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Abstract

We determine the decomposition of the Chow motive of a Del Pezzo surface

S of degree 5 or 6 with a K-rational point pt : K → S into a direct sum of

Chow motives. In each case, we give a Gal
(
K/K

)
-permutation resolution of

the Picard group Pic
(
K ×K S

)
and deduce that there is some étale algebra E

such that the corresponding twisted motive (SpecE, idSpecE) (1) is isomorphic

to the direct sum of (S, idS −(pt× S + S × pt)) and (SpecK, idSpecK) (1).
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Chapter 1

Introduction

The notion of motives was introduced by Grothendieck in a letter to Serre in
1964 and a corresponding homology theory, called motivic cohomology, was
conjectured around that time. His idea was to take the category of smooth,
projective schemes over a field K and to replace the usual morphisms of
schemes by correspondences, i. e. algebraic cycles modulo an adequate equiv-
alence relation. In general, there are many possible equivalence relations that
one might consider, for example rational, algebraic, homological, or numerical
equivalence, which yield different categories of motives.

Also in the 1960s, Grothendieck conjectured about the existence of a category
known as the category of mixed motives MM(K) over a fixed field K. To this
day, it is an unresolved question as to whether or not this category exists. In
an attempt to find a suitable definition for MM(K), a category known as the
category of geometric motives, denoted DM(K) was created. The category
DM(K) has been and continues to be actively studied by many authors and
has proven to be a very significant category in the area of algebraic geometry.
One of the most important applications is in Voevodsky’s proof of the Milnor
conjecture.

In this thesis, we are concerned with the category of Chow motives Chow(K)
which uses rational equivalence. The construction of the category Chow(K) is
far simpler than that of DM(K) which means that results are more accessible
in this setting than in DM(K). Since there is a fully faithful embedding
from Chow(K) into a subcategory of DM(K), results concerning Chow(K)
contribute to the understanding of DM(K).

The goal of this thesis is to describe how the Chow motive of a Del Pezzo
surface of degree 5 or 6 with a K-rational point splits into a direct sum of
Chow motives.
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In the first chapter, we review important notions from various branches of
mathematics. The geometric prerequisites include Picard groups and Chow
groups, which can be found in Hartshorne’s book on algebraic geometry [9] and
Fulton’s book on intersection theory [3]. The algebraic prerequisites include
material from [2] on permutation modules and basic results from representation
theory on root systems which can be found in Humphreys’ book [10]. We
also formally define Del Pezzo surfaces, the schemes whose motives we are
interested in.

In Chapter 2, we present the definition of the category of Chow motives as
given in Manin’s paper [13]. Furthermore, we state the general decomposition
of the motive of an equidimensional variety X with a K-rational point, i. e. a
morphism pt : SpecK → X, and show that

(X, idX) ∼= (SpecK, idSpecK)

⊕ (X, idX −(pt×X +X × pt))⊕ (SpecK, idSpecK) (dimX).

Since the motives of SpecK are well understood, this thesis focuses on a
detailed description of the middle term (S, idS −(pt× S + S × pt)) for a Del
Pezzo surface of degree 5 or 6 with a K-rational point.

In the third chapter, we briefly recall the structure of the Picard group of
Del Pezzo surfaces, which is based on Manin’s work [14]. We present two
permutation resolutions that we found for the Picard groups of Del Pezzo
surfaces of degree 5 and 6.

Etale algebras are introduced in Chapter 4 where we state relevant results from
Bourbaki’s elements [1] and the standard book on involutions [12]. For the
Galois extension K/K, we prove that the category of Gal(K/K)-permutation
modules is equivalent to the category of motives of étale algebras over K.

In the fifth chapter, we use the explicit permutation resolutions from Chapter
3 to show how to construct an étale algebra E over K in such a way that the
twisted motive of SpecE decomposes into the direct sum of the middle term
(S, ρ) and a twisted motive of SpecK, i. e. we prove that

(SpecE, idSpecE)(1) ∼= (S, idS −(pt× S + S × pt))⊕ (SpecK, idSpecK) (1).



Chapter 2

Preliminaries

Let K be a perfect field with algebraic closure K, X a projective scheme over
K with structure sheaf OX . We write X = X×KK and in general, if L/K is a
field extension, we write XL = L×K X. We use (projective) surface to denote
a smooth, projective, geometrically integral scheme over K of dimension 2.

2.1 Algebraic Geometry: The Picard Group,

the Intersection Form and Chow Groups

The Picard Group

Definition. An invertible sheaf over X is a locally free OX-module of rank 1.

The set of isomorphism classes of invertible sheaves forms a group with multi-
plication induced by the sheaf tensor product, i. e. for two sheaves L1 and L2

over X, we have
[L1] · [L2] := [L1 ⊗ L2],

where [Li] denotes the isomorphism class of the invertible sheaf Li. The neutral
element is the sheaf OX regarded as an OX-module and the inverse of an
invertible sheaf F is the dual

F∨ = HomOX (F ,OX) ,

where the right hand side is the Hom-sheaf from F into OX .

Definition. The group of isomorphism classes of invertible sheaves with the
tensor product is called the Picard group, PicX, of X.
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We can also describe the Picard group in terms of homology groups in the
Zariski homology and the étale homology (c. f. Chapter III, Example 2.22
in [15]): Let O×X denote the sheaf of invertible elements in OX , and Gm the
multiplicative group of K; then

H1
ét (X,Gm) ∼= PicX ∼= H1

Zar

(
X,O×X

)
.

The Intersection Form

We consider a symmetric bilinear form on the Picard group for projective
surfaces S called the intersection form following Mumford [16, Lecture 12]. A
more general approach for intersections of pseudo-divisors with an algebraic
cycle in the Chow ring can be found in Fulton’s book [3].

Definition. A sheaf F of OX-modules is called of finite type over OX , if
for every x ∈ X, there is an open neighborhood U ⊂ X of x such that the
restriction F(U) is generated by a finite number of sections.

The sheaf F is called coherent if it is of finite type and for every open U ⊂ X,
every integer n ≥ 0, and every morphism φ : OnX(U)→ F(U), the kernel of φ
is of finite type.

Let S be a surface over K. The global section functor ΓS from the category
of coherent sheaves on S into the category of abelian groups is given by

ΓS : L 7→ L(S).

Since ΓS is left exact, this functor admits a sequence of right derived functors
denoted by H i(S,L). If S is proper over K, then each of the spaces H i(S,L)
are finite dimensional K-vector spaces with H i(S,L) = 0 for all i > dimS,
for details see Grothendieck [6]. Therefore, we can define the Euler-Poincaré-
Characteristic of L to be

χ(L) :=
∑
i∈Z≥0

(−1)i dimK

(
H i(S,L)

)
,

where Z≥0 := {i ∈ Z | i ≥ 0}. As a direct consequence, if L′ ∼= L, then
H i(S,L′) ∼= H i(S,L). Thus these vector spaces have the same dimensions
and hence

χ(L′) = χ(L),

which proves that the Euler-Poincaré-Characteristic is independent of the
choice of the representative of an isomorphism class of sheaves.



2. Preliminaries 5

Since invertible sheaves are coherent, we can define the intersection form on S
as follows:

Definition. The intersection form on S is given by

(−,−) : PicS × PicS → Z
([L1] , [L2]) := (L1 · L2) := χ (OS)− χ

(
L−1

1

)
− χ

(
L−1

2

)
+ χ

(
L−1

1 ⊗ L−1
2

)
.

Proposition 2 in [16] states that the intersection form on S is a symmetric
bilinear form on PicS, i. e. we have

([L2] , [L1]) = ([L1] , [L2])([
L−1

1

]
, [L2]

)
= − ([L1] , [L2])

([L1 ⊗ L′1] , [L2]) = ([L1] , [L2]) + ([L′1] , [L2])

for the equivalence classes of any three invertible sheaves L1, L′1 and L2.

Chow Groups

Definition. For any integer m ≥ 0, the free abelian group Zm(X) generated
by the m-dimensional integral subvarieties of X is called the group of cycles of
dimension m. Its elements, known as m-cycles, are finite formal sums

∑
i ni[Vi]

where ni ∈ Z and Vi is an m-dimensional integral subvariety of X.

The Chow group of dimension m will be defined shortly as a factor group of
the group of cycles of dimension m. To that end, let W ⊂ X be an integral
subvariety, V ⊂ W an irreducible subvariety of codimension 1 in W , K(W )
the corresponding field of rational functions and R := OW,V ⊆ K(W ) the local
ring of X along V . Then R is a local ring without zero divisors with fraction
field isomorphic to K(W ). Further, since R has dimension 1, for any element
0 6= r ∈ R, we have dimR/rR = 0. As any noetherian ring of dimension 0
is Artinian, we can define the length of R/rR as the length of a composition
series of the R-module R/rR. This induces a well defined map

lW,V : R\{0} → Z
r 7→ lengthR(R/rR)

In the fraction field K(W ), any element can be written as a quotient of two
elements of R. Since the length function is additive on short exact sequences,
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this induces a well defined map

ordW,V : K(W )× → Z
r

s
7→ lW,V (r)− lW,V (s),

see [3, Appendix A] for details.

Definition. For an irreducible subvariety W of X of dimension m + 1 and
f ∈ K(W )×, define the divisor of f to be

div(f) :=
∑

V⊂W irreducible,
dim(V )=m

ordW,V (f)[V ].

This sum is finite since for any f ∈ K(W )×, there are only finitely many
irreducible subvarieties V ⊂ W of codimension 1 such that ordW,V (f) 6= 0
(c. f. Fulton [3, Appendix B.4.3]).

Definition. We denote by Ratm(X) the group generated by the divisors div(f)
for all f ∈ K(W )× for all (m+1)-dimensional subvarieties W ⊂ X. The Chow
group of cycles of dimension m is the factor group

CHm(X) := Zm(X)/Ratm(X).

Elements in the same equivalence class are said to be rationally equivalent. If
X = Spec(R) is affine, we simply write CHm(R) instead of CHm(SpecR). For
a smooth scheme X, define the Chow ring

CH∗(X) :=
dimX⊕
m=0

CHm(X).

This is a ring with multiplication induced by the composition of the exterior
product

CH∗(X)⊗ CH∗(X)→ CH∗(X ×K X)

[V ]⊗ [T ] 7→ [V × T ]

with the refined Gysin homomorphism ∆! : CH∗ (X ×K X) → CH∗(X) for
the diagonal map ∆X : X ↪→ X ×K X, which is a regular immersion since X
is smooth over K. This turns CH∗(X) into a unital ring with multiplicative
identity denoted by [X] or 1X in CHdimX(X).
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If X is smooth with irreducible components X1, . . . , Xe, we define

CHm(X) :=
⊕
i

CHm(Xi) =
⊕
i

CHdimXi−m(Xi)

and if X is equidimensional, we let CH∗(X) :=
⊕dimX

m=0 CHm(X). The ring
CH∗(X) is a graded ring. The multiplication therefore satisfies

CHi(X)× CHj(X)→ CHi+j−dimX(X)

([V ], [T ]) 7→ [V ] · [T ].
(2.1)

In the remaining part of this section, we will explain the connection between
the Picard group Pic(X) and the Chow group CHn−1(X) for an equidimen-
sional variety X. A Cartier divisor is defined as a pair (Uα, fα), where the Uα
form an open covering of X, and fα is a non-zero function in the field of ratio-
nal functions K(Uα) such that fα/fβ is a unit on Uα ∩Uβ. Two pairs (Uα, fα)
and (Vβ, gβ) represent the same Cartier divisor if fα/gβ is a unit in K[Uα∩Vβ].
With the addition of Cartier divisors D = (Uα, fα) and D′ = (Vβ, gβ) defined
as follows:

D +D′ = (Uα ∩ Vβ, fαgβ),

the Cartier divisors form the group CaDiv(X) of Cartier divisors on X. Fur-
thermore, a Cartier divisor D is called principal if there is f ∈ K[X]× such
that D and (X, f) represent the same Cartier divisor. Since the principal
Cartier divisors form a subgroup of CaDiv(X), we can define the group of
classes of Cartier Divisors, denoted CaCl(X), as the quotient

CaCl := CaDiv / group of principal Cartier divisors.

Our first step is to define an isomorphism from the Picard group of X into the
group CaCl(X). To that end, recall that there is an equivalence of categories
of the category of locally free sheaves on X and the category of vector bundles
over X, hence we can identify any invertible sheaf L with the corresponding
line bundle L.

Lemma 2.1. Pic(X) is isomorphic to CaCl(X) via

Pic(X)→ CaCl(X)

[L] 7→ [(Uβ, gαβ)]

for some fixed α, where Uβ is the open covering and gαβ are the transition
functions of the line bundle L associated to the invertible sheaf L

Let D = (Uα, fα) denote a Cartier divisor. If V ⊂ X is an irreducible subva-
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riety of codimension 1, let

ordV (D) := ordUα,V ∩Uα(fα)

for any α such that Uα ∩ V 6= ∅. This definition is independent of α since for
two such indices α, β, the functions fα and fβ only differ by units.

Lemma 2.2 (Corollaire 21.6.10 in [7]). If X is locally factorial, then CaCl(X)
is isomorphic to CHn−1(X) via

CaCl(X)→ CHn−1(X)

D 7→ [D] :=
∑
V

ordV (D)[V ].

Corollary 2.3. Let S be a smooth projective surface. The two previous lemmas

yield that Pic(S)
∼=→ CaCl(X)

∼=→ CH1(S) via the given isomorphisms.

Furthermore, also the intersection form on Pic(S) for smooth, projective sur-
faces S described in this section corresponds to an operation on the Chow
group CH1(S). To that end, let X be a complete scheme and α =

∑
P nP [P ]

a zero-cycle on X. Define the degree of α to be

deg(α) :=

∫
X

α :=
∑
P

nP [K(P ) : K],

where [K(P ) : K] denotes the degree of the field extension of K(P ) over K.
One can then prove (c. f. [16]) for the isomorphism classes of two line bundles
L1,L2 in Pic(S) and their corresponding cycles λ1, λ2 in CH1 (S), we have an
identity

(L1,L2) = deg(λ1 · λ2).

