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Abstract 

Sand response changes with intensity of cementation bonds between sand grains, 

magnitude of intermediate principal stress and with fabric anisotropy. First a critical 

state bounding surface plasticity model is presented in this paper. In this 

constitutive model, the loading surface always passes through the current stress 

state regardless of location or position of the stress path. Second to simulate hollow 

cylinder tests which represent different modes of shearing including triaxial 

compression and triaxial extension, the fabric anisotropy and 𝒃-parameter are 

incorporated in the model. Simultaneous integration of cohesion, non-associated 

flow rule, fabric anisotropy, kinematic hardening, critical state and state parameter 

makes the proposed model unique compared to previous proposed bounding surface 

models. Comparison of model outcomes and hollow cylinder experimental tests 

shows great predictive capability of the proposed model. Sensitivity analysis also 

suggests that triaxial compression and triaxial extension are respectively strongest 

and weakest modes of shearing. 

1. Introduction 

The structure in natural soils is a combination of bonding and fabric. Therefore the 

overall behavior of cemented sand depends not only on the degree of cementation 

between sand particles, but also on fabric in sand. Fabric reflects particle 

orientation, and particle contact arrangements. It describes the geometrical 

arrangement/packing of particles in general [1, 2]. During deposition process under 
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earth gravity, sand particles usually deposit anisotropically and form fabric 

structure with cross-anisotropy (or transverse-isotropy). Cross-anisotropy as an 

inherent anisotropy is featured by one direction with distinctive anisotropy 

perpendicular to a bedding planes where it is almost isotropic. The perpendicular 

direction is the direction of deposition and is referred to as the axis of anisotropy 

[3]. Similar to uncemented sand, fabric is expected to affect cemented sand 

behavior namely its stiffness, strength and dilatancy (the contractive or dilative 

tendency upon shearing) [2, 3]. Most constitutive models, however, are not 

formulated with considering the effect of bonding and fabric anisotropy 

simultaneously [3, 4, 5]. That is, some constitutive models capture the influence of 

void ratio/mean stress on sand behavior, but neglect the effect of fabric. However, 

there is little doubt that sand fabric is an influential parameter in the constitutive 

behavior of sand [4].  

Investigations at the microscopic level have shown that orientation of sand particles 

changes slightly even after large shear deformation. In other words, the inherent 

(structural/intrinsic) fabric anisotropy may be assumed constant during shearing 

process [6].  

Soil fabric is incorporated in the proposed model using a symmetric fabric tensor 

𝐹𝑖𝑗  which is kept constant to account for material inherent anisotropy and a scalar-

valued state variable 𝐴 which can represent the material anisotropic state.  

2. A critical state bounding surface constitutive 

model for sand and cemented sand 

The main components of the proposed constitutive model are elasticity, loading 

surface and bounding surface, flow rule, and normalized plastic modulus. They are 

concisely discussed here. 

2.1 Elasticity 

The elastic moduli (i.e. shear and bulk elastic modulus) are defined as follows: 
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where 𝐺  and 𝐾  are elastic shear modulus and bulk modulus, respectively, 𝑒  is  

void ratio, 𝐺𝑎 and 𝐾𝑎 are reference elastic moduli associated with 𝑝𝑎𝑡𝑚 which is  

the atmospheric pressure, 𝑝 is the mean effective stress, and 𝑝𝑜  is an additional 

strength which comes from the material cementation. A value of 0.5-0.55 is usually 

allocated for 𝑛, depending on the type of sand.  

The elastic moduli are defined for unloading conditions as follows: 
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where |𝜂| denotes the absolute value of the stress ratio. Incorporation of 𝜂 in the 

definition of the elastic moduli results in the prediction of a stiffer response at the 

start of unloading and then a softer response with progress of unloading. Suggestion 

of these expressions for the unloading elastic moduli comes from experimental 

observations which shows a sudden increase in stiffness immediately after the 

inception of unloading accompanied with a slow decrease in its magnitude when 

soil experiences progressive unloading [7].  

2.2 loading surface and bounding surface 

The loading surface (𝑓) and bounding surface (𝐹) in terms of the conventional 

triaxial parameters are defined as (Fig. 1): 
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𝑓 = (
𝑞 − 𝑞𝑎

𝑝 − 𝑝𝑎 + 𝑝𝑡
− 𝛼)

2

− 𝑀𝛼
2 (1 − √

𝑝 − 𝑝𝑎 + 𝑝𝑡

𝑝𝑏
) = 0                                     (5) 

𝐹 = (
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�̅� − �̅�𝑎 + 𝑝𝑡

− 𝛼)
2

− 𝑀𝛼
2 (1 − √

�̅� − �̅�𝑎 + 𝑝𝑡
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)  = 0                                    (6) 

𝑀𝛼
2 = (5𝑀𝑝 − 𝛼)(𝑀𝑝 − 𝛼)                                                                                            (7) 

where 𝑞  is the deviator stress, and 𝑝𝑎  and 𝑞𝑎  are components of the kinematic 

hardening tensor, 𝑀𝑝 is the stress ratio at the peak of the undrained effective stress 

path (UESP), 𝛼 is a scalar whose magnitude is zero for isotropically consolidated 

sands, 𝑝𝑡 is tensile strength, and 𝑝𝑏  is hardening parameter for the loading surface.  

The kinematic hardening tensor is assumed to lie initially at the origin of the stress 

space, implying for the first time loading: (𝑝𝑎, 𝑞𝑎) = (0,0).   

The superimposed bar indicates the bounding surface variables.  

To ensure that the loading surface will not cross the bounding surface, it is assumed 

that the initial ratio of size of the two surfaces remain constant during the shearing 

process. It is also presumed that the kinematic hardening components always 

coincide for the two surfaces, i.e. (𝑝𝑎, 𝑞𝑎) = (�̅�𝑎, 𝑞𝑎).  

