Bel ™

Bibliothéque nationale

Youw Py bV SOV @

(Ao Mp Myie (Ofrern ¢

AVIS

du Canada
xsitions and Dwection des acquisitions et
aphic Services Branch des services bibliographwques
385 Welngton Street 395, rue Welngton
Onawa, Ontano Onawa (Ontano)
K1A ON4 K1A ON4
NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of

reproduction possible.

If pages are missing, contact the
university which granted the

degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor

typewriter ribbon or if the
university sent us an inferior

photocopy.

Reproduction 'n full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and

subsequent amendments.

Canada

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec ['université
qui a conféré le grade.

La qualit¢é d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées & l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielie,
de cette microforme est soumise
4 la Lol canadienne sur le droit
d’suteur, SRC 1970, c. C-30, et
ses amendements subséquents.

An Extensible Query Optimizer Architecture for the
TIGUKAT Objecthase Management Systein

By

Adriana Munoz Q/

A thesis
submitted to the Faculty of Graduate Studies and Research
in partial fulfillinent of the requirements for the degree
of Master of Science

Department of Computing Science

Edmonton, Alberta
Spring 1994

Bel G

Bibhographic Services Branch dESSENtﬂsbiﬁﬂgﬁ!im$£§

The author has granted an
irrevocable non-exclusive licence
aliowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thnls
Neither the thesis nor substantial
oxh'mfmnltmayhpdnhdﬁr
his/her permission.

Yioun P VilE iR

(kM Nohe nbeeen

L'auteur a accordé une licence
irrévocable et non exclusive
permettant & la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
de queique maniére et sous
queique forme que ce soit pour
mettre des exemplaires de cette
thise a la disposition des

L'auteur conserve la propnété du
droit d'auteur qui protége sa
ﬂihi Nilathhinldnutnm

antieis de celleci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-11305-1

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Adriana Munoz

TITLE OF THESIS: An Extensible Query Optimizer Architecture for the
TIGUKAT Objectbase Management System

DEGREE: Master of Science

YEAR THIS DEGREE GRANTED: 1994

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly or

scientific research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided neither the thesis nor
any substantial portion thereof may be printed or otherwise reproduced in any
material form whatever without the author’s prior written permission.

(Signed) (/ce‘“‘“"'% %7« s 4
Permanent Address: s
(‘alle 23 No. 36A - 12,
Bogota.

C'olombia, South America

Date: _‘é_”.‘;'ir.‘;l..:a_é/_c/‘f

UNIVERSITY OF MLBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research for aceeptance, a thesis entitled An Frtensible
Query Optimizer Avchiteeture for the TIGURAT Objecthase Manage ment Syste m
submitted by Adriana Mur oz in partial fulfillment of the requirements for the
degree of Master of Seienee,

Lo Do b0

Supervisor: M.T. Oz

=% A JH" — -
E DASzafpdn ACompnting Science)

LY . — — f‘% ~ ;f;j

\iﬁﬁfrna!: M. Ran—~¢ MEIering) 7{'3

Date: Saer *-ri_’jy: 2 &f/ti’ “

To my beloved friend Allan.
and to Mom and Dad

requirements, creating the need of extensibility in the gquery optimizer to e able
to handle the diversity of those requirements.

This thesis deseribes the development of an extensible query optimizer arehn
tecture for the TIGURKAT Objecthase Masagement System, which has a aniferim
behavioral object model DBMS that represents every system component as a
first-class object. Consistent. with this philosophy, every component of the opti
mizer is modeled as a first-class object, providing the altimate extensibility that
the object-oriented paradigm offers. This thesis also deseribes how the optimizer

components are modeled as extensions of the TIGUKAT type system.,

Acknowledgements

i wonld like to thank my supervisor Dr. M, Tamer Ozsu for suggesting the topic
of this research and for his invaluable guidance and support in writing this thesis.
He provided an excellent research environment for my work.

Thanks are also due to Dr. Duane Szafron for his invanable counsel about
the object-oriented design of the extensible query optimizer architecture,

I would also like to thank the members of my examining committee, Dr. Ming
able eriticisms, comments and suggestions that helped me to produce the final
version of this document.,

I would like to acknowledge with appreciation all those who have helped me
during my graduate studies. Thanks to my friends: lan Parsons. and Kaladhar
Voruganti, for the time they spent helping me to proofread this thesis. 1 am also
thankful to my friends: Randal Peters, Yuri Leontiev, and the rest of the database
group for the very constructive discussions that helped me to clarify my ideas in
this field.

Finally, I wish to express my gratitude and appreciation to my beloved friend,
Allan, my parents, sisters, brothers and the rest of my family for their constant

support and encouragement throughout the completion of this dream.

Contents

1 Introduction 1

L1 Query Processing Methodology 00000 ... 2

I.1.I Relational Query Processiug Methodology 2

112 Object-Oriented Query Processing Methodology 2

1.2 Characterization of a Query Optimizer 3

1.3 Seopeof Thesis 1

1.4 Organizationof Thesis &

2 Related Work 7
2.1 “Hard-wired” Object-Oriented Query Optimizers

2L Orion o .. N

2.1.2 ObjectStore0 10

213 02 oo, 10

214 Revelation L 0

2.2 Extensible Object-Oriented Query Optimizers 12

2.2.1 Lanzelotte and Valduriez Proposal I3

222 Open OODB Query Optimizer. 4

2.2.3 Epoq Architecture, ... W

3 TIGUKAT Overview 16

3.0 ObjectModel 16

32 QueryModel 2

322 The Objeet Algebra . 00 00 L0 00000 oo

4 Optimizer Architecture

1.1 Funetions as Objects .0 00000 000000
1.2 Quenies as Objects 00000 00 00000

1.2.1 Query Compilation e e e
1.3 Query Optimizer as an Objeet .0 00000000 0 oL,

5 Representation of Search Space

5.0 Object Algebra Processing Trees . 00 00 00000 0000,
A Execution Plan Generation 0 0. ..o,
5.1.2 Execentionof the OAPTo 0000

5.2 Algebraic Transformation Rules,
5.2.1 Specitication of Algebraie Transformation Rules
5.2.2 Algebraic Transformation Rules as Objects
5.23 Rule Application

6 Modeling of Search Strategies

6.1 Search Strategies L . o
6.1.1 Algebraic Heuristic Search Strategies
6.1.2 Cost-controlled Heuristic Search Strategies
6.1.3 Enumerative Search Strategies
6.1.1 Randomized Scarch Strategies

6.2 Search Strategies as Objects

6.3 Customizing the Search Strategy

6.4 Extending the Search Strategy Component,

7 Modeling of Cost Functions

7.1 Cost Model Functions00 v.o..
7.1.1 Total Time Cost Function
7.1.2 Response Time Cost Function

7.2 Cost Model Functions as Objects

7.2.1 Algebraie Node Cost Funetions

ko

.2 Exeention of Cost Model Funetions

8 Implementation of TIGUKAT Query Optimizer
8.1 Mapping of TIGUKAT Object Madel to €y 4
1.1 Objects

.12 Types

813 Tvpe Hierarchy .o 00 00 0000000
8.1.4 Collections and Classes
8.1.5 Behaviors and Fuanctions

8.2 Mapping of TIGUKAT Query Optimizerto C4 4 . L.,
R.2.1 Search Space 0000 L L
8.2.2 Search Strategy

8.2.3 Cost Model Fanetions

9 Conclusions

9.1 FutureResearch,
Bibliography
A Walk Through the Optimizer Architecture by Example

B Extensions to TIGUKAT Type System

s

L2]
ST
SN
SN
SN
N0
N0
")
L
Bl
"
9

92
94

100

107

List of Tables

e

o
t

1.1
4.2

-t -t -l -t
. b N .
= -— e —

-t
.
-t

5,1
-2

6.1
6.2
6.3
6.4

7.1

Summary of optimization features, L. L. 9

Feature comparison of extensible optimizers. 13

Behavior signatures pertaining to example specific types of Figure

Behavioral summary of T_functiontype. 34
Behavioral summary of T.querytype. 35
Behavioral summary of Tcontext type. 42
Behavioral summary of TalgOptype. 43
Behavioral summary of T_ruletype. 5l
Behavioral summary of T_algEqRuletype. 53
Behavioral summary of T formulatype. 56

Behavioral summary of operations on trees defined on T.algOp type. 57

Behavioral summary of T_searchStrattype. 65
Behavioral summary of TheurSStype. 68
Extensibility behaviors for implementing heuristic and cost-controlled

heuristic search strategies. 69
Behavioral summary of T.CCHeurSStype. 70

Behavioral summary of statistics defined on T_.collection type. . 79

Behavioral summary of extended non-atomics primitive types for

optimizationpurposes. 108

B.2

B.3

B.4

Behavioral summary of extended non atomics primitive types for
optimization parposes. L Lo 0L L oL L L L
Behavioral ssimmary of non-atomies types added 1o the primitive
type system for optimization purposes, 1l
Behavioral summary of non atomies types added 1o the primitive

type system for optimization purposes.]

List of Figures

3.0 Primitivetypesystem . . . oL L L e e T
3.2 Geographic Information System in TIGUKAT object model. . . . 20
1.1 Optimizer as part of the type system00 0.0, 32

5.1 Collection (L_impl AlgOp) of implementations for algebraic oper-

E T P 1 |
2 Treeshapeofan OAPT. 42
.3 Imtal OAPT e ... 45
5.4 Transformed OAPT by using Rule 5.1 60
6.1 Type hierarchy for T_searchStrat. 67
7.1 Cost model functions as instances of T.costFunc. 75
7.2 Collection L_implAIgOp and class C_costFuncAlgOp. 77
7.3 OAPT annotated with algebraic node cost functions. 78

7.4 Execution of the total time cost model function ¢f on an OAPT. . 83

A.l Object algebra processingtree 106

Chapter 1

Introduction

One of the Sli‘lﬁ‘!!glhﬁ of the relational database management svstems (I)HMHs) is

“which™ data thy want ﬁ‘ll‘ii‘“‘il from the database withont having to slu-rify
“how™ that data is accessed. The determination of the most officient execution
progiam to retrieve the requested data is taken over by the DBMS, in partic.
ular the query optimizer. The first generation objecthase management systems
(OBMSs)! have been criticized [41] for their lack of declarative query capabili-
ties. The newer systems and research prototypes have started to inelude these
capabilities, but their optimization is still not very well understoond.

These issues have been studied within the context of the TIGUKAT project?,
TIGUKAT is an OBMS [32] under development at the University of Alberta, It
has an extensible object model characterized by a purely behavioral semanties
and a uniform approach to objects. The model is behavioral in that objects are
accessed only by applying behaviors (which replace hoth the instance variables
and the methods available in other object models) to objects. Behaviors are
defined on types and their implementations are modeled as functions. Fvery

concept, including types, classes, collections, and meta-information, is a first-

‘Tbe term nl)tcﬂnr is used instead of the traditionally used object-oriented database he-
cause the objects that it contains may include not only data, but also code,

ITIGUKAT (tee-goo-kat) is a term in the language of the Canadian Inuit people mean-
ing“objects.” The Canadian Inuits, mmnmnly known as Eskims, are native to Canada with
an ancestry originating in the Arctic regions of the country.

class object. The uniformity of the object model extends to the query model,

treating queries as first-class objects [36]. The query model consists of a caleulus,

1.1 Query Processing Methodology

TIGUKAT query processing methodology is similar to relational query pro-
cessing, and follows the proposal for object-oriented query processing by Straube
and Ozsu [42]. There are differences in the query models, however, in that

its object model provides.

1.1.1 Relational Query Processing Methodology

In relational systems, query processing generally follows a straightforward
methodology [14]: decomposition, optimization, and execution. The first step,
decomposilion, takes a query expressed in relational calculus, checks it for con-
sistency, and translates it into an algebraic query. The query is represented as a
processing tree where the leaf nodes represent base relations and the intermediate
nodes correspond to relational operators. The second step, optimization, selects
an “optimal” algebraic query among a family of equivalent queries. Optimal, in
cessing tree, each of whose nodes is annotated with the best execution algorithm
for that particular algebraic operation (called the access path). Then, an execu-
tion plan is generated that mapps this processing tree to a set of storage system
calls. The last step in the methodology executes the execution plan starting from
the leaves up to the root.

1.1.2 Object-Oriented Query Processing Methodology

A query processing methodology for object-oriented databases is proposed by
Straube and Ozsu in [42] that follows closely that for relational systems. In this

methodology. queries. expressed in a declarative query langnage, are first normal-
ized and converted to an equivalent algebra expression. The expression can be
viewed as a tree whose nodes are algebra operators and whose leaves represent

instances of classes in the database. In the next step, the algebra expression is

checked for type consistency. Then, algebraic optimization is performed which
consists of applying equivalence preserving rewrite rules to the type consistent
algebra expression. These rules are defined as part of this work, but they are
not implemented. The last step in query processing, called execution plan gen-
eration (EPQG), produces an ordering of primitive low-level operations from the
optimized algebra expression. This ordering ix then passed to an object manager
(OM). An important difference of this methodology from relational ones is that
the encapsulation property of an object-oriented system may not allow the op-
timizer access to storage information that is needed for optimization. An EPG
method is proposed in [43] to solve this problem by replacing cach individual
algebra operator from the transformed object algebra expression with a “best”
subtree of object manager calls. These object manager calls are part of the set
of low level object manipulation primitives that constitutes the interface to the
object manager. This ordering of object manager calls is then passed to an object

manager for further optimization and execution.

1.2 Characterization of a Query Optimizer

is the choice of the “optimum” state in a state space. Slales are confignrations of
the objects relevant to the problem. Distinguished states are the initial and the
goal states. A class of states defines the scarch space. Actions on states generate
a set of successor states. These actions are controlled by the search stralegy. In
the case of a cost-controlled search strategy, a cost function applied to a state is
used to measure the effects of the optimizer actions.

In algebraic query optimization, each state corresponds to an algebraic query

exeention schedule represemted as a processing tree (PT) [28]. A processing tree
(PT) is a representation of a query, after it has been translated from a TQL
statement to a corresponding algebraie expression. In this research, the processing
trees are called object algebra processing troes (QOAPT) to differentiate them from
the traditional relational PTs.

The state space is a family of equivalent (in the sense of generating the same
result) algebraic queries that can be generated by applying the transformation
rules defined for the specific algebra. The goal is to move from one state to
another using a scarch strategy, applying a cost function to cach state in the
search space and finding the one with the least cost.

Thus, to characterize a query optimizer four things need to be specified:
I. the states in the search space;

2. the transformation rules that generate the alternative query expressions

search space; and
4. the cost function that is applied to each state.

1.3 Scope of Thesis

This thesis involves the development of a query optimizer architecture for
TIGUKAT. There are a number of design considerations that were important in
designing the query optimizer such as respecting the encapsulation of objects as

query optimizer should be extensible in every respect. There are a number of
reasons for this insistence:
I. The optimization techniques for OBMSs are not fully developed and the
alternatives are not completely understood. Thus, the techniques that are
included in today’s optimizers are likely to change as research results emerge.

