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Abstract 

 

A numerical reservoir model is the result of studies whose main objective is to describe the 

dynamic behaviour of a hydrocarbon reservoir for predicting its future performance under 

different development and production strategies. Reservoir models are built with uncertain 

parameters.  The available data are widely spaced, at large scale and contain error. Thus, 

predictions based on these models are also uncertain. Understanding the uncertainties related 

to the reservoir is crucial for making development and management decisions throughout the 

lifetime of reservoir production. 

Conventionally, decisions in hydrocarbon field development are based on a single reference 

case. The reference case represents the best model with the appropriate set of input parameters 

for predicting future reservoir performance. However, this model is only one outcome of a large 

ensemble of possible models describing the reservoir. Making decisions based on one reference 

case disregards the geological uncertainty. The complexity of many response variables requires 

managing multiple realizations to improve the consistency and accuracy of reservoir models. 

A methodology to facilitate the transfer of subsurface uncertainty through reservoir 

management is developed and demonstrated in this thesis, reaching up to 5% of improvement 

in the economic performance of projects. The ensemble of realizations must be used in the 

calculation of measures of performance and in optimization, helping the reservoir team make 

decisions for maximizing the value of the reservoir project. 

The number of realizations could be large and the analysis of results is largely automated; 

however, human inspection is still necessary for quality control. Tools are required for processing 

and analyzing the ensemble of realizations qualitatively and productively. Since all realizations 

should be considered in reservoir management, a visualization methodology is developed to 

facilitate the understanding of the space of uncertainty. Methods combining the distance 

between realizations and animations are considered. 
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The computational requirements for history matching and flow simulation is an often 

mentioned reason to avoid dealing with all realizations all the time. Computational performance 

has grown exponentially over the past 30 years through faster processors, multiple cores, 

parallelism, and GPUs, supporting the premise of managing multiple realizations. Moreover, 

developments in ensemble-based history matching techniques encourage the use of a large 

number of reservoir models. An alternative approach to integrating production data into the 

geological modeling workflow is also developed. The geological consistency is preserved through 

an ensemble of reservoir models conditioned to the available static and dynamic data. 

The impact of considering all realizations in the decision-making process is demonstrated 

with a realistic case study. The improvement of the production revenue considering all 

realizations is significant, reaching more than $100 million, and supports the statement of this 

research. 
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Chapter 1 

 

 

Introduction 
 

Hydrocarbon projects are capital intensive. The combination of large investment and high 

uncertainty makes these projects high risk, requiring the analysis and evaluation of production 

and economic scenarios. 

The geological processes that generate the petrophysical properties of a reservoir are 

relatively well understood. However, despite the fact that geological phenomena are not 

random, reservoir conditions could never be predicted exactly due to limited available data and 

no access to initial or boundary conditions.  Numerical models are created in an attempt to 

reproduce the reservoir conditions and to provide important input to planning and decision-

making. 

Well tests, production data, seismic data, and geological knowledge are all used to 

complement direct well log and core measurements, to build accurate reservoir models and to 

characterize the uncertainty. Understanding the uncertainties related to the reservoir is crucial 

for making development and management decisions through the lifetime of the reservoir 

production. The suitability of the reservoir models is validated by their ability to accurately 

predict future flow performance under different conditions (Pyrcz and Deutsch, 2014). 

Geostatistics is commonly used to predict rock properties away from known well data. 

Geostatistical techniques quantify the uncertainty through a probabilistic approach. Multiple 

equally probable realizations are generated by geostatistical simulation techniques in order to 

characterize the geological heterogeneity and uncertainty. The response of these realizations 

could be combined into a model of uncertainty. Dealing with multiple realizations provides an 

assessment of the space of uncertainty to be used in the decision-making processes. 
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Models can be used to obtain long-term development plans. The selection of appropriate 

model or combination of models is fundamental for the optimal depletion strategy for a given 

reservoir asset.  

 

1.1 – Managing Uncertainty in Reservoir Forecasting 

There is a need to determine how much hydrocarbon can be extracted from a reservoir to 

determine the most profitable path forward. After starting production, the reservoir team must 

analyze the production development in order to maintain maximal oil recovery and profitability. 

Reservoir flow simulation is a tool for the management of hydrocarbon reservoirs that can 

aid understanding of flow and the recovery process for a particular reservoir. This is useful for 

sensitivity and uncertainty assessments, to predict reservoir performance under different 

operating conditions, and for optimizing reservoir performance (Cardoso, 2009). 

In order to improve the reliability of reservoir predictions, the information available from 

historical field production data (e.g. pressures and production rates) should be incorporated into 

the reservoir models, in a process called history matching (HM). Since HM is an optimization 

problem, hundreds or possibly thousands of flow simulations may be required to find a match 

(Thiele et al., 2010). 

Flow simulation and history matching processes may be very time consuming. The detailed 

3-D reservoir simulation models can have a large number of cells, multi segmented wells, local 

grid refinements causing the simulation of a single model to take hours of CPU time. 

A common approach is to apply a less expensive transfer function on all realizations, ranking 

them according their responses, then selecting a few realizations to be processed through the 

flow simulator. There is no unique ranking method considering geological models and multiple 

response variables. However, a simple and widely used ranking measure is the original oil in place 

(OOIP) for each realization (Corre et al., 2000; Steagall and Schiozer, 2001; Campozana et al., 

2007; Gross and Honarkhah, 2011). 

This well-established approach usually selects one model with a low response, one model 

with an average response and one model with a high response, corresponding to the so-called 
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P10, P50 and P90 models. Instead of considering all realizations, these three models are 

submitted through the flow simulator. 

 

1.2 – Problem Statement 

According to Sharifi et al (2014) and Gorbovskaia (2017), selecting few realizations based 

on some properties, such as OOIP, does not adequately reflect the influence of uncertain 

geological parameters on production rate and recovery factor. According to Pyrcz and Deutsch 

(2014) and Deutsch (2015), those methodologies that use a reduced number of realizations yield 

an incomplete assessment of uncertainty. This leads to inaccurate reservoir production forecasts 

and the resources may be underestimated or overestimated (Figure 1.1). 

Given the imperfections of ranking, three realizations (P10, P50 and P90) will not span the 

uncertainty model after the transfer function (Pyrcz and Deutsch, 2014). Ranking should be 

applied more carefully to select models. A P10 realization may have P90 values at some locations, 

P50 at others and so on. The P-value of a realization must be considered as a global parameter 

with little local meaning. Since the relationship between the response of the simple function and 

the full simulation is not linear, selecting too few realizations from the reservoir model may result 

in misleading forecasts. 

Ballin (1992) recommends that flow simulation must be run for a large number of reservoir 

realizations in order to transfer geological uncertainty to reservoir performance evaluation. da 

Cruz (2000) presents the same idea; each geostatistical realization must be submitted to the flow 

simulator for a robust approach of transferring geological uncertainty to the production forecast. 

However, one of the main reasons to avoid managing multiple realizations in flow simulation is 

the excessive computational requirements for performing history matching for each reservoir 

model.  

With recent advances in computer science and hardware, the use of multiple geostatistical 

models to improve production forecasts should be more popular in reservoir engineering (Figure 

1.2).  Reservoir simulation on massively parallel computers can reduce simulation times over 

three orders of magnitude (Beckner et al., 2015). The magnitude of the real time speedup is 
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impressive with parallel computing. Multithreaded shared memory architecture allows flexibility 

in parallelizing various algorithms in different ways (Lu et al., 2008). As multi-core CPUs for 

computers become common, parallel computing provides a viable and flexible option to handle 

complex reservoir simulation models with significant run time reductions.  

 

 

Figure 1.1: Reservoir responses based on just a few realizations may correspond to unrealistic 

production forecasts. 

 

1.3 – Thesis Statement 

Development of methodologies to facilitate the transfer of subsurface uncertainty through 

reservoir management will improve the consistency and accuracy of reservoir models and their 

ability to reliably forecast reservoir performance. 
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Figure 1.2: Multiple geostatistical realizations provide an assessment of geological uncertainty in 

reservoir modeling. 

 

1.4 – Dissertation Outline 

This thesis focuses on understanding and managing the uncertainty throughout the lifecycle 

of a reservoir. The goal is to improve the consistency of reservoir models and the reliability of 

reservoir predictions by transferring the complete geological uncertainty through reservoir 

management. Eight chapters are presented to address this goal: Chapter 1 presents an overview 

of the problem setting with a brief description of the current state of geological uncertainty 

assessment in reservoir management. The motivations and the thesis statement are also 

provided in this chapter. Chapter 2 provides a background for the developments of this thesis as 

well as a literature review. Chapter 3 describes the methodology, discussing the correct paradigm 

for uncertainty management. Chapter 4 presents a reasoned view to the correct management of 

multiple realizations, in terms of response evaluation and visualization. Chapter 5 presents a 

discussion about computational resources required for managing multiple realizations as well as 

the historical perspective and the computational trends in reservoir characterization. Chapter 6 

presents methodologies for how multiple realizations can be processed through history 
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matching, presenting a data integration in geostatistical simulation by rejection sampling. The 

proposed methodology is validated by a real case study in Chapter 7. The goal is to evaluate the 

performance of the proposed model relative to the conventional approach. The last Chapter 8 

wraps up the thesis with conclusions and future work. A detailed description of well test analysis 

is provided in Appendix A. A description of developed codes is provided in Appendix B. 
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Chapter 2 

 

 

Background and Literature Review 
 

The reservoir model is the result of studies whose main objective is to understand and 

describe the dynamic behavior of a hydrocarbon reservoir in order to predict its future 

performance under different development and production strategies. Geostatistical reservoir 

modeling is used for creating detailed numerical 3-D geological models. These models 

simultaneously integrate available geological, geophysical and engineering data with varying 

degrees of resolution, quality and certainty (Pyrcz and Deutsch, 2014). 

A fundamental principle of geostatistical simulation is to generate multiple realizations in 

order to cover a large set of cases and capture a reasonable measure of uncertainty in model 

parameters. The main sources of uncertainty in reservoir characterization are related to: 1) 

subsurface structures - such as stratigraphic surfaces and faults; 2) geological properties - such 

as facies including horizontal barriers and conduits; 3) petrophysical properties, such as porosity, 

permeability, water saturation and shale volume; and 4) dynamic properties, such as 

temperature, pressure and production rate data. 

Although many realizations should be generated to provide a stable assessment of 

uncertainty, the high computational cost of running flow simulation and the iterative nature of 

history matching restricts the number of simulation models that can be used for production 

predictions. Processing all realizations through a flow simulation may take a very long 

computational time. The common approach used in industry is, according to some criteria, select 

a few realizations from the initial realizations and then perform flow simulation on these few 

realizations (Ballin et al., 1992; Idrobo et al., 2000; Ani et al., 2016; Thiele and Batycky, 2016; 

Meira et al., 2017). 
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2.1 – Literature Review 

Geostatistical simulation plays an important role in geostatistical modeling. The technique 

is used to build models that reproduce the characteristics of the spatial variable of interest as 

represented by the conditioning data (Rossi and Deutsch, 2013). Multiple alternative and 

equiprobable models (realizations) are generated by geostatistical simulation in order to provide 

an assessment of the space of uncertainty. Simulation is well established and widely used for 

petroleum reservoir modeling (Journel, 1986, 1989; Isaaks and Srivastava, 1989; Goovaerts, 

1997; Deutsch and Journel, 1998; Caers, 2011; Chiles and Delfiner, 2012; Pyrcz and Deutsch, 

2014). 

A fundamental principle of simulation is to consider many realizations (Deutsch, 2015). In 

reservoir modeling, multiple realizations are simulated in order to cover a large set of cases and 

capture the uncertainty of the model parameters, such as expected mean values, variance, 

spatial dependence of each geological attribute and interdependence among the attributes (da 

Cruz, 2000). 

Considering uncertainty in the input parameters may be important. Parameter uncertainty 

is assessed by simulating realizations of all of the modeling parameters, including gross volume 

uncertainty, facies proportion uncertainty, histogram uncertainty, variogram uncertainty and 

multivariate relationship uncertainty (Deutsch, 2015). 

 

2.2 – Ranking Realizations 

Different approaches have been used to handle multiple realizations (da Cruz, 2000; Pyrcz 

and Deutsch, 2014). Ballin et al (1992) proposed the concept of ranking for the first time. The 

authors presented an approach to analyze the problem of transferring uncertainty in the 

geological model through the flow simulation model. Each reservoir realization is ranked using 

what they called a Fast Simulation, which is coarsening simple simulations, rather than 

Comprehensive Flow Simulations.  

Many ranking methods have been proposed in the literature considering static and dynamic 

approaches. Static-based ranking methods are those methods that rank realizations on basis of 
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the static properties of the underlying realization such as porosity or permeability. Static ranking 

measures include OOIP, average petrophysical properties, and effective connected pore volume. 

Dynamic-based ranking methods are those methods that are based on fluid flow. 

 

2.2.1 – Static-based ranking methods 

Alabert and Modot (1992) point out the importance of comparing models by measuring 

connectivity. Gomez-Hernandez and Carrera (1994) proposed a linear approximation of the flow 

equation to rank realizations. According to the authors, a better approach would be to rank the 

realizations of the parameters controlling fluid flow and then solve the flow equation. 

Hird and Durbrule (1995) present an approach of connectivity calculation by incorporating 

dynamic data. Ranking reservoir realizations according to the corresponding reservoir 

characteristics are developed as an application of their technique. 

Deutsch and Srinivasan (1996) review the methods of ranking geostatistical reservoir 

models. The use of loss functions is presented as well as the expected loss to measure the value 

of ranking realizations. According to the authors, there is no unique ranking index since there are 

multiple flow response variables. Moreover, the use of fast simulation techniques, like streamline 

simulation could be used as a ranking method. 

Saad et al (1996) introduce ranking of geostatistical models based on tracer production 

data. Their results indicate that ranking based on tracer breakthrough time and ranking based on 

cumulative oil recovery are not correlated. 

Sandsdalen et al (1996) quantify the effect of the uncertainty given by the variability of the 

observed petrophysics and facies data on the dynamic behavior of the reservoir. A higher 

hierarchical model with two individual levels of uncertainty is used in order to generate 

equiprobable realizations. 

Idrobo et al (2000) present a connectivity criterion based on streamline time-of-flight for 

ranking geostatistical realizations. The proposed approach provides a method for computing 

volumetric sweep efficiency for arbitrary heterogeneity and well configuration. According to the 
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author, this method can be applied for ranking stochastic reservoir models since there is a strong 

correlation between the connectivity criterion and waterflood recovery.  

da Cruz et al (2004) introduce the concept of a quality map, a representation of the 

reservoir responses and their uncertainties of each stochastic realization.  The quality maps of all 

realizations provide a distribution of quality values and for each cell of the grid. The quality 

concept may be applied to compare reservoirs, to rank realizations and to incorporate reservoir 

characterization uncertainty into decision-making with fewer full-field simulation runs. 

Connectivity measures for ranking and selecting reservoir realizations is also presented in 

McLennan and Deutsch (2005). The authors describe static connectivity measures tailored to 

heavy oil recovery processes. Flow simulation is performed on many geostatistical realizations to 

calibrate the ranking measures to production response, allowing an inference in reservoir areas 

where it is not possible to perform many flow simulations. Yazdi and Jensen (2014) present a 

static measure based on average harmonic permeability to help rank realizations. The 

methodology is applied in a steam-assisted gravity drainage (SAGD) model, reaching good 

correlations with thermal simulation results. 

2.2.2 – Dynamic-based ranking methods 

Static-based methods may not truly represent the ranking based on actual performance of 

the reservoir. For example, a reservoir which contains large OOIP but is not well connected will 

ultimately produce less oil than a reservoir that is well connected but contains less OOIP. Static-

based ranking does not guarantee that the selected models will represent the range of 

uncertainty of the true dynamic performance of the reservoir. A better ranking criterion would 

be use a method that captures the dynamic connectivity and present a good relationship to oil 

recovery (Kelkar et al., 2014). 

The use of streamline simulation for ranking realizations is presented in Ates et al (2005). 

The volumetric sweep efficiency parameter is used as a quantitative indicator of connectivity, in 

order to rank reservoir models and for selecting a few realizations for further processing. The 

volumetric sweep is a simple performance measure that quantifies the interactions between the 

uncertainties in the static model with the dynamic flow conditions. The authors combine both 
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sweep efficiency and OOIP in the process to rank different scenarios. High sweep and high OOIP 

represent the optimistic scenario, whereas low sweep and low OOIP represent the pessimistic 

scenario. The most likely scenario presents a medium sweep efficiency and OOIP. 

Scheidt and Caers (2009) introduce a technique to select reservoir stochastic models to be 

evaluated by flow simulation, called the distance kernel method (DKM). The authors propose the 

concept of dissimilarity distance between reservoir models, which indicates how dissimilar any 

two models are in terms of their associated response of interest. Flow response models are 

grouped based on their distances and a few representative realizations per group are selected 

for full-field simulation, prediction and history-matching purposes. 

The ranking method proposed by Sharifi et al (2014) uses the fast-marching method (FMM) 

to determine the dynamically connected reservoir volume to a given well. A radius of 

investigation can be calculated as a function of time without running any flow simulation. 

Comparing with ranking from flow simulation, a larger number of reservoir models can be ranked 

in order to span the range of dynamic uncertainty. 

Recently, Fei et al. (2016) discuss a novel way to choose optimal models from multiple 

realizations. A two-way cluster analysis is presented for quantitatively evaluating a grid cell by 

cell throughout each of the realizations. A connectivity analysis ranks the volume of connected 

geobodies and a statistical analysis quantitatively identifies the optimal realizations. 

 

Although dynamic ranking shows better correlation with the production responses (Kelkar 

et al., 2014; Sharifi et al., 2014; Fei et al., 2016), selecting a limited number of models for history 

matching still leads to the problem of how the uncertainty in dynamic performance are properly 

captured. 

 

2.2.3 – Experimental design approach 

Alternatively to the ranking methods, Experimental Design (ED), also often referred to as 

Design of Experiments (DoE), has been used in multiple approaches to significantly reduce the 

number of geological models that must be built and flow simulated to evaluate the reservoir 



Chapter 2 – Background and Literature Review 

12 

 

performance. The principle of the method consists of running a few reservoir simulations by 

varying all the uncertain parameters simultaneously. The simulation results are then used to fit 

a simple polynomial Response Surface Model (RSM). The specific response (e.g. cumulative oil 

production) will then be predicted by RSM to replace the time-consuming fluid flow simulator. 

The theory behind experimental design was developed in the 1920s for agricultural 

applications. An early reference of the technique in petroleum industry is presented by Sawyer 

et al. (1974), initially using physical experiments. However, there were no further published 

examples of the methods in oil/gas studies until the end of the 1980s. Computational 

experiments provide an economical and straightforward method of experimentation (Gupta et 

al., 2012).  

Damsleth et al. (1992) apply the basic concepts of ED to a case study from the North Sea. 

The basic sensitivities obtained with a minimum number of simulations. The results from the 

analysis also were used as input to a Monte Carlo simulation. This approach is widely used to 

propagate uncertainty in input parameters through a performance model (Jensen et al., 2000). 

Jones et al. (1997) present an approach to evaluate waterflood development options and 

to understand the impact of uncertainties in reservoir description. The methodology has been 

selected the combination of input parameters in order to provide accurate estimates of the 

effects of individual factors. Based on ED techniques, 800 simulation runs have been reduced to 

a set of 144, allowing prediction of recovery for any combination of factor settings.  

Dejean and Blanc (1999) integrate ED, RSM and Monte Carlo methods to build a simplified 

model of a process and to estimate the uncertainties on response predictions. The results 

quantified uncertainties on the reservoir production forecasts conditioned on uncertainties on 

the reservoir modelling parameters, reducing the computational costs. 

Kloosterman et al (2007) apply ED to provide a quantified decision-based plan for 

minimizing risk in oil reservoirs. ED has been used to eliminate scenarios with negative impact on 

project economics, to select those that added net present value, and to optimize development 

plan of reservoir. 

Fetel and Caumon (2008) develop a methodology combining ED and RSM, which associates 

results of both conventional and alternative flow simulations. Although these alternative 
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simulations do not predict exactly the flow performance, they can rank the reservoir models 

according to some given criterion, with reduced computational cost. This approach improves the 

modelling of non-linearities in the reservoir flow response, which are not usually captured while 

using standard ED and RSM. 

Lisboa and Duarte (2010) present a methodology based on ED and RSM including HM. 

Besides a cumulative production response surface, another one is generated to represent the 

quality of the HM. Only cases with a good HM are selected as input to the Monte Carlo simulation. 

Becerra et al (2012) also integrate HM with ED to select representative scenarios, reducing the 

range of possible models taking into account observed. 

2.3 – Current Trends in Reservoir Characterization 

The increase in computational power has made it possible routinely running reservoir 

simulations with millions of grid blocks (Lie et al., 2016).  

Up to this point, managing multiple geostatistical models for improving production 

reservoir forecasts is still a challenge in the petroleum industry due to the computational 

demands to perform flow simulation and history matching. 

However, considering all realizations simultaneously is possible due to the recent advances 

in computer science. The performance of the computers has been increased five orders of 

magnitude in the last 20 years (de Barros and Deutsch, 2016; Cao, 2002; Watts, 1997). Computers 

are more than 100 times faster than they were about ten years ago. Moreover, during the last 

few years, the emergence of massively parallel computing platforms, such as the GPU 

architecture, has opened new pathways to efficient parallel processing. 

 

2.3.1 – Parallel Processing 

Parallel processing means running a computational process that has been divided into 

several smaller sections into several processors simultaneously to reduce the computation 

runtime. The main calculation is divided into several smaller sections that are run separately and 

simultaneously through a set of threads, or processors, instead of doing the computation using 

only one CPU. Afterwards, the intermediate results are joined to produce the outcome. The most 
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important reason for the use of parallel processing in comparison with conventional or serial 

processing is to increase the solution speed (Mattson 2003).  