The additional strength 𝑝𝑜 and tensile strength 𝑝𝑡 are assumed to be linked together 

using the following relationship: 

 𝑝𝑡 = 𝛽𝑝𝑜                                                                                                                          (8) 

where 𝛽 is a model parameter.  

It is also assumed that 𝑝𝑜 decreases with plastic deformation due to destruction of 

sand structure by the following law: 

𝑑𝑝𝑜 = −𝛾𝑝𝑜𝑑|𝜀𝑞
𝑝|                                                                                                           (9) 

where γ is a model parameter which determines the rate of bond degradation, and 

𝑑𝑝𝑜 indicates change in 𝑝𝑜 due to change in plastic deviator strain.   

Armstrong and Frederick’s kinematic hardening law [8] is chosen to control the 

evolution of the loading surface and bounding surface as follows: 

�̇�𝛼 =
2

3
 𝑐1  

𝜀�̇�
𝑝

3
− 𝑐2 𝑝𝛼 𝑧̇                                                                                                 (10) 



5 

 

�̇�𝛼 = 𝑐1 𝜀�̇�
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− 𝑐2 𝑞𝛼 𝑧̇                                                                                                      (11) 

where 𝑐1 and 𝑐2 are model constants, 𝜀�̇�
𝑝

 and 𝜀�̇�
𝑝

 are plastic deviator and volumetric 

strain increments, respectively, and 𝑧̇ is the accumulative plastic strain increment 

which is expressed as: 

𝑧̇ = √
2

3
𝜀�̇�𝑗

𝑝
 𝜀�̇�𝑗

𝑝
                                                                                                                (12) 

where 𝜀�̇�𝑗
𝑝

 denotes components of plastic strain increment tensor.  

𝑝𝛼 and 𝑞𝛼 are defined as: 

𝑝𝛼 =
𝛼11 + 2𝛼33

3
                                                                                                            (13) 

𝑞𝛼 = 𝛼11 − 𝛼33                                                                                                               (14) 

𝑀𝑝 is calculated by the model for compression and extension as follows [9, 10]: 

𝑀𝑝,𝑐 =
6𝑠𝑖𝑛𝜑𝑝,𝑐

3 − 𝑠𝑖𝑛𝜑𝑝,𝑐
                                                                                                        (15) 

𝑀𝑝,𝑒 =
6𝑠𝑖𝑛𝜑𝑝,𝑒

3 + 𝑠𝑖𝑛𝜑𝑝,𝑒

                                                                                                        (16) 

in which 𝜑𝑝,𝑐 and 𝜑𝑝,𝑒 are the friction angles at the current peak shear stress in the 

triaxial compression and triaxial extension tests, respectively. They can be 

calculated by:  

sin 𝜑𝑝,𝑐 = 𝑠𝑖𝑛𝜑𝜇 − 𝑘𝑝𝜓𝑝                                                                                              (17) 

sin 𝜑𝑝,𝑒 = 𝑠𝑖𝑛𝜑𝜇 − 𝑘𝑝𝜓𝑝 − 𝑎𝑝                                                                                    (18) 

where 𝜓𝑝 = 𝑒 − 𝑒𝑝 is the state parameter at the current peak in which 𝑒 is void 

ratio, and 𝑒𝑝 is the critical state void ratio which is calculated at mean effective 

stress corresponding to 𝑀𝑝, 𝜑𝜇  is the interparticle friction angle and 𝑘𝑝 and 𝑎𝑝 are 

model parameters. 
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Fig. 1 Schematic representation of simultaneous movement of the loading and bounding 

surfaces during loading (path 1-2) and unloading (path 2-3). 

2.3 Flow rule 

The following non-associated flow rule is expressed similar to Yu et al. [11] as: 

𝐷 = √
2

3
 (𝐴(𝑀𝑝𝑡 − |𝜂|) + 

6𝐵

𝐶
)                                                                                  (19) 

𝐴 =
9

𝐶
                                                                                                                                (20) 

𝐶 = 9 + 3𝑀𝑝𝑡 − 2𝑀𝑝𝑡|𝜂| + 4𝐵                                                                                   (21) 

𝐵 =
𝑐𝑜ℎ

𝑝
√(2𝑀𝑝𝑡 + 3)(−𝑀𝑝𝑡 + 3)                                                                            (22) 

where 𝐷  is dilatancy rate, 𝑐𝑜ℎ  is cohesion, and 𝑀𝑝𝑡  is the phase transformation 

stress ratio. Cohesion is assumed to diminish with the total plastic strain increment 

as:  
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𝑑𝑐𝑜ℎ = 𝑐𝑜ℎ 𝑒
−𝜉√(�̇�𝑞

𝑝
)2+(�̇�𝑝

𝑝
)2

                                                                             (23) 

where 𝜉 determines rate of cohesion degradation. 

𝑀𝑝𝑡  is defined for compression and extension using the following relationships 

[9,10]: 

𝑀𝑝𝑡,𝑐 =
6𝑠𝑖𝑛𝜑𝑝𝑡,𝑐

3 − 𝑠𝑖𝑛𝜑𝑝𝑡,𝑐
                                                                                                     (24) 

𝑀𝑝𝑡,𝑒 =
6𝑠𝑖𝑛𝜑𝑝𝑡,𝑒

3 + 𝑠𝑖𝑛𝜑𝑝𝑡,𝑒
                                                                                                     (25) 

where  

𝑠𝑖𝑛𝜑𝑃𝑇,𝑐 = 𝑠𝑖𝑛𝜑𝑐𝑠 + 𝑘𝑃𝑇𝜓𝑠                                                                                         (26) 

𝑠𝑖𝑛𝜑𝑃𝑇,𝑒 = 𝑠𝑖𝑛𝜑𝑐𝑠 + 𝑘𝑃𝑇𝜓𝑠 + 𝑎𝑃𝑇                                                                              (27) 

in which 𝜑𝑐𝑠 is the critical state friction angle, 𝜓𝑠 = 𝑒 − 𝑒𝑐𝑠 is the state parameter 

[4, 12], 𝑒𝑐𝑠 is the critical void ratio and 𝑘𝑃𝑇 and 𝑎𝑃𝑇 are both model parameters. 

