
University of A lber ta

T o w a r d s a n A r c h it e c t u r e f o r IP R o u t in g

by

Aaron Richard Dittrich

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2004

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-95738-1
Our file Notre reference
ISBN: 0-612-95738-1

The author has granted a non
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

“Everything that can be invented has been invented."

- Charles H. Duell, Commissioner of US Patents, 1899

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Acknowledgements

It is with the aid and support of many people that I saw this project through to completion. First and

foremost, I must express my sincere gratitude to my supervisor, Dr. Mike MacGregor. Without his

guidance, I would never have made it past the first month. His office door was always open to me,

and even when I felt I had made no progress, he was always there to reassure and encourage me. I

am especially grateful for his patience while this project continued longer than expected.

Second, I wish to thank Dr. Soner Onder and Peng Zhou at Michigan Technological University.

They provided a great deal of help and insight into the FAST system in the early days of my work.

Without their help, I would have had much more difficulty in learning the system.

Last, but certainly not least, I owe a great deal of thanks to my parents, Hermann and Erika

Dittrich. Without their love and encouragement, I never would have come this far in the first place.

They have always shown interest in my work, and have supported me regardless of the paths I have

chosen to follow.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table of Contents

1 Introduction 1
1.1 M otivation.. 2
1.2 G o a l s ... 2
1.3 M e th o d o lo g y .. 3
1.4 Overview of r e s u l t s .. 4
1.5 Outline .. 5

2 Related Work 6
2.1 Architecture Description L a n g u a g e s ... 6

2.1.1 Synthesis-oriented A D L s .. 7
2.1.2 Compiler-oriented A D L s .. 8
2.1.3 Simulation-oriented A D L s .. 10
2.1.4 Validation-oriented A D L s .. 11
2.1.5 Comparison of A D L s.. 11

2.2 Instruction Set D esign ... 12
2.2.1 Instruction set design ta x o n o m y ... 13
2.2.2 Instruction set design m etrics.. 15
2.2.3 The Instruction Set Implementation Method Selection P rob lem 17
2.2.4 Generating instruction set extensions ... 18
2.2.5 Reconfigurable h ard w are .. 22
2.2.6 ISAs for routing in m u ltip ro cesso rs.. 22

2.3 Concluding rem arks... 24

3 Background 26
3.1 Reduced Instruction Set Computers ... 26
3.2 The MIPS R2000/R3000 ... 27

3.2.1 Memory and registers........ ... 27
3.2.2 Pipeline A rchitecture ... 28
3.2.3 Instruction Set A rc h ite c tu re ... 29
3.2.4 MIPS coprocessors.. 30
3.2.5 Jumps and Branches in the R2000 .. 32

3.3 Routing table lo o k u p .. 33
3.3.1 Radix tree data s tru c tu re .. 33
3.3.2 Radix tree lookup A lgorithm ... 35
3.3.3 LC trie a lg o rith m ... 37

3.4 Concluding rem arks... 37

4 The Flexible Architecture Simulation Tool 38
4.1 The FAST toolchain ... 38
4.2 FAST machine c l o c k .. 39
4.3 Microarchitecture specification... 41

4.3.1 A rtifacts.. 41
4.3.2 P ip e l in e s .. 45

4.4 Instruction Set Architecture specification... 47
4.4.1 Instruction fo rm a ts .. 47
4.4.2 Attributes and opcode c o n s ta n ts ... 48
4.4.3 Machine in stru c tio n s ... 49
4.4.4 Macro in s tru c tio n s .. 50

4.5 Additional c o n s tru c ts .. 51
4.5.1 ADL O p era to rs ... 51
4.5.2 Control structures.. 52

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.6 Experiences with F A S T .. 52
4.7 Concluding rem ark s.. 54

5 Experiments and Discussion 56
5.1 Experimental configuration ... 56

5.1.1 ADL Implementation of MIPS R2000 .. 56
5.1.2 Routing a lg o rith m s... 58
5.1.3 Routing tables .. 58
5.1.4 Driver program and IP address generator ... 58

5.2 Instruction set optimization .. 59
5.2.1 Design metrics used in this thesis .. 59
5.2.2 Instruction su bstitu tion .. 60
5.2.3 Initial r e s u l t s ... 61
5.2.4 Unused instructions... 62
5.2.5 Examination of used instructions.. 63
5.2.6 Proposed instruction s e t ... 69

5.3 Pipeline s t a l l s .. 72
5.3.1 Stalls in the radix lookup .. 73
5.3.2 Comparison to LC t r i e .. 76
5.3.3 Avenues for optim ization... 76

5.4 Branches ... 77
5.4.1 Branch behaviour in radix and LC trie a lgorithm s.. 77
5.4.2 Opportunities for op tim ization ... 78

5.5 Towards an architecture for IP r o u t in g ... 78
5.6 Concluding rem ark s .. 82

6 Conclusion 84
6.1 S u m m a ry ... 84
6.2 C o n trib u tio n s .. 84

6.2.1 An optimized ISA for r o u t i n g ... 85
6.2.2 Possible architectural c h a n g e s ... 86
6.2.3 Software is s u e s .. 86

6.3 Directions for future work ... 87

Bibliography 88

A Implementing branch prediction 91
A .l Implementation of predictor and target b u f f e r .. 93
A.2 Changes to Instruction Fetch s t a g e .. 93
A.3 Changes to Instruction Decode s ta g e .. 95
A.4 Results o f branch p re d ic t io n ... 97

B R2000 ADL Architecture Description 100

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Tables

2.1 Comparison of ADLs. Source: [38] ... 11
2.2 Oblivious routing instruction s e t ... 23

3.1 MIPS registers ... 28
3.2 MIPS R2000/R3000 Instruction S e t ... 31
3.3 Coprocessor Load/Store/Move Instruction S e t .. 32
3.4 Example r o u t e s ... 35
3.5 Binary results of XOR o p e ra tio n ... 36
3.6 Binary results of XOR when backtracking r e q u i r e d .. 37

4.1 ADL operators ... 51

5.1 Unused MIPS instructions ... 63
5.2 Reduced MIPS instruction set ... 69
5.3 Stall cycles for original instruction s e t .. 73
5.4 Stall cycles for modified instruction set .. 74
5.5 Stalls for substitutions of instructions with immediate a rg u m en ts 75
5.6 Stalls for LC trie with modified instruction set ... 76
5.7 Branch instruction frequencies and stalls ... 77
5.8 Branch behaviour for radix and LC algorithms ... 77

6 .1 Instruction set for IP r o u t in g .. 85

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Figures

2.1 3 dimensional hypercube n e tw o r k .. 24

3.1 MIPS memory la y o u t ... 27
3.2 MIPS Instruction Formats ... 30
3.3 Timing diagram when branch not taken .. 33
3.4 Timing diagram when branch taken ... 33
3.5 Simple PATRICIA t r e e .. 34
3.6 Tree after adding a a ... 34
3.7 PATRICIA tree for routing table 3 . 4 ... 35

4.1 Toolset generation ... 39
4.2 Generating and executing an object file .. 40
4.3 FAST processor c y c l e s .. 40
4.4 ADL source code for 2-bit p re d ic to r ... 44
4.5 MIPS Instruction Formats .. 47
4.6 MIPS s l l instruction d e c la ra tio n .. 49

5.1 Experimental configuration .. 57
5.2 Arithmetic/logic instruction counts for radix tree code with original I S A 61
5.3 Branch, load, and store instruction counts for radix tree code with original ISA . . 62
5.4 Arithmetic/logic instruction counts for radix tree code with modified I S A 70
5.5 Branch, load, and store instruction counts for radix tree code with modified ISA . . 71
5.6 Instruction counts for LC trie code with modified ISA .. 72
5.7 Restructured R2000 p ip e lin e .. 80
5.8 Pipeline with multi-cycle adder .. 81

A.l 2-bit Branch predictor .. 92
A.2 Branch target buffer .. 92
A.3 Branch target buffer artifact ... 94
A.4 Number of correct predictions varying table size and hash function 97
A.5 Number of rollbacks varying table size and hash fu n c tio n .. 98

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 1

Introduction

As the complexity of software increases, so does the hardware on which the software is run. Hard

ware designers are faced with a constant challenge of providing more features in their products

while making them run faster. The demand for processing power seems all but insatiable. On the

other hand, hardware designers have anticipated these needs and have begun to provide increasingly

sophisticated features before the demand exists. Therefore, when the demand arises, consumers do

not need to wait for the next version of the hardware to incorporate them.

Nowhere is this more prevalent than in the microprocessor market. In 1971 Intel introduced their

x86 architecture with the Intel 4004, a 4 bit CPU with 46 instructions that ran at 740 kHz. Today’s

32 bit Pentium 4 processor, which supports clock speeds greater than 3 GHz, executes multiple

instructions per cycle out of order, and boasts a huge instruction set with over 400 operations, 144

of which are meant only for multimedia1.

Compiler designers initially had trouble incorporating these sophisticated instructions into their

compilers, and they did not gain much popularity in the beginning [41]. Changes to the instructions

and to the hardware that implemented them eventually allowed easier targeting of the instructions to

conventional compilers.

General purpose processors benefit from a variety of such features. Complex instruction sets

such as these allow the processor to be targeted to a wide range of applications, such as scientific

computing and image processing. There exists a demand, however, for processors that are targeted

to very specific applications, and whose instruction sets are optimized for these applications. This is

especially the case in the embedded systems market, where programs to be run on the processor are

permanently fixed, or where there are very tight constraints on performance, power consumption, or

other factors. Many features can be eliminated from the architecture when precise knowledge exists

about what operations are required of the processor. Processors that are streamlined for specific

applications can have advantages over general purpose processors. These advantages may include

lower power consumption, smaller chip area, or reduced circuit complexity.

1 Originally MMX (Matrix Math Extensions), which later evolved to SSE (Streaming SIMD Extensions), later becoming
SSE2 and SSE3

1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

This thesis considers this problem in the context of IP routing. A router can be classified as an

embedded system, because it runs a special purpose application program with little or no human

intervention, and forms a component of a larger system, the most general case being the Internet.

Considering the restrictive nature of the application, the hypothesis is that a simplified processor

architecture is sufficient.

1.1 Motivation

As with computer processing power, there is an ever increasing hunger for more network bandwidth.

Carriers are faced with increasingly congested links, forcing additional links to be added or faster

ones to be put in place. The fastest links commercially available at this time are the OC-768 links,

that operate at a rate of approximately 40 Gbps. While naively increasing the speed of links seems

like a simple solution, processing the packets as they arrive at the routers remains a significant

challenge. Consider a link with a bandwidth of 1 Gbps, a rather common value today. The size of

packets can be from 64 bytes upward. Any device processing these packets therefore must be able

to handle them frequently enough to allow for a 64 byte size. Given the 1 Gbps link speed, the

device will potentially see a new packet arriving every 512 nanoseconds. A commonly held belief

is that it takes about 100 cycles to process a packet inside a router. In this case, the cycle time of the

processor must be 5 nanoseconds, resulting in a frequency of 200 MHz. This factor remaining the

same, for a 40 Gbps link, an 8 GHz processor is required2.

Given the increasing demand for bandwidth, the next logical step up are links with speeds of 160

Gbps (OC-3072). Before such lightning fast speeds can even approach fruition, serious work needs

to be done on how to process so much data so quickly. One avenue of approach is to develop highly

specialized processors that can perform these functions very rapidly. According to our results, when

using common routing software, the value of 100 instructions per packet is very unrealistic. The

actual number is up to 50 times greater! As a result, an examination of both hardware and software

performance is critical.

1.2 Goals

Boosting performance of the routing application requires an examination of both the hardware and

software architecture, and as such, this work identifies factors from both arenas that have an effect.

The major goals of this study are:

• Develop ISA suitable for routing. This is the major focus of this work. Given the restricted

nature of the routing application, a full-featured general-purpose microprocessor seems un

necessary. Because the Instruction Set Architecture is the interface to the hardware, limiting

2Because processors with such clock speeds do not yet exist, router architects have come up with other solutions to this
problem.

2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the instruction set to those operations that are absolutely necessary will reduce hardware com

plexity.

• Identify any beneficial hardware changes. Analyzing how the hardware is used by the

software has lead to ideas about how it might be streamlined. A reduction in the length of the

critical path through the processor could allow an increase in clock frequency.

• Identify softw are issues that are limiting performance. Software behaviour plays a large

role in the overall performance of the routing application. Factors such as memory accesses,

data dependencies, and control hazards have a limiting effect on throughput.

The first and second items are significant first steps toward developing a microprocessor specifi

cally for routing. The third is more dependent on the algorithms employed and the behaviour of the

compiler, and is the subject of future work in this area.

1.3 Methodology

The architecture chosen as the platform for the tests in this study is the MIPS RISC architecture,

specifically the MIPS R2000. The R2000 has become the defacto standard in the embedded com

puting environment [4], MIPS processors can be found in everything from palmtop computers to

video game consoles to Cisco routers and switches. Programmers and compiler writers enjoy the

clarity and flexibility of the MIPS instruction set, and recent versions of MIPS processors provide

very competitive performance with modest power consumption. Once the base hardware platform is

selected, optimization of the instruction set is an iterative process consisting o f the following steps:

• Profiling. Benchmark code is executed on the simulated architecture and statistics are gath

ered about instruction frequencies.

• Analysis. By applying design metrics to the statistics gathered, decisions can be made about

which instructions are most useful and which can be removed.

• Modification. Apply changes to the instruction set, and repeat the process.

The architecture is simulated with the Flexible Architecture Simulation Tool (FAST), which pro

vides an Architecture Description Language in which the pipeline architecture and instruction set

o f a processor are described. FAST is particularly adept at describing the instruction sets of proces

sors, because all assembler syntax and binary formats are defined explicitly. Pipeline architecture

is described as an ordering o f stages, and instruction execution is modeled explicitly as a flow of

instructions through pipelines. From an ADL description, FAST generates an assembler and cycle-

accurate simulator for the target architecture. Statistics are automatically generated about instruction

usage, pipeline stalls, and more.

■-*

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Berkeley Unix routing code is used to gauge the effects of architectural changes on routing

functions. This is the code used as the benchmark on the simulated MIPS architecture. Real life

routing tables from backbone routers are used as the basis for lookups. The results obtained from

the Berkeley code are compared to those from the LC Trie algorithm of Nilsson and Karlsson [29].

Once satisfying changes are made to the instruction set o f the processor, a more in depth look at

the software behaviour is warranted. The FAST system is again used to analyze the behaviour of the

software beyond instruction usage to stall cycles, memory bandwidth, and branches.

The scope of our work is an architectural analysis, which must first take place before any more

detailed gate-level analysis of the hardware. Once architectural issues have been identified, a lower-

level analysis can determine the exact effects of architectural changes on chip area and circuit com

plexity.

1.4 Overview of results

Our results can be broken down into the three categories described in Section 1.2. Initial execution

of the BSD routing code highlights a number of instructions that are not used at all. These include

arithmetic, logic, branch, and load/store instructions. Furthermore, floating point operations are not

required, eliminating the need for such a unit. While integer division is used on a very rare basis,

it appears to be tied a C library function and not the routing code itself. Elimination of the integer

multiplier/divider and its respective instructions could have a significant impact on chip area and

complexity. The next step is an examination of instructions that are seldom used and suggestions

on how to replace them with pseudo instructions, where possible. O f the eight branch instructions

available, only two are actually required. The remainingjump and load/store instructions are difficult

to substitute. Due to the limitations of the MIPS ISA, changes to the compiler are required, which is

beyond the scope of this thesis. In total, it is possible to eliminate 50% of the instructions from the

R2000 instruction set.

Although removing instructions and their functional units has advantages, one bottleneck that

remains is the adder. While addition is one of the most prevalent operations, our results show that

the majority of addition involves incrementing by one. Although the adder cannot be eliminated

completely, a special-purpose functional unit for incrementing may be beneficial. If such a resource

could operate at a higher speed, processor frequency might be increased by transforming the general-

purpose adder into a multi-cycle functional unit.

One of the major avenues for optimization is the large number o f pipeline stalls that occur during

execution of the code. Over 40% of all machine cycles are stalls when running the BSD routing

code. All of these are a result of dependencies on data being loaded from memory. The values

for most instructions do not change significantly with changes to the instruction set, although a few

exceptions are discussed. More sophisticated compiler scheduling is required to better cope with the

latencies that exist in the MIPS pipeline. Structural changes to the pipeline might also prove useful.

4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The utility of the simplified instruction set was verified by testing it with the LC trie algorithm.

Overall, the instruction usage patterns with the LC trie algorithm were consistent with those of the

radix tree algorithm.

1.5 Outline

This thesis is organized as follows. Chapter 2 presents an overview of related work on architecture

description languages and instruction set design. Chapter 3 discusses the necessary background for

the study, including the MIPS architecture and the basis for the routing performance tests. Chapter 4

presents the Flexible Architecture Simulation Tool, the architecture simulation package used in this

study. A discussion of the experiments and their results can be found in Chapter 5, and Chapter 6

concludes with the future directions of this work.

5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2

Related Work

A significant amount of research on instruction set design took place in the early to mid 1990s.

Much of this focused on generating instruction set extensions for specific classes of algorithms.

Most approaches to the problem are quite similar, and involve searching for frequently recurring

groups o f operations. The exception to this is the IBM study discussed at the end of this chapter that

aims toward as simple an instruction set as possible. Of course, in either case, it is useful to have

tools that allow early design space exploration of new instruction sets and processor architectures

in general. Architecture description languages are designed just for this purpose and often allow

automatic generation of a software toolset.

This chapter begins with an overview of architecture description languages available today and

categorizes them according to their major goals. It follows with a survey of related work on instruc

tion set design and discusses design metrics used in the process.

2.1 Architecture Description Languages

As the complexity o f processor architectures has grown, so has the time required for the design,

testing, and verification process. Architects are faced with shorter time-to-market, an ever increasing

number of design choices, and costly manufacturing processes. Waiting until a new architecture is

put into silicon is not feasible for testing, for the costs of making changes or correcting bugs could

be astronomical. It is for this reason that methods are required for testing and verification earlier in

the design cycle.

Architecture Description Languages (ADLs) evolved out of the need for design space explo

ration of new Systems On Chip (SOC) architectures. SOCs have become more common recently

as advances in semiconductor technology have allowed integration of processors, memory, and I/O

interfaces on a single chip. Traditionally, these items were selected as separate standardized com

ponents and connected via a system board to form an embedded system [38]. Now it is possible,

however, to place these items on a single chip, which allows a much greater degree of freedom when

customizing for a specific application. Designers can target SOCs for specific applications subject to

6

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

constraints such as chip area, power consumption, and performance. Rather than exploring different

architectures at a very low level, ADLs allow specification of architectural templates that describe

the behaviour of SOCs at a system level. Architectural templates describe the components that

reside within the SOC, the interaction among the different components, and how the components

themselves function. Low-level details of the hardware are left to later design phases once the SOC

has been optimized subject to the specified constraints.

The strengths of ADLs lie in their ability to generate software toolkits for hardware/software co

design. This is made possible by the ability of many ADLs to specify the instruction set architecture

(ISA) for the SOC. A compiler and simulator can then be generated based on the architectural

template and its ISA. Benchmark programs can then be written in a high-level language such as C

and compiled into the native machine code of the SOC. The generated simulator can then be used to

estimate performance, analyze resource utilization, determine the suitability of the instruction set,

and debug software before the hardware design is finalized.

ADLs are classified into four categories depending on their particular purpose and where their

major strengths lie. These categories are synthesis, compiler generation, simulator generation, and

validation. These categories are not mutually exclusive, as many of the ADLs described below have

strengths in more than one area.

2.1.1 Synthesis-oriented ADLs

Synthesis-oriented ADLs allow a designer to convert an architectural template into a low-level pro

cessor description. The designer can focus on specifying the blocks and functional units at a high

level of abstraction, and the time consuming activity of designing control path structures is auto

mated. Two ADLs that fall into this category are MIMOLA and COACH.

MIMOLA

MIMOLA is a hardware description language (HDL) developed at the University o f Dortmund [7].

Part of a larger suite of utilities, it is designed to support rapid development o f VLSI systems by

being an input language common to a variety of CAD tools developed at the same institution. The

distinction between hardware structure and behaviour is explicitly modeled in MIMOLA. Net-lists

of hardware components are used to model hardware structure, whereas Pascal-like HLL code is

used to describe hardware behaviour. A disadvantage of MIMOLA is its lack of ability to explicitly

describe processor pipelines and resource conflicts.

The MIMOLA language itself does not explicitly support simulator generation, nor does it sup

port the definition of an instruction set or assembly language. Other tools, however, are designed

to utilize MIMOLA descriptions for these purposes. The MSSQ compiler [27] reads a MIMOLA

hardware description and HLL program and produces architecture-specific binary code. It works by

mapping the algorithms to components in the datapath and generating the appropriate microcode.

7

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The RECORD compiler [26] takes a MIMOLA description and a program written in its Data Flow

Language, translating it into binary code for the target DSP. RECORD also allows compiler gener

ation by extracting an instruction set from a MIMOLA description. The MSSB/U simulators, part

of the MIMOLA Design System, allow simulation o f MIMOLA descriptions at both an algorithmic

and RTL level.

COACH

COACH is a CAD system developed at Kyushu University that supports hardware, interface, and

evaluator synthesis [2]. It performs logic and layout synthesis based on an RT-level HDL hardware

description. Using the same HDL code, it then extracts an instruction set for the target architecture

and generates a compiler. While COACH supports simulator generation, the resulting simulator

operates at an instruction level rather than at a cycle level. It assumes all operations from instruction

fetch to execution are one atomic operation, and thus does not support pipelining or instruction

level parallelism. Furthermore, the model assumes relatively simple RISC architectures and does

not allow superscalar or VLIW processors. Cycle-accurate simulation is available via existing HDL

simulators, however these are significantly slower than the simulator generated by COACH.

2.1.2 Compiler-oriented ADLs

W hereas hardware synthesis was the primary goal of the first two systems discussed, generating ILP

compilers is the main objective of the following ADLs. Generally these ADLs allow much more

detailed description of the instruction set and/or addressing modes of the processor.

nML

nML is an ADL developed at TU Berlin whose primary purpose is to describe the instruction set of a

processor [12], nML is the input to a variety of design tools such as simulators and code generators.

It operates at an instruction level, hiding low level architectural details from the user. nML describes

instructions and their addressing modes as rules of an attribute grammar. Attributes attached to

these grammar rules include behaviour, assembly syntax, and object code image. Because nML

operates at an instruction level, it does not have the ability to describe multi-cycle functional units

or pipelines. Different methods are available to model delays in the datapath.

ISDL

ISDL is an instruction set description language developed at MIT [14]. It is targeted mainly toward

the description of VLIW architectures, although it supports a wide variety of other architectures.

ISDL allows automatic generation of an assembler. The ISDL compiler is designed to take a C or

C++ program and an ISDL description as input, and output the corresponding assembly code tar

geted toward and optimized for the specific architecture. The assembler generated from the ISDL

8

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

description is then used to convert the assembly code into binary machine code for the target. ISDL

allows explicit definition of the instruction word format and assembly syntax, as well as the storage

available to the processor, such as memory, register files, a stack, etc. Each instruction in the ISA

description is separated into fields that define which operations can be performed in parallel. This is

why ISDL is particularly suited toward VLIW architectures. Each of these fields includes informa

tion on cost and latency, as well as on structural, bitfield, or syntactic constraints. The purpose of

ISDL is mainly to describe the instruction set and therefore the pipeline architecture is not explicitly

described.

Cycle-accurate simulators can also be generated from ISDL descriptions using the GENSIM tool

[15]. These simulators are bit-true and provide a variety of features for debugging and verification

o f both hardware and software.

M Des

MDes is a machine description language for compilation developed at UIUC [13]. It is used in the

Trimaran System [39], a compiler infrastructure for research in ILP architectures. Trimaran provides

a cycle-level simulator for its HPL-PD processor family only, and therefore the retargetability of

MDes is limited to this architecture. Trimaran provides a compiler front end for C, and a compiler

back end that is parametrized by the MDes description and that performs instruction scheduling,

register allocation, and compiler optimizations. Memory systems are described explicitly in MDes,

however they are limited to traditional hierarchies. In MDes, resource conflicts are captured by

explicit description of reservation tables.

EXPRESSION

EXPRESSION is an ADL developed at UC Irvine that supports a wide variety of processor archi

tectures, such as DSPs, VLIW architectures, RISCs, and ASIPs [16], EXPRESSION is capable of

describing both structure and behaviour of processors and has a LISP-like syntax. EXPRESSION

operates in two modes. In the Exploration Phase, a description is constructed from existing pro

cessor and memory libraries. The processor libraries contain a variety of DSP, AS IP, and VLIW

processors, while the memory libraries contain caches, SRAM, frame buffers, and a variety of other

constructs. Structure is specified as a net-list of these components and the data flows between them.

Processor pipelines are modeled as an ordering of stages and the timing characteristics of multi

cycle functional units are also specified. The instructions o f the processor are defined in terms of

their opcodes, operands, and operations that are performed in each functional unit for the instruction.

Once the base description is available, the toolkit generator produces an exploration simulator and

exploration compiler from the description that allow comparison of base processors and memory

hierarchies. The Refinement Phase is entered once the designer settles on a processor and memory

hierarchy. In this mode a cycle-accurate simulator and ILP compiler are generated that allow finer

9

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

tuning of the base processor characteristics and memory system. Resource conflicts are not specified

explicitly in EXPRESSION. Instead, reservation tables are automatically generated by extracting in

formation from the structural description.

2.1.3 Simulation-oriented ADLs

The strengths of simulation-oriented ADLs lie in their detailed description of pipeline behaviour and

for generation of cycle-accurate simulators. While many of the compiler-oriented ADLs have these

features, simulation-oriented ADLs typically do not support compiler generation.

LISA

LISA is an ADL developed at RWTH Aachen for simulation of DSP architectures [33]. It is capable

of modeling existing SIMD, VLIW, and superscalar processors, and supports bit-true cycle-accurate

simulator generation. Employing a straightforward C-like syntax, LISA models both the structure

and behaviour of processors, and supports description of the instruction set. Structure is described

with resource declarations that include constructs for registers, memories, and pipelines. These

constructs characterize the state of the system at a given moment. As in EXPRESSION, pipelines

are modeled as an ordering of stages. The instruction set is described in terms of its assembler

and binary syntax, followed by the semantics and behaviour of the instructions. The individual

operations performed by each instruction can be described at an instruction, cycle, or phase level.

Individual operations are assigned to the pipeline stage in which they should be executed. LISA

supports multiple pipelines, and resource conflicts are handled by explicit stalls and flushes of the

pipeline. LISA does not support compiler generation, and therefore there is no other explicit method

of specifying resource conflicts.