Figure 2.1 illustrates the differences between serial and parallel computing. In serial 

computing, a problem is broken into a series of instructions that are executed sequentially, one 

after another, by a single processor. Only one instruction may execute at any moment in time. In 

parallel computing, a problem is broken into some parts that can be solved concurrently. Each 

part is further broken down into a series of instructions that can be executed simultaneously on 

different processors. 

The popularity of parallel reservoir simulation has increased in recent years due to the 

availability of multicore CPUs and the opportunity for runtime reduction, especially in complex 

and fractured reservoir models that include large amounts of data (Mohajeri et al., 2018). 

The development of shared memory and distributed memory machines in the 1980s 

intensified the research on parallel reservoir simulation. Scott et al. (1987) present a reservoir 

simulation approach using parallel computers. Chien et al. (1987) investigate the parallel 

processing on shared memory computers. They developed a general-purpose reservoir simulator 

in a multiple vector processor machine, creating several independent tasks in a shared memory 

environment. 

In the early 1990s, black oil and compositional simulators have been developed considering 

multiprocessors machines (Killough and Bhogosvera, 1991; Killough and Wheller, 1991; Rutledge 

et al., 1991). Reservoir models over 2 million cells could be run on machines with 65,536 

processors, reaching computational speeds in the order of 1 Gigaflops. (Dogru et al., 1999). 

Simulators on distributed memory machines gradually moved from research to real field 

applications using massively parallel simulators in the mid-late 1990s (Shiralkar et al., 1997; Chien 

et al., 1997; Kilough et al., 1997; Praetor et al., 1997). Problems using one million grid points 

could be solved in a few minutes of computer time (Kaarstad et al., 1995). 

A new generation of reservoir simulator has been developed in the 2000s, using massively 

parallel computing techniques (Ma and Chen, 2004; Fjerstad et al., 2005; Lu et al., 2008; Batycky 

et al., 2010). 
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Figure 2.1: Serial and parallel computing differences.  

 

Current studies investigated parallel processing for numerical flow simulation large-scale 

fields (Tleukhabyluly et al., 2016; Mohajeri et al., 2018); fractured reservoirs (Mesbah et al., 2019) 

and assisted history matching (Al-Samhan et al., 2017). These recent studies have been achieved 

speedup ratios up to five times relating to the reference simulations, preserving the accuracy of 

production responses. 

Reservoir simulation on massively parallel computers can reduce simulation times over 3-4 

orders of magnitude. The magnitude of the real-time speedup is impressive. Huge gains in the 

reduction of reservoir management study times are possible. More alternative reservoir 

management scenarios can be considered, including considering all geological realizations, since 

computational time is a bottleneck for dealing with multiple reservoir models. Parallelism offers 

a solution to make computationally intensive methods practical to apply to routine field studies. 
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2.3.2 – GPU Architecture 

Reservoir simulation has evolved together with scientific computer hardware. Advances in 

reservoir simulation performance have been first limited by the memory of CPU based computer 

systems (Telishev et al., 2017). Then, simulators have been endowed with the capability to 

distribute computational processes using multicore architectures. Simulators have been 

redesigned to share computations between multiple threads, keeping coarse-grained parallelism 

approach (Zhou et al., 2013). 

Graphic processing units (GPU) have been developed as a new scientific computing 

hardware architecture, exploiting fine-grained parallelism (Khait and Voskov, 2017).  GPUs have 

been used for many parallel applications in addition to their originally intended purpose of 

graphics processing algorithms (Hawick et al., 2010). 

Originally designed to accelerate graphics, GPUs are increasingly used to deal with 

computationally intensive algorithms. From an architectural perspective, GPUs are very different 

from traditional CPUs (Figure 2.2). They are devices equipped with hundreds of cores able to 

handle thousands of threads simultaneously so that a very high level of parallelism can be 

reached. In addition to the number of cores, GPUs also have significantly greater memory 

bandwidth. 

 

 

Figure 2.2: CPU and GPU architectures.  
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The main disadvantage of using GPUs is related with the effort required to code algorithms. 

Algorithms must be coded to reflect the architecture of these hardware accelerators. 

Incorporating GPU support into existing codes is difficult and typically requires significant 

changes in the code and the algorithm (Själander et al., 2014).  

The efforts in reservoir simulation are mainly concentrated with employing GPUs to 

accelerate the solution of linear systems (Esler et al., 2014; Khait and Voskov, 2017).  Manea 

(2015) presents a literature survey concerning to parallel computing and GPU architecture in the 

context of reservoir simulation. Klie et al. (2011) discuss the application of GPU accelerated 

computation in reservoir simulation.  Esler et al. (2011) report a speedup up to 100 times 

compared to a single CPU implementation, using a parallel implementation of algebraic multigrid 

on the GPU architecture as a preconditioner in solving the pressure equation. Bayat and Killough 

(2013) report GPU speedups ranging from 25 (50,000 grid blocks) to 45 (2 million grid blocks) in 

reservoir simulation. Recently, GPU architecture has achieved speedups up to 3 times compared 

to multicore implementation for a 16 million grid blocks model (Manea and Tchelepi, 2017). 

Implementation of multicores and GPU architecture in reservoir simulation is relatively 

recent. Such technologies present great potential for achieving computational speedups making 

full use of the computational power of the massively parallel architecture. GPU architectures are 

evolving rapidly compared to the traditional CPU architectures. 

2.4 – Summary 

• Static-based ranking methods are fast but may not truly represent the performance of the 

reservoir; 

• Dynamic-based ranking methods present a higher correlation with reservoir performance 

than static-based ranking methods; 

• Regardless the methodology, ranking and selecting one or a limited number of models does 

not span the reservoir uncertainty; 

• The novel computer architectures and the recent computational performance allow the 

industry to consider all realizations simultaneously instead of ranking and selecting a few 

models.



 

18 

 

Chapter 3 

 

 

Correct Paradigm for Uncertainty Management 
 

Development decisions need to be taken despite an imperfect knowledge of the 

subsurface.  Methodologies to understand and quantify reservoir uncertainties will likely lead to 

improved production. In addition to the static subsurface uncertainties, there are significant 

uncertainties in flow parameters (relative permeabilities, fluid properties, original fluid in place 

distributions, initial reservoir pressure, etc.) and economic parameters (oil price, 

production/injection costs, etc.). 

Uncertainty quantification is not synonymous with decision-making (Bickel and Bratvold, 

2007). Making a good decision often requires the assessment of uncertainty. Incorporation of 

uncertainty analysis is intended to improve the quality of decisions taken to explore and develop 

hydrocarbon fields. 

The single model approach for forecasting remains popular in the industry, despite 

extensive work on uncertainty, partly because there is a belief that a single best model could be 

found by adding more physics, increasing the grid resolution, finding a better geological 

description, or some other improvement (McVay and Dossary, 2014). The search for the best 

model can lead to excessively long development times and ultimately forcing decisions to be 

taken without the full benefit of the modeling work (Thiele and Batycky, 2016). 

The single-model paradigm cannot be used to quantify uncertainty in the reservoir forecast. 

A single model is assumed correct because inconsistencies are minimized through post-

processing techniques, such as histogram corrections and history matching. The single model 

approach leads to a danger of overconfidence associated with forecasting and decision-making 

(Brashear et al, 2001). 
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This chapter is focused on the importance of uncertainty management in reservoir 

development planning considering multiple realizations.  

3.1 – Uncertainty Reservoir Management 

Projects on hydrocarbon fields are capital intensive. They are considered high risk since they 

are a combination of large capital and high uncertainty. Risk cannot be eliminated due to inherent 

uncertainties in the reservoir models used to generate production forecasts of the hydrocarbon 

fields. There is a need to make the best decisions with the appropriate level of technical analysis 

considering all available data and the inevitable uncertainty. 

Understanding the uncertainties related to reservoir production is crucial for making 

development and management decisions through the lifetime of the reservoir. Deterministic 

methods produce a single response, with no understanding of uncertainty in reservoir production 

forecasts. Uncertainties must be evaluated through a probabilistic approach.  

The development of a hydrocarbon field has a high degree of uncertainty due to the lack of 

complete knowledge in required geological, engineering and economic parameters. The oil price 

forecast is one of the biggest sources of economic uncertainty, but it affects projects equally. The 

spatial distribution of rock properties such as porosity depends on each reservoir. The values at 

the well locations are better known while values at the inter-well locations are estimated with 

some uncertainty. 

The major sources of uncertainty in reservoir modeling are associated to the geological 

properties, such as facies, porosity and permeability; and flow properties, such as fluid 

composition, saturation and pressure. 

Considering reservoir engineering, the uncertainties arising from the lack of complete 

knowledge about the important variables for the project, such as the number of wells and 

production units, imply additional costs for its development. This increased cost is often 

understood using the concept of a loss function. Any underestimation or overestimation 

produces costs that reduce the return. If there is an underestimation of the true reserves, the 

increase in costs will be linked to changes not foreseen in the initial project or the incomplete 

exploitation of the deposit. If the project is based on underestimated production, with the 
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development of production it will be necessary to make changes in the original project to recover 

the unplanned volumes. In an extreme case, for example, it may be necessary to employ a new 

production unit since the original planned unit does not contain the necessary number of 

producing wells and other necessary facilities. If the correct volume had been initially predicted, 

a single unit could have been designed with the required number of wells, lowering the final cost. 

If, on the other hand, there is an overestimation of the reserves, the increased cost will be 

due to expenses arising from unnecessary investments. Using the same example, if the expected 

oil volume is greater than the actual recoverable volume, a larger more expensive unit than 

required (with a larger number of wells and other facilities) may be employed, reducing the 

effective project return. 

For these reasons, uncertainties are important in all phases of the development of a 

hydrocarbon field. It is necessary to quantify the uncertainty to understand possible variations 

around the estimated values for each project. 

This thesis is restricted to geological aspects of reservoir characterization and uncertainty 

management. The degree of uncertainty depends essentially on three factors: 1) the degree of 

knowledge of analogous models to the studied reservoir (conceptual model); 2) the existing 

sampling for each relevant property considered; 3) the degree of variability in structural 

framework and reservoir properties, including facies, porosity and permeability. These factors 

interact since the characterization of homogeneous reservoirs needs smaller amounts of data 

than heterogeneous and complex reservoirs. 

The geological properties associated with a newly discovered reservoir likely have high 

uncertainty, mainly due to limited sampling. This is particularly critical since the economic 

viability is analyzed and the development strategy is designed in this stage. In the later stages of 

development, uncertainty is also present, especially when drilling costs are very high. This is 

especially true in deep water offshore reservoirs, located in basins along the continental shelf. 

Although it is difficult to reduce these uncertainties, they should be quantified and understood 

through reservoir simulation and economic analysis. 

A commonly used reservoir modeling methodology consists of (1) modeling of facies, 

porosity and permeability for each block of a three-dimensional grid. The fluids contained in the 
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reservoir are also characterized through PVT analysis (pressure, volume and temperature), 

relative permeability, capillary pressure, etc.; (2) history matching, when flow simulation results 

are matched to field observations from the beginning of production to the current date. In this 

phase, the pressures and rates from the simulation are compared with observed values, both for 

the whole reservoir and for each active well. When there are differences between the simulation 

and the observed behavior of the reservoir, local adjustments are made in the reservoir and fluid 

properties, in order to minimize these differences; and (3) prediction of reservoir behavior, 

where future hydrocarbon production is forecast together with tuning of the production 

development plan.  

The purpose of reservoir modeling and history matching is not limited to building a model 

that is consistent with the production data currently available, but one that gives good 

predictions of its future behavior. Understanding the uncertainties related to reservoir 

production is crucial for making development and management decisions through the lifetime of 

the reservoir. 

The assessment of uncertainty is based on the probability distributions of all the major 

reservoir properties. Multiple equiprobable reservoir models are generated by geostatistical 

simulation techniques in order to characterize the geological heterogeneity and uncertainty. 

Dealing with multiple realizations provides an assessment of the space of uncertainty to be used 

in the decision-making processes. 

Common current practice in the hydrocarbon industry is applying a simple and fast transfer 

function over the ensemble of models and ranking them according to the responses (Corre et al., 

2000; Campozana et al., 2007; Gross and Honarkhah, 2011). Although there is no unique ranking 

method, the original oil in place (OOIP) is the most widely used ranking measure (Pyrcz and 

Deutsch, 2014). 

Based on the responses of the transfer function, some of reservoir models are selected and 

passed to history matching and flow simulation, where new uncertain variables are considered. 

These uncertain variables are related to the properties of reservoir fluids (uncertainty regarding 

fluid type, saturation distribution, pressures, viscosity, fluid composition, etc.) and the 

characteristics of the production system (number of wells, drainage mesh configuration, special 
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wells - horizontal, multilateral, etc.). At the end of the flow simulation phase, the production 

forecast curves over the life of the reservoir for each of the simulated models are obtained. The 

value of the accumulated 10 to 30 year production forecast is brought to the present through the 

calculation of net present value (NPV). 

The NPV for each of the models are obtained combining geological, economic and 

developmental uncertainties. Each production alternative has a distribution of NPV as well as 

production results, such as total volume produced of each fluid. 

The most reliable predictions are based on flow simulation with realistic 3-D models of 

reservoir properties (Ballin, 1992; da Cruz, 2000). However, all predictions involve uncertainties, 

since reservoir models are built with uncertain parameters.  

 

3.2 – The Single Model Paradigm 

Decisions in reservoir management are often based on a single reference case (Ani et al., 

2018; Shirangi and Durlofsky, 2016; Hegstad and Saetrom, 2014). These predictions are 

uncertain. There are many different parameter values that are consistent with the data and 

geological knowledge. Any single reference case reservoir model is only one outcome out of an 

ensemble of possible models describing the unknown reservoir. Considering an ensemble of 

reservoir models is a better basis for decision support instead of only one or a few 3-D models. 

Risk and uncertainty are managed and optimized. 

Making decisions based on a single reference case disregards geological uncertainty. 

Multiple realizations of the model are generated in order to capture some of the uncertainties 

associated with the model.  

Several approaches for ranking and selecting a single case are presented in Chapter 2. The 

appropriate selection method may be different in different contexts. Normally, the optimal 

realization is considered the realization that matches the real reservoir data the closest (Ani et 

al, 2018). However, with the aim of selecting the reference model from a set of multiple 

realizations, results from the selected model may not represent the response from the full set of 

models. The main idea of setting a single reference case is to find the best model with the 
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appropriate set of input parameters for matching the history of production data, and thus, 

predict the future reservoir performance better. However, different realizations are able to 

match history equally well. 

The influence of uncertain geological parameters is not adequately reflected in the 

reservoir production responses when just a few models are selected. Reservoir forecasts are 

inaccurate when incorrect or suboptimal decisions are made with a reduced number of 

realizations. 

Multiple realizations should be generated to provide a stable assessment of uncertainty by 

geostatistical simulation. However, the high computational cost of running flow simulation and 

the iterative nature of history matching restrict the number of simulation models that can be 

used for production predictions. Processing all realizations through a flow simulation may take a 

very long computational time. A detailed numerical reservoir model can be very complex, with 

millions of cells, many production zones, local grid refinements, etc. CPU time for simulating a 

single model may take many hours (Telishev et al., 2017; Farah et al., 2015; Klie, 2015). Evaluating 

the response of multiple realizations of a reservoir model is very computationally demanding. 

Many companies make decisions based on a few choices (Yong et al., 2017; Baker, 2015; 

Sarma et al., 2013), mostly a reference model (P50), and often a low (P10) and high (P90) model. 

Moreover, most software is aimed at processing one model at a time. Resources are often 

presented as a single value instead of a distribution. 

The approach of selecting a few realizations for reservoir production forecasting should be 

reconsidered with the recent advances in computational performance (Deutsch, 2015; de Barros 

and Deutsch, 2017). Uncertainty quantification helps to make more efficient decisions.  

The following section presents an example of the differences between considering all 

realizations and the single model approach as well as the economic impact of considering all 

realizations in the reservoir production forecast. 

3.3 - Synthetic Examples 

The following two examples aim to obtain a better quantification of response uncertainty 

and the value of using all realizations. The proposed methodology considering all realizations is 
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compared with the traditional selection of a reference model (also called P50 model). The 

proposed workflow is shown in Figure 3.1. Realizations are generated by SGS using a single model 

as a “seismic” attribute (yellow boxes). The P50 approach is represented in blue. The approach 

using all realizations is represented in green. Realizations are ranked for selecting the P50 model. 

Production responses from four potential well locations are evaluated on both approaches. The 

well location with the maximum production is selected and evaluated on the true model. Finally, 

the difference between the responses from the true model based on both approaches is 

calculated (purple box). 

 

Figure 3.1: Proposed workflow for evaluating the production response based on P50 and all 

realizations.  

 

3.3.1 – Synthetic Example 1 - Flow simulation approach 

First, sequential Gaussian simulation (SGS) is used to generate a 2-D realization of porosity 

and permeability. This model represents the true reservoir and is considered unknown except at 

well locations. One hundred realizations are generated by SGS using the previous single model 
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as a “seismic” attribute, in order to ensure that all realizations are consistent with the true model. 

A correlation of 0.7 has been used in this example since typical correlation values between 

seismic and porosity range from 0.5 to 0.7 (Pyrcz and Deutsch, 2014). The closer the correlation 

is to 1, the stronger is the relation between the true model and the realizations. 

The model contains 100 x 100 regular grid blocks with unit dimension in X and Y directions. 

Four conditioning data are used for simulating porosity and permeability properties (Figure 3.2). 

The wells are considered water injectors in the flow simulation step. 

The number of wells is defined to reproduce the traditional five-spot injection/production 

pattern as shown on Figure 3.3. In this approach, four injection wells are located at the corners 

of a square and the production well sits in the center. Water is injected simultaneously through 

the four injection wells to displace the oil toward the central production well. 

 

 

Figure 3.2: Example of a true model of porosity and permeability properties with four injector 

wells. 
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Figure 3.3: The five-spot injection/production pattern. 

 

3.3.1.1 – Ranking and selecting P50 model 

The ensemble of realizations is ranked according to the hydrocarbon pore volume (HCPV). 

Moreover, it is assumed that the pore space is completely filled with oil (oil saturation = 1). Thus, 

the HCPV from each realization is given by: 

����� �	�∅
� 												� � 1,… , �
�


��
																																														 �3.1� 

where n is the number of grid cells, ∅
� is the cell porosity for cell i = 1,…,n for realization l = 1,…,L. 

 

According to the ranking, the realization corresponding to the P50 quantile can be selected. 

 

3.3.1.2 – Well location optimization 

Four wells locations (A, B, C and D) are evaluated to maximize the production response 

(Figure 3.4). The numerical flow simulator Eclipse (Schlumberger, 2016) is used to evaluate the 

responses considering 15 years of production.  
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Figure 3.4: Well locations of injectors (white) and producers (red) evaluated for maximizing the 

production response.  

 

The optimum well location has been defined from the P50 model and from the ensemble 

of realizations. The key idea is reproducing a realistic problem. The decision of drilling a new 

producer well is taken based on a P50 model or from the model of uncertainty assessment. The 

responses are obtained from the true reference reservoir, that is unavailable in practice. 

Selecting the optimum well location from the P50 model is straightforward. The well 

location with the maximum cumulative oil production (Np) over the reservoir lifetime has been 

selected. For this example, 15 years of production has been considered. The selection of the 

optimum well location from the ensemble of realizations is shown in Figure 3.5. The expected 

value of Np has been computed for each well location over all realizations. The well location with 

the maximum expected value has been selected. 
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Figure 3.5: Schematic procedure used to define the optimal well location considering the P50 

model and all realizations. 

 

3.3.1.3 – Production response improvement 

The well locations based on both approaches are evaluated on the true model, as shown in 

Figure 3.6. The optimal well location defined from P50 model may be the same location as 

defined from all realizations. So, the workflow has been repeated 100 times to obtain stable 

response variability. 

The relative improvement (RI) of the production response based on all realizations over the 

production response based on the P50 model is calculated according to Equation 3.2: 

 

���%� � 100 ∗ 	 ������� !"��#$%!�
������� !&��#$%!�/(                                    (3.2) 

 

where E[allrz] is the expected value of production response over all realizations; E[P50] is the 

expected value of production response from the P50 realization. 

Figure 3.7 shows the distribution of the reservoir production responses from the true model 

based on optimal well location defined by P50 and defined over all realizations. Histograms show 

that average of 100 cases calculated over all realizations (414 m3) is higher than the average from 

cases generated by the P50 model (399 m3). 
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Figure 3.6: Example of one case used to compare the production response.  

 

A cross-plot of the responses from the P50 model and all realizations shows that there are 

just a few cases where responses from the P50 model are higher than responses from all 

realizations. It does not mean that the P50 approach could be better than using the ensemble of 

realizations. Some realizations may present better results, by chance, than others, considering 

statistical fluctuations. Increasing the number of realizations would minimize these fluctuations, 

but there is always a probability that the P50 happens to be close to the truth. Moreover, some 

cases present the same responses from both approaches due to the limited size of the solution 

space since just four possible well locations have been tested. Once again, by chance, the optimal 

well location defined from P50 model may be at the same location defined over all realizations.  
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Figure 3.7: Distribution of the improvement of using multiple realizations over the P50 model 

considering 100 realizations.  

 

Finally, the distribution of the RI considering all realizations over the P50 model shows a 

mean of 5%. According to the reservoir development plan, this number represents an increase 

of 5% on average on the reservoir production performance. The economic impact of this 

production increase will be demonstrated below. 

 

3.3.2 – Synthetic Example 2 - Connected volume approach 

Considering the workflow presented in Figure 3.1, a second synthetic example has been 

considered in order to evaluate the location of a producer well over all realizations. In this 
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example, a synthetic 2-D model is represented by a 100 x 100 uniform grid blocks with unit 

dimension in X and Y directions. Two conditioning data, w1 and w2, have been used for simulating 

a reservoir quality property (RQP) between 0 and 1. The data represent an injector/producer well 

pair. 