It is worthy to note that modelling the flow rule behavior of sand/cemented sand is 

difficult because the responses are not the same under loading and unloading 

conditions [13]. Moreover, sand behavior becomes even more complex due to 

inherent anisotropy. Rowe [14] and Roscoe et. al. [15] presented two various forms 

of flow rules for sand, which have been broadly used in elastoplastic models of sand 

[13]. Most of proposed stress-dilatancy models are based on Roscoe’s or Rowe’s 

flow rule, for example Nova [16], Jefferies [17], Manzari and Dafalias [18] and 

Gajo and Wood [19]. Few proposed stress-dilatancy models has considered the 

effect of fabric anisotropy. Wan and Guo’s model [20] is among very few models 

that considered fabric in formulation of the stress-dilaancy [13]. Yin and Chang 

[13] modelled flow rule using a micro-mechanism approach in which slip 

mechanism was considered for the dilatancy response between two particles. 

Because of the differences in slip patterns for unloading and loading conditions, 

two different forms of the stress-dilatancy was proposed for loading and unloading 

conditions.  
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In the proposed model in this paper, the same flue rule is used for both loading and 

unloading conditions. Also fabric is not directly formulated in the flow rule.  

2.4 Normalized plastic modulus 

The normalized plastic modulus (𝐻𝑛) is calculated using the following equations: 

𝐻𝑛 = −√
2

3
 

1

|
𝜕𝑓
𝜕𝑞

|

𝜕𝑓

𝜕𝑝𝑏
 
𝜕𝑝𝑏

𝜕𝜀𝑞
𝑝  +  𝐻𝑛

𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐                                                                (28) 

𝜕𝑝𝑏

𝜕𝜀𝑞
𝑝 =

ℎ𝐺𝑖𝑛𝑖

(𝑝𝑓 − 𝑝𝑐)
𝑖𝑛𝑖

(𝑝𝑓 − 𝑝𝑐) − (1 + 𝛽)𝛾𝑝𝑜                                                           (29) 

𝐻𝑛
𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 = 𝑅 (

2

9
𝑐1𝐷 − 𝑐2 𝑝𝛼 √

2

9
𝐷2 + 1) + 𝑐1 − 𝑐2𝑢𝑄𝑞𝛼 √

2

9
𝐷2 + 1       (30) 

𝑅 = √
2

3
 

𝜕𝑓
𝜕𝑝
𝜕𝑓
𝜕𝑞

                                                                                                                     (31) 

𝑢𝑄 =

𝜕𝑓
𝜕𝑞

|
𝜕𝑓
𝜕𝑞

|
                                                                                                                        (32) 

where  

ℎ  is a material parameter, 𝑝𝑓  is the failure mean effective stress, 

𝐺𝑖𝑛𝑖  is the initial value of 𝐺  at the start of shearing, and 𝑝𝑐  is the effective 

preconsolidation stress. 𝑝𝑓 is obtained using an iterative method such as Newton- 

Raphson from the following equation: 

𝑝𝑓 =
𝑝 − 𝑝𝑎

(1 −
(
𝑀𝑓𝑝𝑓 − 𝑞𝑎

𝑝𝑓 − 𝑝𝑎
− 𝛼)2

𝑀𝛼
2 )

2                                                                                (33) 

Calculation of 𝑀𝑓  is based on 𝑠𝑖𝑛𝜑𝑓  which itself is calculated by:  
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𝑠𝑖𝑛𝜑𝑓 = 𝑠𝑖𝑛𝜑𝑐𝑠 − 𝑘𝑓𝜓
𝑠
                                                                                                (34) 

where 𝑘𝑓  is a model parameter. 

𝐻𝑛 for unloading, i.e. 𝐻𝑛,𝑢, is assumed to be linked to that for loading as: 

𝐻𝑛,𝑢

𝐻𝑛

= 𝑅𝑢√
𝑝

𝑝𝑎𝑡𝑚

|𝜂|                                                                                                       (35) 

where 𝑅𝑢 is a model constant. 

3. Fabric tensor 

The orientation of non-spherical particles in a sand deposit can be represented using 

a second order fabric tensor as follows [6]: 

𝐹𝑖𝑗 =
1

2𝑁
∑ 𝑛𝑖

𝑘𝑛𝑗
𝑘                                                                                                          (36)

2𝑁

𝑘=1

 

where 𝑁 is number of particles in a representative volume, and 𝑛 is unit vector 

along major axis of elongation of the particle.  