2.2 Del Pezzo Surfaces

In this thesis, we will mainly work with a special type of surface known as a
Del Pezzo surface. We will first recall the definition of the anticanonical sheaf
and an anticanonical divisor.

Definition. Let ΩX be the cotangent bundle on an equidimensional scheme
X. The canonical bundle on X is

∧dimX ΩX . The corresponding (invertible)
sheaf of sections ωX is called the canonical sheaf and its inverse ω−1

X is referred
to as anticanonical sheaf. Any divisor KX such that O(KX) ∼= ωX is called a
canonical divisor. An anticanonical divisor is a divisor −KX such that KX is
a canonical divisor.
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Definition. An invertible sheaf L is said to be ample if for every coherent
sheaf F on X, there is an integer n0 > 0 such that for every n ≥ n0, the sheaf
F ⊗ L⊗n is generated by its global sections.

Definition. A Del Pezzo surface is a smooth surface S such that S = S×KK
is birationally equivalent to P2

K
and the anticanonical sheaf ω−1

S is ample. The
degree of a Del Pezzo surface is d = (ωS, ωS), where (−,−) is the intersection
form on S.

Example. (a) The projective plane P2
K is a Del Pezzo surface of degree 9.

(b) Let K = K be algebraically closed. We say that points P1, . . . , Pr ∈ P2
K

for 2 ≤ r ≤ 8 are in general position if no three of them are collinear, no
six of them lie on a conic and no eight of them on a cubic having a node
at one of them. For 1 ≤ d ≤ 7, the blow up of P2

K
in r := 9 − d points

P1, . . . , Pr in general position is a Del Pezzo surface of degree d.

(c) The image of the rational map ϕ : P2
K → P6

K given by

[x : y : z] 7→ [x2y : x2z : xy2 : xyz : xz2 : y2z : yz2]

is a Del Pezzo surface of degree 6 (c. f. [18]).

We are particularly interested in Del Pezzo surfaces of degrees 5 and 6 that
have a K-rational point, i. e. there is a K-morphism pt : SpecK → S. As was
proven in [17], any Del Pezzo surface of degree 5 has a K-point but in general
this does not hold for Del Pezzo surfaces of degree 6. In the remainder of this
chapter we will provide important lemmas which can be applied to Del Pezzo
surfaces of those degrees.

Lemma 2.4 (Künneth formula, Lemma 27.1.10 in [14]). Let S1, S2 be rational
surfaces over an algebraically closed field K. Then

n⊕
i=0

CHi(S1)⊗ CHn−i(S2)
∼=→ CHn

(
S1 ×K S2

)
∑
i

αi ⊗ βn−i 7→
∑
i

αi × βn−i

for 0 ≤ n ≤ 4.

The action of the Galois group G = Gal(K/K) on K induces an action on
SpecK, on S ×K K and therefore also on Pic

(
S ×K K

)
. Let H ⊂ G be an

open subgroup. We then let Pic
(
S ×K K

)H
denote the invariant elements of

Pic
(
S ×K K

)
under the action of H.
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Lemma 2.5. Let S be a surface with a K-rational point and H ⊆ G a closed
subgroup. Then

Pic
(
S ×K K

H
) ∼=→

(
Pic
(
S ×K K

) )H
induced by the inclusion K

H
↪→ K.

Sketch of the proof. It suffices to prove that PicS ∼=
(
PicS

)G
. The Hochschild-

Serre spectral sequence

Hp
(
G,Hq

ét

(
S,Gm

))
⇒ Hp+q

ét (S,Gm) ,

(c. f. Theorem III.2.20 in [15]) gives an exact sequence, the low term exact
sequence is

0→ H1
(
G,H0

ét

(
S,Gm

))
→ H1

ét (S,Gm)

→ H0
(
G,H1

ét

(
S,Gm

))
→ H2

(
G,H0

ét

(
S,Gm

))
→ ker

(
H2

ét (S,Gm)→ H0
(
G,H2

ét

(
S,Gm

))) (2.2)

Since H0
ét

(
S,Gm

)
= K

×
, we have by Hilbert 90

H1
(
G,H0

ét

(
S,Gm

))
= H1

(
G,K

×
)

= 0

and
H2
(
G,H0

ét

(
S,Gm

))
= H2

(
G,K

×
)

= Br(K),

where Br(K) denotes the Brauer group of K. From H1
ét

(
S,Gm

)
= PicS, we

obtain
H0
(
G,H1

ét

(
S,Gm

))
= H0

(
G,PicS

)
=
(
PicS

)G
.

Finally, let Br(X) denote the Brauer group of a scheme X. Then H2
ét (S,Gm) =

Br(S) and H2
ét

(
S,Gm

)
= Br(S) imply that

ker

(
H2

ét (S,Gm)→ H0
(
G,H2

ét

(
S,Gm

)))
= ker

(
Br(S)→ H0

(
G,Br(S)

))
.

The exact sequence (2.2) then takes the form

0→ PicS →
(
PicS

)G → Br(K)→ ker

(
Br(S)→ H0

(
G,Br(S)

))
.
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Since S has a K-point, the map Br(K) → ker

(
Br(S) → H0

(
G,Br(S)

))
is

split injective and hence we have an isomorphism

PicS
∼=→
(
PicS

)G
.

2.3 Permutation Modules and Permutation Res-

olutions

In this section, let G be a profinite group and H ⊂ G a closed subgroup
of finite index. Since every profinite group is compact, this is equivalent to
H ⊂ G being open.

Definition. Let M be a Z[G]-module which is finitely generated as a Z-
module. Consider the discrete topology on M and the product topology on
G × M . The module M is called a continuous module if the group action
G ×M → M, (g,m) 7→ g.m is continuous. We simply write G-module for a
continuous Z[G]-module.

Lemma 2.6. Let M be a Z[G]-module which is finitely generated as a Z-
module. The following are equivalent:

(a) M is a G-module.

(b) For all m ∈M , the stabilizer

Gm := {g ∈ G | g.m = m}

is open in G.

Proof. (a) ⇒ (b): Fix m ∈ M . Since M is a continuous G-module with the
discrete topology, the composition of maps

G→ G×M →M

g 7→ (g,m) 7→ g.m

is continuous. Hence, the preimage Gm ⊂ G of {m} ⊂M is open in G.

(b) ⇒ (a): We have to show that the map G ×M → M, (g,m) 7→ g.m is
continuous. Since M is equipped with the discrete topology, it suffices
to show that for any m ∈ M , the preimage of {m} is open in G ×M .
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The preimage of {m} is given by

{(g, n) ∈ G×M | g.n = m} =
⋃
g∈G

gGg−1.m × {g−1.m},

hence a union of open sets in G×M .

Let M and N be two G-modules, then the action of G on M and N induces
an action on

(a) M ⊗Z N via
g.(m⊗ n) := (g.m)⊗ (g.n)

for all g ∈ G, m ∈M , n ∈ N .

(b) HomZ(M,N) via
(g.α)(m) := g.α(g−1.m)

for all g ∈ G, α ∈ HomZ(M,N), m ∈ M . In particular, since Z is a
trivial G-module, G acts on M∨ := HomZ(M,Z) via

(g.α)(m) = α(g−1.m)

for all g ∈ G, α ∈M∨, m ∈M .

Since M and N are finitely generated Z-modules, let HM and HN denote the
intersection of the stabilizers of the Z-generators of M and N , resp., which
are open subgroups of G. Hence, H := HM ∩ HN is an open subgroup of G
that fixes M ⊗Z N and HomZ (M,N) and the given G-action turns M ⊗Z N
and HomZ (M,N) into G-modules.

Definition. Let M be a G-module. If M is a free Z-module which admits a
Z-basis that is permuted by the G-action, then M is called a G-permutation
module. We will simply write permutation module if the group G is clear from
the context.

Example. Let H ⊂ G be a closed subgroup of finite index and let G act on
Z[G/H] via left multiplication. Then Z[G/H] is a permutation module.

Proposition 2.7. The following are equivalent:

(a) M is a permutation module.

(b) There are finitely many closed subgroups Hi ⊂ G of finite index such that
M is isomorphic to the finite direct sum

⊕
i Z[G/Hi].
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Remark. The subgroups Hi of the previous proposition need not be normal
in G, in particular, the sets G/Hi are sets of left cosets, but not necessarily
groups.

Proof. (a)⇒(b): Since M is a permutation module, we may choose a finite
Z-basis X of M that is permuted by the G-action. Let Y be a finite G-set,
then let Z[Y ] :=

⊕
y∈Y Z · y with the G-action induced by the action of G on

Y . If we split X into its finitely many disjoint orbits G.x1, . . . , G.xn under the
G-action, we obtain that

M ∼=
n⊕
i=1

Z[G.xi]

as G-modules. It therefore suffices to show that every G-module of the form
Z[Y ] for a finite G-set Y on which G acts transitively (i. e. Y = G.y for some
y ∈ Y ), is isomorphic to Z[G/K] for some subgroup K ⊂ G of finite index.
To prove this, let K ⊂ G be the stabilizer of y in G, i. e.

K = {k ∈ G | k.y = y}.

Since M is continuous, K ⊂ G is a closed subgroup of finite index. We claim
that Z[Y ] ∼= Z[G/K] as G-modules: Define a bijection α̃ : G/K → Y as G-sets
via

gK 7→ g.y.

The map α̃ is then

• well defined: If g1K = g2K, then there is a k ∈ K such that g1 = g2k
and therefore

g1.y = (g2k).y = g2.(k.y) = g2.y

since k stabilizes y.

• injective: Assume that α̃(g1K) = α̃(g2K) for some g1K, g2K ∈ G/K,
then

g1.y = g2.y

y = g−1
1 g2.y,

i.e. g−1
1 g2 ∈ K or equivalently g1K = g2K.

• surjective: Let z ∈ Y , then there is a g ∈ G such that z = g.y, hence
z = α̃ (gK).

• a G-map: For g ∈ G, g̃K ∈ G/K, we have

α̃(g.g̃K) = α̃(gg̃K) = (gg̃).y = g.(g̃.y) = g.α̃ (g̃K) .
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We define a G-module homomorphism α : Z[G/K] → Z[Y ] by extending α̃
Z-linearly. Since α̃ is a bijection of G-sets, α is a G-module isomorphism.

(b)⇒(a): Each of the summands Z [G/H] is a G-permutation module and
therefore, their finite direct sum is a G-permutation module as well.

If M , N are G-modules, then we use the notation

HomG(M,N) := HomZ[G](M,N)

= {α ∈ HomZ(M,N) | g.α(m) = α(g.m) for all g ∈ G,m ∈M} .

Definition. Let M be a G-module. A G-permutation resolution of M is a
long exact sequence

...
α2 // P2

α1 // P1
α0 // P0

β //M // 0,

in which the Pi are G-permutation modules, αi ∈ HomG (Pi+1, Pi) for all i and
β ∈ HomG (P0,M). We will simply write permutation resolution if the group
G is clear from the context.

We denote the Z-module consisting of all H-invariant elements of M by MH ,
i. e.

MH = {m ∈M | h.m = m for all h ∈ H} .

In the remaining part of this section, we will identify some G-modules that
are isomorphic to MH . To do this, we will use the following Proposition:

Proposition 2.8. Let M and N be G-modules. The elements of HomG(M,N)
are the G-invariant elements of HomZ(M,N) under the above action, i. e.

HomG(M,N) =
[

HomZ(M,N)
]G
.

Proof. α ∈ HomZ(M,N) is G-invariant if and only if

α(m) = (g.α)(m) = g.α(g−1.m)

for all g ∈ G, m ∈M , which is equivalent to

g.α(m) = α(g.m)

for all g ∈ G,m ∈M , that is α ∈ HomG(M,N).

The following theorem yields the first of these modules isomorphic to MH .
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Theorem 2.9. Let M be a finitely generated G-module. Then MH is isomor-
phic to HomG (Z [G/H] ,M) as Z-modules.

Proof. Define a map

f : HomG (Z [G/H] ,M)→MH

α 7→ α (H) .

For f to be well defined, we have to show that α(H) ∈ MH . By definition,
α(H) ∈M and for all h ∈ H, we have

h.α(H) = α(h.H) = α(hH) = α (H) .

Further, f is a Z-homomorphism since for all numbers a, b ∈ Z and homomor-
phisms α, β ∈ HomG (Z[G/H],M) we have

f(aα− bβ) = (aα− bβ) (H) = aα(H)− β(H) = af(α)− bf (β) .

To find an inverse map k : MH → HomG (Z [G/H] ,M), we first note that for
any m ∈MH , we can define a Z-linear map αm ∈ HomG (Z [G/H] ,M) via

gH 7→ g.m.

The map αm is well defined since if g1, g2 ∈ G such that g1H = g2H, then
there is h ∈ H such that g1 = g2h and therefore

α(g1H) = g1.m = (g2h).m = g2.(h.m) = g2.m = α (g2H) .

Additionally, α is G-invariant since for all generators g̃H of G/H, we have

g.α(g̃H) = g.(g̃.m) = (gg̃).m = α ((gg̃).H) = α (g.(g̃H)) .

Hence α ∈ HomG (Z [G/H] ,M) and consequently, the map

k : MH → HomG (Z [G/H] ,M)

m 7→ (αm : gH 7→ g.m)

is well defined. It is also is a Z-homomorphism since for any a, b ∈ Z and
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m, n ∈MH , we have

k(am− bn) = (αam−bn : gH 7→ g.(am− bn)

= (gH 7→ a(g.m)− b(g.n))

= a(gH 7→ g.m)− b(gH 7→ g.n)

= aαm − bαn
= ak (m)− bk (n) .