RADL

RADL is an ADL developed at Rockwell Semiconductor Systems that provides pipeline modeling

in even greater detail than LISA [35]. Instruction behaviour in the pipelines is partitioned into the

phases in which the operations occur. Furthermore, the number of phases per cycle is explicitly

specified for each pipeline. It is possible for different pipelines to have a different number of phases

per cycle, allowing different pipelines to run at different, but synchronous, speeds. RADL excels at

describing inter and intra-pipeline control and data communications. Hazards are handled with strat

egy tables that specify control signals and their associated actions, such as pipeline stalls, flushes,

and instruction kills. RADL also provides support for delay slots, interrupts, and hardware loops. As

with LISA, RADL lacks the ability to specify resource conflicts, and there is no means to generate

an ILP compiler from an RADL description.

10

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.1.4 Validation-oriented ADLs

Verification, rather than optimization, is the primary focus of validation-oriented ADLs. Given a

processor description, the purpose of these languages is to validate pipeline behaviour such as out-

of-order completion and internal data forwarding.

AIDL

AIDL was developed at the University of Tsukuba [28] for describing advanced processors at early

stages. Operations in AIDL are synchronized to an implicit clock, where actions occur in inter

vals between discrete time sequences. As with other ADLs discussed previously, behaviours are

described with respect to pipeline stages. AIDL contains two data types. Cause and effect relations

between stages are specified with flag variables, while register variables hold data values of one or

more bits. AIDL is targeted toward validation of pipeline behaviour, and the AIDL simulator outputs

data on the flow of instructions through stages and the values of variables. There is no compiler or

synthesis support in AIDL, although it is possible to translate AIDL code into VHDL.

M
IM

O
L

A

C
O

A
C

H

nM
L

IS
D

L

M
D

es
Z
o
0000

1
ftW L

IS
A

R
A

D
L

A
ID

L

Compilation a / V a / V a/ 7
ILP compiler V a/ a/ A/ y/

ILP constraints A a /
Simulation A y/ a/ V A a/ a/ A/ A

Cycle-accurate A A V A a / a/ V A
Synthesis yj a / A A

ISA A/ a / a / A/ a / a /
>/ Supported

A Partial support

Table 2.1: Comparison of ADLs. Source: [38]

2.1.5 Comparison of ADLs

Table 2.1 provides a comparison of the ADLs discussed in this chapter by highlighting some of their

main features. Most o f the ADLs support compiler generation, with the exception of the last three,

which are used strictly for simulation. EXPRESSION is the most sophisticated in terms of compiler

generation, while COACH takes a very simplistic view and does not support processor pipelines or

instruction-level parallelism. Furthermore, EXPRESSION seems to be the only ADL that provides

full support for conflict detection, and automatically generates reservation tables to take care of

this. MIMOLA only provides partial support for ILP constraint detection. All o f the compiler and

simulation-oriented ADLs provide full support for specifying instruction sets.

11

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

AH of the ADLs provide some level of support for simulation. MIMOLA does not explicitly sup

port simulator generation, but descriptions can be simulated using HDL simulators. The simulation

ability of MDes is limited to a particular processor family, while AIDL descriptions need a separate

simulator and cannot be used to automatically generate a software toolkit. ISDL, EXPRESSION,

LISA, and RADL provide cycle-accurate simulators. The others provide only limited retargetability,

or else model behavior at an instruction level only.

MIMOLA and COACEI are the only two ADLs that provide effective support for synthesis be

cause they are originally HDLs. Both ISDL and AIDL can be translated into VHDL code, giving

them partial support for synthesis.

2.2 Instruction Set Design

Since the advent of digital computers, hardware designers have been constrained by a number of

factors. In the early days, factors such as hardware complexity, cost, and reliability were important

in computer design. Instruction selection has always played a significant role in both hardware

complexity and cost. General purpose computers, which must support a wide variety of functions,

require an instruction set flexible enough to meet the needs of a broad range of programmers and

their applications. Computers targeted to more specific applications may be able to contend with

a more limited set of instructions, reducing the complexity and cost of the hardware. Selecting an

efficient and appropriate instruction set depends on [20]:

• The character o f the computations

• The frequency of operations

• The flexibility o f implementing operations in software using hardware instructions

• The hardware required to implement the instructions

• The performance of the instructions

The character of computations is one of the main factors. Many of today’s commercial proces

sors implement complex instructions that modern compilers are only beginning to utilize. Even then,

the vast majority of programs are comprised of mostly simple instructions, which is why frequency

is also important. If a performance gain is achieved for complex instructions at the expense of the

simple ones, it may be more efficient to implement the complex operations in software. This needs

to be balanced, however, with the flexibility of implementing these operations in software. It is clear

that none of these factors are mutually exclusive. Each has some impact on the others, and it is the

task of the designer to choose an optimal instruction set based on these and other factors.

These factors are of course fairly abstract, and designing a real instruction set requires consid

eration of a number of more specific items as well. The word size and address size are of critical

12

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

importance. These factors directly influence the resulting code size of programs, as well as the size

of the addressable memory space. The word size is affected by the number of registers and the

number of operands referenced by instructions. A larger number of registers requires more bits for

register IDs, and more operands increases the number of bits in the instruction word. Furthermore,

the nature in which these operands are accessed plays a role. If operations can be performed di

rectly on data in memory, the word size may need to be longer to accommodate multiple memory

addresses. Because register IDs are typically much shorter, requiring operands to be first placed in

registers can shorten the word size. The number and types of addressing modes are also important,

and determine the types and lengths of fields in the instruction word.

2.2.1 Instruction set design taxonomy

Holmer [20] discusses a taxonomy of instruction set design whereby instruction sets are gener

ated through an iterative or a constructive process. An iterative process relies on transformations

to an initial instruction set to achieve the desired characteristics, whereas a constructive process

starts from scratch and builds an instruction set piece by piece. Both these processes can be either

instruction-based or feature-based. In an instruction-based process, transformations affect a limited

subset of instructions, whereas in a feature-based process, the effects are more widespread across

the instruction set.

Iterative techniques

In the iterative, instruction-based techniques, an existing instruction set is normally chosen as the

initial base on which to conduct transformations. This is useful when an existing instruction set is

to be optimized for a specific application, which is the case in this thesis. Alternatively, instructions

from multiple instruction sets can be chosen if one wishes to capture strengths of different architec

tures. Once the initial instruction set is chosen, transformations are applied to optimize the design

metric(s). These transformations can have the effect o f deleting, adding, or modifying instructions.

Specialization and Generalization are inverses of one another and target an instruction toward

a more specific or more general purpose, respectively. In both cases, a single instruction from the

original instruction set results in a single new instruction in addition to the existing one. Examples

of specialization include reduction in operand size and making an operand value implicit [37, 8].

For example, if incrementing values by 1 is a common occurrence, it may be advantageous to have

an instruction specifically for this purpose. Instructions o f the form a d d R i , R i , #1 could be

replaced with an instruction like a d d l R i , executed by a functional unit designed specifically for

this purpose, rather than by a general purpose adder. Holmer also cites a number of studies where

specialization can increase performance when data types can be determined at compile time.

The third transformation for iterative techniques is Decomposition. This involves replacing one

instruction with two or more instructions that, when combined, perform the same operation. This is

13

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

particularly useful if the resulting instructions are used frequently, but the original is seldom used.

In contrast to specialization, decomposition eliminates the candidate instruction and replaces it with

simpler instructions. These instructions may be new, or they may already exist in the instruction set.

If they already exist, the net result is the deletion of one instruction. For example, the instruction

m ove R i , R j , where R i and R j contain memory addresses, can easily be implemented with exist

ing l o a d and s t o r e instructions. Composition is the inverse of decomposition and combines two

or more existing instructions into a single, more complex instruction.

Compaction takes two or more instructions and produces two or more instructions. The idea

is to break individual instructions down into their micro-operations, relax the boundaries between

these instructions, and rearrange the micro-operations to form new instructions. If the resulting

instructions are useful in a broad context and result in some performance improvement, they can be

added to the final instruction set. Determining the right mix of micro-operations to achieve this is

difficult, however, and therefore the technique has not been widely employed.

The final two methods are less systematic. The Random method of instruction selection involves

selecting instructions arbitrarily from the universe of all possible instructions, while the Experi

ence Based method relies on human knowledge of the application, benchmark execution, and code

generation.

Haney and Bose [17, 10] have done work on instruction set design that can be classified as it

erative feature-based techniques. These involve construction of an instruction set by manipulating

features or characteristics that affect multiple instructions simultaneously, rather than manipulating

individual instructions. Haney’s system is based on the generalized instruction set, where instruc

tions consist of an operation and one or more features, such as addressing modes or operand fields.

Each operation and feature has a cost that is supplied by the user. Different combinations of features

and operations result in instructions with different costs. A search program is used to produce an

instruction set of maximum value subject to a total cost constraint. Haney’s approach suffers from

the fact that the costs assigned by the user may not be directly associated with actual hardware and

performance costs.

Bose takes a different approach whereby an instruction set is generated based on an attribute

grammar of a high level language. The instruction set is generated by applying a set of transfor

mations to the HLL grammar to produce the grammar o f the instruction set. Examples of transfor

mations include conversion of the program to tokens, conversion from infix to postfix notation, and

adding type information to data values to eliminate a run-time symbol table.

Constructive techniques

With the exception of Holmer’s work, very little has been done on generating instruction sets us

ing constructive iteration-based techniques. Holmer’s method involves collecting an execution trace

from a benchmark program and analyzing the register transfers and the frequency of different op-

14

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

erations. The benchmark code is then broken into segments whose starting points are selected at

random and whose ending points are chosen so that the segments require roughly the same number

of execution cycles. Exhaustive search is then used to determine the optimal sequence of micro-

operations to perform the functions of each segment. Instructions are then formed for each of these

code segments subject to several constraints. While the instructions generated for each code seg

ment are not candidate instruction sets in themselves, the combination of them is considered to be

the final instruction set.

The constructive feature-based techniques are the least studied. It seems that construction of

an instruction set purely from features such as operations and addressing modes may not result

in an optimal final instruction set, but is more useful for generating an initial instruction set for

optimization by another method.

2.2.2 Instruction set design metrics

Holmer discusses a variety o f design metrics that have been used in previous studies. Because it is

rarely feasible to implement an instruction set in hardware to gauge its performance, these metrics

attempt to estimate performance based on a number of different factors. A designer is free to choose

one or more of these metrics that they feel are most appropriate for their application. These metrics

are discussed below, and their ease of estimation is discussed in terms o f the different classes of

ADLs.

Execution time/cycle time

Certainly this is one of the most important metrics in any form of hardware design. Estimating

execution time directly is often difficult, however. Often it is not clear what effect a hardware

change will have on cycle time. With the advent of synthesis-oriented ADLs, this metric may be

easier to estimate if a gate-level hardware description can be generated and simulated.

Cycle count

Cycle count is a useful metric if changes to the instruction set do not affect cycle time. If instruction

set changes lower cycle count but increase cycle time, however, this metric can be misleading. Cycle

count is one of the major metrics used in this thesis, and is easy to determine with many of the ADLs

presented earlier that offer cycle-level simulators.

Static code size

Static code size is of more importance in embedded systems where memory is limited than in normal

workstations and servers. This metric is directly influenced by factors such as word size, as well as

the overall complexity of the instructions available. A more complex instruction set will combine

many simple operations into a single instruction, lowering the overall code size, at the expense

15

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

of more complex hardware. Simple RISC instruction sets, however, may have larger code size

with simpler hardware. The compiler-oriented ADLs allow calculation of static code size because

benchmark programs can be assembled into binary code.

Dynamic code size

While static code size measures memory storage requirements, dynamic code size measures the

number of instruction words fetched from memory. This metric may be important in devices with

high memory access latencies or small instruction caches. By reducing dynamic code size, cache hit

rates can be increased. This metric is easy to determine with any of the ADLs that offer instruction

or cycle-level simulators.

Data memory references

This metric can be used as a measure of execution time, however it has little to do with the instruction

set. Far more influential factors are the number of registers in the architecture, and the allocation

strategy of the compiler. ADLs that provide detailed information on dynamic code size will provide

information about memory references. The sum of this metric and the previous is the total number

o f words transferred between memory and the processor, and has been used by Bose as a measure

of execution time.

Number of w ords transferred among internal registers

This metric has less to do with the instruction set than with the internal arrangement and connections

between the functional units and the registers. Compiler and simulation-oriented ADLs that provide

detailed statistics about instruction usage can be used to calculate this metric.

Compile time

While not related to the performance of the hardware, compile time may be an important metric

in some instances, such as just-in-time (JIT) compilation. The choice of instruction set may not

significantly affect the compile time, however, because it is mostly related to code generation, which

is only part o f the entire process. Although the compiler-oriented ADLs could be used to estimate

this metric, there has been no specific discussion of it.

Hardware design and manufacturing costs

This metric is difficult to quantify. It is safe to say that more complex architectures will require a

great deal of verification effort on top of the initial cost of designing and the logic. Furthermore,

fabrication techniques greatly influence manufacturing costs, and chip complexity is a function of

more than the instruction set. These metrics are also vendor specific, and cannot be estimated with

any ADLs.

16

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chip area

This metric is related in part to the previous two. The area can be affected by the manufacturing

technology, and is related to the complexity of the instruction set as well as the number of functional

units and the overall complexity of the pipeline logic. Synthesis-oriented ADLs could be used to

provide estimates of this metric, given that they generate processor descriptions at a gate-level.

Power consumption

Power consumption is an important metric in mobile devices and embedded systems. An instruction

set that minimizes memory size or memory accesses may be of benefit, because the memory system

is in large responsible for a bulk of the power consumption. While none of the ADLs discussed in

the previous section provide estimates of power consumption, the next version of FAST, presented

in Chapter 4, is slated to support this.

2.2.3 The Instruction Set Implementation Method Selection Problem

Instruction set implementation method selection type 1 (ISMP-1) is the problem of deciding an

instruction set for an ASIP under the constraints of chip area and power consumption [22]. Imai

et al, have developed the PEAS system, one component of which is the Architecture Information

Generator (AIG). The goal o f this component is to decide on an optimum instruction set given the

results of profiled application programs and their associated data.

The authors define the term functionality to be the union of all operators and functions in the C

language. They then divide the functionality into three categories:

• PRTL: Primitive RTL refers to functionality that can be implemented with very simple hard

ware components, such as an ALU and one bit shifter. Examples include integer add and

subtract, logical instructions, and logical shift instructions.

• BRTL: Basic RTL refers to functionality that can be implemented with combinations o f hard

ware modules, microcode, or in software as combinations of other PRTL and/or BRTL func

tionality. Examples include integer multiplication and division and rotate instructions.

• XRTL: Extended RTL includes all library and user-defined functions, and can be imple

mented with complex hardware modules such as coprocessors, microcode, or software sub

routines.

All primitive functionality is automatically implemented using hardware modules. The goal of

the system is to decide which of the remaining functionality to implement and with what method.

A balance must be struck between implementing basic and extended functionality using hardware

modules and microcode or software. Too many hardware modules lead to increased power con

sumption and chip area, whereas using too few has a negative impact on performance.

17

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Let n be the total number of functionalities, x-t an implementation method for functionality

i, f t the frequency functionality i is executed, based on the profile data, t,; the execution time of

functionality i, a; and p* the area and power consumption of functionality i, respectively. Solving

the instruction set implementation method selection problem then involves finding a solution vector

X = (x i . x-2, that minimizes the objective function T (X) = subject to the

constraints ai(x i) f; A jm ax and Y l7= iP i(x i) — P - m a x -

The ISMP solver takes as input the values of / , for all i, the parameters A jm ax and P jm a x ,

and a database that includes area and execution time of all functionalities, and outputs a list of op

timum implementation methods for the required basic and extended functionalities. The algorithm

performs a depth-first search on a search tree where leaf nodes correspond to a choice of implemen

tation methods for the functionalities. Each node maintains information about currently selected

functionalities and the partial sum of the objective function. Functionalities are sorted in descending

order according to a choice of heuristic functions, and the algorithm examines them in that order.

One of the key components of the algorithm is the use of the branch-and-bound technique which

uses a tight lower bound calculated at every node to eliminate non-optimal solutions.

Alomary et al. have extended this work to consider functional module sharing [3], which occurs

when two or more operations can share a common functional unit. By taking this into account, the

overall cost in terms of area and power consumption can be reduced over implementing each oper

ation independently. Solving the problem with this additional consideration is the basis o f ISMP-2,

and amounts to checking whether a choice of hardware module for implementing a particular func

tionality is being considered the first time. If the hardware module has already been chosen to

implement another functionality, its cost is not counted.

The authors claim both algorithms find optimal instruction sets for a variety of problems in a

very short time. The branch-and-bound technique is able to constrain the search to less than 2%

of the total number o f nodes in the tree. The algorithms for ISMP-2 was tested by the authors by

finding an instruction set to solve for . Functional module sharing was then tested by finding

the instruction set for a floating point arithmetic emulator program. Their results show that ISMP-2

has an edge over ISMP-1 due to resource sharing.

2.2.4 Generating instruction set extensions

Huang and Despain propose a method of instruction set synthesis for modern pipelined processors

[21], In their approach, a target architecture is described with a list of micro-operations (MOPs) and

their associated parameters, such as resource requirements and timing. Each MOP is assigned a cost

in terms of its instruction format and hardware requirements. The algorithm receives benchmarks

that are represented by weighted basic blocks in the form of MOP graphs. Constraints on the in

struction set, resource constraints, and the objective function are also specified, and the output is an

optimal ISA for the target architecture and application.

18

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The semantics of instructions are represented with binary tuples, where the first element is a

list o f MOPs and the second element a list o f fields to be encoded in the opcode of the instruction.

Operand encoding is one of the main methods used to combine MOPs into single instructions. Com

bining MOPs also allows register ports to be unified where possible. The instruction set is generated

by solving a modified scheduling problem whereby MOPs of the benchmarks are scheduled into

time steps. Each time step corresponds to a single instruction. The algorithm starts with an initial

state and then invokes a simulated annealing scheme to modify this state until the objective function

is optimized. The annealing algorithm provides a variety of operators to reorganize, combine, and

split MOPs both within and between time steps.

The authors tested their algorithm with four different benchmarks ranging from list manipulation

to database queries. Three out of four cases, the value of the objective function was better for the

automatically generated instruction set than for a manually designed instruction set with the same

constraints. In all cases, however, the overall number of cycles required to execute the benchmarks

was lower than with the manually designed ISA at the expense of larger instruction sets.

Choi et al. have looked at generating application specific instructions for DSP applications

[11]. In contrast to the work of Huang and Despain, this method has the ability to generate multi

cycle instructions. Similar to Imai et al., the authors classify instructions into three categories,

the P (primitive), C (composite) and S (special) classes. Input programs are again transformed

into MOP lists and constraints supplied. The first step consists of matching MOPs to the P-class

instructions, which are always included in the instruction set. If the constraints are met with only

P-class instructions, then nothing more is done. Otherwise, C-class instructions are generated to try

and meet the constraints. If the C-class instructions are still not sufficient, S-class instructions are

generated.

The authors concentrate mainly on the methods used to generate single-cycle and multi-cycle

C-class instructions. Their goal is to generate a minimal set of C-class instructions that are used

frequently in the application and which maximize speed. The problem is formulated as the subset-

sum problem, which is the problem of finding a subset of S = { x i , X 2 , . . . ,xn}, where Xi is a positive

integer, whose sum is as large as possible but not larger than t. This is adapted to instruction

generation by searching for a subset of S = {51, 52, • where 51 is the gain achieved by

combining a group of dependent MOPs into a single instruction Ci. The sum should be no less than

Td, which is the difference between the execution time with only P-class instructions and the user-

given constraint. Although the subset-sum problem has exponential time complexity, the authors

employ a polynomial time approximation algorithm.

Generation of multi-cycle instructions involves relaxation of one constraint on MOP selection.

In the case of single-cycle instructions, a candidate group of MOPs had to be executable in a single

cycle, but for multi-cycle instructions, this restriction is lifted. The maximum number of cycles al

lowed for multi-cycle operations can be varied in order to control instruction set size and to minimize

19

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the objective function.

Atasu et al. [5] tackled the problem of instruction set extension by directly examining HLL

source for recurring groups of operations. They model data flow within a basic block i as a graph

G f (V W + , E U E +), where V is the set of primitive operations in the basic block, and E the data

dependencies. V + is the set of input and output variables, and the edges E + connect the input and

output variables with the other nodes. Their technique examines basic blocks and attempts to find

optimal cuts S, where S C G f for a basic block i. The value of a cut S is judged by an objective

function M(S) , which is usually some estimate of the performance gain achieved by combining

the primitive operations of S into one instruction. A cut S is deemed valid only if it satisfies three

constraints, the first being that the number of input variables be less than or equal to a user-defined

value of Nin, the second that the number of output variables be less than or equal to N out, and

the third that S is convex. Convexity holds if there exists no path from u 6 S to v G S that

has intermediate node w £ S. Their algorithm attempts to maximize under these three

constraints for each basic block by finding up to N instr cuts Sj that provide the best performance

gain.

Because there are 21v I possible cuts in each basic block, examining each possibility is not effi

cient. The authors describe an algorithm that identifies each valid cut while eliminating those regions

that are invalid early in the search. Nodes in the graph are subjected to a topological sort that gen

erates an implicit search tree that is explored recursively. Each level i in the tree represents node i

in the topological ordering. The right child (1-branch) of a node at level i represents the addition of

node i + 1, while the left child (0-branch) represents no addition of that node. At each stage of a

pre-order traversal, the three constraints are checked. If any of them fail, the subtree rooted at that

node can be pruned. The best cut is selected from those nodes that represent valid cuts. The authors

describe an iterative technique for finding up to M optimal cuts per basic block by extending the

search tree to support (M + l)-way branching.

Praet et al. [34] have done similar work on instruction selection for AS IPs by combining micro

operations with a technique they call bundling. A bundle is defined to be a “maximal sequence of

micro-operations in which each micro-operation is directly coupled to its neighbours.” Direct cou

pling occurs when primitive activities pass data to one another through resources such as wires or

latches. Instruction selection by bundling consists o f grouping data flow operations of an applica

tion into bundles, and then combining control flow operations and bundles into instructions. Their

methods follow a similar approach to the others, in that statistical information is extracted from data

flow graphs to find frequently occurring groups of operations.

Lee, Choi, and Dutt have looked at instruction selection for RISC-based configurable processors

[25). Their approach focuses on ISA specialization with only minor changes to the existing data

path architecture, and tries to use the existing resources more efficiently for a specific application.

In addition to taking an application program as input, their approach also takes as input the data path

20

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

architecture, producing a basic instruction set and a set of C-instructions. These C-instructions are

application specific and are synthesized from an analysis of the application and data path architec

ture, whereas the basic instruction set is common across all implementations. Each basic instruction

consists of a single micro-operation, and the C-instructions amount to combinations of basic in

structions that provide performance improvements when combined into one instruction, while using

existing hardware resources.

A particular strength of this framework is its ability to address the problem of multiple instruction

formats. The synthesis process determines opcode and operand field widths, and allows multiple

formats to fully realize the potential of limited bit-width instructions. In addition, the concept of

operand class is integral to the system. Operand classes are defined by their field widths, compatible

operands, and encoding. For example, immediate constant 4, 4-bit immediates, or 6-bit immediates

could all be different operand classes, providing different degrees of generalization for synthesized

C-instructions.

The synthesized instruction set consists of the basic instruction set along with the generated

C-instructions. The first step is to generate all possible C-instructions that have a performance

benefit in terms of cycle count. The best candidates are then chosen by weighing their benefits

and costs in an optimization problem. Generation of C-instructions can be further divided into two

stages: rescheduling and generalization. Rescheduling involves building all possible C-instructions

from basic instruction sequences up to a specified length, provided the C-instruction provides some

benefit. Generalization involves application of the different operand classes to the C-instructions to

create multiple versions of the instruction. From all these C-instructions, the final set is chosen.

The authors present both integer linear programming and heuristic algorithms for choosing the

final set of C-instructions. The selection problem amounts to maximizing the cycle count reduction

subject to the code space constraint. The code space constraint can be expressed as x iX 2Wi <

C S ° , where W% is the bit-width needed for the operands of Ci, C S c is the total code space available

for C-instructions, and Xi is 1 if Ci is selected, 0 otherwise. The total codespace available to C-

instructions is defined to be 2IBW —]C 2Bi, where I B W is the instruction width (typically 16 or

32), and Bi the number of operand bits required for each basic instruction.

The authors conclude with a performance evaluation of their framework when applied to the

MIPS architecture. They observe performance gains of 20 - 40% for multimedia applications when

using the synthesized instruction set instead of the native instruction set. For other benchmarks, the

performance gains are smaller but consistently positive.

While most work on instruction set extensions has been targeted toward increasing performance,

Biswas and Dutt have considered it in the context of reducing static code size for VLIW DSPs [9].

Specifically, their approach considers heterogeneous-connectivity-based DSP architectures. Simply

put, this refers to limited connectivity between functional units and register files. The example ar

chitecture they use is the TMS320C6xx by Texas Instruments, which issues up to eight instructions

21

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

in parallel, and has two clusters of four functional units, each cluster having its own register file.

The goal of their work is to reduce code size without sacrificing performance by clustering instruc

tions that can be dispatched in parallel. Only minor changes are required to the decoding hardware

because a complex instruction B 1; B 2 is expanded into its constituents B 1 and B 2 during decod

ing, and each separate instruction is sent to its respective functional unit. In order for instructions

to be clustered, there cannot be any contention for resources between them, although they may be

dependent on one another for data. Greedy and heuristic algorithms are presented that find candi

date clusters subject to connectivity, latency, and dependency constraints. The end result is a set of

four-operand two-operator complex instructions that provide a roughly 25% reduction in code size

across a range of DSP benchmarks.

2.2.5 Reconfigurable hardware

Athanas and Silverman have devised a system that automatically identifies and synthesizes instruc

tion set extensions during program compilation [6]. The difference between their approach and that

of others is the use of Field Programmable Gate Arrays (FPGAs) that allow automatic reconfigu

ration of the processor architecture. Extended operations are automatically synthesized and imple

mented in the reconfigurable hardware. The core of their PRISM system is a configuration compiler

that produces both a hardware image and software image from an application program written in

C. The hardware image is used to program the reconfigurable platform, whereas the software im

age is the machine language version of the application program that utilizes instructions from the

processor core and the reconfigurable hardware. The authors provide very little detail on how the

extended operations are extracted from the application program at compile time. They note that

the time required to execute operations on the reconfigurable hardware plus the transit time to and

from the processor core must be less than computing the same operation in software, otherwise no

improvement will be observed. With an initial implementation of the system, they observed speedup

factors of between five and 54 times for various functions when implemented in hardware.

2.2.6 ISAs for routing in multiprocessors

In 1995, a study was performed at IBM to determine a flexible router architecture that would support

a variety of oblivious routing algorithms for interconnection networks [32]. The architecture was

required to support fixed and reconfigurable topologies, and the topologies considered were trees,

meshes, cubes, and multistage interconnection networks. The goal of the study was to define an

instruction set that was as small as possible that could implement the routing algorithms considered,

as well as provide handshaking functionality.