The magnitude of components of 𝐹𝑖𝑗  represents the net portion of particles which 

are statistically oriented towards a specific direction. 𝐹𝑖𝑗  is clearly symmetric and 

thus, it can be represented by three principal values of 𝐹1 , 𝐹2 ,  and 𝐹3  (not 

necessarily implying that 𝐹1 ≥ 𝐹2 ≥ 𝐹3 ), and three corresponding principal 

directions. If we assume that the principal axes of the soil fabric coincide with a 

reference coordinate system (𝑥1
′ , 𝑥2

′ , 𝑥3
′ ) , where the 𝑥2

′ − 𝑥3
′  plane defines the 

isotropic plane of the fabric (i.e. bedding plane), and the 𝑥1
′  axis shows the direction 

of deposition (i.e. perpendicular to the bedding plane), the fabric tensor can be 

defined as [6]: 

𝐹𝑖𝑗
′ = (

𝐹1 0 0
0 𝐹2 0
0 0 𝐹3

)                                                                                                     (37) 

In which 𝐹2 = 𝐹3  due to transverse-isotropy. It can be shown that 𝐹𝑖𝑗  has a  

unit trace which implies that 𝐹1 = 1 − 𝐹2 − 𝐹3 = 1 − 2𝐹3 . Therefore for a 

transversely isotropic soil with a given deposition direction (usually in the vertical 

direction), only one scalar quantity is required to define the fabric tensor. Oda and 
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Nakayama [21] proposed the following symmetric second order fabric tensor 

[3,5,6]: 

𝐹𝑖𝑗
′ =

1

3 + ∆
(

1 − ∆ 0 0
0 1 + ∆ 0
0 0 1 + ∆

)                                                                       (38) 

where ∆ is a scalar that characterizes the magnitude of the cross-anisotropy. ∆ is  

a model parameter which ranges from zero in the case of complete isotropy (𝐹𝑖𝑗
′ =

𝐼/3 = 𝛿𝑖𝑗/3) to unity in the case of maximum anisotropy when the major axis of 

all particles are distributed in 𝑥2
′ − 𝑥3

′  plane (i.e. when the fabric is strongest in the 

bedding plane). Thus the fabric tensor 𝐹𝑖𝑗
′  characterizes both the intensity and 

orientation of the inherent material anisotropy for a specific sand deposit.  

4. Anisotropic state variable 

The introduction of fabric tensor into a constitutive model which includes other 

tensor variables such as the stress tensor requires special considerations. This  

may lead to complex mathematical relationships. Li and Dafalias [6] proposed  

a simple approach which accounts for the effect of the relative orientation of the 

stress and fabric tensors. This is done by the proper definition of a scalar-valued 

state variable 𝐴 which is a function of both 𝐹𝑖𝑗  and 𝜎𝑖𝑗 . 

The tensor 𝑇𝑖𝑗  which is a function of both the fabric and stress tensors is defined as 

follows [6, 22]: 

𝑇𝑖𝑗 =
1

6
(𝜎𝑖𝑚  𝐹𝑚𝑗

−1 + 𝐹𝑖𝑛
−1 𝜎𝑛𝑗)                                                                                       (39) 

where 𝐹𝑖𝑛
−1 is inverse of the fabric tensor 𝐹𝑖𝑛.  

𝑇𝑖𝑗  reflects the influence of the material fabric and its relative orientation with 

respect to stress. It is affected by the magnitude of the stress. Thus it is not suitable 

for direct use in describing the anisotropic stress states of a material. For example 

if a material is isotropic (i.e. 𝑇𝑖𝑗 = 𝜎𝑖𝑗 ), a scalar-valued index derived from 𝑇𝑖𝑗  

changes with the magnitude of 𝜎𝑖𝑗  instead of having a unique value which is 

characteristics of the isotropic state. Hence some sorts of normalization 

relative to stress seem to be necessary [6].  
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We start with decomposition of the stress tensor into a deviatoric stress tensor and 

a hydrostatic stress tensor as follows: 

𝜎𝑖𝑗 = 𝑠𝑖𝑗 + 𝑝𝛿𝑖𝑗 = 𝑝(𝜂𝑖𝑗 + 𝛿𝑖𝑗)                                                                                   (40) 

where 𝛿𝑖𝑗 is Kronecker delta. 

Stress ratio 𝑅𝑓  and the load angle 𝜃 are defined based on 𝜂𝑖𝑗  as follows [6]:  

𝑅𝑓 = √
3

2
𝜂𝑖𝑗𝜂𝑖𝑗                                                                                                                  (41) 

𝜃 = −
1

3
 sin−1 (

9

2
 
𝜂𝑖𝑗𝜂𝑗𝑘𝜂𝑘𝑖

𝑅𝑓
3 )                                                                                     (42) 

A critical state failure surface in stress space is defined using 𝑅𝑓  and 𝜃 as [6]: 

𝑅𝑓 − 𝑀𝑐𝑔(𝜃) = 0                                                                                                           (43) 

where 𝑀𝑐 is the critical stress ratio under triaxial compression, and 

𝑔(𝜃) =
√(1 + 𝑐2)2 + 4𝑐(1 − 𝑐2) sin 3𝜃 − (1 + 𝑐2)

2(1 − 𝑐) sin 3𝜃
                                           (44) 

Which is an interpolation function that interpolates 𝑅𝑓  on the critical state failure 

surface based on 𝜃  such that 𝑔(−30) = 1 , 𝑔(0) = (𝑐 + 𝑐2)/(1 + 𝑐2) , and 

𝑔(30) = 𝑐.  𝑐 is a model constant which defines the ratio of the critical state ratio 

under triaxial extenstion over that of triaxial compression. Not all values of 𝑐  

result in 𝑔(−30) = 1  and 𝑔(30) = 𝑐 . For example 𝑐 ≤ 0.41  does not lead to 

𝑔(−30) = 1. However all typical values of 𝑐 (say 0.6 < 𝑐 < 1) satisfy the above 

conditions. 

Note that the critical state failure surface defined by equation (43) is independent 

of the material anisotropy. This is justified by the fact that the critical stress ratio is 

mainly controlled by the frictional coefficient between sand particles which is an 

intristic property and independent of the fabric [6].  