It should be possible to easily incorporate these into the system. The prob
lems that have been identified in the optimization of object- oriented queries

and the technigues that have been proposed to solve them are survevesd in

[30].
2. There is no consensus as to the set of object algebra operators that should bhe

supported by these systems. Furthermore, OBMSs shonld allow application
specific algebra operators to be defined and managed by the system. In
TIGUKAT, the definition of these operators is casy since they are defined
as behaviors on collections. If the optimizer cannot deal with these operators

uniformly. the purpose of defining them is defeatedd.

3. The application domains supported by the object-oriented technology have
differing query processing/optimization requirements. Therefore, the opti-

mizer design should support easy customization of the system.

This thesis describes the development of the architeeture for the TIGUKAT
query optimizer. This architecture allows every aspect of the algebraic query op-
timizer (search strategies, search space, algebraic transformation rules, and cost

functions) to be extended. The extensibility approach presented in this thesis

cussed in Chapter 2) in that we use an object-oriented approach to extensibility
that models each component of the query optimizer as an object. The incorpo-

is described. The work should provide an indication of the viability of using an
object-oriented approach to provide extensihility to a query optimizer by modeling

its components as objects.

;_m

1.4 Organization of Thesis

Chapter 2 discusses some of the previous work in object-oriented query op-
timization with particular emphasis on the extensible architectures. C‘hapter 3
summarizes the TIGUKAT object model and the query model, especially the al-
gebra. The overall architecture of the TIGUKAT query optimizer is described in
Chapter 4. Chapters 5, 6, and 7, respectively elaborate on the extensible represen-
tations of the search space, the search strategy, and the cost functions. Chapter 8
describes the implementation of the query optimizer using the (‘44 language.
Conclusions and suggestions for further research are discussed in Chapter 9.

Appendix A presents an example query creation and optimization scenario to
highlight how the various parts of the architecture interact. Appendix B presents
the specification design of the extensions to the TIGUKAT type system for query
optimization purposes.

Chapter 2

Related Work

Many existing OBMS query optimizers are either implemented as part of the
object manager on top of a storage system, or they are implemented as client
modules in a client-server architecture. In most cases, the four dimensions that
characterize a query optimizer (states, search space, search strategy and cost
function) are “hard-wired” into the query optimizer. These optimizers forus on
specific techniques that solve particular optimization problems. For example, one
highly visible problem in optimization of object-oriented queries is path expres-
sions. Such expressions imply a navigation through objects to find the end of a
path. Research in this area includes exploring indexing for paths (e.g., Object-
Store [31]), optimization in the presence of arbitrary methods along the path (e.g.,
Revelation project [12]), and the use of clustering and other storage information
to determine path accesses (e.g., O; [4]). Some of these query optimizers are
briefly discussed in Section 2.1.

Given that extensibility is a major goal of OBMSs, one would hope to develop
an extensible optimizer that accommodates different search strategies, different
algebra specifications with their different transformation rules, and different cost
functions. Rule-based query optimizers [9] provide a limited amount of extensibil-
ity by allowing the definition of new transformation rules. However, they do not
allow extensibility in other dimensions. In this chapter, some new proposals for
extensibility that look promising for OBMSs are briefly highlighted in Section 2.2.

A more detailed diseussion of these issues can be found in [H]

2.1 “Hard-wired” Object-Oriented Query Optimizers

In this section, the following query optimizers: Orion,ObjectStore, Q,, and
Revelation, that focus on specific techniques to solve particular optimization prob-

Table 2.1 summarizes the main optimization featurves that are supported by

P

these query optimizers. These features were divided into two groups (that are
shown separated by a double line in Table 2.1) as follows:

o The first grony lists features abont whether or not the query optimizer
respects the encapsulation of objects as provided by tl » object-oriented
paradigm, whether or not the optimizer uses semantic and/or algebraic
transformation rules, and whether or not the optimizer factorizes common
subexpressions that can appear in the query. Semantic transformations
are transformation rules that exploit the semantics of the inheritance re-
lationship that the object model provides. Algebraic transformations are
transformation rules that create equivalent expressions based upon pattern

matching aud textual substitution.

path expressions.

For a given row ¢ and column j in the Table 2.1, an entry with value Yes means
appears in the row i. The value No means that the query optimizer does not
support that feature, and the value — means that there is no information about
whether that query optimizer supports that feature or not.

2.1.1 Orion

The Orion project [22] is the first attempt to define a query model for OBMSs
that is consistent with object-oriented concepts. This model of queries is based

— Optimization features

especting encapsulation

Orion

0\

[ObjectStore |
B R C—

No

Semantic transformation rules

Yes

Algebraic transformation rules

No

Yes

_Factorizing common subexpressions

ethod optimization along paths

Yes

o

No

Yoo

iﬁdeiing for paths | Yex

(Tustering fpf path accesses - Yes — AT AT

Table 2.1: Summary of optimization features,

on the view that a query model may be defined as a subschema of the database
schema graph which is an acyclic graph. The subschema that is called a query
graph includes only the classes (and the hierarchios rooted at them) that partici-
pate in the predicates of the query. In Orion, a class is defined as a set of objects
which share the same set of attributes and mothods. A class provides the basis
for query formulation. Therefore, a query must be formulated against a class or a
class hierarchy rooted at that class. Orion query model extends the definition of
relational operations such as joins and set operators (e.g., union) to he consistent
with the semantics of object-oriented concepts.

In distributed Orion [19), the query optimizer nses algorithms to traverse trees
and transformation rules that make use of type information, instead of algebraic
transformation rules. This query optimizer takes into acconnt the semantios of the
class hierarchy and of complex objects. It defines complex object structures by
reference links in a part-of hierarchy that is called a class-composition hierarchy.
Orion uses path expressions to navigate through those complex object structures,
The class-composition graphs are manipulated to find efficient traversals (forward
and reverse), with access techniques such as indexes, applied to traversals. Orion
query optimizer breaks the encapsulation of objects by accessing directly infor-

mation about storage of objects (i.e. clustering) to determine path accesses.

2.1.2 ObjectStore

ObjectStore query model [31] is not uniform in the sense that a query not only
returns objects, but also boolean and collections which are not considered objects.
In this model, queries are based on selection of instances over a single collection.
The query syntax for requesting a single element of a queried collection is dif-
ferent from the syntax for requesting a subset of that collection. Nested queries
are allowed and they are existentially quantified. As far as we know, it does no!
yet implement join optimization. An essential feature of the language is that of
predicates over paths. In ObjectStore, query processing involves the following
steps: analysis, code generation, strategy selection, and execution. The first two
steps are performed at compilation-time and the last two at run-time. Optimiza-
tion focuses in comparison operators. ObjectStore has implemented parametric
optimization that is also called dynamic plan selection. Using this technique, the
query optimizer generates multiple execution plans at compile time and selects

an “optimal” execution plan at run-time based on various system parameters

information on paths and in the existence of indexes over paths that is obtained
by accessing directly the storage structures. This violates the encapsulation of

objects,

z-l :3 QZ

0, data model [2] is structural and non-uniform (i.e. values are not considered
objects). The data model has classes and concrete types. The query language,
0,Query, is functional and is a subset of the programming language. It works
in two modes [4): a programming mode which respects encapsulation, and an
interactive mode in which encapsulation can be broken by accessing directly the
state of the objects through their structure. O; queries can return objects as
well as values, but no dynamic creation of objects as a result of queries is allowed.
Another feature of the language is that of providing both universal and existential
quantifiers, while ObjectStore only provides existential and ORION only provides

10

universal quantifier. To tackle query optimization in ;. Cluet and Delobel {1, 5]

propose a formalism that

1. allows the integration of two existent query optimization approaches: alge-
braic equivalences similar to relational models and the concept of extension

that is specific to object models,
2. allows an exhaustive factorization of duplicated subgueries, and

3. supports heuristics that make use of information on indexing and clustering

in order to reduce the search space in the rewriting phase.

0O; query optimizer does not consider evaluation costs nor the cost of accessing

method code.

2.1.4 Revelation

The Revelation project [12] studies the optimization of queries respecting the
encapsulated behavior of the objects. Its main features are the Revealer and the
Annotator components that are preliminary phases to the optimization process
and a special operator to assembly complex objects that is called assembly. The
Revelation architecture has the following components: the Interpreter and the
Schema Manager, the Revealer, the Annotator, the Optimizer and the Query
Evaluator. The Interpreter takes an expression from the user and passes it to the
Revealer component. In queries that contain operations on objects, the Revealer
component is allowed to break the encapsulation of objects to find the method
code for that operation which is translated into an algebraic formalism to allow
the query Optimizer to manipulate it without having to break the encapsulation
of objects. In order to expand a node, the Revealer makes requests to the An-
notator which deduces the implementation method for the node by requesting
the Scheme Manager for information, and fills in this information for that node.
This approach can have some problems with inheritance of methods and dynamic
binding of methods because the Annolator may return a collection of values due
to ambiguity arising from multiple implementations of a single operator. After

the expression tree is annotated, it is passed to the Optimizer for optimization
and transformation to a query plan. The Optimizer is generated with the Volcano
optimizer generator [13]. The Revelation query optimizer has limited extensibility
provided by the Voleano optimizer generator. The algebra and the transformation
rules can be extended withont any problem, but more work is required in devel-
oping implementation rales which translates algebra trees into query plans, and
in estimating costs for query plans. The Optimizer produces a query plan, that is
passed to the Query Evaluator. The Query Evaluator is based on the extensible
Vuleano query execution software, which performs the plan execution. Volcano
query exeention software is extensible in the set of algorithms it employs. The
assembly operator [20] is a special operator whose task is to avoid an object-at-
a-lime reading of the different components needed in the evaluation of a query
involving complex objects. This operator is part of the query evaluator routines.

A prototype for this query processor is in the process of implementation.

2.2 Extensible Object-Oriented Query Optimizers

In this section, the following new proposals for extensible query optimizers are

highlighted: Lanzelotte and Valduriez proposal, Open OODB, and Epoq.

support. These features were divided into three groups (that are shown separated

by a double line in Table 2.2) as follows:

@ the first group lists the different dimensions that can be extended in a query

as well as the algebra and its corresponding execution algorithms.
® the second group contains those features that were listed in the first group
for the “hard-wired” query optimizers (that were presented in the previous

path expressions as those presented in the previous section.

12

[__Optimization * . ures [Lanzelotte ot al. TOpen OODE T Fpog)
Extensibility of trausformation rules | Yos T Yes T T¥es
Extensibility of search strategy Yos No 7 Ve]
Extensibility of cost model Yes Yoes
Extensibility of algebra Yos] Yos i
Extensibility of execution algorithms | Yes Y T

especting encapsulation No Y T
Semantic transformation rules No | No R
Algebraic transformation rules Yes TYes T Yes
Factorizing common subexpressions | Yos T
Method optimization along paths o ~ [Ne 7T T
Indexing for paths Yex — [Yes T T ¥es
Clustering for path accesses Yes - ¥es 17

Table 2.2: Feature comparison of extensible optimizers.

The entries in the Table 2.2 are interpreted in the same way as done for
Table 2.1.

2.2.1 Lanzelotte and Valduriez Proposal

Lanzelotte and Valduriez [24] propose an extensible query optimizer by repre-
senting the search space and the search strategy components as objects and using
the extensibility property that the object-oriented paradigm provides. However
the other components are not modeled as objects and it is not mentioned how the
cost component can be extended. This work considers the optimization of seleet,
join and implicit join operator (which models path expressions). Executions plans
are abstracted in terms of processing trees to have a more physical representation
of the query. The leaf nodes of a processing tree are physical database sets (or
subsets) and interior nodes represent joins that are explicit (i.c. a join predicate
is given), implicit (i.e. a path from an object to an attribute of the object), or
implicit with a path index. Their optimizer manipulates the processing tree by
applying tree transformation rules. These transformation can be applied using
deterministic and randomized search strategies based on the cost of the query.
The transformations can result in path traversals that can start from any point in
the path (not just the endpoints) and ca. be interleaved with other query opera-

13

tions [26]. This work is extended to handle recursive queries in [25] by introducing
a fixpoint operator chat handles the recursion. It makes use of a cost-controlled

search strategy,

2.2.2 Open OODB Query Optimizer

The Open OODB project at Texas Instruments concentrates on the defini-
tion of an open architectural framework for OBMSs and on the description of
the design space for these systems, The architecture of the system consists of
three main kinds of components: meta-architecture, support modules, and policy
porformers, The meta-architecture houses all the mechanisms that provide the
infrastructure for extending the operations of programming langnages. It also de-
modules include address space managers (e.g., virtual memory, object repository),
communications and translation managers for transferring objects among multi-
ple address spaces, and a data dictionary providing name and type management
facilities. The policy performer modules provide various database functionalities,
one of which is query processing. Query processing in Open QODB (3] is largely
influenced by the extensibility goals of the Open OODB project. The query mod-
ule is an example of intra-module extensibility. The query optimizer, built using
the Volcano optimizer generator {13], is extensible with respect to algebraic op-
erators, logical transformation rules, execution algorithms, implementation rules
(i.e., logical operator to execution algorithm mappings), cost estimation func-
tions, and physical property enforcement functions (e.g., presence of objects in
memory), but it is not extensible with respect to the search strategy. Volcano op-

timizer generates an exhaustive search algorithm (with some heuristics to prune

2.2.3 Epoq Architecture

Quite a diflerent approach to extensibility is proposed in the Epoq project
[29], where the search space is divided into regions. Each region corresponds to

14

The 1egions do not have to be mutnally exelusive and ditfer in the queries that they
can manipulate. the control (search) strategy that they use or in the objectives
that they want to achieve in query manipulation. For example, one region may
have the objective of minimizing a cos. function, while another region may at
tempt to pat queries in some desirable form. Alternatively, one region may cover
transformation rules that deal with simple select queries, while another region
may deal with transformations for nested queries. Since a region incorporates a
transformation strategy, it can be treated as the transformation of an input query
to an equivalent output query. This is what allows movement hetween regions,
There is a global control strategy to determine how the query optimizer moves
from one region to another [28).

In this approach, the extensibility of the search space is accomplished at the
region level since new regions can be defined to allow exploration of solutions that
were previously unavailable, The extensibility of the cost funection and the search

strategy is encapsulated within each region (by. for example, hicrarchically allow-

query. However, the feasibility and effectiveness of this approach have not yet

been verified.

-

Chapter 3

TIGUKAT Overview

In this chapter an overview of TIGUKAT is given. Section 3.1 outlines the main
characteristics of the TIGUKAT object model, including a description of such
concepts as objects, types, classes, behaviors, functions, and the relationships
among them. Section 3.2 describes the TIGUKAT query model which provides
the declarative query facilities to the obhject model. Two formal languages are

defined: an chject caleulus and an equivalent object algebra.

3.1 Object Model

The TIGUKAT object model [35, 39] is defined behaviorally with a uniform
semantics. The model is behavioral in the sense that the access and manipulation
of objects is restricted to the application of behaviors (operations) upon objects.
The model is uniform in that every concept within the model has the status of
a first-class object. An object is a fundamental concept in TIGUKAT. Every
component of information, including its semantics, is uniformly represented by
obgects in TIGUKAT. This means that at the most basic level, every expressible
elenient in the model incorporates at least the semantics of our primitive notion
for “object”.