Similar to the previous example, the reference model is created by SGS. This model is used 

as the real reservoir, unknown in practice. Then, one hundred realizations have been simulated 

by SGS considering the single model as a seismic attribute, applying a correlation equal to 0.7. 

Sixteen well locations are considered for a producer to evaluate the optimal production 

response, as illustrated in Figure 3.8.  

Some simplifications are considered to reduce the computational time and avoid using flow 

simulation. Ranking realizations and selecting the P50 model have been defined based on the 

size of geo-objects calculated by geo_obj.exe (Deutsch, 1998). A threshold has been applied to 

the RQP for defining geo-objects. Similarly, the connected volume around the new location has 

been considered as the production response. This connectivity measure around the well is highly 

correlated to the porosity and permeability and hence to the well production response. The 

connectivity has been calculated by rank_loc.exe (Deutsch, 1998). A maximum radius for 

connection has been applied to the objects for measuring the connectivity. 

Many parameters influence the production results. First, the reference model has been 

used as a seismic attribute to simulate all realizations. The influence of these secondary data on 

the primary property has been defined by changing the correlation coefficient in the SGS 

algorithm. The continuity of the simulated property also contributes to the reservoir connectivity, 

hence the range of the variogram is also changed. 

The threshold applied to define geo-objects also influences the production response. Net is 

defined based on the property exceeding the specified threshold. Finally, the radius near to the 

well location affects the reservoir connectivity. Thus, the maximum radius for connection also 

has been changed. 
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Figure 3.8: Example of a true model of RQP containing two conditioning data (black dots in 

corners) and 16 possible new producer well locations (red dots). 

 

A sensitivity analysis is performed in the proposed workflow to understand the influence of 

these parameters on the production responses. A low, a medium and a high value have been 

defined for each parameter, as shown in Table 3.1, leading to 81 scenarios. Each scenario has 

been run 100 times, limiting stochastic fluctuations and obtaining a robust response. 

 

Table 3.1: Parameter values for sensitivity analysis 

PARAMETER LOW MEDIUM HIGH 

Secondary data correlation 0.3 0.5 0.7 

Variogram range 10 30 70 

Threshold 0.2 0.4 0.7 

Maximum radius of connectivity 10 20 30 

 

Figure 3.9 shows a cross-plot between true response based on P50 and based on all 

realizations for the 81 scenarios. Each scenario contains 100 realizations, and each dot 

w1 

w2 
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corresponds to a single realization. Points above the 45-degree line indicate better results have 

been obtained using all realizations instead of the P50 model. 

The expected value of the production response has been calculated for each scenario, 

considering 100 realizations per scenario. The improvement considering all realizations over P50 

has been calculated according to Equation 3.2 (Figure 3.10). Five scenarios show a negative 

improvement. This means the P50 responses are higher than responses from all realizations. 

Table 3.2 shows the corresponding parameters from each scenario and their RI values. 

 

 

Figure 3.9: Crossplot between production responses based on P50 model and all realizations 

from 81 scenarios.  

 

In general, scenarios defined with a low correlation with the secondary data, long variogram 

range and short radius of connection show the least improvement. 

The scenario with the poorest improvement is analyzed more closely. The workflow has 

been run 100 more times to obtain an even more statistically robust response. Figure 3.11 shows 
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the distribution of the RI of these realizations. The average is close to zero (0.4%) which means 

the fluctuations are related to the stochastic procedure instead of a combination of parameters. 

 

Figure 3.10: Relative improvement over 81 scenarios. Five scenarios show a negative 

improvement (in red). 

 

 

 

Figure 3.11: Histogram of relative improvement over 100 realizations from the scenario with the 

worst response. 

3.4 – Value of Using All Realizations 

The RI average shown in Figure 3.10 is 15%, which means the production response is 

increased by 15% on average considering all realizations compared with using the P50 model. 
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However, projects might not blindly follow the P50 model, and there is a confidence interval to 

select a representative model. In other words, 15% may be an optimistic production 

improvement, and the economic impact may be considered unrealistic in practice.  

A more conservative increase in reservoir production, say 5%, is able to improve 

significantly the economic performance of a production project. 

NPV and Internal Rate of Return (IRR) are two commonly used investment analysis methods 

in industry. NPV corresponds to the cumulative discounted cash flow over the production 

lifecycle of the reservoir. IRR is the discount rate when NPV of a particular cash flow is zero. The 

higher the IRR, the greater the profitability and use of capital.   

In this work, the contribution to the NPV from the injection and production of fluids are 

considered. Other contributions, such as capital expenditures, are not considered in this 

formulation. In a 15-year reservoir development plan (see Figure 3.12), increasing reservoir 

production by 5%, due to considering all realizations, may lead to a large improvement in NPV 

(30%) and IRR (10%). 

Reservoir uncertainty may have a significant impact on the project management, such as 

the selection of production development strategies. Understanding the uncertainties related to 

reservoir production is important for making development and management decisions through 

the lifetime of the reservoir. Tens of millions of dollars might be expected as a conservative 

increase in reservoir production of 5% due to optimization over all realizations. The magnitude 

of these incomes strongly supports the efforts of considering all realizations instead of just a P50 

model.  

Uncertainty assessment in reservoir simulation studies may be an important issue to 

quantify future planning risks through field development scenarios. The uncertainty comes from 

the sparseness of geological and reservoir data that negatively affect representing the geological 

environment for reservoir flow simulation. Therefore, the uncertainty should be quantified for 

improved future production plans. 
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Figure 3.12: Cash flow diagrams of a hypothetical 15-year reservoir development project. Red 

bars represent the original cash flow project. Green bars represent the new cash flow with an 

increase in annual incomes. 

 

Although additional models are selected from the ensemble of geostatistical reservoir 

models, such as P10 and P90, a reference case model is a conventional approach used in the 

hydrocarbon industry. A general concern with any realization that is claimed to be a specific P10 

or P90 value is that it is not the same P value at all locations. The P value of a realization must be 

considered as a global parameter with little local meaning. Individual scenarios have a near-zero 

probability of occurrence. Any desired P model can be found or constructed. However, no single 

case can represent a stipulated probability of reservoir performance.   

3.5 – Number of Realizations 

Although all realizations might be used for a more robust uncertainty assessment, there is 

a concern about exactly how many realizations should be considered. Geostatistical techniques 

may quickly generate many realizations. However, thousands of realizations may not be a 

feasible number in real reservoir studies. 
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The number of realizations is related to the aspects of the quantified uncertainty and the 

precision required. The assessment of average statistics requires relatively few realizations. 

Uncertainty assessment with more precision requires a larger number of realizations.  

Based on the synthetic Example 1 shown in Section 3.3.1, a large number of realizations 

(10,000) have been generated. Each realization has been evaluated using numerical flow 

simulation for testing four different well locations (A, B, C and D). The average response for each 

well location is calculated over all realizations (see Figure 3.5). This value is considered as the 

maximum benefit possible from a very large number of realizations. 

Next, a different number of realizations are randomly selected from the total, creating 

subsets of realizations. The maximized production response is calculated over each subset. The 

procedure is repeated 1000 times to obtain the average value while minimizing statistical 

fluctuations. The expected production response over each subset of realizations is a fraction of 

the maximum value obtained over 10,000 realizations. This fraction gets closer to the original set 

as increasing the number of realizations in each subset (Figure 3.13). All values are normalized 

based on the maximized production. 

Ideally, this maximized value would be obtained from an infinite number of realizations, 

which is infeasible. The idea here is to demonstrate the minimum number of realizations 

necessary for a reliable performance response. According to this example, 100-200 realizations 

result in 90% of the maximum benefit. There is a very slow increase in this percentage above this 

range. The difference around 10% of the maximum benefit (100%) considering an infinite number 

of realizations is due to the simplified 2-D example and the limited number of solution space. A 

smaller gap is expected in practical 3-D reservoir modelling decision-making processes. 

3.6 – Managing All Realizations 

The single-model approach for production forecasting remains popular because of 

simplicity and because of reduced computational effort for running a flow simulator or for history 

matching. Selecting a single model or few cases for evaluating the uncertainty in the reservoir 

production performance disregards geological uncertainty. Although significant progress has 
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been made in last years in the development of flow simulators and history matching, such 

processes still cannot deal with a large number of reservoir models. 

The consolidated approach of ranking models and selecting some of them based on a simple 

objective function, e.g. OOIP, may result in misleading responses. This is a main paradigm that 

must be changed in reservoir management.  

Although there are some concerns about managing all realizations, discussed in following 

chapters, considering all realizations can result in significant improvements in the economic 

performance of the projects. The following sections will address considering the ensemble of 

realizations in reservoir development planning. 

 

 

Figure 3.13: Number of realizations necessary to obtain a fraction of the maximum benefit 

possible from an infinite number of realizations. 

 

3.6.1 – Making Decisions based on Multiple Realizations 

Exploring hundreds of geostatistical realizations simultaneously is not well understood in 

reservoir management, even with recent computational advances. Realizations have been used 

as isolated cases, instead of considered as an ensemble with multiple realizations all used for 

uncertainty predictions and production optimization. 

Reservoir management decisions conventionally need a single model to compute OOIP, to 

define the well locations, the operate facilities and to specify the reservoir development plan. 

However, these operations are not restricted to a single model. There are no limitations to make 
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a decision on all realizations; the measure of performance to make a decision is the expected 

value over all realizations.  

Although the methodology to generate geological reservoir models is mature and well-

established, the uncertainty information is often not properly used in the decision-making 

process. Some the reasons are the high dimensionality of the problem and the lack of a robust 

decision-making model that properly manages the risk associated with the geological 

uncertainty. 

The complexity of many real response variables requires considering the ensemble of 

realizations for a better planning and uncertainty assessment. Managing multiple realizations 

must be used in measures of performance, such as OOIP and production forecasts and 

optimization processes, helping the reservoir team make decisions for maximizing the value of 

the reservoir project. 

 

3.6.2 – Calculating Measures of Performance 

In a geostatistical context, realizations of the variables of interest that characterize a 

reservoir model must be submitted to a transfer function. The distribution of the transfer 

function responses characterize the space of uncertainty and can be used in decision-making. 

Any calculation performed on one reservoir model can be performed on multiple models, 

to generate a distribution of the response variable of interest. Realizations are equally probable, 

and there is no right or best realization. Individual realizations, in general, should never be used 

for calculations. Considering a single realization can be misleading since the realization depends 

on the random number generator. In most cases, the robust approach is to consider all 

realizations and take the expected value from the distribution of the responses as a single result. 

The OOIP or net-to-gross (NTG) calculation can be considered a simple and fast transfer 

function using all realizations. As illustrated above, the realizations could be ranked based on 

OOIP, and some of the realization selected for a more complex transfer function (Figures 3.14 

and 3.15). 
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As static properties, the ensemble of realizations can be processed in the flow simulator to 

obtain a distribution of reserves. Many production properties could be calculated considering all 

realizations, such as the outcomes at a well location, the timing for production decline and 

breakthrough.  

Realizations must be processed one at the time, and the resultant outcomes can be 

represented as distributions or expected values for supporting the decision-making process in 

the reservoir development plan. Similarly, summarizing the ensemble of realizations can also be 

useful. The expected value and other statistics such as P10, P50 and P90 can be calculated from 

the response distributions and used as summaries of measure of performance. 

 

 

Figure 3.14: Distribution of the OOIP calculated over all realizations. 

 

3.6.3 – Optimizing Decisions over Multiple Realizations 

The primary target in many upstream studies is defining a field development plan that 

optimizes costs and maximizes production (maximizes NPV). In some cases, the transfer function 

and decision variables are well defined, for example, OOIP and reservoir production, as 

mentioned above. In other cases, however, practitioners should make decisions based on 

optimized responses. 
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Figure 3.15: Distribution of the cumulative oil production obtained after performing all 

realizations in the reservoir flow simulator. 

 

Dealing with multiple realizations should play an important role in optimization of 

decisions. The need to find answers for where and when to drill new wells in reservoirs with a 

reasonable number of calculations is a key factor in new development projects. The potential of 

various well types such as vertical, horizontal, and multilaterals, alternative production options 

(e.g. well spacing, and well scheduling) have a critical impact on hydrocarbon recovery. It is 

impractical to define the best number of new wells based on experience or simple tools. 

The determination of optimal well location, for instance, may be important to maximize 

recovery from hydrocarbon reservoirs. Identification of well locations typically relies on expert 

subsurface knowledge and flow simulation scenarios. Such approaches, due to the complexity 

and uncertainty of subsurface descriptions, can easily miss profitable possibilities. The timing of 

well injection and production and setting surface/pipeline facilities are also reservoir issues with 

critical impact in the development plan that must be optimized. 

In practice, such optimizations are implemented in a deterministic manner, applied to low, 

mid and high simulation scenarios (Ramires et al, 2017). This optimization approach may anchor 
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the results to particular portions of the uncertainty space, while a more robust optimization 

approach propagates the effect of uncertain parameters on the optimization outcomes. Due to 

the increase in computational power, handling multiple realizations/scenarios to investigate the 

uncertainty space in optimization problems is ever more feasible. 

Optimization is the problem of finding the maximum or minimum of an objective function 

O over its domain. Considering L realizations: 

 

) � 	 �*∑ �,-.���*���                                                      (3.3) 

                                        

The objective function is formulated according to the goal. The problem of finding the 

optimum number and placement wells where the maximization of a performance index, such as 

NPV or cumulative oil production, is sought while minimizing costs and accommodating operating 

limits and other constraints are recognized as a nonlinear optimization problem with integer 

parameters (Cullick et al, 2005). 

Figure 3.16 shows a simple example of well location optimization considering multiple 

realizations. Four potential well locations are evaluated over multiple realizations. The 

distribution of objective function responses (e.g. NPV) at each well location is shown together 

with the expected value of each well location (red-dashed line). The optimum well location 

corresponds to the maximum NPV from all expected values (W4). 

3.6.4 – Considering Risk in Decision-Making 

Making decisions about projects in the oilfield is a routine challenge for geologists and 

reservoir engineers. Selections must be made from a set of feasible projects. The one 

implemented will add the highest possible value to the oilfield. The process is not easy since the 

response cannot be predicted with certainty due to the geological uncertainty (de Barros and 

Deutsch, 2018).  
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Figure 3.16: Example of optimizing well location over multiple realizations.  

 

The geological uncertainties are coupled with economic and engineering models involve 

high-risk decision scenarios, with no guarantee of successfully discovering and developing 

hydrocarbons resources.  

In the development plans, field management decisions are complex issues due to (1) the 

number and type of decisions; (2) the great effort required to predict production with the 

necessary accuracy; and (3) the dependency of production strategy definition on several types of 

uncertainty with significant impact on risk quantification (Suslick et al., 2009). 

According to Gallardo and Deutsch (2017), the preferences and the concept of rationality 

are the foundations of the decision-making model. After transferring the geological uncertainty, 

selecting a project from the set of feasible actions is equivalent to choosing between the 

probability distributions of the response variable (Johnstone and Lindley, 2013). To make that 

choice, the preferences of the investor over the space of outcomes can be encoded in a utility 

function (Kochenderfer, 2015). A decision maker will make a rational decision if a project that 

maximizes expected utility is chosen. 

The utility function can be classified into three groups according to the preferences of the 

decision maker: risk-averse, risk-neutral and risk-taker utility functions (Figure 3.17). A decision 

with risk-averse utility function will not play a fair game. According to Levy (2016), a fair game is 
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defined as a game in which the price of a ticket to play the game is equal to the expected prize. 

A decision with risk-neutral utility function is indifferent between playing the fair game or not. A 

decision with risk-taker utility function will play the fair game. 

 

Figure 3.17: Classification of the utility functions. 

 

Many complex exploration & production decision problems involve multiple conflicting 

objectives. Under these circumstances, managers have a growing need to employ improved and 

systematic decision processes that explicitly embody the objectives of the company, desired 

goals, and resource constraints. In general, the utility function of companies is unknown. Some 

decision criteria rank candidate projects according to partial information on the decision maker 

preferences (e.g. risk-averse, risk-neutral) and the response variable distribution. 

Multiple methodologies provide a basis for the management of risk in a project. One of 

those methodologies came out of portfolio management and used risk to categorize and help 

choose between multiple portfolio options. This method, coined the Efficient Frontier, was 

proposed by Markowitz (1952) with his idea of the efficient frontier for portfolio selection. 

The efficient frontier concept provides a way of ranking investments with the expected 

profit value on one axis and the standard deviation of the profit values, or another measure of 

risk, on the other axis. For any specific measure of risk, the best option is the choice with the 

highest expected value. This is the efficient frontier and is shown in Figure 3.18 as the red line. 
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Figure 3.18: Schematic of the efficient frontier. 

 

In risk management, finding the efficient frontier is only one step in the risk management 

process. Determining the optimal solution along the efficient frontier is important. This optimal 

solution is objective and based on the risk versus return preference of the investor (Walls, 2005a, 

2005b). Some investors are more risk averse while others prefer a higher expected return 

regardless of the associated risk. In portfolio management, there are many different methods for 

finding this optimal solution (Engels, 2004). 

The acceptable risk level may change throughout the reservoir lifecycle since the 

preferences of the decision maker may also change according to the short-to-long-term 

objectives. For instance, exploratory projects may consider opportunity-seeking preferences, 

with higher expected return regardless of the associated risk since production is not explicitly 

addressed. High short-term gains are often important to maximize cash flow. In medium-term, 

when production forecasts and surface/pipeline facilities have been already defined, a risk-

averse preference is preferable. In the long-term, risk-neutral preferences may be considered. 

 

3.7 - Discussion 

The goal of this chapter is comparing the approach to decision making considering the 

selection of a single model and considering multiple realizations. The use of a single model 
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disregards geological uncertainty. Production forecasts based on a single model may not 

represent the response of the complete ensemble models.  

Several ranking techniques are shown in Chapter 2, considering static and dynamic 

properties. Regardless of the ranking method, this thesis focuses on the use of multiple 

realizations instead of a single model. Comparing or discussing the efficacy of different ranking 

techniques is beyond the scope of this research. How this reference model is selected does not 

impact the results obtained in this research. The essential issue is the production forecasts and 

decision making in reservoir management are more robust and consistent when based on all 

realizations, rather than decisions based on a single realization.  

Considering all realizations is better than choosing a single reference model. The reasons 

for this statement have been discussed in this chapter. Moreover, the practical benefits of making 

decisions based on all realizations have been illustrated with two synthetic examples. Managing 

and visualizing multiple realizations remains a challenge. 

3.8 - Summary 

• Decisions in reservoir management based on all realizations are more consistent than 

decisions based on a single realization; 

• Considering all realizations may result in significant improvements in the economic 

performance of the projects; 

• The ensemble of realizations must be used for calculating measures of performance and 

for optimization processes; 

• The correct approach claimed in this thesis consists in considering all realizations and taking 

the expected value from the distribution of the responses.
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Chapter 4 

 

Uncertainty Visualization of All Realizations 
This chapter is composed in part by de Barros and Deutsch (2017) published by Computers 

& Geosciences as an original work. 

4.1 - Introduction 

Geostatistical realizations must be treated as an ensemble. Although they may be ranked 

by a response variable such as in-place resources, two adjacent realizations may appear 

completely different due to areas of high and low values occurring in different locations. This 

creates a challenge for visualizing the uncertainty in an ensemble of 3-D model realizations, which 

is an integral part of geomodeling applications (Viard et al., 2011). Note that visualizing one 

realization or a single estimated model does not convey uncertainty. 

In this context, advances in computational speed and storage have made it possible to study 

the development of complex and dynamic systems and represent results accordingly. There is an 

increase in productivity due to newly developed automated strategies and shared computation. 

Although the number of realizations of geostatistical simulation is increasing and has been 

automated, human inspection is still required for quality control and to analyze the results. Tools 

to help process and analyze an ensemble of realizations in a qualitative and productive manner 

are required.  

The challenge is to handle the information generated by an uncertainty analysis from a 

geostatistical approach. Geostatistical simulation techniques are relatively well established. The 

application of geostatistical techniques with geospatial data and the computation of uncertainty 

in the resulting model are reasonably well understood. In terms of visualization, there are many 

programs to display and manipulate complex 3-D models and their internal properties. 

Representation of high dimensional uncertainty, however, is still a challenge because there are a 
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restricted number of available visual channels to represent it, such as data position, color, texture 

and opacity. 

4.2 – Uncertainty Visualization 

According to Potter et al. (2012), uncertainty representation must be simplified in order to 

display many realizations in an appropriate and effective visual manner that allows for human 

perception. Lamigueiro (2014) presents the uncertainty by showing realizations side by side 

(simultaneous) and with superimposed results (condensed). Obermaier and Joy (2014) focus on 

visualization methods for understanding the similarities, differences and trends among the 

members of the realization group. Viard et al. (2011) present three algorithms between the 

frames (e.g. Fisher, 1993; Srivastava, 1994; Ehlschlaeger, 1997; Davis and Keller, 1997; Dooley 

and Lavin, 2007). 

Phadke et al. (2012) also mention an animation technique to support a set of realizations. 

The pairwise sequential animation method orders n members of an ensemble (a collection of 

related datasets), combines subsets of realizations, and presents them as an animated 

visualization using hue and texture. Höllt et al. (2014) introduce the ensemble visualization 

approach for spatially distributed data, defined as a collection of n values of a single variable in 

m dimensions. In this research, this approach is used for an ensemble of realizations generated 

for a geological model. The ensemble visualization approach appears in several works (e.g. Kao 

et al., 2001, 2005, Luo et al., 2003, Love et al., 2005, Obermaier and Joy, 2014). The procedure 

can be considered a specific method from the general uncertainty visualization methods, applied 

when uncertainties are not well represented in quantitative terms. 