As mentioned the effect of the fabric anisotropy must only deponds on the 

orientation, and not the magnitude of the stress tensor. A stress 𝜎𝑖𝑗  normalized with 

respect to mean effective stress and with deviatoric directions identical to those of 

𝜎𝑖𝑗can be defined as follows [6]: 
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𝜎𝑖𝑗 = (√
2

3
𝑀𝑐𝑔(𝜃)) 𝑙𝑖𝑗 + 𝛿𝑖𝑗 = �̂�𝑖𝑗 + 𝛿𝑖𝑗                                                                (45) 

where  

𝑙𝑖𝑗 =
𝜂𝑖𝑗

|𝜂𝑚𝑛|
= √

3

2
 
𝜂𝑖𝑗

𝑅𝑓

                                                                                                    (46) 

is a unit tensor which represents the direction of the stress ratio tensor 𝜂𝑖𝑗 .  

𝜎𝑖𝑗  clearly includes information on the stress orientation by 𝑙𝑖𝑗 . If we use 𝜎𝑖𝑗  instead 

of 𝜎𝑖𝑗  in equation (39), a normalized stress tensor can be defined as follows [6]:  

�̃�𝑖𝑗 =
1

6
(𝜎𝑖𝑚 𝐹𝑚𝑗

−1 + 𝐹𝑖𝑛
−1 𝜎𝑛𝑗)                                                                                       (47) 

�̌�𝑖𝑗  can be decomposed into a deviatoric stress ratio tensor 𝜂𝑖𝑗  and a hydrostatic part 

𝑝 = �̃�𝑗𝑗/3, as follows: 

�̃�𝑖𝑗 = 𝑝(𝜂𝑖𝑗 + 𝛿𝑖𝑗)                                                                                                           (48) 

Similar to equations (41) and (42), �̃�𝑓 and 𝜃 are defined as follows [6]: 

�̃�𝑓 = √
3

2
𝜂𝑖𝑗𝜂𝑖𝑗                                                                                                                  (49) 

𝜃 = −
1

3
sin−1 (

9

2
 
𝜂𝑖𝑗𝜂𝑗𝑘�̃�𝑘𝑖

�̃�𝑓
3 )                                                                                      (50) 

After some calculations, 𝜂𝑖𝑗  and �̃�𝑓  can be expressed in terms of 𝜎𝑖𝑗  and  𝐹𝑖𝑗
−1  

as follows [6]:  

𝜂 =
3

2
𝑡𝑟−1(𝜎 𝐹−1)(𝜎 𝐹−1 +  𝐹−1𝜎) − 𝐼                                                                  (51) 

�̃�𝑓 = √
27

4
𝑡𝑟−2(𝜎 𝐹−1)(𝑡𝑟(𝜎2𝐹−2) + 𝑡𝑟(𝜎 𝐹−1𝜎 𝐹−1)) −

9

2
                            (52) 

The symbol 𝑡𝑟 denotes the trace of a tensor, and underbar sign indicates a tensorial 

quantity.  

Anisotropic state parameter 𝐴 is ultimately defined as a function of �̃�𝑓  and 𝜃 using 

equation (43) as follows: 
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𝐴 =
�̃�𝑓

𝑀𝑐𝑔(𝜃)
− 1                                                                                                             (53) 

Parameter 𝐴 can be used as a parameter for describing the sand fabric effect on 

constitutive behaviour. It can be shown that for isotropic material 𝐴 = 0 while for 

anisotropic materials it can be either positive or negative, depending on the 

orientation of the stress relative to that of the soil fabric and to a weaker degree on 

the fabric intensity [6]. 

Changes of anisotropic parameter 𝐴 with 𝛼 and 𝑏 is shown in Fig. 2 for chosen 

values of ∆= 0.2, 𝑀𝑐 = 1.25, and 𝑐 = 0.75. 𝛼 is the angle between the direction 

of the major principal stress and direction of deposition (usually vertical direction). 

𝑏 is 𝑏-parameter which is used to investigate effect of the intermdiate principal 

stress and is defined as follows: 

𝑏 =
𝜎2 − 𝜎3

𝜎1 − 𝜎3
                                                                                                                     (54) 

Triaxial compression (TC) and triaxial extension (TE) are two extreme modes  

of shearing which are associated with 𝑏 = 0, 𝛼 = 0   and  𝑏 = 1, 𝛼 = 90 

respectively. The hollow cylinder (HC) test can provide tests with constant 0 <

𝛼 < 90  and constant 0 < 𝑏 < 1 which are other modes of shearing between two 

extreme modes of TC and TE. The HC apparatus permits independent control on 

the magnitutde and direction of the three principal stresses (i.e. rotation of the 

major-minor principal stress axes). Thus HC apparatus can be used for studies of 

inherent anisotropy, intermediate principal stress, and rotation of major/minor 

principal stress direction [23].  

A schematic representation of the HC apparatus is shown in Fig. 3. During HC tests, 

the axis of 𝜎1 and 𝜎3 rotate by 𝛼 around the fixed axis of 𝜎2 = 𝜎𝑟𝑟. This means one 

direction always remains principal direction during HC tests. Also directions of 𝜎𝑧𝑧, 

𝜎𝑟𝑟, and 𝜎𝜃𝜃 correspond to those of 𝐹11
′ , 𝐹22

′ , and 𝐹33
′  in equation (38). Any HC 

element is subjected to an axial load, 𝐹𝑣 , torque, 𝑇 , internal pressure, 𝑝𝑖 , and 

external pressure, 𝑝𝑜 . During shearing, the torque 𝑇 develops shear stresses, 𝜏𝜃𝑧 

and 𝜏𝑧𝜃 which are equal. The axial load causes a vertical stress, 𝜎𝑧𝑧, and 𝑝𝑖  and 𝑝𝑜 

determine 𝜎𝑟𝑟 and 𝜎𝜃𝜃 [6, 9, 23]. During HC test, there may or may not be pressure 
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applied in the inner hole. If the inner pressure is zero, the inner wall will fail under 

the confining stresses. However spalling will continue around the inner wall until 

the arching develops. Arching will reduce the stress on the wall until it is low 

enough leading to instability of inner wall. 