Finally, it remains to prove that k is actually an inverse of f . To see this, we
note that for all m ∈MH

f(k(m)) = f(αm) = αm(H) = αm(eH) = e.m = m

and for all β ∈ HomG (Z[G/H],M)

k(f(β)) = k(β(H)) = αβ(H) = β.

The last equality holds since

αβ(H)(gH) = g.β(H) = β (gH)

for all gH ∈ G/H.

Definition. Let M be a G-module. A symmetric bilinear form b : M×M → Z
is called

(a) non-degenerate if the map

M →M∨

m 7→ (m∗ : n 7→ b(m,n))

is an isomorphism.

(b) G-invariant, if
b(g.m, g.n) = b(m,n)

for all g ∈ G, m,n ∈M .

Lemma 2.10. Let M be a finitely generated G-module which is free as a Z-
module. If the bilinear form b : M×M → Z is non-degenerate and G-invariant,
then M and M∨ are isomorphic as G-modules.
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Proof. The definition of a non-degenerate bilinear form implies that the map

M →M∨

m 7→ (m∗ : n 7→ b(m,n))

is an isomorphism. If b is also G-invariant, we have

(g.m∗)(n) = b(m, g−1.n) = b(g.m, n) = (g.m)∗(n)

for all g ∈ G and m,n ∈M , so that the given isomorphism is compatible with
the G-action.

Lemma 2.11. Z [G/H] is isomorphic to
[
Z [G/H]

]∨
as G-modules.

Proof. By the previous lemma, it suffices to show the existence of a non-
degenerate, G-invariant bilinear form c : Z [G/H]× Z [G/H] → Z. We define
c on generators as follows

c(gH, g̃H) =

{
1, if gH = g̃H

0, otherwise

and then extend this bilinearly to Z[G/H]. To show that this bilinear form
is non-degenerate, we fix a generating set g1H, . . . gsH of G/H which is a free
basis for Z[G/H]. The representing matrix for this bilinear form is then the
(s× s)-identity matrix, hence non-degenerate.

Theorem 2.12. Let M be a finitely generated G-module which is free es a Z-
module. If M admits a non-degenerate, G-invariant bilinear form b : M×M →
Z, then MH is also isomorphic to HomG (M,Z [G/H]) as Z-modules.

Proof. We have

MH ∼=→ HomG (Z [G/H] ,M)

m 7→ (αm : gH 7→ g.m)

by Theorem 2.9, further

HomG (Z [G/H] ,M)
∼=→ HomG

(
M∨,

[
Z [G/H]

]∨)
α 7→ (α∗ : β 7→ β ◦ α)
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and from M ∼= M∨ by Lemma 2.10 and Z[G/H] ∼= Z[G/H]∨ by Lemma 2.11,
it follows that

HomG

(
M∨,

[
Z [G/H]

]∨) ∼= HomG (M,Z [G/H]) ,

hence

MH ∼= HomG (M,Z[G/H]) .

Now assume that M has a permutation basis x1, . . . , xn and a G-invariant
bilinear form b : M ×M → Z with b(xi, xj) = ±δij. As we will see later, the
Picard group of a Del Pezzo surface of degree 5 or 6 satisfies those conditions.
Let f ∈ HomG (M,Z[G/H]). We will denote the corresponding element in
HomG (Z[G/H],M) by f ∗, hence the isomorphisms in the proof of theorem
2.12 are given by

HomG (M,Z[G/H])
∼=→MH

f 7→ f ∗(H).

2.4 Root Systems and the Weyl Group

This section is a short overview of the most important properties of a root
system and its Weyl group. A detailed presentation can be found in [10],
chapter 10.

Let E be a Euclidean space, that is a real vector space with a positive definite,
symmetric bilinearform (−,−) : E × E → R, called scalar product.

Definition. Every element α ∈ E defines a reflection

σα : E → E

β 7→ β − 2
(β, α)

(α, α)
α.

We can visualize this map geometrically as follows: if we decompose our space
E into the direct sum of the linear subspace L(α) spanned by α and its or-
thogonal complement L(α)⊥, i. e.

E = L(α)⊕ L(α)⊥,

then σα maps
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• any element β ∈ L(α) to its negative −β. To see this, write β = kα for
some k ∈ R, then

σα(β) = σα(kα) = kα− 2
(kα, α)

(α, α)
α = kα− 2kα = −kα = −β.

• any element β ∈ L(α)⊥ to itself since (β, α) = 0.

From this, we immediately obtain two basic properties of reflections:

Lemma 2.13. (a) Reflections are self-inverse.

(b) Reflections preserve the scalar product.

Definition. A subset Φ ⊂ E is called a root system in E if

(R1) Φ is finite, Φ spans E and 0 /∈ Φ.

(R2) If α ∈ Φ, then −α ∈ Φ and Φ does not contain any other scalar multiples
of α, i. e. L(α) ∩ Φ = {±α}.

(R3) If α ∈ Φ, then the reflection σα leaves Φ invariant.

(R4) If α, β ∈ Φ, then 2 (β,α)
(α,α)

∈ Z.

Definition. A subset ∆ ⊂ Φ of a root system is called a base if

(B1) ∆ is a basis of E.

(B2) For every β ∈ Φ, we can write β =
∑

α∈∆ kαα with integral coefficients
kα such that either kα ≥ 0 or kα ≤ 0 for all α ∈ ∆.

An element α ∈ ∆ is called a simple root.

Definition. For a given root system Φ ⊂ E, the Weyl group W(Φ) ⊂ GL(E),
or simply W , is the group generated by the reflections σα, α ∈ Φ.

The following theorem lists important properties of bases and the Weyl group,
which we use in subsequent chapters. A proof of this theorem can be found in
[10, Theorem 10.3].

Theorem 2.14. Let Φ be a root system in E with Weyl group W(Φ) and a
base ∆.

(a) W is generated by the reflections σα, α ∈ ∆.

(b) W acts transitively on bases.

(c) If α ∈ Φ is a root, then there is σ ∈ W such that σ(α) ∈ ∆.



Chapter 3

Effective Chow Motives

3.1 Intersection Theory

Intersection theories were formally introduced by Grothendieck in [5]. This
section is a short summary of the definitions.

Definition. An intersection theory with coefficients in a commutative ring R
is a contravariant functor C from the category PSm(K) of smooth projective
K-schemes into the category of commutative R-algebras

X 7→ C(X),

φ : (X → Y ) 7→ φ∗ : C(Y )→ C(X),

subject to the following axioms:

(a) Every proper morphism φ : X → Y induces anR-algebra homomorphism
φ∗ : C(X)→ C(Y ) such that (idX)∗ = idC(X) and (φ ◦ ψ)∗ = φ∗ ◦ ψ∗.

(b) For any two schemes X, Y ∈ PSm(K), we have an R-module homomor-
phism

C(X)⊗R C(Y )→ C(X ×K Y ),

x⊗ y 7→ x× y.

(c) For an irreducible scheme X ∈ PSm(K), we have an augmentation ho-
momorphism ε : C(X)→ R, which is an isomorphism for X = SpecK.

In addition, these morphisms have to satisfy certain conditions as listed in [5,
I.1-I.9]. In particular, we have
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1. The Multiplication Axiom: Let X ∈ PSm(K) and let ∆X : X ↪→ X ×X
be the diagonal morphism. Then the composition

C(X)⊗R C(X)→ C(X ×X)
∆∗
X−→ C(X)

coincides with the multiplication homomorphism ∆∗X(x× y) = xy.

2. The Projection Formula: Let φ : X → Y be a morphism and x ∈
C(X), y ∈ C(Y ). Then

φ∗ (xφ∗(y)) = φ∗(x)y.

For example, the Chow ring CH∗(X), as defined in Section 2.1, yields an
intersection theory, known as Chow Theory, with R = Z and

C(X) := CH∗(X) =
dimX⊕
i=0

CHi(X).

If X and Y are equidimensional and φ : X → Y is a morphism, then:

(e) The homomorphisms φ∗ : CH∗(Y ) → CH∗(X) respect the grading by
codimension, i. e.

φ∗ : CHi(Y )→ CHdimX−dimY+i(X). (3.1)

(f) The homomorphisms φ∗ : CH∗(X) → CH∗(Y ) respect the grading by
dimension, i. e.

φ∗ : CHi(X)→ CHi(Y ). (3.2)

3.2 The Category of Effective Chow Motives

We will describe a covariant version of Grothendieck’s construction of the
category of effective Chow(K)-motives following Karpenko [11] and Manin
[13].

Definition. Let X and Y be smooth projective schemes over K. A correspon-
dence between X and Y is an element of CH∗(X ×K Y ). The composition of
two correspondences f ∈ CH∗(X × Y ), g ∈ CH∗(Y ×K Z) is

g ◦ f = pXZ∗ (p∗Y Z(g) · p∗XY (f)) ∈ CH∗(X ×K Z),
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where pXY , pXZ , pY Z denote the projections

X × Y × Z
pXY

ww
pXZ
��

pY Z

''
X × Y X × Z Y × Z.

This composition preserves dimensions: Let X and Y be equidimensional, f ∈
CHdimX (X ×K Y ) and g ∈ CHdimY (Y ×K Z), then from the maps (2.1), (3.1)
and (3.2), we obtain that g ◦ f ∈ CHdimX (X ×K Z). Further, let φ : X → Y
be a morphism in PSm(K) and let idX : X → X be the identity morphism.
We define the graph class of φ to be

Γφ := (idX , φ)∗ (1X) ∈ CHdimX (X ×K Y ) .

The diagonal class of a scheme X is the graph class ΓidX of the identity mor-
phism, which we will often again denote by idX .

We define the category C0(K) of correspondences of degree 0 to be the category
with

• objects: objects in PSm(K)

• morphisms: HomC0(K) (X, Y ) =
⊕e

i=1 CHdimXi (Xi ×K Y ),

where X1, . . . , Xe are the irreducible components of X. If X is an object in
PSm(K), then let X denote the corresponding object in C0(K). The category
C0(K) is an additive category with direct sums X ⊕ Y = X t Y and tensor
products X ⊗ Y = X ×K Y , but is not an abelian category.

Definition. Let D be an additive category, X an object in D, and p ∈
HomD(X,X). The category D is said to be pseudo-abelian if p2 = p im-
plies the existence of an object Y in D and morphisms f ∈ HomD(X, Y ) and
g ∈ HomD(Y,X) such that f ◦g = idY and g ◦f = p. We also use the notation
ker p for Y .

Let D be a pseudo-abelian category and let p ∈ HomD(X,X) be a projector,
i. e. idempotent, and we have the maps f and g as in the above definition.
Since p is a projector implies that idX −p is a projector, we also have an object
Z and morphisms h ∈ HomD(X,Z) and k ∈ HomD(Z,X) such that h◦k = idZ
and k ◦ h = idX −p. These maps induce isomorphisms

X ∼= Y ⊕ Z = ker p⊕ ker (idX −p)
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Definition. The pseudo-abelian completion of an additive category D is the
category D̃ with

• objects: pairs (X, p) where X is an object in D and p is an idempotent
element in HomD(X,X)

• morphisms: HomD̃ ((X, p), (Y, q)) = q ◦ HomD (X, Y ) ◦ p

We have a completely faithful functor G : D → D̃ that extends the mapping
X 7→ (X, id) and f 7→ f uniquely. For any pseudo-abelian category E and

additive functor F : D → E , there is an additive functor F̃ : D̃ → E such that
F and F̃G are equivalent.

We define the category of effective Chow motives over K, denoted Chow(K) =

C̃0(K), to be the pseudo-abelian completion of the category C0(K) of corre-
spondences of degree 0. Hence we have

• objects: pairs (X, p) where X is an object in PSm(K) and p is a projec-
tor in HomC0(K) (X,X)

• morphisms: HomChow(K) ((X, p), (Y, q)) = q ◦ HomC0(K) (X, Y ) ◦ p

The notion of the graph class allows us to define a covariant functor from
PSm(K) to Chow(K) that maps

• objects: X 7→ X̃ = (X, idX), often again denoted by X, and

• morphisms: (φ : X → Y ) 7→ Γφ.

Let P1 := P1
K denote the projective line over K. Let further pt ∈ CH0 (P1)

denote the graph class of a point SpecK → P1 and P1 ∈ CH1 (P1). Define two
projectors p0, p1 ∈ HomChow(K) (P1,P1) as

p0 = pt× P1 and p1 = P1 × pt.

Then

p2
0 = (pP1P1)∗

(
P1 × pt× P1 · pt× P1 × P1

)
= pt× P1

= p0
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and

p0 ◦ p1 = (pP1P1)∗
(
P1 × pt× P1 · P1 × pt× P1

)
= (pP1P1)∗

(
P1 × 0× P1

)
= 0.

Similarly, one shows that

p2
1 = p1 and p1 ◦ p0 = 0.

The Künneth formula yields the identity

CH1

(
P1 × P1

) ∼= CH0

(
P1
)
⊗ CH1

(
P1
)
⊕ CH1

(
P1
)
⊗ CH0

(
P1
)
.

Since CH0 (P1)⊗CH1 (P1) is generated by p0 and CH1 (P1)⊗CH0 (P1) is gen-
erated by p1, we can write

idP1 = ap0 + bp1

for some a, b ∈ Z. Then

p0 = idP1 ◦p0

= (ap0 + bp1) ◦ p0

= ap0,

so a = 1 and similarly

p1 = idP1 ◦p1

= (ap0 + bp1) p1

= bp1,

so b = 1, hence
idP1 = p0 + p1,

where p0 and p1 are orthogonal projectors. Since the category of effective
Chow Motives is pseudo-abelian, this yields the decomposition

(P1, idP1) ∼=
(
P1, p0

)
⊕
(
P1, idP1 −p0

)
∼= (K, idK)⊕

(
P1, p1

)
where the isomorphisms (P1, p0)→ K and K → (P1, p0) in Chow(K) are given
by (P1 ×K) ◦ p0 = pt×K and p0 ◦ (K × pt) = K × P1, respectively.

