Opinion
Genomic disorders ten years on
James R Lupski

Address: Departments of Molecular and Human Genetics, and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital,

Houston, TX 77030, USA. Email: jlupski@bcm.edu

Published: 24 April 2009
Genome Medicine 2009, 1:42 (doi:10.1186/gm42)

The electronic version of this article is the complete one and can be
found online at http://genomemedicine.com/content/ | /4/42

© 2009 BioMed Central Ltd

Abstract

It is now becoming generally accepted that a significant amount of human genetic variation is due
to structural changes of the genome rather than to base-pair changes in the DNA. As for base-
pair changes, knowledge of gene and genome function has been informed by structural alterations
that convey clinical phenotypes. Genomic disorders are a class of human conditions that result
from structural changes of the human genome that convey traits or susceptibility to traits. The
path to the delineation of genomic disorders is intertwined with the evolving technologies that
have enabled the resolution of human genome analyses to continue increasing. Similarly, the
ability to perform high-resolution human genome analysis has fueled the current and future
clinical implementation of such discoveries in the evolving field of genome medicine.

Genomic disorders are diseases that result from rearrange-
ments of the human genome rather than from DNA sequence
base changes. Moreover, such rearrangements occur because
of architectural features of the genome that incite genome
instability. The idea of genomic disorders emanated from
locus-specific studies of the common autosomal dominant
peripheral neuropathies: Charcot-Marie-Tooth disease type
1A (CMT1A; Mendelian Inheritance in Man (MIM) database
ID 118220 [1]) and hereditary neuropathy with liability to
pressure palsies (HNPP; MIM 162500). A careful re-read of
the early reports on these conditions reveals nearly all the
key concepts of genomic disorders, including genomic
duplication [2,3] and deletion [4], gene dosage (PMP22) [5-
8] and specific gene copy number variation (CNV) [6-8]. The
concepts of genome architecture and low-copy repeats
(LCRs) or segmental duplications (SDs) were well described
before there was either a draft or a finished reference
genome sequence [9,10] (Figure 1). The term LCR was first
introduced by Bernice Morrow following her studies of
DiGeorge syndrome (MIM 188400) rearrangement break-
points [11] whereas the term SD was introduced by Evan
Eichler [12,13] to explain his observations from genome-
wide studies. The concepts of non-allelic homologous
recombination (NAHR [9], although the specific term NAHR
was not introduced until later [14]), reciprocal recombi-
nation resulting in duplication/deletion of the same genomic

interval [9,10], recombination hotspots [15,16] and the
effects of CNV (such as duplication) on the interpretation of
the segregation of marker genotypes [2,17] also began to
emerge at this early stage.

Nevertheless, progress was blocked by both technological
and conceptual limitations. Technically, we had no way to
view the entire human genome simultaneously at a level of
resolution that would enable insights into molecular mecha-
nisms. Conceptually, locus-specific thinking had permeated
genetics for over a century, with genocentric (gene-specific)
views and base-pair changes as the one form of mutation
predominating during the latter half of the 20th century and
often blindly biasing genetic thinking to this day. The
significant heritability and uncertain molecular basis of
common disorders has been approached with such geno-
centric and ‘point mutation’ genetic thinking. Even now, we
witness this as a recurrent theme with an excessive focus on
genome-wide association studies (GWASs) evaluating
ancient SNPs, as contrasted with the potential involvement
of recent or new mutations and/or CNV.

At the time of the early studies leading to the concept of
genomic disorders, the one way to visualize the entire
human genome was through chromosome studies and
usually by the G-banded karyotype provided from clinical
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Figure |

Low-copy repeats (LCRs) flanking the Charcot-Marie-Tooth disease type |A duplication (CMT|A-REP) and the Smith-Magenis deletion (SMS-REP).

(a) A somatic cell hybrid panel with a chromosome |7p ideogram (left) and vertical bars representing the regions retained in the individual human hybrid
cell lines listed at the top. (b) Southern hybridization with a CMT | A-REP probe. There are two cross-hybridizing signals in human genomic DNA (lane 1),
none in the mouse and hamster genomic DNA (lanes 2 and 3), and the same two in a monochromosomal hybrid (MH22-6, lane 4) retaining human
chromosome |7. Both copies map to the CMT | A duplication region at 17p|2. This is interpreted as showing that there are two copies of CMT | A-REP,
both mapping to the CMT A duplication locus, and both of which evolved late in the mammalian radiation as they are not present in mouse or hamster
[9] (c) Three copies of SMS-REP (arrows) on chromosome 17 [21]. We used the term REP because at the time my laboratory was working with
prokaryotic repeated sequences (REP) and had developed a technique we referred to as rep-PCR [157,158].