A novel method to sequentially display multiple geostatistical realizations is presented in 

this research, combining both animation methods and the ensemble visualization approach. The 

emphasis is on the visualization aspect of post processing and not on the details of model 

construction. There are many references available with model construction details. The 

assumption is that an ensemble of realizations is available in a common numerical format. There 

are likely tens to hundreds of realizations. The realizations likely contain millions of locations; 

however, not all locations will be visible on a particular display. Some locations will be 
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transparent to see deeper into the model and some locations will be blocked behind locations 

that are being displayed. 

4.3 – Methodology 

A sequence of realizations is defined by their similarities/dissimilarities. Numerical or 

quantitative differences between two realizations define a distance for each pair of images. 

Realizations that are close together are displayed one after another. The results are presented 

as a dynamic animation, which shows the defined sequence of realizations. 

Although some results on a 2-D grid are presented, the main idea of this work is to apply 

the proposed approach to any visualization of 3-D geological models. A user can choose an 

arbitrary view plane(s) and visualize all realizations available for this plane. Figure 4.1 shows an 

arbitrary view with some horizontal views visible and some cross sections visible. The order of 

realizations would not change with zooming or panning, but would change when the position of 

the slices is changed. The visualization ordering would be automatically recalculated when the 

view plane is changed. Software would cycle the realizations in the optimized sequence at a 

specified speed until the view is changed. Thus, no one realization is chosen. The realizations do 

not change at the data locations. The greatest changes would occur away from the data. 

4.3.1 – Distance between realizations for continuous variables 

Even with computational advances over the years, exploring hundreds of geostatistical 

realizations simultaneously is not well understood. The spatial pattern of any single realization is 

not of particular interest. Instead, there is more information in understanding the features that 

can vary between realizations and the features that are consistent across realizations. 

Summary models of uncertainty are useful. The local variance, probability of net reservoir 

or difference between realizations are useful summary statistics. Visualization of such models 

would quickly reveal areas that are more uncertain and areas that are less uncertain. However, 

these visualizations would not show the heterogeneity and joint uncertainty between multiple 

locations that impacts reservoir performance. Summary models inevitably change smoothly 

away from well control. Focusing on such models may lead the professional to believe the 

reservoir properties change smoothly. 
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Figure 4.1: An arbitrary set of view planes from a 3-D geological model. The colormap represents 

the porosity of a reservoir layer. 

 

Another approach is to define a summary response function to index the geostatistical 

images. This response could be used to order or classify the realizations. Several different 

similarity metrics are used for this purpose in the literature. In the environmental sciences, for 

example, similarity metrics include empirical orthogonal functions (Koch et al., 2015), 

connectivity analysis (Koch et al., 2016), fractions skill score (Roberts and lean, 2008), feature 

based analysis (Wolff et al., 2014) and spatial prediction comparison test (Gilleland, 2013). 

In petroleum applications, the realizations could be ordered according to static reservoir 

properties such as porosity, facies proportions or hydrocarbon volume. In terms of dynamic 

properties, realizations could be ordered by connectivity or flow response. A scalar response 

would order the realizations, but the spatial similarity between adjacent realizations is not 

guaranteed; realizations with similar average response could be quite different. A natural 

ordering of the realizations requires calculating the difference between them. The greater the 

difference, the greater the distance between any two realizations. Formally, a distance is a 

function D with nonnegative real values that presents a symmetric property. Considering two 
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different points A and B, the distance calculated from A to B is equal to the distance calculated 

from B to A, i.e. DA,B = DB,A. 

A spatial distance function is proposed to compare the entire set of images coming from an 

underlying pool of realizations. A Euclidean-based distance provides a simple formulation and a 

clear interpretation. Let I and I’ be two realizations that are composed of N visible grid cells. The 

distance Dl,l’ is the sum of differences between realizations, which is calculated cell-by-cell as 

follows: 

/�,�0 � 	1∑ {3�,4 − 3�6,4}(84�� ,							�, �6 � 1,… , �                         (4.1) 

where m denotes the grid cells that are visible, N is the number of visible grid cells and Zm denotes 

the cell values of the two realizations. 

 

The cells could be weighted by how much of them are visible. For example, cells on a cross 

section may not be as visible as those in plan view (see Figure 4.1). To avoid undue influence of 

extreme values, these distances could be calculated after applying a moving window filtering. 

This modifies a cell value by taking the average of a fixed subset of nearby cells in the image 

plane. 

The distance matrix in Figure 4.2 shows all the spatial normalized distances calculated for L 

realizations. This matrix is symmetric, i.e., the values above the main diagonal are equal the 

values below the main diagonal. The values on the main diagonal are equal to zero since they 

correspond to the distance between a realization and itself. 

Two or more properties may be combined to evaluate the distance between two images. 

For instance, consider combining the differences in spatial distance (previously described) with 

distances in the hydrocarbon resource, i.e. the amount of oil or gas contained in porous or 

fractured rock formation. Each property is calculated and weighted as follows: 

 

/9	��,�0� � 	1∑ {��,4 − ��6,4}(84�� ,							�, �6 � 1,… , �                               (4.2) 

where DR is the distance of the resources; Rl and Rl’ are the hydrocarbon resources of realization 

l and l’ computed for each m grid cell. 
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where DS is the spatial difference calculated according to Equation 4.1; DR is the difference of the 

resource calculated according to Equation 4.2; WS and WR are the respective weights for spatial 

(DS) and resource distance (DR). 

 

 

Figure 4.2: Two methods for visualizing the differences between L geostatistical realizations. On 

the left, a distance matrix shows the normalized distance between each pair of realizations. On 

the right, an MDS projection is shown where each point also represents a unique model. 

 

As the number of realizations increases, the distance matrix may become difficult to 

understand. According to Figure 4.2 (left), there are clearly realizations different from others (hot 

colors) and realizations close to others (cold colors), but the relationship between all realizations 

simultaneously is difficult to comprehend. An alternative method for visualizing the relationship 

between images is shown in Figure 4.2 (right). The distances are plotted using the 

Multidimensional Scaling (MDS) technique (Cox and Cox, 1994). In this lower dimensional 

representation, the relationship between the realizations is represented by the distances on a 2-

D map. 
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Some information about the distance matrix is represented in the MDS map. Two images 

that have a small distance in the matrix (blue colors) are close in the MDS representation. Images 

that have a large distance in the matrix (red colors) are far apart in the MDS map. Select pairs of 

realizations that are close and far apart in the MDS map are displayed in Figure 4.3 to illustrate 

this concept. 

 

 

Figure 4.3: According to MDS representation, four pairs of realizations are shown. On the left, 

pairs A - AA and B – BB represent very close images. High and low values are well reproduced in 

both of the associated images. On the right, pairs C – CC and D – DD represent images with large 

differences, which are reflected in their position in the MDS plot. 

 

The idea of using MDS to compare different models has been used for many years. Scheidt 

and Caers (2009a, 2009b) apply MDS to select a subset of reservoir models according to their 

uncertainty in flow response. Lajevardi and Deutsch (2014) apply dissimilarity measures that 

underpin MDS to compare mixtures of rock types. The main information in this research, 

however, comes exclusively from the distance matrix; MDS simply provides a convenient display 

of the realizations in low-dimensional space, which may aid in interpretation of the results. 

 

4.3.2 – Distance between realizations for categorical variables 

Categorical variables are defined for simulation considering a hierarchical sequence of 

facies or rock types. Facies should be ordered according to their similarities. Consider five 
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categories defined by grain size: 1 = coarse sandstone, 2 = medium sandstone, 3 = fine sandstone, 

4 = siltstone, 5 = shale as shown in Figure 4.4. In this configuration, category 1 is more similar to 

category 2 than categories 4 or 5. In this example, facies 1 and 2 or 1 and 3 will present a higher 

correlation than facies 1 and 4 or 1 and 5.  

Similarity or correlation between categories can be defined based on some properties, such 

as grain size, shale content or average porosity. Besides, correlation can be associated to a 

distance factor between categories (Figure 4.4). There is not a well-established approach on how 

to define those factors and this point will not be discussed in this research. 

 

 

Figure 4.4: Considering five facies defined by grain size, the distance factor is shown on the right. 

Facies 1, 2 and 3 have high correlation as well as facies 4 and 5. 

 

Let I and I’ be two categorical realizations that are composed of N visible grid cells and K 

different facies. The distance DK(l,l’) can be calculated as follows: 

 

/A��,�0� � 	∑ BCDEF�,4; F�0,4HI84�� ,							�, �6 � 1,… , �                               (4.4) 

where DK is the spatial distance of categories; l, l’ are two realizations; N is the number of visible 

grid cells and df is the distance factor between facies K in both realizations at location m. 



Chapter 4 – Uncertainty Visualization for All Realizations 

55 

 

4.3.3 – Ordered Realizations 

According to the distance matrix, lower distances, in general, represent similar images while 

higher distances represent visually different images. Next, a procedure to order the images 

according to their distances is required. The order or sequence of images should follow a cyclical 

path going through all realizations to permit continuous visualization of all realizations without 

any abrupt changes. This is an optimization problem very similar to the famous Traveling 

Salesman Problem (Flood, 1956). The problem consists in finding the shortest cyclical itinerary 

for a traveling salesman who must visit each of N cities in turn in a sequential path (Figure 4.5). 

Simulated annealing (SA) can solve this typical problem. 

 

 

Figure 4.5: Example of a Traveling Salesman Problem - a) consider N = 100 cities; b) a random 

path configuration; c) a near-optimal solution using simulated annealing procedure (modified 

from Rossi and Deutsch, 2014). 

 

4.3.4 – Simulated Annealing 

Simulated annealing is a classical optimization technique. The central idea is based on an 

analogy with thermodynamics, specifically with the way liquids freeze and crystallize, or metals 

cool and anneal. The essence of the process is slow cooling to allow time for redistribution of 

atoms and avoiding local optima (Kirkpatrick et al., 1983; Deutsch, 1992). 

Pyrcz and Deutsch (2014) and Deutsch (1992) explain implementation details of this 

technique. The SA algorithm changes the system from an initial solution E1 to a solution E2 by a 

given perturbation parameter t. The acceptance probability of this new solution is given by: 
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where P(E1,E2) is the acceptance probability, E1 is the old solution, E2 is the new solution and t is 

the perturbation parameter. 

Each iteration forms a random nearby solution.  If this solution E2 is better than the current 

solution E1, it will replace it.  If E2 is a worse solution, it may be chosen to replace the current 

solution with a probability that depends on the parameter t (Figure 4.6).  As the algorithm 

progresses, the perturbation parameter decreases, giving worse solutions a lower probability of 

replacing the current solution. According to the physical process of annealing, the perturbation 

parameter is related to the temperature, which must not be lowered too fast because the system 

never will achieve the optimum solution. 

 

 

Figure 4.6: Probability of accepting a change to the system in Simulated Annealing. The 

probability is 1.0 when the objective function decreases and the probability follow an exponential 

distribution when the objective function increases (Pyrcz and Deutsch, 2014). 

 

The approach shown in Figure 4.5 can be applied to ordering realizations, defining a near-

optimum sequence of images based on the distances between all realizations. The path should 

be reasonable, but need not be strictly optimal.  The computational speed of calculating the new 
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path should be reasonable because it must be recomputed when the visible portion of the model 

is changed. 

 

4.3.5 – Image Morphing 

The images ordered according to the preceding algorithm could be cycled at a specified 

speed, i.e., setting a transition time between realizations. However, there may be some visually 

jarring or abrupt changes.  The concept of image morphing (Ehlschlaeger et al., 1997) is used to 

ensure that the transition between images is smooth and cohesive. 

Morphing is a special effect in motion pictures and animations that changes (or morphs) 

one image or shape into another through a seamless transition. Most often, it is used to depict 

one person turning into another through technological means or as part of a fantasy or surreal 

sequence. Traditionally such a depiction would be achieved through cross-fading techniques on 

film. Since the early 1990s, this has been replaced by computer software to create more realistic 

transitions (Shamsuddin et al., 2012). 

The traditional morphing process involves two steps: warping, to align features that appear 

in both images; changing their shapes; and cross-dissolve their colors, using intermediate images 

between each two original images (Figure 4.7). The warping step is not necessary for ordering 

realizations. Possible geological features, such as faults, will be present at the same location on 

the grid in all realizations. Intermediate images are created using a linear interpolation as shown: 

 

∆��0,4� ]^,_"]^0,_
#&�                                                        (4.6) 

 

where l and l’ are two realizations; P is the number of intermediate planes to morphing; Zm 

corresponds to the cell value on both realizations at m location. 
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Figure 4.7: Cross-dissolve using linear interpolation to create 3 intermediate images between two 

original images. 

 

Although the intermediate images are somewhat smooth due to morphing, the realizations 

are unchanged. In the end, only the realizations are used for calculations and the morphed 

images are not kept. 

4.4 – Synthetic examples 

The proposed algorithm is straightforward to code. Two examples considering continuous 

and discrete realizations are presented below with some results, as well as the CPU time for each 

step of the methodology. All tests are performed using a CPU Intel Core i7 @ 2.80 GHz and 24 GB 

of RAM memory. 

 

4.4.1 – Synthetic Example 1 - Continuous property 

SGS is used to generate 100 realizations of a continuous variable across a 250 x 250 grid. A 

limited number of conditioning data are available for this simulation, as displayed in Figure 4.8. 

Unlike estimation methods, SGS correctly reproduces the statistical characteristics of the 

conditioning data as well as the spatial continuity of the variable.  

A moving window filter is applied before calculating the Euclidean-based distances. The 

Euclidean-based distance metric is a robust approach for quantifying the similarity between 

realizations. A relatively simple metric, such as the correlation coefficient between realizations, 
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is shown in Figure 4.9 for comparison. On average, the correlations are very similar and the 

comparison between the images is not clear. 

CPU time is dependent on the number of realizations and grid cells. A computer time 

analysis is shown in Figure 4.10.  No filtering means that all cells from the grid are used to 

compute the distance between images. Increasing the window size decreases the distance 

calculation time while increasing the time to perform the filtering. In this example, considering 

100 realizations and a 250 x 250 grid, a window size of 15 minimizes the total runtime to around 

60 sec.  

 

 

Figure 4.8: Conditioning data used for generating 100 geostatistical realizations in Example 1. 
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Figure 4.9: Comparison between distance matrix and a simple correlation between realizations. 

While the distance-based approach presented in this work show a wide range of high and low 

values, correlation coefficients present a low variation, making it hard ordering the realizations. 

 

 

Figure 4.10: Algorithm performance according to time-consuming processes. The window size 

varies from 1 (no filtering) to 45 cells in the x and y directions. The blue line represents the total 

time. The red line represents the filtering time. The black line represents the distance calculation 

time. The green line represents the simulated annealing time. On the right: a detailed view of 

window size from 10 to 20. 
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After the simulated annealing algorithm gives the sequence of realizations, image morphing 

is applied to ensure a smooth transition between the realizations. Tests using 2 to 4 intermediate 

planes are enough to ensure a pleasant sequence of images (Figure 4.11).  Finally, the ordered 

sequence of realizations creates a dynamic animation that shows all realizations. 

 

 

Figure 4.11: Image Morphing Process: Cross-Dissolve between two images. Between two 

realizations (Real_#1 and Real_#2), morphing process creates some intermediate images. In this 

case, morphing created three images, preserving the realizations characteristics present in the 

original images. 

 

4.4.2 – Synthetic Example 2 - Categorical property 

This example considers 100 discrete geostatistical realizations of 55 x 100 grid cells with 

four categories. Figure 4.12 illustrates the distance matrix and a near-optimal solution using the 

simulated annealing procedure. Three intermediate planes are defined for the image morphing, 

as shown in Figure 4.13. The moving window-filtering step was not considered in the discrete 

realizations. In this example, the total CPU time was 35 sec considering a 55 x 100 grid with 100 

realizations and 4 categories. 
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Figure 4.12: Realizations from the set of 100 simulations in a 55 x 100 grid (left) and their 

locations using MDS (upper right), based on Distance Matrix (lower right). Vertical scale is 

magnified x20. 

 

 

Figure 4.13: Image morphing between two realizations (#1 and #2), using three intermediate 

images. Vertical scale is magnified x20. 
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The Euclidean-based distance between the realizations appears reasonable to capture the 

similarities and differences between the realizations. Other distance measures could be 

considered including the use of connectivity and other flow-related properties.  

Computing the distance between continuous variable realizations is straightforward. On the 

other hand, a hierarchical ordering of categories should be defined. A geologically reasonable 

ordering is possible in many cases. However, this may be a limitation when categories do not 

have an intrinsic ordering. To improve the visualization and consequently the understanding of 

uncertainty, the color scale must be chosen considering the similarities of the categories. 

The animations for each test, showing the proposed ordering, may found on YouTube: 

https://www.youtube.com/channel/UCi5BiKxmcVlN0dbr5voOEiQ. 

4.5 - Discussion 

Uncertainty visualization is an emergent subject with several applications in technological 

areas, mostly in weather forecast and financial analysis. Some of these concepts have been 

brought to the hydrocarbon industry, adapting them to be suitable for geostatistical realizations. 

A novel method to sequentially visualize multiple geostatistical realizations has been 

presented. The implementation makes it easier to visualize and understand the uncertainty. 

According to the proposed methodology, the computational requirements for visualizing 

and understanding the geological uncertainty over multiple realizations are technically feasible. 

However, handling all realizations is still complex due to the demands for performing the 

numerical flow simulations, considering the current computational architecture. The novel 

architectures in the last few years present an opportunity for increasing the processing speed, 

which allows handling multiple models. 

4.6 - Summary 

• Visualizing the uncertainty in an ensemble realizations is a challenge; 

• A new method to sequentially visualize multiple geostatistical realizations is presented; 

• In the future, the proposed approach should be implemented for any visualization of 3-D 

geological models into the commercial modeling software. 
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Chapter 5 

 

 

Computational Resources for Multiple 

Realizations 
Three-dimensional reservoir models require significant computational resources. 

Nowadays it is essential to provide a realistic description of the reservoirs, characterizing in detail 

their petrophysical and dynamic properties, for a good evaluation of the production forecast and 

its uncertainties. 

It is generally believed that models with higher resolution are more accurate regarding 

reservoir behavior prediction (Avansi et al, 2016; Vakili-Ghahani and Jansen, 2012). 

Improvements in reservoir data acquisition have increased the complexity of the reservoir model 

and thus the time required to execute it. Reservoir models must be high resolution and must be 

fast enough to process for common reservoir management tasks. The computational 

requirements for history matching and flow simulation are a main reason to avoid dealing with 

all the realizations all the time. 

The purpose of this chapter is to explore some aspects of the reservoir characterization, 

mainly reservoir simulation, which could offer the computational speedup necessary to enable 

the hydrocarbon industry to better consider geological uncertainty. The following sections show 

that the technological challenges are being overcome with the exponential growth of 

computational performance over last decades. Managing multiple geostatistical models for 

improving production reservoir forecasts are possible with such advances. 
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5.1 – Historical Perspective 

Since the availability of digital computers to the petroleum industry in the 1950s, 

hydrocarbon reservoirs have been increasingly studied with the aid of computer programs to 

simulate the fluid flow through porous media. 

The evolution in reservoir simulation over the last 70 years has been due to two major 

factors: the rise in computational power and the development of new and advanced simulation 

techniques and software. 

Reservoir simulation involves the use of mathematical equations or a computable 

procedure to obtain some insights into the behavior of a reservoir. Simulation helps to solve 

complex reservoir problems that cannot be analyzed by other means (Aronofsky, 1988). The flow 

equations governing reservoir behavior are highly nonlinear and time consuming to solve for real 

reservoirs. The nonlinear differential equations describing fluid flow are transformed into a set 

of finite-difference equations that, in turn, are more amenable to numerical solutions. The 

reservoir is divided into blocks. The division of reservoirs into many blocks provides the 

opportunity to vary the rock and fluid properties for each block better describing geological 

heterogeneity. However, for a larger reservoir with millions of blocks, more computer power is 

needed to formulate a solution strategy and to interpret results (Aronofsky, 1988). 

 

5.1.1 - Evolution of Computer Performance 

The earliest computers were little more than adding machines by today’s standards (Watts, 

1997). The fastest computers available in the 1970s and early 1980s were slower and had less 

memory than current electronic devices. 

Statistics on high-performance computers are of major interest to manufacturers and users. 

It is important to know not only the number of cores but also the location of the various 

supercomputers within the high-performance computing community and the applications for 

which a computer system is being used. Such statistics facilitate the establishment of 

collaborations, the exchange of data and software, and provide a better understanding of the 

high-performance computer market. 
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An early list of supercomputers was published in 1986 (Meuer and Gietl, 2013) and, 

annually, it has been updated with counts of the major vector computer manufacturers, based 

principally on those at the Mannheim Supercomputer Seminar. Statistics based merely on the 

name of the manufacturer are no longer useful, however. New statistics are required that reflect 

the diversification of supercomputers, the enormous performance difference between low-end 

and high-end models, the increasing availability of massively parallel processing systems, and the 

strong increase in computing power of the high-end models of workstation suppliers. 

Since 1993, the TOP500 project (http://www.top500.org) has ranked and detailed the 500 

most powerful computer systems in the world. The project publishes an updated list of the 

supercomputers twice a year. The first of these updates coincides with the International 

Supercomputing Conference in June, and the second is presented in November at the ACM/IEEE 

Supercomputing Conference. The project aims to provide a reliable basis for tracking and 

detecting trends in high-performance. The University of Tennessee and the NERSC/Lawrence 

Berkeley National compile the TOP500 list. 

Figure 5.1 shows the growth of the performance of the top supercomputer since 1993. On 

that year, the 500th fastest supercomputer processed around 800 MegaFlops (Floating-Point 

Operations per Second) and the fastest supercomputer processed around 100 GigaFlops. In 2018, 

the computational performance has increased six orders of magnitude. The fastest 

supercomputer processes 100 PetaFlops (1015 Flops) and the 500th supercomputer processes 

around 1 Petaflop (1015 Flops). Generally, it takes six to eight years for a supercomputer to move 

from position 1 to position 500. 