The model defines a number of primitive objects which include: atomic en-
tities (such as reals, integers, strings, characters, etc.); types for defining and

16

T _collection

[T behavier |

T_function

il Tim.; :Ia

A T_real < T;intgg_Hliiatural |

Subtype

JSupertype

Figure 4.1: Primitive type system

structuring features of common objects; behaviors for specifying the semanties of
the operations which may be performed on objects; functions for specifying the
implementation of hehaviors over various tvpes forming the support mechanism
for overloading and late binding; cla~ses for the antomatic classification of objects
based on type; and collections for supporting general heterogencous user-definable
groupings of objects.

The primitive type system is shown in Figure 3.1 with the T_object type as
the root of the lattice and the T_null type as the base. T_null binds the lattice
from the bottom. It is a subtype of every other type in the system. T.null is
introduced in the model to provide an object which can be returned by behaviors
that have no result.

Objects are defined as (identity, state) pairs where identily represents a unigue,
immutable system managed object identity, and state represents the informa-
tion carried by the object. Thus, the model supports strong object identity [21],

meaning that every object has a unigue existence within the model and is dis-
tinguishable from every other object. On the other hand, the state of an object
e neapsulate s the information carried by that object. Conceptually. every ohject
is a composile ohjeet in TIGUKAT meaning that every object has references to
other objects,

There is a separation of means for defining the characteristics of object (i.e..
a typr) from the mechanism for grouping of instances of a particular type (i.e..
class). A type specifies behaviors, It encapsulates hidden implementation and
state for all objects that are ercated by using the type as a template. The set
o behaviors defined by a type is referred to as a set of native behaviors, and
it deseribes the interface of the objects of that type. Types are organized into
a lattice structure using the notion of subtyping. TIGUKAT supports multiple
inherilanee, meaning that one type can be an immediate subtype of several other
types.

A class ties together the notion of type and object instance. A rlass is respon-
sible for managing all instances that are created by using a specific type as a
template. Objects of a particular type cannot exists without an associated class
and every class is uniquely associated with a single type. Object creation occurs
only through a class using its associated type as a template for the creation.

A collection is another grouping construct in TIGUKAT. It is defined as a
general user-definable construct. It is similar to a class in that it also represents
an extent of objects, but it differs in the following respects. First, no object cre-

ation can occur through a collection; object creation occurs only through classes.

only one class. Third, the management of classes is implicit in that the system
automatically maintains classes based on the subtype lattice, whereas the man-
agement of collections is ezplicit, meaning that the user is responsible for their
extents. Finally, a class groups the entire extension of a single type (shallow cz-
tent), along with the extensions of all its subtypes (deep extent). Therefore, the

elements of a class are | ous up to inclusion polymorphism. On the other

18

hand. a collection may be heterogencous in the sense that it can contain ohjects
which may be of different types,

The subtypes of T_class nainely, T_class-class. T_type-class. anil
of these types can be found in [38].

Two other fundamental notions of TIGUKNAT arve behariors and funetions that
implement the behaviors. In the same way that an objeet’s specitication (tvpes) is
separated from the grouping of its clements (classes), the definition of a behavior
is separated from its possible implementations (function/methodds).

The semantics of each operation on an objeet is specitied by a behavior de
fined on its type. A function implements the semantics of cach behavior. The
implementation of a particular behavior may vary over the types which support
it. Nevertheless, the semantics of the behavior remains constant and wnique over
all types supporting that behavior. There are two kinds of implementations for
behaviors. A computed function consists of runtime calls to exeentable code. A
stored function is a reference to an existing object in the objecthase. The uni-
formity of TIGUKAT considers each hehavior application as the invocation of a
function, regardless of whether the function is stored or computed.

The following example illustrates a geographic information system in the
TIGUKAT object model. This example, taken from [39], will be used as a running

example throughout this thesis.

quiring advanced data representation and manipulation. A geographic informa-
tion system (GIS) [1, 47] has been selected as an example to illustrate the prac.
ticality of the concepts introduced and to assist i clarifying their semantics, A
GIS was chosen because it is among the application domains which can poten-
tially benefit from the advanced features offered by object-oriented technology.
Specifically, a GIS requires the following capabilities:

1. management of persistent and transient data,

v

TJntson waolmg T_geometricShape

v mm-a T e
T humc T_behavior T_type \
wmdow T_date
T_map T Iand T_water T_transport T_altitude
T bvost T clear T_pond T_nver T_road
T_dwobpod

‘\\s\/c//'

Figure 3.2: Geographic Information System in TIGUKAT object model.

2. management of large quantities of diverse data types and dynamic evolution
of types,

3. a secamless integration of sophisticated computer graphic images with com-

plex structured attribute data,

4. handling of large volumes of data and performing extensive numerical tab-

ulations on data,
5. management of differing views of data, and

6. the ability to efficiently answer a variety of ad hoc queries.

A type lattice for a simplified GIS is given in Figure 3.2. The example is suf-
ficiently complex to illustrate the advanced functionality of the query model we
present, yet simple enough to be understandable without an elaborate discussion.
The example includes the root types of the various sub-lattices from the primi-
tive type system in Figure 3.1 to illustrate their relative position in an extended

I. Abstract types for representing information on people and their dwellings,

These inchude the types T_person, T_dwelling and T_house.

[

. Geographic types to store information about the locations of dwellings and
their surrounding areas. These include the type T location, the type
T_zone along with its subtypes which categorize the varions zones of a geo

for displaying in a window.

3. Displayable types for presenting information on a graphical device, These
include the types T_displayObject and T.window which are application
independent and the type T_map which is the only GIS application specifie

object that can be displayed.

4. A type T_geometricShape that defines the geometric shape of the regions

type, but in more practical applications this type wonld be further special-
ized into subtypes representing polygons, polygons with holes, rectangles,

squares, splines and so on.

3.2 Query Model

The complete uniform behavioral ohject model has formed the basis for an
object query model that includes a complete algebra with an equivalent object
calculus definition. An underlying characteristic of the TIGUKAT query model
is that it is a direct extension to the object model. In other words, it is defined
by type and behavior extensions to the primitive model.

The subsequent sections summarize the formal languages defined for the
TIGUKAT query model. The full specification of the query model is given in
[36, 37]. In the following sections, we first present the ohject calenlus, and then
the object algebra. The calculus has first-order semantics. Its logical foundation

Type Signatures
T-location B_atitude: T.real
B_ongitude: T_real
T_displayObject B_display: T displayObject
T_window B_resize: T_window -
B_drag: T_window
T.geometricShape o
T_zone B_title: T_string o
B_.origin: T_location
B_region: T_geometricShape
B_area: T_real
B_proximity: T_zone — T_real o
T_map B_resolution: T_real -
B_orientation: T_real
B_zones: T_collection(T.zone)
T land B_value: T_real i
T_vater B_volume: T_real
T_transport B_efficiency: T.real) B
T_altitude Blow: T_integer B
B_high: T_integer .
T_person B_name: T_string .
B_birthDate: T_date
B.age: T._natural
B_residence: T._dwelling
B_spouse: T_person
B_children: T_person — T_collection(T_person)
T.dvelling B_address: T_string)
B_inZone: T.land i
T -house B.inZone: T_developed® S
B_mortgage: T_real @ B

“Behavior was refined from supertype T_dwelling.

Table 3.1: Behavior signatures pertaining to example specific types of Figure 3.2

22

includes a definition of atoms, well-formed formulas, and a function symbaol which
incorporates the behavioral nature of the object model. This allows the use of very
general path expressions in the calculus. The safety of the caleulus is hased on
the eraluable class of queries detined in [10]. The objeet algebra consists of target-
preserving and target-creating algebraic operators and is proven to be equivalent

to the object calculus.

3.2.1 The Object Calculus

The alphabet of the caleulus consists of object constants (a.b. . d), ohject
variables (o, p, q,u, v, r, y. 2). monadic predicates ((', P, Q). dyadic predicates (=,
=, €, &), an n—ary predicate (Eval), a function symbaol (,3), logical connectives
(3,¥,A,V,-), and delimiters (&, (),).

Atoms are the building blocks of caleulus expressions. The atoms of the cal

culus consist of the following:

Range Atom: (°(s) is called a range atom for s where (" corresponds to a unary
predicate representing a collection and s denotes a term. A range atom
asserts true if and only if s denotes an object in collection €. When (°
defines a class, (*(s) is true if and only if s denotes an object in the shallow

extent of class C.

Equality Atom: s =t is a built-in predicate called an equality atom where s
and ¢ are terms. The predicate asserts true if and only if the object denoted

by s is object identity equal to the object denoted by ¢.

Membership Atom: s € t is a built-in predicate called a membership atom
where s and ¢ are terms, and ¢ denotes a collection. The predicate asserts
true, if and only if the object denoted by s is an element of the collection

denoted by t.

Generating Atom: Any equality atom of the form o = t or membership atom
o € t, where o is an object variable and t is an appropriate term for the

atom in which ¢ does not appear, is called a generating atom for o. That

means that the object denotation for o can be generated from 1.

The ground atom is an atom that contains only gronnd terms.

From atoms, well-formed formulas (WFFs) are built to construct the declar-

atoms in the usual way (6, 48] using the connectives A, V, = and the quantifiers 3
and V.

A targel-preserving query is an ohject caleulus expression of the form {t|¢(0)}
where 1 is a term consisting of a single object variable or an object variable indexed
by a list of behaviors, ¢ is a WFF, and o is exactly the variable in ¢ and it is the
only free variable referenced in ¢, Indexed object variables are of the form ofj)
where /4 is a set of hehaviors defined on the type of variable 0. The semantics of
this constrnet is to project over the behaviors in 4 for o, meaning that after the
operation only the behaviors given in 4 will be applicable to 0. A target-creating
query is of the form {ty,...,t,|#(0y,...,0,} which is simply a generalization of the
target-preserving kind by allowing multiple target terms ¢,, ..., t,, over the multiple
variables oy,...,0,. The result of such a query is a collection of new object lists
created from the cartesian product over ranges of variables oy, ..., 0, by following

the selection using ¢(oy, ..., 0,).

Example 3.2 Target-preserving query: Return all zones that are part of the same

map. Project the result over B_title and B.area.
{o|B_title, B_area)|3p(C_map(p) A o € p.B_zones)}

o is a free variable generated by the generating atom: o € p.B_zones, and t =
o[B.title, B_area] is a target variable in form of the index variable.

Example 3.3 Target-creating query: Return all the people and their spouses such
that both of them are older than 65 years old

{p.9|C_person(p) A ¢ = p.B.spouse A p.B_age > 65 A ¢.B_age > 65}

24

Since, there are two target variables in the target list, this is an example of a

target-creating query.

3.2.2 The Object Algebra

The operands and results of the object algebraic operators are typesd collections
of objects. The algebra maintains the closure property sinee the results of any
operator may bhe used as an operand of another. The object algebra defines both
target-preserving and targel-creating operators. The target- preserving operators
are defined as follows:

Set Operations: The typical set union, difference and intersection operators

are defined.

Select (denoted Pojsy < Q1,...,Qu >): Select is a higher order predicate that
accepts the predicate F, and the n+1-ary collection P,Qy,....Q, as argu-
ments. The result collection contains objects from /? corresponding, to the

p components of each permutation < p,qy....,q, > that satisties F,

Map (denoted Q) > o< @y, ...Qu >): where mop is a mop function [37] over
the elements of collections Q,.Q;,...,Q., meaning it expects argunents
915,92, -+, §n and they are type consistent with the membership types of the
collections. For each permutation of objects < ¢y, ¢y, ..., ¢, > form from the
elements of the argument collections mop(qy,q,, ..., q.) is applied and the

resulting object is included in the result collection,

Project (denoted PIl,): where P is a collection and /4 is a behavioral projection

set with the restriction that it is a subset of the behaviors defined on the

with the behavior specification of 3.
The full object algebra includes target-creating operators in order to provide
necessary object formation operators. The result of these operations is a collec-

o

is an object from P2 and the right component is an object from Q. Product
may initiate the ereation of a new type along with a new class to maintain

the product objects,

The above collection of operators form the primitive algebra. They are funda-
mental in supporting the expressive power of the calenlus and other expressions
can be defined in terms of them. The following operators are added to the prim-

itive algebra in order to provide functionality, and increase the expressive power.

Join (denoted P Mjp< @y, ..., @, >): where n > 1. Join produces a collection
containing product objects created from each permutation < p,q,....q, >
that satisfies F.

Generate Join (denoted Qi1 < @1 Qu >): where g is a generating atom
of the form o8 < § > b (where 8 is one of ‘=" or ‘€’) over the elements
of collections @y,Q;, ..., Q.. Generate join produces a collection of product
objects created from each permutation of the ¢;°s and extended by an object
o in the following way. If 8 is ‘=", the result contains product objects of the
form < gy @y < Groveey G > .b > for each permutation of the ¢;’s. If 8 is

€, the result contains product objects of the form < qi,....q,,0 > for each

-

permutation of the ¢;’s and 0 €< ¢qy,...,q, > .b.

Reduce (denoted F3A;): where P is a collection of product objects j, and G is a
list representing symbolic reference to the component of the product. The
reduce operator has the effect of discarding the 6 components of the objects
in P. That is, product objects of the form < py,...,p;, 0. pig1, ..., pp > are
mapped to < Pro e Pis Pigts oo P >

of collections P as an argument and it produces the extended union of the

collections in P.

It is assumexd that formulas that are part of operators in the object algebra (i,
formula F in the select operator) are propositional formmlas that are exprossed
can have the logical connector = (negation). A propositional form is detined in
a similar way as a well-formed formula was defined in Section 3.2.1, but it is not
quantified’.

The following examples illustrate possible queries on the GIS defined in Ex
ample 3.1. Every query is given in the form of an English sentence, then it is
expressed in the object calenlus which is followed by the equivalent algebraie ex
pression. In the algebraic expressions, operand collections are subseripted by the
variable that ranges over them. If the operand consists of product objects, the
variables that make up the components of these objects are listed. The indexed
variables are used as a symbolic reference to the elements of the collection as de
scribed in this section. Furthermore, the arithmetic notation for operations like
o.greaterthan(p) and o.clementof(p) (ie. 0 > p and o € p, respectively) is sl
instead of boolean behavioral specification (Bspee) equivalents, The exeention of
an algebraic expression is from left-to-right, except that parenthesized expressions

are executed first.

Example 3.4 Return land zones valued over $100,000 or covering an arca over
1000 units.