cytogenetics. We were thus fascinated and excited to find
that our studies of a microdeletion syndrome, the Smith-
Magenis syndrome (SMS; MIM 182290), which results from
a 3.7 Mb genomic deletion rearrangement large enough to be
visualized by microscopy, revealed similar observations to
those found for CMTiA/HNPP, including recurrent
breakpoints [18-20], a surrounding genomic architecture
consisting of LCRs (repeat gene clusters in this case) [21],
reciprocal recombination [22,23] and occurrence by NAHR
[21] (Figures 1 and 2).

These findings crystallized and solidified the concept of
genomic disorders [24]. The concept of genomic disorders is
predicated on two general ideas: firstly, that genomic
disorders occur by rearrangements of our genome (the

human genome is disordered) and not by DNA-sequence-
based changes (that is, not by base-pair changes or by SNPs
that cause disease); and secondly, that genome architecture
incites genome instability. This article stated that structural
characteristics of the human genome predispose it to
rearrangements that result in human disease traits, and that
genome alterations can occur through many mechanisms,
including homologous recombination between region-
specific LCRs [24]. This first mechanism was later termed
NAHR [14]. The term NAHR stresses the mechanism by
which these particular rearrangements of the human genome
occur, including the requirement for homologous substrates
and the observations of gene conversion and recombination
hotspots. Furthermore, NAHR can cause duplication, deletion
and inversion. In contrast, unequal crossing-over usually
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Figure 2

Reciprocal recombinations at the Charcot-Marie-Tooth disease type |A (CMTIA) duplication locus in 17p12 and the Smith-Magenis syndrome (SMS)
locus in 17p11.2. (@) The non-allelic homologous recombination (NAHR) in which the low-copy repeat (CMT | A-REP) substrates lead to reciprocal
CMTIA duplication and HNPP deletion [15]. (b,d,f) Analogous data for the SMS deletion and its predicted reciprocal duplication [23]. (c) The model for
the crossover and the predicted junction fragments; (e) the Southern analysis supporting this model. Note that these are the same molecular mechanism
(NAHR), but it is shown horizontally (as usually depicted by molecular biologists) in (a) and vertically (as usually depicted by cytogeneticists) in (b).

Abbreviations: cen, centromeric; dist, distal; mid, middle; prox, proximal; tel,

telomeric.

refers to the segregation of marker genotypes and can lead
to duplication or deletion chromosomes [25-27].
Admittedly, almost all of the cases used to bolster the
argument for genomic disorders in the original article on
the topic [24] occurred mechanistically by NAHR.
However, both Pelizaeus-Merzbacher disease (MIM
312080), caused by genomic duplications, and spinal
muscular atrophy (MIM 25330), associated with genomic
deletion, were mentioned as other diseases commonly

caused by DNA rearrangements that might reflect genomic
instability due to unique genome structural features [24].

The same article [24] also suggested that for disorders
caused by genomic deletion rearrangements, the reciprocal
duplications might be under-recognized. Examples were
provided of contiguous-gene-deletion syndromes, such as
Williams-Beuren (WBS; MIM 194050), Prader-Willi (MIM
176270), Angelman (MIM 105830) and DiGeorge/velo-
cardio-facial syndromes (DG/VCFS; MIM 188400), that
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might result from a molecular mechanism similar to that of
SMS and suggested the reciprocal duplication, as seen for
SMS, may occur [24]. It was also pointed out that such
patients with duplications might have different clinical
findings and milder phenotypic features than those with
deletions, because excess information is usually less detri-
mental to the organism than deficiency. Therefore, these
cases could escape identification through under-ascertain-
ment or be missed by routine cytogenetic analysis because of
the further technical challenges required to recognize
duplications compared with deletions [24].

