grateful to hionr his financial support.

Further thanks are due to the members of my examining comiuittee, Dr. Tony

/) ,
Marstand, Dr. Duane Szafron, afd Dr. Jack Mowchenko for their helpful suggestions

PR
s

and comments. | would also like to acknowledge both the financial and technical sup-

port provided by the Department of Computing Science.
My fond thanks to Lee-Choo whose affection and help through the darker times

v

were always there,

Most of all, [would like to thank my {amily, especially my parents, for their con-

tinuingsupport and encouragement throughout my education.

Chapter

Chapter 1: Introduction

Table of Contents

I.1. Rationale for Developing o UINIS L

|
|
!

2. Purpose of the Thesis

AT ermINOlOgY o SUTTO

1 Outhine of the Thess

Chapter 2: Survey of Existing UIMSs
21 Classification of UIMS

)

-

+)

“

*)

9y

-

2

—

3

1

2. 1.1, External vs Tnternal Control

2.1.2. Glue Systems vs Module Builders ... L

OMENULAY PR TP
BUSYNGRAPH L P
AT R

LU SYNICS and SYNICS

D e e

A Seehetm Model oo

2.68.1. Presentation Componento

»

2.6.2. Dialogue Control Component ...

2.6.2.1. Recursive Transition Network Notationo.ooooiiiii .

2.6.2.2. Context Free Grammar Notationooooiiiiiiiiii.

2.6.2.3. I'vent Noiation

2.6.3. Application Interface Model ..., PP

\ . R . - \
hapter 3: Designing the Dialogue Control Component

A The Event Model oo

o Design ObJectives oo a

1.2, Introduction to the Event Language AT

1.2.1. Token Declaration

1.2.3. [bvent Declaration

1.3 Multi-Threaded Dialogues ... ST e e (..... :

B S UIINARTY

B

Mo

Chapter S mplementation o, e e e PRI
5.1 The Compiler SRR U PO [T TSR
S Syntactie Specifieation
H.1.20 Lexieal Analysis . PO E SRR UUURUSURRRRRPNY

5.1.3. Comptlation Process oL R T

F‘ -
S I ey WOrds ‘

L4

O b SUININATY
5.2, Scheduler Roptimes R
5.3 Process Sehed i ing o
530 FVIFOIINONE oo

5.3.2 Seheduling L RN

Chapter 8 Examples OSSR :
B 1. A Simple Geometrical Object Editor ... OO ,
6.2. An Advance Geometrical Object Editor ...

6.3, Comments S

Chapter 70 Conelusions ©o. PP
7.1, Summary of Thesis Contributions OO 5
T2 Evaluaion L

7.3 Extensions and Further Work o
CReferemees o
AL YACO Specification of the Fvent Lancunge

A2 Lexical Analyzer for the Fvent Language .. PSR

Figure

)

-

L1
-

)

tl

g

rl

5

List of Figurecs

A Typieal Sequence for Dialogue Construction

THGER Applieation Arelitecture oo
Logical Model of a UINMS o
Transition Diagram for Login Sequence ..o
BNE Grammar for The Login Sequence o

Fovent Handler for The Login Sequence

structure of the Dialogue Control Component

lelationships between Scheduler Tables . SO

Format of An Event Handler File ... PP PP PP T

BNF Description of Event Declaration ...
User Interface Generation Process ...
screen Lavout for A Simple Geometrical Object Editor
Event Handler for t hé simple Geometrical Object Editor

Screen Layout for An Advance Geometrical Object Editor
Iovent Handler for the Advance Geometrical Object Editor

Event Handler for Processing Help Méssages 0

. . Chapter 1
q

» .

Introduction

1.1. Rationale for Dcvc‘loping a UIMS

SSIGNT ich-T.evel o .
DESIGNER .” o - . : "1 User Interface
o User Interface UM S , .

S Program
Deseription

Figure 1.1 Automatic Generation of User Imterface

An important reason for the developing of a. User Interface Management System

i

(UIMS) 19 because the design and implementation of good user interfaces for interac-

.

tive computer systems is an expensive and time-consuming activity. Althotich the cost

S

1 .
owing to the expensive nature of designer’s time. It has been noted that on the aver-

i

of computer hardware has been decreasing, the cost of software has been increasing

_age 59¢¢ of interactive business application programs involve the management of the
user interface [Benbasat and Wand 81]. The ti.me required for a highly ﬂ.ki”(‘(i pro-
grammer to construct the interface averaged about 35 month{a. Therefore, to reduee
both the cost and timvb required to construct good user interfaces, the notion of a
UIMS, a software tool that automatically copstructs the usor: imerf:tu‘(' given a hich

i
level description, has been introduced as shown in Figure 1.1 [Buxton et al, 83, Kasik

82, Olsen 83, Seattle 83, Tanner and Buxton 81].

The second reason for working on such a system is related to the desire to develop
more user-friendly interactive systems, which has further ¢ompounded the cost of
interface construction. A good user interface should support a spectrum of users

efficiently. Nowadays, interactive computer systems are available in offices. schools

and homes. This has led to the emergence of a4 new class of users who are not pro.

cramuers. Unhke expert programmers, these users are often not willing to spend o lot

of time learmng the systems. Noviee users would generally prefer o computer-zaided

*

system with extensive help and error correction facilities, however, expert gsery would
. - 1

prefer a nser-guided system that aceepts abbreviated commands and allows entry of
' ’ ' <

multiple commands to speed up the dialogue. Furthermore. over a short learnine

period noviee nsers would become more experience users. Therefore. there 15 a need for

a UM hat allows the designer to efficiently modify the user interface to suit the

evolving needs of the users and the demands of users with different levels of expertise

The third reason for developing a UIMS is related to system development by pro-
totyping [Benbasat and Wand &4, Edmonds 1, Green 82]. These prototypes can vary
from a simple rough sketch to detailed working models. they are done to introduce the
users to the system quickly. so their feedback can be used in refining the prototoypes.
This method allows the (l'(*ﬂif_;n(‘r to evaluate his design before it is put into actual
practice.

The fourth reason for the development of a UIMS 1s the inrr(:rmml reliability and
ease of modification of automatically generated software over hand "'oded methods.

The traditional hand construction of the user interface for each new application is not

only time consuming and costly, but also tends to produce low quality user interface.

/s

This need not be the case since the same user interface techniques can be used in a

-

wide variety of applications. Therefore, the development of a UINS has been intro-

+

d‘ur(‘d.h The UIMS has significant impact on the structure of applications. A[t‘ separates
the specification of the interaction dialogue from the programming of the application
and enables the former to be altered with mynimum effect on the latter. This separa-
tion provides a higher degree of user interface consistency across th~ applications. The

UIMS removes the burden of physical interaction handling from the designer and

| .
- T

" “allows him to concentrate on the design of better dialogue sequences. In addition, the

. . / . ;) . ' o)
UIMS permits the user dialogue to be programmed by someone, such as an interaction
. [' . : Lo :) .
. i A : . : . . . '
specialist. who is not a programmer. Therefore, the user interface design can be
) N .

tailored to the user rather than to efficiency of implementation.

! -«

, This resecarch has also been motivated by the lack of. a sound methodology for

“ . : - . . ’ “.
the design of user interfaces. Experiments involving reimplementing entire applica-
tions are . prohibitively expensive, but the ease with which user interfaces can. be -

changed using a UIMS makes realistic experiments possible. The . U'IMS can be used as

a test bed for the evaluation. of various human-computer interaction techniques and

‘. - .)) \ N) ’
physical’devices. ‘The notion.of a UIMS is similar to thatsf a Data Base Management
System in many ways [Date 81]. o : .

1.2 Purpoée of the Thesis
N . L 1 ,

Although ‘.seve-ral‘ .L'I‘.\l‘Ss have beén désigned and i';npler;lented over the l:;sL few
. ' !
.}.o_a‘r;’v-‘. the design of a good user interface remains to a great extent an art. One major
pI‘Oi;i(’I;J with all ‘t‘he_ L.%iveéigns“i"s:the'lac‘k of experience in their use. Th.ex’-.efore. in order -
o m_'.e‘rcome Lh’is'deﬁcien'cyl', a UIMS b:}sed on the Seeheim model of u’sér interfaces has
been (ie\"élkbpéci' at_the U_ni-\'ersiby‘ of Alberta [Creen 81c. 85al.- This model divides the

user interface into three components: presentation component, dialogue control com- -
. i % e "

ponent.and application interface model. A‘discussion of these components is given in
. . : ; o . o ;

'lChapt,er Two. In this L.h‘esis the d'esigr‘lvand implementation of the dialogue contrf'iv}‘l’
component using tfhle eyent inodel is prese,nted..o This dialogue coutrol component is‘
/Baséd on study’,of-desirable features in dialogue s.hpeciﬁca‘tion‘languagos for automatic
genoratioﬁ of .us‘er interfaces. ”]n the event model, the user' interface is a‘escxt_ibed by g‘

set of event handler definitions using an event language. The definition of an event '

handler Wes .the events it can handle and *the statements that are executed in

response to these events. The event language is an extension of the C programming

language [I\'or\fnig‘};an and Ritchie 78]. The main aim of this thesis is)o test our ideas

on user int.crfacebdesi'gn and implementation. It 1s hoped that this thesis will shed
some light on the issues raised. Besides using the UIMS as a test bed for evaluating

N o -\ .
the feasibility of the Secheim model as the basis for UIMS, it will also be used as a

-

practical tool for other research projects within our department.

An alternative approach-to the design of the dialogue control component using.

the recursive transition network notations can be found in [Lau 85]. - The presentation
component 1s implemented by G. Singh [Singh 8_5]. The other componénts of the UFMS .

will be implemented by other authors in the near future. This UIMS project is one of

-

the first user interface projects to incorporate the Seeheim model of user interface into

practice.

1.3. Terminology

For the purpose of this thesis a UIMS is defined as a set of software tools that
support the specification, design, implementation, maintenance. and evaluation of!
human-computer dialogues. The name "Abstract Interaétion‘ Handler™ (AIH) used in

[Kamran and Feldman 83] and [Rogers and Feldman 81] also refers to the same

"

software tools.

“In this thesis the term "user” refers to the énd user of the. application system, the

person for whom the user interface was designed. The "user interface” is defined as the

v o v :
" software module that stands between the user and the rest of the program [Green 84a].

It is the only part of the program that directly deals with ‘the user, all the other

'

modules obtain user input from the usér interface and rely on the user interface to

. .) 3 N Lo o . ,
present output to the user. The "interaction designer” or simply the "designer” is the

- person who designs the interactive dialogue. He is familiar with various interaction

¢
i

-

techniques and human factors information. The "application programmer”.is the per-

son who writes the application. An "interaction dialogue” is the set of possible uscr

inputs where each input causes some information to be sent to the application, possi-
bly resulting in some syntactic or semantic feedback on the display [Tanner and Bux-
‘ton 8).

ARY : 2

1.4. Outline of the Thesis

This theéis i;\Qrganized as follows. Chapter Two contains a description of criteria
D3 . 11 , '

‘

Jfor classifying [“1M_S\s and a survey of different design models used for describing them.
S ‘

-

The third chapter of this thesis describes the dialpgue control compon'ént of the
University of Alberta UIMS. The event language is described in Chapter Four.
Chapter Five contains the details of the implementaiion of a scheduler and a compiler

for the event language. A mnumber of examples of the use of the event language is

el

given in Chapter Six. The final chapter presentvé\"‘c\onclusions and suggestions for

R,

further work. The appendices contain the Lex source br,qgram and the YACC

specification of the syntax of the event language.

Vi

Cha.ptér 2 .

‘Survey of Existing UIMSs

-~

This chapter gives a description of the classification criteria, and a survey of the
design notations and models used for describing UIMSs. The survey provides the
background for the design of the University of Alberta U'IMS and the event based

dialogue specification described in the following chapters.

-~

2.1. Classiﬁ;:ation of UIMS . , - “

Despite the gfowing interest in user interface design, th(" n,:vuure of human-
computer interaction is still not well undcrs?oodé. There does not exist a »l:\rge body of
knowledge on the design of UIMSs. Most of the UIMS generators that have been pro-
duced have a user interface model, but this is usually not.emphasized in théir descrip-
tions. In this s“‘ection, we look at different conceptual models that have been used for’
clasisifying ('IM%“SS. A UIMS is usurlvlly classified along the fohllowi.ﬁg axis: external vs

internal controljof application, and glue systems vs module builders.

"~ 2.1.1. External vs Internal Control

-

One of the goals of UIMS dev-olo-pment. has been to separate the specification of
the user dialogue from the®ptogramming of the application [Kamran and I"o](lnlnn-Rii."
Rogers and Feldman 81, Rosenthal 82]. Two alternative models describing the- rela-
tionship between the UIMS and the appli;‘ation have been suggested by Rosenthal and
Yen [Seattle 83] -

.The first model is an internal control UIMS wh'gre the application pro-;grum Is 1n
charge of the flow of control within the grab‘hics system, as shown in Figure 2.1. Tlle
application, invokes input functions to obtain appropriate input data from various

2

abstract devices.

L

Application Program

Abstract Abstract Abstract

Device “‘1 Device Device

!
Graphics System

. Figure 2.1 Structure of Internal Control UIMS

The 'mhf'r model is an external control UIMS where control lies within the UINS,
- A < Lo o .
. as illustrates in“Kigure 2.2. The application is viewed as a set of discrete functional

modules that will be invoked in response to user inputs. All UIMS implementations

that are discussed in the following sections have used the external control model.

-

: User Interface Manager
“
Appl. Appl. Appl.
Module Module Module

Graphics System

Figure 2.2 Structure of External Control UIMS.

However, the problem with either of these models is that it is not :slwnyi clear
where the boundary line should be drawn between the UIMS and Ih'o application. For
example, should semantic feedback, such as telling the user that the requested opera-
rimll has been completed, be handled by the UIMS or the application package? Tl

. UIMS cannot perform semantic feedback when this requires knowledge :md.'m;'mipul:x'-'
tion of the application data base. On the oﬁhor hand, the application cannot perform

semantic feedback without ilnformci)ng the UIMS. Tt has been argued that the UIMS

must always call an application routine whenever it wants to change the application

~data structure in order to ensure all the modifications are legal.

v

2.1.2. Glue Systems vs Module Builders

’
i

T

Different UIMSs have made some trade-off between generality and ease-of-use in
the design of their pre-processor modules. Thig has led to two different types of sys-

tems called glue systems and-module builders. |

- f ¢ \
ln q)glue syster, a designer uses a library of inwﬁn(‘tion techniques to design the

interaction dialogues. Therefore, the power of such a system depends largely on the
range and power of the library. This system allows the destgner to construct the dialo-

> - "

gues at a high level with minimum complexity.

v a module builder, the designer uses a special language for defiming the interuc-
tion dialogues. This system is quite general. The designer is not restricted to the set
of interaction techniques provided in some librartes, and will usually create his own

-\ . N
library of software modules. However, this system requires the designer to learn 1 new

programming language.

Since the glue system and the module builder both have their own strengths-and
weaknesses when implemented separately in different systems, they should co-exist.in a
UIMS in order to compliment each other as shown in Figure 2.3, [n this case, 4 pro-

graminer can use the module builder to design software modules that réquire a more

specialized knowledge of programming concepts. and store these modules in the

module library. An interaction designer who is not a programmer can then use the

glue system to construct dialogue sequences by patching together these rgady.made
. A

..

modules [Tanner and Buxton &4].