The authors begin by describing the structure of their router architecture, where the general

components are n input controllers, n output controllers, and the switching mechanism. The input

controllers are responsible for executing the routing algorithm, and the output controllers for sending

22

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the switched packet to the next input controller. Input controllers consist of a port controller, a

routing algorithm handler, and a packet flow controller, and the ability of the routing algorithm

handler to support multiple routing algorithms is where most of the router’s flexibility lies.

To support the functionality of the routing algorithm handler, the authors identify a general

instruction set and a control instruction set. The general instruction set consists of twelve ALU,

shift, and control instructions. Instructions in the general ISA are 32 bits in length and all operate

on data in registers or on immediate values. The general instruction set employs only absolute

addressing as its addressing mode, because the only instruction that performs a memory reference

is the branch instruction. The control instruction set is not used for the routing algorithms directly,

but rather for initialization, operations with the local processor, or advanced algorithms. Table 2.2

summarizes the two instruction sets.

Description
G eneral instruction set
add R l, R2, R3 Addition
sub R l, R2, R3 Subtraction
cmp R l, R2 Comparison
a n d R l, R2, R3 Logical AND
x o rR l, R2, R3 Exclusive OR
p lo R l,R 2 Position of leading 1 bit
sh rR l, R2, R3 Shift right
shl R l, R2, R3 Shift left
m o v R l, R2 Register move
be Mask, Address Branch on condition
out Channel End of program
msg R l, R2, R3 Message to local processor
Control instruction set
lp g R l,R 2 , R3 Load program
lsr R l, R2 Load status register
lrR l ,R 2 Load general register
ecp Address End of control program

Table 2.2: Oblivious routing instruction set

The study considers 40 different interconnection network topologies. The number o f instructions

needed to implement the routing algorithms for these topologies range from five to twelve. Consider

the hypercube topology shown in Figure 2.1. In an n-dimensional hypercube, each node is directly

connected to n other nodes, and there are 2n nodes in total. Each node is given a unique address

that corresponds to a string o f n bits. Furthermore, the address of each neighbor of a node differs

from the node’s address by 1 bit. The bit in which it differs corresponds to a particular direction the

neighbor lies in, in this case (x, y, z).

The routing task for this topology involves comparing the address of the current node to that of

the routing tag, and making a decision along which path to forward the packet. The program can be

summarized as:

23

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 2.1: 3 dimensional hypercube network

Rl: Routing tag;
Cl = 0;
C2 = 1;

processor: out

cmp
be
plo
shl
xor
out

Rl, Cl;
1000, processor;
Rl, R2;
C2, R2, R3;
R3, Rl, Rl;
R2 ;
4;

The value in register R l is the routing tag, C l and C2 are the constants 0 and 1, respectively.

The first action is to check whether the tag equals zero. I f so, the program branches and sends the

packet to the local processor (direction 4). Otherwise, the p l o instruction finds the position of the

leading 1 bit, which is stored in R2. The constant 1 is then shifted left by that many positions, and

then an exclusive OR is performed with that value and the routing tag. This has the effect o f turning

off that bit. Finally, the packet is routed in the corresponding direction.

The study also presents a number of examples with more complex topologies. In all cases,

however, the instruction set required is comparable in size to that for the hypercube. The study does

not discuss the methodology used to synthesize the instruction sets. It likely involves a significant

amount of human experience.

A variety of ADLs have been discussed, each with their particular strengths and weaknesses. The

synthesis-oriented ADLs are more closely related to hardware description languages, given their

very low-level description of processor architectures. Their strengths lie in their ability to auto

matically generate processor descriptions, saving much of the time required for logic design. The

compiler-oriented ADLs are particularly strong at describing the instruction set architecture of pro

cessors. These descriptions are then used to automatically generate ILP compilers for the target

architecture. Most of the compiler-oriented ADLs also provide cycle-level simulators, making them

2.3 Concluding remarks

24

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

excellent candidates for precise and comprehensive architectural design and testing. The simulation-

oriented ADLs provide even more sophisticated pipeline modeling, but lack the ability to generate

compilers. The only ADL in the validation-oriented category seems to be targeted toward validation

of internal data forwarding and out-of-order completion, and has no compiler or synthesis support.

An ideal ADL would combine the strengths from each of these four categories. Of the ADLs sur

veyed, EXPRESSION seems to come closest to doing this.

Iterative instruction-based techniques are the most widely studied methods of instruction set de

sign. These techniques involve the application of various transformations to instructions in order

to modify the ISA. Modifications are done iteratively until a final instruction set is reached. The

iterative feature-based techniques, on the other hand, manipulate features of the entire instruction

set to craft it into a usable form. The constructive techniques have not been studied as much. Holmer

did work on iterative construction of an instruction set by examining benchmark source code. Con

struction of an instruction set from features does not seem ideal for generating a final instruction

set.

Most of the related work on instruction set design falls into the category of iterative instruction-

based techniques. Most involves generating application-specific instruction set extensions for exist

ing architectures. The techniques are are all quite similar, in that benchmark programs are examined

to find frequently recurring groups of micro-operations that qualify as candidate instructions. The

only study that significantly differs is that done by IBM, whereby the simplest possible instruction

set was derived, which has the most relevance to this thesis.

25

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3

Background

This chapter introduces the RISC design methodology and describes the MIPS R2000.RISC archi

tecture, which is the basis for the experiments conducted in this study. The routing table mechanism

used in the 4.3 Reno release of Berkeley Unix is also described.

3.1 Reduced Instruction Set Computers

Reduced Instruction Set Computers evolved in the early 1980s as a response to the increasingly

complex processor architectures appearing at the time. As advances were made in VLSI design,

processors began supporting increasingly complex instructions. RISC processors, on the other hand,

are based on the idea that programs consist mainly of simple instructions, with very few complex

instructions. A RISC processor is designed in such a way that the simple instructions execute very

quickly, at the expense of a few complex instructions being slow. The goal in a RISC architecture is

for the processor to retire one instruction per cycle. In contrast, Complex Instruction Set Computer

(CISC) processors have a large number of complex instructions. This has a performance impact on

the simple instructions as well, often requiring several cycles per instruction.

RISC architectures have a number of benefits for processor architects [24]. Implementation of

RISC architectures is more straightforward than for CISC processors . The simpler and streamlined

design allows for faster debugging and verification of the architecture. This shortens the design

cycle, allowing processors to go to market sooner, and aids in the exploration o f different design

options. A simpler architecture also translates into a smaller chip area. Advantages of this include

more area for other resources such as register files or caches, the potential for lower power require

ment when these processors are used in battery-powered devices, or performance increases from a

shorter critical path through the processor.

RISC processors provide a number of benefits for programmers and compiler designers as well.

For those programming at the assembly level, the uniform and much simpler instruction set of a

RISC processor is far simpler to learn and use. As an example, the Pentium instruction set contains

over 400 instructions, whereas the MIPS instruction set (not including coprocessors) contains less

26

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

than 75.

3.2 The MIPS R2000/R3000

The MIPS R2Q0G/R30001 architecture is a fully 32 bit pipelined architecture. The R2000 is a load-

store architecture, meaning that all operations are performed on data in registers, and the only in

structions that can access memory directly are load and store instructions. All R2000 registers are

32 bits wide, and all instructions consist of one 32 bit word. Including the system coprocessor that

is part of the R2000, four additional coprocessors are supported. The R2010/R30102 floating point

unit is commonly found alongside the R2000 processor in systems where floating point operations

are required.

3.2.1 Memory and registers

The MIPS memory space is divided into the kernel address space and the user address space. The

kernel address space begins at the top of memory and continues until address 0 x 8 0 0 0 0 0 0 0 . The

user address space is composed of three areas. The text segment holds the actual program instruc

tions, and is the location from where the program fetches instructions. This address space begins

at address 0 x 0 0 4 0 0 0 0 0 and ends at 0 x 1 0 0 0 0 0 0 0 . The stack segment grows from the top of the

user address space (0 x 7 f f f f f f f) down toward the data segment, which has no fixed boundary.

<DO
CSO,

T3
c3
u,
W5

Kernel address space

Stack segment

Data segment

Text segment

Reserved

OxFFFFFFFF

0x7FFFFFFF

0x10000000

0x00400000

Figure 3.1: MIPS memory layout

The R2000 contains 32 general purpose registers. These registers are summarized in table 3.1.

While the hardware does not enforce the usage of registers, each register has an assigned purpose

'T h e R2000 and R3000 architectures are identical in behaviour and structure except for the R3000’s increased speed.
From now on, R2000 can be taken to mean both.

2Likewise for the R2010.

27

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

and the programmer must be aware of these in order to ensure that software functions correctly.

Register name Number Usage
z e r o $0 Constant 0
$ a t $1 Reserved for assembler
$v0 - $ v l $2 - $3 Procedure return values
$ a0 — $a3 $4 - $7 Arguments to procedures
$ t 0 - $ t7 $8 - $15 Temporary
$ s 0 - $ s7 $16 - $23 Saved temporary
$ t8 - $ t9 $24 - $25 Temporary
$k0 - $ k l $26 - $27 Reserved for OS kernel
$gp $28 Pointer to global area
$ s p $29 Stack pointer
$fp $30 Frame pointer
$ r a $31 Return address

Table 3.1: MIPS registers

Register 0 retains a value o f 0 regardless of what value is written to it. It is used for comparisons

to zero. Register 1 is reserved for use by the assembler, such as when an intermediate value must

be stored in the expansion of pseudo instructions. Registers 2 and 3 are used to return values from

procedures, while registers 4 to 7 are used to pass arguments to procedures. If a procedure requires

more than four arguments, the remaining ones are passed on the stack. Registers 8 to 15, 24 and

25 are used for temporary storage of values that do not need to be preserved across procedure calls,

whereas registers 16 to 23 are used for temporary storage of values that need to be preserved across

calls. Registers 26 and 27 are for use by the operating system. Register 28 holds the address of

the middle of a 64K block of memory in the data segment where constants and global variables are

stored. The top of the stack is pointed to by the address contained in register 29. Register 30 points

to the area of memory containing a procedure call frame. The return address of a procedure call is

stored in register 31.

3.2.2 Pipeline Architecture

The R2000 pipeline contains five stages and an instruction can pass through the pipeline in five

cycles. While stalls due to data dependencies and memory latency complicate matters, the goal is to

retire one instruction per cycle, which requires five instructions in flight through the pipeline at any

given time. Each stage is supplemented with a set of pipeline registers where operands and results

are stored after the stage operates on the instruction.

The first stage of the R2000 pipeline is the Instruction Fetch (IF) stage. This stage is mainly

responsible for sending the program counter (P C) to memory in order to fetch the next instruction

word, and then incrementing the program counter. The new instruction is stored in the instruction

register (I R) , while the incremented program counter is stored in the register N P C .

The second stage is the Instruction Decode (ID) stage. This stage does exactly what its name

28

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

suggests, which is to decode the instruction word, fetch data from the input registers, and determine

the destination register. Due to the simplicity o f MIPS instruction formats, it is possible to read the

input registers at the same time the instruction is being decoded. This is called fixed-field decoding

since the input fields are fixed bit fields in the instruction words. The data accessed from the input

registers are loaded into temporary pipeline registers for use by subsequent stages. In the event that it

is needed later, the sign-extended immediate is also calculated during this stage since the immediate

portion of an instruction is always located in the lower 16 bits o f IR.

It is in the ID stage that the R2000 determines whether an instruction is a branch instruction, and

if so, computes the effective address. The effective address is computed by adding the sign-extended

immediate, shifted left two bits, to the address stored in NPC. The input registers are then checked

to determine whether the branch is taken, and if so, the program counter is modified to reflect the

branch target. Fetching then resumes from the target address. Because branches are resolved in the

ID stage, they incur a penalty of only one clock cycle. This is discussed in more detail in Section

3.2.5.

Based on the type of instruction, the ID stage decides where to send the instruction next. If the

instruction requires the integer unit, it will be sent to the EX stage. The other options are either the

system control coprocessor or another coprocessor, such as the R2010 floating point unit.

The third stage in the R2000 pipeline is the Execution (EX) stage. It is in this stage that the

ALU operates on the operands. The operation can be either a memory access, a register-register

instruction, or a register-immediate instruction. In all cases, a calculation is done with the operands

loaded by ID, and the result o f the operation is stored in the pipeline register ALUOutput.
The fourth stage is the Memory Access (M EM) stage, and only handles loads and stores. All

other instructions pass through this stage unaffected. The effective address computed in EX and

stored in ALUOutput is used to reference the correct memory location. In the case of a store, the

value is written to memory at that location. For a load, once the value returns from memory, it is

placed in the LMD register for later use.

The fifth and final stage is the Write-Back (WB) stage. This stage simply writes the results of

any previous computations or memory accesses into the register file. Instructions that do not write

to any registers, such as branches and stores, pass through this stage unaffected.

3 .2 3 Instruction Set Architecture

All MIPS instructions consist of a single 32-bit word aligned on a word boundary. There are three

MIPS instruction formats for integer instructions. These are displayed in Figure 3.2, and consist

of the Register, Jump, and Immediate formats. Table 3.2 summarizes the MIPS instruction set, not

including coprocessor instructions and floating point instructions. The instructions are divided into

six categories.

29

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

op rs rt rd sham t funct

31 26 25 21 20 16 15 11 10 6 5 0

op target

31 26 25 0

op rs rt im m ediate

J-FORMAT

I-FORMAT

31 26 25 21 20 16 15 0

Figure 3.2: MIPS Instruction Formats

Load/Store instructions

The purpose of load and store instructions is to move data between general purpose registers and

memory. All load and store instructions are of the Immediate instruction format, and with the

exception of the l w l and lw r instructions, all load instructions have a latency of one cycle.

Computational instructions

Computational instructions include those from the Shift, Arithmetic/Logic, and Multiply/Divide

categories. All instructions in this category operate on values in registers, and occur in both Imme

diate and Register formats.

Jump and Branch instructions

Jump and branch instructions are used to modify the control flow of a program. Jump and branch

instructions introduce a delay of one instruction. After the new program counter is computed, the

instruction following the branch is executed while the target instruction is being fetched.

Jump and branch instructions occur in all three MIPS instruction formats. The Immediate for

mat is used for branches, jump-and-link and branch-and-link instructions. The Register format is

necessary for the jump register instruction, where an address is contained in a register. The Jump

format is used for the remaining jump and jump-and-link instructions.

3.2.4 MIPS coprocessors

The MIPS R2000 architecture supports up to four coprocessors, designated CPO through CP3 that

can interface seamlessly with the R2000 main execution unit. These coprocessors perform ancillary

tasks such as exception handling, or operate on other types of data such as floating point numbers.

The System Control Coprocessor (CPO) is located on the R2000 chip. It provides a number

of registers and functions for handling exceptions and the virtual memory system. As with most

modem processors, the R2000 supports a large virtual memory address space. The Translation

Lookaside Buffer on CPO handles virtual memory mapping. The virtual memory system provides

up to 2 GB for users and 2 GB for the kernel. The R2000 enters kernel mode when an exception

30

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

OP Description OP Description

Load/Store Instructions Shift Instructions
l b Load Byte s l l Shift Left Logical
l b u Load Byte Unsigned s r l Shift Right Logical
I h Load Halfword s r a Shift Right Arithmetic
l h u Load Halfword Unsigned s l l v Shift Left Logical Variable
lw Load Word s r l v Shift Right Logical Variable
lw l Load Word Left s r a v Shift Right Arithmetic Variable
I w r Load Word Right Special Instructions
s b Store Byte s y s c a l l System Call
s h Store Halfword b r e a k Break
sw Store Word Multiply/Divide Instructions
sw l Store Word Left m u l t Multiply
sw r Store Word Right m u l tu Multiply Unsigned

Arithmetic/Logic Instructions d i v Divide
a d d Add d i v u Divide Unsigned
a d d i Add Immediate m fh i Move From HI
a d d i u Add Immediate Unsigned m f l o Move From LO
a d d u Add Unsigned m th i Move To HI
a n d AND m t l o Move To LO
a n d i AND Immediate Jump and Branch Instructions
l u i Load Upper Immediate j Jump
n o r NOR j a l Jump And Link
o r OR j r Jump to Register
o r i OR Immediate j a l r Jump And Link Register
s i t Set on Less Than b e q Branch on Equal
s l t i Set on Less Than Immediate b n e Branch on Not Equal
s l t i u Set on Less Than Immediate Unsigned b l e z Branch on Less than or Equal to Zero
s i t u Set on Less Than Unsigned b g t z Branch on Greater Than Zero
s u b Subtract b l t z Branch on Less Than Zero
s u b u Subtract Unsigned b g e z Branch on Greater than or Equal to Zero
x o r Exclusive OR b l t z a l Branch on Less Than Zero And Link
x o r i Exclusive OR Immediate b g e z a l Branch on Greater than or Equal to Zero

And Link

Table 3.2: MIPS R2000/R3000 Instruction Set

is detected. The restore from exception (r f e) instruction returns the processor back to user mode.

Examples of exceptions include system calls, I/O interrupts, and arithmetic overflows. Memory

mapping differs between the two modes, although each is allocated an address space of 2 GB. While

in User mode, the R2000 can only access the user address space, whereas when in Kernel mode,

references can be made to both the Kernel and User address spaces.

In order for the R2000 to support floating point operations, a floating point accelerator is typi

cally implemented as coprocessor 1 (CPI). This unit provides a separate pipeline and independent

register file to that of the main execution unit in the R2000. Execution of floating point instructions

in the floating point unit takes place in parallel with execution in the main unit. The floating point

accelerator offers its own instruction set that can perform load and store operations, moves, and

register to register floating point operations.

31

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Moving data from memory to coprocessors and between coprocessors and the main processor is

accomplished with a set of instructions for this purpose.

lwcX Load Word to Coprocessor X
swcX Store Word to Coprocessor X
mtcX Move word To Coprocessor X
mfcX Move word From Coprocessor X

Table 3.3: Coprocessor Load/Store/Move Instruction Set

The load and store instructions move data between coprocessors and memory, while the move

instructions move data between coprocessor and the main processor.

3.2.5 Jumps and Branches in the R2000

MIPS implements delayed jumps and branches. This means that the target address is not resolved

until later in the pipeline, and therefore a delay slot exists immediately following the jump or branch

instruction. The processor always executes the instruction immediately following the jump or branch

while the target instruction is being fetched from memory. This is an alternative to stalling the

instruction fetch stage while waiting for the target to be resolved. Such a system would require more

complex pipeline logic, and would have a negative impact on performance. The alternative is to

delegate the task of handling this delay to the software. MIPS assemblers are designed in such a

way that this delay slot is filled with a usable instruction, one that should be executed whether the

branch is taken or not. If such an instruction is not available, the delay slot is filled with a nop .

Consider the following fragment o f code:

lw $ 8 , 10($ sp);
beqz $8, target;
sw $ 8, 2 0 ($ s p) ;
s l l $ 1 0 , $ 8 , 2 ;

target: sll $10, $8, 4;

The machine loads the word 10 bytes above the stack pointer, stores it in $8, and then performs

a comparison to determine whether the value of that word equals zero. Prior to the branch being

resolved, the store word instruction has already been fetched from memory and is inserted into the

pipeline. If the branch is resolved as taken, the program counter is then modified to point to the

branch target. If the branch is resolved as not taken, the program counter is left unchanged. In both

cases, the sw instruction proceeds normally through the pipeline.

Figure 3.3 displays the timing diagram in the case that the branch is resolved not taken. Instruc

tions are fetched in sequence and control proceeds normally. Figure 3.4 shows the change in control

flow when the branch is resolved as taken in ID. By this time, sw has entered the pipeline. The

program counter is then modified and fetching resumes from target in the next cycle.

32

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

lw $8, 10($sp) IF ID EX MEM WB

beqz $8, target IF ID EX MEM WB

sw $8, 20($sp) IF ID EX MEM WB

sll $10, $8,2 IF ID EX MEM WB

Figure 3.3: Timing diagram when branch not taken

lw $8, 10($sp) IF ID EX MEM WB

beqz $8, target IF ID EX MEM WB

sw $8, 2Q($sp) IF ID EX MEM WB

sll $10, $8,4 IF ID EX MEM WB

Figure 3.4: Timing diagram when branch taken

3.3 Routing table lookup

Routing table lookup is the predominant activity of a router and is the function for which we wish

to find an optimal architecture. The basis for our tests is the routing code from the 4.3 Reno release

of Berkeley UNIX. The results from this algorithm are then compared to those from the LC trie

algorithm.

3.3.1 Radix tree data structure

The 4.3 Reno release of Berkeley UNIX uses a modified PATRICIA tree to store routing table

information and perform lookups [36]. A PATRICIA3 tree is a variation of a binary radix tree where

all nodes with one child are merged with their parent. In a normal binary radix tree, each node

along a branch represents a successive position to test in the key. This is an effective strategy when

the set o f keys is large. When the set is sparse, however, most o f the internal nodes have only one

descendant, which is not very efficient. To combat this problem, a PATRICIA tree uses selective bits

to determine branching.

Consider the Figure 3.5 where the tree contains two keys a b a b b and a b a a a . Rather than

having a tree of depth six by branching on each position in the key, it is possible to have a tree of

depth two by examining the longest matching prefix and then branching on the value of the next

3 Practical Algorithm To Retrieve Information Coded in Alphanumeric

33

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

abaaa ababb

Figure 3.5: Simple PATRICIA tree

character, which in this case happens to be at position four. Suppose now that the value a a needs

to be added. This value differs from the others at the second position, so the tree will need to be

rearranged. The result is depicted in Figure 3.6.

abaaa ababb

aa

Figure 3.6: Tree after adding a a

The second position is now tested first. If the character is an a the left subtree is chosen, if

the character is a b the right subtree is chosen, where the fourth bit is then tested and the process

repeated.

The tree for the routing table is constructed in a similar manner. Leaf nodes in the tree correspond

to address classes or routes, and internal nodes determine the bit positions to test. A route consists

of a prototype address and a mask (the class), as well as other information such as interface number,

next hop, etc.

Consider the routing table in Table 3.4. The corresponding tree is pictured in Figure 3.7. If the

table is constructed in the order the routes are listed, the first bit to be checked will be bit zero, since

this is where all the routes differ from the default. At this point, the default route will be the left

branch, and PNet will be the right, since its 0 bit is on. The next bit position to test is determined

to be bit nine, since this is where HNet differs from PNet. PNet becomes the left child, while HNet

34

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Prototype Mask Route

0 0 Default
0 x 8 0 0 5 0 0 0 0 O x f f f f 0 0 0 0 PNet
0 x 8 0 5 0 0 0 0 0 O x f f f f O O O O HNet
0 x 8 0 5 0 2 4 0 0 O x f f f f f f O O ZNet
0 x 8 0 5 0 7 6 0 0 O x f f f f f f O O QNet

Table 3.4: Example routes

becomes the right child of the second internal node. To add ZNet, an internal node to test bit 18

is added. Finally, when QNet is added, the tree is rearranged so bit 17 is tested third, whose left

subtree tests bit 18, and whose right child is QNet.

QNet

ZNet

PNet

HN et

default

Figure 3.7: PATRICIA tree for routing table 3.4

lookup Algorithm

a candidate address belongs to a class, the address is compared to the pro

class by computing the exclusive OR of the two addresses. The incoming

address belongs to the class if and only if all bits that are set in the result are clear in the mask,

35

3.3.2 Radix tree

To determine whether

totype address of that

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

because they must then be set in the incoming address. If any set bits in the result correspond to

set bits in the mask, they must be clear in the incoming address and therefore the address does not

belong to the class. Consider the candidate address 0 x 8 0 5 0 7 6 1 9 . In the case of the classes in

Table 3.4, the address belongs to HNet, QNet, and Default, but not PNet or ZNet. The binary

results of the XOR and the binary masks are shown in Table 3.5.

Class XOR Result Mask
PNet 0000 0000 0101 0101 0111 0110 0001 1001 1111 i n i m i m i oooooooooooooooo
HNet 0000 0000 0000 0000 0111 0110 0001 1001 1111 1111 1111 1111 oooooooooooooooo
ZNet 0000 0000 0000 0000 0101 0010 0001 1001 1111 1111 1111 1111 1111 1111 0000 0000
QNet 0000 0000 0000 0000 0000 0000 0001 1001 1111 1111 1111 1111 1111 1111 0000 0000

Table 3.5: Binary results of XOR operation

The goal of the lookup algorithm is to determine which class an address belongs to. This involves

finding the class whose prototype address has the longest matching prefix with that o f the candidate

address, subject to the mask of the class. To find the appropriate class in the tree, the following

algorithm is used:

Current node t— Root
while (Current node is not a leaf node) do

Extract bit position to test

if (Bit of candidate address is on) then

Current node «— Right child of Current node
else

Current node t— Left child of Current node
end if

end while

Consider again the candidate address 0 x 8 0 5 0 7 619. The first bit position to be extracted is bit

0, which is on, so the next node becomes the right child. Bit 9 is then extracted, which again is on,

so the next node is again the right child. Bit 17 is then extracted, which is again on, so the next

node becomes the leaf node with QNet. The masking operation is then performed, and the address

is deemed to belong to that class.

In the event that the masking operation fails, the algorithm then backtracks up the tree to find an

other mask that may apply. For example, if an attempt is made to match the address 0 x 8 0 5 0 2 6 8 0 ,

the algorithm will zero in on the ZNet class, however, the XOR will signal that the address does not

belong to this class. The algorithm will then backtrack up the tree, and an XOR with the mask for

the HNet class will result in a match. Table 3.6 shows the results of the comparisons.

Sklower [36] notes that in the average case, the PATRICIA trees constructed from routing infor

mation are approximately balanced, which results in a search length of 1.44 x log (N), where N is

the number of entries. In the worst case, each bit in the address must be tested, which in the case of

36

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Class | XOR Result Mask
PN et | 0000 0000 0101 0101 0010 0110 1000 0000 1111 1111 1111 1111 0000 0000 0000 0000
Z N et 0000 0000 0000 0000 0000 0010 1000 0000 1111 1111 1111 1111 1111 1111 0000 0000
H N et 0000 0000 0000 0000 0010 0110 1000 0000 1111 1111 1111 1111 0000 0000 0000 0000

Table 3.6: Binary results of XOR when backtracking required

IP addresses, would require 32 tests.

3.3.3 LC trie algorithm

The PATRICIA tree data structure uses path compression to compress sparsely populated sections of

the tree by removing nodes with one-way branching. In contrast, an LC trie uses level compression

for compressing parts o f the tree that are densely populated [29]. The algorithm recursively com

presses complete subtrees of height i into single nodes of degree 2*. Nilsson and Karlsson discuss

an efficient implementation of their routing algorithm that stores the entire routing table in an array.

One of the main differences in the lookup algorithm is that nodes can have different branching

factors. Therefore, unlike in the PATRICIA tree algorith, where a single bit position is tested to

determine the branch, in the LC trie algorithm, n bits need to be extracted for a branching value of

2". The value of these bits determines the branch to be taken. Each node stores information about

its branching factor and a skip value. The pseudocode for this algorithm is shown below.