We define the Tate motive L := (P1, p1) and can now introduce twisting with
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L: For any integer i ≥ 0, we have a functor −(i) of Chow(K) into itself via

• objects: U 7→ U(i) = U ⊗ Li = U ⊗ L⊗ . . .⊗ L︸ ︷︷ ︸
i times

• morphisms: f 7→ f(i) = f ⊗ idLi .

Proposition 3.1 (Chapter 8 in [13]). Let U and V be effective motives. The
functor −(i) is completely faithful, i. e.

HomChow(K)(U, V )→ HomChow(K)(U(i), V (i))

f 7→ f(i)

is an isomorphism for all i ≥ 0. If X and Y are equidimensional schemes, we
further have an isomorphism

CHdimX+i−j (X ×K Y )→ HomChow(K)((X, idX)(i), (Y, idY )(j))

α 7→ α× δij,
(3.3)

where δij ∈ CHj (Li) denotes the morphism corresponding to the identity in
HomChow(K) (Ln, Ln) for large n.

We can extend the category of effective Chow motives over K to the category
of Chow motives over K by adding the formal inverse T = L−1 of the Tate
motive and, as a consequence, can also extend the definition of twisting to
negative integers by tensoring with this inverse. For this thesis, it is sufficient
to work in the category of effective Chow motives.

3.3 The Chow Motive of a Variety with a K-

rational Point

Let X be an irreducible variety of dimension n with a K-point pt : SpecK →
X. We will also denote the corresponding graph class of pt : SpecK → X by

pt ∈ CH0 (K ×K X) ∼= CH0 (X) .

Lemma 3.2. The two algebraic cycles pt×X and X × pt in CHn (X ×K X)
are orthogonal.

Proof. Let p12, p13, p23 denote the projections onto the respective factors of
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X ×X ×X,
X ×X ×X

p12

ww
p13
��

p23

''
X ×X X ×X X ×X.

Then

(pt×X) ◦ (X × pt) = (p13)∗ (X × pt×X · X × pt×X)

= (p13)∗

X ·X × pt · pt︸ ︷︷ ︸
∈CH−n(X)=0

×X ·X


= 0

and

(X × pt) ◦ (pt×X) = (p13)∗ (X ×X × pt · pt×X ×X)

= (p13)∗ (pt×X × pt)

= 0

for dimensional reasons.

Lemma 3.3. The cycle X × pt + pt×X is a projector.

Proof. We will first show that X × pt and pt×X are projectors:

(X × pt) ◦ (X × pt) = (p13)∗ (X ×X × pt · X × pt×X)

= (p13)∗ (X × pt× pt)

= X × pt,

(pt×X) ◦ (pt×X) = (p13)∗ (X × pt×X · pt×X ×X)

= (p13)∗ (pt× pt×X)

= pt×X.

We use these two computations to show that X × pt + pt×X is a projector:

(X × pt + pt×X) ◦ (X × pt + pt×X)

= (X × pt) ◦ (X × pt) + (X × pt) ◦ (pt×X) +

+ (pt×X) ◦ (X × pt) + (pt×X) ◦ (pt×X)

= (X × pt) ◦ (X × pt) + (pt×X) ◦ (pt×X)

= X × pt + pt×X.
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Since the category of Chow(K)-motives is pseudo-abelian, this yields

(X, idX) ∼= (X, idX − (X × pt + pt×X))⊕ (X,X × pt + pt×X)
∼= (X, idX − (X × pt + pt×X))⊕ (X,X × pt)⊕ (X, pt×X) .

(3.4)

The latter two summands can be described in terms of motives of the field K,
as computed in the following two Lemmas.

Lemma 3.4.
(X,X × pt) ∼= (SpecK, idSpecK) .

Proof. We need

f ∈ Hom ((X,X × pt) , (SpecK, idSpecK))

= idSpecK ◦CHn (X ×K K) ◦ (X × pt) ,

g ∈ Hom ((SpecK, idSpecK) , (X,X × pt))

= (X × pt) ◦ CH0 (K ×K X) ◦ idSpecK

such that

f ◦ g = idSpecK and g ◦ f = X × pt.

To that end, let

f = idSpecK ◦ (X ×K) ◦ (X × pt)

= (pXK)∗ (X ×X ×K ·X × pt×K)

= X ×K,
g = (X × pt) ◦ (K × pt) ◦ idSpecK

= pKX∗ (K ×X × pt · K × pt×X)

= K × pt,

then

f ◦ g = (pKK)∗ (K ×X ×K · K × pt×K)

= K ×K
= idSpecK
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and

g ◦ f = (pXX)∗ (X ×K × pt · X ×K ×X)

= X × pt.

Lemma 3.5.
(X, pt×X) ∼= (SpecK, idSpecK) (n)

Proof. We need

f ∈ Hom ((X, pt×X) , (SpecK, idSpecK) (n))

= idSpecK ◦CH0 (X ×K K) ◦ (pt×X) ,

g ∈ Hom ((SpecK, idSpecK) (n), (X, pt×X))

= (pt×X) ◦ CHn (K ×K X) ◦ idSpecK ,

such that

f ◦ g = idSpecK and g ◦ f = pt×X.

Therefore, take

f = idSpecK ◦ (pt×K) ◦ (pt×X)

= (pXK)∗ (X × pt×K · pt×X ×K)

= pt×K,
g = (pt×X) ◦ (K ×X) ◦ idSpecK

= pKX∗ (K × pt×X · K ×X ×X)

= K ×X,

then

f ◦ g = (pKK)∗ (K × pt×K · K ×X ×K)

= K ×K
= idSpecK

and

g ◦ f = (pXX)∗ (X ×K ×X · pt×K ×X)

= pt×X.

Let ρ := idX − (X × pt + pt×X). Using the two previous lemmas, equation
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(3.4) becomes

(X, idX) ∼= (SpecK, idSpecK)⊕ (X, ρ)⊕ (SpecK, idSpecK) (n).

If S is a Del Pezzo surface of degree 5 or 6 with a K-rational point, this implies

(S, idS) ∼= (SpecK, idSpecK)⊕ (S, ρ)⊕ (SpecK, idSpecK) (2). (3.5)

In Chapter 6, we will describe the middle term (S, ρ).



Chapter 4

Permutation Resolutions of the
Picard Group of Del Pezzo
Surfaces of Degree 5 and 6

4.1 The Picard Group of Del Pezzo Surfaces

of Degree d

In this section, we will present the basic results for Picard groups of Del Pezzo
surfaces S over algebraically closed field K of degree d. The proofs can be
found in [14, Chapter IV].

Proposition 4.1 (Proposition 25.1 in [14]). Let r := 9− d. There exists a Z-
basis l0, . . . , lr of PicS such that the intersection form is given by the bilinear
form (−,−) : PicS × PicS → Z with

(l0, l0) = 1, (li, li) = −1 for i ≥ 1, (li, lj) = 0 for i 6= j.

To be able to use the results of Section 2.4 on root systems, we will identify a
root system in PicS and a system of simple roots in PicS.

Proposition 4.2 (Propositions 25.1 and 25.2 in [14]). Let r ≥ 3, i. e. d ≤ 6.
The canonical sheaf is given by ω = −3l0 +

∑r
i=1 li. The set

Rr :=
{
l ∈ PicS | (l, ω) = 0, (l, l) = −2

}
is a root system in ω⊥, the orthogonal complement of ω in PicS ⊗Z R.

Due to the importance of this fact, we will prove that Rr is a root system in
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PicS ⊗Z R.

Proof as given in [14]. We start by proving that the bilinear form in Proposi-
tion 4.1 is negative definite on ω⊥, yielding that ω⊥ is a Euclidean space with
inner product −(−,−). We first note that since PicS ⊗Z R is generated by
ω, l1, . . . , lr, we can write any element as l = aω +

∑r
i=1 bili. The condition of

being in the orthogonal complement of ω in PicS ⊗Z R is then equivalent to

0 = (ω, l)

=

(
ω, aω +

r∑
i=1

bili

)
= a(ω, ω) +

r∑
i=1

bi(ω, li)

= (9− r)a−
r∑
i=1

bi,

hence

(9− r)a =
r∑
i=1

bi. (4.1)

Applying our bilinear form (l, l) to this, we obtain

(l, l) =

(
aω +

r∑
i=1

bili, aω +
r∑
i=1

bili

)
= a2(ω, ω) + 2a

r∑
i=1

bi(ω, li) +
r∑
i=1

r∑
j=1

bibj(li, lj)

= (9− r)a2 − 2a
r∑
i=1

bi −
r∑
i=1

b2
i

(4.1)
= (9− r)a2 − 2a · (9− r)a−

r∑
i=1

b2
i

= − (9− r)︸ ︷︷ ︸
≥0

a2 −
r∑
i=1

b2
i

≤ 0.

Consequently, −(−,−) is a symmetric, positive bilinear form on ω⊥. To prove
that Rr is a root system in ω⊥, we verify the conditions of the definition on
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page 19:

(R1) ω⊥ ∩ Zr+1 is a lattice and therefore contains only a finite number of
elements of length 2, so Rr is finite. Further, since Rr contains the r
linearly independent vectors l2− l1, . . . , lr − lr−1 and −l0 + l1 + l2 + l3, it
spans the r-dimensional space ω⊥. Finally, Rr does not contain 0 since
(0, 0) = 0 6= −2.

(R2) Let l ∈ Rr and assume that we have al ∈ Rr, for some a ∈ R. Then

(al, ω) = a(l, ω) = 0

and

(al, al) = a2(l, l) = −2a2 = −2 if and only if a = ±1.

Hence al ∈ Rr ⇔ a = ±1.

(R3) Let l ∈ Rr, then (l, l) = −2 and hence the reflection σl is of the form

σl(x) = x− 2
(x, l)

(l, l)
l = x+ (x, l)l. (4.2)

We will now prove that for any k ∈ Rr, we also have σl(k) ∈ Rr. For
that we check

(σl(k), ω) =
(
k + (k, l)l, ω

)
= (k, ω) + (k, l)(l, ω)

= 0 + 0 since k, l ∈ Rr

= 0

and

(σl(k), σl(k))
Lemma 2.13(b)

= (k, k) = −2.

(R4) Let k, l ∈ Rr, then

2
(k, l)

(l, l)
= −(k, l) ∈ Z.

Proposition 4.3 (Proposition 25.4 in [14]). The root system Rr is of type
A1 × A2, A4 for d = 6, 5, respectively.

Theorem 4.4 (Proposition 26.5 in [14]). The group of automorphisms of the
Picard group which preserves both ω and the intersection form is equal to the
Weyl group Wr := W (Rr). In particular, W3

∼= S2 × S3 and W4
∼= S5.
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We conclude this chapter with explicit equations defining the roots, i. e. the
elements of

Rr =
{
l ∈ PicS | (l, ω) = 0, (l, l) = −2

}
.

Let l = al0 −
∑r

i=1 bili ∈ Rr. Then

0 = (l, ω)

=

(
al0 −

r∑
i=1

bili , − 3l0 +
r∑
i=1

li

)

= −3a(l0, l0)−
r∑
i=1

bi(li, li)

= −3a+
r∑
i=1

bi,

r∑
i=1

bi = 3a (4.3)

and

−2 = (l, l)

=

(
al0 −

r∑
i=1

bili , al0 −
r∑
i=1

bili

)

= a2 −
r∑
i=1

b2
i ,

r∑
i=1

b2
i = a2 + 2 (4.4)

We can restrict the possibilities for a using the Cauchy-Schwartz inequality:
For any real numbers b1, . . . , br, we know that(

r∑
i=1

1 · bi

)2

≤

(
r∑
i=1

12

)
·

(
r∑
i=1

b2
i

)
(

r∑
i=1

bi

)2

≤ r
r∑
i=1

b2
i .
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From (4.3) and (4.4), it follows that

(3a)2 =

(
r∑
i=1

bi

)2

≤ r
r∑
i=1

b2
i = r(a2 + 2),

which is equivalent to

9a2 ≤ r(a2 + 2). (4.5)

For r ≤ 5, i. e. d = 9− r ≥ 4, this inequality yields

9a2 ≤ r(a2 + 2) ≤ 5(a2 + 2)

a2 ≤ 5

2
.

Since a ∈ Z, we must have

a ∈ {−1, 0, 1} . (4.6)

The inequality (4.5) also gives an estimation for the remaining degrees, yielding
|a| ≤ 4 for r ≤ 8. In fact, one can prove that |a| ≤ 3 (c. f. [14, Proposition
25.5.3]).

4.2 A Permutation Resolution for Degree 6

If the degree of the Del Pezzo surface is d = 6, we get r = 9 − 6 = 3. In this
section, we identify one example of a system of simple roots for the Picard
group of a Del Pezzo surface of degree 6 over an algebraically closed field K
and use this to compute the action of the Weyl group on the Picard group. It
is then straightforward to verify that the short exact sequence given in The-
orem 4.6 is a permutation resolution of PicS with respect to the Weyl group
W3
∼= S2 × S3.

The equations (4.3), (4.4) and (4.6) of the preceding section lead to the fol-
lowing possibilities for the coefficients of l = al0 −

∑3
i=1 bili ∈ R3:

a arbitrary permutation of the bi
-1 -1, -1, -1
0 1, -1, 0
1 1, 1, 1
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Hence, we get a root system

R3 =
{
l2 − l1, l1 − l2, l3 − l2, l2 − l3, l3 − l1, l1 − l3,
− l0 + l1 + l2 + l3, l0 − l1 − l2 − l3

}
.

Theorem 4.5. A system of simple roots (i. e. a base) is given by

s1 := l2 − l1, s2 := l3 − l2, s3 := −l0 + l1 + l2 + l3.

Proof. s1, s2 and s3 are linearly independent and ω⊥ is r = 3-dimensional,
hence s1, s2 and s3 are a basis and (B1) is satisfied. For (B2), we check

l2 − l1 = s1, l1 − l2 = −s1,

l3 − l2 = s2, l2 − l3 = −s2,

l3 − l1 = s1 + s2, l1 − l3 = −s1 − s2,

−l0 + l1 + l2 + l3 = s3, l0 − l1 − l2 − l3 = −s3.