W,

Pre-Processor : Run-Time
- :

Glue Rup-Time
System : Support

Module : Ul
Library . Definition

Figure 2.3 UIMS with Glue System and Module Bujlder

NS

2.2. MENULAY ‘ ' ‘

The UIMS [Buxton e¥ al. 83].developed at-the University of Toronto consists of

two main modules. The first is a pre-processor. called MENULAY. that enables the
- (.

r

desigﬁor to design graphics menus and their funct‘ionﬂlity.. The second m:xiq rﬁodulo 15
the run-time support package that handles interaction between the user and the sys-
m

The pre-processor A‘\'IET\'IULAY isla.'glue system that establishes the relationship
between the user interface and application program. The dcsign(‘r 1s provided 'wir‘h 3
Iibrar_;' ofv ready-made modules that include specialized i?’on?c ‘cursors, a graphic:xl

potentiometer. a graphical piano keyboard, an audio support package for driving a

10
)

digital ﬂolil}d synthesizer, and sQue routines to manipulate light buttons within the
menu driven system. He can graphically define the icon for an event and layout the
vvént on the screen. The name of 2 procedure associated with an event isycnlvrvd
through a keyboard. The output from the pre-processor is converted by a companion
program MAKEMENU into programs that build a number of tables used in the user

interface. The resulting code is linked with application-specific routines.

C'reate pictures

l

- MENULAY

Lay out screen

Change size, colours,
assign functions

Store in menu
specification file

o

" MAKEMENU

Create C programs

’

Comptle and run

.

Figure 2.4 A Typical Sequence for Dialogue CConstruction

The run-time support package handles the user interactions with the resulting
executable module. This package is designed for supporting event-driven interaction

and a variety of input devices. A typical sequence .for constructing an interactive

diadogue wsing this UIMS is shown 1o Figure 2.4,

One main advantage of this model is that it is easy to design interaction dialogues
nsing MENULAY. I‘ doﬂig.m'r c:u\ modify the dialogues casily by :waoci:n-ing
different uppl'ic:\tion routines with the 'i_lpll(/ events. Another advantage is that the
UIMS s language ill(le[)(‘xx(lont,. To produce code in a different language would only
involve rewriting the MAKEMENU and the run-time support routines. The major

disadvantage of this UIMS is that the range of user interactions is limited by the

’ . .’ . .
power of the library of interaction techniques.
¢

2.3. SYNGRAPH

i

The SYNGRAPH (SYNtax directed GRAPHics) system [Olsen 83, Olsen and
D(‘mpsof 83a, 83b] is a UIMS that uses a thodule builder as its pre-processor. The sys-
tem automatically generutos.gmphical user interfaces. [t produces interactive Pascal
prolgr:xms from - lexical specification, a S._vntactic specification, and the underlying

semantics of interaction.

The le.\'ir:)l'spociﬁmtion defines the various input devices and interaction tech-
niques that can be used by the user. Tlese input devices and techniques are bound to
logical token names. There is no conceptual limit to the number of such tokens that
can be created. The mapping of these tokens in‘to the interactive resources is handled
syntactically.

The syntactic specification specifies both the sequence of valid input tokens and
. .
the organisation and arrangement of their prompts and echos. The syntax of the
dialogue is expressed in terms of an extended BNF (Backus Naur Form) that uses the
logical token names defined in the lexical specification as- well as non-terminals
declared in the grammar. Semantic actions can be inserted in the grammar to invoke

the application routines provided. The system performs automatic prompting by exa-

mining the set of input l()k('nrl that are acceptable for a given state. Tt is also possible
to add additional help information to the grammar, and to provide rubout and cancel
factlities for“h:mdling CITOF recovery,

The SYNGRAPH system s written in Pascal and the interaction semantics are
handled using Pascal statements. Fach non-terminal is generated as a recursive Paseal
procedure whose control structure 1s the syntax tables produced from the grammar
Fiach such non-terminal can have parameters and local declarations. Puaseal state-

ments can be inserted into the production to perform semantic actions.
One advantage of this model is that the designer is free to create his own library
of interaction techniques 1o addition to those being provided. A disadvantage 18 that

the designer needs to learn a new language for describing the dialogue sequences.

2.4. TIGER "
User Other
/ Interface Utilities
USER o | Application _
\ (_j)r:\p'hlcs ‘ DBAMS "f“h_\’.‘il(‘:ll
Package i Storage

Figure 2.5 TIGER Application Architecture

s 4

The TIGER (The Interactive Graphics Fngineering Resource) system of Kasik

[Kasik 82] is another example of a UIMS using a rpodi}le builder. The graphies pack-

age. shown in Figure 2.5, contains output only capabilities. The user interface handles
. . - N i LT : . kS - .
all interaction. The TIGER system consists of twolmain components: a specification

language and a run-time interpreter. The TIGER Thteractive Command and (Fontrol

1

Language (T1CCL) permits the designer to concentrate on the design of dialozne
cquences rather thao the low-level steps that must be taken to accomplish the task,
. ,

The designer can give a high-level specification of the nser interface using the T,
Lanpuage that is strictly block structured.

The run-time interpreter assumes ‘bot,h input and output responsihility for the
interactive dinlogue. The results of the compiled TICCE language are used as input to
the anterpreter. The interpreter displays all information to the user in the form of
menus. 1t collects interrupts and processes them according to the constraints i posed
by the static 'I‘l('("l, structure and the dynamic inputs provided by the appheation at
run time. The interpreter passes specific information to the applicatenn, which is writ-
ten in Pascal, via parameter lists that are specifically tailored t(; a particular input.l

Like the SYNGRAPH system, the TIGER system also requires the designer to

learn 2 new control language.

2.5. SYNICS and SYNICS2 .

[n this section, we discuss two software tools, SYNICS and SYNICS2, developed

by Fdmonds and Guest [Edmonds 81, 82a, 82b. Guest 82] to facilitate the design of

user interfaces.

SYNICS is another UIMS using the module builder approach. It is a translator

A

writing system that uses a grammar notation to ﬁpec.ify user interfaces. The system

f
provides a compiler for converting a B.\IF specification into executable codes. The.
specification consists of a set of SYNtax and semantiC’S rules. The svstem also pro-
vides special features such as an if-then-else statement for cond: parsing, an
interrupt node for calling a predefined routine, and a redo facility for selective back-

up. A set of FORTRAN subprograms is provided for linking the compiled SYNICS

output with the application routines. One problem with this system is that most

designers do not seem to know what BN (s,

In order to provide an alternative tool for human-computer interfaces, Edmonds
.
and Guest have developed another dialogne design system, SYNCS? [Guest X2 Gurea
and Fdmonds ®14], using the recursive transition network notation for deseribing the
mterfaces. The system consists of three sets of programs, and the loader from the
SYNECS system. The matn program is the dialogue processor which takes o dialozue
’
language and produces executable output. The other two “programs are the dialozue
e

tester, which drives the dialogue system, and the dialogue subroutines, .which can he

called by the dialogue control program.

The dialogue language is made up of a deseription of nodes which represent the
states of the dialogue. Fach node can ‘bv viewed as a cirele with at least one entry are,
except for the mmitial start node or a call>d node, and at least one arc feaving, except
for a t;‘rmin:xl or roturn. node. Fach node is described by a node number, and a et of
actions to be performed upon t‘rlforing this nlO(l(‘. These actions may include branching
statements that represent actions labeled on the arcs, procedure call with parameter

passine, and exit commands,

An advantage of the SYNICS2 system is that transition networks are easy to
nnderstand. The user tnput can be deseribed easily using the dialog language. The

main disadvantage is that the description for a real apphication 1s usually very large.

2.8. Seeheim Model

This section describes the Seeheim model of user interfaces developed at the
workshop on User Interface Management System sponsored by Furographics and [FIPS
on Nov. 1-3, 1983, in West Germany [Green &b, 84c. 83a, Guest and Fdmonds &1,

Secheim &4]. This model divides the user interface into three components as shown in

Figure 2.6, The presentation component is responsible for physical interactions. The

1h
)

eraphies package has been absorbed into this component. The dialogue control com-
ponent deals with dialogue between the user and the application program. The appli-
(':uim; interface model deseribes the apphication’™s data structares and routines that are
accessible to the user interface. A pipeline has also been provided to allow the flow of
(l‘:LlIl from the application interface model to the presentation component. The UINS
and the application are treated as separate processes. This ‘mmivl can work with both
internal and external control, and 1t consists of both glue system and module builder

approaches. [t suggests the use of "parallel” control.

v

Application
Interface
Model

Dialogue

USER < DPresentation .
C‘ontrol

Figure 2.6 Logical Model of a UIMS

By

€

2.6.1. Presentation Com ponent

The pﬁ*sen(:xtion component deals with the lexical aspect of the user interface. [t
18 responsible for handling sclr(*en‘layouﬁ, graphical display. input &ind output devices,
lexical feedback, external-internal mapping, and interaction !(‘Chni(]lll‘ﬂv. When a usol:
interacts with the input devices by selecting an item from a menu or pressi-ng a hutton
on a keyboard. the presentation (:.omponent generates an input token that consists of ai
type ficld and a number of data fields that depend on the type of the token. The input
token is then sent to the dialogue control component. In return, the dialogue control

component may send some output tokens to the presentation component resulting in
AN [

5
u

113

some graphical displays, or lexical feedback such as moving o cursor or echoine charac-
ters. The external-internal mapping (I(;ll‘rllllll('ﬂ the conversion of the user’s interune-
tions with the input devices into input tokens and tl{v output tokens mmto mmages on
the output devices. The dialogue congrol component has some ('on‘irol over thiy map-
ping. It can choose the display techniques used for particular ontput tokens and the
interaction technques used for particular input tokens from predelined sets Besides
menu selection, some other interaction techniques commonly used in graphies applicn-
tion programs include dragging, rubberbanding and picking. The presentation com-

ponent 15 the only component of the UIMS that must deal'with the physical devices
.

A separate presentation component not only increases portability and ease of
modification of a user interface, but also decreases the costs of its (‘on;trurtion. Sinee
the presentation component is the only device (l(-pifndont component of the UINMS, only
this component needs to be changed when the user interface 14 rhnvml to a different
display device. The separation provides a convenient means of tailoring the lexical
aspect of the user interface for individual users, It allows the nsers to change defanlt
commands and select their favorite intvr:act'ion techniques or display procedures for a
particular type ()f':tpplicntion. A separate presentation component also encourages the

construction and use of a standard library of interaction techniques. This will improve

the quality of user interfaces and reduce the time and costs of their construction.

2.8.2. Dialogue Control Component

The dialogue control component defines the stricture of the dislogue between the
user and the application program. This component receives a sequence of input
tokens, representing data supplied or requests made by a user. from the presentation
component and routes them to the appropriate routines in the application program.

Similarly. the dialogue control component also receives a sequence of output tokens

. 17
H i
1
. ‘ “ ’ -
N

from the appli'cation\’gtx:ogram aud routes them to the appropriate parts of the presen-

tation compén(;ntl These output tokens uiay represent requests for data or”answor.'s't‘o
u‘sér' requests. Therefore, the d_ial’o_g.uhe control c‘omf)oﬁent must deal with two di:xlc;-
\gues. one i‘x_lit,iated by the user, and the other initiated by the application program.
Sinée‘ the actipnsAperfo.rmé(‘i by the dialogue control co‘mponenpdepend upor; th(; con-
text of the dialpgue. 'iL must be capable of handling dialogue states and state changes.
The dialogue to?nt,r‘()L‘Jco'mp(;'nexl."L"has control over the flow of data from the apblication
to the presentation component. It assigns the formats to the output dgta;,and estab-
lishgs'a pipe line between t‘he’ application and the presentation ¢omponent. Once the
- pipe line has been set up, the dialogué controllcompoi‘lent does not take part in the
“information traqéfer".l This is analog- to direét memory access. The flow of data is
represented by the arc connecting the applicatiqn @nterfz;.ée model and the presentation

component in Figure 2.6.: This approach is eflective’ for transfering large amount of
: e . . L9 .

data from the application interface model to the presentation compenent.

v

Most existing UIMSs. have concentrated on the dialqogue _con'troh;\ component,

, . R
therefore we have more knowledge about it. Three main notations have been

developed for this component. They are recursive transition networks, context free
grammars. and events. The following sub-sections describe these notations and their

déscriptive power.

2.67.2.1. Recursive Transition Network Notation

A recursive transition network (RTN) consists of a number of transition
' e X o '
diagrams. Each transitiod'diagram has a collection of nodes connected by labeled arcs.

Each node represents a state of the dialogue, and each ‘arc represents an action or a
class of actions that can be performed by the user.

The user interface will move from one state to another as the user interacts with

“

18
the system. At the beginning of a session, the transition diagram is placed at a special

/

state called the start state. When the user performs an action, the user interface

. /o, . .o
enters a new state by traversing the arc labeled by the user;s action. In a given state
;

the user can-only perform one of the actions that, 'abels an arc leaving the node
- ' /)

representing that state. All other actions are treated as errors. At any one time only

/

/

/

one staté will be entered.
. : . / '

/

An arc label can be either the nau;e of a token or the name of a sub-diagram.
When an ﬁrc is .Lraversed the token asgociated with .Lhe arc may be sent to the'applic:x-
tion interface model to retrieve some data, or it may be sent to the presentation com-
ponent to display some }messages on the screen. Because most of the trriﬁsition
diagrams for real user int.erfa.ce' tend to ha;'e large number of states. the sub-diagram
approach has been developed for partitioning the networké. A sub-di'agram h:xs'its.

own set of states and transitions that describe one part of the user interface. If the arc
label is the name of a sub-diagrifn, the sub-diagram will be traversed from its start
‘state to a terminal state when the arc is entered. In the case of recursive transition

PR

networks a sub-diagram can reference itself. The use of sub-diagrams not only facili-

tates the description of large user interfaces, but also increases the descriptive power

Y

-~ *

of the technique.

A sub-diagram may also be referenced by attaching it to a node instead of to an

arcgin a‘transition diagram. In this case, when the user interface enters the node, the

sub-diagram 1s traversed.

19

{

Actions:
1) print 'login:’
2) priat 'password:’
3) print ‘login message ...’

.
)
© kg 0 -

a -

Figure 2.7 Transition Diagram for Login Sequence

Figure 2.7 shows the use of a transition network to describe a simple login

sequence for a time shariny system. In state 1, the user is prompted for his login

identification. After the identification has been entered, the user interface enters state

]

2. and the user is prompted for his password. Coutrol-is transfered to state 3 after the -

user typed in the password.
The main advantage of this notatidh\jq that the idformation in the transition
' ' ' N \ \
diagram is casy to grasp and understand. A>major disadvantage with truns\l\mn)

diagrams i1s they only describe half the dialogue between the—user and the progrum\)

They can describe the actions performed by the user easily. but say nothing about thJ‘
‘ g

actions generated by the application routines. Another disadvantage is that this nota-

tion often leads to large transition diagrams which are hard to construct and manace.

It is also difficult for the designer to specify global help and cancel commands using

this notation.

An example of UIMS that uses recursive transition network to specify the dialo-

gue control component is the SYNICS2 system [{Guest and Edmonds 81].

-

20

SNy

2.8.2.2. ConteXtFree Grammar Notation

The coutext free grammar or BNF notation nses techniques from programming
languages to describe and implement the dialogue control component. A grammar
consists of a number of terminals and non-terminals. The terminals are the input
tokens generated b\ the presentation component. The non-term'inals and productliona '
are used to structure the dialogue. The productions with these non-terminals on the
left side define the sy‘nm.x éf the commands in the user interface. A BVA\'F grammar for

P

. l
the login exiample ts shown in Figure 2.8.
. i .

login -> user_jd password
user_jd -> <character_string>
password -> <character_string>

Figure 2.8 BNF Grammar for The Login Sequence

One éf the main.advant,agcs of -grammars i3 Lheii‘ familiarity and the existence of
algorithms to produce efficient parsérs. This notation also suffers the same disadvan-
tage as the transition network notation in that it only describes the actions perfermed
by the user. and says nothing about the.response from the user i;lterf':xco [(iroon Ri4d.
86:\]. Thl‘s can be resolved by ntmchi‘ng tokens to the prod{u‘tions. \Whenever a pro-
ductiozi is used in parsing the user’s input, these tokens are sent to the 3hpropriato
compounent. However. the order in which the tpkens are sent dopo\'n(ls_on wi).oth‘or a
top-down or bottom-up parse is used. Hence, a description of the dialogue control
component using this notation is dependent upon a particular UIMS. Another way to
resolve the problem is to use another grammar to describe the dialogue produced bx
the user inrorface. One of tLho .main problcmsb with thi% solution is linking the (;&'()

grammars together so that correct response is generated for all interactions.