 

 

Fig. 2 Changes of anisotropic state parameter 𝑨 (vertical axis) with 𝜶 and 𝒃 [22] 

 

Fig. 3 Schematic representation of hollow cylinder apparatus [24] 

5. Modification of the proposed constitutive model 

using anisotropic state variable 
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Incorporation of anisotropic parameter 𝐴 into the constitutive model is done similar 

to Rasouli [22]. He incorporated 𝐴  by modifying the definition of 𝑀𝑝  in the 

constitutive equations. Some important features of the model such as the plastic 

modulus, the yielding stresses, and consequently the stress-dilatancy relationship 

are affected by this stress ratio because the loading function includes 𝑀𝑝. These 

features will be a function of anisotropic state parameter if 𝑀𝑝 is made a function 

of 𝐴. However, other features of the model like the failure stress ratio and critical 

state are not influenced by 𝑀𝑝. Thus, they are considered to remain unchanged by 

inherent anisotropy as in Manzari and Dafalias [18].  

Definition of 𝑀𝑝 intially is modified in order to include 𝑏-parameter for different 

modes of shearing as follows [9, 25]: 

𝑀𝑝 =
6(1 − 𝑏 + 𝑏2)1/2𝑠𝑖𝑛𝜑𝑝

3 + (2𝑏 − 1)𝑠𝑖𝑛𝜑𝑝

                                                                                     (55) 

For 𝑏 = 0  and 𝑏 = 1 , the formula will reduce to those of 𝑀𝑝,𝑐  and 𝑀𝑝,𝑒 , 

respectively, in which subscript 𝑐 stands for compression and subscript 𝑒 denotes 

extension.  

In order to account for the effects of inherent anisotropy and all modes of shearing 

including triaxial compression and triaxial extension, 𝑠𝑖𝑛𝜑𝑝 is defined using the 

following formula [22]: 

sin 𝜑𝑝 = sin 𝜑𝜇 − 𝑘𝑝𝜓𝑝 − 𝑎𝑝(𝐴)                                                                              (56) 

in which 

𝑎𝑝(𝐴) =
𝐴𝑐 − 𝐴

𝐴𝑐 − 𝐴𝑒
. 𝑎𝑝                                                                                                      (57) 

where 𝐴𝑐 and 𝐴𝑒 are the anisotropic parameters in triaxial compression and triaxial 

extension, respectively, whose values depend on other inherent anisotropy related 

model parameters including Δ, 𝑐, and 𝑀𝑐 . 𝐴𝑐  and 𝐴𝑒  can be located in Fig. 2 as  

far upper left side and far lower right side, respectively. 𝐴𝑐 corresponds to 𝑏 = 0 

and  𝛼 = 0, while 𝐴𝑒 corresponds to 𝑏 = 1 and 𝛼 = 90. For triaxial compression 

𝐴 = 𝐴𝑐 and 𝑎𝑝(𝐴) = 0, and for triaxial extension 𝐴 = 𝐴𝑒 and 𝑎𝑝(𝐴) = 𝑎𝑝 .  
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It should be noted that in this model, it is assumed that elastoplastic behavior 

takes place as soon as loading commences in stress space. This is in accordance 

with experimental observations which suggest that truly elastic behaviour of 

sand occurs at very low values of shear strain [4, 26]. Therefore, fabric anisotropy 

in this model is incorporated for elastoplastic response.  

6. Model performance 

Performance of the proposed model is examined against hollow cylinder tests on 

Toyoura sand. These tests have been conducted under different values of 𝛼 and 𝑏. 

All specimens in these undrained tests were consolidated isotropically to  

100 𝑘𝑃𝑎  before being sheared. They come from Rasouli [22]. However they 

originally come from Yoshimine et. al. [24]. Note that some combinations  

of 𝛼  and 𝑏  were not tested during these HC tests because of uncontrolled  

non-uniformities and instabilities. In general, conducting HC tests with high values 

of 𝑏 (say 𝑏 ≥ 0.75) is difficult since it is difficult to perform such tests due to  

non-uniformity of straining developed during these tests [22].  

The angle 𝛼 changes in HC tests with change of the major principal stress relative 

to the vertical direction which is the deposition direction. However, it is assumed 

here that it varies with change of the deposition direction (which is perpendicular 

to the bedding plane) relative to the vertical direction which is direction of the major 

principal stress. Axisymmetric mode is also used in order to resemble a cylindrical 

sample.  

All of the following tests on Toyoura sand were modelled by one unique set of 

model parameters which are listed in table 1. Inherent anisotropy parameters were 

selected according to Li and Dafalias [6]. Assigned values for ∆, 𝑐 and 𝑀𝑐 result in 

𝐴𝑐 = 0.328  and 𝐴𝑒 = −0.25. Note that ∆, 𝑐 and 𝑀𝑐 are used to estimate a value 

for 𝐴 under different combinations of 𝛼 and 𝑏.  

Measured and predicted behaviour of Toyoura sand under undrained HC tests  

with different values of 𝛼 and 𝑏 are shown in Figs. 4 to 13. They are  

in relatively good agreement in general even though there are discrepancies  

in some cases. It was possible to capture better matches for those cases if a  
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non-unique set of model parameters were used. However, the aim was to capture 

the experimental observations using one single set of model parameters.  This aim 

resulted in similar inaccuracies in calibration of the HC tests in Rasouli [22]  

too. Note that the reduced extension test was modelled for the test with 𝑏 = 1 rather 

than the standard extension test (i.e. decreasing axial strain/stress was modelled). A 

zero value was assigned for all bonding related parameters in these simulations. 