Such growth in computational capacities makes it possible to generate and to deal with 

multiple reservoir models with hundreds of parameters. 

 

5.1.2 – Computer Memory 

The computational capability of a system is dependent not just on the number of 

calculations that it can perform in a second. It is also important the capability and efficiency of 

the system for staging data to these calculations. These data include auxiliary tables that need to 
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be referenced, as well as data produced in the course of calculations that need to be available by 

the computational units. All this information needed by computation is brought into the memory 

of the computer. Access to instructions and data must be fast so that the expensive calculating 

units are well utilized during the program. 

Memories have played an important role in computers since the early days of computing. 

Throughout, the principal use of memories has been to help complete a calculation, whether by 

storing the input needed for simulation or for transaction processing, holding the intermediate 

results produced during the course of the calculation, or saving the results of a calculation before 

they are archived or presented to a consumer (Singh et al., 2018). 

 

 

Figure 5.1: Evolution of supercomputer performance according to TOP500 project from 1993 to 

2017. The fastest supercomputer performance is in the red line. The 500th supercomputer 

performance is in the black line. Y-axis is based on Floating-Point Operations per Second (FLOPS). 

 

A steady increase in available memory allows larger and more complex programs to be 

executed. In the 1970s, the best computers available had only several Megabytes of memory. 

Today, a regular personal computer could have 4-8 Gigabytes of memory, and parallel 

supercomputer could have over 50 Gigabytes of memory (Khait and Voskov, 2017). 
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The needs of computing can no longer be assessed by the requirements of a single 

computer. Computing today involves processing of data in a large connected world. Paradigms 

for using and programming computers have changed to keep up with these new requirements, 

and so has the role of memory. 

The role of memory is changing from being a place to store information for a transient 

calculation to a place where rapidly retrievable information is stored over long periods. There is 

a perception that moving data across the memory hierarchy is not efficient enough across nodes 

in large distributed systems. Memories will be called upon to serve data not only from computing 

elements local to their node but from computing elements located anywhere on a large 

distributed system (Ahn et al., 2016). 

The capacity of a memory chip has steadily increased from 1 kb in the 1970s to 8 Gb 

nowadays, an eight million-fold increase in nearly 50 years. Such a density allows the total main 

memory of a system to be as large as 16 Tb in a system (Nair, 2015). Increased memory helps 

significantly in improving the performance of queries on the databases. 

 

5.1.3 – Computational Reservoir Applications 

Over the last 50 years, high-performance computing has had a significant impact on the 

evolution of numerical predictive methods throughout science and engineering. In particular, 

petroleum-engineering applications have seen a significant enhancement in capabilities for 

reservoir simulation engineering. The complexity of geological and reservoir simulation models 

has led to computational requirements that have consistently challenged the fastest hardware 

platforms. The increase in grid resolution (Figure 5.2) is linked to the advance in computer 

hardware technology and the price/performance of the overall hardware platforms (Fjerstad et 

al., 2005; Cao, 2002, and Watts, 1997). 

Early hardware platforms were largely based on mainframes that provided efficient 

processing but considering coarse models. In the 1960s, the maximum model size was 

approximately 200 grid blocks.  By 1970s, it had grown to approximately 2000 grid blocks (Watts, 

1997). The emergence of workstations in the late 80s not only made computing hardware more 
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accessible to the engineer but also enabled more refined models that more closely resembled 

geological models. According to Watts (1997) and Cao (2002), the model size in the 1990s was 

roughly 500,000 grid blocks increasing up to 16 million grid blocks in the 2000s. 

The evolution of workstations towards cluster computing emerged as reservoir 

characterization, and upscaling tools become more advanced and more easily accessible to the 

engineer. This enabled a step change in grid resolution as existing simulator technologies were 

migrated towards taking advantage of parallel processing. 

According to an important event in the Reservoir Simulation Community, the SPE Reservoir 

Simulation Symposium – RSS, approximately 20% of papers have mentioned the simulation CPU 

time since 1995 (Table 5.1). 

 

 

Figure 5.2: Industry trend of model grid resolution (modified from Fjerstad et al., 2005). 

 

Although the computational performance has increased exponentially over the last 20 

years, reservoir flow simulation has kept the same runtime as shown in Table 5.1 and Figure 5.3. 

In this period, runtime flow simulation is nearly 8 hours in average with a standard deviation of 

around 7 hours. Reservoir models are presenting higher resolution over the time, and flow 
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modelling is focusing on improving the understanding of the physics of the fluid flow in a porous 

media.  

These numbers show that the computational challenges mentioned have been overcome. 

Despite the increase in computer performance over time, the simulation runtime is at the same 

level. The focus has been on making the models more complex and not on transferring geological 

uncertainty through the decision-making process. 

 

Table 5.1: According to SPE-RSS, the proportion of papers mentioning runtime simulation is 

approximately 20%. Average runtime is nearly 8 hours with a standard deviation of around 7 

hours since 1995. 

SPE RESERVOIR SIMULATION SYMPOSIUM 

YEAR PAPERS 
REPORTING 

RUNTIME 
RUNTIME(hr) 

Average Std. Dev. 

1995 37 6 16% 6 6 

2005 48 10 21% 7 6 

2015 115 23 20% 10 13 

 

 

Figure 5.3: Variation of runtime simulation according to the SPE Reservoir Simulation Symposium 

in three different years – 1995, 2005 and 2015. 
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5.2 – Computer Demands for Multiple Realizations 

The computational time for running a flow simulation is strongly related to the complexity 

and size of the reservoir model. Even though the computational performance has increased 

exponentially over the last 20 years, reservoir flow simulation has kept the same runtime on 

average, as discussed above. 

Regarding complexity, the understanding of the subsurface system and the hydrocarbon 

field is becoming increasingly more sophisticated over the years. Since 1990s, unstructured grids 

have been used in reservoir modeling, forcing gridblocks to conform to major geological features. 

Modern reservoir models may have millions of cells with highly complex structures and property 

distributions. Moreover, the physical models used to represent the dynamic recovery processes 

have grown in complexity. Physical and chemical processes involved in the understanding the 

fluid behavior throughout reservoir production are increasingly being incorporated in reservoir 

characterization. Reservoir simulators should simultaneously handle multiple reservoir 

production zones, surface facilities and rock mechanics. Examples include compositional 

representations with large numbers of components, coupled thermal-compositional processes 

and geomechanical properties. The importance of geomechanical events, such as wellbore 

stability, hydraulic fracturing, fault-reactivation, early water-cut, top surface subsidence, 

reservoir compaction and water/gas flooding, has increasingly high impact in the reservoir 

management. 

Up to this point, this research has dealt with black-oil simulation, which corresponds to 

more than three-quarters of all simulator applications. Black-oil means immiscible flow under 

conditions either such that fluid properties can be treated as functions of pressure only or as 

functions of pressure and solution gas/oil ratio (Mattax and Dalton, 1990). Black-oil simulators 

are inadequate for studies that must account for mixing of fluids having significantly different 

properties, displacement of oil by miscible or conditionally miscible fluids, displacements 

involving chemicals that can affect fluid properties, non-isothermal flow or special reactions 

(Mattax and Dalton, 1990). 

Concerning model size, grid resolution has increased over the years (Figure 5.2). Fine-scale 

geological models often contain tens of millions of cells. 
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However, such high resolution may not be always required. The common approach before 

running flow simulator is to upscale a high-resolution geological model to the flow simulation 

blocks. Such process is not trivial and depends on how complex the models need to be for a given 

decision process. Caers (2011) discusses how increasing complexity of the models requires more 

parameters and hence increasing uncertainty since such parameters cannot be deterministically 

defined from data.  

The complexity of reservoir models are increasing over last decades and there are some 

approaches to evaluate and scoring the level of complexity. However, there is no one unified 

methodology for evaluating the reservoir model complexity. Several approaches in literature 

have been created according to different field development conditions. Evaluation of reservoir 

complexity has previously been used by Dromgoole and Speers (1997) to assess recovery factors 

in North Sea fields. Their scoring approach is based on nine geological parameters. Nishikiori et 

al. (2008) uses six scoring parameters, combining both geological and fluid attributes to evaluate 

reservoir complexity. Wickens and Kelly (2010) correlate recovery factor and reservoir complexity 

index based on four key parameters. Jia et al. (2016) define a reservoir complexity index applied 

to heavy oil reservoirs. 

 

5.2.1 – Grid-based Upscaling 

The uncertainty in the geological parameters is increasingly taken into account by 

simulating an ensemble of geological realizations, which significantly increases the 

computational demands. Despite the rapid increase of massively parallel computing, reducing 

the number of grid blocks, through upscaling remains a computational necessity.  

Grid-based upscaling techniques vary from simple averaging methods on uniform Cartesian 

cells to sophisticated flow-based techniques on adaptive and unstructured grids. An extensive 

review of different upscaling methods can be found in Vakili-Ghahani and Jansen (2012), 

Durlofsky et al. (1997) and Durlofsky (2005). 

To illustrate the difference in forecast production response with different model resolution, 

an example is shown in Figure 5.4. A reservoir model is presented with three grid resolutions and 
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100 permeability realizations each. The production has been simulated for a period of 4 years. 

Cumulative production data and production rates are nearly similar for this period (Figures 5.5 

to 5.7). More details about the reservoir model can be found in Jansen et al. (2014). 

Figure 5.8 shows the correlation of cumulative oil production after four years between the 

finest grid (120x120x14 cells) and the other ones. Since a high correlation is observed at different 

grid scales, production data are considered consistent. High values in one scale are also observed 

at another scale. However, more detailed studies could be done concerning the limitation of 

upscaling. The response of the finest and the coarsest grids is shifted from the 45-degree line. 

Such behavior may be an indication that upscaling and numerical dispersion are having an 

influence. 

 

Figure 5.4: Same reservoir model with different grid resolutions have been used to compare the 

production results after four years. Each model presents 100 permeability realizations. 
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Figure 5.5: Production rate and cumulative production (oil and water) from the three grid 

resolutions. The simulation period is equal to 4 years. 
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Figure 5.6: Oil production rate by well from the three grid resolutions. The simulation period is 

equal to 4 years. 

 

 

Figure 5.7: Water production rate by well from the three grid resolutions. The simulation period 

is equal to 4 years. 
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Figure 5.8: Correlation of the cumulative oil production after four years among the three grid 

resolutions. Black dots correspond to the realizations at different grid resolutions. 

 

Considering 100 realizations for each grid resolution, the reduction of flow simulation 

runtime is roughly two orders of magnitude, as shown in Figure 5.9. Simulation responses show 

consistent results at all grid resolutions, dealing with multiple realizations in shorter simulation 

time. 

 

Figure 5.9: Simulation time for 100 realizations considering different grid resolutions. 
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This section illustrates one simple alternative to making fast decisions over multiples 

realizations. Changing the reservoir grid resolution by upscaling techniques is a current approach 

for performing flow simulation in many companies. The precision and robustness of the upscaling 

techniques is quite dependent of the complexity of the reservoir. The upscaled properties should 

be checked in order to keep the consistency and quality of the results in different grid resolutions. 

This enables the efficient simulation of multiple realizations, as is required for uncertainty 

quantification. 

5.3 – Discussion 

The problem of efficient utilization of computational resources according to the growing 

demands in the quality and details of 3D reservoir models. The efficiency of modern computer 

systems exhibit continuous growth due to increasing numbers of computational cores. High-

performance hardware costs are decreasing every day, and hardware-software systems that 

were extremely expensive just a couple of years ago can be purchased for a reasonable price. 

Taking into account the availability of multi-CPU computers, we should pay more attention to the 

software side in order to utilize all computational resources in parallel simulations. Due to 

outdated software architecture, most common reservoir simulators skip most of the available 

computation power. 

This chapter have discussed that the reservoir simulation time can be efficiently scaled on 

the modern CPU-based computers and clusters. Simulation time can be reduced considering 

extra computational power. The combination of CPU and GPU architectures present the most 

impact in the computational simulation performance. In addition to the number of cores (CPUs), 

GPUs present a significantly greater memory bandwidth, which is equally important for efficient 

parallel simulations as it is effectively the speed of communication between the cores. According 

to Telishev et al. (2017), the mostly of the total time spent on the linear solver iterations is due 

to limited memory capabilities to provide the cores with data to handle. The authors mention 

the bandwidth of the GPU models has grown to 700 GB/s since 2015, while the CPU bandwidth 

values remain one order of magnitude lower. 
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The choice of hardware options for handling multiple realizations should be made carefully 

with account for specific model features, especially the grid size, computational power, amount 

of memory, and number of realizations. The variety of options has become wider as the costs of 

GPUs become cheaper and equally more efficient and powerful. 

The current level of detail and complexity of reservoir models requires a high computational 

cost. Such large computer demand is one of the main reasons to avoid correct management of 

the ensemble of geological realizations. 

Some alternatives are discussed in this chapter to overcome such limitations, furthering the 

transfer of geological uncertainty throughout reservoir management. Recent advances on the 

computational performance support the premise to managing multiple realizations. Parallel 

architecture with multiple cores and GPUs has been recently applied in reservoir simulation. 

To improve the reliability of reservoir predictions, historical pressure data and production 

rates should be incorporated into the reservoir models. This history matching process is another 

challenge for handling multiple geological realizations. 

 

5.4 – Summary 

• The computational requirements for HM and flow simulation are a main reason to avoid 

dealing with all the realizations; 

• Although the complexity of reservoir models are increasing over last decades, the 

exponential growth of computational performance allows considering multiple models; 

• Parallel architecture with multiple cores and GPUs are already been applied in reservoir 

simulation, allowing the industry to consider whole geological uncertainty in reservoir 

decisions. 
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Chapter 6 

 

 

Flow Simulation Considering Multiple 

Realizations 
 

Although many realizations can be generated by geostatistical simulation, reservoir 

simulation commonly considers just a few models. The main reason to avoid managing multiple 

realizations in flow simulation is the excessive computational requirements to perform the 

history matching for each reservoir model. Since HM is an optimization problem, hundreds or 

possibly thousands of flow simulations may be required to find a match (Thiele et al., 2010). 

Regardless of computer demands, history matching is conventionally done on a single model. 

Changes to one model may not be the same as another. However, the recent advances in 

computational performance described in Chapter 5, and the developments in the ensemble-

based HM techniques, encourage the use of a large number of reservoir models to improve the 

production forecasts. 

 

6.1 – Current Practice in Flow Simulation 

In general, the underlying geostatistical model is assumed to be fixed (Gautier and 

Noetinger, 2004). In practice, the geostatistical parameters are estimated using geological 

information and statistical analysis of the available static petrophysical data. Global and local 

adjustments are done to the model properties so that the production response of the reservoir 

model matches field observations (Abdollanzadeh et al., 2013). These properties are mostly 

derived from static data since information from dynamic data may be lacking and indirect 

measurements of rock properties.  
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There are many initiatives trying to integrate dynamic data into geological modeling 

(Deutsch, 1993; Yadavalli et al., 1994; Holden et al., 1995; Gautier and Noetinger, 2004; Zheng et 

al., 2007; Hamdi et al., 2011; Hamdi, 2014). Data from well-test analysis (WTA) may be available 

at the time of geological modeling. However, there is no established methodology to incorporate 

such data into the reservoir modelling workflow. Other initiatives include identifying flow paths 

and barriers and interwell communications on the basis of fluctuations in production and 

injection rates (Mirzayev and Jensen, 2016; Bouffin and Jensen, 2010; Yousef et al., 2006).  

One of the main reasons to avoid managing multiple realizations in flow simulation is the 

excessive computational requirements for performing HM for each reservoir model. The 

following sections will discuss some recent advances in reservoir engineering In order to facilitate 

considering the ensemble of geological models in HM, resulting in a more robust uncertainty 

assessment for reservoir management and decision-making. 

 

6.2 – History Matching 

The process of conditioning the geological model to production data is typically known as 

HM. The economic viability of a hydrocarbon project is greatly influenced by the reservoir 

production performance under current and future operating conditions (Satter and Iqbal, 2015). 

One goal of HM is to assign values to the parameters such that the mathematical model of the 

reservoir reproduces the observed behavior during the prediction period. The true usefulness of 

the model, however, is a result of its ability to predict future behavior with increased confidence. 

HM is a type of inverse problem. Instead of using a set of variables to predict the reservoir 

performance (forward problem), HM uses observed reservoir behavior to estimate the variables 

that caused the behavior (Oliver and Chen, 2011). Many reservoir parameter combinations may 

result in equally good matches to the historical observations. Although a single HM model may 

be useful, the better solution to a HM problem would include an assessment of uncertainty in 

reservoir properties and in reservoir predictions. 
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With the development and popularization of geostatistics in the petroleum industry in the 

mid-1980s and early 1990s, a large number of realizations could be easily generated instead of a 

single estimate.  

These advances have increased the research effort on HM. The large number of model 

parameters significantly increases the dimensionality of the inverse problem, but is often 

necessary for characterization of the reservoir and for matching well production history. The 

ultimate goal of HM has changed from finding a single correct set of model variables to finding 

multiple HM models that can be used for uncertainty quantification of future reservoir 

performance (Oliver et al., 2008). 

HM can be framed as finding an ensemble of reservoir model variables that is the solution 

to the forward model that predicts reservoir behavior, according to the observed data and their 

uncertainties. The choice of model parameters for HM involves judgment and an understanding 

of reservoir processes. Common parameters involved in HM are pressure, water oil ratio, water 

gas ratio, water and gas arrival times, etc. 

The production data used in HM corresponds to a series of measurements of flow rate or 

pressure data, made in producing and injecting wells. Since the production observations are 

made at well locations, such data are usually quite limited in number. Although the 

measurements are repeated frequently and the amount of production data for a field can be 

quite large, the information content is often relatively low. These factors imply that some 

discrepancies may occur between the forward model parameters and the observed data. 

HM usually requires numerous iteration runs that make this procedure computationally 

costly. According to Carlson (2006), HM is the phase that takes up the largest portion of study 

time. It is not only difficult to solve but it is also a challenging inverse problem leading to non-

unique predictions. 

 

6.2.1 - Manual History Matching 

Manual HM is the process based exclusively on manual perturbations to preselected HM 

parameters. There is no standardized method of how to conduct a manual HM (Gilman and 
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Ozgen, 2013). Manual HM requires that the reservoir model run the entire historical period to 

establish a comparison of the model to the known performance of the field. Once differences are 

established, some adjustments are performed in the simulation model in order to improve the 

match (Ertekin et al., 2001). For every adjustment, the simulation model is rerun and the resulting 

model performance assessed. Experience is valuable since it increases the understanding of 

reservoir mechanics and allows one to identify possible changes that might improve the match 

(Mattax and Dalton, 1990; Gilman and Ozgen, 2013). 

According to Oliver and Chen (2011), manual HM methods can often result in an acceptable 

match to field performance, and even to the production of key wells. However, it is very difficult 

to obtain acceptable matches for the entire field. Moreover, regional multipliers are often used 

in manual HM, and the attempt at a detailed HM typically results in a loss of geological realism 

and thus very limited prediction power. 

 

6.2.2 – Assisted History Matching 

Manual HM can be a time-consuming process and may take significant time to yield even 

one acceptably matched model for large fields (Thiele et al., 2010; Oliver and Chen, 2011), 

Assisted history matching (AHM) relies on non-linear optimization techniques in order to 

achieve a best fit between observed and calculated data (Mattax and Dalton, 1990). Generally, 

AHM methods can be categorized into gradient methods, stochastic methods, and data 

assimilation methods. 

In gradient methods, use is made of local gradients to drive the parameter choice toward 

values that minimizes some measure of the difference between observed and calculated data. 

Gradient methods are usually fast, but have the disadvantage that they are easily trapped in local 

minima and thus may not give the best HM (Oliver and Chen, 2011; Cancelliere et al., 2011). 

Stochastic algorithms incorporate a random component and, by allowing the search to 

move toward worse solutions occasionally, gain the ability to seek out the global optimum. 

Genetic algorithms (Romero et al., 2000; Erbas and Christie, 2007), gradual deformation (Hu, 
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2000; Le Ravalec and Noetinger, 2002), and neighborhood algorithm (Subbey et al., 2003), are 

some examples of stochastic algorithms that have been deployed in AHM. 

In data assimilation algorithms, the model parameters are calibrated in a sequential 

process, with new observations updating the best estimate of the model state, including the 

unknown model parameters (Abdollahzadeh et al., 2013). Markov chain Monte Carlo (MCMC), 

randomized maximum likelihood (RML), and ensemble Kalman filter (EnKF) are some examples 

of data assimilation algorithms. Liu and Oliver (2003); Cancelliere et al. (2011); and Gao et al. 

(2016) have presented some comparisons of these algorithms. 

Data assimilation methods are especially important for uncertainty assessment since they 

provide multiple solutions and will be discussed in the following section. 

 

6.2.3 – Ensemble-based Techniques 

Ensemble-based HM techniques employ an ensemble of initial realizations of the reservoir 

properties that consistently honor the static and dynamic data, while capturing the model 

uncertainty (Saetron et al., 2015). A set of initial model realizations honoring static data is 

generated using standard geostatistical techniques. The dynamic data conditioning is conducted 

using the correlations provided by the ensemble. Although these methods present robust and 

efficient solutions to the shortcomings of the traditional approach to HM, the ensemble-based 

techniques could be numerically unstable (Perrone et al., 2017). A proper parameterization and 

regularization constraint is proposed to mitigate these numerical issues (Oliver and Chen, 2011; 

Saetron et al., 2015).  