The first predicted reciprocal microduplication syndrome
was identified shortly thereafter, the duplication of the
genomic interval deleted in SMS [28] (Figure 2), but it
would take another 7years to systematically study and
describe the phenotypic variability of what has come to be
known as the Potocki-Lupski syndrome [29] (PTLS; MIM
610883). Interestingly, these clinical studies showed that
autism, as defined by objective psychological testing, was
one feature of PTLS [29], thus linking the autism trait to a
specific CNV. The apparent predicted reciprocal duplications
for both the DG/VCFS [30-32] (MIM 608363) and WBS
regions [33-35] (MIM 609757) followed rapidly. Reciprocal
duplication syndromes are now being defined for almost all
microdeletion syndromes in which the deletion is flanked by
LCRs/SDs and that occur by NAHR (for example,
dup(17)g21.31q21.31 [36] and duplication of the Sotos syn-
drome (MIM 117550) region [37]); these are often described
within the same year [38,39] or even the same paper [40-44]
as the microdeletion syndromes themselves.

After several years of study, the rules for NAHR were
elucidated [14,24]. A hallmark experimental approach
based on an understanding and implementation of the new
knowledge of the NAHR mechanism was executed by Evan
Eichler and colleagues. With a reference human genome
sequence in hand [45-47] and the technology of genome-
wide array comparative genomic hybridization (aCGH)
[48], they designed a research array to interrogate genomic
intervals flanked by LCRs greater than 10 kb in length, over
95% sequence identical, in direct orientation, and mapping
within 50 kb to 5 Mb of each other [49,50]. These arrays
were then used to assay patient cohorts with idiopathic
mental retardation and other birth defects. In this manner,
they defined five new microdeletion syndromes (deletions
of 17q21.31 [50-54], 17q12, 15924, 15q13.3 and 1q21.1)
within less than 2 years [44,50,55-57]. Interestingly, the
17q12 deletion was found to be associated with maturity-
onset diabetes of the young [56,58] a common, albeit
genetically heterogeneous, disorder. The latter two
deletions, 15q13.3 and 1q21.1, have also been associated
with schizophrenia [59-61], whereas 15q13.3 has also been
associated with idiopathic seizures [57,62], mental
retardation [57], autism [63,64] and behavioral
abnormalities with antisocial behavior [64].

Genome Medicine 2009, Volume |, Issue 4, Article 42

Many other common and complex disorders are being
shown to be due to CNV in some fraction of patients. Thus,
genomic disorders encompass not only rare multiple con-
genital anomaly and mental retardation syndromes, but
also common and complex traits, such as autism and
schizophrenia, as well as other neurobehavioral
phenotypes. For instance, deletion and duplication 16p11.2
can also cause autism [40,65]. Both duplications and/or
deletion CNVs of the human genome have been associated
with HIV susceptibility [66], Crohn’s disease [67-69],
glomerulonephritis [70], psoriasis [71], systemic lupus
erythematosus [72,73], pancreatitis [74] and many other
human diseases. Furthermore, animal models for SMS and
PTLS show that obesity and several of the objectively
assayed behavioral traits can result from a specific gene
CNV (i.e. the mouse Rai1 gene [75]).

In the past decade, many important basic science questions
have also been addressed through studies of genomic
disorders. NAHR hotspots [15,16] had been identified long
before allelic homologous recombination (AHR) hotspots
[76] were generally appreciated through studies that emerged
from the HapMap Project [77-78]. NAHR and AHR hotspots
were found to coincide at the two loci where they were
studied [79]: the CMT1A duplication/HNPP deletion locus
[80] and the neurofibromatosis type 1 deletion locus at
17q11.2 [81]. Fundamental insights into human recombina-
tion have been gleaned from studies of genomic rearrange-
ments and genomic disorders [82-86]. Importantly, locus-
specific mutation rates for de novo genomic rearrangements
that result in CNV were shown both theoretically [87] and
experimentally [88] to occur at frequencies of 100 to 10,000
times greater than locus-specific mutation rates for de novo
SNPs. Interestingly, the deletions can outweigh duplications
about 2:1 at selected autosomal loci and about 4:1 on the Y
chromosome at a given locus for rearrangements generated
by NAHR [88]. Studies of genomic disorders have also
provided fundamental insights into human gene [89-93] and
genome [94-100] evolution. Such studies were among the
first to provide examples of exon accretion by segmental
duplication in the evolution of novel gene functions [91],
gene duplication/triplication by de novo CNV formation
[92,03], accumulation of LCRs/SDs during primate genome
evolution [98,99], and LCRs/SDs at evolutionary chromo-
somal breakpoints [95,98] and at breaks in synteny between
the mouse and human genome [94,100].