Some examples of UIMSs based on context free grammars are SYNICS [Edmonds

v

ard Guest 78] and SYNGRAPH [Olsen and Dempsey 83a, 83b]. The studies of
Edmonds and Guest [Edmonds 81; Guest 82], have found that the recursive transition
network based system, SYNICS2, is more appealing to most designers than the gram-

.

mar based system, SYNICs.

2.6.2.3. Event Notation

The event notation is not as highly developed as the other two groups of dialogue
control notations. Thig notatrion-'.is lvoosely based on the ogject oriented :xppro:xch' to
user interface design as in Smalltalk [Goldberg and Robson 83]. The event notations
are ibrltsed on the conceipts of events, and special procedures called evom_handl(‘rs.

i
Inp‘ut"‘toko'ns from the presentation component and output tokens from the application
interface model are viewed as cvents proces;ed by the event handlers. Each event.
hzmd'lo»r consists of a collection of local variables and a set of statements for processing
events. When an event handler receives an oven; the._associatod statements are exe-
cuted. These statement: can perform some computation, c_reafe new event handlers,
destroy existing event handlers, send events to other event handlers. and send tokens
to the pr;eS('ntation com; irent and-the application interface model. At any one point

. :
i time more thanone eve -t handler can be active'in the dialogue control component.

Figure 2.9 shows an e¢vent handler for the login examplé. 'I‘h‘is event handler s
capable of processing two types of events. The "INIT" event is seiﬁt to the event
handler when it is created, so the login prompi is displayed at the beginning. The
other event is rec‘oived'whenever the user enters a character string. The “state” vari-
able is used to (ietel;m'ine whether the character string is a user identification or a p:;ss—

\'}voxj(i. - ; : .‘\»

te 7
tZ

eventhandler login 1y

- token
keyboardstring s; .

var
int state = 0;
string user_jd, password;

event INIT {
display { login_prompt) ;

event s : string { ' .
if(state == 0) {
user_jd = s;

state = 1;

display (passwd_prompt) :
}else {

password = s;

state = 0;

process_Jogin { user_jd, password);

}
}

end login;

-

Figure 2.9 Event Handler for The Login Sequence

.
The muajor advantage of the event notation is that it supports multi-threaded

dialogues. By providing each event handler with 'its own state and allowing multiple
event h:mdhlors to be active at any on;? time, the user is free to switch to different parts
of the dialogue without expli(‘it‘\ly savinvg,the state of the dialogie or completing the
rurn;om, command. This enables the event handlers to process‘gelp, cancel, escape and
other special commands that must always be available, The event handlers processing
these commands are active :;.L all times so that they will always be available when
requested by the user. Another advantage is that the event notation cawrspecify a

complete dinlogue sequence using a set of input and output tokens whereas the context

free grammar and recursive transition network notations can only describe half the

[
1

\
sequence. A disadvantage to the event notation is that it looks more like a program
than the other two notations. This is due to the procedural nature of the event

*

handlers.-

An example of UIMS based on the event notation 1s the MENULAY system [Bn:\;-

'

.ton et al. R3]

2.6.3. Application Interface Model

The application interface model is a representation of the functionality of.the
application. [t describes the application from the viewpoint of the user interface and

the user. The description of this component can be divided into two parts.

Thc first part describes the application’s data structures at an abstract level. It
might describe the type of data stored, but not how the data 15 structured ;>r imple-
mented. The ‘dmcriptiﬂon might include the names and the parameters of the applica-
tion routines that can be invoked by the user interface for accessing tixc data struc-
tures. The ro‘.ut,ine descriptions might contain constraints such as pre-conditions and

post-conditions that may allow the user interface to perform some semantic error.

_detection and recovery.

A

The 4second pa:rt (lef;cribes the interaction mode used for communication between
the user interface and the application. There are three possible modes of communica-
tlon. In the system initiated mode, the a.ppl.ication calls routines in the user interface.
This 1s simtlar to_the internal control UIMS. In the user initiated mode. the user inter-
fuce calls the application rourtines. "This is similar to the e;ternalvcontrol model. In
the third interaction nIJode, mixed initiative, the user inter.faco and the z.xpplic:;uon are
viewed as separate processe$ that execute in parallel. Some Interprocess comimunicit-
" tions mechanism ‘is used to pass information between the two processes. In this mode

the user interface and the application are treated as-equals.” That is neither the user

2

v

interface nor the application has control over the other. The presentation and dialo-

sue control components are independent of the interaction mode.

@
The application interface model has not explicitly appeared in any existing

UIMSs, therefore, there have been no notations developed for it. Much work remains

-

to be done in this area before a classification scheme for its notations can be presented.

Chapter 3

Designing the Dialogue Control Component

In this chapter we discuss the design of the dislogue control component of the

University of Alberta UIMS. This UIMS is based on the Secheim model of user inter-
a

faces [Green 81b, 81c, 85a, Seeheim &4] as deseribed in Chapter Two.

event
language

cursive Lvent Dialogu
rec ursiv is e
Based 5

transition > Control

Internal y
networks Form C‘omponent
1]
context
free 2

grammar

Figure 3.1 Structure of the Dialogue Control Component

The basic design -ﬁtrmogy used in the University of Alberta UIMS is to develop an
Event Based Internal Formy([iBlF) for the dialozue control component. All the three
notations used for tl;;* dialogue control component will then be compiled into this com-
mon format, as shown in Figure 3.1. The common format allows unew notations to be

added easily.

[n this thesis only the design and implementation of the event model is deseribed.

The design of the recursive transition network notation can be found in [lau 85]. The

context free grammar notation has not been implemented in our UINS. flowever, the
recursive transttion network and context free grammar notations used for dinloeue

control will be compared to the event notation in the final chapter.

3.1. The Event Model

The event model 1% based on the concept of input events. There are an arbitrary
niumber of event types, new event types can be defined by the user interface designer.
“When an event is generated, it is added to the end of an event queue \n event
scheduler s used to remove an event from the head of the quene and invoke the
('()l‘r‘("«})n[l(“llf{ event h:m(vll('r to process the event. An event handler i a procedure
that is capable of processing certain types of events, \\'l‘n‘n an event handler receives
an event, it executes a number of statements that perform some computation. create
new event handlers, destroy existing event handlers, generate new events. or send
tokens to the presentation component and the application interface model. This i
similar to messages and objects in Smalltalk [Goldberg and Robson R3],

In the event model a distinction is made between the definition of an event
handler and its instances. This distinction is similar to that between types and vari-
ables of that type. At any point in time there may be more than one active instance.
An event handler by itself does not process any events. At least one instance of the
event handler must be created to process events. Each active instance of an event
handler 18 assigned a nnique name at creation time. This name s used to reference the
imstance when an event s sent to it, or when 1t is destroyed. The description of an
event handler s‘pvci_ﬁ(‘s the .events it can handle and the statements that are exeented

in response to these events. Fach instance has its own set of local variables that can-

not be accessed by any other instances.

A v . ,
In the event model a user interface 1s deseribed by a set of event handier

(lvﬁniii'()nw At the start of execution an instance of one of these event handlers s
created to serve as the main event handler in the user interface. This instance may
then create other instances in the userinterface. Since cach’instance has its own set of
loeal variables, conceptually all the instances can vxv(‘un-‘mncurr«‘nt|_v. processing the

events as they arrive. However, each instance can only handle one event at o time,

3.2. The Event Based Internal Form

The EBIEF can be divided into two parts. The first part s a scheduler that
sequences the execution of the event handlers. The second part is based on a represen-

tatton for the event handlers 1n a file.

3.2.1. Scheduler’

The scheduler cousists of a number of tables and a set of ¢ procedures. The three
main tables in the scheduler are the instance table, the event h.'m(ll‘vr table, and the
token table. as shown in Figure 3.2, An entry is created in the instance table ﬁ)f?umh
active tnstance of the event handlers at run time. Fach entry contains a pointer to
local array storing the instance’s variables, and the index of the corresponding event
h:m'dlvr in the event handler table. The number of entries in the instance table \‘;Lric\'
A% new instances :xr<: created and old ones :xfe destroyed. The event handler table con-
tains one entry for each event handler in the .\‘yst(;m'. Each entry contains the number
of local variables bclongiu"g to the event handler. and a pointer to its ¢ procedure.
The token table has entries for all the input and output tokens. Lach entry contains
an event name corresponding to the token, and the index of the event handler in the

event handler table. The event handler table and the token table are static, and they

are constructed when the event handler definitions are compiled.

/
oy
»
Instance Table Fovent Handler Table Token Tuble
variables 08 S I # of var. (' proc Tname Ename 111

——

\4 1 x{a, b, c.d) { ; 7
2
3
4
5 h

Figure 3.2 Relationships between Scheduler Tables

Some of the C procedures in the scheduler can be called by the event handlers al
run time. The cro:\.te__jnst:mro routine 1s used to create a new instance o‘f an eyvent
handler. [t creates an entry in the instance table and initializes the contents of this
entry. The destroy_instance routine destroys the event handler instance named by its
p:srnmo}er by removing its entry from the instance table. The send_event routine can
be called to send an event to an active instance of an event handler. This routine pro-
vides 4 mechanism for all the active instances of the event handlers to communicate
with each other within the dialogue control component. The send_token routine is
used to send a token to another component of the user interface. The token is used as ot

a communications mechanism among the presentation component. the dialogue control

29
component, and the appheation interface model.

3.2.2. Event Handler File

A complete event system is assembled from-one or more files containing the event

handlers for the system. Each file can have one or more event handlers separated by

double-percent "¢ " marks. Each event handler is divided into three parts by two

Y

single-percent "¢ marks. Figure 3.3 shows the format of an event handler file,

Fovent_handlerl

5386

eventl event?2 cvo‘n% eventd eventd INIT

o .
ps

tokenl eventl
token2 event3
tokend eventd
c;
event_handlerl{ inst_name, event_name, event _value, vars)
int inst_pame ;
int even_l_n\:lme :
int event_vhlue ;
int vars| ;
{
switch (event_name) {

case INIT : {

case eventl : {

-

case eventd : {

Figure 3.3 Format of An Event Handler File

30
\

P

!
Vi
The first part of an evegt handler provides information for constructing the event

handler table and the token table that are used by the scheduler. The first line of each
event handler contains o constant that 1§ the same as the name of the event handler
except the first letter 1s comphmented {to upper case 1f it 15 in lower case. and viee
versa). The constant is used by the assembler (-_1('0 Chapter 5) to reference th!“('\‘(‘n!
handler in calls to create_jnstance. The next line contains the number of variables in
each event handlers the number of tokens processed by the event handler. and the

number of events processed by the event handler. Following this line 15 a List of the

names of the events. These names will be converted to constants by the assembler.

The second part of the event handler contains the entries for the token table. In
this part of the event handler, each line defines a mapping of a token onto an event
name. The nimber of tokens mapped onto event names is the same as the number of

tokens processed by the event handler described in the first part.

The third part-of the event handler is a €' procedure that ;performs the event pro-
cessing. This [.)rocodurv has four pa;':lnl('t(‘rﬂ. the name of the instance, the name of
the event to be processed. the value of the event, and the values of the local variables
associated with the instance. The event name is an integer and the event value is an

) .
integer or a pointer. The body of the procedure is a switch statement with one case
label for each of the events that can be processed by the event handler. When the
event handler 13 assembled, the ' procedure is copied verbatim to an 011tp‘ut file that
will be used as input to the C compiler. The resulting ()Pj()tt code will be linked with

r

e .
the object code of the scheduling routines to form a complete event system.

Chapter 4

The Event Language

41 Design'Objecfiyes
Theﬁevent language is intended ﬁo be ﬁsed bj’ interaction desﬁg‘ﬁi?k%rs_for des‘cribing
the diz;.logue control combonent of the user intérface, in terms of a high level
'speciﬁcat,ion'. The design objt‘*ctives; for tl;is languagé: are: |
1. Parallel proc‘essin-g
2 Ease of learning
3. Ease (.)f Vpro.gramming : .

4. Device independence
¢ R

Today parallelism has been recognized as a desirable feature for programming -
languages. This is because an important characteristic of modern interactive systems

3

is the (abilit_v to handle mjult‘i-threaded dialogues. People: are inherently }mult‘i-

i

threaded, being capable of maintaining several dialog}lés wit,‘}\l rapid switching between -
them:. C‘urre.nt grz;phi_cs smnd_ards'a—ll(')w' for mu’lpiple thr&g‘ds ofw('on'tlfol .»;'.ithi.n the
graphics s&’st,em itself, by the comcepts of SAMP.LE'and EVENT modes. ThisA'abllows
several input devices Lo‘ be acti#ésim#l&aneoﬁsly, either by ;eport‘ing their values when
polled‘ (SAMP[’,E) qriwhen t.,riggefed by the usef‘.(.E\’EﬁT(,);\t) Hence. to explbit, the
power of Lhe system, we must design new progi-amm}ing lan‘g*xux'ages with features that

permit the use of parallel processing.

- One valuable featu’ve of a good languaée is ease of learning [Iloron'w(ibtz 8.4} Simpli'- '4
_city in the language .dcsig'n is an impo.rtzmt strategy LhaLﬁcan be used\ 10 I:CIlCll this
goal. An interaction designer who fully understands his togl can tackle more complex
jobs. and complete them more reliably‘ and efﬁcicntly,‘ However, the l,rmgu:'xge must be

powerful enough to enable him to describe real-world applications in an easy manner.

52

[t has been notedig}reen 81a, 81b] Lhat{z‘ good user interfaces are hard to program,
théreforc. a language él}@l}ld free designers from worrying about the low level clétuil' of
the user intoﬂaces. The language should enable the designers to concentrate on the
general flow of the user interfgces and nroduce better qual.itly hurﬁan-comput,er dialo-
gues. By allowing the designers to give a high level specification of a user interface, it
will also be oasi'er for him to modify the dialogue sequences as ihc needs of the users

)

change over time.

~

An 'impo'r(ant goal in the dcsigﬁ of high level languages is the ability to move pro-
grams from machine to machine [Green 19, Horowitz &4]. If a graphica. system h':xs a
number of possible input and output devices, then the programming effort required to
support nll,cprﬁbinations of these devices will be minimized when we use a language

i

-that has a high degree of mobility. However, it has been realized that this goal ix ter-

. [l

ribly difficult to achteve, but-it continucs:‘_tg be worth striving for.

4.2, Introduction to the Event La.nguage

The "event language is an extension of the (prorrm[r.lmmv language [Kernighan
and thchm 78].- The main reason for bagmg the design of the event hngu;we on (
because ‘all our graphics programs are written in C. The C programming lun.gliﬁm’ge also
satisfies 4ll our design ol;jecti;'cs for the event language oiccpt for p:xr:lllel processing..
C offers only single-threaded control flow constructions such as looping nnd condition
' testing. i

A program in the ev‘e.'nt‘lan'guage ;fonsists of one or more event handlet declara- =
tioms. Thiepe‘event handlers are compiled by the event compiler into the Event Ba;(‘(.ll'

Internal Form (see chapter 3), which in turn is assembled by an assembfr (see chiapter

“5) to produce the object code for the event system. Figure 4.1 illustrates the structure
5 . |

Rl

of an event handler declaration. f\'oticehow: the keywords eventhandler, is. and end

33

form ‘a frame for the event handler description. The name of the event handler is
"sample”. The body of an cvent handler is divided into three sections: token, variable,
and event declarations. Comments may appear whenever a name s legal; they are

enclosed in /* ... */, asin C.