The number of applications of ensemble-based HM techniques is quite large with successful 

results (e.g., Evensen et al., 2007; Haugen et al., 2008; Cominelli et al., 2009; Zhang and Oliver, 

2011; Emerick and Reynolds, 2013; Chen and Oliver, 2014; Emerick, 2016). The advantages 

attributed to these methods include the computational efficiency, the ability to work with large 

dimensions and the ease of implementation (Canchumuni et al., 2017). 

Many recent developments in HM are associated with the application of the EnKF whose 

development is previously reviewed by Aanonsen et al. (2009). EnKF provides a way to generate 
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simultaneously multiple history matched models that approximately characterize the 

uncertainty. 

EnKF is a Monte Carlo based technique for data assimilation (Aanonsen et al., 2009). This 

technique implements an ensemble of model states and approximates the covariance matrices 

sequentially in time as new observations become available. Diverse applications of EnKF have 

been successfully used for HM of some real petroleum reservoir models (Vallhs and Naevdal, 

2009; Zhang and Oliver, 2011; Gao et al., 2016; Abadpour et al., 2018). 

Some spurious and erroneous correlations may be introduced by EnKF, leading to ensemble 

spread underestimation and eventually ensemble collapse (Emerick and Reynolds, 2010; Bocquet 

and Sakov, 2014). Alternative implementations have been proposed to address some of these 

deficiencies, such as covariance localization (Emerick and Reynolds, 2011; Chen and Oliver, 2010), 

iterative EnKF (Li and Reynolds, 2009, Sakov et al., 2012), and ensemble smoother (Chen and 

Oliver, 2012; Emerick and Reynolds, 2013; Bocquet and Sakov, 2014). Although each of these 

approaches has been applied in the industry, none has emerged as the dominant method of 

choice. 

The ensemble-based HM techniques allow overcoming the challenge of considering all 

geological realizations in the decision-making process since this approach generate and ensemble 

of multiple matched models. 

 

6.3 – Sequential Gaussian Simulation with Rejection Sampling 

As discussed above, ensemble-based techniques, such as EnKF, provide an ensemble of 

matched models. This creates the opportunity of considering all reservoir geostatistical 

realizations for forecasting and decision-making processes. 

Dynamic data such as WTA and production history are valuable information that could be 

used to improve the geological models. Appendix A provides a detailed description about WTA 

and the equations to calculate the average permeability (Kavg) and the radius of influence (ri). This 

research presents an alternative to the ensemble-based techniques in order to incorporate 
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dynamic data into the geological modeling workflow. The information from WTA, Kavg and ri, are 

applied to the SGS algorithm using rejection sampling. 

The idea behind the proposed methodology is running SGS just inside a region of interest 

around the input data location. The area is equivalent to ri defined by WTA. For each realization 

performed around the data location, an average simulated value (Simavg) is calculated and 

compared with Kavg from the input data. If the difference between both values is greater than a 

previously defined tolerance error, the realization is rejected, otherwise the realization is kept. It 

has been assumed that the inner radius of the wellbore is very small compared to the radius of 

investigation and can be neglected for the proposed methodology. 

According to the SGS algorithm, the previous simulated values are used to perform the next 

data location. Since the regions around all input data location have been simulated, the rest of 

the grid is filled. Figure 6.1 shows the proposed simulation workflow. 

 

 

Figure 6.1: Proposed simulation workflow considering average permeability from well test data. 

 

Although the rejection sampling technique presents some similarities with screening 

approach, both methods are quite distinct. Realization screening approach usually applies some 

measure of performance over the ensemble of realizations. The goal is to group the realizations 

into categories or sets with similar responses. Only a few realizations from each set must be select 

for a detailed study. 

In this research, a single realization is simulated at a time. So, the average of this realization 

is compared with the average property from WTA. Another realization is simulated just if the 

previous one is rejected, i.e. the difference is greater than the tolerance error.  
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6.3.1 - Implementation 

The proposed algorithm is implemented in the sgsim_rej software, based on the traditional 

sgsim (Deutsch and Journel, 1992). An example of the parameter file with parameter is detailed 

in Figure 6.2. 

There are two differences in the parameter files between the traditional sgsim and the 

sgsim_rej program. Line 6 corresponds to the columns in the data file, including parameters from 

WTA: Kavg, inner and outer radius (see Figure 6.3 and Figure 6.4). Line 37 is the tolerance error, 

i.e., the acceptable difference between Simavg and Kavg computed within the ri from the input 

data. 

1                  Parameters for SGSIM_REJ 

2                  ************************ 

3 

4 START OF PARAMETERS: 

5 welldata.dat  -file with data 

6 1 2 0 3 0 0 4 5 6 -X,Y,Z,vr,wt,sec.var,well.avg,inrad,outrad 

7 -4.0  4.0   -trimming limits 

8 1    -transform the data (0=no, 1=yes) 

9 sgsim.trn          -file for output trans table 

10 1                  -consider ref. dist (0=no, 1=yes) 

11 nscore.out         -file with ref. dist distribution 

12 2  0               -columns for vr and wt 

13 0.000 0.350   -zmin,zmax (for tail extrapolation) 

14 1 0.000   -lower tail option (1=linear), parameter 

15 1 0.350   -upper tail option (1=linear), parameter 

16 0                  -debugging level: 0,1,2,3 

17 sgsim.dbg          -file for debugging output 

18 sgsim.out          -file for simulation output 

19 100                -number of realizations to generate 

20 256 0.5 1.0  -nx,xmn,xsiz 

21 256 0.5 1.0  -ny,ymn,ysiz 

22 1 0.5 1.0  -nz,zmn,zsiz 

23 6069               -random number seed 

24 0.000 0.350   -min and max original data for sim 

25 24                 -number of simulated nodes to use 

26 1                  -assign data to nodes (0=no, 1=yes) 

27 1     3            -multiple grid search (0=no, 1=yes),num 

28 0                  -maximum data per octant (0=not used) 

29 120.0 120.0 30.0  -maximum search radii (hmax,hmin,vert) 

30 0.0 0.0 0.0    -angles for search ellipsoid 

31 0 0.60 1.0  -ktype:0=SK,1=OK,2=LVM,3=EXDR,4=COLC,corr&VRF 

32 lvmfl.dat   -file with LVM, EXDR, or COLC variable 

33 1                  -column for secondary variable 

34 1 0.00   -nst, nugget effect 

35 1 1.00 0.0  0.0 0.0 -it,cc,ang1,ang2,ang3 

36   50.0 50.0 1.0  -a_hmax, a_hmin, a_vert 

37 0.05    -tolerance error 

Figure 6.2: Example of parameter file to run sgsim_rej program. 
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Figure 6.3: Reservoir plane view showing inner and outer radius from well test and the area of 

influence (on left). Section view shows the reservoir thickness considered to calculate the 

average permeability (on right). 

 

1 Input data 

2 6 

3 Coord X 

4 Coord Y 

5 Property at Data Location 

6 Avg Property 

7 InnerRadius 

8 OuterRadius 

9  50.0  56.0 0.24 0.125 3.0 30.0 

10 200.0 156.0 0.27 0.135 3.0 35.0 

11 220.0  56.0 0.20 0.165 3.0 40.0 

12 100.0 125.0 0.19 0.150 3.0 20.0 

13  30.0 206.0 0.31 0.280 3.0 15.0 

Figure 6.4: Data file for sgsim_rej program. Each row corresponds to a well and contains the 

coordinates, the property value, the Kavg from WTA as well as the inner and outer radius (ri). 

 

6.3.2 – Synthetic Example 

A synthetic 2-D model is represented by 256 x 256 x 1 regular grid blocks with 10m 

dimension in X and Y directions and 5m dimension in Z direction. Five wells are randomly located 

in the grid, as shown in Figure 6.5. Table 6.1 presents the well parameters. 
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Table 6.1: Well parameters for the synthetic example. The two last columns are related to the 

WTA. 

Input data 
Perm at data 

location (mD) 
Kavg (mD) ri (m) 

1 1000 955 30.0 

2 1125 1063 35.0 

3 833 688 40.0 

4 792 625 20.0 

5 1292 1167 15.0 

 

 

Figure 6.5: Example of 256 x 256 grid with five input data with different ri. 
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SGS is performed just inside the area on the input data (Figure 6.6). In this approach, the 

average inside this area (Simavg) for each realization is compared with the Kavg according to the 

tolerance error defined in the parameter file. A realization is rejected if the difference is higher 

than the tolerance error, otherwise, the realization is kept and the simulation is performed in the 

next input region. 

 

 

Figure 6.6: Set of realizations around the data location 1 and comparison with Kavg. Information 

of Kavg and ri are obtained from WTA. If the average of the realization inside the radius of 

investigation matches with Kavg, the realization is kept. 
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The algorithm simulates all areas around the input data. Next, SGS is performed in the rest 

of the grid (Figure 6.7). One hundred realizations have been generated considering this workflow. 

At the end of the process, all realizations are compatible with the WTA. 

 

 

Figure 6.7: Simulated values around input location (on the left) and the complete simulated grid. 

 

A 24 hours drawdown test on each well location has performed in the ensemble of 

realizations to simulate a WTA. The goal is validating the proposed algorithm. Table 6.2 

summarizes the results of the average permeability and the radius of influence of the test. The 

simulated values show a good match with the information from WTA.  

 

Table 6.2: Average permeability and radius of influence over 100 realizations for each input data, 

comparing with data from WTA. 

Input data 
SGSavg 

(mD) 

Kavg 

(mD) 

ri avg 

(m) 

ri 

(m) 

Well 1 969 955 30.3 30.0 

Well 2 1087.45 1063 35.3 35.0 

Well 3 681.64 688 39.72 40.0 

Well 4 627.77 625 20.17 20.0 

Well 5 1166.14 1167 15.07 15.0 
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Figures 6.8 to 6.12 show the variation of the BHP from each well, as well as the derivative plot of 

the drawdown tests. 

 

Figure 6.8: Bottom-hole pressure and derivative plot of the drawdown test from Well 1. 

 

 

Figure 6.9: BHP and derivative plot of the drawdown test from Well 2. 

 

 

Figure 6.10: BHP and derivative plot of the drawdown test from Well 3. 
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Figure 6.11: BHP and derivative plot of the drawdown test from Well 4. 

 

 

Figure 6.12: BHP and derivative plot of the drawdown test from Well 5. 

 

Figures 6.13 to 6.17 show the distribution of the average permeability and the radius of 

influence calculated for each well location over all realization. The red dashed line in the 

histograms represents the value from WTA. 
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Figure 6.13: Distribution of the average permeability and radius of influence calculated over all 

realizations in Well 1. 

 

 

Figure 6.14: Distribution of the average permeability and radius of influence calculated over all 

realizations in Well 2. 

 

 

Figure 6.15: Distribution of the average permeability and radius of influence calculated over all 

realizations in Well 3. 
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Figure 6.16: Distribution of the average permeability and radius of influence calculated over all 

realizations in Well 4. 

 

 

Figure 6.17: Distribution of the average permeability and radius of influence calculated over all 

realizations in Well 5. 

  

Data should be consistent at all scales. High continuity properties must be reflected in the 

large-scale data. In this case, the definition of cell size has a significant impact in the proposed 

methodology. Geostatistical simulation considers the value of input data valid for the whole cell 

location. Large-scale data should represent an area larger than cell size to maintain the data 

consistency. The reservoir management team must reconsider the model parametrization for 

any discrepancy of different data scales. 

 

6.4 - Discussion 

HM is an inverse problem, with many possible results for a single reservoir model. It is a 

very time consuming process and that is the main reason that prediction over multiple models is 
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still a challenge in reservoir management. Deterministic solutions have been preferred and the 

reservoir uncertainty has been neglected by older techniques. 

However, a variety of ensemble-based methods is presented in this chapter. This 

demonstrates that it is possible to generate multiple consistent and reservoir models, honoring 

both geological and production data, and capturing the reservoir uncertainty. 

An alternative approach to integrate WTA data into the geological modeling workflow is 

developed in this chapter. The proposed methodology is able to condition an ensemble of 

reservoir models to the available static and dynamic data, while preserving the geological 

consistency. 

Consistent integration of geological and dynamic data by ensemble-based techniques or 

the proposed methodology allows more accurate uncertainty quantification, which helps 

reservoir management decisions. 

 

6.5 - Summary 

• HM is conventionally done on a single model since numerous iteration runs are usually 

required to perform this procedure; 

• The ensemble-based HM techniques encourage the use of all realizations since an 

ensemble of multiple matched models are generated; 

• An alternative technique to incorporate dynamic data into the geological modeling 

workflow is presented; 

• The information from WTA are considered in the SGS algorithm for estimating the reservoir 

properties; 

• The ensemble of realizations is generate conditioned to the static and dynamic data, 

keeping the geological consistency. 
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Chapter 7 

 

 

Case Study 
 

The consideration of all realizations in reservoir management is presented in previous 

chapters. Some synthetic examples have been presented to compare the approach to the P50 

model paradigm. Computational and practical limitations have been discussed in order to 

overcome the challenges. 

This chapter presents the application of the proposed methodology, considering all 

realizations, in a reservoir case study. The P50 model and all realizations approaches are applied 

in the Brugge benchmark (Peters et al., 2010). The impact of considering all realizations in the 

decision-making process is discussed, as well as the visualization of multiple realizations. 

 

7.1 – Background 

A 3-D dataset for the Brugge field is available with properties of North Sea Brent type 

reservoirs (Zhang et al., 2018). According to Peters et al. (2010), the field dimensions are 

approximately 10 km x 3 km x 60 m. The structure consists of an east/west elongated half-dome 

with a large boundary fault at its northern edge (Figure 7.1). The Brugge field consists of four 

main reservoir zones, from bottom to top: Schie, Waal, Maas, and Schelde (Chen and Oliver, 

2010). There is no continuous shale barrier between the reservoir zones. The field has been 

developed by 20 vertical producer wells and 10 vertical injector wells. 

According to Chen and Oliver (2010), every well has multiple completions that correspond 

to the different reservoir zones. The field was produced without individually controlling different 

completions in the first 10 years. The injectors are constrained by water-injection rate, and the 
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producers are constrained by fluid-production rate. BHP at the 30 wells and oil- and water-

production rates at 20 producers are provided monthly. 

Originally, the high-resolution model consists of 20 million grid cells, with average cell 

dimensions of 50 m x 50 m x 0.25 m. The grid was populated with the essential properties for 

reservoir simulation: facies, porosity, permeability, net-to-gross ratio and water saturation. The 

geological model is upscaled to a 450,000-grid-cell model. The simulation model shared in the 

literature is a further upscaled model to 139 x 48 x 9 gridblocks. The total number of active cells 

is 44,550. Table 7.1 shows the average reservoir properties and the depositional environment of 

the four reservoir zones. The Schelde Formation corresponds to the top two layers (layers 1 and 

2) of the simulation model; the Maas Formation corresponds to layers 3, 4 and 5; the Waal 

Formation corresponds to layers 6, 7 and 8; and Schie Formation corresponds to layer 9. The 

Waal Formation is the major producing reservoir zone. 

 

 

Figure 7.1: Top depth of the Brugge field and the location of the wells. Injector wells in blue and 

producer wells in green. 
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Table 7.1: Properties of the reservoir zones of the Brugge field (modified from Chen and Oliver, 

2010). 

 Schelde Maas Waal Schie 

Layers 1 – 2 3 – 4 – 5 6 – 7 – 8 9 

Average thickness (m) 10 20 26 5 

Average porosity (%) 20.7 19.0 24.1 19.4 

Average permeability (mD) 1105 90 814 36 

Average NTG 0.60 0.88 0.97 0.77 

Depositional environment Fluvial 
Lower 

shoreface 

Upper 

shoreface 

Sandy 

shelf 

 

7.2 – Available Data 

A total of 104 upscaled realizations of reservoir properties have been created by the Dutch 

Organization for Applied Scientific Research (TNO) as a benchmark study (Peters et al., 2010).  

According to the authors, the initial properties have been based only on the well data and 

some regional knowledge. The fluvial Schelde Formation has been modeled either as channel 

objects in a shale background or as a sequential indicator simulation (SIS). Porosity has been 

generated by SGS. Permeability has been generated according to three criteria: (1) 

deterministically, based on a single porosity-permeability regression; (2) deterministically, based 

on a porosity-permeability regression per facies; and (3) stochastically, with a cokriging 

simulation on porosity. Figure 7.2 shows the relations between porosity and permeability derived 

from original data and used in reservoir modeling (according to Peters et al., 2010). 

The 104 realizations have been simulated by combining the different options. Each of the 

realizations contains the following properties: facies, porosity, NTG ratio, water saturation and 

permeability in x-, y-, and z-direction (Figure 7.3). 

The initial reservoir pressure is 170 bar at reference depth of 1700m. Initial oil-water 

contact is at 1678m. Residual oil saturation is constant at a value of 0.15. The maximum rate for 

the wells is 318 m3/day for the first 10 years of production. 

Figure 7.3 shows porosity, permeability in x-direction and water saturation for all nine 

layers from realization 1. 
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Figure 7.2: Crossplot between porosity and permeability in Brugge Field (Peters et al., 2010). 

 

7.3 – Results 

In the following sections, the proposed methodology for considering all realizations is 

applied to the Brugge Field. First, the visualization of all realizations is presented for selected 

cross-sections. Next, production performance based on the P50 model is compared with the 

production performance based on all realizations. Computational performance and decision-

making based on both approaches are discussed. 

 

7.3.1 - Uncertainty Visualization 

Based on the 104 realizations from Brugge Field, some view planes have been defined, 

according to Figure 7.4. One view plane has been defined in principal x-, y- and z-orientation. 
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The proposed methodology described in Chapter 4 was applied to visualize all realizations 

available for these planes. Figures 7.5 to 7.7 show a sequence of two realizations as well as the 

intermediate planes calculated to smooth the visualization. The sequence of animations may 

found on YouTube: 

https://www.youtube.com/playlist?list=PL9xpYwHhASq85W4mSnuHOWkrl3rlv0-ph. 

The XY plane view presents a smooth transition through the realizations. The XZ and YZ 

cross-sections, however, present some noise and sharp transition among the realizations. This 

may occur due to the different characteristics of the reservoir zones. Layers 6-8 (Waal) present 

higher porosity and permeability values, differently from the adjacent layers. 

Ordering the realizations according to the reservoir zones instead of considering the entire 

cross-sections may present an improved approach to visualize the sequence of realizations. 
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Figure 7.3: Porosity, permeability in the x-direction and water saturation for all nine layers from 

realization 1. 
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Figure 7.4: View planes defined from the 3-D geological model in x-, y- and z-direction. The 

reservoir property represented in this visualization is porosity. 

 

 

Figure 7.5: View plane YZ showing sequence of realizations and the intermediate planes. 
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Figure 7.6: View plane XZ showing sequence of realizations and the intermediate planes. 



Chapter 7 – Case Study 

104 

 

 

Figure 7.7: View plane XY showing sequence of realizations and the intermediate planes. 
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7.3.2 - P50 Approach 

The ensemble of realizations is ranked according to the Hydrocarbon Pore Volume for oil 

(HCPVo). The HCPVo from each realization is given by: 

����-� �	�`a�b
� ∗ c
� ∗ de,
� ∗ �1 − fZ
��												� � 1,… , �
�


��
																			 �7.1� 

where n is the number of grid cells, Bulk is the cell volume, φ is the cell porosity, NTG is the net-

to-gross ratio and Sw is the water saturation for cell i = 1,…,n for realization l = 1,…,L. 

 

According to the ranking, the realization corresponding to the P50 quantile can be selected 

(Figure 7.8). 

 

 

Figure 7.8: Traditional approach to reservoir management: The 104 geostatistical realizations are 

ranked according to the HCPVo. Realization related to the P50 quantile is selected for further 

studies, through the flow simulator. 

 

7.3.3 – Using All Realizations 

The ensemble of 104 realizations of the Brugge Field has been passed through the flow 

simulator. The results of the flow simulation for all realizations are shown in Figure 7.9. The 

cumulative fluid production curves and the fluid rates curves correspond to 10 years of 

production. The production curves representing the P50 model are highlighted. 
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Figure 7.9: Left: Cumulative oil (green curves) and water (blue curves) of 10 years of production 

from 104 realizations in Brugge field. Right: Field oil (green curves) and water (blue curves) rates 

of 10 years of production from 104 realizations in Brugge field. Red curves represent the 

production related to the P50 model. 

 

The production curves from P50 model do not always represent the average production of 

the 104 realizations. At the end of a 10-year production, there is an underestimation of the oil 

produced by the P50 model, according to the curves from Figure 7.9. The figure also shows an 

underestimation of oil production rates. Although the selected P50 realization represents the 

average model in terms of resources, the production responses do not represent the responses 

from the full set of models. 

Figures 7.10 to 7.12 show the BHP, oil and water rates forecast from some wells, comparing 

the curves from all realizations and from the selected P50 realization. The P50 curves in Figure 

7.10 show an overestimation of the BHP in the producer wells. The oil rate curves in Figure 7.11 

also present an overestimation of oil rates from the P50 model in producer wells P10, P12, P13, 

P14, P18 and P19. Finally, Figure 7.12 shows that water rates from P50 model are underestimated 

in producer wells P13, P14, P15, P16 and P19. 

According to these figures, the decisions based on P50 model may be in error for the 

reservoir development plan, since oil production is overestimated and water production is 

underestimated. 
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Figure 7.10: BHP curves from some wells, highlighting curves from P50 realization (in red) over 

all realizations. 
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Figure 7.11: Oil production rates from some wells, highlighting curves from P50 realization (in 

red) over all realizations. 
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Figure 7.12: Water production rates from some wells, highlighting curves from P50 realization (in 

red) over all realizations. 

 

7.3.4 – Computational Performance and History Matching 

According to Peters et al., (2013), the computational resources required to simulate the 

Brugge model are moderate. Although 10 years of production data have been provided by TNO, 

the ensemble of 104 geological models has been passed through the flow simulator to reproduce 
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the original production responses from Peters et al., (2010). Figure 7.13 shows the distribution 

of the computational time required to simulate 10 years of production. All runs have been 

performed sequentially, using a CPU Intel Core i7 @ 2.80 GHz and 24 GB of RAM memory. 