As genome-wide tools became more readily available after
the consecutive completion of the draft, reference and
finished human haploid genome [45-47], many laboratories
shifted their experimental approach from locus-specific and
genocentric thinking to genomic studies. And as a result, the
field of genomic disorders exploded. First, it became
apparent that structural variation including CNV [101] of the
normal human genome was much greater than anticipated
[102-105]. In fact, any two individuals vary more as a result
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of CNV in terms of numbers of base-pairs involved than all
the SNPs combined [104]. Moreover, the clinical implemen-
tation of genomic techniques enables high-resolution human
genome analysis and can resolve CNVs 10, 100 and even
1,000 times smaller than the 3-5 Mb resolution afforded by a
clinical G-banded karyotype. This has revolutionized
medical genetics and bolstered the emerging field of genome
medicine [106-121]. Array-based technologies can resolve
pathogenic subtelomeric CNV better than can subtelomere
fluorescent in situ hybridization [119] and can reveal
genomic rearrangements in patients with apparently
balanced translocations [120,121]. Moreover, these techno-
logies also enable mosaicism to be detected as a cause of a
clinical phenotype [114,115]. This was not visualized
previously because of stimulation of selected cell types for
karyotype analysis [114,115]. Such techniques have also
enabled prenatal detection of submicroscopic abnormalities
[122-126] and the detection of de novo genomic
rearrangement events causing sporadic birth defects [127].
Submicroscopic duplications as a cause of X-linked mental
retardation [128,129] and other mental retardation syn-
dromes [130,131] are now revealed. Many new genomic
disorders caused by submicroscopic duplications and
deletions continue to be described and are catalogued in the
DECIPHER database [132].

Continued systematic investigations of rearrangements
associated with genomic disorders have uncovered a new
mechanism for rearrangements within our genome. As
explained above, research on recurrent rearrangements with
breakpoint clustering at LCRs/SDs enabled the elucidation
of the NAHR mechanism. Recent studies of genomic dis-
orders caused by non-recurrent rearrangements (rearrange-
ments of different sizes and with different breakpoints in
each individual) have uncovered a new replication-based
human genomic rearrangement mechanism termed FoSTeS
(fork stalling and template switching). First unveiled through
studies of PLP1 duplications associated with Pelizaeus
Merzbacher disease [133], a genomic disorder by the criteria
originally defined [24], the mechanism has now been shown
to cause some LIS1 duplications [134], MECP2 duplications
[03], PMP22 and RAI1 duplications [135], PMP22 exon
deletions [135] and some interstitial 9q34 deletions thought
to represent terminal deletions [136]. The FoSTeS
mechanism, as described based upon the phenomenology of
breakpoint/join point sequence analysis in human genomic
disorders, has been generalized and the molecular details
refined, including through genetic and genomic observations
on chromosomal rearrangements in other model organisms
(for example, Escherichia coli and yeast), and resulting in
the microhomology mediated break induced replication
(MMBIR) model that may be operative in all life forms [137].
MMBIR can explain many complex rearrangements [137],
such as duplication-triplication-duplication (Figure 3). It
may be a novel repair pathway for one-ended, double-
stranded DNA generated from collapsed replication forks
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[137]. Such collapsed forks can occur as a replication fork
proceeds through a nick or single-strand region generated by
local genome architecture. Furthermore, MMBIR predicts
that complex human genomic rearrangements will often be
accompanied by extensive loss of heterozygosity and, in
some cases, by loss of imprinting because the chromosome
that is copied may be either the sister or the homolog [137].
Such loss of heterozygosity could lead to regional
uniparental disomy [138] as a novel mechanism for disease.

In addition to NAHR and FoSTeS/MMBIR, other mecha-
nisms may remain to be uncovered that fulfill the original
conception of genomic disorders. Genome architecture may
be different for individuals as a result of structural variation
within a particular population [50-54,139], so particular
individuals may be more susceptible than others to having
either a genomic disorder or an offspring with one. Further-
more, other mechanisms, such as nonhomologous end
joining and retrotransposition, can lead to structural varia-
tion that results in genomic disorders [140], and unique
genome architectural features other than LCR/SD, such as
AT-rich palindromes [141,142] and non-B DNA confor-
mations [86,143], can incite genome instability. Systematic
studies of disorders that occur by such mechanisms may
provide insights into local genome architecture that could
potentially influence susceptibility to rearrangement; they
may thus delineate the ‘rules’ for FoSTeS/MMBIR as was
done for NAHR.