éventhandler sample is

token ' /* token declaration */
token_pame event_name ; '

var /* variable declaration */
type var_pame = initial_value ;

event event_name: type { /* event declaration */
statements

}

'

event event_name: type {
statements

end sample ;

Figure 4.1 Structure of An Event Handler Declaration

- 34

4.2.1. Token Declaration

The k(‘)"\vord token is used to declare the beginning of the first section of the
event h:n‘ullor. This section presents a list of input and output tokens t_h:).t can be pro-
‘cossod/b_\' the event handler. This inférmation is-used by the assembler i() build th(}
token table that defines the mapping of tokens onto event names. This feature sup-

ports the localization of information and ease of modification. For example, .the
. !

assignment of token names, :\nd‘Lhe mapping between tokens and events can be

i)
changed in the assembly process fthout affecting the event handlers themselves. In

»~

this way. the event handler can be changed easily to handle a different set of tokens.
Fach pair of token-event mapping in the declaration is separated by a semicolon. For

example: .

tokenl eventl ;
token?2 event? ;

\

The token declaration can be omitted if the event handler does not process any input

B}
1

or output tokens. In this case the event handler may only process events generated by

ot,hrfr event handlers.

4.2.2, Variable Declaration , ' p
The second section of an event handler declaration contains the declarations of

the event handler's local variables. . A variable declaration consists of s type and a list

of one or more variables of that type. as in

var
it a, b,
char d, *name :

. o
The type can be any vahd C type that occupies the same amount of space as a pointer.

d . X v .
This includes character. integers, floating point numbers, and pointers to any ¢ type.

o
i

Variables may :\I_so be initialized in their declarations, except for arrays and structures.
This R‘S(l‘i(’(i()l’lAsimpliﬁ(‘.‘i the implementation of the event language and may be lifted
in the futur('.- The init,ialize'r. is preceded by "=", and consists of an expression which
evaluates to a conmstant. The expression may involve constants, and previously
declared variables and functions. Variables which are not i.ni(i:).lized are guaranteed to
start off d4s zero. The variable section can also be omitted if no loc:f} variables are used

n

‘\
in the event handler. Some examples of variable declarations with imitial vatues are:

var . ;
‘int state = 0
mmti=1;
int p=1; "~
‘\

Fach instance of the event handler has its own set of local variables that are not
visible to other instances. These local variables are used to retain the state of the

dialogue. This enables the system to handle multi-threaded dinlogues..

4.2.3. Event Declaration

The third section of an event handler declaration contains the (;\'ont declarations.
. An event declaration starts with the keyword event followed by the name of the vv.('nt.
its type, and gne or more (' statements, 'I:he type declaration here does not define any
new data tvpe. but only provides a convenient way of identifying an event type. The
t._vpf declaration is optional. The main body of the event declaration is composed of ¢
vﬁi(ﬂ(’ﬂ](‘h(ﬂ that are executed when an instance of the event handler reccives 'this
event. These statements can perform arithmetic operations. control the flow of execu-

N

tion, create or destroy instances. generate new events, and serd tokens o the presen-
tation component and the application interface model. They can also reference both

the instance’s local variables, and global variables that are declared in the other parts

of the program. For example, to specify that a box is drawn at the positipn selected

by a user on the terminal screen:

event position_gelect: point {
if (state == draw) .

- send_token(PRESENTATION, OUTPUT. drawbox. event _value } ;

When the dialogue control component receives the event "position_select™. the out put
token "drawbox” is sent to the presentation component which then handles the
‘ . . . e . P . . .) .

display. In this example, the event "position_select™ is explicitly identified as a "point”

type whose "event_value” contains the coordinates of the position selected by the user.

There 1s a special evont.vcallod INIT. that cad be used to initialize v:\rinblo.ﬂ or
perform some computation when an instance of the event handler is created. This is
useful especially for prompting a usér for signion messages, If the INIT event is
de‘clzxrcd by the designer, the INIT event must be the first event following the variable
declarations. This restriction turns out to have an a.dvn.ntage. It encourages the con-
¥ vi
cept of structured programming since it is a good idea to group all initialization state-
ments at the beginning of a program instead of being scattered all over the program.

.) !

[t 1s similar to imposing the declaration of variables at the beginning of a function in

(. It also makes the compiler easier to write. \

3

4.3. Multi-Threaded Dialogyes

The main difference between ¢ and the event language is that the event [anguage
supports multi-threaded dialogues. The illusion of multi-processing is achieved by
providing each active instance of an event handler with its own array of local vari-
ables. When an event handler declaration js compiled, each variable declared in the
event handler is converted into an tlement of the array. [For example, the declaration
var ‘

int i =]
int state ;
4 char ch ;
node a = NULL :
1s converted into C statements that make up the body of the INIT event. in EBIF-
case INIT : {

varl0] = |
var(3] = NULL ;

Since the variables "state” and "c¢h” are not explicitly initialized. their coreesponding
3 2 .
entries. var[l] and var[2]. in the system created array do not appear in the comptled
output.of the INIT event. The mapping of the variables into elements of t}e array is
stored in the system's variable table. All tha variables used in the declarations of

event handlers are converted to their corresponding elements of the array using this

mapping.

The event compiler does not allocate actual memory to the array at compile time.
The storage allocation is performed when an instance of the event handler is created at
run time by calling the create_jnstance routine. After an entry in the instince table of

the scheduler has been set up for the newly created instance. the create_jnstance rou-

tine will send the INIT event to initialize the elements of the array.

“The relationship between an event handler and its instances i« similar to that

B
.

between a type and variables of that type. Therefore, tlhvrc may be multiple instances
of an event handler at the same time. In addition, several instances of different event
handlers can be active at any state of a dialogue. The local array associated with an
instance cannot be accessed by :my. other instances. The array exists until the
instance s destroyed. Hence, the state of the dialogue at any point in time is retained
in these arrays. This allows the execution of different instances of l.hc event handlers
to be interleaved. The user can .qw'itcli to different spots _in a dialogue without expli-
citly s:sving the state of the dialogue. Thus, the user interface can process help, can-

cel, and other special commands that must always be available.

4.4. Summary .
In this section we discuss several factors’that have been considered in the desizgn
of the event language. The strengths and weaknesscs of the language are also

identified during the discussion. \

x
The language supports multi-threaded diaslogues using the concept of evenrs.

'l‘h.e Musion of multi-processing is maintained by creating an array .ef local variables
for each active instance of the event handlers, and allowing several instances to be
active at the same time. The state of the dialo_gue at any pornt in time is retained in
th(*so»:;rr:xys, which exist unul their associated instances are d;*stro_\'cd. This allow

their execution to be tnterleaved.

The time required to learn thé event language should be minimized. 'This ix a

s
.

very important factor that often determines the success or failure of a languace. The

strategy used toyeach this goal is to incorporate a large number of features that are

o S

already famtliar to interaction designers into the event fanguage. This will not only

reduce the period of re-traiming for the designers, but also make them feel more com-

fortable with the new tool.

50

On t-ho other hand we would like the event language to be flexible in order to
specify various types of interaction dialogues. It should be possible to specify new
interaction techniques wit,hdut affecting the existing specification. Therefore. dinlogue
control is divided into different event handlers which are independent software

modules. This modularization makes it possible to add new interaction techniques by

L4
adding new events, or new event handlers.

Programs written in the event language are also portable. This is because the
event I:mguugo 18 an extension of (" which has proven to be highly machine indepen-
dent [Kernighan and Ritchie 78, S(rous}rup &4]. " does not have special facilities for
handling 1nput and output. The le)p;'oach taken in O is to provide functions like

printf() and scanf() in a "standard” library, but not in the language itself.
\

The main disadvantage of an event handler declaration written in the event
language 1s that it resembles a program. The body of an event handler is similar to
the switch statement in €. As in C, the event language 1s not strongly tvped. conse-
quently. violations of strong typing and other potential errors. such as using uninitial-

ized variables, cannot always be detected.

¢

[n this thesis we have goscrib(‘d the structures of the event language and pointed

. 1)
cout some of its features that are different from the ¢ programming language.
Although the event language is based on (', no attempt has been made to describe the
basic features of €. It is assumed that the interaction designers already have some
programming experience in (. This assumption is based on the fact that (' has been

extensively used in the graphics community. The complete description of (' can be

found in [Kernighan and Ritchie 78]

\

Chapter 5

Implementation
In this chapter we discuss the tmplementation of the event language. This imple-

mentation includes the construction of the comptler, and the scheduler routines. An

overview of the scheduling process in the University of Alberta UIMS is also presented.

-

5.1. The Compiler

This section discusses the implementation of the event compiler. 'l;hv implemen-
tation can be divided 1nto two parts. The first part iv to specify the svntax of the
event language and to build a parser. The second part is to construct the lexical
analyzer used for translating a source program into a sequence of tokens that are used

.

as 1nput to the parser. The supporting tools used for automatic generation of the
N .
parser and the lexical analyzer are also briefly described.

5.1.1. Syntactic Specification

The syntar of a language 1s the way that words and symbols are combined to form
the statements and expressions. It is a set of rules which determines whether the
statements are well-formed or not. The syntactic specification of the event lancuaee is
based on a context free grammar notation, which{is also sometimes called BNFE
(Backus Naur Form). As noted in [Aho and Ullman 77] this notation has a number of

siznifieant advantages as a method of specifying the syutax of a language:

'

I. A grammar gives a precise syntactic specification for the programs of 4 particn-
lar programming language.

2.\ grammar imparts a structure to a program that is useful for its translation
into object code and for the detection of errors.
3. An efficient parser can be constructed automatically from a properly desizned

Zrammar.

’ «'..y

One such well known parser generator is called YACC (Yet Another Compiler-
Compiler) [Johnson B3], YACC accepts a very general LALR (lookahead-LR) grammar
with disambiguating rules and produces a bottom-up parser that can detect syntactic
errors as soon as possible on a left-to-right scan of the mput [Aho wud Ullman 77

Hence, the BNE deseription of the event language is used as input to YACC in order

to generate the event compiler, which 1s also in ¢ code.

To begin, let us look at a BNE deseription of the event decluration in the event

language, as shownn Figure 5.1 {using YACC notation):
¢
A

ev_body :ev_gecl
ev_body ev_decl

ev_decl 2!5\«415.\'1‘ IDENTIFIER empd_stat
|EVENT IDENTIFIER " IDENTIFIER empd_stat

cmpd_stat - {" stat_Jist)

Figure 5.1 BNFEF Description of Event Declaration

The symbols :. ;. and [are not part of the event languace which 1s being defined, but

S
are part of the mechanism for deseribing the language. Using YACC convention, all
capital letters denote token names, and all lower case letters denote non-terminals
which are used to represent sequences of symbols. The vertical bars are used to
separate alternatives g‘iven in a production. The algorithm used by the YACC parser

encourages so called left-recursion grammar rules. such as the second alternative of the

first production in Figure 5.1,

An imyportant and difficult ares in the design of a programming ianguage is error
handhing. What should the compiler do in case an error is found in a parsing process?

[t is seldom acceptable to stop all processing when an error is encountered: it is more

B

useful to continue scanning the input to find further syntax errors. This leads to the
-

problem of restarting the parser after an error. YACC provides a special token "error”
to solve the problem. The "error” token can be placed in the grammar rule where

errors are expected. Usually 2 message 1s printed when a syntax error is found.

-
5.1.2. Lexical Analysis g

The second part in the implementation of the event language is to construct the

lexical analyzer that reads the input stream, one character at a time, and translates it
/

into a sequence ,(5}' primitive units called tokens. Keywords, identifiers. and constants

are examples of tokens. The lexical analyzer passes these tokens to the parser. For-

tunately. a language, LEX (A Lexical Analyzer Generator) [Lesk and Schmidt 83], has

been provided to interface with YACC in just this way. The output of LEN is a lexical

analyzer program that is used to partition the input stream.

A LEX source program 1s a specification of a lexical analyzer. consisting of a set

of regular expressions together with an action for each regular expression. The action
is a piece of code, written by the user, which is to be executed whenever a token
specified by the corresponding regular expression is recognized. Typically. an action
will pass an indication of the token fou,nd to the parser. perhaps with side effects such
as entering an identifier 1n the variable table, or counting the occurrences of some
tokens. A regular expression specifies a set of strings to be matched. It contains text

characters and operator characters. Thus the regular «\presston
[A-Za-z][A-Za-20-9]

tudicates all alphanumeric strings and underscore with a leading alphabetic character.

* means "zero or more instances” of the expression enclosed by the opera-

The operator
tor pair {]. The output of LEX is the lexical analyzer program constructed from the

LEX source specification.

5.1.3. Compilation Process

There are three tables, in the compiler, which are used in generating the event
based internal form (EBIF) from an event handler declaration. They are the token
table. the variable table, and the (‘\.'(‘IIL table. The token table contains the mapping
between tokens and events defined in the token section of the event handler declara-

tion. In the token declaration. each pair of this mapping is unique. A\ semantic error
is reported by the compiler if o token 1s mapped onto more than ome event name.

The variable table is used to map each variable declared in the event handler into
an entry in the array associated with each instance of the event handler. In EBIF.
each varinble used in the body of an event declaration is converted into an element of
the array using this m:pring. The event compiler does not allocate actual storage to
this array. The storage allocation is performed when an instance of the event handler

~

is created at run time by calling the create_jnstance routine.

The event table stores all t he events that can be procéssv(l'b)' the event Hnndlvr.
Fach event declaration is translated into a case label In a switch statement in the
LB, It 1s a semantic error to (leﬁné two events having the same name since all the

‘ ,
cases 10 the switch statement must be unique. The € statements that make up the
body of the event declaration are passed to the parser and then to the assembler. The
output of the assembler is used as input to the C compiler. Any syntax errors found 1n
the ' statements will be reported by the C compiler. lHowever. after the errors have
been corrected, the event handler declaration has to be recompiled by the event com-
piler, reassembled and then recompiled 6~ the " compiler. Therefore, in order to
reduce the recompilation process, when the ¢ statements are p:sssodv to the event com-
piler. all svntax errors are rop‘orted so that they can be corrected as soo\u as possible.

Now. the recompilation process only involves the event compiler. \When the ' state-

ments are passed to the event compiler; the data associated with an event is also

assigned to the event name.

When an event handler deelaration s compiled, the number of variables. tokens
and events wsed neach event handler are recorded. This information is used by the

assembler to construct the scheduler tables.

There 1s always an INIT event in the compiled event handler file. The INIT event’

is added to the output by the compiler in order to initialize the arrayv associated with

cach instance of the event handler. The INIT event 1s sent by the vreate_jnstance ron-
»~

tine after the instance bas been ereated. If an interaction designer also (l('(‘l‘ur(‘w an
INIT event, the statements given by the designer in the body of the declaration are
appended to the compiler generated statements that are used to initialize the Iocal
vartables in the event handler.

”~

5.1.4. Keywords

There are certain words that can not be used for names or identifiers. These are

called reserved words or keywords. A list of these keywords follows.

0

break case - char continue default ‘
do double else end - entry !
event eventhandler float for goto

1 f int s long return

short s1zeof struct switch token

typedef union unsigned var while

. ~Note that the following storage class specifiers used in ¢ have been omitted in the
. -
e
-

event language: v

y
3

auto extern register static

.

The reason for omitting them from the variable section of an event handler 15 that

when an instance of the event handler is created. each variable is converted iuto an

Pl

N
e

. . 2 . . N °
element of a local array. and the array exists until the instance is destroyed. There-

fore, all the variables declared are equivalent to static variables in C. As a result,

these keywords do_not make sense in this context, thus, they have been excluded from

the event language.