Considering the advances in the computational performance mentioned in Chapter 5, the 

spread of massively parallel computing platforms supports the proposed premise of managing 

multiple realizations. The flow simulation for each realization may be distributed through 

multiple cores, maintaining the consistency of the results and reducing the reservoir simulation 

times. 

 

 

Figure 7.13: Distribution of CPU time for running the flow simulation for each of the 104 

realizations from Brugge Field. 

 

Historical production data should be incorporated into the reservoir models to improve the 

reliability of reservoir predictions. The Brugge Field has been broadly used in HM literature 

(Lorentzen et al., 2009; Schulze-Riegert et al., 2009; Chen and Oliver, 2010; Peters et al., 2013; 

Emerick and Reynolds, 2013; Zhang et al., 2018). The feasibility of using all realizations in HM may 

be demonstrated, in practice, based on the results of such papers. 
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The results of this section are based on the HM performed by Emerick and Reynolds (2013). 

The authors have compared some ensemble-based HM methods (EnkF, ensemble smoother – 

ES; and ES with multiple data assimilation – ES-MDA). History production data in this study 

correspond to measurements of the oil and water rates at the producing wells and BHP at the 

producing and water injection wells. 

The computational cost to perform HM in all realizations is shown in Table 7.2. The results 

have been computed by measuring the CPU time required during HM divided by the average CPU 

time required for one reservoir simulation run. Considering the average CPU time required for 

one reservoir simulation run is 105s, the absolute CPU time required for HM is also shown in 

Table 7.2. 

According to Emerick and Reynolds (2013), the normalized data mismatch objective 

function for each method is computing using: 

)8,h�i� � 	 �
(8j �C − C;kl�m�n"��C − C;kl�                                        (7.2) 

where Nd is the number of ensemble models; m is the vector of model parameters; d is the vector 

of predicted data; dobs is the vector of observed / history data; and CD is the covariance matrix of 

observed data measurement errors. 

Results on Table 7.2 show that ES-MDA improves significantly the final data matches and 

the mismatch of predicted and observed data area about three times lower than EnKF and about 

twelve times lower than ES, in average. There is no indication in the original paper which of the 

production data is more sensitive to HM (BHP, oil rate or water rate).  

 

Table 7.2: Computational cost for HM and average mismatch over 104 realizations in the Brugge 

field (according to Emerick and Reynolds, 2013). The total CPU time is based on the average CPU 

time required for one reservoir simulation run, using a CPU Intel Core i7 @ 2.80 GHz and 24 GB 

of RAM memory. 

Method 
Number of equivalent 

simulation runs 

Total CPU time 

(hours) 

Average mismatch of 

the objective function 

EnKF 367 10.70 16.5 

ES 106 3.09 60.3 

ES-MDA 430 12.54 5.6 
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Figures 7.14 to 7.16 show the original BHP, oil and water rates curves from the 104 

realizations and the matched curves after HM, according to results from Emerick and Reynolds 

(2013). The matched curves have been obtained according to ES-MDA method. 

 

 

Figure 7.14: The original BHP curves from some wells, and the matched curves, after ES-MDA 

method. The historical production data are shown in red. 
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Figure 7.15: The original oil rate curves from some wells, and the matched curves, after ES-MDA 

method. The historical production data are shown in red. 
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Figure 7.16: The original water rate curves from some wells, and the matched curves, after ES-

MDA method. The historical production data are shown in red. 

 

It is also possible to quantify the differences in flow predictions over the observed 

production data. A simple objective function (OF) that represents the mismatch between the 

observed and simulated production data is defined as follows: 
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where N is the number of observed data and dobs and dsim are observed and simulated data, 

respectively. 

 

The square error is a common manner to mathematically represent the difference between 

observed and simulated data. The first term of the equation is used to define the sign of the 

mismatch. If a simulated production curve (e.g., BHP) is predominantly under the observed data, 

the sign of the mismatch is positive. Otherwise, the sign is negative. This is important to 

understand the distribution of the models regarding to the observed data in the uncertainty 

curve. Figure 7.17 illustrates the mismatch of production data (BHP) using the equation 7.3 for 

some producer wells. The mismatch has been calculated for each realization, prior (in black) and 

posterior to the HM (in red). The posterior mismatch should be ideally close to zero. 

These results illustrate the viability of using the entire ensemble of realizations in the HM 

process. The use of an ensemble-based HM method provides a set of multiple geological models 

consistent with static and dynamic data, resulting in robust and more accurate uncertainty 

estimates of production forecast. 

7.3.5 – Decision-Making 

The demonstration of a decision-making process is shown as follows. It is an optimization 

problem, comparing the P50 model and all realizations. The problem consists to drill a new 

producer well in the reservoir, as shown in Figure 7.18. Two different zones, A and B, have been 

defined to drill the well. Five well locations per region have been tested to evaluate the 

production responses over 10 years of production. 
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Figure 7.17: Normalized mismatch of BHP for some producer wells, calculated prior (black) and 

posterior (red) to the HM. 
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Figure 7.18: Oil saturation of the first layer of the Brugge model, highlighting the regions A and B 

for drilling a new producer well. 

 

The decision of drilling a new producer well is taken based on the best location based on 

the P50 model and the best location based on the ensemble of models. The production revenue 

(PR) is used to compare both decisions. The total oil production at the end of ten years is 

considered for each realization, as well as the total water production and the total water injection 

in the same period, according to Equation 7.4: 

 

��� � dw� ∗ 60	yf/ −>w� ∗ 3.5	yf/ −>L� ∗ 3.5	yf/                             (7.4) 

 

where: Np is the volume of produced oil, Wp is the volume of produced water, and Wi is the 

volume of injected water (all in barrels), for l = 1,…, L realizations. 

 

The following economic parameters have been considered:  oil price equal 60 USD/STB; 

water price (both injection and production) equal 3.5 USD/STB. Other production and operation 

costs, such as drilling costs and taxes, have not been considered. 
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The selection of the optimum well location follows the approach shown in Figure 3.5. The 

optimum well location is defined according to the maximum PR after 10 years of production from 

the P50 realization. The optimum well location from the ensemble of realizations is defined 

according to the expected value of PR, calculated over all realizations. Results from both 

approaches are shown in Table 7.3. 

 

Table 7.3: PR (in MM USD) according to the best location based on the P50 model and based on 

all realizations. 

Region 
Decision-based on 

PR 

(MM USD) 

Difference 

(MM USD) 

Difference 

(%) 

A 
P50 model 5,728 

135 2.4 
All realizations 5,863 

B 
P50 model 5,642 

142 2.5 
All realizations 5,784 

 

 

The results show an improvement of 2.5% in the production revenue taking into account all 

realizations instead of considering the P50 model. Although the percentage is not impressive at 

first glance, the absolute value between 135 to 142 MM USD has an economic impact in the 

reservoir project. Moreover, the costs for managing all realizations are related to CPU time. 

 

7.4 - Discussion 

The proposed approach of using all realizations in a decision-making process is 

demonstrated for a realistic example of Brugge Field.  

Although the decisions in reservoir management are often based on a single reference case 

(usually the P50 model), these decisions do not consider geological uncertainty. A single 

realization is one outcome out of an ensemble of possible realizations describing the true 

reservoir.  

The restrictions of using all realizations in reservoir development plan are discussed in this 

chapter based on the Brugge Field. The computational demands of running flow simulation are 
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presented and overcome. Alternatives for performing history matching using ensemble-based 

techniques are presented with feasible estimates of the production forecast. 

Finally, the economic improvement based on the decision of drilling a new well is 

presented. The proposed approach is compared with the traditional P50 model approach. The 

optimum well location presented in this case study is consistent with all realizations. The 

improvement of the production revenue considering all realizations supports the statement of 

this research. 

 7.5 - Summary 

• The proposed methodology of considering all realizations is applied to a realistic case study, 

the Brugge Field; 

•  The production responses based on the reference model are compared with the 

production responses based on all realizations; 

• Viability of considering all realizations in a reservoir management plan; 

• The computational performance for flow simulation and HM are presented and discussed 

concerning of multiple models 

• The visualization of all realizations is also presented using the proposed algorithm. 
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Chapter 8 
 

 

Concluding Remarks 
 

Understanding and managing reservoir uncertainties throughout the lifecycle of a reservoir 

will lead to improved production. Reservoir decision-making requires a conscious irrevocable 

allocation of resources to achieve desired objectives. Development decisions need to be taken 

despite an imperfect knowledge of the subsurface. 

A methodology to facilitate the transfer of subsurface uncertainty through reservoir 

management has been developed and demonstrated in this thesis. 2-D synthetic examples and a 

real case study are considered. Using a single model for flow simulation and for planning the 

development of a hydrocarbon field can lead to decisions without the full benefit of the modeling 

work.  Considering an ensemble of reservoir models is a better basis for decision support instead 

of a single or a few models. The contributions, limitations and future work for the research are 

summarized in this chapter. 

 

8.1 – Summary of Contributions 

The main contribution of this thesis is the incorporation of uncertainty analysis for 

improving the quality of decisions taken to explore and develop hydrocarbon fields. This thesis 

contributes to an integrated assessment of geological uncertainty in order to provide a rational 

basis for the management of uncertainties in the reservoir development plan and, therefore, 

supporting the decision-making process. 

An efficient reservoir management plan requires a reliable uncertainty assessment. 

Reservoir predictions are used in reservoir management to optimize costs and revenues of 

producing a reservoir. The uncertainty should be taken into account when deciding on an optimal 
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production strategy. There are also important contributions concerning reservoir geological 

uncertainty. 

 

8.1.1 – Considering all realizations for uncertainty management 

The first main objective of this thesis is improving the understanding and management of 

uncertainty in reservoir performance forecasting. Alternatives to facilitate the transfer of the 

subsurface uncertainty through reservoir management are presented and discussed in this 

research. 

Understanding the uncertainties related to reservoir production is crucial to making 

development and management decisions. The single model paradigm produces a single response 

with no understanding of uncertainty in production forecasts. Considering an ensemble of 

reservoir models is a better basis for decision support, rather than just one or a few models. 

Multiple equiprobable reservoirs models are generated by geostatistical simulation to 

characterize the heterogeneity and geological uncertainty. Dealing with multiple realizations 

provides an assessment of the uncertainty space to be used in the decision-making processes. 

As shown in 2-D synthetic examples in Chapter 3 and in the 3-D case study in Chapter 7, 

making decisions based on a single reference case disregards geological uncertainty. Multiple 

realizations are generated to capture some of the uncertainties associated with the reservoir 

model. The results of the reference model (P50) may not represent the response of the ensemble 

of models. A single reference case is ranked close to the center of all results and chosen/modified 

to match historical production data. However, different realizations are able to match historical 

data equally well. 

Alternatives for managing multiples realizations are presented in Chapter 3. The ensemble 

of realizations may be used to assess measures of performance such as OOIP, production 

forecasts and breakthrough. Outcomes based on all realizations can be represented as 

distributions or expected values. Any other statistic can be calculated and used as summaries for 

supporting the decision-making process. The use of multiple realizations may also be useful in an 

optimization approach. Some decisions should be based on optimized responses, such as defining 
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the optimal number of wells or choosing the location for drilling a new well. The optimization 

approach considering all realizations supports the reservoir team to make robust decisions for 

maximizing the value of the reservoir project. 

 

8.1.2 – Uncertainty visualization 

A new method for sequentially displaying multiple geostatistical realizations is developed 

in Chapter 4. Methods from animation and the distance between realizations are considered. The 

emphasis is on the visualization aspect of post-processing. 

Although the number of geostatistical realizations could be large and has been automated, 

human inspection is still necessary for quality control and the analysis of results. Tools are 

required for processing and analyzing the ensemble of realizations qualitatively and productively. 

Advances in speed and computational storage have made it possible to study the development 

of complex and dynamic systems and to represent results accordingly. 

Since all realizations should be considered in reservoir management, a visualization 

methodology has been presented in Chapter 4 to facilitate the understanding of the space of 

uncertainty, such as visualizing all realizations in a way to communicate the regions of high or 

low uncertainty to the reservoir management team. 

 

8.1.3 – Computational requirements 

The current level of detail and complexity of reservoir models requires a high computational 

cost. The computational requirements for history matching and flow simulation are the main 

reason to avoid dealing with all realizations all the time. The high demand for computers is one 

of the main reasons to avoid correct management of the set of geological realizations. 

To overcome the limitations and to promote the transfer of geological uncertainty over 

reservoir management, some alternatives are presented in Chapter 5. Parallel architecture with 

multiple cores and GPUs has been recently applied in reservoir simulation. Recent advances in 

computational performance support the premise of managing multiple realizations. 
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Chapter 5 shows that there is no reason to restrict flow simulation to a single model since 

computational performance has grown exponentially over the past 30 years through faster 

processors, multiple cores, parallelism, and GPUs. Such growth in computational capacities 

makes it possible to generate and handle multiple reservoir models with hundreds of parameters. 

High-performance computing has had a significant impact on the evolution of numerical 

predictive methods over the past 50 years. Petroleum engineering applications have had a 

significant increase in reservoir simulation capabilities. The execution time of the simulation 

remains stable over the years, despite the increase in computational performance. The transfer 

of geological uncertainty through the decision-making process has been neglected by increasing 

the complexity of the models. The new technologies discussed in this thesis present potential to 

achieve practical computational improvements. 

Computational performance has increased by five orders of magnitude over the past 20 

years. The emergence of massively parallel computing platforms has opened new pathways for 

efficient processing. Simulation of reservoirs on massively parallel computers can reduce 

simulation time by 3 to 4 orders of magnitude. Parallelism offers a solution to make 

computationally intensive methods practical to be applied to routine field studies. New reservoir 

management scenarios can be considered, including all geological realizations. 

 

8.1.4 – Integration of geological and production data  

A large number of realizations permit capturing uncertainty in the underlying geologic 

model that should be used for predicting different hydrocarbon production scenarios. However, 

the excessive computational requirements to perform the history matching for each reservoir 

model restricts the number of flow simulation models that can be used for future predictions. 

The recent advances in computational performance as shown in Chapter 5, and the 

developments in the ensemble-based history matching techniques, encourage the use of a large 

number of reservoir models to improve the production forecasts. 

As discussed in Chapter 6, ensemble-based techniques, such as EnKF, provide an ensemble 

of matched models. This creates the opportunity of considering all reservoir geostatistical 
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realizations for forecasting and decision-making processes. An alternative approach to integrate 

well test analysis data into the geological modeling workflow is also developed in Chapter 6. The 

proposed methodology is able to condition an ensemble of reservoir models to the available 

static and dynamic data while preserving the geological consistency. Consistent integration of 

geological and dynamic data provides a more accurate uncertainty quantification, supporting 

reservoir management decisions. 

Considering all realizations is challenging for reservoir management. Since many 

practitioners believe that HM is so laborious that only one realization can be used, this thesis 

presents a simple and practical approach to ensure that all realizations approximately match 

historical production data. Changes required on one realization are likely similar to other 

realizations and having multiple realizations that approximately match history is likely better than 

having one realization with a false sense of certainty. 

 

8.2 – Limitations 

The methodology presented in this thesis has some limitations as discussed as follows. 

8.2.1 – Selection of a reference or P50 case 

The methodology presented in this thesis is strongly focused on static in-place volumes to 

select a reference model. Although Chapter 2 have discussed several static and dynamic-based 

ranking techniques, all numerical examples used in this thesis have considered hydrocarbon 

volumes for ranking and selecting a reference case or the P50 model. As mentioned before, static 

ranking techniques are commonly used in industry. However, different advanced ranking 

approaches should be applied for a more robust validation of the proposed methodology. 

Although decisions are based on a single reference case, sometimes a low and a high cases 

are somehow selected for further production responses assessment. The impact of selecting 

more than a reference case has not been considered in this research.  
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8.2.2 - Computational resources optimization 

The growth of computational performance have been discussed in Chapter 5 as well as the 

increasing in reservoir model complexity and flow simulation techniques over time. However, 

there is a limitation in this chapter concerning the optimal computational resources required for 

managing multiple realizations. This should be a function of many factors, such as the reservoir 

model complexity, number of wells, history production data and number of realizations. A 

detailed analysis is also required to define the more sensitive computer resource for managing 

multiple realizations. 

8.2.3 – Deterministic optimization approach 

The optimization examples presented in Chapter 3 and Chapter 7 are limited in a 

deterministic approach. A few limited potential well locations have been evaluated in order to 

optimize the production outcomes. Moreover, the presented examples have restricted to drill 

additional wells. Different types of production optimization should be considered to validate the 

using of all realizations, such as well spacing, alternative production options and timing of 

injection. 

 

8.2.4 – Uncertainty Visualization 

The current implementation for visualizing the uncertainty of the ensemble of models is 

limited to a simple 2-D approach. Selecting a cross-section from the 3-D reservoir model is still a 

manual process, as well as the preparation of input data file for running uncert_viz. 

Moreover, the process for ordering realizations should be optimized. The suitable moving 

window and the number of intermediate images should be defined automatically in order to 

optimize the computational performance. 

 

8.2.5 - Validation of uncertainty 

The methodology presented in this thesis for considering all realizations in the reservoir 

decisions has been compared with the conventional methodology of using a reference model. 
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Chapter 3 has shown the impact of both approaches considering a true model. In practice, 

however, the true model is not known. 

The validation of the uncertainty is a limitation of this research. The improvement of 

performance from a decision based on all realizations over a single reference case should be 

computed on the true model. A decision is a choice made from available alternatives, such as the 

effectiveness of infill drilling locations and trajectories. However, checking the uncertainty model 

in real circumstances remains a challenge, since the true model is not accessible. 

 

8.3 – Future Work 

Despite the developments made in this dissertation, the research presents several avenues 

for future research. 

8.3.1 - Optimization of decision using utility function 

A more robust optimization approach should be considered as future work. Determining 

the best well location for new wells is a complex problem that depends on the reservoir and fluid 

properties, well and surface equipment specifications, and economic criteria. The uncertainties 

in the model are transferred to the outcomes of well configuration decisions. Given the 

probabilistic approach presented in this thesis, the goal is to estimate the expected outcome of 

any proposed decision and the risks associated with it. A utility function should be used to 

quantify the risks associated with the decision. The expected outcome of a given decision is 

dependent on the risk attitude of the decision maker. 

The usefulness of the utility function allows a clear definition of the otherwise arbitrary 

notion of an optimum solution to an uncertain problem. Decision makers who decide not to use 

a utility function will have difficulty in case of uncertainty. The use of utility function enables the 

decision makers to balance the risks and outcomes according to their specific risk attitude. 
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8.3.2 - Practical implementation of visualization 

Some challenging problems remain in the field of uncertainty visualization. Commercial 3-

D software can potentially order the ensemble of realizations automatically, every time the user 

modifies the view of the model. Additional work is also necessary to store all geostatistical 

realizations in the computer memory, optimizing the process for ordering realizations in the 

selected view. 

 

8.3.3 - Disclosure of results 

Transferring the geological uncertainty throughout the reservoir management plan 

requires a probabilistic approach for describing the full range of possible production outcomes. 

Moreover, the correct assessment of geological uncertainties is an important step for improving 

the quality of decisions made in the presence of risk. 

The proposed methodology in this thesis highlights the importance of considering the 

ensemble of realizations for a correct uncertainty assessment. However, consistent disclosure of 

results based on the probabilistic approach should be considered. Considering all realizations 

permits a continuous distribution of outcomes to be used to represent the inherent reservoir 

uncertainty. The low estimate (P90), base estimate (P50) and high estimate (P10) are improved, 

but the realizations that provide those estimates changes when resource calculation is changed. 

Regardless of the methodology, it is important that hydrocarbon companies communicate 

as explicit and intelligible as possible how reported estimates have been derived and calculated. 

 

8.3.4 - Scenarios vs Realizations 

It is important to point out that there is a difference between scenarios and realizations. 

Scenarios represent cases with singular variations without any continuum linking them. 

Realizations represent a variation of parameters from a specific scenario. It implies the 

generation of probability distributions to represent uncertainty. 

The methodology presented in this thesis considers essentially a large number of 

independent realizations of reservoir models. The conventional approach to characterizing and 
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communicating uncertainty is to build a variety of models that are parametrically quite different, 

but considering similar geological concepts. A broad range of models can be created by varying 

these parameters while keeping the underlying structure, environment of deposition, etc. 

unchanged. These models can be simulated with different depletion concepts, such as the 

number and position of wells or production management strategies, to yield the desired business 

metric for each model. 

However, there are no restrictions on considering different geological scenarios into the 

proposed methodology. Anything that can be computed on one model can be computed on 

hundreds ones, regardless of which concepts have been used. The decision response should be 

computed on all realizations and the expected response determines the optimal decision. A case 

study based on different scenarios should be evaluated in the future to demonstrate the 

applicability of this approach.  

 

8.3.5 - History matching 

HM is a very large topic and it has not been deeply investigated in this research. Some 

ensemble-based techniques have been presented in this thesis for supporting the claim of using 

all realizations in the uncertainty assessment. 

However, there are different complexity levels concerning history matching. The number 

of model parameters significantly increases the dimensionality of the inverse problem according 

to the number of wells, the length and the type of historical data. In the history matching, the 

model is calibrated to field observations, such as production data; pressure data, such as well-

test analysis and formation test; and time-lapse data. The type of data that must be matched 

influences the choice of parameterization.  

As future work, it is important to demonstrate the applicability of the ensemble-based 

techniques incorporating different historical data. Transferring the uncertainty space from the 

geological model will enhance the accuracy of predicted future reservoir performance. 
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8.3.6 – Value of Information 

Reservoir decisions must be made considering uncertainty since the uncertainties cannot 

be completely eliminated. Regardless of the methodology used, uncertainties will always exist in 

reservoir characterization. How much uncertainties should be mitigated depends on the needs 

of decision analysis for reservoir management and the cost of information. The potential benefits 

of acquiring additional data (such as a new seismic acquisition, drilling a new well or the execution 

of pressure tests) must be considered to gain sufficient information and knowledge to make 

critical decisions. 