Table 1 Material parameters used for calibration of undrained HC tests on Toyoura sand  

Parameter type Name Toyoura sand 

Peak state 

 

 

 

𝑘𝑝 

𝜑𝜇  

𝑎𝑝 

 

𝜑𝑐𝑠 

𝑘𝑃𝑇 

𝑎𝑃𝑇 

 

𝐺𝑎 

𝐾𝑎 

 

ℎ 

 

𝑘𝑓  

 

𝑒𝑐𝑠 

1.2 

21 

0.45 

 

31 

0.75 

0.01 

 

8e6 

8.5e6 

 

1 

 

0.75 

 

−0.0063477𝑝3 + 0.0367𝑝2

− 0.11991𝑝 + 0.92548 (𝑝 𝑖𝑛 𝑀𝑃𝑎) 

Stress-dilatancy 

 

 

 

Elasticity 

 

 

Plastic stiffness 

 

Failure 

 

Critical state line 

 

Inherent anisotropy 

∆ 

𝑀𝑐 

𝑐 

0.2 

1.25 

0.75 

Fig. 4, 6 and 10 reveals that sand resistant against liquefaction decreases with an 

increase in value of  𝛼 at a given value of 𝑏. Test with 𝛼 = 0 in Fig. 4 shows that 

the sand sample has experienced clear strain hardening with an obvious phase 

transformation shown in Fig. 5. That is, initially positive pore pressure develops 

within sample which results in continuous decrement in the mean effective 

stress value. However when the stress path reaches the maximum contraction 

capacity (i.e. phase transformation surface), the material undergoes dilation and 

consequently negative pore pressure develops which leads to an increasing trend 

 in the mean effective stress and hence the material strengthening. Test with  
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𝛼 = 15 reflects similar behavior, but with less stiff response. Test with 𝛼 = 30   

shows less stiff response compared to the aforementioned tests. It also reveals that 

short softening response (i.e. the material weakening) is accompanied by hardening 

response (i.e. the material strengthening). The strongest softening behavior has 

taken place in test with 𝛼 = 45 accompanied by the phase transformation and 

hardening. Similar behaviors are observed in other tests (Fig. 6-13). Note that full 

liquefaction has occurred in some tests when the stress path has approached the 

origin of the coordinate system (Figs. 7 and 13).  

 

 

Fig. 4 Observed and predicted undrained response for deviator stress vs. shear strain curve 

under 𝒃 = 𝟎 and 𝜶 = 𝟎𝟎 𝒕𝒐 𝟒𝟓𝟎 
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Fig. 5 Observed and predicted undrained response for deviator stress vs. mean effective stress 

curve under 𝒃 = 𝟎  and 𝜶 = 𝟎𝟎 𝒕𝒐 𝟒𝟓𝟎 

 

 

Fig. 6 Observed and predicted undrained response for deviator stress vs. shear strain curve 

under 𝒃 = 𝟎. 𝟐𝟓 and 𝜶 = 𝟎𝟎 𝒕𝒐 𝟑𝟎𝟎 
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Fig. 7 Observed and predicted undrained response for deviator stress vs. mean effective stress 

curve under 𝒃 = 𝟎. 𝟐𝟓  and 𝜶 = 𝟎𝟎 𝒕𝒐 𝟑𝟎𝟎 

 

 

Fig. 8 Observed and predicted undrained response for deviator stress vs. shear strain curve 

under 𝒃 = 𝟎. 𝟓 and 𝜶 = 𝟏𝟓𝟎 
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Fig. 9 Observed and predicted undrained response for deviator stress vs. mean effective stress 

curve under 𝒃 = 𝟎. 𝟓  and 𝜶 = 𝟏𝟓𝟎 

 

 

Fig. 10 Observed and predicted undrained response for deviator stress vs. shear strain curve 

under 𝒃 = 𝟎. 𝟕𝟓 and 𝜶 = 𝟑𝟎𝟎 𝒕𝒐 𝟒𝟓𝟎 
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Fig. 11 Observed and predicted undrained response for deviator stress vs. mean effective 

stress curve under 𝒃 = 𝟎. 𝟕𝟓 and 𝜶 = 𝟑𝟎𝟎 𝒕𝒐 𝟒𝟓𝟎 

 

 

Fig. 12 Observed and predicted undrained response for deviator stress vs. shear strain curve 

under 𝒃 = 𝟏. 𝟎 and 𝜶 = 𝟒𝟓𝟎 
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Fig. 13 Observed and predicted undrained response for deviator stress vs. mean effective 

stress curve under 𝒃 = 𝟏. 𝟎 and 𝜶 = 𝟒𝟓𝟎 

Figs. 14 and 15 show model predictions for drained HC tests on a hypothetical 

cemented sand. These tests have been modelled using one set of model parameters 

which are listed in table 2. Intrinsic anisotropy parameters were chosen similar to 

those in table 1. It was assumed also that all speciments were consolidated 

isotropically to pressure equals to 200 𝑘𝑃𝑎 and void ratio equals to 0.74 before 

being sheared.  
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Table 2 Material parameters used for calibration of hypothetical drained HC tests on 

cemented sand in Figs. 14 to 15 

Parameter type Parameter name Cemented sand 

Original model 

𝑘𝑝 

𝜑𝜇  

𝑎𝑝 

 

𝜑𝑐𝑠 

𝑘𝑃𝑇 

𝑎𝑃𝑇 

 

𝐺𝑎 

𝐾𝑎 

 

ℎ 

 

𝑘𝑓  

 

𝑒𝑐𝑠 

1.5 

29 

0.15 

 

31 

1.25 

0.10 

 

5e6 

8e6 

 

1 

 

0.75 

 