Current node t— Root
Position <— Skip
while (n does not equal 0) do

Extract n bits starting at Position, store in Bits
Branch -t— value of Bits
Current node t— Child number Branch
Position i— Position + n + Skip

end while

3.4 Concluding remarks

Reduced Instruction Set Computers present a viable alternative to the upward trend in processor

complexity. By limiting the instruction set of the processor as well as the pipeline depth, savings

can be achieved in terms of hardware cost and often execution time. The MIPS R2000 architecture

is one of the original RISC implementations and provides an intuitive and simple instruction set. Its

architecture is the platform on which experiments with the BSD routing code are conducted in this

study.

37

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4

The Flexible Architecture Simulation
Tool

The Flexible Architecture Simulation Tool enables rapid prototyping of new processor architectures.

Developed by Onder and Gupta [31], FAST provides an Architecture Description Language (ADL)1

that is used to describe both the processor behaviour and instruction set architecture (ISA). FAST

provides an implementation of ADL that automatically generates a microarchitecture simulator, as

sembler, and disassembler. The simulator is cycle-accurate and executes approximately three orders

of magnitude slower than the native architecture. FAST/ADL falls into the category of compiler-

oriented ADLs and is most similar to EXPRESSION [16], Pipelines are described explicitly as an

ordering of functional units, and instructions are defined in terms of their opcode, operands, and the

operations they perform in each pipeline stage they pass through. The ability to describe a machine

at this level as opposed to at an RTL level has many advantages. An architect is freed from the

laborious process of describing each register transfer and all the intricacies of the data and control

paths. Furthermore, changes to the pipeline and instruction set architecture can be made much more

easily at a high level, simplifying design-space exploration.

This chapter describes the FAST toolchain, its machine clock, and then provides an overview of

the syntax and different constructs available in ADL. It concludes with a discussion on how FAST

is useful today and where it should be extended in the future.

4.1 The FAST toolchain

A number of steps are required to build the FAST tools from an ADL processor description. In the

first stage, the ADL compiler is used to transform an architecture description written in ADL into

C++ source code. The generated Makefile is then used to compile this source code into the FAST

simulation suite. A 6000 to 8000 line ADL architecture description is transformed into about 35000

lines o f C++ code. This process is illustrated in Figure 4.1.

^ r o m now on, unless otherwise stated, ADL will refer to the specific architecture description language of the FAST
system.

38

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ISA and Microarchitecture Description
of new target architecture

ADL compiler

Sources and Makefile

Native compiler

T

FAST assembler, disassembler, and simulator
for new target architecture

Figure 4.1: Toolset generation

The FAST system consists o f an assembler, a disassembler, and a simulator. The assembler is

generated based on the ISA description in the ADL code, and is fully retargetable to any architecture

and calling convention. The disassembler is not typically used standalone, but is normally called by

the simulator when debugging mode is entered. The FAST simulator is cycle-accurate and bit-

true, and explicitly models pipeline behaviour and instruction level parallelism. Once the three

FAST programs are available, benchmark programs can be written, compiled, and executed on the

simulated target architecture.

Although the FAST system can be targeted to any system call convention and assembly language

format, it is most convenient to use those for which a C compiler is available, unless benchmark

programs are to be written in assembly and custom libraries are available.

The first step toward running a benchmark program is to cross-compile it into assembly for the

target architecture using the appropriate C compiler, if one is available. Once the assembly file is

available, the FAST assembler is used to transform the assembly code into a binary file executable

on the target architecture via the FAST simulator. The simulator is responsible for producing all of

the performance data necessary for gauging the viability of the target architecture. This process is

illustrated in Figure 4.2. FAST collects statistics about instruction usage, cycle counts, stall cycles,

and memory accesses. It also provides functionality for collecting custom statistics from arbitrary

locations in the data-path.

4.2 FAST machine clock

The operation of architectural components in FAST is described with respect to the FAST machine

clock. Each machine cycle or major cycle of the machine clock consists of a number of minor

39

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Benchmark HLL source code

MIPS-Ultrix cross compiler

Assembly code for target
(Uses MIPS-Ultrix system call conventions)

FAST assembler
y

Target binary

FAST simulator
v

Performance results

Figure 4.2: Generating and executing an object file

cycles, each of which is represented by a label, as shown in Figure 4.3. The first and last minor

cycle comprising a major cycle are labeled prologue and epilogue, respectively, while all others in

between are labeled as intermissions.

I I I ! !
1 1 x * • i 1 ' - 1i i ivicijui uyuic
1 1

!
1

t
1 1

n h h
1n I 1n i

r®—Minor cycle ■
i i
i t

Minor c y c l e i
ii
r®—Minor cycle --

! 1
1 1
■r-...Minor cycle

1 ! 2 ! i n-l i n i
(Prologue) ! (Intermission 1) ! ! (Intermission n-2) 1 (Epilogue) !

Figure 4.3: FAST processor cycles

In general, the prologue is responsible for receiving an instruction context from the previous

pipeline stage, the intermissions operate upon the instruction context, and the epilogue sends the

instruction context to the next pipeline stage.

Each action performed by an architectural component is annotated with the label of the minor

cycle in which it should be executed. Actions common to a particular processing stage and minor

cycle are grouped together to form time annotated procedures (TAPs). Given n minor cycles in a

machine cycle, each processing stage can consist of up to n TAPs. Specific actions performed by

40

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

machine instructions are annotated with the name of the processing stage in which they should be

executed.

During each FAST machine cycle, both the actions associated with each component during that

cycle and those of each active instruction annotated with the current cycle are executed.

4.3 Microarchitecture specification

Defining a processor architecture involves specifying artifacts and stages. Artifacts in ADL corre

spond to hardware objects with well-established operational semantics, while the functionality of

stages exhibits more variation, and is often instruction specific.

4.3.1 Artifacts

ADL supports several types of artifacts as built-in types. In addition, the user can define their own

custom artifacts. When declaring artifacts, attributes are supplied that determine the behavior of

a specific implementation of the artifact. Artifacts built into the ADL language include registers,

register files, memory ports, caches, buffers, and latches.

Registers and register files

A register declaration declares a simple register artifact. The only attribute associated with a register

is its size in bits. For example, to declare a register named m y_reg of size 32 bits, the following

syntax would be used:

r e g i s t e r m y _ re g 3 2 ;

The optional sh a d o w keyword, placed at the beginning of the statement, renders the given register

invisible to the instruction set.

A register file declaration declares an array of registers. Not surprisingly, it requires at least two

attributes, those being the number of registers in the array and the size of each register. Register files

can also be given the attribute sh ad o w . An example shadow register file declaration is presented

below.

sh a d o w r e g i s t e r f i l e g p r [6 4 , 3 2] ;

This declares a shadow register file named g p r that has 64 entries of 32 bits each.

Register files have the quality that each entry in the register file can be assigned one or more

aliases. This is taken care of in the same declaration along with the register file. For example, the

following is used to declare a register file with 8 32-bit entries while assigning aliases for each of

them:

r e g i s t e r f i l e m r f [8 ,3 2]
$ r0 0 ,
$ z e r o 0 ,
$ r l 1 ,

41

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

$r2 2,
$r3 3 ,
$r4 4,
$r5 5
$r6 6
$ r7 7 ;

Following the initial declaration is a comma-separated list of aliases and indices. Aliases always

begin with the $ character. An arbitrary number of aliases can be specified for a given register.

The following statements are both valid to access the 5th register in the register file:

m r f [4] = d a t a _ v a l u e ;
$r4 = d a t a _ v a l u e ;

Memory ports

Memory declarations define memory ports with given access latencies in units of machine cycles

and and data path widths in units of bits. There are no optional attributes for memory declarations,

and as such all such declarations have the following format:

m em ory m em o ry l l a t e n c y 5 w i d t h 3 2 ;
m em ory m em ory2 l a t e n c y 5 w i d t h 3 2 ;

The memory declaration declares a memory port, and not the memory itself. As such, the size of the

memory cannot and need not be specified. It is assumed to be arbitrarily large to suit the needs of

the program being executed on the target architecture. Multiple ports can be specified to the same

memory.

Caches

The c a c h e artifact is used to declare either instruction or data caches. Caches are stackable, mean

ing they can be used to construct memory hierarchies. Because of this, they need to be declared in

relation to the memory object directly below them in the hierarchy. This is accomplished with the

o f clause. The general syntax of this looks like:

d a t a c a c h e d c a c h e o f m e m o ry l 512 4 ;
i n s t r u c t i o n c a c h e i c a c h e o f m em ory2 64 4 ;

A data cache of the first memory port is declared of size 512 kilobytes, and 4 words per line.

Likewise, an instruction cache of size 64 kilobytes with 4 words per line is declared.

Custom artifacts

When the selection of built in artifacts does not suffice, ADL allows definition of custom artifacts

with custom properties and behaviours. Artifacts are specified with the a r t i f a c t keyword fol

lowed by a number of attributes. An artifact definition consists of a number of procedures that

describe the behaviour of the artifact.

42

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Definition of a custom artifact is best illustrated with an example. Figure 4.4 presents the ADL

source code for a 2-bit branch prediction buffer. A more in-depth explanation of how a 2-bit predictor

works is discussed in Section A.

Typically the first part of the artifact definition consists of data declarations. In this example,

only one array is required, that which holds the two bits that determine the branch prediction. The

size of the array is set at the value passed via the size attribute. This occurs on line 4.

W hen the simulation reaches the point where an artifact is declared the initialization
procedure of the artifact is called. The purpose of this procedure is to perform any initializations on

the artifact data. The statistics procedure is called at the end of the simulation. Any statements

that are inserted into this procedure will be performed when the <machine_name> . sim file is

being written. This is where printf statements should be inserted to output statistics about the

artifact. This is accomplished with the built in keyword. The myself keyword refers to the

instance of the artifact being operated upon (similar to the this keyword in C++). The name

assigned to the artifact can be printed this way.

The key to defining the behaviour of the artifact is via the r v a l u e and l v a l u e procedures.

These procedures characterize how the artifact behaves when it is used as an r-value and 1-value,

respectively. An 1-value consists of an expression that can appear on the left side of an assignment

operator, whereas an r-value can appear on the right side of an assignment operator. In the case

of the branch predictor artifact in Figure 4.4, when it is an r-value the prediction bits for the given

address are returned. The r v a l u e procedure takes one argument, which corresponds to the index

passed to the artifact instance elsewhere in the ADL code. For example:

predictor my_predictor size=256;
if (my_predictor[pc] == 0) then

begin
end;

Initial values for the attributes of an artifact are set by providing arguments during declaration

of the artifact. The name of the attribute is specified followed by its initial value. Artifacts are

accessed as r-values by passing an index value to the artifact, as in the previous example, where the

return value is compared against zero. Values are returned from procedures by assigning a value to a

variable with the same name as that o f the procedure. In Figure 4.4, a value is assigned to r v a l u e

at line 15.

Accessing an artifact as an l-value works in a similar manner, except that the procedure takes two

arguments. The first argument corresponds to an index, the second to the r-value in the expression.

Consider the following statements:

bitconstant TWO 1 0;
W_predictor [pc] = TWO;

43

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 artifact predictor attributes (size)
2 begin
3
4 integer array predict._bits [size, 2] ; # Array of bits
5 integer hash_val; # Calculated index value
6
7 ' initialization # Initialization actions
8 begin
9 forall predict__bits = 0 ;
10 end initialization;
11
12 rvalue (addr) # What to do if used as an rvalue
13 begin
14 hash_val = addr.[10:8];
15 rvalue = predict_bits[hash_val];
15 end rvalue;
17
18 lvalue (addr, rval) # What to do if used as an lvalue
19 begin
2 0 hash_val = addr. [10:8] ;
21 if (rval == 0) then # Not taken
22 begin
23 if (predict_Jbits [hash_val] == ZERO) then
24 begin
25 predict_bits[hash_val] = ZERO;
2 5 end
27 else if (predict_bits[hash_val] == ONE) then
28 begin
29 predict_bits[hash_val] = ZERO;
3 0 end
31 else if (predict_bits[hash_val] == TWO) then
32 begin
33 predict_bits[hash_val] = ZERO;
34 end
35 else if (predict_bits[hash_val] == THREE) then
35 begin
37 predict_bits[hash_val] = TWO;
3 8 end;
3 9 end;
40
41 if (rval == 1) then # Taken
42 begin
43 if (predict_bits [hash_val] == ZERO) then
44 begin
45 predict_bits[hash_val] = ONE;
46 end
47 else if (predict_bits[hashjval] == ONE) then
48 begin
49 predict_bits[hash_val] = THREE;
50 end
51 else if (predict_bits[hash_val] == TWO) then
52 begin
53 predict_bits[hash_val] = THREE;
54 end
55 else if (predict_bits[hash_val] == THREE) then
56 begin
57 predict_bits[hash_val] = THREE;
5 8 end;
5 9 end;
60 end lvalue;
61
62 statistics # Print statistics
63 begin
64 builtin printf{’'Branch predictor %s\n’', myself.name);
65 end statistics;
66
67 end predictor;

Figure 4.4: ADL source code for 2-bit predictor

44

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The constant value TWO, which is the r-value, is assigned to the location in my . p r e d i c t o r to

which p c indexes.

Aside from the basic procedures discussed above, an artifact.definition can contain other proce

dures, separate pipelines, and other artifacts.

4.3.2 Pipelines

Defining the pipeline(s) associated with the microarchitecture involves first declaring the stage

names followed by implementations of the TAPs that comprise each pipeline stage. Another critical

component is to specify the data that are part of the instruction context.

D eclaring pipelines and the instruction context

Pipelines are declared with the p i p e l i n e keyword. The declaration involves specifying a name

for the pipeline followed by a list of its stages. For example, the standard MIPS pipeline can be

declared in the following manner:

p i p e l i n e I P I P E (I F , I D , EX, MEM, WB) ;

As an instruction progresses through the pipeline, it carries data with it in a set o f c o n t r o l d a t a

registers. The set of these registers constitutes the instruction context, which stores data relating to

the instruction’s operands, destination register, intermediate results, etc. Each pipeline stage has the

same type of context because the instruction context is the union of all the data required by all the

stages in the pipeline. Declaration of the instruction context follows a pattern similar to other regis

ter declarations. This declaration is given by the c o n t r o l d a t a r e g i s t e r keywords followed

by a list of register names and sizes.

The c o n t r o l d a t a registers are accessible from within TAPs as well as from within the ISA

specification. Both qualified and unqualified access modes are possible. In the case of unqualified

access, the data accessed are that o f the respective pipeline stage performing the access, or the stage

associated with the label for the RTL segment in the semantic portion of the instruction declaration.

The syntax is identical to that for normal register access. The syntax for qualified access of data

involves specifying the name of the c o n t r o l d a t a element along with its respective pipeline stage.

The general syntax looks like controldata-element [stage-name].

Implementation of pipeline stages

Pipelines are implemented in ADL in a distributed fashion in the form of procedures. Machine

cycles in FAST are divided into several minor cycles. These minor cycles include a prologue, a

series of intermissions and an epilogue. Procedures must be specified for the prologue and epilogue

of each stage, while those for intermissions are optional. The general format for defining procedures

is as follows.

45

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

procedure STAGE__NAME { prologue | intermission | epilogue)
begin

STATEMENTS

end STAGE_NAME

The statements that comprise the procedure define its behaviour with respect to the different

instructions that it will process. Forwarding of instruction contexts, management of hazards, and

other operations on instruction contexts are managed with a variety of keywords built into the ADL

language.

Prior to its initial access, an instruction context must first be allocated using the n e w c o n te x t

keyword, which normally appears in the first pipeline stage. Once allocated, the instruction context

can be operated upon. Failure to allocate a new instruction context for each instruction read from

memory will stall the pipeline. Once an instruction context is no longer needed, it is deallocated

using the r e t i r e keyword. Instruction contexts can be retired as either s t a t or n o s t a t . This

determines whether statistics about the instruction are recorded or not recorded, respectively.

Decoding of instructions is accomplished with the d e c o d e statement. The d e c o d e statement

establishes a mapping from the instruction name to the current instruction context. The purpose of

the d e c o d e statement is to load the attributes of the instruction into the c o n t r o l d a t a registers,

provided the instruction context has been previously allocated. Once this has been accomplished,

the c o n t r o l d a t a variables can be accessed by the pipeline stage.

The s e n d statement is responsible for forwarding a particular instruction context from one stage

to the next. Sends can be successful or unsuccessful. A successful send is achieved when the next

stage is idle or performing a send in the same cycle. If a stage does not execute a send in a particular

cycle, send operations o f preceding stages will fail in that cycle, and those stages will repeat the send

operation in the next cycle. All pipeline stages, with the exception of the final stage, must execute a

s e n d somewhere in their epilogue minor cycle, unless the instruction was retired prior to reaching

the final pipeline stage.

The s e n d keyword takes a single argument corresponding to the pipeline stage to which the

current instruction context should be sent. This is important since instruction contexts can be sent

to more than one pipeline stage. For example, a floating point add instruction may need to be

forwarded to a different stage than an integer add instruction. This becomes especially apparent

when the micro-architecture has more than one pipeline.

Stages may stall themselves through the use of the s t a l l statement. The s t a l l statement

terminates processing of that stage for the remainder of the machine cycle. As a result, no s e n d

operation will be executed by that pipeline stage during that machine cycle. The s t a l l statement

has no effect on other stages. Stages further down the pipeline from that which stalled continue to

execute their send operations. As a result, the stall statement has the effect of inserting a bubble into

46

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the pipeline.

In addition to stalling single pipeline stages, it is also possible to freeze and unfreeze the

entire pipeline. The freeze statement functions in a manner somewhat opposite to that of the

stall statement. While the s t a l l statement will stall only the stage in which it was executed,

the freeze statement will stall all stages except that in which it was executed. The only stage that

may execute the unfreeze statement is that which executed the corresponding freeze statement.

Freezing a pipeline might be useful in the event of a cache miss, for instance.

4.4 Instruction Set Architecture specification

Besides the architectural artifacts and pipeline stages themselves, the other key ingredient of a mi

croarchitecture specification is that of the instruction set architecture (ISA). While the artifacts and

stages define the general operations to be done on instruction contexts, the ISA specification defines

specific operations for each instruction.

4.4.1 Instruction formats

Any given architecture places specific requirements on the format o f its machine instructions. These

instructions normally consist of a number of different fields that contain opcodes, operands, and

other data.

op rs rt rd shamt funct

31 26 25 21 20 16 15 11 10 6 5 0

op target

31 26 25 0

op rs rt immediate

R -F O R M A T

J-F O R M A T

I-F O R M A T

31 26 25 21 20 16 15

Figure 4.5: MIPS Instruction Formats

Consider the instruction formats for the MIPS architecture as shown in Figure 4.5. MIPS defines

three instruction formats for integer operations, namely the register, jump, and immediate formats.

Each instruction word is 32 bits in length, although the three formats consist of different fields with

different lengths.

Instruction fields are defined in ADL by associating a start bit and field width pair with the name

of the field. Instruction formats are not defined explicitly, but rather are defined implicitly as part of

each instruction’s binary part. The binary part of instructions are represented as a sequence of field

expressions. This is simply an assignment of a value to a particular field of the instruction. This will

be discussed in more detail in Section 4.4.3.

47

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Declaration of the instruction fields is accomplished via the t y p e keyword, followed by a list

of field declarations. Each field declaration follows the following syntax.

FIELD_NAME FIELD_TYPE (field | fixedfield) START_BIT WIDTH

where FIELD_TYPE can be one of constant, integer, register, or signed. Constant

fields are those that have values defined as constants elsewhere in the code. Register fields have

values of machine register numbers. Integer and signed fields can contain values limited only by the

size of the field in bits.

The difference between a f i e l d a n d a f i x e d f i e l d h a s to do with when the value of the field

is determined. Any instruction fields which are accessed before the instruction is decoded must be

declared f i x e d f i e l d .

An example declaration of the MIPS instruction formats presented in Figure 4.5 is shown below.

type
op constant field 31 6,
rs register field 25 5,
rt register field 20 5,
rd register field 15 5,
shamt integer field 10 5,
funct integer field 5 6,
target integer field 25 26,
immediate signed field 15 16;

4.4.2 Attributes and opcode constants

Attributes in ADL perform the same function as enumerated data types in C++. Any given attribute

can take on one of a specific set of values declared along with the attribute name. These attributes

can then be used later to keep track of instruction types, operand types, and any other necessary

conditions that must be checked to properly control instruction flow.

To declare an attribute is simply a matter of specifying an attribute name followed by a comma-

separated list of possible values. The list is terminated with a semicolon. Multiple attributes can be

declared with the same a t t r i b u t e keyword.

An example of declaring two attributes looks like this:

attributes
i _ c l a s s : f l o a t _ c l a s s ,

i n t e g e r _ c l a s s ,
b r a n c h _ c l a s s ,
l o n g _ i n t e g e r _ c l a s s ;

i _ c y c l e s : s i n g l e _ c y c l e ,
m u l t i p l e _ c y c l e s ;

end;

Opcode constants tell the assembler what binary form of an instruction to emit during assembly.

These constants are used in the binary parts o f the instruction definitions. An opcode constant

consists of a name and a simple string of bits.

Declaring opcode constants begins with the bitconstant keyword, which is followed by a

list of names and bit strings. The same type of declaration was shown in Section 4.3.1.

48

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 sll rd rt shamt
2 emit opcode=_special rs=0 rt rd
3 attributes
4 (
5 i_class integer_class,
6 i_cycles single_cycle,
7 exu integer_unit,
8 c_what none,
9 dest__type integer_register,
10 lop_type none,
11 rop_type integer_register,
12 rop
13 i^type alu_type,
14 dest_reg rd
15)
16 begin
17 exact s_EX
18 dest=(+rop) « (+shamt);
19 end;
20 end;

Figure 4.6: MIPS s l l instruction declaration

4.4.3 Machine instructions

The instruction declarations are the heart of the ISA description and tell the assembler how to parse

instructions and the simulator how to execute them. An instruction definition consists of a syntax

part, binary part, and a semantic part. The syntax part tells the assembler how to parse the instruc

tion. The binary part tells the assembler what machine code to emit, and indirectly describes the

instruction formats of the architecture. The semantic part provides an implementation of the in

struction with labeled register transfer level (LRTL) statements. Consider the MIPS s l l instruction

shown in Figure 4.6. The syntax part is found on line 1, the binary part on line 2, and the semantic

part on lines 3 through 19.

The syntax part consists of the instruction mnemonic followed by any arguments the assembler

should expect. In the case of the s l l instruction, the assembler expects to find a destination register

ID, a target register ID (which contains the operand), and a shift amount.

The emit keyword signifies the beginning of the binary part. What follows tells the assembler

what to emit (hence the name) during the assembly stage. What follows the emit keyword is a

list of instruction fields. The values of the fields may be those read by the assembler, they may be

constants, or they can be values to which some transformation was applied by means of a procedure.

The .special opcode is a constant that is defined along with other opcode constants in the manner

described earlier. Since the rs field is unused in this instruction, it is assigned a value of zero.

Following this are the rt and rd registers and the shift amount, all of which were read by the

assembler, and finally the function value. In MIPS the function field is used to extend the number

49

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

of instructions that can be implemented. The binary parts of the instruction definitions define the

instruction formats for the architecture in question.

The third part of the instruction declaration is semantic part. First the instruction’s attributes

are set, and then the LRTL statements that define the behaviour of the instruction are provided.

This section is delimited by b e g i n and e n d keywords. RTL statements are grouped according to

the pipeline stage in which they are to be executed. The e x a c t keyword is used to specify the

pipeline stage, and its respective RTL statements follow. For the s l l instruction, a single operation

is performed in the s-EX stage. The value of r o p is loaded from the register file in the instruction

decode stage. RTL statements can be specified for as many pipeline stages as required.

4.4.4 Macro instructions

ADL provides a means of declaring macro instructions, often called pseudo instructions. Such

instructions are common in many compilers today such as g c c . Macro instructions normally break

down into several machine instructions. This is the task of the assembler, and thus allows a slightly

higher level of abstraction for the programmer and simplifies the assembly code.

The syntax part of macro instructions does not require fields from the instruction formats, but

instead uses variables. It is not necessary to specify start bits or field widths for variables. They

instead provide temporary storage for values read by the assembler. The three example variables

declared below are used in the example macro instruction discussed next,

t y p e
r d e s t r e g i s t e r v a r i a b l e ,
r s r c l r e g i s t e r v a r i a b l e ,
r s r c 2 r e g i s t e r v a r i a b l e ;

The syntax part of macro instructions looks the same as that for machine instructions. The difference

is that all the arguments to the instruction must be variables. No instruction fields are allowed.

Additionally, since macro instructions do not lead directly to binary code, there is no binary part in

the macro definitions. Consider the following example:

s r a r d e s t r s r c l r s r c 2 m a c ro
b e g i n

s r a v : r d = r d e s t r t = r s r c l r s = r s r c 2 ;
e n d ,

The syntax part o f this macro instruction tells the assembler that whenever it sees the s r a

mnemonic that it should look for three values after it and load those into the variables r d e s t ,

r s r c l a n d r s r c 2 .

In the above example, only a single instruction is generated, that being the s r a v instruction.

This instruction takes three arguments, and those are assigned the values in r d e s t , r s r c l and

r s r c 2 , respectively.

50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.5 Additional constructs

4.5.1 ADL Operators

Like any programming language, ADL contains a variety of operators used when defining control

flow. These operators are presented in Table 4.1. All operators are binary, with the exception of the

unary negation operator.

Operator Description

- a Negation

a II k Concatenation
a [b] Index
[a :b] Bit group
a . b Dot
a : b Field width

a |< b Bit extension
a = b Assignment

a == b Equality
a < b Less than
a > b Greater than

a "= b Not equal
a << b Left shift
a » b Right shift
a + b Addition
a - b Subtraction
a * b Multiplication
a / b Division
a % b Modulus
a Sc b Bitwise AND
a | b Bitwise OR

Table 4.1: ADL operators

A few of these operators are unusual enough that they deserve special mention. The bit extension

operator is used to extend a single bit a over b spaces. It is frequently used with the concatenation

operator. For example, the following statement concatenates a with bit b extended 8 bits, and assigns

it to c:

c = a | | (b | < 8) ;

The bit group operator is normally used with the dot operator to extract a sequence of bits from

a data value. For example, the following statement extracts 8 bits from the 32 bit value c beginning

from bit 15 and assigns it to location d:

d = C. [1 5 :8] ;

The bit group operator is really just a specific use of the field width operator. In a more general

sense, this operator is used to specify the width of a data value. It is sometimes used when specifying

the width of an argument to a procedure.