5.1.5. Summary -
The implementation of the event compiler using YACC and LEX has at least two
advantages.” The first advziniage is that the implementation is automated. Therefore,

the time taken’ to implement the compiler has been greatly reduced.and the resulting

-

-parser is also more reliable than hand coded parser. ‘Using these software tools. one
T co . : v . g .

does not, have to be a compiler expert in order to construct a compiler. The second

advantage is that separating the design of the compiler into2lexical and syntactic

modules not only increase the ease of design; but also ilcrease the ease.of modification.

”

-~ ‘One problem with programs written in the event language is that there is no easy

way for the event compiler to check for errors in statements calling the application

v

programs. The errors, such as .undefined identifiers, can only be detected by the

-

compiler when all the programs for the UIMS are linked together. Therefore. when
these errors are found, the designers will need to make all necessary correctbions. in the
event program, recompile it using the event compiler, and then link it with the other

programs again. The event language enables the recompilation time to be reduced by

= Q .
i

allowing different parts of a single program to_be compiled separately. In this case,

when there are errors found at linkage L{me, oaly those modules containing the errors
need to be recompiled. A separate compilation facility’dlso enables different parts of

the dialogue control component to be constructed by a few designers working indepen-

[

dently. The object code produce® by one designer can be used by other designers

- \ |

while cénstructing other parts of the component. The lack of a separate compilation

T

facility could mean long recompilation for big program when a single change is made

to the program.

5.2. Scheduler Routines

The implemont‘ation‘ of the scheduler, routines Lhatv'are‘ called -b_v the m'(;[it:
handlers is described in this section. The create_jnstance routine is ﬁscd .to create a
new instance of an event handler. It creates an entry in the inst':mce' table for each”
active ins.mnce and allocat- .iemory for the local array:associated with the instance.”
A pointer is then set to point to this a%‘ray, z.m.d‘an int.egebrl i3 setto the index of the

corresponding event handler in the event handler table. After this. it sends an "INIT"

. o . ‘ ' .
event to initialize the variables declared in the variable section of the e¢vent handler.

These variables are initialized in the order listed in the declaration. The parameters

to this routine are the name of the event handler, the number of local variables to be

initialized, and their initial values. Create_jnstance returns an integer which is used

as the name of the new instance. The header of this routine is

int create_jnstance(event_handler, nvar, local_var)
int event_handler ;

int nvar

int *local_var ;

The destroy_jnstance routine destroys. the event handler instance that is given as

its parameter by romoving\its entry from the instance table. The syntax of this rou-
tine 1s ' . .
o ' . a @

’

destroy_jinstance(instance_name)
int instance_name ; :

The send_event routine is used to send an event to an active instance of an event

2

"handler. The parameters to this routine are the name of the instance, the name of the

3

47

event, and-the value of the event. When the send_event routine is called, the event is
~added to the end of an ¢yent queue. The event scheduler i responsible for removing

these events and seading them to the appropriate instances of the event handlers.. The

header of this routine 13 , ,

send_event{ instance_name, event_name, event_value)
Int instance_pame ;

int event_name ;

int event_value ;

The gwnd_token routin&' used to send a token to‘anoth\er component of the user
interface. The token providés a fhechanism for communication between the 'prosomn-
tion component,.. the dizlogue c;mtrol component, and the application interface model.
The parameters to;:ﬁsond_tokon are the name of the component Vr(‘c‘oi\'ing the token
(PRf':SI*‘,.\J'I‘:\TI()N':’f DIALOGUE. or APPLICATION), the direction of the token
(INPUT. or ().L'TPL'T%l‘,_tho namé of the oken and its value. The E()k(~r1 1s-added to
the end of the token queue that belongs to the destination component. Fach of the
three c“(.)vmponenls has its own token queue. ”gg}le{. vhender‘of.this routine is

send_tokent "destn. dir. t,okon_namo: token_value)
int destn ; : :
int dir ; - I

int token_name : -
1nt token_value ;

.5.3. Process Scheduling

This section describes the programming environment of the University of Alberta

e

UIMS. The scheduling of events and tokens in the UIMS at run time is also presented.

v

AR

5.3.1. Environment

The University of Alberta UIMS is writter e C programming language for the
B .51‘ " ! .

UNIN operating system. Th il‘u‘glk_‘menmtion is on a VAX 11/780. ‘The initial devices

supported by the .UIMS consist of ASCIl terminals, Jupitor graphics terminals, and

VTI125 graph.ics terminals. Device interactions are handled by the WINDLIB graphics

package [Green 85b] that is capable of handling multiple input and output devices.

scheduling

_ routines
’
' 28
object
event L event \ J N
Event L C rode for user
handler —f . e handler = Assembler |- . N —»{Loaderfm .
et Compiler il Compiler dialogue interface
pec i e
pertication 1 control T
other .
software
modules

Figure 5.2 User Interface Generation Process

The process of generating .’L. user interf‘itcc using the event l:mgugg(‘ is shown in
Figure 5.2. The event handler specification for the dial‘ogue control component, is
compiled into an event handler file .which 1s in turn passed to the assembler. The
assembler will use the information in the event handler file to construct the token
table and the event handler table.. It will check that each of the tokens used in the
P ,
UIMS has a (ig‘ﬁnit,ion. The assembler also produces a constant for each event handler.
This constant 1is qsed to reference the event handler in calls to create_jnstance. The -
result of Lh(; :xséembly process will be one file 'that 1s used as input to the C com[;ilt‘r.
Thei resulting object file for the dialogue control component is combined with the

object code of the scheduling routines, other software modules, such as the applica-

tions routines. and the programs from the presentation component and the application

interface model."to form a complete user interface.

[

At the start of execution, an instance of one of the event handlers 1s created to

serve as the main event handler in the user interface. This instance may create other

instances in the user interface.

5.3.2. Scheduling

In the design of the University of Alberta UIMS it has been assumed that the
presentation component, the dialogue control component, and the application inter-

face model are separate processes. The only communication mechanism among the

A
\

“three components is throﬁgh tokens using the send_token routine. The simulation of
concurrency, wh.ich is asynchronous, is maintained by a scheduler that allocates pro-
cessing time to the individual compopents.. The unit of scheduling at the component
level 1s the token.

Ilach of the components tn the UIMS has a scheduling queue associated with it
L]
When one component sends a token to another component, the token is added to the
scheduling queue associated with the receiving compow'nt. The scheduler will examine
the scheduling queues according to some pre-defined priority. Highest priority is
placed on the presentation c&mponont's queue so that lexical feedback to the user can
. ' N
be handled as fast as possible. Lowest priority is placed on the application interface
model's queue, therefore. semantic feedback is slower. The scheduler will select tokens
from these gquenes for execution and then invoke the appropriate routine in the receiv-

o

ing component to process the tokefis.

The dialogue control component has two levels of scheduling. The high level
scheduler removes the tokens from the dialogue control component’s quene and then
3

converts them into events. These events are.sent to all the active instances of the

event handlers associated with them via the send_event routine. The events are

a0

A .
placed on an event queue, and the scheduler invokes a lower level event scheduler to
remove the events. The event scheduler then calls the corresponding event handlers to
processot h.o events. These event handlers can be found from the scheduler tables con-
structvd;l)y the assembler. When an event is received by an event handler, the state-

ments associated with the event are executed. These statements may perform some

computation, or call the application and the scheduler routines.

Chapter 8

' Examples

[n this chapter we present some examples of the use of the event language for
automatic generation of the dialogue control component. The first example is to con-
struct a simple editor for managing fired size géomctriml objects on a tepminal screen.
The next example is to modify the first example to provide a more f]oxiblé* editor that

can handle rariable size objects and has help messages which can be activated and

deactivated by the user.

8.1." A Simple Geometrical Object Editor

text window)

work area . remove
move

exit

Figure 6.1 Screen Layout for A Simple Geometrical Object Editor

In l;lliﬂ section we present the specification of a simple editor, using the event
fanguage. that aids the user in arranging a number of simple fixed size cecometrical
objects on i display screen. The geometrical objects are circles. and squares. There is A
a menu on the right side of the scroen‘comnining tﬁe two objects and also three com-
mands as shown in Figure 8.1. The left side of t.he screendds the work area. There is o
text window at the top of the screen for displaying h(;lp‘messageﬂ)gonor:\to(i by the sys-

temn.

to

A digitizing tablet is used to select one of the objects by pointing at the object
with the tracking cross and pressing a button on the tablet. The selected object can
be p]:\ﬂ‘(l at any position in the work arca by pressing the button on he tablet again.
The user can also remove any object in the work area. First, the user selects the
"remove” command.in the menu and then points at the object to be removed. Objects
in the work area can also be moved around. The user sel;-cts the "move” command and
then points at the oijc? to be moved in t.h_‘é,work area. Next the user moves t‘h('
tracking cross to a new position a}{d presses the button to deposit the object at that

position. The final command "(vé" terminates the interaction.

Starting with the presentation component, the screen layout is produced through
the use of the composite program [Singh 85]. Each of the three screen areas is assigned
N

a different window. The next step is to construct a list of the tokens that flow between

the presentation component and the dialogue control component, as shown below:

Input Tokens : Output Tokens
. circle : : drawcire
" square ‘ ' drawsq
remove . erasecirec
move 3 ' erasesq
exit
point .

Fach of.lhe first five input token names corresponds to an item in the menu. These ‘
tokens are generated when the user selects items from the menu. The last input token
"point” is generated when a position is picked in the work area. This token has a
value that contains the x and y coordinates of the position. All the input tokens will
be processed by an event handler. which is yet to be written. The output tokens are
sent by_tlu; dialogue control component to the presentation component which handles

the-actual displays?

a3

The next step in the design is to construct an event handler for the dialozue con-

trol component. The event handler "control” shown in Figure 8.2, is responsible for

processing all the commands for the user by routing appropriate tokens to either the

presentation component or the application interface model.

eventhandler control is
token

v

point pointk ;
circle circleE ;
squuare squarels ;
remove removel,
move movels ;
exit exitls ;
erase erasel ;

ar

int state = 0 ;

~int object ;

int shape :

event circlels {

}

state = [;

event squarels {

}

state = 2

event removel {

3

state = 3;

event movel {

}

state = {;

event exitl {

}

stop();

event pointE {

switc h(state) {

“case] :send_token(PRESENTATION . 1.drawecirc.event_value);

send_token(APPLICATION. . drawcirc.event_value):
break;

ccase 2 :send_token(PRESENTATION. I, drawsq.event_value):
send_token(APPLICATION 1. drawsq.event_value);
break; :

case 3 : send_token(APPLICATION 1 erase.event_value);
break: : ’

case 4 : send_token(APPLICATION I erase event_value);
break;

case 5 : shape = object- >type :

o

if(shape == 1) {
send_token(PRESENTATION I, crasecire.object); :
}else if(shape == 2){
send_token(PRESENTATION Lerasesq,object);
}
~ object = event_value ;
. if(shape == 1){
qend__!okon(PRESF\"I‘:\'I‘I()N,[.de('irc,obj(-ct);
"} else if(shape = = 2) {
ﬂc‘ml__tol\cn(PRl'S[,NT ATION 1, (lquq object);

state = 1 ;
break;

}
}

event erasell {
if(state == 3) {
shape = event_value->type ;
if(shape == 1) {
send_token(PRESENTATION, . erasecirc,event_value);
. }else if(shape == 2){
v send_token(PRESENTATION, I erasesq.event_v nluc)'

}
if (state == 1) {
object = event_value : .
state = 5

)
!

end control;

Fizure 6.2 Event Handler for the Simple Geometrical Object Editor

o
In the token declaration section, each of the input tokens is mapped onto an

‘:‘ event name. In the variable section. the variable "st:xte"‘is used to record which com-
mand has been chosen by the user during the interaction. The variable "object” is used .
Cas a témpor:nry buffer to store the location of an object. This variable may be sent to
the presentation component together with some output tokens. The variable "shape”
1s used to identify an object type. The "event_value” contains information about an

object type and its position on the screen.

To illustrate how the event handler "control” works. let us examine the dialocue

~

sequence when'the user selects the cirele in the menu using the tablet. Tn this case the
token “circle” is sent to the <1iul<)gu(f control component by the presentation com-
pounent. This token maps onto the event "circlell™ which sets the value of the variable
"state” to 1. Next, when the user selects a position 1n the work area, the 1oken “point”
is sent to the dialogue control component. This token maps onto the event "pointl”
and canses the output token and its value to be sent back to the presentation com-
ponent, which then draws a circle at the position indicated by the user. The same

token and value are also sent to the application interface model to update the data

.
-

base. This data base is used when the user wants to move or remove an object in the
work area. The dialogue sequence is similar to this when the user selects the square in
the menu.

When the user selects an object to be removed, the dialogue control component
sends the "erase” token to the applicﬁtion interface model to remove the object from
the data base. In return, the application interface model also sends the token "erase”
and the location of the ol)jez't, to the dialogue control component which redirects this
information to the presentation component where some actions are finally taken to

remove the object.

50

8.2. An Advance Geometrical Object Editor

In this section we modify the example in the previons section in order to produce
a more flexible editor that can handle varizble 5176 objects. The editor also provides
help messages "t,hzxt, can be activated and deactivated by the user at any time. The
screen layout for the editor is shown in Figure 6.3‘. In the menu, thf‘rv s two addition

commands that can be used to activate and deactivate the help messages.

text window

O
O ,

remove

work area move
exit

help on

help off

Figure 6.3 Screen Lavout for An Advance Geometrical Object Editor

\s in the previous example, a digitizing tablet i1s used (o select an item in the
menu. However, now to draw a circle 1o the work area. 1i1;‘ user has to .\"p(‘(:if_v the
center of the circle and a point on its circumference. To draw a square, the user has to
specify two diagonal points in the work area to represent the opposite corners of the

square. The information on how to draw a circle can be obtained by selecting the

- ¥

€

"help on” command following by the "circle” command. Similarly, the user can also

obtarn information on how to draw a square, and to move or remove an object in the

work area. The "help off” command is used to exit from the help mode.