−0.0063477𝑝3 + 0.0367𝑝2

− 0.11991𝑝 + 0.76 (𝑝 𝑖𝑛 𝑀𝑃𝑎) 

Bonding (cementation) 

𝑝𝑜 

𝛾 

𝛽 

𝑐 

𝜉 

2e5 

15 

0.1 

5e3 

5 
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Fig. 14 Sensitivity analysis for a cemented sand under HC tests with 𝜶 = 𝟎𝟎  
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Fig. 15 Sensitivity analysis for a cemented sand under HC tests with 𝒃 = 𝟎. 𝟐𝟓  
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Results of sensitivity analysis in Fig. 14 reveal that the stiffness of cemented sand 

decreases with increasing the value of 𝑏, implying that TC and TE have the greatest 

and the lowest stiffness, respectively. Unlike stiffness, the tendency for contraction 

increases with increasing value of 𝑏 which means TC and TE have respectively the 

lowest and the highest tendency for contraction under a given initial and boundary 

conditions. This implies that the greater positive pore pressure will develop under 

undrained conditions for higher values of 𝑏  leading to smaller resistant against 

liquefaction. These interpretations suggest that TC and TE, two extreme modes of 

shearing, are the strongest and the weakest modes of shearing, correspondingly, for 

identical conditions. This is in line with the literature [2, 3, 6, 9].  

Sensitivity analysis results in Fig. 15 show that the stiffness of weakly cemented 

sand in a given value of 𝑏 decreases with increasing the value of 𝛼. Unlike stiffness, 

the tendency for contraction increases with increasing value of 𝛼. This implies that 

the greater positive pore pressure will develop under undrained conditions for 

higher values of 𝛼 which result in smaller resistant against liquefaction. This is in 

accordance with the literature [3, 20]. That is, most contact normals are oriented in 

the vertical direction when the bedding plane is horizontal (i.e. deposition direction 

is vertical) which causes the specimen to be strong. However when the bedding 

plane is vertical (i.e. deposition direction is horizontal), most contact normals are 

oriented horizontally which causes the specimen to be weak in vertical direction [2, 

20].   

Figs. 16 and 17 show model predictions for hypothetical cyclic HC tests on  

the same weakly cemented sand. In addition to model parameters listed in Table 2, 

cyclic loading related model parameters were chosen in this sensitivity analysis as 

follows: 

𝑐1 = 5𝑒6, 𝑐2 = 500, 𝑅𝑢 = 3 

It was also assumed that the speciments were consolidated isotropically to pressure 

equals to 200 𝑘𝑃𝑎 and void ratio equals to 0.74 before being sheared similar to 

monotonic HC tests on the same weakly cemented sand.  



28 

 

 

 

 

Fig. 16 Sensitivity analysis for cyclic HC tests with 𝜶 = 𝟎 and 𝒃 = 𝟎  & 𝟎. 𝟐𝟓 
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Fig. 17 Sensitivity analysis for cyclic HC tests with 𝜶 = 𝟎 and 𝒃 = 𝟎. 𝟐𝟓  & 𝟎. 𝟓 
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Fig. 18 shows cohesion degradation during hypothetical cyclic HC test with 𝑏 = 0 

in Fig. 16. About 50%  of total degradation (i.e. about 2000 𝑃𝑎) occurs during 

cycle of unloading-reloading. This means if conventional plasticity is used, 

cohesion degradation will be underestimated by about 50%  since no plastic 

deformation is calculated by classical plasticity during cycle of unloading-

reloading. Cohesion degradation during unloading-reloading cycle depends 

profoundly on unloading plastic modulus in the proposed constitutive model. Thus 

for other cases where 𝑅𝑢 > 3, say 𝑅𝑢 = 15, contribution of unloading-reloading 

cycles in total cohesion degradation is significantly much smaller than this case. 

However even small cohesion degradation during unloading-reloading will affect 

predicted outcomes because it will accumulate during successive cycles. Therefore 

it is required to record plastic deformation for stress paths inside the yield surface 

during cycles of unloading-reloading.  

 

Fig. 18 Cohesion degradation during cyclic HC test with 𝜶 = 𝟎 and 𝒃 = 𝟎 

7. Conclusion 

The overall response of sand depends not only on the cementation bonds between 

sand particles, but also on intermediate principal stress and fabric which reflect 

particle orientation and particle contact arrangements. Therefore, the fabric and 

intermediate principal stress as influential parameters should be incorporated into 

constitutive model in order to accurately capture mechanical behavior of 
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sand/cemented sand under various shearing/deformation conditions. Thus fabric 

was incorporated into the model using a fabric tensor which represents material 

inherent anisotropy and a scalar-valued state variable which describes the material 

anisotropic state. To account for intermediate principal stress effect, 𝑏-parameter 

was also integrated into formulation of the model. Performance of the unparallelled 

proposed constitutive model was examined against HC monotonic tests on Toyoura 

sand. Model predictions are in reasonable agreements with experimental 

observations. The model was also used to predict behavior of a weakly cemented 

sand under cyclic HC tests with different values of 𝑏 and 𝛼. Model predictions 

show that stiffness of cemented sand decreases and tendency for contraction 

increases with increasing values of 𝑏 under a given 𝛼 or with increasing values of 

𝛼 under a given value of 𝑏. These observations suggest that TC (𝑏 = 0, 𝛼 = 0) and 

TE (𝑏 = 1, 𝛼 = 90), two extreme modes of shearing, are the strongest and the 

weakest modes of shearing, respectively.  

Simulated outcomes suggest also that inaccurate results will produce if plastic 

deformation is neglected during cycle of unloading-reloading. Hence use of an 

advanced plasticity theory such as bounding surface plasticity is required in order 

to capture cyclic response of sand/cemented sand more accurately.  
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