51

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.5.2 Control structures

ADL provides two conditional statements that can be used to test the values of variables, registers,

and attributes. The first is an i f - e l s e construct, while the second is a c a s e statement that is

analogous to a C s w i t c h statement. The i f - e l s e statement is written as follows:

i f (CONDITION) t h e n
BLOCK

e l s e
BLOCK

The e l s e clause is optional. A block consists of a b e g i n keyword, followed by statements,

followed by an e n d keyword. Note that if the block only contains a single statement, the b e g i n

and e n d keywords are not necessary.

The c a s e statement can only be used with attributes. Essentially it operates in much the same

way as a s w i t c h statement. The format looks like:

case ATTRIBUTE of
begin

VALUE_1: STATEMENTS

VALUE_N: STATEMENTS
end

ADL also provides two looping control structures. The first is the f o r a l l statement that is

used to initialize all the elements of a register file or integer array. Its use is demonstrated with the

following example.

integer array my_array[1024,32];
forall my_array = 0;

An array of 1024 32-bit integers was declared, and then each integer was initialized to 0.

The second loop structure more closely resembles a traditional for loop. This example performs

the same function as the previous, but using the for construct.

integer array my_array[1024,32];
for i = 0 step 1 until 1023 do

my_array[i] = 0 ;
end;

The flexibility is somewhat more limited than with a C/C++ f o r loop, because a boolean con

dition is not checked at the end of each iteration. Instead only a counter is incremented.

4.6 Experiences with FAST

FAST has proven to be an extremely useful tool for design space exploration of processor archi

tectures. In addition to the standard 5-stage MIPS architecture described in Chapter 3, ADL has

been successfully applied to various speculative superscalar architectures based on the MIPS ISA

52

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[30]. ADL is a fairly intuitive language for describing both structural and instruction set behaviour.

At the present time, it is targeted mainly toward the functional description of standalone proces

sors. Pipeline behaviour is described in an Algol-like language, and the operations performed by

individual instructions are described at an RT-level. ADL excels particularly when it comes to mod

eling processor behaviour at a cycle-level. ADL models pipelining as a flow of instruction contexts

through successive stages. Multi-cycle functional units are a natural consequence o f this, and ADL

allows the designer to specify an arbitrary number of such units and the interaction among them.

Given ADL’s explicit methods of dealing with resource conflicts, FAST presents itself as a very use

ful tool for identifying bottlenecks in both hardware and software. A designer can quickly identify

sources of problems, and propose additional functional units or changes to the software architec

ture to deal with them. FAST also provides excellent statistics on instruction utilization, allowing

the designer to quickly gauge the utility of the instruction set and make the appropriate additions,

removals, and modifications.

There are a number of areas where ADL can be improved that would allow greater flexibility

when describing SOC architectures. Although ADL can express multiple functional units in the

same processor and allows for definition of coprocessors, scoping issues exist that make coprocessor

definitions almost useless. In reality coprocessors should be able to communicate with one another.

In ADL, however, coprocessors can only access those that were defined previously. As a result,

two way communication is impossible. The only way to circumvent this problem is to model a

coprocessor as a separate pipeline within the same processor. While this may be an acceptable

short-term solution, ultimately ADL would benefit most from a resolution of the coprocessor scoping

issues.

Another area in which ADL can be extended is to allow for more advanced caching. Currently,

support only exists for simple direct-mapped caches. Although a programmer is free to construct

whatever type of cache artifact he or she wishes, it would be helpful if more flexibility was available

with the built in caching. This would require the ability to specify the set associativity of the cache,

the replacement strategy, and whether it is write-through or write-back. Furthermore, with any

extension of ADL allowing multiple autonomous processors, a method will be required for dealing

with cache coherence.

One of the limitations of the FAST memory system is its single, infinite size memory. ADL

provides constructs for memory ports, but not explicitly for memory. The memory size is limited

only by that of the host machine, and there is no means to segment the memory into two or more

autonomous regions. It would be much more useful if the programmer had the freedom to specify

the size of the address space and if different memories could be declared for different purposes.

While ADL is retargetable to any architecture, current experiences have been limited to the MIPS

ISA and system call conventions. An ADL description requires two sections where the programmer

specifies simulator and assembler supplements in C++. The simulator supplements are responsible

53

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

for setting up the initial conditions of the program, such as loading arguments onto the program

stack, etc. The assembler supplements involve writing C++ functions to synthesize the various

addressing modes o f the processor. These functions are then used by the assembler when parsing

the assembly code. In order to make ADL easily targetable to arbitrary architectures, it would help

significantly if ADL constructs existed for handling these tasks. Specifically, the designer should be

able to specify the addressing modes of the instruction set in ADL in a straightforward fashion, and

the necessary assembler functions should be generated automatically.

Once the ability is in place to express multiple processors, ADL should be extended to include

such structures as buses, switching fabrics, and I/O ports. This would greatly increase ADLs de

scriptive power in terms of SOCs and embedded systems. Such constructs would elevate FAST and

ADL above a tool simply for modeling the behaviour of single processors. Much more complex sys

tems such as microcontrollers, routers, switches, and other devices requiring outside communication

could be simulated, and dataflow through entire embedded systems analyzed. Currently, some work

is being done on extending ADL to model switching fabrics and routing coprocessors. With the in

clusion of I/O ports, however, comes the need for hardware interrupts. Currently, FAST operates in

a synchronous manner whereby events are triggered explicitly by the software or hardware, and the

hardware has full knowledge of what will occur and when. Once asynchronous events are allowed,

however, this changes, and the hardware should have a mechanism for detecting and responding to

events.

What is further missing from ADL and FAST are methods of estimating cycle times, chip area,

and power consumption. Since the language operates at an artifact level rather than a gate level,

modifications to the architecture or instruction set have no effect on execution time beyond actual

cycle counts. ADL would benefit from a mechanism that estimates the actual cycle time of the

processor based on the complexity of the hardware and the length of the data path. This would allow

a designer to more accurately judge the effects o f structural changes on performance. Estimation

of chip area would also be useful in many circumstances. This is of concern in many embedded

systems, and reducing processor area frees up space for more memory, registers, cache, or additional

functional units. Power consumption is also a critical performance measure, especially in wireless

devices that run on batteries. In order to provide estimates of these performance metrics, FAST may

need to be extended to perform some level o f synthesis.

4.7 Concluding remarks

The Architecture Description Language provides powerful features for modeling processor be

haviour at the cycle level. Pipelines are described explicitly as an ordering of stages, and the func

tions performed in each stage are grouped together by the processor minor cycle in which they occur.

ADL also provides a number of built in constructs for describing memory hierarchies, and allows

the programmer to design custom functional units as required. ADL provides a very precise method

54

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

for describing the instruction set of the processor. Assembly syntax is defined in terms of instruc

tion mnemonics and arguments, and the explicit definition of instruction formats leads to a natural

method of describing the binary format of instructions. ADL currently suffers from some factors

that limit its application to describing SOC architectures and embedded systems, and a number of

these factors have been identified.

The FAST system provides an implementation of the ADL language and generates an assembler,

disassembler, and cycle-accurate simulator from an ADL description. The simulator provides a

variety of useful statistics about program execution, instruction usage, and resource usage, as well

as on bottlenecks and conflicts in the data path. With the extensions described above, FAST and

ADL could become one of the most sophisticated and useful hardware simulation systems available.

55

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5

Experiments and Discussion

Developing a hardware and software architecture for IP routing requires a multi-faceted approach.

From the hardware angle, the problem can be approached in terms of the instruction set, pipeline

architecture, and functional units in the processor. A major part of this thesis is to propose as small

an instruction set as possible that does not sacrifice a great deal of performance. The expectation is

that any minor increase in cycle count will be offset by the advantages of a smaller chip area and

simplified microarchitecture. From the software standpoint, we approach the problem in terms of

pipeline stalls and branch behaviour. Pipeline stalls bridge the gap between hardware and software,

as they are dependent on both resource contention and data dependencies. Modifications to the hard

ware and software can reduce the number of stalls, which will increase performance. Branches play

a role as well given the delays that they introduce. We show that a large number of branches are

either always taken or never taken, which essentially amount to a wasted machine cycle. Software

modifications can eliminate these. This chapter begins with a discussion of our experimental config

uration, and continues with the results of these three approaches and their implications. The chapter

concludes by tying these results together.

5.1 Experimental configuration

The Flexible Architecture Simulation Tool is the basis for the experiments and results discussed in

this chapter. Using an ADL description of the R2000 architecture, two types of IP routing algorithms

were tested. Figure 5.1 displays a block diagram of the test arrangement.

5.1.1 ADL Implementation of MIPS R2000

The ADL architectural description used in this study is the standard five-stage MIPS pipeline with

internal data forwarding. The key features of the processor are implemented:

• Registers. All thirty-two 32-bit integer registers are present.

• Pipeline. The five stage pipeline architecture is fully implemented and conforms to the speci

fication described in Chapter 3. Internal data forwarding exists so that operands are available

56

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

INPUT

CL
CL

Routing Algorithm
Source Code

xgcc, assembler

R2000 Binary
Routing Code

Lookup results
 ■■ ■■

R2000 ADL Model adl compiler StatisticsR2000 SimulatorPipelineISA g++

Native x86
Architecture

Figure 5.1: Experimental configuration

before they are written back to the register file. Data dependencies are checked in the decode

stage and the pipeline stalls when necessary.

• Instruction set. The full MIPS integer instruction set is implemented in the ISA description.

All three instruction formats are provided, and all of the MIPS addressing modes are available.

• Floating point unit. Although not implemented as a separate coprocessor, the ADL description

includes an implementation of a floating point pipeline. A subset of the R2010 floating point

instruction set is provided, as well as 16 double-precision floating point registers.

These features provide the functionality necessary to accurately simulate the execution of MIPS

object code. The following features of the R2000 were not implemented for the reasons noted:

• Caching. The R2000 provides on-chip cache control logic that allows separate data and in

struction caches. The simulation assumes zero memory latency, and therefore caching would

not serve any useful purpose. The implications of this are discussed later.

® Virtual memory. The R2000 provides a Translation Lookaside Buffer (TLB) that maps virtual

addresses to the physical address space. This is not required in ADL because the simulated

physical memory is a full 32-bit space.

• System control coprocessor, CPO. CPO supports the TLB and system calls. Although system

calls are considered exceptions in MIPS, they are handled by the main pipeline. Other excep

tions are either ignored, cause the simulation to terminate, or open the debugger. Thus, CPO

is not required in this work.

The ADL code that implements the R2000 pipeline architecture is presented in Appendix B.

57

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

O
U

TPU
T

5.1.2 Routing algorithms

The basis for our measurements is the radix-tree routing algorithm from the 4.3 Reno release of

Berkeley UNIX as described in Chapter 3. The results obtained from this algorithm are then com

pared to those from an implementation of the LC Trie algorithm of Nilsson and Karlsson [29].

5.1.3 Routing tables

The routing tables used as input to the BSD radix tree and to the LC trie routing algorithms are taken

from Internet core routers. The tables were provided by the Internet Performance Measurement and

Analysis Project [23]. Each entry in the tables consists of an address and a mask. The table used for

the performance measurements that follow contains 2000 entries. In the early stages of our work,

larger tables of up to 20000 entries were used. Although absolute instruction usage counts were

much larger, the relative percentages for different table sizes were almost identical. For this reason,

the majority of the measurements were conducted with a smaller table for shorter simulation run

times.

5.1.4 Driver program and IP address generator

The driver program interfaces with the various routing libraries, reads the routing table and generates

IP addresses for lookup. It first constructs the routing table from the input file. Then the sequence

of addresses to be looked up in the table are generated by repeatedly choosing four random values

between 0 and 255 and concatenating the resulting bytes to form a 32-bit IP address.

The driver program is set to generate 8192 lookups. Larger and smaller numbers were tested,

however, as with different routing table sizes, the relative percentages o f the instructions executed

remained nearly identical. For this reason, sequences of 8192 address lookups is the basis for all the

measurements discussed in this chapter.

The routing code and the required libraries are cross compiled with g c c version 2.7.2 into

MIPS-Ultrix assembly format. The command used is

x g c c -S -D b u i l t i n _ v a _ l i s t = v o i d * -0 3 * . c

The -S option instructs the compiler to leave the code in assembly format. The -D option tells

the preprocessor to create the macro given as the argument. In this case, the type _ .b u i 1 t in _ v a _ l i s t

is replaced with v o i d * during preprocessing. Finally, the -0 3 option instructs the compiler to use

the highest level of optimization.

The routing code makes use of a number of libraries. These include s t d l i b . h , s t r i n g . h ,

s y s / p a r a m .h , s y s / s y s t m . h , s y s / m a l l o c . h , and s y s / s y s l o g . h. The statistics re

ported about instruction usage during routing table lookup include those instructions required by

any function calls in these libraries.

58

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.2 Instruction set optimization

Optimization of the instruction set involves the application of one or more design metrics to the

statistics generated by the FAST simulator. The result is a simpler instruction set that eliminates

some of the less frequently-used instructions, while keeping those that are most important.

5.2.1 Design metrics used in this thesis

Holmer discusses a variety of metrics used in instruction set design. In this study, there are three that

are of primary importance. These are instruction count, clock cycles per instruction, and clock cycle

time. Of these, only instruction count can be measured directly. Reducing CPU time is the main

objective of our work. CPU time is a function of the instruction count of the program, the average

number of clock cycles per instruction and clock cycle time, as shown in Equation 5.1:

C P U tim e = I x C P I x T (5.1)

where I is the number of instructions executed, C P I is the number of cycles per instruction, and

T is the clock cycle time. CPU time can be reduced by reducing any of these three terms. O f these

three, I is easily, directly and accurately measured with FAST. Moreover, it is easy to determine

the frequency with which individual instructions are used. Cycles per instruction (C P I) is o f less

interest to us because with a fixed pipeline, C P I remains relatively constant. Assuming the MIPS

pipeline remains full throughout the execution of the program, integer arithmetic and logic instruc

tions can be retired every clock cycle, so C P I is 1. In fact, stalls due to data dependencies increase

this value to about 1.6 (assuming zero cycle memory latency). By reducing the number of stalls, this

value can be lowered to be closer to 1. FAST provides detailed information about both C P I and

the number of stall cycles by which it is affected. Clock cycle time (T) is related to such factors as

VLSI chip area and the critical path length through the processor. FAST does not provide estimates

of clock cycle time because ADL models processors at an artifact level rather than at a gate level.

Changes to the architecture, therefore, have no effect on cycle time. For this reason, it is also dif

ficult to estimate overall execution time. ADL does give us accurate information about instruction

count and C P I.

The goal, therefore, will be to minimize instruction count and C P I. Doing this naively, however,

will enlarge rather than reduce the size of the instruction set. Much of the related work has focused

on generating application-specific instructions to reduce code size and to make better use of the

hardware. The goal o f this thesis is to make the ISA as small as possible without sacrificing a great

deal of performance, with the aim that any increase in instruction count will be offset by a larger

decrease in C P I as well as increased hardware efficiency.

59

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The 1 % rule

In the late 1970s, instruction set design changed from being an art based entirely on human intuition

into an iterative engineering process [20]. Advances in retargetable compilers allowed benchmark

programs to be compiled for a new architecture and simulated, providing insight into the utility of

the ISA and beneficial changes to it. This was part of the RISC design process used by the MIPS

company when designing their first processor [24]. “Any instruction added for performance reasons

had to provide a verifiable 1% performance gain over a range of applications or else the instruction

was rejected.” The 1% rule can be stated more concisely as:

A / + lO O x A C /C < 0 (5.2)

where I is the number of unique opcodes, and C the number of machine cycles required to execute

the benchmark. The addition of one instruction equates to A I = 1, which must be offset by at least

a 1% drop in cycle count to be acceptable.

Human ingenuity is still required to propose instructions to be added to the ISA. The 1% rule is

only a criterion for filtering trial instructions, or in the case of this study, existing instructions.

5.2.2 Instruction substitution

In some cases, instructions are not used at all and can be safely removed from the instruction set. In

other cases, however, seldom-used instructions can be removed, but their functionality must be pre

served. In this case, a machine instruction can be substituted with a pseudo instruction or assembler

macro. The macro can then be expanded to a sequence of one or more machine instructions that

replicate the functionality of the original instruction.

As a simple example, consider a m ove machine instruction in a hypothetical instruction set that

moves a value from one memory location to another. Such an instruction may have the form “move

$ 5 , $ 6 ”, where $5 contains the target address, and $6 the source address. Such an operation could

be replaced with the following sequence of instructions:

load $temp,$6
store $temp,$5

In the event that a macro generates more than one machine instruction, a temporary register is

normally required to store intermediate values. In MIPS this register is $1.

There are a number of issues that one must be aware of when substituting machine instructions

with assembler macros. First and foremost, if the number of instructions required by the macro

is too many, and the machine instruction is used too often, the impact on performance may be

unacceptable. A balance must be struck between hardware complexity and execution time. Second,

the compiler should ideally be made aware of any changes so that it can correctly generate assembly

code. This is especially important for an optimizing compiler that inserts instructions into delay

60

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Instruction

Figure 5.2: Arithmetic/logic instruction counts for radix tree code with original ISA

slots. If an instruction in a delay slot is a pseudo instruction, and is expanded into more than one

instruction by the assembler, only part of the operation will be completed if the branch is taken. The

solution to this is not to permit the compiler to insert any pseudo instructions into delay slots if they

generate more than one machine instruction.

5.2.3 Initial results

This section presents the initial results from the unmodified instruction set. The values represent the

number of instructions executed for the routing table lookup only, and do not take into account table

construction. Construction of the routing table is a different matter and can be dealt with separately.

Routing table construction is not a key element of router performance as updates occur infrequently.

Furthermore, these functions are often handled by a unit that is separate from the data forwarding

plane of the router. Figure 5.2 displays the execution frequencies for integer arithmetic and logic

instructions, and Figure 5.3 the frequencies for branch, load, and store instructions.

Both graphs include lines that correspond to 1 % of the total number of instructions executed from

all categories. This illustrates the 1 % rule graphically. Although the 1 % rule is meant as a measure

of overall performance, it can be applied strictly to instruction counts if C P I and clock cycle time

do not change. Recall from Equation 5.1 how execution time is a product of these three quantities.

Since FAST provides no data about clock cycle time, it is assumed to be constant. Furthermore,

changes to the instruction set have very little effect on C P I , so this is assumed to be constant as

well. Instruction count is therefore the only remaining variable.

61

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

le+07

1% line

le+ 0 6

g le+ 05
U

10000

1000 u <y.5
Instruction

Figure 5.3: Branch, load, and store instruction counts for radix tree code with original ISA

Clearly, the majority of the arithmetic and logic instructions are candidates for removal. There

are only four instructions that pass the 1% rule, and a few more come close. A significant number of

instructions have counts of less than 100, and a few (which are not displayed) are not used at all. The

most commonly used instructions are integer add, logical AND, and left shift. The set on less than

instruction, used for checking conditions, is also heavily-used, as is exclusive OR. These elementary

instructions should therefore form the basis of the routing ISA. The remaining instructions will be

examined in more detail later.

Of the branch and memory access instructions, a few more pass the 1% rule. Some of the branch

instructions and load/store instructions are candidates for substitution, while those that are not used

at all can be removed completely.

The average number of instructions executed per address lookup is 3933. If stall cycles are

considered, the average number of machine cycles required per lookup is 6747, which means over

58% of all machine cycles are stalls. This is contrary to popular belief that at most 150 instructions

are required per lookup. As will be shown in Section 5.2.6, even a modem algorithm requires more

than 150 instructions per lookup.

Section 5.3 discusses the reasons for the stalls and suggests some optimizations.

5.2.4 Unused instructions

The first step toward streamlining the MIPS ISA is to determine which instructions go unused com

pletely. These instructions can be safely removed from the instruction set without worry. Given the

62

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

nature of the FAST toolchain, if an instruction was removed that was generated by the compiler, the

assembler would detect this and issue an error. If no error is issued, it means that the instructions

that are removed are not used anywhere in the benchmark code.

Although FAST does not explicitly provide details about instructions that are unused, they are

easy to determine by comparing the statistics generated to the entire list of opcodes. It turns out that

relatively few instructions go completely unused. These are two branch instructions, five load/store

instructions, and six arithmetic/logic instructions. Table 5.1 summarizes these instructions.

bgezal bltzal
div lwl
lwr lwu
mthi mtlo
multu sub
swl swr
srav

Table 5.1: Unused MIPS instructions

The compiler uses the unconditional jump and link and leaves the conditional branch and link

instructions unused. Many of these are unconditional function calls. Otherwise, the decision of

whether to call the function is made by an earlier branch instruction. While the divide and multiply

unsigned instructions go unused, the divide unsigned and multiply instructions are used very rarely.

The assembly code contains no instances of the d i v u instruction, which means it must be used in

one of the library functions. The assembly code contains a single instance of the m u l t instruction,

although it is part o f the driver program and not the actual routing code. The m th i and m t lo

instructions are used to move arguments to the LO and HI registers, which store the results of mul

tiply and divide instructions. Their counterparts are the m f h i and mf l o instructions, which could

be eliminated if the need for division was removed. The instructions lw l and lw r are somewhat

specialized and are used to reference specific bytes in memory and place them in the left or right

portion of a register, respectively. The s w l and sw r perform a similar operation, except they move

bytes from a register to memory.

5,2.5 Examination of used Instructions

The results from section 5.2.3 highlight a variety of instructions that are candidates for substitution.

Some of these are used very infrequently, or are only used by library functions and not the routing

code itself. The following discusses each instruction in detail, and where possible and desirable, how

it can be substituted with a pseudo instruction. Where substitutions are suggested, they are presented

in the format of ADL macro instructions. Arithmetic instructions are discussed first, followed by

logic, branch, and load/store instructions.

63

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

add

Contrary to initial expectations, the a d d instruction is never generated by the compiler. The routing

code utilizes only unsigned 32-bit addition, which makes sense in the context of IP address manip

ulation. The a d d instruction is also never generated by assembler pseudo instructions. The low

execution frequency o f this instruction suggests that is is used a limited number of times in one or

more library functions. Its very low frequency also makes it a candidate for substitution.

The MIPS architecture makes no distinction between signed and unsigned arithmetic. The only

functional difference is that signed arithmetic can cause an overflow exception, while unsigned

cannot. As a result, it is easy to implement signed addition with unsigned addition. If the overflow

check needs to be enforced, this can easily be done in software. The new a d d macro instruction is

shown below.

a d d r d e s t r s r c l r s r c 2 m a c ro
b e g i n

a d d u : r d = r d e s t r s = r s r c l r t = r s r c 2 ;
e n d ;

The syntax for macro instructions consists of an assembly syntax specification followed by one

or more instructions to be generated. The assembly syntax consists of the opcode name followed by

a list of arguments. In the case of the a d d macro, a destination register and two source registers are

required. These arguments are specified using variables defined earlier. The variables can then be

manipulated and are eventually assigned to the fields of the instructions to be generated.

Substitution of a d d requires only a single instruction to be generated, so there is no increase

in cycle count over the original instruction. It may be possible to modify the libraries directly so

that a d d is no longer required, because this instruction is never used by the routing code but only in

library functions,. If this is done, then the instruction can be eliminated completely and an assembler

pseudo instruction is not required.

addi

Similar to the a d d instruction, the a d d i instruction is never generated by the compiler, although it is

generated by the assembler in two pseudo instructions; s u b u and l a (load address). These pseudo

instructions must therefore be modified if the a d d i instruction is to be removed. Substituting this

instruction with a macro is as easy as the previous case. There are actually two choices. The first

will generate only a single instruction, while the second will generate two. Both are presented and

discussed.

a d d i r d e s t r s r c l s r c 2 m a c ro
b e g i n

a d d i u : r d = r d e s t r s = r s r c l u im m e d ia te = s r c 2
e n d ;

In this case, the arguments to a d d i are simply assigned to their counterparts from a d d iu . This

will be effective if the a d d i u instruction is retained. In the event that it is not, the following macro

64

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

can be used.

addi rdest rsrcl src2 macro
begin

ori : rt=l rs=0 immediate=src2;
addu : rd=rdest rs=rsrcl rt=l;

end;

The o r i instruction is used to load the immediate value into a temporary register. That register

is then used as an argument to the a d d u instruction.

addiu

Once again, for the BSD routing code, the a d d i u instruction is never generated directly by the

compiler, but only by the assembler in pseudo instructions. The decision as to whether to substitute

this instruction with a macro is more difficult. If one wishes as small o f an instruction set as possible,

it can be done. The instruction passes the 1% rule, however, and the required macro instruction

generates two machine instructions. This may have an unacceptable performance impact.

This instruction is also used by the a d d u macro that takes an immediate argument, and by the

li macro. As a result, substitution of this instruction can have a performance impact on those

operations as well.

addu

The a d d u instruction is used heavily by the compiler, and is one of the most-used instructions in all

of the BSD routing code. It is also generated by the a d d u macro (immediate format) and the m ove

macro. Considering the very high frequency of this instruction, it should not be substituted.

lui

The l u i instruction is never generated directly by the compiler, however it is used in several macro

instructions. Its replacement macro instruction generates two instructions.

l u i r s r c l s r c 2
b e g i n

o r i : r t = l r s = 0 im m e d ia te = s r c 2
s l l : r d = r s r c l r t = l s h a m t= 1 6 ;

e n d ;

Once again, o r i is used to load the immediate value into a register. That value is then shifted

left by 16 bits, which is equivalent to the functionality of l u i .

sll

This instruction is generated by the compiler and is often used as a substitute for the nop instruction.

It is one of the most heavily-used instructions, and one of the few that pass the 1% rule. While it

could be substituted, the performance consequences would be very bad.