Because of Theorem 2.14(a), we know that the Weyl group is generated by
the simple roots. To completely describe the action of the Weyl group on
the Picard group, it is therefore sufficient to compute the action of the simple
roots on our given basis of the Picard group. Let wi be the element of the
Weyl group that reflects at si, i. e. with (4.2)

wi(x) = x− 2
(x, si)

(si, si)
si = x+ (x, si)si,

then

w1(l0) = l0 + (l0, s1)s1 = l0,

w1(l1) = l1 + (l1, s1)s1 = l1 + (l2 − l1) = l2,

w1(l2) = l2 + (l2, s1)s1 = l2 − (l2 − l1) = l1,

w1(l3) = l3 + (l3, s1)s1 = l3,

w2(l0) = l0 + (l0, s2)s2 = l0,

w2(l1) = l1 + (l1, s2)s2 = l1,

w2(l2) = l2 + (l2, s2)s2 = l2 + (l3 − l2) = l3,

w2(l3) = l3 + (l3, s2)s2 = l3 − (l3 − l2) = l2,
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and

w3(l0) = l0 + (l0, s3)s3 = l0 − (−l0 + l1 + l2 + l3) = 2l0 − l1 − l2 − l3,
w3(l1) = l1 + (l1, s3)s3 = l1 − (−l0 + l1 + l2 + l3) = l0 − l2 − l3,
w3(l2) = l2 + (l2, s3)s3 = l2 − (−l0 + l1 + l2 + l3) = l0 − l1 − l3
w3(l3) = l3 + (l3, s3)s3 = l3 − (−l0 + l1 + l2 + l3) = l0 − l1 − l2.

Let the Weyl group act

• on Z: trivially.

• on Z5: Choose a basis e1, . . . , e5, then

w1 transposes e1 and e2 and fixes e3, e4 and e5,
w2 transposes e2 and e3 and fixes e1, e4 and e5

w3 transposes e4 and e5 and fixes e1, e2 and e3.

• on the Picard group PicS as computed above,

Theorem 4.6. A W3-permutation resolution of the Picard group PicS of a
Del Pezzo surface S of degree 6 is given by

0 // Z h // Z5 g // PicS // 0, (4.7)

where h, g are Z-linear maps defined as h : Z→ Z5,

1 7→ e1 + e2 + e3 − e4 − e5

and g : Z5 → PicS,

e1 7→ l0 − l1, e2 7→ l0 − l2, e3 7→ l0 − l3,
e4 7→ 2l0 − l1 − l2 − l3, e5 7→ l0.

(4.8)

For the proof of this theorem, will identify a more symmetric generating system
of PicS. Let

m1 := l0 − l2 − l3, m2 := l0 − l1 − l3, m3 := l0 − l1 − l2,

then
l1, l2, l3, m1, m2, m3

also generate the Picard group. Geometrically, these generators correspond to
the classes of the exceptional divisors: If S is the blow up of the three points
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l1

l2 l3

m3

m1

m2

Figure 4.1: A generating system for the Picard group of a Del Pezzo surface
of Degree 6

P1, P2 and P3 in P2, then l1, l2 and l3 are the pullbacks of those points and for
any permutation i, j, k of 1, 2, 3, mi is the strict transform of the line joining
Pj and Pk.

We have the identities

mi + lj = (l0 − l1 − l2 − l3 + li) + lj = (l0 − l1 − l2 − l3 + lj) + li = mj + li.
(4.9)

The Weyl group acts on our new generating system by

w1(m1) = w1(l0 − l2 − l3) = l0 − l1 − l3 = m2,

w1(m2) = w1(l0 − l1 − l3) = l0 − l2 − l3 = m1,

w1(m3) = w1(l0 − l1 − l2) = l0 − l2 − l1 = m3,

w2(m1) = w2(l0 − l2 − l3) = l0 − l3 − l2 = m1,

w2(m2) = w2(l0 − l1 − l3) = l0 − l1 − l2 = m3,

w2(m3) = w2(l0 − l1 − l2) = l0 − l1 − l3 = m2,

and

w3(m1) = w3(l0 − l2 − l3)

= (2l0 − l1 − l2 − l3)− (l0 − l1 − l3)− (l0 − l1 − l2)

= l1,

w3(m2) = w3(l0 − l1 − l3)
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= (2l0 − l1 − l2 − l3)− (l0 − l2 − l3)− (l0 − l1 − l2)

= l2,

w3(m3) = w3(l0 − l1 − l2)

= (2l0 − l1 − l2 − l3)− (l0 − l2 − l3)− (l0 − l1 − l3)

= l3.

We can rewrite the map g : Z5 → PicS in terms of our new generating system
to get

e1 7→ m2 + l3, e2 7→ m1 + l3, e3 7→ m1 + l2,

e4 7→ m1 +m2 + l3, e5 7→ m1 + l2 + l3.
(4.8′)

For the proof of Theorem 4.6, we will be using both descriptions (4.8) and
(4.8′) of the map g : Z5 → PicS.

Proof of Theorem 4.6. W3
∼= S2 × S3 permutes the chosen bases of Z and Z5.

Further, the sequence (4.7) is exact because h is injective, g is surjective and
im(h) = ker(g): Consider the transformation matrix A of g for the ordered
basis (e1, . . . , e5) and (l0, . . . , l3) using (4.8). It is

A =


1 1 1 2 1
−1 0 0 −1 0
0 −1 0 −1 0
0 0 −1 −1 0

 ,

hence for an element a1e1 + . . . + a5e5 with a1, . . . , a5 ∈ Z to be in the kernel
of g, we get the equations

a3 = −a4,

a2 = −a4,

a1 = −a4,

a5 = −a1 − a2 − a3 − 2a4 = a4 + a4 + a4 − 2a4 = a4.

With a4 := −1 ∈ Z×, this yields

ker(g) = Z(e1 + e2 + e3 − e4 − e5) = im(h).

Finally, one can see directly that h is W3-linear since e1 + e2 + e3 − e4 − e5 is
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invariant. The map g is W3-invariant since:

w1.g(e1) = m1 + l3 = g(w1.e1),

w1.g(e2) = m2 + l3 = g(w1.e2),

w1.g(e3) = m2 + l1 = m1 + l2 = g(w1.e3),

w1.g(e4) = m2 +m1 + l3 = g(w1.e4),

w1.g(e5) = m2 + l1 + l3 = m1 + l2 + l3 = g(w1.e5),

w2.g(e1) = m3 + l2 = m2 + l3 = g(w2.e1),

w2.g(e2) = m2 + l3 = g(w2.e2),

w2.g(e3) = m1 + l3 = g(w2.e3),

w2.g(e4) = m1 +m3 + l2 = m1 +m2 + l3 = g(w2.e4),

w2.g(e5) = m1 + l3 + l2 = g(w2.e5),

and

w3.g(e1) = l2 +m3 = m2 + l3 = g(w3.e1),

w3.g(e2) = l1 +m3 = m1 + l3 = g(w3.e2),

w3.g(e3) = l1 +m2 = m1 + l2 = g(w3.e3),

w3.g(e4) = l1 + l2 +m3 = g(w3.e4),

w3.g(e5) = l1 +m2 +m3 = g(w3.e5).

Theorem 4.7. The permutation resolution is a split exact sequence.

Proof. Define a Z-linear homomorphism k : PicS → Z5,

l0 7→ −e1 − e2 − e3 + e4 + 2e5,

l1 7→ −e1 + e5, l2 7→ −e2 + e5, l3 7→ −e3 + e5,
(4.10)
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hence also

k(m1) = k(l0 − l2 − l3)

= −e1 − e2 − e3 + e4 + 2e5 − (e5 − e2)− (e5 − e3)

= −e1 + e4,

k(m2) = k(l0 − l1 − l3)

= −e1 − e2 − e3 + e4 + 2e5 − (e5 − e1)− (e5 − e3)

= −e2 + e4,

k(m3) = k(l0 − l1 − l2)

= −e1 − e2 − e3 + e4 + 2e5 − (e5 − e1)− (e5 − e2)

= −e3 + e4.

For l1, l2, l3, m1, m2 and m3, it is straightforward to check that k is W3-linear.
Further, k is a right-inverse of g since

g(k(li)) = g(−ei + e5)

= −(l0 − li) + l0

= li,

g(k(mi)) = g(−ei + e4)

= −(l0 − li) + (2l0 − l1 − l2 − l3)

= l0 − l1 − l2 − l3 + li

= mi.

for all 1 ≤ i ≤ 3.

Similarly, the map h : Z→ Z5 has a left-inverse f : Z5 → Z defined via

ei 7→ 1 for all i.

It is clear that f is W3-invariant. It is also a left-inverse of h since

f(h(1)) = f(e1 + e2 + e3 − e4 − e5)

= 1 + 1 + 1− 1− 1

= 1.
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4.3 A Permutation Resolution for Degree 5

If the degree of the Del Pezzo surface is d = 5, we get r = 9 − 5 = 4. In this
section, similarly to the previous one, we identify one example of a system of
simple roots for the Picard group of a Del Pezzo surface of degree 5 over an
algebraically closed field K and use this to compute the action of the Weyl
group W4 on the Picard group PicS. It is then straightforward to verify that
the short exact sequence given in Theorem 4.9 is a permutation resolution of
PicS with respect to the Weyl group W4

∼= S5.

The equations (4.3), (4.4) and (4.6) of Section 4.1 lead to the following possi-
bilities of the coefficients of l = al0 −

∑4
i=1 bili ∈ R4:

a arbitrary permutation of the bi
-1 -1, -1, -1, 0
0 1, -1, 0, 0
1 1, 1, 1, 0

Hence, we get a root system

R4 =
{
l2 − l1, l1 − l2, l3 − l2, l2 − l3, l4 − l3, l3 − l4,
l3 − l1, l1 − l3, l4 − l1, l1 − l4, l4 − l2, l2 − l4,
− l0 + l1 + l2 + l3, l0 − l1 − l2 − l3,
− l0 + l1 + l2 + l4, l0 − l1 − l2 − l4
− l0 + l1 + l3 + l4, l0 − l1 − l3 − l4,
− l0 + l2 + l3 + l4, l0 − l2 − l3 − l4

}
.

Theorem 4.8. A system of simple roots is given by

s1 := l2 − l1, s2 := l3 − l2, s3 := l4 − l3, s4 := −l0 + l1 + l2 + l3.

Proof. s1, s2, s3 and s4 are linearly independent and ω⊥ is r = 4-dimensional,
hence it is a basis and (B1) is satisfied. For (B2), we check

l2 − l1 = s1, l1 − l2 = −s1,

l3 − l2 = s2, l2 − l3 = −s2,

l4 − l3 = s3, l3 − l4 = −s3,

l3 − l1 = s1 + s2, l1 − l3 = −s1 − s2,

l4 − l1 = s1 + s2 + s3, l1 − l4 = −s1 − s2 − s3,

l4 − l2 = s2 + s3, l2 − l4 = −s2 − s3,
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−l0 + l1 + l2 + l3 = s4, l0 − l1 − l2 − l3 = −s4,

−l0 + l1 + l2 + l4 = s3 + s4, l0 − l1 − l2 − l4 = −s3 − s4,

−l0 + l1 + l3 + l4 = s2 + s3 + s4, l0 − l1 − l3 − l4 = −s2 − s3 − s4,

−l0 + l2 + l3 + l4 = s1 + s2 + s3 + s4, l0 − l2 − l3 − l4 = −s1 − s2 − s3 − s4.

Because of Theorem 2.14(a), we know that the Weyl group is generated by
the simple roots. To completely describe the action of the Weyl group on
the Picard group, it is therefore sufficient to compute the action of the simple
roots on our given basis of the Picard group. Let wi be the element of the
Weyl group that reflects at si, i. e. with (4.2)

wi (x) = x− 2
(x, si)

(si, si)
si = x+ (x, si) si,

then

w1 (l0) = l0 + (l0, s1) s1 = l0,

w1 (l1) = l1 + (l1, s1) s1 = l1 + (l2 − l1) = l2,

w1 (l2) = l2 + (l2, s1) s1 = l2 − (l2 − l1) = l1,

w1 (l3) = l3 + (l3, s1) s1 = l3,

w1 (l4) = l4 + (l4, s1) s1 = l4,

w2 (l0) = l0 + (l0, s2) s2 = l0,

w2 (l1) = l1 + (l1, s2) s2 = l1,

w2 (l2) = l2 + (l2, s2) s2 = l2 + (l3 − l2) = l3,

w2 (l3) = l3 + (l3, s2) s2 = l3 − (l3 − l2) = l2,

w2 (l4) = l4 + (l4, s2) s2 = l4,

w3 (l0) = l0 + (l0, s3) s3 = l0,

w3 (l1) = l1 + (l1, s3) s3 = l1,

w3 (l2) = l2 + (l2, s3) s3 = l2,

w3 (l3) = l3 + (l3, s3) s3 = l3 + (l4 − l3) = l4,

w3 (l4) = l4 + (l4, s3) s3 = l4 − (l4 − l3) = l3,

and

w4 (l0) = l0 + (l0, s4) s4 = l0 − (−l0 + l1 + l2 + l3) = 2l0 − l1 − l2 − l3,
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w4 (l1) = l1 + (l1, s4) s4 = l1 − (−l0 + l1 + l2 + l3) = l0 − l2 − l3,
w4 (l2) = l2 + (l2, s4) s4 = l2 − (−l0 + l1 + l2 + l3) = l0 − l1 − l3,
w4 (l3) = l3 + (l3, s4) s4 = l3 − (−l0 + l1 + l2 + l3) = l0 − l1 − l2,
w4 (l4) = l4 + (l4, s4) s4 = l4.

Let the Weyl group act

• on Z: trivially.