In future work, the proposed methodology considering all realizations through the reservoir 

development plan should be applied to evaluate the value of information (VOI). The decision-

making process becoming more difficult to make the best decisions for reservoir developments 

as reservoir projects becoming more challenging. Considering all realizations in the process 

should be tested to support the VOI analysis and to facilitate the decision-making process.
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Appendix A 

Production Data Integration 
HM refers to the adjustment of model variables in a numerical simulator so that the model 

is calibrated to field observations, for example production data or time-lapse seismic data. Core 

and well log measurements reflect reservoir properties at the vicinity of the wellbore. They are 

usually referred to as hard data and are commonly used to condition reservoir models prior to 

matching dynamic data. Production data are the most widely used data for HM.  

WTA is a standard measurement technique of recording pressure and rate data from a 

reservoir (Hamdi, 2014). In this process, a transient pressure response is created by a temporary 

change in production rate. The well response is usually monitored during a relatively short period 

compared to the life of the reservoir. 

In most cases, the flow rate is measured at surface while the pressure is recorded 

downhole. Before starting the test, the initial pressure is often constant and uniform in the 

reservoir. During the flowing period, the drawdown pressure response is calculated by the 

difference between the initial and current reservoir pressure.  

The type of test performed is related to the test objectives or is governed by practical 

limitations. Among the various types of well tests, the two main types are (Figure A.1): 

Drawdown test: this type of test is a sequence of bottom-hole pressure (BHP) observations 

in a well with a constant flow rate. It is a good method of reservoir limit testing, since the time to 

observe a boundary response is long. It may be difficult to make the well flow at constant rate, 

even after it has stabilized. 

Buildup test: this type of test is the most commonly used method. A well flowing at a 

constant rate is shut-in and the BHP pressure is measured as the pressure build up. The practical 

advantage of a buildup test is that the constant flow rate condition is more easily achieved 

(Horne, 1995). On the other hand, it may be difficult to achieve the constant rate production 

prior to the shut in. Besides, the well production is lost while the test is performed. 

Unlike geological and log data, WTA provides a description of the reservoir in dynamic 

conditions. As the investigated reservoir volume is relatively large, the estimated parameters are 
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average values. Interpreted results from WTA give important information about reservoir 

properties such as fluids, initial and average pressures, reservoir boundaries, heterogeneities 

(natural fractures, layering), horizontal and vertical permeability, etc. Properties related to the 

well can also be determined such as productivity index and skin factor. 

 

 

Figure A.1: Bottom-hole pressure and flow rate responses during drawdown and buildup tests. 

 

Some diagnostic plots are used to aid the interpretation of recorded pressure. The most 

common is a log-log plot of pressure drop and pressure derivative versus time (Figure A.2). The 

effects of reservoir properties can be observed on the derivative curve in terms of distinct slopes 

and stabilizations (Hamdi, 2014). The average well test permeability is estimated from the radial 

flow regime, where the derivative curve plateaus off over a definite value. This is an average 

permeability of a region around the wellbore with a larger scale than the core measurements 

(Corbett, 2009). 

 

A.1 – Wellbore Storage and Infinite-Acting Radial Flow 

While flow rates in a well test are measured at the wellhead valve or flow line, pressure 

response of the reservoir is taken within the wellbore itself, close to the production zone. When 

a well is opened, the production at surface is initially due to the expansion of the fluid stored in 

the wellbore. This effect is called wellbore storage and according to Bourdet (2002) can last from 



Appendix A – Production Data Integration 

151 

 

a few seconds to a few minutes. The reservoir properties cannot be estimated during this flow 

regime. Then the reservoir production starts and the sand face rate becomes the same as the 

surface rate - Infinite-Acting Radial Flow. In this condition, pressure response describes in effect 

the reservoir behavior. 

 

 

Figure A.2: Diagnostic plot showing change of pressure (blue line) and pressure derivative (red 

line) versus time (both in log scale). On the right: plan view sketch of the radius of well test 

investigation increasing over time. 

 

The diagnostic plot is used to identify the pure wellbore regime. With a constant surface 

rate condition, the pressure changes linearly with time. At early time, the response follows a 

straight line of unit slope (Bourdet et al., 1989), as shown in Figure A.3. 

 

Figure A.3: Pressure change and pressure derivative during wellbore storage and in the infinite 

acting regime. After a period of time, when the fluid stored in the wellbore, the reservoir 

production starts, describing the infinite acting radial flow. 
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A.2 – Average Permeability 

The average permeability (Kavg) is a property derived from WTA valid within an annular 

region of investigation. This property is based on the pressure response during the infinite-acting 

radial flow. Considering a typical pressure response shown on Figure 6.4, a plot of pressure versus 

the log of time (Miller-Dyes-Hutchinson Plot), the slope m on the straight line is linearly related 

to the permeability as follows: 

 

F�{| � 	162.6 ∗ ~��
4�                                                                        (Eq. A.1) 

 

where Kavg is the average permeability (mD), q is the flow rate (STB/d), B is formation 

volume factor (RB/STB), µ is the fluid viscosity (cp) and h is the formation thickness (feet). 

 

 

Figure A.4: A Miller-Dyes-Hutchinson (MDH) semilog plot showing the pressure against the 

logarithm of time. Average permeability can be calculated by the slope m from the plot during 

the infinite acting radial flow regime (modified from Wen et al., 2005). 

 

A.3 – Radius of investigation 

The pressure response is conventionally based on analytical solutions of the radial 

diffusivity equation (e.g., Deutsch, 1992; Zheng et al., 2007; Hamdi, 2014). In theory, a pressure 

change at the well would be felt at least infinitesimally everywhere in the reservoir. However, in 



Appendix A – Production Data Integration 

153 

 

practice, there is some point distant from the well at which the pressure response is small and 

can be neglected. This point defines the region of the reservoir that has been tested during WTA 

and corresponds to the radius of investigation. 

The radius of investigation (ri) can be defined as the reservoir volume during the infinite-

acting radial flow period in a specified period of time (tmin and tmax). According to several 

definitions (Poolen, 1964; Lee, 1982; Johnson, 1988; Horne, 1995; Bourdet, 2002), ri can be 

written as: 

Y
 � � ∗ 1A���∗∆:
∅∗�∗��                                                                         (Eq. A.2) 

 

where ri is radius (feet), A is a constant (traditionally 0.03), Kavg is the average permeability 

(mD), ∆t is the well test period (hours), φ is porosity (pore vol / bulk vol), µ is viscosity (cp) and ct 

is fluid compressibility (psi-1). 

 

Equation A.2 assumes that the horizontal permeability near the well is isotropic. For an 

anisotropic permeability field, an equivalent isotropic reservoir model of average radial 

permeability can describe the pressure response of the well (Bourdet, 2002). In this equivalent 

isotropic system, the original wellbore is changed into an ellipse whose major and minor axis 

ratio corresponds to the square root of the of permeability anisotropy ratio (Figure A.5). Although 

the area around the well is the same compared with the original system, the perimeter of the 

equivalent system is increased (Bourdet, 2002). 

Both properties, Kavg and ri, obtained from WTA, are important information that could 

improve geological modeling. 
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Figure A.5: Considering an anisotropic permeability field, the radius of investigation of the well 

test is not circular but elliptical. The ratio of major and minor axis corresponds to the square root 

of the permeability anisotropy ratio. 

 

A.4 – Numerical Examples  

A synthetic 2-D model is represented by 256 x 256 x 1 regular grid blocks with 10m 

dimensions in X and Y directions and 5m dimension in Z direction. The synthetic reservoir is 

produced by a single well near to the center of the model. Porosity is assumed equal to 0.2 in the 

whole model. Reservoir dynamic properties used in the examples are listed in Table A.1. 

 

Table A.1: Dynamic properties used in this example. 

Property Value 

Initial pressure (kPa) 20000 

Oil volume factor (RB/STB) 1.12 

Total compressibility (kPa-1) 7.25E-6 

Oil viscosity(cP) 2.0 

Initial Water Saturation 0.1 

 

The first example considers a deterministic permeability field equal to 1000mD in the whole 

grid. A 24 hours drawdown production is simulated considering a constant flow rate equal to 30 

m3/day. BHP has been measured and the diagnostic plot has been created to calculate Kavg and ri 

from the WTA. 
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The second example considers 100 realizations of stochastic permeability maps. A 24 hours 

drawdown production is simulated considering a constraint flow rate equal to 30 m3/day for each 

permeability realization map. 

Figure A.6 shows the deterministic case, illustrated by the grid with a 1000md constant 

permeability and a central well. The figure also shows the pressure field at the end of the 

drawdown test and the bottom-hole pressure variation during the test. 

Figure A.7 shows the standard log-log diagnostic plot of pressure and pressure derivative 

of the observed pressure drawdown data. ri and Kavg are calculated using Equations A.1 and A.2, 

as shown on the semi-log plot in the Figure A.8. Early times of the diagnostic plot correspond to 

the wellbore storage period. As mentioned before, data of that period are not considered for the 

permeability and drainage area accounts. As expected, average permeability based on well test 

is consistent with the input permeability model. 

 

 

Figure A.6: Deterministic example considering a 1000mD permeability field and the resultant 

pressure map after 24 hours of a drawdown test. The variation of BHP through the time is shown 

on bottom. 
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Figure A.7: Diagnostic plot from the deterministic example. Delta pressure is shown in blue dots 

and its derivative is shown in red dots. Green dots correspond to the infinite-acting radial flow. 

 

 

Figure A.8: Semi-log plot used to compute the average permeability and the drainage area 

detected by the drawdown well test. Green dots correspond to the infinite-acting radial flow. 
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Figure A.9: Stochastic example considers 100 realizations of permeability map. Figure shows one 

realization and the resultant pressure map after 24 hours of a drawdown test. The well bottom-

hole pressure is shown on bottom. 

 

According to the Figures A.7 and A.8, the Kavg calculated from WTA is consistent with the 

model permeability (1000mD) and ri corresponds to 257m. 

In the second example, the drawdown test is performed for each of the 100 permeability 

realizations (Figures A.9 and A.10).  

The Kavg and the respective ri are calculated for each realization using Equations A.1 and 

A.2. Figure A.11 compares Kavg from WTA and the average permeability calculated from 

realizations. 
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Figure A.10: Diagnostic plot from the one realization of stochastic example. Delta pressure is 

shown in blue line and its derivative is shown in red line. Green dots correspond to the infinite-

acting radial flow (on top). Semi-log plot used to compute the average permeability and the 

drainage area in that realization (on bottom). 
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Figure A.11: Crossplot between permeability from well test (PermAvg) and permeability 

calculated directly from simulated data (PermSim). 
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Appendix B 

Uncertainty Visualization Software: uncert_viz 
This program assists geostatisticians and other users with uncertainty visualization. The 

program shows the sequence of random or ordered realizations. For this last option, it is 

calculated some intermediate images in order to perform the morphing process, according to the 

number of previous defined intervals. Finally, it is possible show the sequence of images on 

screen or save an animation. The code has been developed in Python as following:

Load Parameter File 
filepar = 'uncertvis.par' 1 
file, vartype, window, interv, show, order, min, max, incr = read_par(filepar) 2 
filemovie = str(file[:len(file)-4])+'.mp4'3 
 

Load Datafile 
params = lc.getline(file, 2) 4 
temp = params.split() 5 
NX = int(temp[1]) 6 
NY = int(temp[2]) 7 
nreal = int(temp[10]) 8 
data1 = np.loadtxt(file,skiprows=3,unpack=True) 9 
data = np.empty((nreal,NX*NY)) 10 
for j in range(nreal): 11 
 for i in range(NX*NY): 12 
  data[j,i] = data1[i+j*(NX*NY)] 13 
data_flt = []14 
 

Window Moving Filter 
for i in range(nreal): 15 
 if window != 1: 16 
  data_flt.append(ndimage.median_filter(np.reshape(np.array(data[i]),\ 17 
((NY,NX))),window)) 18 
 else: 19 
  data_flt = data20 
 

Calculating Distances 
dist_mat = distance(nreal,data_flt21 
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Calculating Simulated Annealing 
city1 = run_SA(dist_mat) 22 
ordem1 = city1          #ordering from SA 23 
ordem0 = range(nreal)   #random ordering 24 
 

Defining Ordering 
WITH ORDERING 

diff = [] 25 
for i in range(nreal-1): 26 
 diff.append(data[ordem1[i]] - data[ordem1[i+1]]) 27 
diff.append(data[ordem1[nreal-1]] - data[ordem1[0]]) 28 
dif_rows = nreal*interv 29 
difext = [] 30 
for k in range(nreal):  31 
 for i in range(interv): 32 
   difext.append(data[ordem1[k]] - i * (diff[k]/interv))  33 
deltaext = np.array(difext) 34 
 

WITHOUT ORDERING 

ord_orig = [] 35 
for j in range(interv): 36 
 for i in ordem0: 37 
  ord_orig.append(i)38 
 

Defining Colormap 
if max <= min: 39 
 min  = deltaext.min() 40 
 max  = deltaext.max() 41 
 incr = (max - min) / 5.0 42 
  

crg = max - min 43 
num_incr = int(crg / incr) 44 
 

# number of categories 45 
ncat = int(max - min) + 1 46 
 

leg = [] 47 
for i in range(ncat): 48 
 leg.append(int(min+i)) 49 
  

legend = [] 50 
for i in range(num_incr + 1): 51 
 legend.append(round((min + i * incr),2))52 
 

Recording Animation / Saving Figures 
fig = plt.figure() 53 
ax1 = fig.add_subplot(1,1,1) 54 
axins1 = inset_axes(ax1,width = '3%', 55 
      height = '100%', 56 
      loc = 3, 57 
      bbox_to_anchor = (1.05,0.,1,1), 58 
      bbox_transform = ax1.transAxes, 59 
      borderpad = 0.1,) 60 
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cmap = colors.ListedColormap(['red','yellow','orange','blue']) 61 
img=[] 62 
for i in range(dif_rows): 63 
 if order==1: 64 
  im = np.reshape(np.array(deltaext[i]),((NY,NX))) 65 
 else: 66 
  im = np.reshape(np.array(data[ord_orig[i]]),((NY,NX))) 67 
 if vartype==0:  68 
  IMG=ax1.imshow(im,extent=[0,NX,NY,0],interpolation='none',cmap='jet',vmin=min,\ 69 

vmax=max) 70 
 else: 71 
  IMG=ax1.imshow(im,extent=[0,NX,NY,0],interpolation='none',cmap=cmap,vmin=min,\ 72 

vmax=max) 73 
 img.append([IMG]) 74 
 if vartype==0:   75 
  plt.colorbar(IMG,cax=axins1,ticks = legend,) 76 
 else: 77 
  plt.colorbar(IMG,cax=axins1,ticks = leg,) 78 
 ax1.set_xlim(0,NX) 79 
 ax1.set_ylim(0,NY) 80 
 ax1.set_aspect('auto') 81 
 ax1.set_title('UNCERTAINTY VISUALIZATION',fontsize=20,fontweight='bold') 82 
if order==0: 83 
 frame_rate = float(400/interv) 84 
else: 85 
 frame_rate = 150 86 
img_ani = animation.ArtistAnimation(fig,img,interval=frame_rate,blit=True) 87 
if show == 1: 88 
 img_ani.save(filemovie, dpi=200) 89 
else: 90 
 plt.show()91 
 

Functions 

Import libraries: 
import numpy as np 92 
import linecache as lc 93 
import matplotlib.pyplot as plt 94 
from numpy.random import rand 95 
import matplotlib.animation as animation 96 
from mpl_toolkits.axes_grid1.inset_locator import inset_axes 97 
from scipy import ndimage 98 
from matplotlib import colors99 
 

Read Parameters: 
def read_par(file): 100 
 par_file   = lc.getline(file,5).split()[0] 101 
 par_vartype     = int(lc.getline(file,6).split()[0]) 102 
 if par_vartype==0: 103 
  par_window = int(lc.getline(file,7).split()[0]) 104 
 else: par_window = 1 105 
 par_interv = int(lc.getline(file,8).split()[0]) 106 
 par_show   = int(lc.getline(file,9).split()[0]) 107 
 par_order  = int(lc.getline(file,10).split()[0]) 108 
 par_min    = float(lc.getline(file,11).split()[0]) 109 
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 par_max    = float(lc.getline(file,11).split()[1]) 110 
 par_incr   = float(lc.getline(file,11).split()[2]) 111 
 if par_vartype==1: 112 
  par_min    = int(par_min) 113 
  par_max    = int(par_max) 114 
  par_incr   = int(par_incr) 115 
 return par_file, par_vartype, par_window, par_interv, \ 116 
    par_show, par_order, par_min, par_max, par_incr117 
 

Distance Function 
 def distance(nreal,data): 118 
 data1 = np.reshape(np.array(data),((nreal,NX*NY))) 119 
 cell = int(data1.shape[1]) 120 
 dist = np.ones((nreal,nreal)) 121 
 for i in range(nreal): 122 
  for k in range(nreal): 123 
   if i == k: 124 
    dist[i,k] = 0.0 125 
   elif i < k: 126 
    dif = 0.0 127 
    for j in range(0,cell,window): 128 
     dif = dif + ((data1[i,j] - data1[k,j]) * (data1[i,j] - data1[k,j])) 129 
    dist[i,k] = np.sqrt(dif) 130 
    dist[k,i] = dist[i,k] 131 
   else: 132 
    continue 133 
 return dist134 
 

Simulated Annealing 
def TotalDistance(city, matdist): 135 
 dist=0 136 
 for i in range(len(city)-1): 137 
  dist += matdist[i,i+1] 138 
 dist += matdist[-1,0] 139 
 return dist 140 
 

def reverse(city, n): 141 
 nct = len(city) 142 
 nn = int((1+ ((n[1]-n[0]) % nct))/2) 143 
 for j in range(nn): 144 
  k = (n[0]+j) % nct 145 
  l = (n[1]-j) % nct 146 
  (city[k],city[l]) = (city[l],city[k]) 147 
 

def transpt(city, n): 148 
 nct = len(city) 149 
 newcity=[] 150 
 # Segment in the range n[0]...n[1] 151 
 for j in range( (n[1]-n[0])%nct + 1): 152 
  newcity.append(city[ (j+n[0])%nct ]) 153 
 # is followed by segment n[5]...n[2] 154 
 for j in range( (n[2]-n[5])%nct + 1): 155 
  newcity.append(city[ (j+n[5])%nct ]) 156 
 # is followed by segment n[3]...n[4] 157 
 for j in range( (n[4]-n[3])%nct + 1): 158 
  newcity.append(city[ (j+n[3])%nct ]) 159 
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 return newcity 160 
 

def run_SA(matdist): 161 
 ncity = nreal   # Number of cities to visit 162 
 maxTsteps = 100  # Temperature is lowered not more than maxTsteps 163 
 Tstart = 0.2   # Starting temperature - has to be high enough 164 
 fCool = 0.01   # Factor to multiply temperature at each cooling step 165 
 maxSteps = 25*ncity # Number of steps at constant temperature 166 
 maxAccepted = 10*ncity # Number of accepted steps at constant temperature 167 
 Preverse = 0.5   # How often to choose reverse/transpose trial move 168 
 ndim = 2    # number of dimensions to calculate the distances-2D,3D,etc.169 
 # The index table -- the order the cities are visited. 170 
 city = range(nreal) # Distance of the travel at the beginning 171 
 dist = TotalDistance(city, matdist) # Stores points of a move 172 
 n = np.zeros(6, dtype=int) 173 
 nct = ncity # number of cities 174 
 T = Tstart # temperature 175 
 for t in range(maxTsteps):  # Over temperature 176 
  accepted = 0 177 
  for i in range(maxSteps): # At each temperature, many Monte Carlo steps 178 
   while True: # Will find two random cities sufficiently close by 179 
    # Two cities n[0] and n[1] are chosen at random 180 
    n[0] = int((nct)*rand())     # select one city 181 
    n[1] = int((nct-1)*rand())   # select another city, but not the same 182 
    if (n[1] >= n[0]): n[1] += 1  183 
    if (n[1]<n[0]):(n[0],n[1])=(n[1],n[0]) 184 
    nn = (n[0]+nct -n[1]-1) % nct 185 
    if nn>=3: break 186 
   n[2] = (n[0]-1) % nct 187 
   n[3] = (n[1]+1) % nct 188 
   if Preverse > rand():  189 
    de = matdist[city[n[2]],city[n[1]]] + matdist[city[n[3]],\ 190 

city[n[0]]] - matdist[city[n[2]],city[n[0]]] - matdist[city[n[3]],\ 191 
city[n[1]]] 192 

    if de<0 or np.exp(-de/T)>rand(): 193 
     accepted += 1 194 
     dist += de 195 
     reverse(city, n) 196 
   else: 197 
    # Here we transpose a segment 198 
    nc = (n[1]+1+ int(rand()*(nn-1)))%nct 199 
    n[4] = nc 200 
    n[5] = (nc+1) % nct 201 
    # Cost to transpose a segment 202 
    de = -matdist[city[n[1]],city[n[3]]] - matdist[city[n[0]],\ 203 

city[n[2]]] - matdist[city[n[4]],city[n[5]]] 204 
    de += matdist[city[n[0]],city[n[4]]] + matdist[city[n[1]],\ 205 

city[n[5]]] + matdist[city[n[2]],city[n[3]]] 206 
    if de<0 or np.exp(-de/T)>rand(): 207 
     accepted += 1 208 
     dist += de 209 
     city = transpt(city, n) 210 
   if accepted > maxAccepted: break 211 
  T *= fCool   # The system is cooled down 212 
  if accepted == 0: break 213 
 return city214 
 