65

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

sllv

This instruction is another that is never generated when compiling the routing code. It is used by

an s l l macro that takes an immediate argument, but this instruction is never generated by the

compiler either. The limited frequency of s l l v suggests that it is used in library functions. There

is no obvious way of substituting this instruction with a macro. Unless the relevant library functions

can be modified to no longer require it, the instruction must remain in the instruction set.

sit, situ

Both of these instructions are used heavily by the compiler and are used by a variety of branch

macros. While neither pass the 1% rule, they both come close, and provide a vital functionality for

comparing values in registers. They cannot be removed.

slti, sltiu

In contrast to the previous two instructions, these are never generated by the complier, and the only

macro that uses the s l t i u instruction is an s i t u macro. These instructions, in particular s l t i ,

are also less frequently used. They can be substituted in the following ways.

s l t i r s r c l r s r c 2 s r c 3 m a c ro
b e g i n

o r i : r t = l r s = 0 i m m e d i a t e = s r c 3 ;
s i t : r d = r s r c l r s = r s r c 2 r t = l ;

e n d ,

s l t i u r s r c l r s r c 2 s r c 3 m a c ro
b e g i n

o r i : r t = l r s = 0 i m m e d i a t e = s r c 3 ;
s i t u : r d = r s r c l r s = r s r c 2 r t = l ;

e n d ;

The idea with both is similar to earlier instructions with immediate arguments. The goal is to

load the immediate value into a temporary register, and then proceed with the corresponding three

register instruction.

sra, srl, srlv

Of these three instructions, only s r a is used by the compiler. The others are not used by the

compiler or assembler at all. Removing them would require modification to the library functions

that use them. There are no obvious ways of substituting these instructions with macros.

subu

While it is possible to implement subtraction in terms of addition, it is not efficient. The right

operand must first be negated, which involves an exclusive OR against a string of ones, which must

first be loaded into a register. The result must then be incremented to form the twos-complement of

the right operand. The result is then added to the left operand. Overall, up to six instructions are

66

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

required to perform these operations. Therefore, it is probably more efficient to keep the hardware

implementation of the subtraction instruction.

and,andi

The a n d instruction is used heavily by the compiler and is one of the fundamental operations that

are required by the architecture. Removing it is not possible or desirable. The a n d i instruction,

however, is much less used and can easily be removed. The code for the macro is shown below.

a n d i r s r c l r s r c 2 s r c 3 m a c ro
b e g i n

o r i : r t = l r s = 0 i m m e d i a t e = s r c 3 ;
a n d : r d = r s r c l r s = r s r c 2 r t = l ;

e n d ;

nor

The n o r instruction is rarely used by the compiler and is never used by any macro instructions. Its

operation is easily implemented in terms of two other instructions.

n o r r d e s t r s r c 2 r s r c 3 m a c ro
b e g i n

o r i : r t = l r s = 0 i m m e d i a t e = O x f f f f f f f f ;
o r r d = r d e s t r s = r s r c 2 r t = r s r c 3 ;
x o r : r d = r d e s t r s = r d e s t r t = l ;

e n d ;

The first thing required is a string of Is, which are loaded into the temporary register. The o r

operation is then performed on the input values and stored in the destination register. The x o r of the

result and the 1 bits is then calculated to invert the bits, and the result again stored in the destination

register. This macro can be simplified by using the x o r i instruction, however, the goal is to remove

that instruction as well.

or, ori

Both of these instructions are necessary and are used by the compiler. While it is possible to substi

tute o r i in similar ways as other immediate instructions, all of these instructions require o r i for

loading immediate values into registers. Although this can also be done with a d d u , o r i is already

frequently used and can be of benefit if left in the instruction set.

xor, xori

Although the frequency of x o r falls well short of the 1% rule, it is one of the fundamental operations

that should be preserved in the instruction set. The PATRICIA tree algorithm relies heavily on this

operation for performing lookup, so removing it would not be a good decision. The extremely low

use of x o r i makes it an excellent candidate for removal. It can be implemented with x o r and o r i

in the manner shown below.

67

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

xori rdest rsrc2 src3 macro
begin

ori : rt=l rs=0 immediate=src3;
xor : rd=rdest rs=rsrc2 rt=l;

end;

Conditional branches

The most heavily used conditional branch instruction is beq. The others fall significantly short, and
the functionality of those other than bne can be replicated with a macro that produces either two or
three instructions.

bgez rsrcl address macro
begin

sit : rd=l rs=rsrcl rt=0;
beq : rs=0 rt = l b_offset=<address.delta.jump_address>;

end,
bgtz rsrcl address macro

begin
o n
sit
beq__

end,

rt=l rs=0 immediate=l;
rd=l rs=rsrcl rt = l;
rs=0 rt=l b_offset=<address.delta.jump_address>;

blez rsrcl address macro
begin

o n
sit
bne_

end,

rt=l rs = 0 immediate=l;
rd=l rs=rsrcl rt=l;
rs=0 rt = l b_offset=<address.delta.jump_address>;

b l t z r s r c l a d d r e s s m a c ro
b e g i n

s i t : r d = l r s = r s r c l r t = 0 ;
b n e ; r s = 0 r t = l b _ o f f s e t = < a d d r e s s . d e l t a . ju m p _ a d d r e s s > ;

e n d ;

The b g e z and b l t z macros can take advantage of register $ 0, which always contains a value of

zero. The s i t instruction can then be used to compare a value to 0. There is no predefined register

with the contents 1, therefore this must first be loaded as an immediate value into a temporary

register for the b g t z and b l e z macros. An alternative is to keep the s l t i instruction.

Unconditional branches

The MIPS ISA contains four unconditional branch instructions. Each performs a different function,

and none are easy to remove. The only way that any of these instructions could be removed from the

architecture is if the routing code or the compiler is modified. Branches will be discussed in more

detail in Section 5.4.

Loads and stores

The BSD routing code makes heavy use of three load instructions that load data as bytes, halfwords,

and words. Given the nature of the application, loads and stores should be optimized, because a great

68

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

deal of memory access is required for IP address lookup. In total, eight load and store instructions

are used. Reducing this number is more likely a compiler problem than an architectural one. From

an architectural standpoint, there is little that can be done to eliminate any of these, given the unique

functions they perform.

5.2.6 Proposed instruction set

Once the substitutions discussed above are implemented, what remains is the reduced MIPS instruc

tion set presented in Table 5.2.

Arithmetic/Logic Instructions Branch Instructions
addu beq
and bne
or j
ori jr
sll jal
sllv jalr
sit
situ Load/Store Instructions
sra lb
srl lbu
srlv Ih
xor lhu
subu lw
addiu sb

sh
Special Instructions sw
syscall

Table 5.2: Reduced MIPS instruction set

The proposed instruction set contains 29 instructions out of the original 58 (not including copro

cessor instructions). This is a 50% reduction in the instruction set size. Without examining compiler

behaviour and performing a more detailed analysis of the algorithms in the BSD routing code, it

will be difficult to reduce the instruction set further, because the operations in this instruction set are

mostly independent of one another. The inability to reduce the load/store instruction set beyond the

instructions that are unused is the least satisfying aspect o f this instruction set.

In order to judge the effects of the modified instruction set, the routing code was run with the

same configuration on the modified architecture. Overall, the number of instructions required per

lookup increased from 3933 to 4197, an increase of roughly 7%. Figures 5.4 and 5.5 show the fre

quencies for the instructions in the new instruction set. As expected, the counts that have increased

correspond to those instructions that are generated by the new assembler macros in place of the in

structions that were removed. The most significant increase is observed in the s i t instruction due

to its use in four branch macros. The only instructions whose counts changed in Figure 5.5 are b e q

and b n e . The total number of instructions affected is 11.

69

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1% linele+06

je+05

10000

a3O
° 1000

100

Instruction

Figure 5.4: Arithmetic/logic instruction counts for radix tree code with modified ISA

A variation of this instruction set is to keep the four branch instructions that were substituted with

macros. The rationale behind this is explained in Section 5.3. This version of the instruction set was

used to test for variations in the instruction counts with different IP address traces. In total, five

different IP address traces were used. The maximum total variation in instruction count observed is

less than 0.15%, with the mean variation being approximately 0.06%.

Comparison case: the LC trie algorithm

The goal of a comparison is to determine whether the modified instruction set is suitable for more

than one algorithm. The modified instruction set appears to be compatible with the LC trie algorithm.

Multiplication and division are once again not used by the algorithm itself but only by the driver

program and library functions in very small amounts.

Figure 5.6 shows the combined statistics for all instructions used during routing with the LC

trie algorithm. The major difference in the statistics is that the LC trie approach requires only 277

instructions per lookup on average, a better than ten-fold reduction over the radix tree algorithm.

The LC trie also has a much better overall utilization of the instruction set. Many more instructions

pass the 1% rule, and most of those that do not come close. Furthermore, the number of unique load

and store instructions required is smaller, and the overall number of memory accesses is reduced.

When run on the original R2000 architecture, the LC trie algorithm requires 277 instructions per

lookup. On the modified instruction set, each lookup requires 288. The increase is just under 4%,

which is better than the radix tree algorithm.

70

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

le+06

| le+05
oO

10000

1000

Figure 5.5: Branch, load, and store instruction counts for radix tree code with modified ISA

Comparison to IBM instruction set

The study by IBM discussed in Section 2.2.6 arrived at a general instruction set for routing data

within multiprocessors. This instruction set supports a variety of routing algorithms for various

interconnection network topologies. In total, the IBM instruction set contains sixteen instructions

in six categories. One of the differences between the IBM instruction set and our modified MBPS

instruction set is the former’s limited memory access instructions. In particular, it does not pro

vide any means of storing data to memory, and only very limited capability of loading values from

memory. These operations are mainly provided for increasing the flexibility o f the architecture by

allowing it to run more complex algorithms. The investigation is mainly centred around oblivious

routing schemes whose algorithms can determine how to route a packet based on its tag and the

current node alone. For such schemes, table lookup is not necessary, and therefore support for such

functions is very limited.

A second difference between the two instruction sets is their size. While the IBM instruction

set is required to support only a very restrictive set of operations, our modified MIPS instruction

set must still provide some level of support for more general programs, algorithms, and operating

system functions. The ALU operations from both instruction sets are quite similar in the operations

they provide, although ours are somewhat more flexible. Both instruction sets provide addition

and subtraction operations as well as logical AND and XOR instructions. The cmp instruction of

the IBM instruction set is similar to the s i t and s i t u instructions in ours. Both instruction sets

provide left and right shift instructions, although ours also allows values to be shifted by a variable

71

Instruction

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Instruction

Figure 5.6: Instruction counts for LC trie code with modified ISA

amount. While the IBM instruction set provides only a single branch instruction, ours includes a

larger number that allow greater flexibility in conditional and unconditional branching.

There is one instruction that is unique to the IBM instruction set, one of which is the p l o

instruction that determines the position of the leading 1 bit in a register. While it is possible to

replicate this operation in software, performing it in hardware is probably much more efficient. It is

possible that the designers arrived at this instruction through methods similar to those discussed in

Chapter 2.

Most of the instructions in the IBM instruction set have equivalent implementations in the MIPS

instruction set. The exceptions are the p l o instruction, which would require a microcoded imple

mentation in MIPS, and the o u t , m sg, lp g , and e c p instructions, which are used for communica

tion with the local processor. The latter four are architecture specific, and do not relate to MIPS.

5.3 Pipeline stalls

Pipeline stalls are related to the structure of both the hardware and the software, and can be reduced

by modifying either. A careful consideration of how the software maps to the hardware can provide

insight into stalls.

72

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.3.1 Stalls in the radix lookup

Stalls comprise a large number of the total machine cycles required for routing table lookup on both

the original and modified architectures. In fact, over 40% of cycles are stalls in both cases.

Instruction Stalls Instruction Stalls
addiu 319378 beq 6848784
addu 1774301 bgez 3439074
and 5158783 bgtz 71412
andi 344066 blez 16392
nor 50 bltz 124553
or 32812 bne 1344788
sll 32784 jalr 32768
sllv 96 j r 4
sit 325180 lb 2
sltiu 32030 Ibu 46298
situ 186 lh 2539116
srl 64078 lw 106013
srlv 82 sb 18
subu 128 sw 254841
xor 143696
xori 6

Table 5.3: Stall cycles for original instruction set

The total number of stalls for the unmodified instruction set is 23 million, which equates to 2814

per lookup. All stalls incurred during execution of the routing code are the result of data dependen

cies. Although it is possible for the processor to stall for other reasons, such as memory latencies,

cache misses, or structural hazards, these problems are never encountered. Memory latency does not

have an effect because the simulation assumes zero memory latency. This is unrealistic in practice,

however it allows us to model the behaviour of the processor at its data flow limit, and to identify

bottlenecks that might otherwise not be apparent. Cache misses do not occur for the same reason.

Caches are not used in the simulation because memory already has zero latency, and therefore caches

would only have negative performance consequences.

O f the ALU instructions, those that produce the most stalls are a d d u and a n d , both of which

have very high instruction counts as well. By far the biggest producer o f stalls, however, are the

branch instructions, with a combined total of 11.8 million, which accounts for over half the total

number of stalls. The reason for the high number is quite straightforward, and has to due with the

structure of the MIPS pipeline. Consider the following fragment of assembly code.

Iw $5,15($6)
beq $5,$0,my_func

This sequence of instructions is especially problematic because the result from the first instruction

is not available until the MEM stage, whereas the second requires it in ID. Therefore, the ID stage

73

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

has to stall twice before the result is available to perform the comparison. The assembly code has

numerous such cases. The stalls caused by all of the branch instructions are analogous.

The I h instruction has a very large number of stalls that can be traced to a similar situation

as with the branch instructions. Often, two loads occur in sequence, with the second requiring the

result of the first. An example is shown below.

I w $ 5 , 1 5 ($ 6)
I h $ 7 , 1 0 ($5)

In this example, the address loaded by the first instruction is used as the base address in the second

instruction. In software, this corresponds to pointer dereferencing. In some cases the compiler is able

to insert an instruction between the successive loads in order to reduce the number of stalls that are

necessary. Even in such a case though, one stall is still necessary before the result is available from

the MEM stage to be forwarded to the ID stage. In total, the assembly code for the radix algorithms

contains 24 instances of dependent l h instructions where the two instructions are successive or

separated by one independent instruction. The same problems occur with the other load instructions

though in fewer cases, and with the sw instruction as well.

The number of stalls for most instructions does not change significantly for the new instruction

set, with one exception. Table 5.4 presents the results for the new instruction set.

Instruction Stalls Instruction Stalls

addiu 319418 beq 10359274
addu 1774291 bne 1610354
and 5330816 jalr 32768
or 32832 jr 4
sll 32784 lb 2
sllv 96 lbu 46348
sit 3888811 lh 2539116
situ 16201 lw 106013
srl 64078 sb 18
srlv 82 sw 254841
subu 128
xor 143679

Table 5.4: Stall cycles for modified instruction set

The total number of stalls for the modified instruction set climbs to 26.6 million, or 3247 per

lookup, an increase of over 15%. The majority of the increase can be accounted for by a single

instruction, namely s i t . In the original instruction set, this instruction produces 325180 stalls,

while in the new one, the value increases to over 3.8 million, almost 11 times greater. The reason

for this is straightforward, and has to do with the nature of branch resolution discussed earlier. The

four branch instructions that were substituted with macros each use the s i t instruction to perform a

comparison. The result of the comparison is then used by either b e q or b n e to resolve a branch. The

result o f s i t is not available until the end of EX, and branches are resolved in ID, therefore a stall is

74

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

necessary to wait for the result. This extreme increase in the number of stalls for a single instruction

brings into question the viability of the four branch substitutions. If removal of these instructions is

very beneficial in terms of hardware complexity, alternate avenues should be explored so that their

functionality is not required at all. This may include changes to the algorithms themselves. If the

effects of removing the instructions are marginal in terms of hardware, keeping them will be much

more efficient if they are used often.

The instructions that are not involved in any new macros do not experience an increase in stalls.

This is expected because the routing code has not changed algorithmically from the original instruc

tion set, nor has the compiler. Only those instructions that are used in new macros may experience

increases in stall count.

For a 6.7% increase in instruction count from the old instruction set to the new one, there is a

15% increase in stall count, the majority of which come from the s i t instruction. The percentage

of machine cycles that are stalls using the original instruction set is 41%, whereas with the new one

it is 44%. The overall increase in cycle count from old instruction set to new is 9%. These figures

all respresent the instruction set with the four conditional branch instructions removed.

If the four branch instructions are kept, the changes differ significantly, and the number of stalls is

actually less than with the original instruction set. In this case, there is a 0.7% increase in instruction

count and a 0.8% decrease in stall count. The net effect on total cycle count is an increase of less than

0.1%! Unless the algorithms can be changed so that they do not require the four branch instructions,

it is clearly beneficial to keep them. The reasons for the net drop are the instructions in the original

instruction set that take immediate arguments, and the instructions used in the modified instruction

set to substitute them. Table 5.5 summarizes this data.

Instruction Original Modified

and 5158783 5330816
andi 344066 -
situ 186 16201
sltiu 32030 -
slti 0 -
xor 143696 143679
xori 6 -
TOTAL 7453068 7265617

Table 5.5: Stalls for substitutions of instructions with immediate arguments

The reason that the number of stalls is reduced is best explained with an example. Consider the

following fragment of assembly code.

Iw $ 2 ,1 0 ($ 6)
a n d i $ 2 ,$ 2 , 0 x 0 0 f f

In this case, the a n d i instruction will experience two stalls while waiting for the result of the lw.

Recall that result will not be available until the end of MEM, although it is needed by the next

75

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

instruction in ID. If the a n d i instruction is now substituted with a macro, the following code will

be generated.

lw $ 2 ,1 0 ($ 6)
o r i $ 1 , $ 0 , OxOOff
a n d $ 2 , $ 2 , $ 1

The insertion of an instruction between the lw and a n d eliminates one stall. By the time a n d has

reached ID, lw is already in MEM, so a wait of only one cycle is required for the result.

5.3.2 Comparison to LC trie

The LC trie algorithm requires an average of 317 cycles per lookup on the original instruction set,

only l/20th that o f the radix algorithm. Furthermore, it is much more efficient, in that only 12%

of the cycles are stalls, compared to the radix’s 41%. With the modified instruction set (without

the four branch instructions), the average number of cycles per lookup is 331, a net increase of 4%.

The most notable difference is the insignificant change in the stall statistics for the s i t instruction,

although those for b e q increase significantly. Overall, because of the nature in which the algorithm

is implemented, the LC trie approach is far more efficient in terms of stalls. Table 5.6 summarizes

the stall data for the LC algorithm on the modified instruction set.

Instruction Stalls Instruction Stalls
addiu 186 beq 83625
addu 139705 bne 53305
and 71 jalr 16384
or 64 jr 16388
sll 142 lb 2
sllv 96 lbu 116
sit 10 lw 49
situ 201 sb 18
srl 26608 sw 365
srlv 82
subu 1922
xor 8207

Table 5.6: Stalls for LC trie with modified instruction set

5.3.3 Avenues for optimization

The best avenue for optimization is the compiler, because all the stalls discussed above are the result

of data dependencies. More sophisticated scheduling is required in order to minimize the number

of dependent instructions that directly follow one another. The most benefit would be achieved if

the compiler can be made more aware of the pipeline architecture and its behaviour in terms of

branching. Given the large number of stalls that are generated due to dependencies on data loaded

from memory, improved scheduling could have a significant impact in this area.

76

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.4 Branches

Jumps and branches account for over 21% of the total number of instructions executed in the radix

algorithm. Of the 32 million instructions, 6.7 million are branches. Considering the large number

of branches, it makes sense to examine their behaviour to determine whether there is any room for

optimization. This section describes issues related to branch performance, and concludes with ideas

for how performance might be increased.

Instruction Frequency Stalls
b e q 3428373 6848784
b g e z 1719583 3439074
b g t z 35707 71412
b l e z 8197 16392
b l t z 124551 124553
b n e 736923 1344788
j 636594 0
j a l 24260 0
j a l r 16388 32768
j r 40650 4
TOTAL 6771187 11897775

Table 5.7: Branch instruction frequencies and stalls

Table 5.7 summarizes the data about jumps and branches. The most heavily-used instruction

is the b e q instruction, which accounts for more than half of the total number of branches. The

majority of b e q instances are used for comparison against zero, as are most of the b n e instances.

Unconditional branches (jumps) account for relatively few of the total number of branches. Pro

cedure calls in the routing code are handled exclusively by the j a l instruction. The j a i r and j r

instructions are not found in the BSD routing code at all, and are only used by library functions.

5.4.1 Branch behaviour in radix and LC trie algorithms

The radix tree routing code contains 238 unique branches in the lookup portion of the code. Of

these, 186 are either always taken or never taken. Similarly, of the 180 unique branches in the lookup

portion of the LC trie code, 157 are either always taken or never taken. Table 5.8 summarizes these

results for the two algorithms.

Radix LC
Always Taken 88 80
Never Taken 98 77
TOTAL 186 157

Table 5.8: Branch behaviour for radix and LC algorithms

There are two actions that can be taken to optimize the behaviour of such one-way branches. Modi-

77

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

fications can be made at an algorithmic level by changing the statements that generate the branches.

It is also possible to make changes at the assembly language level by removing the branches that

are never taken, and by substituting those that are always taken with jumps. The advantages of the

latter may not immediately be obvious. There are two reasons for doing this, however. First, un

conditional branches normally do not generate stalls because there are no comparisons that need to

be made. Therefore, if the branch instruction is dependent on a preceding load instruction, the stalls

can be eliminated. Second, it is possible to implement zero-delay jumps, whereby an instruction

decoded as a jump is flushed from the pipeline and replaced with the target instruction in the same

cycle. This is discussed in Section 5.4.2.

5.4.2 Opportunities for optimization

While the j a l r and j r instructions exhibit some variation in their target addresses, the j and j a l

do not. Furthermore, these two instructions never experience any data dependencies, and because

they are unconditional, the branch is always taken. This allows the possibility of implementing

zero-delay jumps. Conceptually, if the jum p instruction can be resolved in the fetch stage, it can

immediately be discarded and the target instruction fetched. This eliminates the cycle used by the

jump instruction.

Although branch prediction requires a change to the delayed branching semantics of MIPS, zero-

delay jumps do not. The compiler can continue to insert instructions into delay slots. In the event

that a jum p is resolved in the fetch stage, the subsequent instruction will be fetched to replace it,

and then the program counter can be modified to the target address. This technique can also be

implemented with a target buffer, except that no prediction bits are required since jumps are always

taken. This also eliminates the need for rollback, because mispredictions cannot occur. If a jump

instruction is encountered for the first time during the fetch cycle, a hit to the buffer will not occur.

The buffer will then be updated in the decode stage as with branch prediction.

5.5 Towards an architecture for IP routing

Routing table lookup is the predominant activity for a router and consumes 80% or more of its CPU

time. The primary job of a router is to route packets, and other activities, if handled by the same pro

cessor, are secondary. In larger routers, each interface may have a processor for performing lookups,

with a central processor that manages updates and other control functions. A large optimization ef

fort is warranted, because packet routing is the most important function. Even a small increase in

performance on a single lookup will translate into the possibility for higher throughput, and ven

dors are under constant pressure to improve throughput. There are two possibilities from a vendor’s

standpoint. Either they have the ability to change the processor architecture, or they are constrained

to a commodity part and must learn to use it most effectively. In the former case, they are free to

explore the architectural changes discussed in Section 5.2. In the latter case, an effort to profile the

78

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

code in detail and understand how it maps to the hardware can lead to improved performance. The

results from Sections 5.3 and 5.4 provide insights in this area.

From a hardware perspective, the goal of a small instruction set is to minimize architectural com

plexity of the processor in terms of chip area, number of functional units, and decoder complexity,

all of which may have an effect on the processor’s cycle time. The cycle time of a pipelined proces

sor is limited by its slowest stage, so it is conceivable that simplifying one stage can have an effect

on others. Cycle time is also limited by propagation delay and other electrical properties. Chip area,

therefore, plays a role in performance. Reducing the area of the processor also allows more effective

use of existing resources. A smaller ALU would allow more area to be used for caches or register

files, for example. Chip area is affected directly when functional units are removed. For example,

the floating point unit may constitute a large portion of the logic on a processor. Its removal will

free a great deal of area, and the decoder can be simplified by removing the logic that checks for

those instructions. When functional units are removed that are not used, the benefits are clear. The

software does not have to be modified because it did not require those instructions originally. The

effects must be examined more carefully, however, when functional units are removed that are be

ing used. For example, multiplication and division can be emulated in software or microcode, but

the architectural advantages should offset any degradation in software performance, otherwise the

changes will not be beneficial. This was observed clearly with the removal of four branch instruc

tions from the R2000 ISA, which caused the stall count of the s i t instruction to increase by a factor

o f eleven (Section 5.3.1). In this case, it is more efficient to keep those instructions if the compiler

or algorithms cannot be changed to not rely on them.

In general, a smaller instruction set will result in increased code size as more functionality has

to be implemented in software. The BSD code experienced a 2.5% increase in code size with the

modified instruction set. As a result, more instruction words need to be fetched from memory, which

can cause a problem if memory access latencies are high. By incorporating a larger instruction

cache onto the chip, however, this problem can be dealt with, a feat made possible by reducing

the complexity of the processor. A possible advantage of a smaller and simpler instruction set is

better compiler optimization. With the larger code size resulting from a simpler instruction set, the

compiler may have more freedom in manipulating and reordering instructions in order to minimize

stalls and best utilize existing resources.

Based on our results, the only functional units that are required for both the radix tree and LC

trie algorithms are an integer adder, a shifter, and a load/store unit. Floating point operations are not

required, which eliminates the need for such a unit. Integer division is not required by the routing

algorithms themselves, but only in very limited amounts by some library functions. Modification of

the algorithms or the functions to emulate division could remove the need for division instructions.

Similarly, the only instances of integer multiplication occured in the driver program, so in reality

these instructions are not required either.

79

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

With any processor that is used for a specific class of algorithms, an effort should be made to

ensure the algorithms make effective use of the hardware and that the architectural mapping is ef

ficient. The key is to ensure that enough of the right functional units exist to minimize structural

hazards, and that the pipeline is organized in such a way that data hazards are minimized. In the

case of the R2000, the routing algorithms make effective use of the processor resources, although

it is possible that some structural changes and additions would be beneficial. These changes are

suggested by a number of performance concerns. Some of these can be mitigated with improved

compiler scheduling. For example, the BSD code contains many instances of memory-to-memory

move operations where a value is loaded from memory and immediately stored to a different loca

tion. In most cases, the compiler makes no attempt to schedule instructions between the load and

the store to eliminate the data hazard. If such scheduling is not possible, it would be conceivable to

add a write port in the writeback stage and to forward the value to that stage once it is available.

Performance bottlenecks also arise from load-branch stalls as discussed in Section 5.3. Once

again, improved compiler scheduling can be used to manage this, otherwise the pipeline can be

restructured. Figure 5.7 shows a modified pipeline whose MEM stage operates in parallel with EX.

This has implications for all instructions, not just loads and stores. Other instructions pass through

the memory stage unchanged, which is a wasted cycle. If the CPI is 1, this is not an issue. In fact,

CPI is greater than 1, however, which is the result of data dependencies such as the load-branch

type. If effective address calculation can be moved to the ID stage, then one stall can be eliminated

because the branch instruction will only need to wait one cycle for the data value, not two, reducing

the cycle count of the radix code and LC code by 723 cycles and 6 cycles per lookup, respectively.

Moving effective address calculation to the decode stage requires an additional adder, however,

which increases the complexity of the processor.

IF ID EX W B — ►

— ► M EM

i

Figure 5.7: Restructured R2000 pipeline

Another possible structural change involves the addition of a specialized increment unit. A

large portion of the addition that takes place in the BSD code involves incrementing by one. The

general-purpose adder represents a significant bottleneck along the critical hardware path, and may

be the major reason that cycle time cannot be reduced. If the adder is taken off the critical path and

transformed into a multi-cycle functional unit by means of a separate pipeline, it is conceivable that

an increment unit could run at a higher speed. An example of such a pipeline is shown in Figure 5.8.

While compiler scheduling can be used to solve data dependency issues, it cannot be used to decrease

cycle time, which makes this approach of using a more complex pipeline attractive. As long as the

80

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

A1 A2 A3 |
IF ID EX M E M WB

Figure 5.8: Pipeline with multi-cycle adder

gains achieved by the increment unit offset the losses of a multi-cycle adder, this method would

be effective. A more detailed gate-level analysis is required to determine the exact benefits and

trade-offs of such an implementation.