• on Z6: Choose a basis e1, . . . , e6 and let wi transpose ei and ei+1 for
1 ≤ i ≤ 4 and leave the rest fixed.

• on the Picard group PicS as computed above.

Theorem 4.9. A W4-permutation resolution of the Picard group PicS of a
Del Pezzo surface S of degree 5 is given by

0 // Z h // Z6 g // PicS // 0, (4.11)

where h, g are Z-linear maps defined as h : Z→ Z6,

1 7→ e1 + e2 + e3 + e4 + e5 − 2e6

and g : Z6 → PicS,

e1 7→ l0 − l1, e2 7→ l0 − l2, e3 7→ l0 − l3, e4 7→ l0 − l4,
e5 7→ 2l0 − l1 − l2 − l3 − l4, e6 7→ 3l0 − l1 − l2 − l3 − l4.

(4.12)

Similarly to the case when the degree is equal to 6, we now let

mij := l0 − li − lj

for 1 ≤ i, j ≤ 4. Then

l1, l2, l3, l4, mij for 1 ≤ i < j ≤ 4

also generate the Picard group. The geometric interpretation is the same as
for degree 6: If S is the blow up of the four points P1, P2, P3 and P4 in P2,
then l1, l2 , l3 and l4 are the pullbacks of those points and for any 1 ≤ i, j ≤ 4,
mij is the strict transform of the line joining Pi and Pj.
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l1

l2

l3l4

m12

m24

m23

m34

m13m14

Figure 4.2: A generating system for the Picard group of a Del Pezzo surface
of Degree 5

The Weyl group acts on our new generating system via

wi for 1 ≤ i ≤ 3 : The element wi transposes indices i and i+ 1.

w4 : For any permutation i, j, k of 1, 2, 3, we have

w4(mij) = lk and w4(mi4) = mi4 for all 1 ≤ i ≤ 3.

As before, we also rewrite the map g : Z6 → PicS in terms of our new
generating set:

e1 7→ m12 + l2, e2 7→ m23 + l3, e3 7→ m13 + l1, e4 7→ m14 + l1,

e5 7→ m12 +m34, e6 7→ m14 +m24 +m34 + 2l4
(4.12′)

Proof of Theorem 4.9. W4 permutes the chosen bases of Z and Z6. Further,
the sequence is exact because h is injective, g is surjective and im(h) = ker(g):
Consider the transformation matrix A of g for the ordered basis (e1, . . . , e6)
and (l0, . . . , l4) using (4.12). It is

A =


1 1 1 1 2 3
−1 0 0 0 −1 −1
0 −1 0 0 −1 −1
0 0 −1 0 −1 −1
0 0 0 −1 −1 −1

 ,



4. Permutation Resolutions 45

hence for an element a1e1 + . . . a6e6 with a1, . . . , a6 ∈ Z to be in the kernel of
g, we get the equations

a4 = −a5 − a6,

a3 = −a5 − a6,

a2 = −a5 − a6,

a1 = −a5 − a6,

a6 = −a1 − a2 − a3 − a4 − 2(a5 + a6)

= (a5 + a6) + (a5 + a6) + (a5 + a6) + (a5 + a6)− 2(a5 + a6)

= 2(a5 + a6),

hence

a6 = −2a5,

a4 = −a5 + 2a5 = a5,

a3 = a5,

a2 = a5,

a1 = a5.

With a5 := 1 ∈ Z× this yields

ker(g) = Z(e1 + e2 + e3 + e4 + e5 − 2e6) = im(h).

Finally, one can see that h is W4-linear since e1 + e2 + e3 + e4 + e5 − 2e6 is
invariant. The map g is invariant since:

w1.g(e1) = m12 + l1 = m23 + l3 = g(w1.e1),

w1.g(e2) = m13 + l3 = m12 + l2 = g(w1.e2),

w1.g(e3) = m23 + l2 = m13 + l1 = g(w1.e3),

w1.g(e4) = m24 + l2 = g(w1.e4),

w1.g(e5) = m12 +m34 = g(w1.e5),

w1.g(e6) = m24 +m13 +m34 + 2l4 = g(w1.e6),

w2.g(e1) = m13 + l3 = m12 + l2 = g(w2.e1),

w2.g(e2) = m23 + l2 = m13 + l1 = g(w2.e2),

w2.g(e3) = m12 + l1 = m23 + l3 = g(w2.e3),

w2.g(e4) = m14 + l1 = g(w2.e4),

w2.g(e5) = m13 +m24 = m12 +m34 = g(w2.e5),
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w2.g(e6) = m14 +m34 +m24 + 2l4 = g(w2.e6),

w3.g(e1) = m12 + l2 = g(w3.e1),

w3.g(e2) = m24 + l4 = m23 + l3 = g(w3.e2),

w3.g(e3) = m14 + l1 = g(w3.e3),

w3.g(e4) = m13 + l1 = g(w3.e4),

w3.g(e5) = m12 +m34 = g(w3.e5),

w3.g(e6) = m13 +m23 +m34 + 2l3 = m14 +m24 +m34 + 2l4 = (w3.e6),

and

w4.g(e1) = l3 +m13 = m12 + l2 = g(w4.e1),

w4.g(e2) = l1 +m12 = m23 + l3 = g(w4.e2),

w4.g(e3) = l2 +m23 = m13 + l1 = g(w4.e3),

w4.g(e4) = m14 +m23 = m12 +m34 = g(w4.e4),

w4.g(e5) = l3 +m34 = m14 + l1 = g(w4.e5),

w4.g(e6) = m14 +m24 +m34 + 2l4 = g(w4.e6),

Theorem 4.10. The permutation resolution of Theorem 4.9 is a split exact
sequence.

Proof. Define a Z-linear homomorphism k : PicS → Z6 via

l0 7→ 2e1 + 2e2 + 2e3 + 2e4 + e5 − 3e6, l1 7→ e2 + e3 + e4 − e6,

l2 7→ e1 + e3 + e4 − e6, l3 7→ e1 + e2 + e4 − e6,

l4 7→ e1 + e2 + e3 − e6,

(4.13)

hence also

k(mij) = k(l0 − li − lj)
= (2e1 + 2e2 + 2e3 + 2e4 + e5 − 3e6)− (e1 + e2 + e3 + e4 − ei − e6)

− (e1 + e2 + e3 + e4 − ej − e6)

= ei + ej + e5 − e6.

For l1, l2, l3, l4, mij, it is straightforward to check that k is S5-linear. Further,
k is a right-inverse of g: For 1 ≤ i, j ≤ 4, we have

g(k(li)) = g(e1 + e2 + e3 + e4 − ei − e6)
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= (l0 − l1) + (l0 − l2) + (l0 − l3) + (l0 − l4)

− (l0 − li)− (3l0 − l1 − l2 − l3 − l4)

= li

and

g(k(mij)) = g(ei + ej + e5 − e6)

= (l0 − li) + (l0 − lj) + (2l0 − l1 − l2 − l3 − l4)

− (3l0 − l1 − l2 − l3 − l4)

= l0 − li − lj
= mij

Similarly, the map h : Z→ Z6 has a left-inverse f : Z6 → Z defined via

ei 7→ 1 for all 1 ≤ i ≤ 5,

e6 7→ 2

It is again clear that f is W4-invariant. It is also a left-inverse of h since

f(h(1)) = f(e1 + e2 + e3 + e4 + e5 − 2e6)

= 1 + 1 + 1 + 1 + 1− 2 · 2
= 1.



Chapter 5

The Chow Motives of Etale
Algebras

We begin by defining étale algebras and identifying their properties following
Bourbaki [1].

Definition. Let K be a field and A a K-algebra. A is called

• diagonalizable over K, if there is a non-negative integer n such that A is
isomorphic to the product algebra Kn.

• diagonalized by an extension L of K if AL = L ⊗K A is diagonalizable
over L. We say that L diagonalizes A.

• étale if there is an extension of K that diagonalizes A.

Let K be a perfect field, K the algebraic closure of K and A a commutative
K-algebra of finite degree.

Proposition 5.1 (Chapter V, Sections 6-8 in [1]). The following are equiva-
lent:

(1) A is an étale algebra.

(2) There is a finite extension L of K that diagonalizes A, i. e.

L⊗K A ∼= Lm

for some non-negative integer m.

(3) K diagonalizes A.
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(4) For every extension L of K, the ring L⊗K A is reduced.

(5) There are finite separable extensions L1, . . . , Ln of K such that

A ∼= L1 × . . .× Ln.

(6) A ∼= K[X]/(f) for some separable polynomial f ∈ K[X].

(7) For every 0 6= x ∈ A, there is y ∈ A such that TrA/K(xy) 6= 0.

Etale algebras are of special interest to us since they are closely related to
G-permutation modules. Let L/K be a Galois extension and G = Gal(L/K).
We first define a G-action on Chow groups: For g ∈ G and a smooth projective
scheme X, let σg denote the induced morphism K ×K X → K ×K X. Define
the G-action on CHi

(
X
)

via the morphism σ∗g . Now let A be an étale algebra.

Since we can write A ∼= L1× . . .×Lm for some intermediate fields K ⊆ Li ⊆ K

such that Li/K is finite and separable, i. e. A ∼= K
H1 × . . . KHn

for some open
subgroups Hi ⊂ G, then

CH0

(
K ⊗K A

) ∼= n⊕
i=1

CH0

(
K ⊗K K

Hi
)

as Z[G]-modules. Furthermore, since for any open H ⊂ G, there is f ∈ K[X]

such that K
H ∼= K[X]/fK[X], hence

K ⊗K K
H ∼= K ⊗K K[X]/(f) ∼= K[X]/(f) ∼= K

deg f

since K is algebraically closed. The G-action on K⊗KK
H

induces a G-action

on K
deg f

that permutes the different factors of K. The prime ideals in K
deg f

are given by

Ãj := K × . . .×K × {0}︸︷︷︸
j−th position

×K × . . .×K

for 1 ≤ j ≤ deg f , which get permuted by the G-action. Let Aj ⊂ K ⊗K K
H

denote the corresponding ideals in K ⊗K K
H

. Then

CH0

(
K ×K K

H
)
∼=

deg f⊕
j=1

Z ·
[
Spec

((
K ⊗K K

H
)
/Aj

)]
is a G-permutation module. Since G acts transitively on the set

{Aj | 1 ≤ j ≤ deg f}
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and the stabilizer of any Aj in G is given by H, we get

CH0

(
K ⊗K K

H
)
∼= Z[G/H],

c. f. the proof of Proposition 2.7. This yields

CH0

(
K ⊗K A

) ∼= n⊕
i=1

Z[G/Hi]. (5.1)

Lemma 5.2. Let A be an étale algebra over K, G = Gal
(
K/K

)
and X a

smooth projective scheme over K. Then the map

CH0

(
K ⊗K A

)
⊗Z CHm

(
X
)
→ CHm

(
Spec

(
K ⊗K A

)
×K X

)
α⊗ β 7→ α× β

is an isomorphism of G-modules.

Proof. Let n be an integer such that K ⊗K A ∼= K
n
. Then

Spec
(
K ⊗K A

) ∼= SpecK
n

∼=
n∐
i=1

SpecK,

and similarly

Spec
(
K ⊗ A

)
×K X ∼=

(
n∐
i=1

SpecK

)
×K X

∼=
n∐
i=1

(
SpecK ×K X

)
∼=

n∐
i=1

X,

hence

CH0

(
K ⊗K A

) ∼= n⊕
i=1

CH0(K)

∼=
n⊕
i=1

Z
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and

CHm

(
Spec

(
K ⊗K A

)
×K X

) ∼= n⊕
i=1

CHm

(
X
)
,

where each copy of CH0

(
K
)
⊗Z CHm

(
X
) ∼= CHm

(
X
)

in

CH0

(
K ⊗K A

)
⊗Z CHm

(
X
) ∼= n⊕

i=1

CH0

(
K
)
⊗Z CHm

(
X
)

gets mapped into the corresponding copy of CHm

(
X
)

in

CHm

(
Spec

(
K ⊗K A

)
×K X

) ∼= n⊕
i=1

CHm

(
X
)
,

hence the map is an isomorphism of Z-modules. It further is G-invariant since
g ∈ G acts on α⊗ β ∈ CH0

(
K ⊗K A

)
⊗Z CHm

(
X
)

via

g. (α⊗ β) = g.α⊗ g.β

and on α× β ∈ CHm

(
Spec

(
K ⊗K A

)
×K X

)
via

g. (α× β) = (g.α)× (g.β) .

Lemma 5.3. Let X and Y be smooth projective schemes over K and G =
Gal

(
K/K

)
. For any α ∈ CHm (X ×K Y ), we define αK := resK/K (α) ∈

CHm

(
X ×K Y

)
. Then the map

CHm (X ×K Y )→ HomG

(
CH0

(
K ×K X

)
,CHm

(
K ×K Y

))
α 7→

(
(αK)∗ : β 7→ αK ◦ β

)
is well defined.

Proof. We have to show that (αK)∗ is G-invariant for any α ∈ CHm (X ×K Y ):
Let β ∈ CH0

(
X
) ∼= CH0

(
K ×K X

)
. Since the diagram

X ×K Y
σg //

pY
��

X ×K Y
pY
��

Y σg
// Y
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commutes, we can compute

(αK)∗ (g.(β)) = (αK)∗
(
σ∗g(β)

)
= αK ◦

(
σ∗g(β)

)
= (pKY )∗

(
αK · σ∗g (β)× Y

)
= (pKY )∗

(
αK · σ∗g

(
β × Y

))
= (pKY )∗

(
σ∗g (αK) · σ∗g

(
β × Y

))
= (pKY )∗ σ

∗
g

(
αK · β × Y

)
= σ∗g (pKY )∗

(
αK · β × Y

)
= σ∗g ((αK)∗ (β))

= g. (αK)∗ (β) .