Calculus:
{ o | C.land(0) A (0.B_value > 100000 V 0.B_arca > 1000))
Algebra:

C_land, Olo.B.value>100000 v o.H_area>1000]

'Qﬁ;ﬂ!iﬁ&s 3 and ¥ does not appear in a propositional formula

Example 3.5 Return all zones that have people living in them (the zones are
genetited from person objects),
Calinbus:

{ o] Aq(C_person(y) /v o = . B residence. B inzone))

Algebra:
AV

((“ person, 7/ g B_resudenee B_jtzone),

Example 3.6 Return the maps with arcas where eitizens over 65 vears of age
live.
Calenlos:

{ o] Comap(o) A IpC_person(p) A Fq(C_dwelling(qy)
A pBage 63 A g = p.Boresidence A g.B_inzone € 0.B_zones))}

Algebra:
(C-map,, 1, (C.dwelling,. (Cgpersanl, L,))) A,
1 ’!

I8 1
where Fyis the predicate (¢ = p.B_residence A q.B_inzone € 0. B_zones)

and F, s the predicate (p.B_age > 66H)
Example 3.7 Return the dollar values of the zones that people live in.
Calenlus;

{ o | 3HC_person(p) A o = p.B_residence, B_inzone. B_value) }.
Algebra:

(C-,permn,, 7::2,,.lLre'-si:h!uﬁ:Bimzmmﬂivalué) P A7'
Note that this has a simpler form using the map operator as follows:

(?;me“,a 0 Boresidence. B_inzone. B_value
Example 3.8 Return the zones that are part of some map and are within 10

units from water. Project the result over B_title and B_area.

(“aleulus:

n

Ao € p.B_zones A o.B_proximityiq) < 1)},
Algebra:
((C‘"“‘pr i’;':)j,'_‘ Ny, C*watér‘;) ;\m' "H.,mlr.ﬂ naine

P

where Fy is a generating atom (o € p.B_zones)

and Fy is a predicate (o.B_proximity(g) < 10)
Example 3.9 Return pairs consisting of a person and the title of & map such
that the person’s dwelling is in the map.

Calenlus:

Ao = q.B_title A p.B_residence, B_inZone ¢ q.18 zones))
Algebra:
(C_pers(mp M (C‘mapv Vozg. H_title),) N
17 g

where F is a predicate (p.B_residence.BanZone € 4.8 zones)

Chapter 4
Optimizer Architecture

TIGUKAT query optimizer models the search space, the transformation rules,
the search strategy, and the cost function independently from each other, allowing
extensibility in all dimensions.

All of the system concepts are represented as objects along the lines of [24],

uniformly described in terms of the object model itself. The algebraic operators
are madeled as objects, specifically as behaviors over the T_collection type. In
the type lattice, they appear as instances of type T_algebra which is a subtype
of T_behavior (instances are shown as rounded-corner rectangles, drawn with
dashed lines in Figure 4.1 while types are shown as simple rectangles). In addition,
the four components of the query optimizer are modeled as objects as listed below

(see Figure 4.1),
I. the states in the search space that are modeled as query expressions which
are represented by OAPTs (OAPTS are objects of type T_alg0p);

2. the actions that generate the alternative query expressions. These actions
are modeled as transformation rules (which are objects of type T_algEqRule);

3. a search algorithm that allows one to move from one state to another in the

search space (search strategies are objects of type T_searchStrat); and

4. the cost function that is applied to cach state (that are objects of type

T_costFunc).

The incorporation of these components of the optimizer into the type system
provides extensibility via the basic object-oriented principle of subtyvping and
specialization. In the following three chapters the modeling of the components of
the optimizer as part of TIGUKAT S type system is diseussed,

Because most of the extensions to the primitive type lattice for query optimiza
tion purposes are done by subtyping T_function (sev Figure L1), a deseription
of functions as objects is relevant to this disenssion (presented in Seetion 1.1).

In TIGUKAT, queries have the status of first-class objects and inherit all the
behaviors and semantics of objects. Since queries are so fundamental to this
discussion, a description of modeling queries as objects is given in Sevtion 1.2,

A unique feature of TIGUKAT query optimizer is that not only its compo
nents, but the optimizer itself is modeled as an objeet. This is discussed in

Section 4.3.

4.1 Functions as Objects

In TIGUKAT object model, functions implement the semantics of behaviors.
They are modeled by objects of type T_function and they have the status of a
first-class object as illustrated in Fignre 4.1, Since they are so fundamental to
this discussion, the most important behaviors defined on T_function are listed
in Table 4.1,

The major benefits of modeling functions as objects in TIGUKAT object

model are the following:

1. Functions are first-class ijﬁfts, S0 they summrt the uniform semanties

‘Fur evgry behavior b lmlrd in the table, a functional application notation do)(p) is used,
where the first parameter o corresponds to b's receiver ohject and p corresponds Lo bs arguinents.

This applies to all the tables that summarize the native behaviors of an specific type through
this thesis.

11|

= o owm oam ow

- —— o m = m =

T botavior | T-aowbra | "

- o o o =

T_rule

T_function [- T_searchStrat T mss

|

Figure 4.1: Optimizer as part of the type system

through the behavioral paradigm of the object madel.

2. Since functions are objects, behaviors can be applied to them. This is useful
in defining a uniform extensible query optimizer.

3. Functions are uniformly integrated with the operational semantios of the
the result of applying a behavior to an objeet triggers the exeention of a

function).

4. Functions as objects allow us to have different implementations for each
object by plugging in a (stored) behavior a reference to a funetion object
which can be executed later on. In contrast. behaviors restriet us to have
one implementation per type. This is a fundamental feature to be able o
model some of the components of the optimizer as objects as diseussed in

the following three chapters.

4.2 Queries as Objects

An identifying characteristic of the TIGUKAT query model is that it is a
direct extension to the object model. In other words, it is detined by type and
T_query as a subtype of T_function in the primitive type system as illustrated
in Figure 4.1. This means that queries have the status of first-class objects and
inherit all the behaviors and semantics of ohjects. Moreover, queries are funetions
so they can be nsed as implementations of hehaviors, can be compiled, and can
be executed.

Since T_query is a subtype of T_function, it inherits all of the behaviors
discussed in Section 4.1 and defines new ones. For a query, B_compile is redefined
to include translating the query statement into an algebra tree, optimizing it
and generating an execution plan (a more detailed description of the compilation

process is given in section 4.2.1). Similarly, B_execute is redefined to mean that

B X

N auw- thavmrs

W argTy}m(n) [Returns a list uflype-s whlrh denote the t)pas and ordering
of the argument ohjects for the function object 0.
B_resultType{o) | Returns the result type of the Tunction object o,

[B_comments(o) Returns the comments that document the function object o,
B_source(n) Returns the source code of the Tunction object o.
B_compile(o) (umpﬂps the function ohject 0 and returns an executable

which is also returned by B_executable below.
‘H.execute{o)(p) | Executes the function object o using the ohjects in the list p

as arguments and returns a result ﬂh_)ﬁ*t One of the require-
ments is that the list of arguments in p must be compatible
| with the argument type list for the function.
H_exerutahle(o) Returns the executable code of the function argnment obj ject
[i

B_costFunction(o)(p) | Returns a cost function object whose execution returns an
estimated cost of executing the function o with arguments
p. At the moment, this is defaulted to a cost function that
returns unit cost for all functions other than those of type
o T.algOp.

B_cost(a)(p) Fxﬂ‘mpa the cost function object that is returned by
B_costFunction and returns the estimated cost that results
of this execution.

Table 4.1: Hehavioral summary of T_function type.

the execution plan is submitted to the storage manager for processing. There is
the capability to store the result of query execution so that it is returned the next
time the query is posed without re-execution. These details are not in the scope
of this thesis becanse the execntion of a query is not considered in this research.
Furthermore, B_costFunction(o)(p) is redefined to return the cost function that
the optimizer (B_optimize) uses when the search strategy (B_searchStrat) is cost-
controlled. Otherwise, it returns null. It must be determined externally, before
B_optimize is applied (i.e. when the query object o is created).

In addition to the behaviors it inherits from T_function, T_query has the
native behaviors that are listed in Table 4.2,

Incorporating queries as a specialization of functions is a very natural and uni-
form way of extending the object model to include declarative query capabilities.
The major benefits of this approach are:

I. Queries are first-class objects, so they support the uniform semaatics of ob-

‘wmamlrs -]

=

rmullmg fmm the cale ulu-e iu algﬁhm lr.msl;mnn T hls mmal
OAPT constitutes the initial state of the search space used for
the algebraic optimization of the query object 0. The initial
OAPT must be complete for heuristic and randomized search
strategies. A heuristic search st rategy is used in this thesis to
illustrate an optimization seenario for the Query Optimizer
(see \pp@ndlx A). This behavior is implemented by a stored

function.

Ri‘Tﬂrmi a rullﬂ'tim; 7r71f ﬁjilﬁlmi%ﬁr()'\il ih i’l“i“hillg Tﬁriii;liﬁsi‘é

B_searchStrat(o)

uses 1o rnnlml the upllml?rﬂmn uf lhc' qm‘r\ uh_]i‘ll 0o, II
must be determined externally, before B_optimize is applied
(i.e. when the query object o is created).

B_transformations(o)

Returns the Tist of transformation rule objects used for the |

alngl‘iI(' optimization of the query object o. This behavior
is implemented by a stored function.

" B_costModelFunc(o)

Returns™ the cost model function that the optimizer
(B.ﬂp!lmlSF) uses when the search strategy (B_searchStrat)
is a cost-controlled strategy. Otherwise, it returns null. It
must be determined externally, before B optimize is applied
(i.e. when the query object o is created).

Boptimize(o)

Executes the algebraic Query Optimizer over the query ob-
ject o, using the search strategy object o.B_searchStrat on
the initial OAPT object o.BinitialOAPT and returns the
optimized OAPT o.B.optimizedOAPT. This behavior will be
invoked by the hehavior B_mmpllf' (which is inherited from
T_function and redefined in T_query).

“B_genExecPlan(o)

Generates an execution plan (or a flamily of execution plans)
from the optimized OAPT ohject o, B_optimized OAPT for
the query object 0. The Execution Plan is modeled as a
function object that executes the query object 0. As a side
effect, B_genExecPlan stores the resulting Execution Plan so
that it can be accessed using the H_execPlanFamily behavior,
This hehavior is invoked by the behavior B_compile.

" A_execPlanFamily(o)

' Rﬂnms a miﬂﬁ'lnm of execution plans that are generated by

B_result(o)

in rehhnna.l nystpms)

Table 4.2: Behavioral summary of T_qu-ry type.

jects. They are maintained within the objectbase and are accessible through

the behavioral paradigm of the object model.

2. Since queries are objects, they can be used in queries and behaviors can be
applied to them. This is useful in generating statistics about the perfor-

mance of queries and in defining a uniform extensible query optimizer.

3. Queries are uniformly integrated with the operational semantics of the
model and thus, queries can be used as implementations of behaviors (i.e.,
the result of applying a behavior to an object can trigger the execution of
a query).

1. The query model is extensible in a uniform way since the type T_query
can be further specialized by subtyping. This can be used to dichotomize
the class of queries into additional subclasses, each with its own unique
characteristics, and to incrementally develop the characteristics of new kinds
of queries as they are discovered. For example, we can subtype T_query into
T.adHoc and T_production and then define different evaluation strategies
for cach. Ad hoc queries may be interpreted without incurring high compile-
time optimization strategies while production queries may be compiled once

and then executed many times,

4.2.1 Query Compilation

The behavior B_compile that is redefined in T_query is responsible for imple-
menting TIGUKAT query methodology that consists of the following steps:

I. Translating the query statement written in TQL language ([27]) into an

equivalent calculus expression;

2. Translating the calculus expression into an equivalent algebra expression
and checking it for type consistency.

3. Optimizing the algebra expression that is performed by applying the be-
havior B.optimize. Algebraic Optimization consists of applying equivalence
preserving rewrite rules to the type consistent algebra expression.

formed by applyving the behavior B_genExecPlan. This behavior annotates
each individual algebra operator node from the optimized object algebra
query processing tree with one of the algorithms that implement the oper-
ation represented by the corresponding node. These algorithins use object
manager calls that are part of the low level object manipulation primitives

that constitute the interface to the object manager subsystem,

The implementation of the first two steps of the methodology is disenssed in
[27). This thesis focuses in algebraic optimization (Step (3)) and in the general
optimizer architecture. Future research must be done on picking the best algo.
rithms that implement each algebraic node in the OAPT based on information
provided by the OM such ax indexes, clustering, and so on (Step (1)), Initial work
on this step is reported in [43].

As side effects of the application of the behavior Boeompile on a query ob-
ject, the values of the following hehaviors are set: B_executable, B_initial OAPT,
B_optimizedOAPT, B_transformations, B_argMbrTypes, B_reveMbrTypes,
B_resultMbrType, B_execPlanFamily and B_result.

4.3 Query Optimizer as an Object

interface of the type T_query. It is, therefore, modeled as an instance of type
T_behavior (see Figure 4.1). This means that the query optimizer has the status
of first-class object in the model.

The query optimizer B_optimize is responsible for applying a search strategy
B_searchStrat to an initial OAPT BLinitislOAPT in order to produce an “opti-
mal® OAPT B.optimizedOAPT for a query object q. In case the search strategy
is a cost-controlled strategy, the cost model B_costModelFunc is used to measure
the effects of the optimizer actions. All these behaviors are defined in the interface
of the type T_query (see Section 4.2).

B.optimize is defined on T_query and is inherited by its subtypes. The im-
plementation of B_optimize and, therefore, of the query optimizer may vary over
these types. This gives flexibility in providing different implementations for the
optimizer. For example, one implementation may be written in TIGUKAT pro-
gramming language, while another implementation may use some other object-
oriented programming langnage (i.e. C++4). An example of code for the function
object that implements B_optimize is illustrated in Algorithm 4.12. The current

implementation of the query optimizer is discussed in Chapter 8.
Algorithm 4.1 Optimizer.:

F.optimize{T_query q): T_1ist(T_alg0p)
{
return((q. B_getSearchSS). B_execute(q)); (1)

must have been annotated with the search strategy (B_searchStrat) and the cost
model function type (B.costModelFunc) which are selected externally (i.e. when
the query object is created). The cost model is only required when the search
strategy is cost-controlled.

Each algebraic operator node has a different cost function because the com-
putation of the cost of executing algebraic operations incorporates optimization
issues that potentially vary among the operators. For example, the union operator
only needs the cost of accessing the instances of the collections C;, C; involved in
the operation, while the select operator requires the cost of accessing the instances
of the collection C, in the presence of a predicate f. Therefore, the annotation of
the OAPT with its algebraic cost function is very important because each node in
the OAPT collaborates with the cost model function by calculating its algebraic
cost itself. This is further explained in Chapter 7.

M thr;hnmim- that are presented in this thesis, a dot notation 0.(p) is used to illustrate
the application of a behavior b to a receiver object o with arguments p.

the query optimizer the extensibility inherent in object models. The optimizer
basically implements a control strategy that associates a search strategy and a
cost function to each query. The database administrator has the option of defining
new cost functions and new search strategies or transformation functions for new

classes of queries.