-1

A list of 1nput and output tokens that flow between the presentation component

and the dialogue control component is shown below: ¢

Input Tokens Output Tokens
circle drawcirc
square drawsq
remove erasecire
move erasesq
exit
point
helpon .
helpofl i‘*

. The description of the dialogue control component for this user interface is

divided into two event handlers. One event handler is responsible for all command pro-

cessing, and the other event handler displays the help messages. The new "control”

event handler. shown in Figure 6.1, 1s responsible for all the commands for the user,

and activating the other event handler.

eventhandler control is

token ’
point pointk ;
circle circlel” ;
square squarels : i
remove removels ; -
move movel ;
exit exitE ;
erase erasel
helpon belponk
helpoff helpoffE

var
int state = 0 ;
int object ;

int shape ; K

10t pos ;

int point = 1; /* used to ensure that two points are entered
on the work area to dra% an object </ ‘

int hh = -1 : /* index of an instance of the "help” event

handler in the Instance Table */ ;

event circlel {
if(hh==-1)

state = 1;) B

}
event squarel {
if (hh == -1)
state = 2,
}
event removel {
if (hh == -1)
state = 3;
}
event movel: { -
if (hh == -1)
state = i
'
event exitl {
if (hh == -1)
stop():

event helponF {
f (hh == -1){

/* create an tustance of the "help” event handler */
hh = create_ynstance(help, 0. NULL). /*hh >= 0"/
send_event(hh, helponkl, 0)
}
}
event helpoffL: {
if (hh!=-1}){
destroy_instance(hh) :
hh = -1:
}
'
event pointkl {
switch(state) {
case 1 :if { point == 1){
pos.x| = event_value->x :
pos.y!l = event_value->y .
point = 2 :
else {
pos.x2 = event_value->x ;
pos.y? = ovent_vzﬂue->y ;
send _token(PRESENTATION, . drawcire.pos):
send_token(APPLICATION, 1.drawcirc.pos);
poimt = | :
}
break;
case 2 :if (point == 1 }{
pos.x| = event_value->x ;
pos.¥yl = event_value>v ;
point = 2 ;
else {
pos.x2 = event_value->x
pos.¥) = event_value->v ;

J

send_token(PRESENTATION.1,drawsq, pos);
send_token(APPLICATION,I,drawsq,pos);

point.-= 1j;
'
break:
case 3: send_token(~\PPL[C \TION l.erase, eunt V'l]lle)
break;.
case 1 : send _token(APPLICATION,1 erase event vwlu()r
break; :
case 5 shape = object- >ty pe ;" ‘
if(shapd == 1) { ' P
send_token(PRESENTATION, 1 erasecirc, obJecl)
} else if(shape == 2){ -
send tokcn(PRESENTATIO\ 1,erasesq, obJ(ct)
1 ‘u .
_ object = event value. o
if(shape == 1) { 7,
send Loken(PREbEVT»\TIOI\ 1 dr'uvcnrc Ob_](’(‘l)
} else if(shape == 2} { N
send_token(PRESENTATION, 1. drawsq, obJ(ct)
'
" state = &
break; S PR
)} W
_event eraseE {
if(state == 3) {

shape = event_value->typé :

" if(shape == 1){ .
" send to]\en(PRFHEI\T \TIO\ l.erasecirc.event nlue)
} else if(shape == 2) {

~ send _token(PRESENTATION, lemsesq event vxlue)

¥
lf(stat.e"-4){ -’
object = event_value :
state = 5 - : R
} ‘ . | s
} S © .

end control;
‘ | Ly
“ Figure 8.4 Evcnlg Handler for the Advance Geometrical Object Editor

4

The "help™ event handler, shown in Figure 8.5, is responsible for displaying the
help messages for each command in the menu. This event handler is deactivated when

the user seleyfthe "help off” command.
e

pd

s eventhandler help 1s
token 2

circle circleE ;
square squarekE ;
remove removek ;
move moveE ;
exit exitl ;
helpon helponE ;

event circleE {
display_mesg(circle_cmd) ;

event squareE {
display_mesg(square_cmd) ;

event removeE {
display _mesg(remove_cmd) ;

event movekE {
display_mesg{ move_cmd) ;

event exitE { B
display_mesg{ exit_cmd) ;

event helponk {

display _mesg(help_cmd) ;

e;ndhelp:. ‘ - . %

Figure 6.5 Event Handler for Processing Help ,\icssages

In this example the user interface is capable of handling multi-threaded dialogues.

The user interface allows an instance of both the "coptrol™ and "help” event handlers

to be active at the same time. This enables the user to give incomplete commands and

'

switch to different spots in the dialogue.

example, if the user has 55_lect,ed the

"square” command in the menu and h tten how to draw a square in the work
o " < g i . " . .

area, he can select the "help on” commalid and then the "square” command again to

A

51

display the required help messages. Once in the "help command mode™, the user cin
)
.also display messages on the other commands. To get out of the "help command

mode™: the user only needs to select the "help offi* command. After this, the user can-

immediately draws the square without having to sel’ﬁct the "square” command again.

The state of the dialogue prior to entering the "help command mode” i saved by the
user interface. Thi® explains why the user can give an incomplete draw square com-

mand and geturn to the Same state later on. This is the most important feature of the

¢
o

event language and 1t cannot berachieved by the transition network notation and the

cguté'xﬁfroo grammar notations” 5

’, P Lo & ,
4 @’wux ‘ :
¢ .

P
8.3.-8@omments

[

In the above examples, after the editors have been constructed, they cun be
i ~.

»

modified easily to suit different users. For example, the menu window can be moved to
the left side of the screen to accommodate feftéhohded users by modifying the presen-
tation component only. The description of the dialogue control component and the

“definition of the input and output tokens need not be changed.

In the second example, if the user controlled help messages are not required. the

. .

screen lavout for the first exj tan be used without any modification. Only the

component nceds to be modified. Thus, the separa-

tion of a user interface into separate components simplifies the modification of the user

.

interface in the future. ' N , K

The above simple examples illustrate how to use the event language to give a high

. Al i
level description of thewdialogue contTol component. It has aiso been shown that the

o

event language 1s capable of sub‘%oi‘ting mﬁ@f—threadvd dialogues. This feature is very -

AT : .

important in modern interactive systems.

’

3
.

Chapter 7

Conclusions
7.1. Summary of Thesis Contributions a“i?"@ :

‘In this thesis a discussion of the University of Alberta UIMS along with the design

f

and implementation of the event language have been presented. One of the main
difficulties in developing better techniques for evaluating the performance of user

interfaces is our lack of understanding- of human-computer interaction. This thesis

»

contributes in a small way to achieving a better understanding of how people respond

to user interfaces. The'event language serves as a vehicle for the experimentation with

.) ¢
the interfaces.

0

i

The event language can also be used as a tool in the design and implementation of -
. ‘

user interfaces for solving real application problems. Many concepts of modern pro-
gramming language have been incorporated into the event language. The language

supports concurrency, modularity, and allows a natural top-down structured desien.
. 3

These lfeatures of the Janguage will help a designer to do his works systematically.
, A e :

o 7.2 Evaluation

"

In this section we discuss the usefulness of the UIMS and the event language, and

lsok at.what has been learned from them.

The separation of the UIMS into three components allows an interaction designer
to concentrate on.the fort of the computer dialogue, and the human factors of the
interaction. The UIMS removes the burden of physical interaction handling from the

designer, so that he can put more effort.into the design of easy to use rather than easy

v

. s

to implement dialogue sequences. A prototype dialogue can be developed quickly to
test his design at an early stage. The separation also provides increased consistency

across applications.

63

i#
5 i

An important fe:ljt'ure of the event language is that its expressive power is greater
than the recursive transition networks [Newman 68, Lau R')] and the context free
Agr:xmnh}:}rs [Edmonds and Guest 78, Olsen andﬁﬂmpsey 83a, &3b]. The event language
is capable of supporting multi-threaded dialogues. The user can givt'*;iuromplete com-
mands, and is free to switch to different spots in a dialogue without explicitly saving
the state of the dialogue. This enables the user interface to process help, cancel, undo.

.

escape. and other ﬂperiﬁl commands. On the other hand, a recursive transition net-
work editor can only associate a single function with an action. and offers no direct
method of attaching semantic functions to groups of' actions, ,'s‘lkl(’h as conditional state-
‘mcnts. In addition, the event Izmguage‘ can- specify a comploté" dialogue sequence
hetween the user a_nd the program, whereas both the recursive transition network and
context free grammars can only describe half ‘t,he sequence. They just describe the
actions (input tokens) performed by the user. but say nothing about the actions gen-
(‘r:\te(.i by the user interface. In the case of context free grammars, another grammar is
needed to‘.,(_jeﬂcri‘be the output tokens passed from the app“catio,n interface model to
the diulogué»\control. This in(::ms that tbe‘dinlogue control c‘omponont must be able to
accept two gr?i’inmara and generate correct response for user’s command.

~Another advantage of the event laﬁglmge 1s that it is (;:wy to learn and use. The

structure of the event language is based on the programming language €' This is

[

b'ec‘a.use C i3 widely used in the-graphics commhnity. and a designer usually feels more
comfortable with a tool that is close to his domain of expcréise. ’Iihoroforo, most of the
designers will fequirf.) a minimum amount of learning to use the language effectively.
The event language alléwa the (lésigners’to give a high I;*vel specification of user inter-
faces. This makes it easy for the designer to modify Phe Spegiﬁcation and c~h.'mgc ‘the

flow of the dialogue sequences to suit the demands of different users.- It is very con-

venient for him to test different sets of interaction dialogues by invoking different

»

%

-4

interaction techniques.

A possible disadvantage to the event notation is that the structure of event
handler docl:tr:\(,ions* resemble a program. This is due to the procedural nature o’f the
event handlers. The body of an event handler is similar to the switch statement in (.
In this case the designer may find it more natural to use the recursive transition net-
work editor. However,‘for a large appliéution the designer ma; h'zwo to use multiple
'subdingr:\ms to decrease the size of the transition diagrams. By doing so, he may have

to traverse a_hierarchy of transition diagrams to modify the dialogue specification, and

may get lost in the process.

Iff summary, the design and implementation of the University of Alberta UINMS,

in particular. the event based dialogue component. would be helpful in reducing the
time and cost of user interface construction and increase the quality of the user inter-
faces to suit different users. The event language gives the interaction designer the

ability to modify human-computer dialogues effectively as the characteristics of the

users change.

7.3. Extensions and Further Work

A possible extension to the implementation of the event language is to include the

initialization of arrays and structures in the variable section,of an event handler
/ /

declaration. Unfortunately it is non-trivial to convert the contents of an array or a

structure into clements of the system created array associated with each instancéd of

the event handler in a "clean™ way that does not slow down the compiler significantly.
a9

Another possible extension of this work is to design the event language based on
{ .

C'++. a superset of C, that provides facilities for data abstraction [Stroustrup 241].
. . L

Data abstraction is supported by enabling the programmer to define new data types,

~ called “classes™. Each object of a class has its own copy of the data members of a-

55

t

class. The members of a class can only be accessed by an explicitly declared set of
functions. Thus, a clasg definition H similar t.o an event h:mdl(.‘r declaration which also
" provides oach,inst,ance of an event handler with its own set of local va_ri:xbles that can
only be manipulated by its associated C procedure. Some other facilities provided by
C‘+—F include operator ovcrlo;xdiug, and guaranteed initialization of data structures.
This extension may help the event language in structuring large systems and increase
Its expressive power. ’ o : . t

There is very little hard ¢.idence to indicate that the event language is the best

spectfication language for the ¢i nr control component. The only way of obtaining

hard evidence on the value of . +rv inguage is to use it in "real world™ application.
 Experience gained from -these appl ~iions will indicate ways in which the language

’

can he improved.

: References
'y ‘

fho and Ullman 77 Aho AV, and Ullman J.D., "Principles of Compiler Design™,
Addison-Wesley, Reading Mass., 1977,

[Benbasat and Wand 84] Benbasat 1. and Wand Y., "A Structured Approach To
Designing Human-Computer Dmlogueq Int. J. Man-Machine Studies, vol. 21
no. 2, p.105-126, 1984,

[Buxton et.al. 83] Buxton W., Lamb M.R., Sherman D. and Smith K.C.. "Towards a
(‘omprehensive User Int(rface Management System”, SIGGRAPH 83, p.35-42,
1083,

[Date &1} Date C.J., "An Introduction to Database System ™, Addison-Wesley. Reading
Mass,, 1981,

[Fdmonds and Guests78) Edmonds E.A. and Guests 3.P., "SYNICS - a FORTRAN
. subroutine package for translation”. Report NEDB, Man-Computer [nteraction
Research Group, Leicester Polytechnic, 1978. : ‘

" [Edmonds 81] Edmonds E.A., "Adaptive Man-Computer Interfaces”. In Computing
Skills and the User Interface (eds. Coombs and Alty), Academic Press. p.389-126,
1981.

[ldmonds 82a) Edmonds E.A.. " The Man-Computer Interface: a note on concepts and
design”, Int. J. Man-Machine Studies, vol 16, no. 3, p.231-236, 1082,

[(Edmonds 82b] Edmonds E.A., "Matching the User's Model of the Machine to the
Machine”, Proc. Man-Machine Systems, Manchester, p.72-75, 1982,

[(:oldborv and Robson 83] Goldber" A. and Robson D., "Smalltalk-80: The [.anguage
and its lmplemenmtlon Addison-Wesley, Reading Mass., 1983.

[Green 79] Green M., "A Graphical [nput Programming System”, M.5c. Thesis,
Department of Computer Science, University of Toronto, 1979.

[Gireen 81a] Green M., "A Methodology for the \pemﬁcatlon of (;mphm'xl User Inter-
faces”™, SIGGR. \PII 81, p.99- 108 1981.

[(,rren &1b] Green \i "A Spggification I ang\n‘?e and Design Notation for Graphic: al
Lt User Interfaces”, (omp’r Science Technical Report No. TR 81 ('S-09, Unit for
Computer \cmnce Med asterl niversity, 1981.
[CGireen 82] Green M., "Towards a User Interface Prototvpmrf System”, Graphics Inter-
face'82. p. '3;-10 1982. :

[(Jreen R4a] Green M., "Design Notations and User Interface Management Systems”,
in Seehetm \\orl\ﬂhop on User Interface Management Systems, ed. ;. P f).ﬂ' and
P.J.W. ten Hagen, Springer-Verlag, 1981

v
Y

L

87

[Circen 81b] Green M., "Report on Dialogue Specification Tools™, Computer Graphics
Forum,wol. 3, p.305-313, 1984,

[Green 81ic] Green M., "The University of Alberta User Inferface Management System
Design Principles™, Human-Computer Interaction Project Report #1, Depart-
ment of Computing Science, University of Alberta, 1084,

[Green 81d] Green M., "The design of Graphical User Interfaces™. Ph.D. Thesis,
Department of Computer Science, University of Toronto, 1984,

[Green 85a] Green M., "The University of Alberta UIMS™, SIGGRAPH Proceedings,
19R5.

[Green 85b] Green M. "WINDLIB: An Object Oriented Graphics Package™ WINDLIB
, Programmer’s Manual, Department of Computing Science, University of
Alberta, 1985,

[(iuést g2] Guest S.P., "The Use of Software Tools for Dialogue Design™, Int. J. Man-
Machine Studies, vol 16, no. 3, p.263-285. 1982.

[Guest and Edmonds 84] Guest S.P. and Edmonds E.A., "Graphical Support in a User
Interface Managemeént System”, Human-Computer Interface Research Unit,
Leicester Polytechnic, U.K., 1984,

{Horowitz 81] Horowitz E., "Fundamentals of Programming Languages”, Computer
Science Press, Maryland, 19841,
5)

[Johnson &3] Johnson 5.C.. "YACC: Yet Another Compiler-Compiler”, UNIX
Programmer's Manual: LLAinguages Support Tools, Bell Laboratories, seventh edi-
tion, Volume 2, 1983. '

[l\'amra.’n and Feldman &3] Kamran A. and Feldman M.B., "Graphics Programming
Independent of Interaction Techniques and Styles™, Computer Graphics, p.5R-66,
1983,

[Kasik 82] Kasik D.J., "A User Interface Management System”, SIGGRAPIH'&2, p.09- .~
106, 1982, '

[Kernighan and Ritchie 78] Kernighan B.W. and Ritchie D.M., "The ' Programming
[.anguage™, Prentice-Hall. Englewood Clifls, New Jersey, 1978,

[Lau 85] Lau S.C'., "The Use of Recursive Transition Networks for Dialogue Design in
User Interfaces™ M.Sc. Thesis, Department of Computing Science, University of
Alberta, 1985. '

[Lesk and Schmidt 83) Lesk M.E. and Schmidt E., "Lex - A Lexical Analyzer Genera-
tor”, UNIX Programmer’s Manual: Languages Support Tools, Bell Laboratories,
seventh edition, Volume 2, 1983, .

[Newman 68 Newman W .M., "A System for Interactive Graphical Programming”.
SJCC 1968, Thompson Books, Washington DC., p.47-54. 1968,

I

(2]
[Olsen 83] Olsen D R, "Automatic Generation of Interactive Systems”™, Computer
Graphies, vol. I7, no. 1, p.53-57, 1983.

(Olsen and Dempsey 83a] Olsen D.R. and Dempsey P "SYNGRAPH: A Graphical
User Interface Generator™, SIGGRAPH'R3, p.<l.’3«:’)(),vl‘.)83.

[Olsen and Dempsey 83b] Olsen D.R. and Dempsey 1P, "Syntax Directed Graphical
Interaction”, ACM, p.112-117, 1983,

[Rogers and Feldman 81) Rogers G.T. and Feldman M.B., "An Intermediate Language
and an Interpreter for Style-Independent Tnteractive Systems”, Report GWIU-
HST-R1-21, Department of Electrical Eneineering and Computer Science, George
Washington University, Aug. 1981. ’ '

(Rosenthal 82] Rosenthal D .S.H., "Managing Graphical Resources”, Computer Graph-
ics 16, July 1982,

[Seattle R3] "Graphical Input Tnteraction Techniques (GIT)". Workshop Summary,
Computer Graphics, vol. 17, no. 1, Jan. [983.