Lemma 5.4. Let X and Y be smooth projective schemes over K and G =
Gal

(
K/K

)
. The map

CHm

(
X ×K Y

)
→ HomZ

(
CH0

(
K ×K X

)
,CHm

(
K ×K Y

))
α 7→ (α∗ : β 7→ α ◦ β)

is G-invariant.

Proof. Let g ∈ G and σg denote the induced morphism on schemes. We can
then compute

(g.(α)∗) (β) = g.α∗
(
g−1.β

)
= σ∗g (pKY )∗

(
K × α · σ∗g−1

(
β × Y

))
= σ∗g (pKY )∗ σ

∗
g−1

(
σ∗g
(
K × α

)
· β × Y

)
= σ∗gσ

∗
g−1 (pKY )∗

(
K × σ∗g (α) · β × Y

)
= (g.α)∗(β).

Lemma 5.5. Let K be algebraically closed, A an étale algebra over K and X a
smooth projective scheme over K. Then the following maps are isomorphisms
of G-modules:

(a) Φ : CHm (A×K X)→ HomZ (CH0 (K ×K A) ,CHm (K ×K X))

α 7→ (α∗ : β 7→ α ◦ β)

(b) Ψ : CHm (X ×K A)→ HomZ (CHm (K ×K X) ,CH0 (K ×K A))

α 7→ (α∗ : β 7→ α ◦ β) .
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Proof. We will only show part (a), part (b) can be proven similarly. Since A is
an étale algebra over an algebraically closed field, we can assume that A = Kn

for some positive integer n. Hence,

A×K X = Kn ×K X ∼= X∪̇ . . . ∪̇X︸ ︷︷ ︸
n times

and therefore

CHi (A×K X) ∼=
n⊕
i=1

CHi (X) .

Similarly,

HomZ (CH0 (K ×K A) ,CHm (K ×K X))

= HomZ

(
n⊕
i=1

CH0 (K ×K K) ,CHm (K ×K X)

)

=
n⊕
i=1

HomZ (CH0 (K ×K K) ,CHm (K ×K X))

Let pri denote the projection onto the i-th component. Since the following
diagram commutes

n⊕
i=1

CHm (K ×K X) Φ //

pri
��

n⊕
i=1

HomZ (CH0 (K ×K K) ,CHm (K ×K X))

pri
��

CHm (K ×K X)
Φ

// HomZ (CH0 (K ×K K) ,CHm (K ×K X))

(5.2)

it suffices to notice that

Φ : CHm (K ×K X)→ HomZ (CH0 (K ×K K) ,CHm (K ×K X))

is the isomorphism that maps α ∈ CHm (K ×K X) onto the Z-homomorphism
α∗ mapping idK ∈ CH0 (K ×K K) onto α. Hence, Φ is an isomorphism of
Z-modules. Since the previous lemma yields that Φ is G-invariant, Φ is an
isomorphism of G-modules.
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Theorem 5.6. (a) Let

Φ : CHm (A×K X)→ HomG

(
CH0

(
K ×K A

)
,CHm

(
K ×K X

))
α 7→

(
(αK)∗ : β 7→ αK ◦ β

)
.

Then the following diagram

CHm

(
A×K X

) ΦK // HomZ
(
CH0

(
K ×K A

)
,CHm

(
K ×K X

))
CHm (A×K X)

resK/K

OO

Φ
// HomG

(
CH0

(
K ×K A

)
,CHm

(
K ×K X

))?�

forget G-structure

OO

(5.3)

commutes.

(b) Similarly, let

Ψ : CHm (X ×K A)→ HomG

(
CHm

(
K ×K X

)
,CH0

(
K ×K A

))
α 7→

(
(αK)∗ : β 7→ αK ◦ β

)
.

Then the following diagram

CHm

(
X ×K A

) ΨK // HomZ
(
CHm

(
K ×K X

)
,CH0

(
K ×K A

))
CHm (X ×K A)

resK/K

OO

Ψ
// HomG

(
CHm

(
K ×K X

)
,CH0

(
K ×K A

))?�

forget G-structure

OO

(5.4)

commutes.

The proof follows directly from the definitions of the maps Φ and Ψ.

Corollary 5.7. Let S be a surface with a K-rational point. Then the following
maps are isomorphisms of G-modules:

(a) Φ : CH1 (A×K S)→ HomG

(
CH0

(
K ×K A

)
,CH1

(
K ×K S

))
α 7→

(
(αK)∗ : β 7→ αK ◦ β

)
,

(b) Ψ : CH1 (S ×K A)→ HomG

(
CH1

(
K ×K S

)
,CH0

(
K ×K A

))
α 7→

(
(αK)∗ : β 7→ αK ◦ β

)
.
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Proof. We will again only prove part (a). It suffices to show this statement
for A = L, where L/K is a finite separable field extension. Since the Diagram
5.3 commutes, ΦK is an isomorphism and

HomG

(
CH0

(
K ×K L

)
,CH1

(
K ×K S

))
consists of the G-invariant elements in

HomZ
(
CH0

(
K ×K L

)
,CH1

(
K ×K S

))
,

it remains to prove that CH1 (L×K S) consists of the G-invariant elements in
CH1

(
L×K S

)
: This identity follows from Lemma 2.5, which shows that

Pic (S ×K L) ∼= Pic (SL ×K K)

∼=
[
Pic
(
SL ×K K

)]G
∼=
[
Pic
((
S ×K K

)
×K

(
L×K K

))]G
∼=
[
Pic
(
S ×K L

)]G
and thus

CH1 (L×K S) ∼=
[
CH1

(
L×K S

)]G
.

Corollary 5.8. Let A and B be étale algebras over K. Then

Φ : CH0 (A×K B)→ HomG

(
CH0

(
K ×K A

)
,CH0

(
K ×K B

))
α 7→

(
(αK)∗ : β 7→ αK ◦ β

)
,

is an isomorphism of G-modules.

Proof. Since the Diagram 5.3 commutes, ΦK is an isomorphism and

HomG

(
CH0

(
K ×K A

)
,CH0

(
K ×K B

))
consists of the G-invariant elements in

HomZ
(
CH0

(
K ×K A

)
,CH0

(
K ×K B

))
,

it remains to show that CH0 (A×K B) consists of the G-invariant elements in

CH0

(
A×K B

)
. It is clear that CH0 (A×K B) ⊆ CH0

(
A×K B

)G
. For the

other inclusion, recall that CH0

(
A×K B

)
is the free abelian group of zero

cycles in A ×K B, which, in turn, are given by the prime ideals in A ⊗K B.
Since the extension K ⊂ K is algebraic, every prime ideal of A⊗KB lies under
some prime ideal of A⊗K B. Further, since the Galois group acts transitively
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on the prime ideals in A⊗KB above a given prime ideal in A⊗KB, this yields

CH0

(
A×K B

)G ⊆ CH0 (A×K B) and therefore

CH0

(
A×K B

)G
= CH0 (A×K B) .

Now define the full additive subcategory Chow(K)K of Chow(K) with objects
generated by SpecL for a finite Galois extension L/K, hence we have

• objects: SpecA for an étale K-algebra A,

• morphisms: HomChow(K)K (A,B) := HomChow(K)(A,B) = CH0 (A×K B).

Definition. We define a functor from Chow(K)K into the category of G-
permutation modules via

• objects: X 7→ HomChow(K)

(
K,X

)
= CH0

(
K ×K X

)
= CH0

(
K ×K X

)
,

• morphisms:

HomChow(K)K (X, Y ) → HomG

(
CH0

(
K ×K X

)
,CH0

(
K ×K Y

))
α 7→

(
resK/K(α)

)
∗
.

Theorem 5.9. This functor is an equivalence of categories.

Proof. Corollary 5.7 shows that for two objects X, Y in Chow(K)K , the in-
duced maps

HomChow(K) (X, Y ) → HomG

(
CH0

(
K ×K X

)
,CH0

(
K ×K Y

))
are isomorphisms of G-modules. It remains to show that each G-permutation
module M is isomorphic to the image of SpecA for some étale algebra A: If
M is a permutation module, then by Proposition 2.7, M is isomorphic to the

direct sum
⊕n

i=1 Z[G/Hi] for some open subgroups Hi ⊆ G. Let Ei := K
Hi

denote the fixed subfield of K under the action of the subgroup Hi on K. Since
Hi ⊂ G is open, Ei/K is a finite Galois extension. If we let A := E1× . . .×En,
then

⊕n
i=1 Z[G/Hi] is isomorphic to the image of Spec (A), c. f. Equation

(5.1).



Chapter 6

The Chow Motive of a Del
Pezzo Surface of Degree 5 or 6
with a K-rational Point

In this chapter, we are going to prove our main theorem:

Theorem 6.1. Let S be a Del Pezzo surface of degree 5 or 6 over a perfect
field K. Let further S have a K-rational point pt : SpecK → S and define
ρ := pt × S + S × pt ∈ CH2 (S ×K S). Then there exists some étale algebra
E such that

(SpecE, idSpecE) (1) ∼= (SpecK, idSpecK) (1)⊕ (S, ρ) .

We will first explain how to get the étale algebra E and the injection and
projection maps of the direct sum, then prove that (S, ρ) is a direct summand
in E(1) for algebraically closed fields K and, in the third part, prove our
theorem for any perfect field K.

6.1 Definition of the étale algebra E

Recall the two Wr-permutation resolutions (4.7) and (4.11) of the Picard group
of a Del Pezzo surface of degree 5 or 6 which are of the form

0→ Z→
⊕
finite

Z→ PicS → 0.
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Theorem 4.4 enables us to extend the group action of the Weyl group Wr

to an action on the Picard group Pic
(
S
)
⊗Z R ∼= ω× ⊕ Rω, where any el-

ement of the Weyl group acts trivially on ω. Let G = Gal
(
K/K

)
. Then

G acts on Pic
(
S ×K K

)
via the induced action on K and the trivial action

on S. Theorem 23.9 in [14] then shows that the Galois group acts trivially
on ω and preserves the intersection form. Hence, we have a representation
Gal

(
K/K

)
→ Aut

(
PicS

)
that factors through the Weyl group Wr. Thus the

diagram

Gal
(
K/K

)
//

%%

Aut
(
PicS

)
Wr

99
(6.1)

commutes. The map Gal
(
K/K

)
→ Wr allows us to view the Wr-permutation

resolutions as G-permutation resolutions. By the results in Section 2.3, the
sequences can therefore be written as

0 // Z
h //

P
g //

f
oo Pic S̄

k
oo // 0. (6.2)

for some G-permutation module P , i. e. P ∼=
⊕

j Z[G/Hj] for some open

subgroups Hj ⊆ G. Then K
Hj

is a finite field extension of K and E :=
∏

jK
Hj

an étale algebra. The results in the previous chapter, in particular Theorem
5.9, then show that this sequence is of the form

0 // CH0

(
K ×K K

) h //
CH0

(
K ×K E

) g //

f
oo CH1

(
K ×K S

)
k
oo // 0.

(6.3)

Corollary 5.7 then implies that there are algebraic cycles α ∈ CH1 (E ×K S)
and β ∈ CH1 (S ×K E) such that

Φ : CH1 (E ×K S)→ HomG

(
CH0

(
K ×K E

)
,CH1

(
K ×K S

))
α 7→ (αK)∗ = g

and

Ψ : CH1 (S ×K E)→ HomG

(
CH1

(
K ×K S

)
,CH0

(
K ×K E

))
β 7→ (βK)∗ = k
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We further know that

α ∈ CH1 (E ×K S) = HomChow(K) (E(1), S)

∼= HomChow(K) (E(1), K)︸ ︷︷ ︸
CH1(E×KK)=0

⊕HomChow(K) (E(1), (S, ρ))

⊕HomChow(K) (E(1), K(2))︸ ︷︷ ︸
CH−1(E×KK)=0

= HomChow(K) (E(1), (S, ρ))

and

β ∈ CH1 (S ×K E) = HomChow(K) (S,E(1))

∼= HomChow(K) (K,E(1))︸ ︷︷ ︸
CH1(K×KE)=0

⊕HomChow(K) ((S, ρ), E(1))

⊕HomChow(K) (K(2), E(1))︸ ︷︷ ︸
CH−1(K×KE)=0

= HomChow(K) ((S, ρ), E(1)) .

Similarly, we can find algebraic cycles γ ∈ CH0 (E ×K K) and δ ∈ CH0 (K ×K E)
such that

CH0 (E ×K K)→ HomG

(
CH0

(
K ×K E

)
,CH0

(
K ×K K

))
γ 7→ (γK)∗ = f

and

CH0 (K ×K E)→ HomG

(
CH0

(
K ×K K

)
,CH0

(
K ×K E

))
δ 7→ (δK)∗ = h

and again, those can be viewed as morphisms in the category of Chow Motives
over K as described in Theorem 5.9

γ ∈ CH0 (E ×K K) = HomChow(K) (E,K) = HomChow(K) (E(1), K(1))

and

δ ∈ CH0 (K ×K E) = HomChow(K) (K,E) = HomChow(K) (K(1), E(1))
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To prove Theorem 6.1, we will show that there is an algebraic cycle α̃ ∈
HomChow(K) (E(1), (S, ρ)) associated to α such that

id(S,ρ) = α̃ ◦ β (6.4)

idK(1) = γ ◦ δ (6.5)

idE(1) = β ◦ α̃ + δ ◦ γ. (6.6)

6.2 Proof of the main theorem for K alge-

braically closed

Let now K be algebraically closed, hence we can assume that E = Kn. We
will firstly focus on equation (6.4) and show that

id(S,ρ) = α ◦ β.

Since Diagram 5.2 in the proof of Lemma 5.5 commutes, we know that we can
write

g = (gj)j ∈HomZ (CH0 (K ×K E) ,CH1 (K ×K S))

=
n⊕
j=1

HomZ (CH0 (K ×K K) ,CH1 (K ×K S))

∼=
n⊕
j=1

HomZ (Z,PicS)

via

CH0 (K ×K K)→ Z
K ×K K 7→ 1

and

PicS = CH1 S → CH1 (K ×K S)

µ 7→ K × µ.
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Further,

α = (αj)j ∈CH1 (E ×K S)

=
n⊕
j=1

CH1 (K ×K S)

∼=
n⊕
j=1

PicS

such that

Φ(αj) = (αj)∗ = gj.