Chapter 5

Representation of Search Space

The compilation of a query results in the translation of a TQL query to a cor-
responding algebraic expression represented as an OAPT. The set of equivalent
OAPTSs that generate the same result make up the search space (i.e., each OAPT
corresponds to a state),

While in relational systems, a processing tree is a labelled tree where the
leaf nodes represent relations and the intermediate nodes correspond to relational
algebra operators, in this research, the nodes in the OAPTs uniformly correspond
to functions that model the delayed execution of object algebraic operators.

The modeling as objects of the OAPTs and transformation rules that generate
different OAPTs in TIGUKAT Extended Type System is described in Sections 5.1
and 5.2, respectively.

8.1 Object Algebra Processing Trees

The object algebra operators are modeled as behaviors on type T_collection
whose implementations are modeled as instances of T_function. Since each al-
gebraic operator has its own characteristics (i.e. predicates, functions to apply,
etc), objects of type T_function are created according to the different existing
operators defined in the TIGUKAT algebra. Furthermore, since there may be a
number of different algorithms to implement each algebraic operator (e.g. nested

T tunceon |

Figure 5.1: Collection (L.implAlgOp) of implementations for algebraic operators,

loop join, merge-sort join, and hash join), there may be many implementation
functions as instances of T_function. For example, F_scanSelect is an object of
type T_function that models the algorithm that implements the select algebraic

operation B_select defined as a behavior on T_collection. This gives flexibility

in redefining algebraic operators and in extending the algebra in future versions of

the query model to deal with new algebraic operators that may be definesd (e.g..
transitive closure for recursive query processing). Besides, new algorithms for

In order to clarify the further discussion in the thesis, we define the collection
L_implAlgOp to group all the instances of T_function that implement algo-
rithms for algebraic operators as illustrated in Figure 5.1.

These implemnentation functions cannot be used as the nodes of an QOAPT,
however. The nodes of the tree should represent execution functions all of wheose
arguments have been marshalled (see Figure 5.2). Therefore, we define T_algOp
whose instances are functions with marshalled arguments and they make up nodes
of OAPTs. In this fashion, each node of an OAPT represents a specific exeention
algorithm for an algebra expression. Instead of defining T_algOp as an immediate

is a subtype of T_function. In a sense, a T_context instance corresponds to de-

layed execution of a function. The reason for the definition of T_context and the

will serve as the receiver object for the context object o.

B.innerArg(o) Returns a list of references to the context objects that cor-
respond to the arguments for the hehavior whose delayed
. execution is represented by the context object 0.

B_reveType(o) | Returns the type of the receiver object for the object 0.

Table 5.1: Behavioral summary of T_context type.

modeling of T_algOp as a subtype of T_context is that this allows further opti-
mization possibilities. Since the nodes of OAPTs are instances of T_context (due
to subtyping), we could relax the restriction that they be instances of T_algOp
and represent behaviors in predicates of query expressions as nodes in the OAPTs
as well. This would open the possibility of optimizing the execution of behaviors
together with algebraic operators in a query. Commonly called the method opti-
mization problem, this is a serious concern in OBMSs. Even though this research
has not addressed this issue yet, the architecture that we has been developed lends
itself to such extensions in the future. The native behaviors defined on T_context
are listed in Table 5.1, and the native behaviors defined on T_algOp are listed in
Table 5.2,

Since the nodes of OAPTSs are instances of type T_alg0p, to provide uniformity,
the object FleafAlgOp is defined to model the leaf nodes of the OAPTs. This
object can be thought of as a container that holds a reference to one of the input

42

| Native Behaviors

Semantics - ' J

B_rcveMbrType(o)

Returns the membership type object of the receiver collection
object for the algebraic operator represented by the node ol
ject o,

B_argMbrTypes(o)

Returns a list whose elements are the membership type ol
Jects corresponding to the argument collection objects for the
algebraic aperator represented by the node object o,

B_resultMbrType(o)

Returns the membership type object of the collection pro-
duced by executing the algebraic operator represented by the
node object o,

B_targetVar(o)

Returns a reference to the target variable object for the al-
gebraic operator represented by the node object o,

B_targetColl{0)

Returns a relerence to the target collection ohject that re
sults from executing the algebraic operator represented hy
the node object o,

B_constraint(o)

Returns an object that models a constrammt on the algebraie
operator represented by the node object o, For example,
a formula that qualifies the select operator, or the list of
behaviors that must be applied to the recoiver and argnment
collections of the map operator are constraints on the select
and map operators respectively.

B_execAlgorithm(o)

Returns a function object that implements an execution algo-
rithm for the algebraic operation that the node o represents,

It is implemented by a stored function.

Table 5.2: Behavioral summary of T_algOp type.

13

collections of the query that the OAPT represents. FlleafAlgOp objects model
the delayed exeention of the algebraie identity operator B_1 that is defined as part
of the imterface of the type T_collection. Thus, all the nodes of an OAPT are
uniformly modeled as instanees of T_algOp rather than making an exeeption for
the leal nodes which correspond to collections’.

An OAPT is recursively defined as an object of type T_algOp as follows: the

root node of the OAPT is an algebraic operator of type T_algOp whose children

be an object FleafAlgOp ana every leaf node is an object F_oleafAlgOp.

Figure 5.3 shows the OAPT for the algebra expression corresponding to the
query that is presented in Example 5.1, The first information in the box represents
an object instance reference and the mapping to its type. Then, the behaviors that
are relevant to the subsequent discussion are listed. The f1 and f2 in the figure
are the formulas o.B_value > 100000 A p.B_latitude > 10 and o.B_area > 1000,

respectively which are represented as objects of type T_formula.,

Example 5.1 Return all the land zones covering an area over 1000 units that

are land zones valued over $100,000 and that are located above the latitude 10.

Algebra:

(C-land, (. B_value>100000 A o.B_origin. B_latitude>10))o To.B_area>1000]

5.1.1 Execution Plan Generation

In relational databases, the execution plan produced by the query optimizer
is a processing tree whose algebraic operators can be directly mapped to low level
implementation primitives of the physical system (i.e., a tuple can be translated
into a record, a table into a file and so on). In contrast, in TIGUKAT object
model, algebraic operators are objects that encapsulate their internal representa-

tion which can only be manipulated by the Object Manager subsystem. There is

"Thin in a rnnfrpmnlnmlril:geﬁrmry reasons, the optimizer may represent the leaf
nodes directly as collections and handle them as special cases.

44

[2
g, —e T agOp

R nme ¥ _select

B rvefupe T _clas

B wrglypes onll

L T_colloction

R norMi Tope T_land

B arghtt Types sl

B resuidt el vpe T lend

LE il .

» --a-w-n'l r
prececcacs ; S mesprrsansnonaanan
(AR 7 ' Ruwerdy b

~ ~
sapt, o= T aigOp
B _neme F_seloct
B reviType T_clom
B ergTypms oull
B _raniffype T_colioction
B reviiinType T lend
B arghthTypes aull
» roidtirlype T_lend
8 wrgeter ”
B conswgemnt n
porocssascsessssscsopoacanancs coeow
8_outerRcvr l S DimmerArg oell)
- 1
-; e Taop |
] n—r: ¥_latAlp
n‘-.-'wu L4
8 _rorgeiCall C_land

peoencdeccccsnapeccccnnacccnca

B owsorlcw. wl) P imerArg ol
() e A)
% —e T stom ol —e T aom ol e T siom

D onms <ab> B owmy <ol " orme a2

OV o PO o BN o

B rader <o> B regfVgr <o 8 rnlar <o

B_gonVer -l B _geaVer il 8 grotver ol

B refor <o> B e <o- 8 Ve e

H H H

B sosrce: aB_wen> 1000 8 source o8 _valus> 100000 N sowrce 0B _otignl letiiude-16

- i J } J : J

Figure 5.3: Initial OAPT

(T T T T Ty
N —e T trmila
N anems cal wl-
RN PRRY I O
[2 U
Ngeater ol
* roftar
H
_ -
r T
7 —» T fomua
L Y
»ONF -
N roatVur cw-
B geabar el
N refher L
. J

]

no one-to-one mapping between the different components of the database and low
level primitives of the physical system. Although the execution plan generation is
not in the scope of this research, different methodologies that have been proposed
to solve this problem are disenssed below. It is important to notice that there is
no agreement among, the database community in the set of low level primitives
that an object manager interface should provide.

The excention plan generation method proposed in Straube and Ozsu [43]
generates the query exeention plan by replacing cach individnal algebra operator
These object manager calls are part of the set of low level object manipulation
primitives that constitutes the interface to the OM. This approach respects the
full encapsulation of objects,

The methodology proposed in the Open QODB project [3] proposes to replace
optimizer based on implementation rules. These rules nse physical information
that is encapsulated in “physical property vectors™ (which is an abstract data
type).

This thesis proposes to create a different instance of T_function (e.g., nested
loop join, merge-sort join, and hash join) for each algorithm that implements an
algebraic operator of type T_algebra (e.g., join). Then, there may be a num-
ber of instances of T_function. In this fashion, each node of an OAPT (of type
T.algOp), that represents an object algebraic operator, is annotated (in the be-
havior B_execAlgorithm) with the function object that implements an specific
execution algorithm for that algebra operation. For example, an OAPT node
F_join is annotated with the function object F_nestedLoopJoin. The OAPT node
is annotated with default execution algorithms per algebraic operator when the
OAPT node is first created.
the OM can derive physical information by the application of special behaviors
that belong to its Object Manager Interface (OMI). Further research needs to be

16

done on the OM subsystem and its interface. It is not in the scope of this thesis to
define a methodology to select the execution algorithms to annotate the OAP s
with implementation information. This methodology would be tmplemented by
the behavior B_genExecPlan. This is topic of future research.

Each node of the OAPT can also be annotated with information about whether
the intermediate collection must be materialized or pipelined at exeention time,
This information is stored in behavior BoisMaterial that returns the object true
if it is materialized or false, otherwise. The behavior BotargetColl is a reference
to the materialized collection when it is exeeuted.

The Lxecution Plan is modeled in TIGUKAT Query Optimizer as funetion
objects (T.algOp is a subtype of T_function). Becanse a function returns its
cost, this approach has the advantage that the cost of the annotated OAP] s
the cost of the execution plan for a query.

As discussed in [33], a query execution engine for OBMSs must support. the
following basic? set of algorithims that implement object algebraic operators: sean,
indered scan, and collection matehing. These algorithms operate on collections of
objects to support the closure of the objeet algebra on collections. Collection sean
is an algorithm that sequentially aceesses all objeets in a collection. An indexed
scan algorithm allows efficient access to objects (that satisfy a selection predicate)
in a collection through an index. Collection matching algorithins produce aggre-
gate objects from multiple collections of objects that are given as input to the
of these algorithms into the query optimizer by the definition of function objects
that implement them such as F_scanLeal, F_indexSeleet, F_hashJoin, and so on.
We refer the reader to [33] for a more detailed diseussion of query execntion sinee

this topic is out of the scope of this thesis.

2To support at least the set of algorithims that is provided by relational query execution
engines that operate on relations.

5.1.2 Execution of the OAPT

models the delayed exeeution of an alge-hrair expression that represents (he! query
that is being optimized.

After annotating each node of the OAPT with its corresponding implemen-
tation, and with information about whether the intermediate collection is mate-
rialized or pipelined (B.isMaterial), the optimized OAPT can be passed to the
Ohject Manager to be executed as deseribed in Section 1.2 (i.e. by applying the
hehavior Boexecnte 1o the query ohject),

The OAPT is exeeuted bottom-up, where each node consumes operands from
left to righL The left child of a node plays the role of receiver of the algebraic
root node. After executing a node, the appliratimn of the behavior Bétargﬂ(oll
returns a reference to the resulting collection. We do not give more detail about

the execution of an OAPT since this is not in the scope of this thesis.

5.2 Algebraic Transformation Rules

As indicated hPf(li‘F‘, the search space consists of a family of equivalent pia:133

spundmg to the same query is established by means of the éqmvalénrééprésérvmg
algebraic transformation rules and the semantic rules,

Algebraic transformation rules create equivalent expressions based upon pat-
tern matching and textual substitution. These rules are very dependent upon the
specific object algebra because they are defined as combinations of its algebraic
operators. In other words, they are specified by algebraic expressions which are
functional expressions because of the functional basis of the object algebra ([36)).
For exmnpkif in [42‘ the rules are Sp?fiﬁéﬂ using an infix n@t’ation, while in [E]

"I‘hur execution plm are rqmvnlrnt in terms of the results that they generate, but may
potentially differ in their costs.

algebraic transformation rules in relational models as well as in object-oriented
models is that an algebraic expression representing a query expression can he
manipulated using the well-defined algebraic properties such as transitivity, con
mutativity and distributivity. However, these expressions differ between models in
that object algebraic expressions are defined on collections of objects which have
an inheritance relationship, while relational algebraic expressions are defined on
flat relations. This allows object-oriented query optimizers to use the semantics
of the inheritance relationship in order to achieve some additional transforma
tions, called semantic transformations. For example, a semantic transformation
rule could be defined as follows: if class (73 is a subelass of), the intersection of
those two classes, 'y and (73, produces the class ;. This results sinee the object
model restricts each object to belong to only one elass. This research does not

Algebraic and semantic transformation rules are specified in [12] for a less
powerful algebra than the one described in Section 3.2.2; however, no implemen
tation is provided for them. Because of the similar nature of that object algebra
and TIGUKAT object algebra, a subset of the algebraic rules specified in [12)
are presented in Section 5.2.1 in order to help in the discussion of modeling of
the algebraic transformation component as objects and in the discussion of the
application of algebraic rules by the query optimizer (that is discussed in See-
tion 5.2.3). The same rules are used in the current implementation of the query
optimizer to show the feasibility of our approach. It is not in the scope of this
research to specify new transformation rules for those additional algebraic oper-
ators, such as join, collapse, reduce, and cartesian product that are introduees
by TIGUKAT object algebra. More rules can be added later taking advantage of
the extensibility of the transformation rule component of the optimizer.

In order to provide extensibility, algebraic transformation rules need to be
modeled as objects in the system. Extensibility is essential in OBMSs where
the research into object algebras has not yet matured and new transformation

rules may be uncovered as research continues. These trausformation rakes are

1

modeled as objects of type T_algEqRule that is discussed in Section 5.2.2, which
is a subtype of T_rule. Although at this stage TIGUKAT does not have “ac-
tive DBMS™ capabilities, we have defined type T_rule as an abstract type with
subtypes T_activeRule and T_algEqRule. T_activeRule would. in the future,
madel ECA-type rules [7] when active capabilities are added. The definition of
T.activeRule is not in the scope of this thesis.

The search strategy determines the use of the rules for controlling the search.
There are many alternative strategies, ranging from static priorities to heuristics
that determine which rules would be applied under various conditions. This is

illustrated in Chapter 6 for an algebraic heuristic search strategy.