The remaining issue that needs to be examined is whether there are any new instructions that

would be useful in the instruction set. The bulk of the related work has concentrated on generating

instruction set extensions for specific applications by looking for frequently recurring groups of

operations. If any such instruction set extensions have performance advantages, they should be

considered.

Considering the nature of routing table lookup, an architecture with very fast memory access

and large caches is very important. Freeing up as much area as possible on the processor allows

more space to be devoted to data caches, which allows much faster data accesses, because cache

hits will be more frequent. As cycle times decrease, signal propagation delay becomes increasingly

important, which emphasizes the need to pack the processor resources into as tight a space as possi

ble. Our experiments assumed zero memory latency, and as such the results are those of a processor

operating at its data flow limit. In reality, memory access times are nonzero, and cache misses occur.

Thus, it is important to maximize their performance to keep CPI as low as possible. Larger reg

ister files are also important to compiler optimization. Rather than continually accessing memory,

important variables can be kept in registers, which can cut runtime by up to one half [1].

From the standpoint o f software, there are a number of avenues that a vendor can explore to

optimize the efficiency of their product. The performance of the routing codes is heavily affected by

stalls. Over 40% of all machine cycles in the BSD code are wasted because of stalls. For the LC trie

algorithm, 12% of cycles are stalls. In both cases, the instructions that are the largest producers of

stalls are branch instructions, which account for more than 50% of the total number in the BSD code,

and almost 30% in the LC trie code. These stalls arise out o f the load-branch dependencies discussed

earlier, and can be reduced or eliminated with better compiler scheduling. Given that branches are

resolved two stages prior to data values being returned from memory, they are particularly suscep

tible to delays and this has to be taken into careful consideration when designing a compiler. As

pipelines grow deeper, this problem can become more serious. Another area where this is problem

atic is with pointer dereferencing. Such operations require two consecutive loads, where the second

is dependent on the result o f the first. If the compiler does not schedule any operation between the

two loads, the second will stall for two cycles in the decode stage waiting for its arguments. Not

81

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

surprisingly, this is more prevalent in the BSD code, where almost 12% of stalls are of this nature.

The LC trie algorithm, which requires much less pointer manipulation, experiences this problem a

negligible number of times.

In general, a combination of improved scheduling and code analysis can have an affect on all

of the stalls discussed in Section 5.3, because they are all the result of data dependencies. The

BSD code stands to receive up to a 40% performance gain should stalls be eliminated or reduced to

negligible levels.

Branches are another software avenue that can be explored in order to attain higher efficiency.

In the BSD code, 78% of all unique conditional branches are either always taken or never taken.

These branch instructions account for 11% of the total number of branches, or about 2% of the

total number of cycles. The same can be said for 87% of the branches in the LC trie code, which

account for 49% of its total branch count, and again about 2% of its total cycle count. Branches of

this nature can represent tests in the code for conditions that never occur, such as error checking.

Once software has been verified, removing such statements can increase performance. Not only will

the cycle corresponding to the branch be eliminated, but if the branch depends on the result of a

previous load instruction, the corresponding stall cycles can be eliminated as well. A zero-delay

jump scheme can also be used to further boost performance. The j and j a l instructions account

for 2% of the total instruction count in the radix code, and 6% in the LC trie code. Theoretically, if

all of these instructions can be replaced with the jum p targets without a delay, 80 cycles per lookup

can be saved from the radix algorithm, and 17 from the LC algorithm.

Considering both software factors, the cycle count of the BSD code can be reduced by up to 43%

on the original architecture. That translates into 3846 cycles per lookup compared to the original

6747. For the LC trie algorithm, cycles per lookup could be reduced to 255 from the original

317. This is still close to double the commonly accepted value of 150 instructions per lookup. An

effective optimization strategy involves efforts at the algorithmic level and during compile-time and

code generation. To put these changes into perspective, a 3 GHz processor running the radix code

could process 780000 packets per second, up from 444600. The same processor running the LC trie

code could conceivably process 11.7 million packets per second, up from the original 9.4 million,

an increase of 24%. In terms of throughput, with 64 byte packets, this translates into an increase of

nearly 1.2 Gbps for a total of 6 Gbps. The theoretical maximum throughput is dependent only on the

cycle time of the processor and latency of memory, assuming cycles per lookup can be lowered to

1. In this case, the same hardware could process 3 billion packets per second for a total throughput

of 1.5 Tbps, given zero memory latency.

5.6 Concluding remarks

Optimizing an architecture for routing amounts to architectural optimization that minimizes cycle

time, and hardware and software optimization that lowers CPI to as close as possible to 1. Hardware

82

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

performance is dependent on the instruction set, the pipeline architecture, the chip area of the proces

sor, and the length of the critical path through the processor. Any one bottleneck in a pipeline stage

affects the performance of the entire pipeline, and the goal is to streamline the datapath to eliminate

as many such bottlenecks as possible. Restructuring the pipeline can be valuable in customizing the

architecture to the needs of the application. In the case of routing, which is heavily dependent on

memory access, data reads must be optimized to reduce delays. Reducing the size of the instruction

set eliminates unneeded functional units, freeing up chip area, giving more resources to caches or

register files. Circuit complexity can also be reduced, possibly allowing reduced cycle times.

From a software standpoint, the compiler needs to be designed to make the most efficient use of

the hardware. This requires a knowledge of the innate bottlenecks of the hardware, and how they can

be countered by optimal scheduling. Effective scheduling reduces the need for structural changes

to the pipeline. A large portion of the stalls that arise in the routing algorithms can be eliminated

by more effective scheduling. Branching is also a performance concern that can be addressed. A

zero-delay jum p scheme can be implemented to eliminate many of the delays from unconditional

branches. Additionally, the majority o f conditional branches are either always taken or always not-

taken, which means the software can be modified to remove them and save cycles. Given the ability

of the compiler to schedule instructions into all the branch delay slots, branch prediction is not useful

in the R2000 architecture.

Whether hardware vendors have the ability to change architectural features of the processor,

or are limited to software changes, there are a number of performance-limiting factors that can be

explored in both areas, resulting in performance gains of up to 24% to 43%, depending on the routing

algorithm.

83

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 6

Conclusion

6.1 Summary

A variety of methods have been proposed to generate application-specific instruction set extensions

for existing architectures. All o f these techniques increase the instruction set size without first exam

ining the existing instruction set to determine its usefulness. Our work differs in that it attempts to

determine an instruction set o f minimal size that can be used to run IP routing algorithms. What we

discovered is that even simple RISC processors provide needlessly complex operations for routing.

From a hardware standpoint, removal o f unneeded instructions simplifies the logic by eliminat

ing unused functional units. This has direct effects on VLSI chip area, reducing the area required

for the processor itself, and making more available for caches or register files, which has significant

advantages for algorithms such as routing that require frequent memory access.

From a software standpoint, the routing algorithms need to be examined carefully to see how

they map to the hardware, and the compiler needs to be aware of the hardware’s limitations and

bottlenecks. Better compiler design can reduce the need for hardware reconfiguration. Additionally,

the algorithms themselves can be simplified to increase their performance on the existing hardware.

Our experimental data highlights several such areas.

The scope of our work is an architectural-level analysis and we do not examine performance

issues at a more detailed gate-level. FAST is unable to estimate processor cycle times and circuit

complexity. FAST models behaviour at an artifact level, and changes to the pipeline or instruction

set architecture have no effect on its cycle time. It is therefore difficult to determine exactly what

effect the removal of an instruction will have in terms of circuit complexity, chip area, and overall

execution time. Performing a more detailed gate-level analysis is the next logical step.

6.2 Contributions

This thesis has contributed in three areas. The first and second concern architectural optimization

for IP routing, while the third examines the software aspect of the routing algorithms and their

deficiencies.

84

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6.2.1 An optimized ISA for routing

We have proposed a minimal ISA for IP routing that was experimentally verified with two differ

ent routing algorithms. The instruction set is based on the MIPS ISA and and is 50% smaller than

the original. It contains 14 arithmetic/logic instructions, six jum p and branch instructions, eight

load/store instructions, and one special instruction. Table 6.1 summarizes the instruction set. The

instructions that are removed are substituted with assembler pseudo instructions that typically ex

pand to one two (and at most four) machine instructions during assembly. Thus, the functionality of

these instructions has been preserved.

Arithmetic/Logic Instructions Branch Instructions
a d d u b e q
a d d i u bne
an d j
o r j r
o r i j a l
s l l j a l r
s l l v
s i t Load/Store Instructions
s i t u l b
s r a l b u
s r l l h
s r l v l h u
su b u lw
x o r sb

s h
Special Instructions sw
s y s c a l l

Table 6.1: Instruction set for IP routing

Both the BSD radix tree algorithm and the LC trie algorithm map effectively to the arithmetic

and logic instructions. In its existing form, the radix tree algorithm operates most efficiently if four

additional branch instructions are kept: b g e z , b l e z , b g t z , and b l t z . The LC trie algorithm, on

the other hand, almost never uses these and they can be removed without compromising efficiency.

Similarly, for the load/store instructions, l h and s h are not required by the LC trie algorithm.

With the instruction set in Table 6.1, the radix tree code experiences a 7% increase in cycle count.

If the four branch instructions are kept, the lookup process experiences a negligible 0.1% increase

in cycle count. Since these four instructions are largely irrelevant to the LC trie algorithm, results

with or without them do not differ. With the modified instruction set, the lookup process for the LC

trie algorithm experiences a 4% increase in cycle count, although the total number of cycles is only

l/20th that o f the radix tree algorithm.

The major implications of a reduced instruction set are the lack of requirements for multi

ply/divide unit and a floating point unit. Removal of both of these can translate into a significant

85

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

portion of the chip area. This leaves more room for register files and caches, both of which are im

portant for algorithms that frequently access memory. Larger caches will translate into fewer cache

misses, and a larger register file can allow the compiler to keep frequently-used variables in registers

rather than having to move them to and from memory.

6.2.2 Possible architectural changes

Should improved compiler scheduling prove to be difficult, we have identified several architectural

changes that could increase the efficiency of the existing code. The aforementioned stalls due to

branching occur due to preceding load instructions. One of these two stalls could be eliminated by

converting the MEM stage into a separate pipeline that runs in parallel with the EX stage. Another

architectural feature that may be a bottleneck is the general-purpose adder. If this function can be

removed from the EX stage and converted into a separate multi-cycle functional unit, it is conceiv

able that the remainder of the EX stage could operate at a higher clock rate, thus increasing speed

for other instructions. These changes are discussed in more detail in Section 5.5.

6.2.3 Software issues

We have identified various software issues in the code that cause performance degradation. Some of

these can be removed by changing the algorithms themselves, while others can be solved through

improved compiler optimization. The major software problem is the large number of machine cy

cles that are wasted in the form of stalls. In our simulations, these all arise out of data dependencies.

Over 40% of cycles for the radix tree lookup are stalls, and 12% o f the cycles for the LC trie lookup

are stalls. Section 5.3 breaks these into the number of stalls for each instruction, but in both cases

branch instructions are major culprits, accounting for 50% and 30% of the total number of stalls

in the radix and LC trie code, respectively. In general, these stalls can be eliminated through im

proved scheduling, so that results of load instructions are available by the time dependent subsequent

instructions enter the decode stage.

Branches incur a cost during the execution of code, and designers need to pay special attention

to when and where they are used. We have found that in the BSD code, 78% of conditional branches

are either always taken or always not taken. Likewise, for the LC trie code, the value is 87%. Those

branches that are always taken can be replaced with jumps to eliminate the comparison. Those that

are never taken can be removed completely and the branch cycle and any potential stalls can be

eliminated completely. If combined with the zero-delay jump scheme discussed in Section 5.4.2,

optimization of branches can reduce the cycle count of the radix code by a further 3%, and that of

the LC trie code by over 7%.

86

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6.3 Directions for future work

The work presented in this thesis is a first step toward an architecture for IP routing. A number

of additional avenues can be explored to develop a more efficient architectural framework for this

application. These areas include:

• Realistic memory latency and workloads. Our simulations currently assume zero memory

latency in order to model behaviour at the data flow limit. In real life, memory latency plays

an important role and needs to be considered. In addition, while our simulations used actual

routing tables from Internet core routers, IP addresses were generated at random. The use of

workloads captured at the same routers would add an additional level of realism and accuracy

to the simulations.

• Better compiler scheduling. Many of the architectural pressures can be relaxed if the com

piler can schedule instructions around them. With a more complex instruction set this may

be more difficult due to smaller code size. A smaller instruction set results in a somewhat

larger code size, however, giving the compiler more freedom in reordering instructions to

work around architectural challenges. A significant optimization effort is warranted since the

routing software consumes the dominant portion of the machine time. A small increase in

performance for a single lookup can translate into much larger overall throughput.

• Creating application-specific instructions. Now that a minimal instruction set is being used,

it may be profitable to apply some of the techniques from Chapter 2 to generate application-

specific instructions. Searching for frequently recurring groups of operations may provide

insight into functional units that might be useful for increasing performance.

• Developing a gate-level architectural model. FAST allows us to experimentally observe the

effects of architectural changes on the terms C P I and I from Equation 5.1. It does not provide

any insight into the third term, T, however, and as a result, we do not have the complete picture

of what effects our changes have. A detailed gate-level model in a hardware description

language would allow more concise simulation to determine if cycle time actually decreases

due to our architectural changes. This, combined with the previous item, will provide a much

more thorough framework for a routing microarchitecture.

87

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bibliography

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools. Bell Telephone
Laboratories, Inc, 1986.

[2] H. Akaboshi. A Study on Design Support fo r Computer Architecture Design. PhD thesis, Dept,
of Information Systems, Kyushu University, January 1996.

[3] A. Alomary, T. Nakata, Y. Honma, M. Imai, and N. Hikichi. An ASIP instruction set op
timization algorithm with functional module sharing constraint. In Proceedings o f the 1993
IEEE/ACM international conference on Computer-aided design, pages 526 — 532, 1993.

[4] The MIPS Technologies Inc. processor core roadmap. AMSLink:
h t t p : / / w w w .a m s l in k . c o m /p d f /R d m p B a c k .p d f , October 1998.

[5] K. Atasu, L. Pozzi, and P. Ienne. Automatic application-specific instruction set extensions un
der microarchitectural constraints. In Proceedings of the 2003 Design Automation Conference,
pages 256 - 261, June 2003.

[6] P. Athanas and H. Silverman. Processor reconfiguration through instruction set metamorphosis:
Compiler and architecture. IEEE Computer, 13(3): 11 - 18, March 1993.

[7] S. Bashford, U. Bieker, B. Harking, R. Leupers, P. Marwedel, A. Neumann, and D. Vogge-
nauer. The MIMOLA language - version 4.1. Technical report, Technical Report, Computer
Science Dept., University of Dortmund, September 1994.

[8] J. P. Bennet. A methodology fo r automatic design o f computer instruction sets. PhD thesis,
University of Cambridge Computer Laboratory, 1988.

[9] P. Biswas and N. Dutt. Greedy and heuristic-based algorithms for synthesis o f complex in
structions in heterogeneous-connectivity-based DSPs. Technical Report 03-16, Department of
Information and Computer Science, University of Califoma, Irvine, May 2003.

[10] P. Bose. Instruction set design for support o f High-Level languages. PhD thesis, University of
Illinois at Urbana-Champaign, 1983.

[11] H. Choi, I. Park, S. Hwang, and C. Kyung. Synthesis of application specific instructions for
embedded DSP software. In Proceedings o f the 1998 IEEE/ACM International Conference on
Computer-Aided Design, pages 665 - 671, 1998.

[12] M. Freericks. The nML machine description formalism. Technical Report 1991/15, Fachbere-
ich Informatik, TU Berlin, 1991.

[13] J. Gyllenhall. A machine description language for compilation. Master’s thesis, Dept, o f EE,
UIUC, IL, 1994.

[14] G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL: An instruction set description language for
retargetability. In Proceedings o f 34th Design Automation Conference, pages 299-302, 1997.

[15] G. Hadjiyiannis, P. Russo, and S. Devadas. A methodology for accurate performance evalua
tion in architecture exploration. In Proceedings o f 36th Design Automation Conference, pages
927-932,1999.

[16] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau. EXPRESSION: A lan
guage for architecture exploration through compiler/simulator retargetability. In Proceedings
o f Design, Automation and Test in Europe, pages 485 - 490, 1999.

88

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.amslink.com/pdf/RdmpBack.pdf,October

[17] F. Haney. Using a computer to design computer instruction sets. PhD thesis, Carnegie-Mellon
University, 1968.

[18] M.R. Hartoog, J.A. Rowson, P.D. Reddy, S. Desai, D.D. Dunlop, E.A. Harcourt, and
N. Khullar. Generation of software tools from processor descriptions for hardware/software
codesign. In Proceedings o f 34th Design Automation Conference, 1997.

[19] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, Inc., San Francisco, CA 94101-3205,1996.

[20] B . Holmer. Automatic design of computer instruction sets. PhD thesis, University of California,
Berkeley, 1993.

[21] I. Huang and A. Despain. Synthesis of instruction sets for pipelined microprocessors. In
Proceedings o f 31st A CM/IE EE Design Automation Conference, pages 5 - 11, 1994.

[22] M. Imai, A. Alomary, J. Sato, and N. Hikichi. An integer programming approach to instruction
implementation method selection problem. In Proceedings o f the conference on European
design automation, pages 1 0 6 - 111, 1992.

[23] Internet performance analysis measurement project, h t t p : / /www. m e r i t . e d u /~ ip m a ,
March 2004.

[24] Gerry Kane. MIPS RISC Architecture. Prentice-Hall, Inc, Englewood Cliffs, NJ 07632, 1989.

[25] J. Lee, K. Choi, and N. Dutt. Automatic instruction set design through efficient instruction
encoding for application-specific processors. Technical Report 02-23, Center for Embedded
Computer Systems, University of California, Irvine, May 2002.

[26] R. Leupers. Retargetable Code Generation for Digital Signal Processors. Kluwer Academic
Publishers, 1997.

[27] R. Leupers and P. Marwedel. Retargetable code generation based on structural processor de
scriptions. Design Automation fo r Embedded Systems, 3(1), 1998.

[28] T. Morimoto, K. Saito, H. Nakamura, T. Boku, and K. Nakazawa. Advanced processor design
using hardware description language AIDL. In Proceedings o f ASPDAC, 1997.

[29] S. Nilsson and G. Karlsson. IP-address lookup using LC-tries. IEEE Journal on Selected Areas
in Communications, 17(6): 1083-1092, June 1999.

[30] Soner Onder. Architecture description language user’s manual. Technical report, Department
of Computer Science, Michigan Technological University, Houghton, Michigan 49931-1295,
2001 .

[31] Soner Onder and Rajiv Gupta. Automatic generation of microarchitecture simulators. In Pro
ceedings o f IEEE International Conference on Computer Languages (ICCL98), pages 8 0 -9 1 ,
May 1998.

[32] J. Park, S. Vassiliadis, and J.G. Delgado-Frias. Flexible oblivious router architecture. IBM
Journal o f Research and Development, 39(3):315 - 329, May 1995.

[33] Stefan Pees, Andreas Hoffmann, Vojin Zivojnovic, and Heinrich Meyr. LISA —■ machine
description language for cycle-accurate models of programmable DSP architectures. In Pro
ceedings o f 36th Design Automation Conference, pages 933-938,1999.

[34] Johan Van Praet, Gert Goossens, Dirk Lanneer, and Hugo De Man. Instruction set definition
and instruction selection for ASIPs. In Proceedings o f 7th IEEE/A CM International Symposium
on High-Level Synthesis, pages 1 1 -1 6 , May 1994.

[35] C. Siska. A processor description language supporting retargetable multi-pipeline DSP pro
gram development tools. In Proceedings o f 11th International Symposium on Systems Synthe
sis, pages 31 - 36,1998.

[36] K. Sklower. A tree-based packet routing table for berkeley UNIX. In Proceedings ofUSENIX,
pages 93-103,1991.

[37] R. Sweet and J. Sandman. Emperical analysis of the mesa instruction set. In Proceedings of
ASPLOS, pages 1 5 8 - 166, 1982.

89

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[38] H. Tomiyama, A. Halambi, P. Grun, N. Dutt, and A. Nicolau. Architecture description lan
guages for system-on-chip design. In Proceedings o f 6th Asia Pacific Conference on Chip
Design Languages, pages 109 - 116, 1999.

[39] The MDES user manual. Trimaran Release: http: / /www. trimaran. org, 1998.

[40] John Waldron. Introduction to RISC Assembly Language Programming. Addison-Wesley
Longman Ltd, Edinburgh Gate, Harlow, Essex CM20 2JE, England, 1999.

[41] x86. http: //en.wikipedia.org/wiki/X86,M arch2004.

90

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Appendix A

Implementing branch prediction

In most pipelined processors, instructions are decoded and operands are fetched prior to the branches

being resolved. In many cases, an ALU operation is necessary to resolve the branch, which usually

takes place in a later pipeline stage. This necessitates a pipeline stall, since instruction fetch cannot

proceed until the branch has been resolved and the address of the next instruction is known. Unfor

tunately, the result of this is a waste of machine cycles. The cycles between branch decoding and

branch resolution go unused, and any pipeline stages between those where these activities take place

are filled with bubbles.

In order to counteract this problem, it is necessary to add support for dynamic hardware predic

tion. The simplest form of dynamic prediction is a branch history table that is indexed by the lower

order bits of a branch address. Each location in the table corresponds to one bit that keeps track of

whether the branch was last taken or not. The obvious shortcoming of this is that the prediction may

actually correspond to a different branch. From the viewpoint of the hardware, though, there is no

difference. If the prediction turns out to be incorrect, the bit is inverted. Another shortcoming of

using only one bit is that prediction accuracy may suffer when a branch heavily favours taken or not

taken, such as in loops. For example, if a branch that strongly favours taken is not taken only once,

there will be two mispredictions, since the predictor will first predict taken, then will be updated,

and will then predict not taken. The solution to this problem is to add more bits to the predictor.

The general case of this is an n-bit saturating counter, whereby the it predicts not taken for values

between 0 and 2" — 1, and predicts taken otherwise. While a 2-bit predictor requires little additional

hardware over a 1-bit predictor, studies have shown that they perform almost as well as predictors

with more bits [19]. Figure A .l shows the state diagram for a 2-bit predictor. Notice the branch

must be taken twice before it predicts taken, and once the counter is saturated, there must be two

mispredictions before it is predicted not taken.

This system by itself works effectively in pipelines where instructions are decoded before branches

are resolved. Unfortunately, in the R2000 pipeline, branch resolution takes place in the decode stage.

If prediction is to have any use, it must take place in the fetch stage before instructions are decoded.

The problem with this is that the target address remains uncomputed until the decode stage, therefore

91

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Taken

Taken
PT

Not taken

Not takenTaken

Taken
PNT PNT

Not taken

Not taken

Figure A. 1: 2-bit Branch predictor

a means is required for storing these addresses. A branch target buffer, accessed during the fetch

stage, is used to store target addresses of instructions. Figure A.2 depicts a target buffer.

0x84562315 Ox845623AB 10

t t t
Branch Target Prediction
address address bits

Figure A.2: Branch target buffer

Each entry in the target buffer contains the address of the branch, the predicted address, and the

prediction bits. Each instruction that is fetched is checked against the target buffer. If the low order

bits of the address index to a location that contains the address of the branch, a prediction is made

based on the value of the prediction bits. If the branch is predicted taken, fetching immediately

continues from the target address in that location of the buffer. The addresses of the branches must

be stored since prediction takes place prior to instruction decoding. If this check was not made, it is

possible that predictions would be made for instructions that are not branches, which would have a

negative impact on performance.

A combination of branch target buffer and 2-bit predictor was chosen for branch prediction

92

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

implementation. Changes are required to both the instruction fetch (IF) and instruction decode (ID)

stages. These changes, along with how the target buffer and predictor are implemented, are discussed

below.

A.l Implementation of predictor and target buffer

The 2-bit branch predictor is implemented according to the simple finite state model depicted in

Figure A .I. The code for the predictor is given in Section 4.3.1. It is implemented as a custom ADL

artifact that has a user-defined number of entries. The artifact declares an array of s i z e entries,

each 2 bits wide. W hen called as an r-value, the artifact simply returns the value in the entry to

which the address argument indexes. When called as an 1-value, the artifact sets the value of the bits

at the respective index. When given an argument of 1, the predictor bits are incremented, and when

given an argument o f zero, the bits are decremented.

The implementation for the target buffer is shown in Figure A.3. Statistics collection is omitted

for the sake of brevity. The artifact maintains two arrays, one for the branch instruction address and

a second for the target address. When called as an r-value, the index is calculated and the target

address returned if the instruction address stored in the buffer corresponds to the address used to

index into the buffer. Otherwise a value of zero is returned to signal a mismatch. The buffer is

updated with the provided arguments when called as an 1-value.

While it would have been possible to implement the target buffer and predictors as one artifact,

two separate artifacts were chosen for more flexibility.

A.2 Changes to Instruction Fetch stage

The IF stage is responsible for both making predictions and handling mispredictions. Predictions

involve checking the target buffer and examining the prediction bits. The code for this is shown

below, and is located in the IF prologue.

if (tbuf[pc] == 0) then
begin

predict = 0 ;
end
else # Prediction occuring
begin

Check the 2-bit predictor
if (bp[pc].[1:1] == 0) then

begin
predict =0; # Predict not taken

end
else
begin

predict =1; # Predict taken

93

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

artifact target_buffer attributes (size)
begin

The necessary storage
integer array instruction_address[size, 32];
integer array branch^address[size, 32];
integer hash_val;
Initialize the artifact when created
initialization
begin

forall instruction_address=0;
forall branch_address=0;

end initialization;
rvalue procedure: called when artifact is an rvalue
rvalue(addr)
begin

Calculate the hash value
hashjval = addr. [10:8] ;
rvalue = 0 ;
if (instruction_address[hash_val] == addr) then

rvalue=branch_address[hash_val];
end rvalue;
lvalue procedure: called when artifact is an lvalue
lvalue(addr, br_addr)
begin

Calculate the hash value
hash_val = addr.[10:8];
instruction_address[hash_val] = addr;
branch_address[hash_val] = br_addr;

end lvalue;
end target_buffer;

Figure A. 3: Branch target buffer artifact

predict_target = tbuf[my_pc];
end;

end;

The first condition determines whether the target buffer returns a value of zero for the current

value of the program counter. This can occur under two circumstances, either before it has been

initialized with its first branch address, or if the current instruction does not correspond with a

branch instruction. If neither of these are the case, that means the current instruction is a branch

instruction. The value of the corresponding prediction bits is then examined. Only the high order

bit needs to be checked, since values of 00 and 01 correspond to predict not taken, and 10 and 11

correspond to predict taken. If the branch is predicted taken, the target is set to the value contained

in the buffer.