Similarly, we have

k = (kj)j ∈HomZ (CH1 (K ×K S) ,CH0 (K ×K E))

=
n⊕
j=1

HomZ (CH1 (K ×K S) ,CH0 (K ×K K))

∼=
n⊕
j=1

HomZ (PicS,Z)

via

CH1 (K ×K S)→ CH1 S = PicS

K × µ 7→ µ

and

Z→ CH0 (K ×K K)

1 7→ K ×K.
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Further,

β = (βj)j ∈CH1 (S ×K E)

=
n⊕
j=1

CH1 (S ×K K)

∼=
n⊕
j=1

PicS

such that

Ψ(βj) = (βj)∗ = kj.
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Given the maps gj : Z→ PicS and kj : PicS → Z, we can compute the components αj and βj via the isomorphisms

PicS // CH1 (K ×K S) // HomZ (CH0 (K ×K K) ,CH1 (K ×K S)) // HomZ (Z,PicS)

αj
� // K × αj � // (K × αj)∗

� // gj,

and

PicS // CH1 (S ×K K) // HomZ (CH1 (K ×K S) ,CH0 (K ×K K)) // HomZ (PicS,Z)

βj
� // βj ×K � // (βj ×K)∗

� // kj.

For αj, this yields

K × gj(1) = (K × αj)∗ (idK)

= K × αj

and hence

αj = gj(1). (6.7)
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Recall that we have a Z-basis l0, . . . , lr of PicS. If we write βj =
∑r

a=0 bajla,
then

kj(li) idK = (βj ×K)∗ (K × li)
= (βj ×K) ◦ (K × li)

=
r∑

a=0

baj (la ×K) ◦ (K × li)

=
r∑

a=0

baj (pKK)∗ (K × (la, li) li ×K)

=
r∑

a=0

baj(la, li) · idK

=

{
bij idK if i = 0

−bij idK if i > 0

and hence

βj = kj(l0)l0 −
r∑
i=1

kj(li)li (6.8)

Next, we also want to express id(S,ρ) (which is equal to ρ) in terms of the
Z-basis l0, . . . , lr of PicS = CH1 (S).

Lemma 6.2.

ρ = l0 × l0 −
r∑
i=1

li × li (6.9)

Proof. The Künneth Formula (c. f. Lemma 2.4) yields that

CH2 (S ×K S) ∼=
2⊕
j=0

CHj (S)⊗Z CH2−j (S) ,

hence we can write

idS = a · S × pt + b · pt× S +
r∑

i,j=0

cij · li × lj
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with integer coefficients a, b and cij. Since idS ◦ (S × pt) = S × pt, that is(
a · S × pt + b · pt× S +

r∑
i,j=0

cij · li × lj

)
◦ (S × pt) = (S × pt) ,

we can compute
a (S × pt) ◦ (S × pt) = a · p∗ (S × S × pt · S × pt× S) = a · S × pt

b (pt× S) ◦ (S × pt) = b · p∗ (S × pt× S · S × pt× S) = 0

cij (li × lj) ◦ (S × pt) = cij · p∗ (S × li × lj · S × pt× S) = 0,

and hence a = 1. Similarly, since idS ◦ (pt× S) = pt× S, that is(
a · S × pt + b · pt× S +

r∑
i,j=0

cij · li × lj

)
◦ (pt× S) = (pt× S) ,

we can compute
a (S × pt) ◦ (pt× S) = a · p∗ (S × S × pt · pt× S × S) = 0

b (pt× S) ◦ (pt× S) = b · p∗ (S × pt× S · pt× S × S) = b · pt× S
cij (li × lj) ◦ (pt× S) = cij · p∗ (S × li × lj · pt× S × S) = 0,

and hence b = 1. Finally, since idS ◦ (lm × ln) = lm × ln, that is(
a · S × pt + b · pt× S +

r∑
i,j=0

cij · li × lj

)
◦ (lm × ln) = (lm × ln) ,

we can compute
a (S × pt) ◦ (lm × ln) = a · p∗ (S × S × pt · lm × ln × S) = 0

b (pt× S) ◦ (lm × ln) = b · p∗ (S × pt× S · lm × ln × S) = 0

cij (li × lj) ◦ (lm × ln) = cij · p∗ (S × li × lj · lm × ln × S)

= cij(li, ln) · lm × lj.
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The last set of equations yields that

lm × ln = idS ◦ (lm × ln)

=
∑
i,j

cij (li, ln) · lm × lj

=
∑
j

cnj (ln, ln) · lm × lj.

As (ln, ln) = ±1 is its own inverse in Z, we obtain cnj = (ln, ln)δnj. Therefore,

idS = S × pt + pt× S +
r∑
i=0

(li, li) · li × li

= S × pt + pt× S + l0 × l0 −
r∑
i=1

li × li,

and

ρ = idS − (S × pt + pt× S)

= l0 × l0 −
r∑
i=1

li × li.

Proposition 6.3. (S, ρ) is a direct summand in E(1).

Proof. We will show that g ◦ k = idPicS implies that α ◦ β = ρ. For this, we
compute

α ◦ β =
n∑
j=1

(K × αj) ◦ (βj ×K)

=
∑
j

(pSS)∗ (S ×K × αj · βj ×K × S)

=
∑
j

(pSS)∗ (βj ×K × αj)

=
∑
j

βj × αj

=
∑
j

(
kj(l0)l0 −

r∑
i=1

kj(li)li

)
× gj(1) by (6.7) and (6.8)

=
∑
j

kj(l0)l0 × gj(1)−
∑
i

kj(li)li × gj(1)
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=
∑
j

l0 × (kj(l0)gj(1))−
∑
i

li × (kj(li)gj(1))

=
∑
j

l0 × gj(kj(l0))−
∑
i

li × gj(kj(li))

= l0 × g(k(l0))−
∑
i

li × g(k(li))

= l0 × l0 −
∑
i

li × li

= ρ

= id(S,ρ) .

Proposition 6.4 (Theorem 6.1 for K algebraically closed). Let K be alge-
braically closed, then

E(1) ∼= K(1)⊕ (S, ρ).

Proof. Since we have already proven Proposition 6.3, it suffices to prove that
K(1) is a direct summand in E(1) and that E(1) doesn’t have any other
summands, i. e. to verify equations (6.4) and (6.6). Since the functor described
in Theorem 5.9 induces an equivalence of categories, equation f ◦ h = idZ
immediately implies γ ◦ δ = idK(1) . The split exact sequence (6.3) further
yields that k ◦ g + h ◦ f = idP . The following two commuting diagrams
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HomG (CH1 (K ×K S) ,CH0 (K ×K E))× HomG (CH0 (K ×K E) ,CH1 (K ×K S)) // EndG (CH0 (K ×K E))

CH1 (S ×K E)× CH1 (E ×K S)

OO

// CH0 (E ×K E)

OO

and

HomG (CH0 (K ×K K) ,CH0 (K ×K E))× HomG (CH0 (K ×K E) ,CH0 (K ×K K)) // EndG (CH0 (K ×K E))

CH0 (K ×K E)× CH0 (E ×K K)

OO

// CH0 (E ×K E)

OO
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with the horizontal maps being composition and vertical maps being Φ and
Ψ, enable us to translate this equation into

β ◦ α + δ ◦ γ = idE(1) .

6.3 Proof of the main theorem for K perfect

We will extend the proofs of the previous section. Let now K be a perfect field
with algebraic closure K.

Proposition 6.5. (S, ρ) is a direct summand in E(1).

Proof. In Theorem 5.6, we show that the two diagrams

CH1

(
E ×K S

) ΦK // HomZ
(
CH0

(
K ×K E

)
,CH1

(
K ×K S

))
CH1 (E ×K S)

resK/K

OO

Φ
// HomG

(
CH0

(
K ×K E

)
,CH1

(
K ×K S

))?�

OO

(6.10)

and

CH1

(
S ×K E

) ΨK // HomZ
(
CH1

(
K ×K S

)
,CH0

(
K ×K E

))
CH1 (S ×K E)

resK/K

OO

Ψ
// HomG

(
CH1

(
K ×K S

)
,CH0

(
K ×K E

))?�

OO

(6.11)

commute. Hence, also the following diagram commutes:
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0

CH1

(
E ×K S

)
× CH1

(
S ×K E

)
composition

//

Φ

ww

Ψ

ww

CH2

(
S ×K S

)
HomZ

(
CH0

(
K ×K E

)
,CH1

(
K ×K S

))
× HomZ

(
CH1

(
K ×K S

)
,CH0

(
K ×K E

))
OO OO

CH1 (E ×K S)× CH1 (S ×K E)
composition

//

resK/K
resK/K

OO OO

Φww Ψww

CH2 (S ×K S)

resK/K

OO

HomG

(
CH0

(
K ×K E

)
,CH1

(
K ×K S

))
× HomG

(
CH1

(
K ×K S

)
,CH0

(
K ×K E

))
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Since Proposition 6.3 proves that αK ◦ βK = id(S,ρK), we can use Rost nilpo-

tence (c. f. Theorem 2.8 in [4]) to deduce that there is a nilpotent µ ∈
EndChow(K) (S, ρ) such that

HomChow(K) (E(1), (S, ρ))× HomChow(K) ((S, ρ), E(1))→ EndChow(K)(S, ρ)

(α, β) 7→ α ◦ β = id(S,ρ) +µ.

Since then (
id(S,ρ) +µ

)−1
=
∑
j

(−µ)j

is a finite sum, we can define α̃ :=
((∑

j (−µ)j
)
◦ α
)

and compute

α̃ ◦ β =

(∑
j

(−µ)j
)
◦ (α ◦ β)

=

(∑
j

(−µ)j
)
◦
(
id(S,ρ) +µ

)
= id(S,ρ) .

This yields that (S, ρ) is a direct summand in E(1).

Now we will be able to prove the main theorem given on page 57.

Theorem 6.1. Let S be a Del Pezzo surface of degree 5 or 6 over a perfect
field K. Let further S have a K-rational point pt : SpecK → S and define
ρ := pt × S + S × pt ∈ CH2 (S ×K S). Then there exists some étale algebra
E such that

(SpecE, idSpecE) (1) ∼= (SpecK, idSpecK) (1)⊕ (S, ρ) .

Proof. We will mimic the proof of Proposition 6.4. Again, the Proposition 6.5
shows equation (6.4), i. e. that (S, ρ) is a direct summand in E(1). Equation
6.5 is again a consequence of the equivalence of categories given in Theorem
5.9 and it remains to proof equation 6.6. Similarly to the proof of Proposition
6.5, the two commuting Diagrams (6.10) and (6.11) imply that
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CH1

(
S ×K E

)
× CH1

(
E ×K S

)
composition

//

Ψ

ww

Φ

ww

CH0

(
E ×K E

)
HomZ

(
CH1

(
K ×K S

)
,CH0

(
K ×K E

))
× HomZ

(
CH0

(
K ×K E

)
,CH1

(
K ×K S

))
OO OO

CH1 (S ×K E)× CH1 (E ×K S)
composition

//

resK/K
resK/K

OO OO

Ψww Φww

CH0 (E ×K E)

resK/K

OO

HomG

(
CH1

(
K ×K S

)
,CH0

(
K ×K E

))
× HomG

(
CH0

(
K ×K E

)
,CH1

(
K ×K S

))
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also commutes. This allows us to translate the equation

k ◦ g + h ◦ f = idP

into
βK ◦ αK + δK ◦ γK = idE(1) . (6.12)

Furthermore, we know that −µ is in the kernel of resK/K , i. e. µK = 0 and
hence,

(α̃)K =

((∑
j

(−µ)j
)
◦ α

)
K

=

(
(−µK)0 +

∑
j>0

(−µK)j
)
◦ αK

=

(
id(S,ρK) +

∑
j>0

0

)
◦ αK

= αK

Therefore, Equation (6.12) can also be written as

βK ◦ α̃K + δK ◦ γK = idE(1) .

Since resK/K is injective on étale algebras, this implies

β ◦ α̃ + δ ◦ γ = idE(1),

which proves Equation (6.6) and hence our theorem.

6.4 More information on the étale algebra E

As described in Section 6.1, the permutation module P ∼=
⊕

j Z[G/Hj] is
completely determined by the G-action on P . Furthermore, the G-action is
induced by the action of Wr via the map Gal(K/K) → Wr in Diagram 6.1.
The complete decomposition of the étale algebra E into its factors of field
extensions of K depends on the image of Gal(K/K) in Wr and is a case-
by-case consideration. We will only describe the decomposition without any
further assumptions regarding the image of this map.

The main idea of this section is to decompose our permutation module P into
a direct sum of permutation modules such that Wr acts transitively on the
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given basis of each summand. If the map Gal(K/K)→ Wr is surjective, this
is all there is to say. Otherwise, the permutation module might decompose
even further.

For degree 6, recall the W3-action on Z5 on page 36. The Z-basis {e1, . . . , e5}
can be split into the two disjoint W3-sets {e1, e2, e3} and {e4, e5}, hence

Z5 ∼= Z[e1, e2, e3]⊕ Z[e4, e5]

as W3-permutation modules. The corresponding étale algebra E is therefore
given by a product of an étale algebra of degree 3 and an étale algebra of
degree 2 over K.

Similarly, for degree 5, recall the W4-action on Z6 on page 43. The Z-basis
{e1, . . . , e6} can be split into the two disjoint W4-sets {e1, . . . , e5} and {e6},
hence

Z6 ∼= Z[e1, . . . , e5]⊕ Z[e6]

as W4-permutation modules. The étale algebra E is therefore given by a
product of an étale algebra of degree 5 and an étale algebra of degree 1 over
K.
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