[Sceheim 81] Seeheim Workshop on User Interface. Management Systems,
EUROGRAPHICS-Springer Series, Springer-Verlag, 1984, «

[Singh 85] Singh G.. "Presentation Component for the University of Alberta UIMS",
M.Sc. Thesis, Department of Computing Science, University of Alberta, 1985,

[Stroustrup 84} Stroustrup B., "Data Abstraction in ", AT&T Bell Laboratories
Technical Journal, Oct. 1984, '

[Tanner and Buxton 84] Tanner P.P. and Buxton W.A.S., "Some Issues in Future User
Interaction Management System (UIMS) Development”™, 1984, '

L

Appendix Al P

. YACC Specification of the Event Language

/* Event Language Compiler

>

Panrpoxe:
The purpose of this program 15 to compile programs written
in the event based ltanguage into executable C codes.

Flow of program:

1. The "main’ routine opens the input hlle, creates a permanent
ontput file which has the same name as the input file with " o7
added at the end. and a temporary output tile "vetemp”

2 The first event handler in the input tile is parsed into the
temporary tile. The numbers of vartables. input tokens and
events, and a list of the events and a mapping of the tokens
into events are recorded in the permanent output tile

3. Contents in,the temporary output tile 1s then copied Into the
permanent output fle. ‘

4. The temporary file is clored and then reopened for storing the
compiled output of the next event handler from the parser

5. Step 2 to 4 are repeated until all the event handler~ in the input
file has been parsed. The temporary file is unlinked at the end

How to nse the Program:
I'f the name of a program is “prog . the following rommand ~an be
used to compile it:

e prog

After the compilation, the output file 1s in the Hile "prog.e” which
is executable by the C compiler. .’

Input: -
A file which fontains program written in the event based language.
Ontput
A tile whirh has the same name as the input fHle with ".e" added at the
end
*/
i {
) 0
#include "def h”
extern struct eevr_list ‘eevnr_list{] ; ‘;

extern char yytext|[] ;
extern 1nt eetlag
extern i1nt eetype
extern 1nt eeevent

extern int eecomment ;

v

Satring
Pas s LD _stmt

*xtern ant «
¢
"lill('
{

t t
extern int ‘
extern ant ¢
extern 1nt cevar ent

int ceevent _cnt
nt cetoken_cnt
char Ceetemp_bufl, *eetemp_Tname, *éeevh_name

char eein_fname | EEFNAME_LEN | erout _fname | EEFNAME_LEN |

struet ceev_list |
~har *ev _name
struet eeev_list *next

}

struct etk _list {
char *token_pame
char Yev _name
struct cetk_list *next

}

/* <toarage for event and token lidts *

stract eeev_List feeevent_list] EFEHASHSIEZE)
struct eetk_list *eetoken_list|{ EEHASHSIZE]

o

“Mtoken IDENTIFIER NUMBER
“Ttoken FVENTHANDLFR IS TOKEN VAR EVENT END

“token CTIAR - SHORT INT DOUBLE FLOAT LOM: UNSIGNED

“token STRUCT UNION TYPEDEF
“token GOTO RETURN SIZEOF BREAK CONTINUE

“ltoken IF ELSE FOR DO WHILE SWITCH CASE DEFAULT

Ctoken INCR_OP BIN_OP ASGNZOP.
“token RPOINTER STRING

Clstart evhndlr_file

[4
evhndlr_tile : evhndlr

evhndlir _file evhndlr
evhndlr : head body tail

error "

head EVENBRIANDLER IDENTIFIER

{ eestart() ; }

IS) o

Lail . END IDENTIFIER
: { eestatistics() ; }

{ pewr.’xp_up(() o

body token_decl var_decl ev_body

Jree - --- token declaration -----.----..-.

token _der| : /* empty */ .
TOKEN token_table : L

ENTRY

error

token_tab]e © boken _tist ')
token_table token_list e

token _Fist o IDENTIFIER .
{ ectemp_bul = ecestrsave|

IDENTIFIER .
v { cestore_token{) 4 }

[t - - variable declaration ---- .-

var _derc] : ; /[t empty */
VAR deel

de o covar _list
decl var_lixt

var _list type. dect _Tist
TYPEDEEF var_list

ooerror 0

type . CHAR
SHORT
INT)
LONG
UNSTONED
FLOAT
DOUBLE
IDENTIFIER
struet
un ion

deo) _listt decrlarator
ecl 7list

var _name . IDENTIFIER . '
' { eetemp_bul = eestrsave| ¥y
rpestore _var{.) . Yoo
"' var_name "} ' L
var _name T] . "“,,",
var _name " const_expr . a0 .
. var _name N s o oL
var _name e) N o \' ;,«\d
struct - STRUCT (- sdecl_list "} R .l\‘
STRUCT IDENTIFIER " {' sdecl_list "}’ L
STRUCT IDENTIFIER SR R
union - UNION " {' sdecl_list '}’
~ ' }'NKON IDENTIFIER " {' sdecl_list "}° T
A NION IDENTIFIER

sdeel _List . sdeclaration
. sdecl_list sdeclaration

sdeclaration @ type -deab 9 i
* g
~:n1" "l . 51\’f§r L] N
st L Nyoar ‘
SV Ar ooV ar _name
, var _npame "' ronst_expr
' const_expr N
nitiatizer { cecopy_initializer() ; }
. ,

‘= expr
Ly pe _name ©otype abs _decl
, .

abs _devl : /* empty */
“|' .’lh.\‘_dt‘l" ‘)‘
abs _dec]
abs _derl Y) .
abs _decl |" const_expr]

/‘ »»»»» event body .- e */
ev _hody coev_decld i
ev_body ev_der|
oy _derc - EVENT IDENTIFIER rmpd_stat
{ fprintf{ yyout, "™, " break ") }
EVENT IDENTIFIER " IDENTIFIFR empd_stat
{ wfprintf{ yyoutr, ", ° break 7) }
ki
empd_stat o {0 stat_list™s)
stat_list ©ostatement
stat_list starement .
statement - : cmpd_stat
expr L .
IF (" expr ') statement g
IF (" expr) statement FLSE <tatement
WHILE (' expr "1 'statement _ ‘
DO statement WHILE (" expr)7 . -
FOR "(' opt_expr '’ opt_expr '’ opt _expr] statement i

SWITCH [expr ')’ “statement
CASE const_expr . ' Statf’mt’%«"
DEFAULT ' statement A
BREAK .~

CONTINUE

RETURN 9
RETLRN expr ' ”

(Km_~-~ JIDENTIFIFR R
IDENTIFIER ":° statement
error

expr tg' prnm:fr'y
AP

expr

‘& expr

" expr

"l expr 5 e
T expr ’

INCR_OP Ivalue o

lvalne, [NCR_OP

SIZEOF expr
(" type_name ')' expr
expr bin_op expr

expr '?' expr :' expr
“lvalue asgn_op _ e
{ eeassign_stmt = EETRUE ; }
expr ‘
i expr ',' expr
“primary I\UBEh » v N
[*"" string "'
{)(\ expr ')‘
{ primary (' expr_list ")’ :
“ ' lvalue .
string : STRING A . .
i string STRING ‘ '
Ivalue : IDENTIFIER
ET* expr
"primary [’ expr ']"
¢ primary RPOINTI'R IDENTIFIER
i lvalue '.' IDENTIFIER
(* lvalue ') A
expr_list /* empty . */ .
[expr s '
! expr_list ", expr
const_expr : IDENTIFIER .
o NUMBER
opt_expr Do C o/t empty */ ‘
' " expr
bin_op - . BIN_OP : - Y
.) . ' v [. -
1&V . N
asgn‘op' -1 ASGN_OP
e
#include "lek.yy.c . _ .
extern FILE *yyin. *yyout ;. /* yyoul is a temporary file pointer */
FILE *eeout ; S ' _ P :
/‘ ______ I T T IR
y : .. . Valn Routlne

. This function opens the input fife and creates an output file which
“/has the same name s the input filewith “¢" added at the end. A
Lemporary file @s also created to store the output from the 'parser.

' maln(argc, argv)

cint oarge ‘
char *argv|]

{ int 1 ;
/

/* open inpuﬁ file */

v

-1

(L)

strepy(eein_{fname, *++argv)
if { (yyin = fopen{ eein_fname, "r")) == NULL) ~
{ fprintf{ stderr, "%s%s\n", "*** Can't open ", eein_{name |
exivl 1) 2

2 - | | -

/* create output file name */
for (i =0 ; eein_fname[4] != "\O0' ; i++)
eeout _fname|[i] = eein_fname|i]
ecout _fname[i++] = "7 :
eeout _fname | i++ ‘e
ecout _fname[1] = "\0" - -

"
" /* open output file */
ceout = fopen(eeout_fname, "w") ;
yyout = eeout)

‘eetemp_fname = ‘eetemp”

! /* start parsing */ . ¥
if [yyparse(}) == 0)
{ wunlink(eetemp_fname) ; _
exit{ 0) ; : o e
} . .
else o :
{ unlink(eetemp_fname | ; : i N
. exit(1 } ‘ .
'} P
} < Sl
., ‘
TSSO UT RS ANy SRR
This function copies contants of the file pointed to by {(fpl into
the file pointed to .by " fp2’ o \
------- R e A I I I
eefilecopy(fpl. fp2.9) CL . ' =
FILE *fpl. *fpl : 5 : ot
{ int ¢ . :
while (7 (c¢c= gete(fpl) } !'= EOE,)
putc{ ¢, fp2) ;- L ’
b
B e e e e e e e e e e e T e e
This function prints the error message and the line number where . the

error ocrcurred. . B ‘ g

yyerror{s)
char *s

{

)

fprintf({ stderr, s st s s A n

Y] . noa . <v. . : " ’ "
~eein_{name, . line , eeline, : s

This function re-initializes all the counters and arrays before the
next event handler is being parsed. . . I
_________________ O S S
_ o ; /
eestart(ﬁg o .
{ nt [

Lo

/*, store .event handler name */

, eeevh_name = eestrsave(yytext |

%

/* . re-initialize variables */

cevar_cnt = 0 ;
ecevent’ent = 0
eeloken_cnt = 0 ,
/* re-initialize arrays *
for { 1=0 ;i <= EEHASHSIZE
{ eeevent_list]| 1 = NULL
eetoken_list| i l = NULL

eevar _list|[1 | = NULL ;

E—

}

"
yyout = fopen{ eetemp_fname,

fpraintf{ yyout, "\nfls\n", " ¢
/A
This function copies the val
initialized in*the variable decla

temporary output ftile: The variab
by their corresponding elements i

eecopy_initializer{)
f .

fprintf(yyvoul, CesCidos
eeflag = EECOPY ;

EEECHO

'

This function prints the numbers of variables.

events, and a list of the events
events in an event handler.

T T T T L T I "...
cestatistics{)
{ int offset
: rhar ®*eeevh
ecovh = eestrsave(yytext |

/* il the first character of an

oflset AT - L "
it (eeeyh|[0] >= "3’ &t

a
eeevh|0] = eeevh[0] + offset
else - T

then it will be converted to upper

eeevh0] <=

w'o) o

ase INIT :»{") ;

.............. R
ues of the variables which-have been
ration of each event handler into the

le names themselves have been replaced

n the array “"var".

“var

input tokens and
and a mapping of input tokens into

event handler sz in lower case

case, and viece versa.

Z

)

x. . -
eeexh|[0] = eeevh|[0] - offset)
. Az
fprintf{ eeout, "sin", eeevh).:
fprintf(eeout. "id %d Td\n", eevar_cnt, eetoken_rnt, eeevent_cnt |
eeprint _event{ eceout |} . o ‘ "
eeprint _token(eeout)

eeprint _fn_heading(eeout |

This 0
installed is already present. ! |
error message will be given.

Mhe e

function uses 'eelookup_e

v'' to determine whether the event being

f there is any.duplicate event names. an

struct eeev_list *np, *eelookup_ev() ; ~—
char *cestrsave()}, *malloc() ’
int hashval . ,)

)

i { (np = eelnokAup_ev(s)) == NULL) . /* not found */
{ np =(struct eeev_list *) malloc(sizeof(*np}); /* create storage */
if (np == NULL) v ' '
{ yygrror("run out of memory storage”) .: - oy
exit{ 1) ;
) :
if ((np->ev_name = eestrsave(s }) == NULL)

{ vyyerror("run out of memory storage")
exit(1)

} ‘ o ' X v

/* insert new entry into the event list */

hashval = eehash({ .np->ev_pname.) ; & ,
np->next = ePC)’C,llt_lyiSL‘v‘[hashval |

eeevent _list hashval] = np ;

eeevent _ont++ ; %oy ’

LN

})
else . .
_v_v«*rror('ill,‘ega”‘}}fﬁdupligation of event name ")
} N
B .) T
[t [e e deo i M e P .
"This , function looks for “in the event list
.............. I I IR ¥_.._..__A...,......4_..._._..’...-_‘/
struct eeev_list *eelookup_ev(-s . .
char *s B '
{

struct eeev_list *np

1

for (np~eeevent_list| eehash(s) | ; np !'= NULL : np = np->next)} &
if { stremp(s, np->ev_name) == 0) /* found entry */
return{ np)} . . . »
return{ NULL) ; /* entry not found */ &
Sl D

~This function uses ‘eelookup_token' to 'determine whether the token heing.
installed is already present. If thete is any duplicate token names. an
error message will be given.®

eestore _token()

X | u
> struect eetk_list *np, *eelookup_token() ’
char *eestrsave(). *malloc({)
int hashval o
tf-{ {np = eelookup_token(eetemp_buf }3 == NULL) .o /* not found */.
{ np =(struct eetk_list *) malloc(sizgof{*np)): /* create storage */
if (np == NULL)) ’
: { yyerror{“"run out of memory storage”) : ’

exit(1)
}
if ((np->token_name = eestrsave({ eetemp_buf)) == NULL)
' yyertor{"run out of memory storage”)
exit(1) S

.//
; !

//

if ((np->evy_name = eestrsave(yytext)) == NULL)
{ yyerror(“"run out of memory storage”) ;
exit(1) : :
}

/* insert new entry into the token list */ o

-1
-1

hashval = eerhash{ np->token_name) ;2,
np->next = eetoken_list| hashval] !
eetoken_list| hashval | = np ;
fetoken_cit++ |
}
else -
vyerror{"illegal duplication of token name")
} ,
b .

This function looks for string "s' in the token list.

struct eetk_list *eelookup_token(s
p

~har *s "
{ ' L
struct eetk_list *np
for (np=eetoken_list|{ eehash{ s |] ¢ np '= NULL ;. np = np-Dnext i
if (stremp(s, np->token_name |} == 0 } /* found entry */
- return{ np-) ’ L
feturn{ NULL - © /* entry not found */ .,

eeprint_event{ [p)

FILE *fp ’

(- - &
struct eeev_list *np :
int index, n =70 ;

' : bl
for [index=0-; index < EEMASHSIZE . index++.) K
for { np=eeevent_list]| index T 7 np '= NULL 7>-np=np->next)
{ fprintf(fp, "s ", np-Sev_name), . -
n++)
if [(n®%5) ==0) fprintf(fp., "\n" }
} *
il (n‘5) ==10)

. S fprintf{ fp, "z n"y "% s .
\ else fprintf{ fp, "ns\n™, "%)
} .
. .

...