It was initially not known whether human genomic
rearrangements reflected random DNA breaks or perhaps
selection/survival of genomic regions that could tolerate the
gains and losses of CNV. Over the past decade, our thinking
has evolved and we can now speak of specific mechanisms
(NAHR, MMBIR/FoSTeS, nonhomologous end joining and
retrotransposition), and elucidation of the rules for such
mechanisms has enabled powerful predictions that have had
a direct clinical impact. We have also learnt some of the
‘rules’ regarding genome architecture. It seems that each
rearrangement mechanism can occur anywhere in the
human genome, but one mechanism may be preferred over
another at a given locus depending on local genome
architecture (for example, LCR/SD or non-B DNA). We have
realized that CNVs are as important as SNPs to human
mutation and perhaps even more important with regard to
human sporadic traits [87,127]. Whether CNV or SNP is the
more favored mutational event at a given locus may again
reflect what the local genome architecture is around that
locus [140]. The elucidation of both the mechanisms of CNV
formation [144] and how CNVs affect genes to convey
phenotypes [145], whether the latter occurs through altered
copy number [75,146], gene dysregulation or position effect,
has to a large extent come from studies of genomic disorders
[147]. The clinical phenotype allows the ascertainment of the
genomic rearrangement from the population to enable the
molecular studies.
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(b)

Figure 3

Complex genomic rearrangements. Shown are examples of complex duplication-triplication-duplication rearrangements at MECP2 [93] and LIS/ [134].
(a,b) Array CGH using Agilent custom-designed arrays with interrogating oligonucleotides every few hundred base-pairs from the regions of the genome
containing (a) MECP2 and (b) LIS/. Red dots indicate gain of copy number in relation to sex-matched reference DNA; black dots, copy number neutral;
green dots, loss of copy number. (c,d) fluorescent in situ hybridization confirmation of the triplication of (c) MECP2 and (d) LIS/ (red, probe
interrogating the indicated gene; green, control probe from same chromosome). Note that MECP2 (c) is on the one X chromosome in this male patient,
whereas LIS/ (d) is on an autosome and shows both the duplicated (two red signals paired with one green control) with the normal chromosome 17

homologue, with only one copy of LIS/ paired with the green control signal.

The ‘rules’ for MMBIR/FoSTeS remain to be further defined
with respect to the human genome architecture that might
stimulate the events [93,133]. Unquestionably, many more
genomic disorders are still to be defined and many
Mendelian and complex traits may be shown to be caused by
CNV, rather than SNPs of a given gene in selected patients.
Thus, a potentially more fruitful and cost-efficient approach
to the study of human complex traits may be to examine a
few hundred patients for CNV associated with the trait,
rather than perform SNP-based GWASs. Such an approach
recently yielded insights into Wolf-Parkinson-White
syndrome, a common pre-excitation phenomenon resulting
in a characteristic electrocardiographic pattern [148].
Certainly all GWASs should look for CNV and not just focus
on SNPs [149].

Perhaps the most significant findings regarding the human
genome that were not anticipated by the human genome

project [45-47,77,78] were the elucidation of genomic
disorders and the discovery of the extent to which we vary
from each other genetically as a result of CNV. In fact, the
establishment of a reference haploid versus diploid genome
truly reflects our naiveté with regards to the importance of
CNV for human traits. With further widespread clinical
implementation of high-resolution human genome analysis,
submicroscopic genomic duplications and deletions will
probably be identified at an increasing rate. Potentially, the
vast majority of the human genome could be involved in
CNV, perhaps more of the genome will be subject to, or
tolerate, duplication CNV than deletion as observed for
chromosomal studies [150,151], and ‘reverse genomics’ could
be used to systematically delineate genomotype-phenotype
correlations [134]. The genomic change accompanying a
CNV results in a genomotype that may include either more
than one, or no genes involved in conveying the specific
phenotype and thus is distinct from a genotype.
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Such studies will directly address the question: what is the
genomic code? This is needed because the genetic code has
only addressed the functions of under 2% of the human
genome: the coding exons. Systematic analyses of the size,
extent and genomic content of CNV and associated pheno-
types might lead to a new understanding of ‘cis-genetics’, the
phenotypic consequences of CNV encompassing multiple
genes and/or regulatory sequences on one chromosome
homolog, as opposed to the ‘trans-genetics’ focus of
Mendelian segregation and transmission of homologous
chromosomes. Furthermore, the extents to which human
genomic rearrangements occur somatically in mitotic cells
are only beginning to be explored [135,152-156]. Thus,
genomic disorders will probably continue to be a fruitful
area for ongoing and future research.
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