5.2.1 Specification of Algebraic Transformation Rules

ln this section, some of the algebraic equivalence transformation rules that
can be applied during optimization to get equivalent query expressions (OAPTs)
are presented. They are specified as algebraic expressions using the notation
E, & E; which specifies that expression E, is equivalent to expression E; (e.g.,
algebraic rule 5.1). Some rules are restricted in that they are applicable only when
a condition ¢ is satisfied. They are written as Ey & E; ([9], [42]) (e.g., algebraic
rule 5.4). Conditions are conjunction of functions which determine properties of
argument collections, predicates and variables used in a rule. These functions
are defined as follows: Function ref{F,(vy,...,v,)) is true when v,,...,v, are the
only variables referenced in the predicate F. Function gen(F,v) is true when
the predicate F' contains a generating atom* for the variable v. In a similar
way, res(F, v) is true when predicate F restricts values of v. It can be said that
predicate F restricts values of v, when it does not contain a generating atom for
the variable v.

In the algebraic expressions, are introduced as abbreviations for list variables
Quists Riise and Sy to replace @y,,Qx, Ry,, Ry, and S,, S, respectively,
and the symbol "6’ is used to denote equivalence between the left and right side

“This is defined in Section 3.2.1.

. —_ Semanties]
teturns an object that models the condition that must be
B | satisfied by the object p in order to apply the rule o,
B_checkCond(o)(p) | Checks if the condition stored in B_cond holds for the ob
ject p. If 5o, the object true is returned. Otherwise, false is
- returned,))
B_action(o)(p) | Returns the object resulting from applying the action dic-
tated by the rule ohject o to the argument object p.

Table 5.3: Behavioral summary of T_rule type.

algebraic expressions.
The following examples illustrate possible algebraic tales for TIGUKAT trans

formation rule component of the optimizer:
Algebraic Rule 5.1 Commutativity of Select.

(Pap <Quiat >) 0p3 < Ryt > (P gy < Rpyay >) 0y < Qe -
Algebraic Rule 5.2 Distributivity of Union with respect to Select.

(PU Q)< Riyt >) & (P ap < Rijat >)U(Q p < RHijpe >)
Algebraic Rule 5.3 Intersection-Select Exchange Rule,

(Papn <Quiat >) 0p2 < Rijot >) & (P apy < Qpist >)N (P p3 < Rpsay >)
Algebraic Rule 5.4 Conjunctive Select Predicate,

(P GU‘AI?) < Qﬁ'n’; Riiae >) é (P a5y < Qiul })ﬁ(l! Trp < Riiae >))
e refL1(p.qi-qi)) A e f1,p) A e[f2(p.7y...vi)) A e [2, p)

5.2.2 Algebraic Transformation Rules as Objects

Since T_rule is a subtype of T_object, it inherits all its behaviors and define
new ones that are listed in Table 5.3. However, T_rule does not implement any
of its behaviors because it is an abstract type. These behaviors are implemented

by its subtypes.

The algebraic transformation rules are modeled as obhjects of type T_algEqRule
that is defined as a subtype of T_rule. The native behaviors as well as the
redefined inherited behaviors for T_algEqRule are described in Table 5.4.

The behavior B_algExpression stores the algebraic expression that specifies the

rule object. The application of the rest of behaviors is illustrated in Section 5.2.3.

5.2.3 Rule Application

The application of algebraic equivalence rules involves checking the validity of
applying a rule o an specific OAPT and transforming the given OAPT into an
equivalent OAPT as specified by the rule,

The process of checking the validity of applying a rule is know as matching
of rules to OAPTs. This process can be done at different levels or steps. In the
approach presented here, two levels were identified following the nature of the

algebraic rules presented in this research. These two levels are described below,

Level 1: Matching the right/left side shape to check if the OAPT matches syn-
tactically with the right/left side of the rule. This is implemented by ap-
plying the behaviors B_matchLeft/B_matchRight

Level 2: Testing the condition that checks if the formula satisfies constraints
given in the condition of the rule. This matching semantics can be consid-
ered computationally more expensive than the level 1 matching. Testing

the condition is done only if level 1 matching is satisfied.

After the matching is found to be valid, the transformation is applied to the
OAPT in order to get its equivalent OAPT according to that specific rule.

The application of rules by rule based optimizers such as the EXODUS [11]
and Starburst [15] optimizers is done by a pattern matching engine that matches
subexpressions of a query against algebraic rules. Additionally, the firing of rules
is dependent on the satisfaction of the conditions that involve user defined func-
tions such as res(F, v). A major difference between the rules defined for those sys-
tems and the ones defined in [42] (which form the basis for specifying TIGUKAT

52

| Native Bebaxiors

Semantics]

B_leftSideFunc(o)(p)

Returns the function object that implements the matching
algorithm that corresponds to the left side expression of the
rule object o.

B_matchLeft(o)(p)

Executes the function object stored in B loftSideFune passing
p as argument. If the argument object p matches the left side
of the algebraic equivalence rule, the object true is returned.
Otherwise false is returned.

B_rightSideFunc(o)(p)

Returns the function object that implements the matching |
algorithm that corresponds to the right side expression of
the rule object o.

B_matchRight{o)(p)

Executes the function object stored in B_rightSideFunc pass-
ing p as argument. If the argument ohject p matches the
right side of the algebraic equivalence rule, the object true is
returned. Otherwise false is returned.

B_condLeft(o)(p)

eturns a function object that implements the condition as
sociated to the left side expression of the rule object o.

B_checkCondLelt{0)(p)

Executes the function object stored in B_condToft. 1 the ar-
gument object p holds the condition associated to the loft side
of the rule object o, the object true is returned. Otherwise,
false is returned.

B_cond(o)(p)

eturns a function object that implements for the condition
associated to the right side of the rule object o. (Inherited
from T_rule, but overloaded).

B_checkCond(o)(p)

Executes the function object stored in B_cond. T the argu-
ment object p holds the condition associated to the right side
of the rule object o, the object true is returned. Otherwise,
false is returned. (Inherited from T_rule, but overloaded).

.action tFunc{o)(p

B_actionLeftFunc(o)(p) | Returns the function ohject that implements the transfor.
mation dictated by the left side of the rule object o to the
argument object p.

B_actionLeft{o)(p) Executes the Tunction object stored in B_eftSideFunc passing

p as argument. It returns the OAPT ohject resulting from
applying the transformation dictated by the rule object o to
the argument ohject p. The resulting OAPT have the shape
of the algebraic expression for the right side of the rule ohject
[

l;. turns the function object that implements the transforma-
tion dictated by the right side of the rule ohject 0 to the

argument object p.

B.action(o)(p)

Executes the Tunction object stored in B_actionRightFunr

passing p as argument. It returns the OAPT ohject resulting
from applying the transformation dictated by the rule ob-

ject o to the argument object p. The resulting OAPT have
the shape of the expression given in the left side of the rule.
Inherited from T_rule, but overloaded).

" B_algExpression{o)

turns the algebraic expression that specifies the rule ohject

Table 5.4: Behavioral summary of T_algEqRule type.

3

algebraic rules) is that the rules for the former systems are based on operators
of fixed arity (i.e. two operand joins), while the rules for the latter (and for
TIGUKAT) are based on algebraic operators which can have varying numbers of
argnments. As pointed ont in [42], in order to use those rule based optimizers for
have had to be modified to handle algebraic operators which can have varying
numbers of arguments. Considering that TIGUKAT query optimizer is an exten-
sion of TIGUKAT object model which differs from those systems, we believe that
there wonld be problems integrating those systems with the TIGUKAT query
component was built.

The proposed definition of OAPT nodes as objects of type T.algOp, and the
closure of the algebra on collections enables these operators to be used as a recur-
sive functional symbol for describing OAPTSs in a syntactical way. For patterns
that correspond to the algebraic expressions given in an algebraic equivalence
rule, a tree representation is convenient. At the same time that the matching
between the OAPT and the corresponding pattern for a rule is checked, the bind-
ing between them is stored, In this approach, additional structures are needed to
keep the binding between the pattern and the OAPT. One disadvantage is that
in order to allow concurrency in the optimization of queries in a multi-user envi-
ronment, the optimizer may have to create several temporary objects to establish
the bindings between the pattern trees and the OAPT to which the rule is trying
to be applied.

A completely different approach is that each rule provides individualized be-
havior for its matching and transformation steps. For each rule, there are function
objects that implement those steps that may be potentially different among the
rules. The pattern matching may be implemented by several function objects,
instead of having one general pattern matching algorithm and special structures
to represent the pattern as done in the approach presented above. Therefore, the
application (matching/transformation) of a rule is done in an object-oriented fash-

ion as described below. In order to help to clarifv this discussion. the application

of an specific rule (Rule 3.1) is used.

Matching: For a rule object o, matching at the first level is performed by the
application of behaviors B_matchLeft/ BanatchRight that exeeute the fune
tion object returned by B_leftSide [B_rightSide, respectively, depending on
what side of the rule is applied. For example, if the left side of the ke
is to be applied, the Algorithm 5.2 that implements BomatehLeft executes.
the function object returned by B_leftSide (line 1) whose souree code is

illustrated in Algorithm 5.1.

Algorithm 5.1 Source code for function returned by B_leftSide Jor seleet-

exchange rule:

F_leftSide_selExch(T_algEqRule o, T.algOp p): T_boolean

{
if (p.B_name = °F select’) then (1)
if (p.B.outerRevr.B_name = °F select’) then (2)
return (true) (3)
else (4)
return (false) (5)
else (6)
return (false) (7)
}

Algorithm 5.2 Sourc. code for function thal implements B_matchloft for

select-exchange rule:

F_matchLeft_selExch(T_-algEqRule o, T_algOp p): T_-boolean
T-boolean match;

match = B_leftSide.B_execute(p); (1)
return (match); (2)

[Behaviors | Semantics

B_atoms(o) Returus the Tist of atoms that are referenced in the formula
object o, It is implemented by a stored function.

B_('NF(o) Returns a representation for the formula, which is given in
Conjunctive Normal Form.

B restVar(o) Returns the Tist of restricted variables in the atoms that are
referenced by the formula object 0. Restricted variables are
variables that are not generated by any atom in the formula
o. It is implemented by a computed function.

B_genVar(o) Returns the variable that is generated by one of more atoms

in the formula object 0. A formula can have only one gener-
ated variable because of constraints in the ohject algebra. It
is implemented by a computed function.

B_refVar(o)

Returns the list of variables that are referenced in the atoms
of the formula o. It is implemented by a computed function
that performs the union between the list B_restVar and the
list containing the generated variable B_genVar.

B_splitRestrDisj(o)(p)

Returns the collection of formulas in CNF form that result
from splitting the formula o into p number of parts which
were connected by disjunctions.

B_split RestrConj(o)(p)

Returns the collection of formulas in CNF form that result
from splitting the formula o into p number of parts which
were connected by conjunctions.

Table 5.5: Behavioral summary of T_formula type.

Algorithm 5.3 Source code for function returned by B_condLeft for con-

Junctive select-predicate rule:

F_condls_conj_seT_algEqRule o, T_algOp p): T_boolean

{
J = p.B_constraint; % extracts formula from OAPT (1)
CNF= f.B_splitRest Disj; (2)
if (CNF # null) then (3)
return (true) (4)
else (5)

return (false) (6)

Matching at the second level is performed by the application of behaviors
B_checkCondLeft/ B_checkCoud that execute the function object returned
by B_condLeft/B.cond, respectively. The source code for these function

[Native Behaviors]

Semantics J

B_splitLeft(o) Returns the subtree that corresponds to the BlouterRevr of
the OAPT o. As a side effect, it sets to aull the behavior
B_outerRevr for the node o,

B_splitRight(o) Returns the list of OAPTs that corresponds to the

B.innerArgs of the OAPT o. As a side offect, it sets to null
the behavior B_innerArgs for the node o,

B_linkLeft(o)(p) Links the OAPT p to the node 0 as o's Teft son B_outerRevr.

Returns the node o,

B_linkRight(o)(p) Links the list of OAPTs p to the node o as o's right son

B_innerArgs. Returns the node o.

B_assemble(o)(p)(q) | Given the OAPT p, the Tist of OAPTs ¢ and the node o,

B_assemble combines them into a single OAPT with root
o, left son (B.outerRevr) p, and right son (B_innerArgs) g.
Returns the OAPT rooted at o,

B_dissassemble(o) Breaks the OAPT rooted at o into three parts: an OAPT

containing only the node o, and the left and right chilkdren of
o. Returns a list containing at most two elements: the first
element is the left son (B_outerRevr), and the second element
is the right son (B_innerArgs). As a side effect, it sets to null
the behaviors B.outerReve and B.innerArgs for the QAPT
0.

Table 5.6: Behavioral summary of operations on trees defined on T_alg0p type.

objects is expressed in terms of operations that manipulate formulas to de-
termine properties of predicates and variables used in a rule (i.c. gen(F,v)).
In TIGUKAT, these operations are modeled as behaviors defined in the in-
terface of T_formula as illustrated in Table 5.5. For example, for Rule 5.4,
Algorithm 5.3 illustrates the source code for the function object stored in
B_condLeft. This behavior is set to aull for Rule 5.1 because the specifica-

tion for this rule does not establish any restriction.

Transformation: The transformation (action) is pecformed by the application of

behaviors B_actionLeft/B_action that execute the function object returned
by B.actionLeftFunc/B.actionRightFunc, respectively. The source code for
these function objects is expressed in terms of operations on trees® that in
TIGUKAT are modeled as behaviors defined in the interface of T_algOp as

illustrated in Table 5.6. For example, Algorithms 5.4 and 5.5 illustrates

$The operations on trees refered in this research are adapted from the ones presented in
Tarjan {40).

the source code corresponding to the function object that is returned by
the application of the behavior B.actionLeftFune for Rules 5.1 and 5.4,

respectively.

Algorithm 5.4 Source code for function returned by B_actionLeflt Func for

seleet-cxchange rule:

F_actionLeft_selExch(T_algEqRule o, T_algOp r): T_algOp
T_algOp sll, sl

{
sll = r.B_splitLeft(); (1)
sl2 = sl1.B_splitLeft(); (2)
r = r.BlinkLeft(s12); (3)
st = sli.B_linkLeft(r); (4)
retarn(sll); (5)
}

As a result of this discussion, for a rule object o, the algebraic expression
(B-algExpression) that specifies the rule is a theorem. The function code that im-
plements the matching (B_leftSide [B_rightSide), the check condition (B.condLeft
/ B-cond), and the transformation (B_actionLeftFunc |/ B_actionRightFunc) to-
gether are the proof of the theorem.

The search strategy determines the use of the rules for controlling the search.
There are many alternative strategies, ranging from static priorities to heuristics
that determine which rules would be applied under various conditions.

The example shown in Figure 5.4 illustrates the resulting OAPT after applying
the Algebraic Rule 5.1 to the OAPT shown in Figure 5.3.