© Thas Tunction prints a wpapping of the input tokens into events in an
event handler. . ' ' :

eprint _token{ [p)
ILE *fp « = . : "

3 -

struct eetk_| *np

“taist
int index, n =0

for (index=0 ; index < EEHASHSIZE ; index++)
for { np=eetoken_list[index] ; np != NULL : np=np->next)
{ fprintf(fp, "%s ", np->token_name)

fprintf{ fp, "“ts\n", np->ev_name | ;

fprintf(fp, “Cisvn™,

This function prints the heading for each event handler routine.

eeprint_{n_heading{ fp)
FILE *fp ;

/* check for matching event handler name */
il (stremp(yytext, eeevh_name)} '= 0)

"yyerror{ "missing declaration for event handler name”
fprintf(fp, ™is", yytext) ;
fprintf{ fp, "Ts\n",

"(instance_name, event_name, event_value, var]")
fprintf{ fp, "Cis\n" . "int instance_name ;.)
fprintf{ fp, "Tes\n”,"int event_name ;") ;
fprintf{ fp., "Ses\n"."int event_value ;" } ;
fprintf{ fp, "%sy\n","int wvar[] ") ; Gk v
fprintf({ fp, "SGsin","{") : ‘ ﬁﬁé
fprintf{ fp, "\n") '
fprintf{ fp., "%¢s\n", " switch {event_name) {.)

v‘ajri.:xblés_ and ropies the
negnt Hle

/* re-initialize contro] variables ¥/
eeflag = EECOPY ; ' . s L) ,
eetype = EROTHER ;) ' S : v
eeevent = EEFALSE . _ . . ’ "‘
eeskip_brace = EEFALSE - c - . . :) *
eecomment = EEFALSE ;| o . . . o
eestring = EEFALSE . : B o -
eeassign_stmt>= EFFALSE ; .)

/* print-closing brackets-at the end of a function’ */ e
fprintf{(yyout, ™ }\n") ; g
fprintf{(. yyout, “"}\n") ,) . o im
fprintf{ yyout, "7s\n", "CL%") . @
fclose{ yyout) ’

.

/* copy contents of temporary file pointed to by “yyout” into

the permanent tile pointed to by "eeount”. */
yyvout = fTopen(eetemp_fname, "r")
ecfilecopy{ yyout, eeout | ; "
fclose(yyout) ; : o)
yyout = eeout ; . e

Appendix A2

Lexical Analyzer for the Event Language

/* . Lexical Analyzer for the Event Language

3

Global variables: "
ectlag 5 -- a flag to signal whether the input data will be
echoed ar-skipped. '
cetype -- a flag which indicates the keyword "event” has been

scanned. The keyword will be replaced by "case” in the
ontput file. '

ceevent -- a boolean variable used to control the ontput routine
so that the INTERNAL DECLARATION of an event type widl
not be echoed. Echoing will resume after the first ‘
» bracket sign "{" is detected. - ‘ :
%eskip_brace -- a boolean variable used to rontrol the ontput_routine
W . . wop o r
s : to skip over the bracket sign "{" when the event

™ appended to the PREDEFINED "INIT" eyent of ecach.-
vent handler. Each predetined "INIT" even
“to.initialize all variables being declarec
gvent handler routine where it resides:
eecomment -3 boolean variable used to signal ithe beg
. et he endi”ng of comments in.the i'npu_(,’ tirle]

}"wf"r“ is detected. The body of the ~"INIT" event will

nsed .

- S ronmernq\?mvlll be copied dnrertf “to. phe
o, g, without beqng parsed B R .
eeass i En S Tty a) bO()lt"ln-_' r.i able* wsed to ’¢<3nvt rn.l'n \tzﬁh‘é‘, .
ca e %an event nime that. appears o s thes RHS ¢ gme nt .

. btatement xni”tht anhle b» s vxlue i tHe output
cevar_rpto T - cnunns' trhe‘number or \3rlab]e\ e P.’\(‘}.) event handler
eeline -- gives the numb&r of the l|m> where an.error. has been

found. - ‘ v !
i } “ :
e e R T B e e e e e L--.-~~.' o . v ,‘"- .‘/
oL .
‘ o : s . > . .\
#include “def h"'9® o oy . : .

#detine EEECHO if | (ceflag ‘= EES
#define EENOT_STRING 1 ((eeconm#

.feecomment == EETRUE] } ECHO
==" FFEFALSE) £& {eestring == EEFALSE) Y
/* .'I:hf* token STRING will be returned to the parser for each character in a

cstring which is enclosed by the .double quotation signs. I the

character does not helong to an array’ of, characters, the character
(token) “itsell is returned to the: p'\rser. * - E

#detfine ELSTRING “if (eestring == EETRUE) return| STRING b ‘ L, ""_fjv

struct eevr_list {

char *sar .) "
int- index ; " . : . R
struct eevr_list *next ; /* next entry in-chaining */ - .

. - a
R s . [. =

/* symbol table for variables -~ *,

struet eevr_list “eevar_list| EEHASHS ZE |

v . . -, . ‘:\. .

)

o
l(;(

eventhandler

token

end

" char

int
short
Hoat
doubte

X I()ng.

© L. unsigned

astruct
union
typedef
g(;t()
return
si1zeof
bre:q.'k.;*v

continue

int
int
int
int
int
int
int
int
int

»

ectlag = EECOPY
eetype = KEOTHIR ;

eecevent = EFEFALSE

eeskip_brace = EEF
eecomment = EEFALS

)

ALSE ;

E ;

eestring = EFEFALSE ;

eeassign_stmt = EE
eevar _cnt

eeline = |
{ retlag = E
EENOT _STR
EESTRING
{ EENOT_STR
return |
else

{ EENOT_STR

else

{ EFECHO

EESTRING

{ EENOT_STR

else

EESTRING

{ EENOT_STRING {

PI\‘("
EESTRING
{ EEECHO. .
EESTRING
{ EEECTIO
EESTRING
{ EEECHO
EESTRING
{ EFEECHO ;
EESTRING
{ EEECHO

EESTRING |
{ EEECHO, :
EESTRING
{ EEECHO
LESTRING
{ EFECHO ;.
FESTRING
{ FEECHO :
EESTRING
{ EEECHO
EESTRING
oo { EEECHO ;
! EESTRING ;
{, EEECHO ;
EESTRING
{ EEECHO :

EESTRING
{ EEECTIO ;
EESTRING
{ EFECHO ;
EESTRING

ECHO
EESTRING
- EEECHO
EESTRING

FALSE .

ESKIP;

ING return
0}

[NG
IS)
}
ING

}

return{ TOREN |

{ EVENTHANDLER)

EENOT_STRING return{ VAR)

}
ING {

ceevent _decl()

return(EVENT § °

EEECHO

}

B
EENOT _STRING
co)
EENOT_STRING

E;ZE‘L()T_S’IRI NG
[-;ZEN(})’I‘_STRI NG
EP:V(})T_'STRI NG
E;ZEL‘LOT_ST_,RI NG
ép:zxrr_sml NG
E;IE{IJOT'_SWI NG
éuim_ STRIAG
ﬁ:mhorr_sml NG
E:u&m_sml NG
Eﬂi'drmsmr NG
ﬁ:i«:%b'fxspu;x;
E;“.H‘t'()'l‘jml NG

)
EENOT _STRING
.

eceflag =
returny{ END)
EEECHO - ' '

5

EESKIP

return|
return|
return|(
return(
return|
returny

returni

b

returny .

)

Teturn|

relu’r.n(
feturn (
rn-tur?(
return|
return|

return(

CHAR
INT
SHORT)
FLOAT)
DOUBLE) -
LONG)
UNSTGNED)
STRUCT)
UNION)
TYPEDEF |
GOTO)
RETURN)
SIZLOF)
BREAK)

CONTINUE.)

=0

il

else

f‘or

do

while

switeh

case ' . :‘
de fault

entry
[A-Za-2][A-Za-z0-9_)"

ST[0-9]+". "0 [0-9]"

{ erec®
EESTRING
{ EFECHO
EESTRING
{ EEECTO .
EESTRING
{ EEECHO -
FESTRING

‘ { EEECHO ;

EESTRING
{ EEECHO ;
EESTRING
{ EEECHO ;
EESTRING

{ EEECHO

EESTRING
{ EEECHO -

EESTRING

{ eeconver

EENOT_STRING return|
EESTRING

{ EEECHO ;

. EEECHO ;
{ EEECHO ;
{ EEECHO ;
EESTRING ;

{ EEECHO ;

EESTRING ;

{ FEECTIO ;

- EESTRING

{ EEECHO
EESTRING

{ EEECHO :

EESTRING

{ EEECHO ;

EESTRING . -

{ EEECHO
EESTRING
{ FEE(HO ;
EESTRING

{ EEECHO

EESTRI

{ ECHO : ee
EESTRING
{ ECHO ; ee
EESTRING

{ EEECHO :
EESTRING
{ EEECHO ;
EESTRING
{ EEECHO ;
EESTRING
{ EEECHO ;
EESTRING
{ EEECHO ;
FESTRING
{ EEECTHO

EENOT_STRING
o}
EENOT_STRING
;)
EENOT_STRING

return|
return
rotvurn(

return |

EENOT_STRING

i}
EENOT_STRING

;)
EENOT _STRING

return
)
EENOT_STRING return |
;)
EENOT_STRING return|
;o)
EENOT_STRING return(
.

L)

}
} oy

eeline+¥ ;. }

EENOT_Q&;[R[NG Teturn|
)

EENO:I‘_ngN(; return|
o

EENOT_STRING

return|

o}

EENOT_STRING
}

EENOT_STRING

return(
return|(

return|

) :
EENOT_STRING
Do

EENOT_STRING returnd

S

EENOT_STRING return(’
}

NG o}

comment = EETRUE
o}
comme nt

}

EENOT_STRING return|
)
EFENOT_STRING
i}

EEFALSE

return|

EENOT _STRING
. :
EENOT _STRING return|{

return|

EENOT_STRING
o}
EENOT _STRI NG

return|

return(

BIN_OP .

I)
ELSE)
FOR)

DO)

return(WHILE |

. :v‘.(&
s\me o O
CASE)

DEFAULT |

ENTRY .

‘%ﬁu ;‘
o @?’rl FIFR)

EENOT_STRISE® e turn| MNBER)
EESTRING 5.

INCR_OP)
RPOINTER)
:m&,_‘w}::‘
BIN_OP

BIN_OP)

BIN_OP |

ASGN_OP |

ASGN_OP)

Y

EENOT _STRING return| :‘S(-'.\'_OP')

~

P Ll

/*

{

}

[

eecevent _decl()

EESTRING : }
{ EEECHO ; EENOT_STRING return{ "*' |
EESTRING ; }
, { EEECHO ; EENOT_STRING return('-')

EESTRING ; }

{ EEECHO ; EENOT_STRING return('&' | .
EESTRING ;

{ EEECHO ; EENOT_STRING return(' ' |
EESTRING ; }

{ EEECHO : EENOT_STRING return{ '=')
EESTRING ; }
« { eebrace{) ;

' EENOT_STRING return{ '{)

EESTRING ; }

{ EEECHO ; EENOT_STRING retnurn{ '}]
EESTRING : }

{ EEECHO ; EENOT_STRING return| 1)
EESTRING : }

{ EEECHO ; NOT_STRING return{ '] -)
“EESTRING ; }

{ EEECHO ; EENOT_STRING returnd " (')

EESTRING ; }

{ 'EEECHO ; EENOT_STRING retnrn({ ') |
FESTRING ; } : .

{ ECHO :
il {eecomment == EEFALSE)

{ if { eestring == EEFALSE)

eestring = EETRUE

else)
eestring = EEFALSE

return{ "')

Pooo)

This funection sets whe appropriate flags when a new EVENT is found.

eeflag = EECOPY ;
eetype = EEEVENT ;
eeevent = EETRUE

This function does one of “the following: .
1. 1T the very first event found is not "INIT". then it adds the
closing bracket for the default "INIT" event and converts the
keyword "event” to "case", otherwise it appends the body of
the "INIT" event written by the user to the hody of the
default "INIT" event. Error message is given if the "IN[T"
event specitied by the user is not the frst event in the
event handler. The new event found is also stored in the

event list. Lk <
2. 1f the identifier found is a variable, it s replaced by itx
corgexponding element inm the array “var'. ’
3. tf the identifier is an event name and it appears at the RHS

of an assignment statemnet, the event nane is repltaced by its

[

value. .
1. i f none of the above is true, the identifier 15 echoed.

ceconvert()
struet eeve_list *np, *eelookup_var()
struct eeev_list *eelookup_ev()

if { eetype == EEEVENT)
e { if [stremp{yvtext, "INIT") !'= 0)
{ if (ecevent_cnt == 0)
{ fprintf(yyout, " } break ;\n")
eestore_event("INIT")
}

fprintf{ yyout, "\n&", " case ")
EEECHO .
fprintf{ yyout, "f¢ts™ " : ")

else 1f (eeevent_cnt != 0) :
vyerror{""INIT must be the Ist event following -var' deeclaration '

else :

/* "INIT" is the first event after 'var' decl */

eeskip_brace = EETRUE :

ectype = EBOTHER
eetlag = EESKIP ;
eestore_event(yytext)

}

else 1f [(np = eedookup_var{yytext)) '= NULL)

/* convert variable name to an element of the array “var' */
fprintf(yyouts "GO, “var|". np->index, 1
“else if [(eeassign_stmt == EETRUE) &&

{eelookup_eviyytext) '= NULL))

* convert event name to its value By
fprintf{" yyout. "event_valne” |
e lse

EEECHO

eeassign_stmt = KEFALSE

This Tunetion résets the appropriate Hags when the Hrst bracket
sign “{" after an event declaration has been detected. <o that the
event body will be echoed. ¢

'f (eeskip_brace == EETRUE |

/* reset flags *
eeskip_brace = EEFALSE :
eeflag = EECOPY ;

else if [eeevent == EETRUE)
{ eeevent = EEFALSE
eetlag = EFCOPY

* echo the brarket sign for all
EFEFCHO
}

else EEECHO

This

function stores the vartable 1nto th-

{

struct eevr_list *np, *eeinstall_var() ;
il ((np = eeinstall_var{ yytext, epevar_cnt)| ==
{ wyyerror("symbol table overflow”)
exit(1} /* termi
else
eevar_ocnt 4+ '

e C e, e

Thisx function uses “eelookup_var’
be installed 1s already present L. so. the new
the old one. . -

strnet oeevre _list *eeinstall_var{ var., 1x)
~har *var
it X

struct eevr_list *np. *eelopkup_var(|
char *eestrsave(. *malloc|)
int hashval

1 f { fnp = eelookup_var({ var J}4 == NULL }
{ np = [struct eevr_list *) m;\[l()r(xlzn*?)f[‘rlp)jr,
of (np == NULL)
return(NULL)
1f [{np->var = eestrgave({ var })) == NULL

return(- NULL)

new entry into the .symbol table
hashval = echazhi np->var }

np->next = = *_lisL[hashval] ;
f'evar_list(, ha~nval] = np

/* insert

}

np->index = ix
return|{ np)

/‘.‘. .. e

xThis function looks for string "s' in the var
strufft eevr_list *eelookup_var{ s)
~har *x
{ .
struect eevr_list *np
“for (np=eevar _list| eehash{ s)] : np '= NULL
L s

if { stremp(s,
return{ np |

ret n"r n{ NULL)

np->var

o/
/

events exce

“tndex T owi

. found

ept "INIT" %/

ariable 1ist

NULL)

nate

fonnd

/‘ not

/.

iabte

np =
entry */

*entry nottlodnd %/

execention °

np->next

J

super-~e e

.

/l.‘,fronvt'n <torage */

char
{ .
int hashval

for | hashval *so'= N0

= :
hashval 4= Ys44 ‘
I ¢ EEHASHSTZE)

return{ hashva
}
/* ,
/‘ """""""""""""" oot
This function saves the string "= in location
W e .. .
} o)
shar feestrsave | 2)
char "5 N v
{ o g
char *p. *malloc()
it ip = malloc{>strlen{s)+1 }) '= \NULL

strepyl o p, s)
return(p) -

o