In the event of a misprediction, the IF stage is responsible for handling rollback, which amounts

to flushing the IF stage to nullify the incorrectly fetched instruction. This is handled in the epilogue

minor cycle, the code for which is shown below.

if (rollback) then
begin

rollback = 0;
retire nostat;
pc = miss__pc;

94

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

m i s s _ p c = 0 ;
n e w c o n t e x t ;

e n d ;

The rollback flag is set in the instruction decode stage, and will be discussed later. In the

event o f this condition, the flag is reset, and the instruction context is retired without generating

statistics. This has the effect of generating a pipeline bubble. The program counter is then set to the

address of the instruction following the branch, stored in miss_pc in ID. A new instruction context

is then generated to fetch the next instruction from memory.

If rollback did not occur in this cycle, and a prediction was made, the next instruction has to be

fetched from the predicted address. This occurs in the epilogue as well, and takes place with the

following code.

if (predict) then
begin

branch_input = 0;
pc=predict_target;

end;

The branch_input flag is reset until it is required by the next branch instruction.

A.3 Changes to Instruction Decode stage

Whereas the IF stage is responsible for checking the target buffer and handling rollback, the ID stage

is where the buffer is updated and where the need for rollback is detected. All activity takes place

in the intermission minor cycle. The first piece of code handles the case where the instruction is a

branch and the there was a prediction of not taken1.

if (predict == 0) then
begin

if (c_what "= condition_z) then
branch_target=my_pc + sign_extend_14(immediate);

do_forwarding_to_id;
condition_code(lop,rop) ;
NO PREDICTION — BRANCH TAKEN
if (branch_input) then
begin

tbuf[my_pc] = branch_target;
bp[my_pc] = i;
rollback = 1;
miss_pc = branch_target;
branch_input = 0;

end
NO PREDICTION -- BRANCH NOT TAKEN
else
begin

bp[my_pc] = 0;
end;

end
! In this implementation, predict not taken is equivalent to no prediction at ail. The following code handles both cases.

95

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

If no prediction was made but the instruction is a branch, then the target address is calcu

lated from the sign-extended immediate portion of the instruction. The condi tion_code pro

cedure performs the comparisons to determine whether the branch is taken or not and sets the

branch_input flag. If the branch is to be taken, this corresponds to a misprediction, so the

target buffer is updated with the new branch target, the predictor is incremented, and the rollback

flag is set. If the branch is not to be taken, then the predictor bits are decremented.

If a prediction was made, then a check must be made as to whether the prediction is correct or

not. This is handled by the following code.

else
begin

if (c_what "= condition_z) then
branch_target=my_pc + sign_extend_14(immediate) ;

do_forwarding_to_id;
condition_code(lop,rop);
CORRECT PREDICTION — BRANCH TAKEN
if (branch_input) then
begin

Check if the two targets are equal - if not, rollback
if (predict_target ~= branch_target) then
begin

rollback = 1;
bp[my_pc] = 0; bp[my_pc] = 0;
tbuf[my_pc] = 0;
miss_pc = branch_target;
branch_input = 0;

end
else
begin

tbuf[my_pc] = branch_target;
bp[my„pc] = 1;
branch_input = 0;

end;
end
INCORRECT PREDICTION -- BRANCH NOT TAKEN
else
begin

bp[my_pc] = 0;
rollback = 1;
miss_pc = my pc + 4;

end;
end;

If a prediction was made correctly, a check takes place to see whether the predicted target is equal to

the actual target. This is required due to the j r and j a l r instructions, whose target addresses are

contained in registers and can vary during program execution. If the targets are not equal, rollback

occurs and the branch instruction is removed from the target buffer. Otherwise, the the predictor

is incremented. If a misprediction occurred, then the predictor is decremented and the rollback

flag is set. The value of m is s_ p c is set to be the address of the instruction following the branch

instruction. The fetch stage then discards the incorrectly fetched instruction and restarts from the

96

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7.6e+Q6

tj 7.2e+06 -

g 6.8e+06 -
Z

O

o
O

o

b 7e+06 -

7.4e+06 -

6.6e+06

6.4e+06

■ 128 entries
IS 256 entries
EO 512 entries

n:n (n+2):n (n+4):n (n+2):2 || (n-2):(n-2)
H ash function

Figure A.4: Number of correct predictions varying table size and hash function

correct address.

A.4 Results of branch prediction

Adding branch prediction to the R2000 requires a fundamental change to its delayed branching

semantics. Recall from Chapter 3 how the compiler attempts to insert instructions into the delay

slots following branch instructions, since the instruction immediately following a branch is fetched

prior to the branch being resolved. The compiler attempts to place an instruction in this location that

should be executed whether the branch is taken or not. This essentially amounts to a static strategy

of always predicting not taken, although there are no penalties if the prediction is incorrect. Since

the instruction in the delay slot must always be executed, there is no need for rollback or pipeline

flushes. Adding dynamic hardware prediction requires this be changed, since a benefit will only arise

if the delay slot is eliminated, or if branches are resolved in a later pipeline stage. Since the pipeline

architecture is not changed, the delay slot must be eliminated for any changes to be observed.

A simple way of verifying the behaviour of the branch prediction is to compile the routing code

without optimizations. Instead of inserting useful instructions into the delay slots, the compiler

simply inserts nops, which can safely be ignored. The following results are the totals from both

routing table construction and lookup.

Figure A.4 shows the number of correct predictions that occur subject to a variety of buffer sizes

and hash functions. The value of n is equal to Zog(buffer_size), and the format of the hash functions

are standard ADL syntax. For example, (n + 4) : n for a buffer size of 256 represents 8 bits starting

97

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4e+Q6

3.5e+06

3e+06

I

2.5e+06

2e+06

I I 128 entries
IS 256 entries
E3 512 entries

1
(n+2):n (n+4):n (n+2):2 || (n-2):(n-2)

Hash function

Figure A.5: Number of rollbacks varying table size and hash function

at bit 12 (bits 4 through 12). Figure A.5 displays the number of rollbacks (or mispredictions) that

occur for the same choices o f buffer sizes and hash functions. As should be expected, the two graphs

are essentially inverses of one another.

Both graphs show that an increased table size is an advantage. A larger table allows more state

to be maintained about branches. This translates into less collisions and greater prediction accuracy.

The difference between the buffer sizes is most pronounced with the first function that uses the low

order bits. The differences are least pronounced with the third function that uses higher-order bits.

The performance of the third function is much poorer, however. Ignoring the lowest order four bits

results in less variation among addresses in localized areas of the code. Consequently, there is likely

a great deal more contention for buffer locations resulting in poorer accuracy.

The second function provides the best performance for all three buffer sizes. Eliminating the

two lowest order bits appears to be ideal. Instructions are aligned on word boundaries, which are

every four bytes. Therefore, the level of precision provided by the first two bits is not required. Fur

thermore, a processor is most likely to benefit from a branch prediction scheme that can differentiate

between addresses in a localized region of code. The inclusion of higher-order bits, as in function

four, is therefore not as useful.

The highest number of correct predictions is roughly 7.5 million when using the second function

with a 512 entry buffer. The same function and buffer size results in 2.2 million rollbacks. The total

number of cycles required for execution of the unoptimized routing algorithms is 76 million. Each

correct prediction saves one cycle, while each rollback costs a cycle, bringing the net savings to 5.3

98

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

million cycles. This is roughly a 7% performance improvement.

Branch prediction will only be useful if it provides a benefit on optimized code. For this to

happen, the compiler has to be modified so that it does not create a delay slot. Furthermore, branch

prediction in the R2000 architecture would only be useful if the compiler has difficulty filling the

delay slot in some instances. If the delay slot can always be filled, then branch prediction in the

R2000 is not useful. Changing the delayed branching semantics will ultimately be detrimental. An

examination of the assembly code for the routing algorithms shows that all the delay slots can be

filled by the compiler. The processor, therefore, is already operating at peak performance with this

particular benchmark. If the pipeline were deepened and branches resolved in a later stage, predic

tion may be worth pursuing. Without any major structural changes, however, it will not provide any

improvement at this point.

99

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Appendix B

R2000 ADL Architecture Description

#
Standard MIPS pipeline with convntional internal data forwarding
#
Author: Soner Onder
#

processor processor_0 highbit 31
begin
lilliput little_endian;
Machineid “mips";
shadow register

_hi 32, # Division operation HI value.
_lo 33, # Division operation LO value.
linebreak 32, # Used in monitor statment
branch_instruction_addr 32,
check_ex 1,
check_mem 1,
check_wb 1,
ex_has_i t 1,
mem_has_i t 1,
wb_has_i t 1,
target 32, # Used in the branch target computation.
data_tmp 32, # Used in data transfers,
ptemp 32, # A temporary value register,
dummy 32, # SAA (Same as above)
which 2, # For passing parameters to cop branch units,
less 1,
equal 1,
unordered 1;

shadow register file dtemp[2,32];
latch

exception 1,
is_branch 1,
load_flag_e 1,
load_flag_jm 1 ;

« # # # # # # # # # # # # # # #
Stall categories
* # * # # # # # #
stall category

ext_re£,
latency_f,
latency_d,
latency_m,
fpaddfull,
fpmulfull,
mem__ic,
mem_dc,
fl_d_dep,
ld__d_dep,
float_cc;

Floating point latency.
Divide latency.
Multiply latency.
Floating add pipeline is full with long latency op.
Floating multiply pipeline is full with lo la op.

100

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Register files
#

■ister file fpr_tag [33, 1] # [34 regs. 1 bit each].
F_tag_0 0 , F__tag__l 1 , F_tag_2 2, F_tag__3 3 ,
F_tag_4 4, F__tag_5 5, F_tag_6 6, F_tag_7 7,
F_tag_8 8, F_tag_9 9, F_tag_10 10, F_tag_ll 11,
F_tag_12 12, F_tag_13 13, F_tag_14 14, F_tag_15 15,
F_tag_16 16, F_tag_17 17 , F_tag_18 18 , F_tag_19 19,
F_tag_20 20, F_tag_21 21, F_tag_22 22, F_t ag_2 3 23,
F_tag_24 24, F_tag_2 5 25, F_tag_26 26, F_tag_27 27 ,
F_tag_2 8
F_tag_CpC

28,
32;

F_tag_29 29, F_tag_3 0 30, F_tag_31 31,

register file fpr [33,32] # [34 regs ,32 bits ieach].
$f0 0, $£1 1, $£2 2, $ f 3 3,
$f 4 4, $ f5 5, $£6 6, $f 7 7,
$f 8 8, $f9 9, $fl0 10, $£11 11,
$f 12 12 , $ f13 13, $f14 14, $f15 15,
$f 16 16 , $£17 17, $£18 18, $f19 19,
$f 2 0 20 , $f21 21, $f22 22, $f23 23 ,
$f 24 24, $£25 25, $f26 26, $ f27 27 ,
$f 28 28, $f29 29, $£30 30, $f31 31,
$CpC 32;

register file gpr [34,32] # [34 regs ,32 bits ieach].
$0 0 , $1 1, $2 2 , $3 3,
$4 4, $5 5, $6 6 - $7 7,
$8 8, $9 9, $10 10 , $11 11,
$12 12, $13 13, $14 14 , $15 15,
$16 16, $17 17, $18 18 , $19 19,
$20 20, $21 21, $22 22 , $23 23,
$24 24, $25 25, $26 26 , $27 27,
$28 28, $29 29, $30 30 , $31 31,
$zero 0 , $at 1, $v0 2 , $vl 3,
$a0 4, $al 5, $a2 6 , $a3 7,
$to 8, $tl 9, $t2 10, $t3 11,
$t4 12, $t5 13, $t6 14 , $t7 15,
$s0 16, $sl 17, $s2 18 , $s3 19,
$s4 20, $s5 21, $s6 22 , $s7 23,
$t8 24, $t9 25, $k0 26 , $kl 27,
$gp 28, $sp 29, $fp 30, $ra 31;

register file gpr_tag [34,32] # [34 regs,32 bits each]
gpr_tag_0 0, gpr_tag_l 1, gpr_tag_2 2 , gpr^tag^
gpr_tag_4 4, gpr_tag_5 5, gpr_ tag_6 6 , gpr_tag.
gpr_tag_8 8, gpr_tag_9 9, gpr_tag_10 10 , gpr_tag_
gpr_t ag_l2 12, gpr_tag_13 13, gpr_tag_14 14, gpr_tag.
gpr_tag_16 16, gpr_tag_17 17, gpr_tag_18 18 , gpr_tag.
gpr_tag_20 20, gpr_tag_21 21, gpr_tag_22 22 , gpr_tag.
gpr_tag_24 24, gpr_tag_25 25, gpr_tag_26 26 , gpr_tag.
gpr_tag_2 8 28, gpr_tag_29 29, gpr_tag_30 30, gpr__tag.
gpr_tag_hi 32, gpr_tag_lo 33;

#
Memory port declarations
#
memory mem2 latency 0 width 32;
memory icache latency 0 width 32;
memory dcache latency 0 width 32;

#
Pipeline, IR, PC, and controldata declarations
#
pipeline IPIFE (s_IF, s_ID, s_EX, s_MEM, s_WB) ;
pipeline FP_ADD (f_addl, f_add2, f_add3);
pipeline FP_MULTIPLY (f„mull, f„irvul2, f_mul3);
source s_IF;
instruction register ir 32;
instruction pointer pc 32;
shadow register

hi__val 32,
lo_val 32;

latch

101

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

new_pc 32,
branch_input 1,
branch__target 32;

controldata register
my_pc 32,
ls_bypass 1,
mem__stat 1,
access__type 32,
byte 2,
lop_r 6, # lop_r indicates the register number for the lop.
rop_r 6, # rop_jr indicates the register number for the rop.
dest_r 6, # dest_r holds the register number to write,
simm 32, # Sign extended immediate,
zimm 32, # Zero extended immediate,
smdr 3 2,
store_v 32, # Store Memory data register,
lmar 32, # load memory address register,
smar 32, # store memory address register,
dest 32, # dest holds the value to be written.
dest2 32, # dest holds the value to be written,
lop 32, # lop holds the left operand value,
lop2 32, #
rop 32, # rop holds the right operand value.
rop2 32; #

I #
Constants
« #
constant machine_drained 1;
constant cpc_register_number 32;
constant lo_hi_register_number 32;
bitconstant

_BYTE 0 0,
_HALFWORD 0 1,
_TRIPLEBYTE 1 0,
_WORD 1 1;

$include instruction-set.adl
$include mips-calling-convention.adl

Procedures used by pipeline stages. Perform internal data forwarding

procedure do_forwarding_to_id untyped
begin

if has_context s_EX then
check_ex=(dest_type [s_EX] == integer_register) |

(dest_type [s_EX] == lo_hi_register)
else

check_ex=0 ,-
if has^context s_MEM then

check_mem=(dest_type [s_MEM] == integer_register)
(dest_type [s_MEM] == lo_hi_register)

else
check_mem=0;

if has_context s_WB then
check_wb=(dest_type [s_WB] == integer_register) j

fdest_type [s_WB] == lo_hi_register)
else

check_wb=0;
if (lop_type == integer_register) |

(lop__type == lo_hi_register) then
begin

i f check_ex then
ex„has_it=(dest_r[s_EX] == lop_r)

else
ex_has_it=0;

if checkjnem then
mem_has_it=(dest_r[s_MEM] == lop_r)

else '
mem_has_it=0;

if check_wb then

102

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

wb_has_it= (dest_r [s_WBj == Iop__r)
else

wb_has_i t = 0 ;
if ex__has_.it then

lop~dest[s_EX]
else
if mem_has_.it then

lop^dest[s„MEM]
else
if wb_has_.it then

lop=dest[s_WB];
end;

if (rop_type == integer„register) |
(rop__type == lo_hi_register) then
begin

if check_ex then
ex__has__it= (dest_r [s_EX] == rop_r)

else
ex_has_it=0;

if check_mem then
mem_has_it=(dest_r[s_MEM] == rop_r)

else
mem_has_.it=0 ;

if check__wb then
wb_has_it=(dest_r[s_WB] == rop_r)

else
wb_has_it=0;

if ex_has_it then
rop^dest[s_EX]

else
if mem_has_it then

rop=dest[s_MEM]
else
if wb_has_it then

rop=dest[s_WB];
end;

end do_forwarding_to_id;

procedure do_forwarding_to_ex untyped
begin

if has_context s_MEM then
check_mein= {dest_type [s_MEM] == integer_register) |

{dest_type [s_MEM] == lo_hi_register)
else

check_mem=0;
if has_context s_WB then

check_wb={dest_type [s_WB] == integer_register) |
(dest__type [s_WB] == lo_hi_register)

else
check_wb=0;

if (lop_type == integer_register) |
(lop_type == lo_hi__register) then
begin

i f check_mem then
m e m _ h a s _ i t = (d e s t _ r == lop_r)

else
mem_has_it = 0;

if check_wb then
wb_has_it= (dest_r [s_WB] == lop_r)

else
wb__has__.it=0;

if iaera_has_it then
lop^dest[s_MEM]

else
if wb_has_.it then

lop-dest [s__WB] ;
end;

if (rop_type == integer_register) |
(rop__type == lo_hi_register) then
begin

103

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

if checkjmem then
mem_has_.it = (dest_r [s_MEM] == rop_r)

else
mem_has_it=0;

if check_wb then
wb_has_it=(dest_r[s_WB] == rop_r)

else
wb_has_it=0;

if mem_has_it then
rop=dest[s_MEM]

else
if wb_has_it then

rop=dest[s_WB];
end;

end do_forwarding_to_ex;
integer waiting_drain;

Instruction fetch stage
« # * # # # « # # # # # #
procedure s_IF prologue
begin

my_pc = pc;
ir = icache[pc];
if waiting_drain then

begin
waiting_drain = has_context s_ID +

has_context s_EX +
has_context s_MEM +
has_context s_WB +
has_context f_addl +
has_context f_add2 +
has. context: f_add3 +
has_context f_mull +
has_context f_mul2 +
has_context f_mul3;

if waiting_drain then
stall ext_ref;

builtin fast_va_start();
builtin Fast_call_ext_reference(pc);
pc = gpr(31];
iuy_pc = pc;
ir = icache[pc];

end;
if builtin is_external(pc) then

begin
waiting_drain = true;
tbuiltin hold the pipeline!);
stall ext_ref;

end;
if access_complete then

begin
new_pc = pc+4;
unfreeze;

end
else

begin
freeze;
stall mem_ic;

end;
end s_IF;
procedure s_IF epilogue
begin

if send_enabled(s_ID) then
begin

send s_ID;
if (branch_input) then

begin
branch_input=0;
pc=branch_target;

end

104

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

else
pc=new_pc;

newcontext ;
end;

end s_IF;
« # « # # # # # # * # # # # #
Instruction Decode stage
#########«#######«##
procedure s_ID prologue
begin

decode;
end s_ID;
procedure s_ID intermission
begin

Check for data hazards and read operands.
dest_r = ordinal(dest_reg);

case lop_type of
begin

integer_register :
lop_r=rs;
lop=gpr[lop_r];

lo_hi_register : lop_r=lo_hi_register_number;
lop=gpr[lop_r];
lop2=gpr[lop_r+l];

cpc„register :
float_register :

lop_r=fs;
if fpr_tag[lop_rl then

stall fl_d_dep;
lop =fpr[lop_r];

double_register :
lop_r=fs;
if (fpr_tag[lop_r] > 0) | (fpr_tag[lop_r+l] > 0) then

stall fl_d_dep;
lop =fpr[lop_r];
lop2=fpr[lop_r+l];

end;

case rop_type of
begin

integer_register
rop_r=rt;
rop=gpr[rop_r];

lo_hi_register : rop_r=lo_hi_register_number;
rop=gpr[rop_r];
rop2=gpr[rop_r+l];

cpc_register :
float_register : rop_r=ft;

if fpr_tag[rop_r] then
stall fl_d_dep;

rop =fpr[rop_r1;
double_register : rop_r=ft;

if (fpr„tag[rop_r] > 0) | (fpr_tag[rop_r+l] > 0) then
stall fl_d_dep;

rop =fpr[rop„r];
rop2=fpr[rop„r+l];

end;
if has„context s_EX then

if dest_type [s_EX] == lo_hi_register then
stall;

if has_context s_MEM then
if dest__type [s„MEM] == lo_hi_register then

stall;
if has„context s_WB then

if dest_type [s_WB] == lo_hi_register then

105

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

s t a l l ;

is_branch=(i_type == branch_type_0) | (i_type == branch_tvpe_l);
if has_context s_EX then

load_flag_e=(i_type[s_EX] == load_type)
else

load_f lag_e=0 ;
if has__context s_MEM then

load_f lag_m= {i__type [s_MEM] == load„type)
else

load_flag_m=0;
if lop_type ~= none then

begin
if has_context s_EX then
if (dest_r[s_EX] == lop_r) & (load„flag_e | is_branch) then

stall ld_d_dep;
if has_context s_MEM then
if (dest_r[s_MEM] == lop_r) & (load_flag_m | is_branch) then

stall 1d_d_dep;
end;

if rop_type " = none then
begin

if has_context s_EX then
if (dest_r[s_EX] == rop_r) & (load_flag„e | is_branch) then

stall ld_d_dep;
if has_context s__MEM then
if (dest_r[s_MEM] == rop_r) & (load„flag_m | is_branch) then

stall ld_d_dep;
end;

if (i_type == branch_type_0) | (i_type == branch_type_l) then
begin

if c_what "= condition_z then
branch__target=my_pc + sign_extend_14 (immediate) ;

if i_class == float_class then
begin

if F_tag_CpC then
begin

builtin printf("Stall on CPCXn");
stall float_cc;

end;
branch_input=$CpC == tf;
branch_instruction_addr=my_pc;

end
else

begin
do_forwarding_to_id;
condition_code(lop,rop);
branch_instruction_addr=my_pc;

end;
end;

end s_ID;
procedure s_ID epilogue
begin

if ((exu == integer_unit) | (exu == load_unit) |(exu == store_unit)) &
(send_enabled(s_EX) == 0) then
stall;

if (exu == f_add_unit) & (send_enabled(f_addl) == 0) then
stall fpaddfull;

if (exu == f_mul_unit) & (send_enabled(f_mull) == 0) then
stall fpmulfull;

if dest_type == float_register then
fpr_tag[dest_r]=my_pc

else
if dest_type == double_register then

begin
fpr_tag[dest_r]=my_pc;
fpr_tag[dest_r+l]=my_pc;

end;

106

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

if exu == f_add_unit then
send f_addl

else
if exu ■= = f__mul_unit then

send f__mull
else

send s_EX;
end s_ID;
#
Instruction Execute stage #
##*#########################**############
procedure s_EX prologue
begin

do__f orwarding_to_ex;
end s_EX;
procedure s_EX epilogue
begin

send s_MEM;
end s_EX;
#
Memory access stage #

procedure s_MEM prologue
begin
end s_MEM;
procedure s_MEM epilogue
begin

if exu == load_unit then
begin

if mem_stat == 0 then
stall;

end;
if exu == store_unit then

begin
dcache.(access_type) [smar] = smdr;
if access_complete == 0 then

stall;
end;

send s _ Vj'B ;
end s_MEM;
#
Writeback stage #
ft###
procedure s_WB prologue
begin

case dest_type of
begin

lo_hi_register ;
gpr[dest_r]=dest;
gpr[dest_r+l]=dest2;

integer_register ; gpr[dest_r]=dest;
cpc_register :
float_register : fprfdest_r]=dest;

fpr_tag[dest_r]=0;
double_register : fpr[dest_r]=dest;

fpr[dest_r+l]=dest2;
fpr_tag[dest_r]=0;
fpr_tag[dest_r+l]=0 ;

end;
end s_WB;
procedure s_WB epilogue
begin

retire stat;
end s„WB;

#
Floating point add pipeline
« # # # # # # «
procedure f_addl prologue
begin

107

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

e n d f _ a d d l ;

procedure f_addl epilogue
begin

send f_add2;
end f_addl;
procedure f_add2 prologue
begin
end f_add2 ;
procedure f_add2 epilogue
begin

send f __add3 ;
end f __add2 ;
procedure f__add3 prologue
begin
end f_add3;
procedure f_add3 epilogue
begin

send s_wb;
end f_add3;
^ # f # # # # # # # # # # # # # # # # # #
Floating point multiply pipeline

procedure f_mull prologue
begin
end f_mull;
procedure f_mull epilogue
begin

send f_mul2;
end f_mull;
procedure f__mul2 prologue
begin
end f_mul2;
procedure f_mul2 epilogue
begin

send f_mul3;
end f_mul2;
procedure f_mul3 prologue
begin
end f_mul3;
procedure f_mul3 epilogue
begin

send s__wb;
end f_rriul3;

procedure boot_up untyped
begin

forall gpr = 0;
forall fpr_tag=0;

end boot_up;
initialization boot__up;
controlflow

bclf r beq_ , bgez , bgezal ,
bgtz , blez , bltz ,
bltzal , bne j , jal ,
jalr , jr ;

instruction category integer_arithmetic
add, addi, addiu, addu, and, andi , div,
divu, lui, mfhi, mflo, mult, multu,
nor, or, ori, sll, sllv, sit, slti,
sltiu, situ, sra, srav, srl, srlv,
sub, subu, xor,xori;

instruction category conditional_branch
beq ., bgez , bgezal_
bgtz , blez , bltz ,
bltzal , bne ;

108

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

instruction category other
break;

instruction category unconditional_branch
j jal ,
jalr , jr ;

instruction category load
lb, Ibu, lh, lhu,
lw, Iwl, lwr, Iwcl ;

instruction category store
sb, sh, sw, swl,
swr, swcl ;

instruction category float_arithmetic
"cvt.d.w", "cvt.d.s", "cvt.s.w", "cvt.s.d”,
"div.d", "div.s", "mul.s ", "mul.d1',
"add.s", "add.d", "neg.s'1, "neg.d",
"sub.s", "sub.d", mfcl, mtcl,
"c.cond.d", "c.cond.s”, "abs.s", "abs.d",
"mov.s", "mov.d", "trunc.w.s", "trunc.w.d";

instruction category float_conditional
bclf__
belt ;

Display in debugger

monitor

$0, $1, $2, $3, $4, $5, $6, $7, $8, $9,
$11, $12, $13,, $14, $15, $16, $17, $18, $19, $20,
$22, $23, $24,. $25, $26, $27, $28, $29, $30, $31,
linebreak,
linebreak,
$f0 , $£1 $£2 $f 3 , $£4 , $f5 $f 6 , $f 7
$f8 , $f9 $fl0 , $fll , $£12 , $£13 , $£14 , $f 15
$f16 , $f17 , $f 18 , $f 19 , $£20 , $£21 , $f 22 , $f 23
$f24 , $f25 , $£26 , $f 27 , $£28 , $f29 , $f 30 , $ £31
linebreak,
linebreak,
pc;

end;
$include simulator-assembler-supplements.adl

109

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