Algorithm 5.5 Source codc for function returned by Bactionleft Fane for con-

Junctive select-predicate rule:

F.actionLeft_conj_sel(T.algEqRule o. T_alg0p oapf): T_algOp
T_algOp sl. oapl...,. oapl,,:
T-list sr; innerdrgs

T-formula formula;

sl = oapt. B_split Left(); (1)
sr = oapl.B_splitRight(): (2)
oapt ..y, = oapt.B_copy(‘omp(); (3)
Jormula = oapt.B_setFormula(o.B_C'NF.B_first.B_first); (4)
Jormula = oapt,.,,.B_set Formula(o.B_('NF.H_first.H_last); (5)
oapt = oapt.B_linkLeft(sl); (6)
oapl.,py = 0apleopy.B_link Left(sl); (7)

% ary = select target collections ref by var in formula Fi (8)

% sry = select target collections ref by var in formula F2 (9)

oapt = oapt.B_linkRight(sry); (10)
oapt..,, = 0apl..p,y.B link Right(sr,); (11)
innerArgs = C_list. B_new(); (12)
innerArgs. B_setFirst(oapt, .,): (13)
oapt, ., = C_algOp.B_new(F_union); (14)
0apt,,.; = 0apl,,..B_set Target Var(oapt.B_get Target Var); (15)
0aply,ot = 0apl,,qc . B_assemble(oapt.innerArgs); (16)
return(oapt, .o,); (17)

B rivelypr T_cawm

B agToprs il

B resull] we

B roerMie T pe Té,u
B argMh Types nall
& remliMiT ipe T_land

-

N —= T formula

[
B (NF

& gralar
&

B reaiVar -

=al, al>
ccdl= <id==
Lt =

[

==

T_stom

BONF.

8 eV o>
& gV Wl
BN o

Figure 5.4: Transformed OAPT by using Rule 5.1

Chapter 6
Modeling of Search Strategies

In traditional optimizers, the search space (usually identified as a set of processing
trees) and the search strategies that control the movement through this search
space are coupled together. However, in an extensible query optimizer, they newd
to be decoupled. Consequently, the type T_searchStrat is defined to madel
search strategies as objects. This type is a subtype of the type T_fanction in the
extended TIGUKAT type system.

T_searchStrat is an abstract type whose behaviors are implemented in its
subtypes. In other words, its extent is empty. This type is specialized into
heuristics-based optimization strategies T_heurSS, cnumerated search strategies
T_enuaSs, and randomized search strategies T_randomSS (as shown in Figure 4.1).
Then, search strategies are modeled as first-class objects whose type is any of the
types in the T_searchStrat type hicrarchy.

The search strategy component of the query optimizer can be casily extended
by further subtyping the type hierarchy for T_searchStrat when new search
strategies are found useful for the optimization of gueries,

Before optimizing a query, the system selects the appropriate search strategy
this selection can be to achieve a desirable trade-off hetween optimization cost and

execution cost for that query. For example, for ad-hoe queries (of type T_adHoc), a

heuristic search strategy may be desired since high cost of optimization may not be

61

amortized over repeated executions of the query. In contrast, production queries
(of type T_production). may be optimized more elaborately by using strategies
such as exhanstive search since the optimization is done at compile time and the
resulting optimized exeention plan is stored and potentially exeented many times,

The flexibility of supporting various search strategies, each one hest for a par-
tienlar elass of gueries, and the dichotomization of classes of queries by subtyping
T query cnable to associate a defanlt search strategy to cach type in the T_query
hicrarchy that snits hetter the optimization requirements for that class of queries,

The behavior BosearchStrat that is incorporated into the interface of the type
T.query returns the search strategy object that was chosen to be nsed to op-
timize that query! before the optimization starts. This search strategy can be
executed to control the application of transformation rules to the states (OAPTs)
in the search space during query optimization. This allows experimentation with
different search strategies for optimizing the same query by plugging in a differ-
ent search strategy object to the bebavior B_searchStrat in order to identify the

search strategies that are more suitable for a class of queries.

6.1 Search Strategies

6.1.1 Algebraic Heuristic Search Strategies

An algebraic heuristic search strategy transforms an initial OAPT into an
optimized OAPT by applying algebraic equivalence transformation rules (as those
defined in Section 5.2). The application of the transformation rules is guided by
heuristic query optimization rules.

In the relational model, there are a number of transformations that have been

found to be useful in optimizing an algebraic expression. For example, pushing a

mation. This heuristic assumes that the join operation is an expensive operation,

7 "When m-unm of a tgﬁ- in the T_query type hierarchy are created, a search strategy may
be associated by default.

%]

while the selection operation is straightforward or could even be done as part of
the joining process.

The idea behind these heuristics (48] is to try to reduee as mich as possible
the size of relations that are the operands of expensive operations such as join,
union and intersection. This reduction in size is achieved by pushing unary opera
tions such as selection (to reduce the number of taples) and project (to reduee the
number of attributes in the relation) past the expensive operations as far down
the processing tree as possible. In addition, operations that generally reduce the
number of tuples in the result, such as join and seleet, should be executed before
other binary operations that are considered expensive sueh as union, and inter
section. In order to achieve this, reordering of the leal nodes of the tree may be
necessary (i.e. commutativity rules).

It is important to notice that in heuristic search strategies only one processing,
tree is generated after a transformation has been applied by the optimizer. Other
search strategies, such as a breadth-first enumerative search strategy, generate a
set of candidate trees to be explored by the search algorithm.

In this research, a heuristic search strategy applied to object-oriented queries is
illustrated for TIGUKAT query model. The heuristies that are usedd to guide the

search are modeled by a list of transformation rules that is ordered by importanee

detail in Section 6.3.

6.1.2 Cost-controlled Heuristic Search Strategies

In order to determine the applicability of these henristies in object-oriented
query models, it has been found ([30, 26]) that in the presence of methods (be-
haviors in the case of TIGUKAT) in a selection predicate of a query, it becomes
important to determine the cost of applying those hehaviors,

In order to solve this problem for object-oriented query models, a cost-controlled
heuristic search strategy that considers the cost of applying algebraic cquivalence

rules has been suggested in [25]. In order to respect encapsulation, this requires

cost. models for high-level expressions. These cost models can be expressed in
terms of costs derived for calls to an OM interface as suggested in [43]. This is

discussed in more detail in Chapter 7.

6.1.3 Enumerative Search Strategies

Exhanstive search, whereby the entire search space is enumerated., is the most
straight-forward scarch strategy that can be used. Then, the cost function can
be applied to all of these equivalent expressions to determine the least costly one.
However, the computational cost of this approach is very high. An improvement is
to use a dynamic programming approach wherehy new expressions are constructed
bottom-up using the previously determined optimal subexpressions. The Voleano
optimizer generator uses a top-down, dynamic programming approach to search
with branch-and-bonnd pruning [13]. These are called enumerative algorithms.

Enumerative search algorithms are based on evaluating the cost of the entire

space,

6.1.4 Randomized Search Strategies

Randomized search algorithms start from a random state in the search space
(i.e. the initial OAPT that was obtained from the calculus to algebra translation)
and then “walk”™ through the search space, evaluating the cost of each state and
stopping either when they estimate that they have found the optimum execution
plan or when a predetermined optimization time expires. The walking between
states is controlled by the transformation rules such as the ones described in
Section 5.2 and a global control strategy. Two versions of these algorithms have
been investigated within the context of relational query optimization: Simulated
Anncaling (SA) [17] aud lterative Improvement (1) [46, 45]. A combination of
the two algorithms, called two-phase optimization is proposed in [16]. Iterative
improvement accepts a move from one state to another only if the cost of the
destinaiion state is lower than the cost of the source state. Simulated annealing,
on the other hand, allows a move to a higher-cost state with a certain probability

64

’ﬁmnanllrﬁ e =1

T, APT(R) of the search space ¢ from whoere
the search strategy nhy-n o starts the search, As a side
effect, it may initialize other variables that are relevant to
7) the particular search stratogy.

B_stopCond(0) Returns the objoct true if the condition given to xluiffh;-#
search process o holds. Otherwise false is returned. This is
useful in modeling randomized search st rategies,

B_setNextState(o)(p) [Returns the next state after p in the search space, Tt de
termines the order that the states are investigated in the
search space. For example, in enumerative search strategies,
if the implementation of this behavior chooses the least recent
state, then the search strategy is breadth-first: if it chooses
the most recently generated state, then it implements depth-

) B first search.

B_action(o)(p) Generates a Tist of succossor states for the state p by applying
algebraic equivalence transformation rules on it.

B_goal(o) Returns the collection (set) of states that have heen chowen

as “good” candidates to be the optimized OAPT.

&Qpﬁign&l(a) Returns the “optimal™ ()ATFT from the B_goal collection.

Table 6.1: Behavioral summary of T_searchStrat type.

which diminishes as optimization time moves along.

Randomized search algorithms have been suggested as one alternative to re.
strict the region of the search space that is analyzed. Since these are henristic
algorithms investigating only a portion of the search space, they cannot be guar-
anteed to be optimal. However, it has been shown in [46, 45, 17, 16] that the
randomized techniques converge to a state which is fairly close to the optimal
state given sufficient time.

There has not been any stmly of randomized search algurithms within the

flexible that such strategies can i?asnIy be incorporated.

6.2 Search Strategies as Objects

Since T_searchStrat is a subtype of T_function, it inherits all its behaviors
(which are described in Section 4.2) and define new ones that are listed in Ta-

ble 6.1. However, T_searchStrat does not implement any of its behaviors becanse

Vi!

it is an abstract type. These behaviors are implemented by its subtypes.

The scarch algorithm is modeled as behaviors B_source (source code) and
B_executable (executable code). These are part of the interface of a type in the
T-searchStrat type hierarchy. This algorithm is expressed in terms of other
hehaviors that are part of the interface of the same type as well, This means
that a search strategy object can be considered as a program whose source code
is stored in B_source, its local variables are modeled as stored behaviors in the
interface of its type (i.e. B_current defined in the interface of T_heurSs), and its
actions are modeled as behavioral applications of behaviors that are defined in its

interface as well (i.e. B_action defined in the interface of T_heurSs). Furthermore,

inherited from T_function). Therefore, in this research, programs are modeled
as objects which is an approach that is used in object-oriented programming
languages, but not in databases.

As it was mentioned earlier in this chapter, before the optimizer B_optimize is
applied to a query object q (q. B.optimize()), the query object @ must be annotated
with an instance of the appropriated search strategy type. For example, if an
algebraic heuristic search strategy is desired to be used to control the optimization
of a particular query, an instance of type T_heurSS must be created and plugged
in the behavior B_searchStrat for the query object q.

6.3 Customizing the Search Strategy

The customization of the search strategy component is done by subtyping
T_searchStrat (i.e. into T_heurSs) and overloading its behaviors
(i.e. B_setNextState) which are called cztensibility behaviors.

The extensibility behaviors capture common aspects of various known search
strategies such as heuristics, enumerative and randomized ones. In order to illus-
trate this, a customization for an algebraic heuristic search strategy is shown in

this section.

;{T_hcurSS H T.ccHeurss |
L Tobject |1 Tfunction H{T_scarchsirat - T_cnumss |

T_randomSS

Figure 6.1: Type hierarchy for T_searchStrat.

Algorithm 6.1 Algebraic Heuristic Search Algorithm.:

F_heurSS (T_heurSS ss, T_query ¢) : T_1ist(T_alg0p))

Input: The search strategy object ss that is implemented by this function
A query object to be optimized ¢

Output: A list with only one element: the “optimal™ OAPT oapt,

T_algOp oapt, oaptl, oapt;;
T-list oaptList;
{
oapt = ss.B_initSS(q); (1)
while not ss.B_stopCond() (2)
{ (3)
oaptList = ss.B_action(ss.B_getCurrent()); (4)
oapt] = as.B_setNextState(oaptlist); (5)
if as.B_acceptAction(oaptl) then (6)
oapt] = ss.B_setCurrent(oaptl); (7)
} (®)
oapt; = as.B_setOptimal(ss.B_get('urrent()); 9)
return(oapt;); (10)
}

T_searchStrat is subtyped into T_heurSS (see Figure 6.1) which is the type
for a heuristic search strategy. Since T-heurSS is a subtype of T_searchStrat,

[Native Behaviors | ~ Semantics .]

B_current(o) Returns the current state of the search space that is heing
explored by the heuristic search strategy o.
B.acceptAction(o)(p) | Returns true if the OAPT p meets the criteria that is defined
for the heuristic search strategy. (i.e. if the OAPT is a bushy
or alinear tree). Otherwise, it returns false.
B_transfRules(o) Returns the hst of transformation rules that are applied by
the search strategy o. It must be set when the search strategy
ohject o is first created. The list is ordered by priority of the
rule, S
B_chooseRule(o) Returns the current element in the list B_transfRules. The
next element becomes the current one,

Table 6.2: Behavioral summary of T_heurSs type.

it inherits all its behaviors and define new ones. For a heuristic search strat-
egy, B_execute executes its search algorithm that is stored in B_source (see Al-
Table 6.2 and the customization of the extensibility behaviors is illustrated in
Table 6.3.

The behavior B_initSS initializes the current OAPT B_current with the initial
OAPT that results from the calculus to algebra translation. The application of
the heuristics that guide the application of transformation rules is controlled by
the behavior B_action. The rules are applied in the same order to each node in the
OAPT. The order is determined by B_chooseRule in collaboration with B_action.
After B.action applies a transformation rule to the current OAPT (B_current), it
returns a list that contains only one element - the transformed OAPT. This list
contains only one element because of the particular characteristics of a heuristic
search strategy. Then, B_setNextState simply returns the first and only OAPT
in the list. Next, the search algorithm checks whether the transformation can
be accepted or not by applying the behavior B.acceptAction to the transformed
OAPT. For example, a criteria to determine if a transformed OAPT can be ac-
cepted is that one that restricts the search space to contain OAPTS of a particular
shape (i.e. bushy or linear trees). This process is repeated until all the rules have
been applied to all the nodes of the OAPT (B_stopClond).

68

Exictmbility behavior |

___ Meunistic

__Cost Conteolled Tlewristic —]

T-algOp vapl:

oapl = as. B_setCurrent();
(q-B_getlnitial OAFT()):

return capf,

T algOp sapt.
wipl = fx B _setCurrent().

(¢. B.getlmtial QAP T());
of = (g.B_getCost ModelFune ());
cost = ¢ f B execute

(55 B_getCurrent ()Y,
cosl = ss H_setCurr ost((osl),
return oapl:

s BstopCond()

return s8.
B_get TransfRules().
B_isEmpty()
% No more rules
% to apply

return s Hoget TransfRules().
BoasEmpty ()
% Nowore rules to apply

2. B_action(o)

T.algEqRule rulr;
rule = ss.B.chooseRule().
(ss.B_get TransfRules());

T.algEqRule rul: .
rule = 55, B_chooseRule().

(#x. B.get TransfRub=()),
retien o H_transformirule);

—]

#3. W_set N xiState(n)

return o.B_getFirst();

return o B_getFirsi(),

ss.B_acceptAction(o, q)

if (o satisfics eriteria)
return true

else
return false

T.integer cusll,
cost] = (g.B_getCost ModelFune()).
B_execute(n);
if (o satisfies eriterin)
if (vost] < ss. H_getCureC et ()

costl=ss. H_set CurrCost(cost [);
return true
}
olse
return false;
el
return false;

Table 6.3: Extensibility behaviors for implementing heuristic and cost-controlled heuris-

tic search strategies.

)

[Native Behaviors T Semantics
B currCaost(o) Returns the cost of the current state of the search space that 1s
being explored by the cost-controlled heuristic search strategy
.

Table 6.4: Behavioral summary of T_.CCHeurSS type.

6.4 Extending the Search Strategy Component

In order to illustrate the extensibility of the search strategy component of
the optimizer, a cost-controlled heuristic search strategy is incorporated into the
system that is modeled by the type T.CCHeurSS. The search algorithm for this new
search strategy is the same as the one given for the non-cost-controlled heuristic
search strategy (see Algorithm 6.1). However, some of its extensibility behaviors
such as B_initSS and B_acceptAction are redefined in T_-CCHeurSS. For this reason.
T_CCHeursSsS is created as a subtype of T heurSS (see Figure 6.1).

The customization of the extensibility behaviors for the cost-controlled heuris-
tic scarch strategy is illustrated in Table 6.3, and the native behaviors that are
defined on T_CCheurSs are listed in Table 6.4.

The cost-controlled henristic search strategy is customized from the alge-
braic heuristic search strategy (T_heurSS) by incorporating into the semantics
of B_acceptAction additional criteria to decide whether or not the transforma-
tion applied to the OAPT B_getCurrent is accepted. The goal of this additional
criteria is to keep the OAPT with the lowest cost as the current QAPT. Then,
the cost of the transformed OAPT oapt! is computed and compared to the cost
of the current OAPT B_getCurrent in order to make the decision. A cost func-
tion B_costFunction? is used in order to compute the cost of an QOAPT. The
application of the behavior B_costFunction to an OAPT is explained in Chap-
ter 7. The behavior B_cost executes the function returned by B_costFunction

(0. B_costFunction(). B.execute()).

3B.costFunction is inherited from T_function, but it is re-defined in the interface of T.alg0Op

Chapter 7
Modeling of Cost Functions

The final optimization-related concept that needs to be incorporated into the
maodel is the cost function. Cost-based optimization strategies apply a predeter
mined cost function (total time or response time) to an OAP'T to calenlate the
cost of executing the corresponding query according to that OAPE, T'he issue is
how these cost functions are modeled,

In TIGUKAT, each function is associated a cost throngh B costFunetion. Ap
plication of this behavior to a function [returns a function object o of type
T.costFunc that implements the computation of the cost of executing the fune
tion f. When function o is executed, it returns the actual cost of exeenting
function f. For this reason, T_function is further subtyped into T.costFunc.

Algebraic operator context nodes (instances of T_alg0p) redefine the hehavior
B_costFunction to return a function object of type T_costFuncAlgOp, which is a
subtype of T_costFunc. This redefinition is necessary sinee the cost of exeent
ing algebraic operators requires the incorporation of varions optimization issues
into these functions. These issues are typical ones such as the availability of
indexes over the collection on which these operators are defined, the statistical
information about these collections, and so on. The function ohject returned by
B.costFunction when it is applied to an OAPT node is called algebraie node cost

function for the remainder of this thesis and is denotesd as ane.,

71

node o phis the cost of executing the children of node o. Therefore, this compu-
tation is recursive in nature. The cost of a node is determined in terms of the
cost. of its children whose cost in turn depend on the cost of their own children,
Recursion naturally stops at the leaf nodes. Thus, this definition of cost functions
is based on graphs. Given an OAPT, its total time is caleulated by summing up
the costs of all of its nodes; the caleulation of the response time is dependent upon
the shape of the OAPT (i.e., bushy trees vs. linear trees) and whether parallel
execution is possible (these cost functions are described in Section 7.1).

Because of the nature of these cost functions, they are modeled as function
objects (of type T_costFunc) in TIGUKAT that are passed the root of an OAPT
(or subtree) as parameter. Consequently, the application of one of these function
ohjects to the root context of an QOAPT calculates the estimated cost of executing
that query according to the execution plan represented by that OAPT. We refer
to the cost of executing an OAPT as the cost model function cf for the rest of this
chapter.

A cost model function ¢f is selected for each query! before the optimization
starts, and it is stored as the value of the behavior B_costModelFunc that is
incorporated into the interface of the type T_query. Then. different cost model
functions can be used at different times for optimizing a particular query or type
of queries under consideration. This allows later experimentation by changing
the cost function in order to measure the effects of the optimizer actions on the
optimization of a particular query or type of queries.

In order to clarify the discussion, we refer to the cost mode! function illustrated
in Section 7.1.1, that calculates the total time of execution of a query, for the
remainder of the chapter. The concepts developed in this chapter apply to other
cost models (i.e. to compute response time that is described in Section 7.1.2).

Then, the modeling of cost model functions as objects is discussed in Section 7.2.

'When instances of a type in the T_query type hierarchy are created, a cost model may be
associated by default.

7.1 Cost Model Functions

Cost functions such as total time and response time are traditionally nsed in
databases to caleulate the estimated cost of exeenting a query aceording to the
execution plan represented by an equivalent processing tree, We adapt these two
cost functions to caleulate the estimated total time and response time of execnt
ing OAPTs (TIGUKAT's processing trees) as deseribed below in Sections 7.1, 1

and 7.1.2, respectively.

7.1.1 Total Time Cost Function

A cost model funetion ¢ that caleulates the total time of exeention for a

particular OAPT rooted at node oapt is defined by the cquation? given helow,

0 il oapt is a leal node
tt(oapt) = § anc(oapt) + t(oapt.B_outerRevr) (7.1
|+ ZL, toapt. B_innerArgs,) ot herwise

where ane is the algebraic node cost function, the left son of oapt is the receiver

node (B_outerRevr) and the right son is the list of argnments (Boinner Args) which

the interface of T_context (see Table 5.1).

The function t¢ is defined recursively. It adds the estimated algebraic cost of
executing a node oapt (by applying anc) to the cost of executing oapt’s children
which is computed hy applying the same function 1 10 cach of them. The total
time is calculated by summing up the costs of all nodes in the OAPT. The cost
of executing leaf nodes is considered negligible (ane(leaf) = 0) becanse leaf nodes
are references to base collections. Then, t(leaf) = 0. Recursion stops at the leaf
nodes.

The algebraic node cost function ane may involve the cost of accessing the

objects in secondary storage, the cost of processing the algebraic operation and

A m!l.nmdd is ;I;nml;iby an equation that is inplemented by a function object in
TIGUKAT extended model.

the cost of storing the intermediate results, In the case of a distributed database,
it may also involve the cost of communication between the node and its children
as considered in [8]. A discussion of algebraic node cost functions is given in

Section 7.2.1.

7.1.2 Response Time Cost Function

A cost model function 1 that caleulates the response time of execution for a

particular OAPT rooted at node oapt is defined by the equation given below,

0 if oapt is a leafl node

. 4
rt(oapt) = ane(oapl) (1.2)
twmar(ri(oapt.B_outerRevr),

nm.rf=, (rt(oapt.B_innerArgs,))) otherwise
where ane, BoouterRevr, and B_innerArgs have the same definition given in Sec-
tion 7.1.1.

The function rt is defined recursively as well. It finds the cost of the most
costly path in the OAPT by traversing the tree from root to leaves and computing
the cost of each node in terms of the response time cost of its children. The cost
of executing leaf nodes is considered negligible (anc(leaf)= 0) because leaf nodes
are references to base collections. Then, rt(leaf) = 0. Recursion stops at the leaf

nodes.

7.2 Cost Model Functions as Objects

Cost model functions are modeled as recursive functions that take the root
of an OAPT as input (parameter), and return the cost of the QAPT as result,
after the function has recursively traversed the OAPT calculating the cost of
cach node in the tree. In a conveational approach, the code that implements
these functions is a single block that must take into account the characteristics
that are particular to the computation of the cost of each node (e.g., whether or
not the cost of executing leafl nodes is negligible). These differences among the

F function T costFunc

Subtype

Supertype

Figure 7.1: Cost model functions as instances of T_costFunc

nodes are hard-wired into the cost model function, making it difficult to maintain
these functions when new algebraic operators are extended in TIGURA'T,

In order to avoid this problem, a very different approach using the ohject
oriented paradigm is presented in this rescarch: cach algebraic operator node
provides individualized behavior for its cost function. This is explained in See
tion 7.2.1.

In this rescarch, cost model functions are defined as instances of T costFunc
(see Figure 7.1). Since T_costFunc is a subtype of T_function, it inherits all

its behaviors (which are deseribed in Section 4.2). For a cost maodel function,

B_execute computes the cost model equation whose algorithm is stored in B_sonree,

For example, for the equation 7.1 that computes total time of execution, its corre-
sponding implementation is illustrated in Algorithm 7.1. B_execute is specialized
to return a cost (i.e. an instance of T_integer).

For each different cost model equation, a different instance of T_costFunc
must be created. For example, for the total time cost model funetion deseribied in
Section 7.1.1, the instance F_costTT is ereated as an object of type T.costFunc
in Figure 7.1. This gives to the cost function component of the optimizer the
extensibility property required to incorporate into TIGUKAT query optimizer
new cost model functions as they are found useful to measure the actions of a
search strategy over the search space. For example, if the response time cost
model described in Section 7.1.2 is desired to be incorporated into TIGUKAT

query optimizer, the instance F_costRT that implements this cost model is created

-

b |

in the class C_costFunc (see Figure 7.1).
Algorithm 7.1 Total Time Cost Model Funclion.:

F_costTT (T_costFuncAlgOp cf, T_algOp oapt) : T_integer

Input: The cost function cf that is implemented by this function
An OAPT oapt

Output: The cost of executing cf on oapt

T.algOp oaptTemp;
T-integer alg(ost, left(ost, rightCosl, total(‘ost:

{
algCost = 0); leftCost = 0; (1)
right(‘ost = 0; totalC'ost = 0 (2)
if (oapt !'= null) (3)
{ 4
alg('ost= oapl.B_cost(); (5)
if ((oapt.B_getOuterRevr()) '= null) (6)
{ (7
leftCost= cf.B_execute(oapt. B_getOuterRevr()); (8)
if ((oapt.B_getlnnerArgs()) '= null) (9)
{ (10)
oaptTemp = oapl.B_getinnerArgs().B_getFirst(); (11)
while not (eapt Temp == outOfBound) (12)
{ (13)
rightC'oat = right('ost + (cf.B_execute(oapt Temn)); (14)
vaptTemp = (oapt.B_getinnerArgs()).B_get Next(); (15)
} (16)
} (17)
} (18)
} (19)
totalC'ost= algC'ost + lcftC'ost + rightCost; (20)
return(totalC'ost); (1)

Figure 7.2: Collection L_implAlgOp and class C_costFuncAlgOp.

7.2.1 Algebraic Node Cost Functions

Each algebraic operator context node (of type T.algOp) has a different cost
function because the algebraic node cost function incorporates optimization is
sues that potentially vary among the operators. For example, the union operator
only needs the cost of accessing the instances of the collections (), (" involvesd
in the operation, while the select operator requires the cost of aceessing the in-
stances of the collection (7, in the presence of a predicate £ This means that
for each algebraic operation implementation (an instance of T_function), there is
a corresponding cost function (an instance of T_costFuncAlgOp) that computes
the cost of executing that operation. Then, for each instance in the collection

L_implAlgOp (that was defined in Section 5.1), there is an instance in the class

cost of execution (see Figure 7.2). Instances of T_costFuncAlg0p are the so-callod

anc objects,

of T_function, they inherit the behavior B_costFunction from T_function. The
application of this behavior to an OAPT node o returns the function object ane of
type T_costFuncAlgOp that implements the computation of the cost of executing
the algebraic operation that the node o is representing.

— — = 3
(oy = T algOp

B nawr F_swleri

5 naw . [] B naww Fihjm
B cosiFunchon - B canFuncnion L
L L L L_wmp, B rawger ol LB

Y e sl e e e === ===z ssss=s====4
8 bR v 1 :

\, I, - A

8 name ¥ halAlgilp B oname F_lmiAigOp
8 conFusction - L 3 conFumcaon -
B sy oll LA B sargeiColl Lr

= T oty s o Y. coufuctecy

Figure 7.3: OAPT annotated with algebraic node cost functions,

The fundamental advantage of this approach is that each algebraic operator
node provides individualized behavior for its cost function. For example, if the
cost for some algebraic operators is considered negligible, it is easy to make the
cost functions associated to those algebraic nodes to return a constant value (i.e.
zero) without having to modify the implementation of the cost model function to
consider these exceptions. This gives more flexibility to the optimizer to be able
to extend the cost function component for new algebraic operators as they are
incorporated in the object algebra.

| Native Behaviors T Semanties T

B_cardinality(0o) | Returns an est ardinality of the collection object o, |

B_calcCard(o) Calculates the cardinality of the colloction ohject 0. As a sile
effect, it updates H_card.) o 7
B_instSize(o) Returns an estimated size in hytes of an instance 1n (he col-

lection object o.

B_calclnstSize(o) | Calculates the size in hytes of an nstance in the collection
object 0. As a side effect, it updates HiinstSize. If the in-
stances are collections, failure is returned(i.e., returning -1).
Then, the behavior applies B_calelnstSize to each object in
the collection o (recursively) asking for its instance size and
cardinality in order to compute the average size in bytos of
an instance,

Table 7.1: Behavioral summary of statistics defined on T_collection type.

(instances of T_alg0p), each node is annotated with a cost function by filling the
behavior B_cost Function with the proper cost function object that computes the
cost of executing its corresponding algebraic operator. This is done when the
OAPT node is first created.

Figure 7.3 shows an OAPT annotated with cost function ane,,. The tiest
information in the box represents an object instance reference and the map-

ping to its type. Then, the behaviors that are relevant to the discussion on

nodes, B_costFunction references the anc,,s that are cost function instances of
type T_costFuncAlgOp (that are shown in the bottom of the figure, below the
OAPT). The L_temp; is a reference to a temporary collection object and L_A,

L.B, and L_C are references to base collection objects,

by combining costs derived by the OM interface for calls to its interface, and
statistics on collections. Because the cost interface that the ohject manager must
provide has not been defined yet, it is not possible in this research to give examples
of equations that describe some of the possible algebraic node cost functions.
Statistics on collections are defined as behaviors in the interface of T_collection
as listed in Table 7.1.

An OM interface is defined in [43] that provides a lower level of abstraction

than that provided by the object model and objeet algebra. The access plan
generation is treated as the mapping of object algebra expressions (OAPTs in
TIGUKAT) into the new abstraction interface. One of the primary concerns in
[43] is to decompaose the object algebra operators (i.e. select, map, and so on) into
a sequence of simpler operations provided by the interface of an object manager
system. The other concern is to respect the encapsulation provided by hehav-
that knows how ohjects are stored. Therefore, [43] assumes that the object man-
ager is capable of derive costs for calls to its interface, However, the operations
that can be used to obtain these derived costs are not defined.

In this thesis, we make a similar assumption to that one in [43] in the sense that
the object manager is capable of derive costs for calls to its interface, For example,
if the OM interface provides a function call accessinstPred(o,p) that returns the
instances of collection o that satisfy the predicate p, it could be possible to ask to
the OM interface to derive the cost for this function call (i.e. by calling a function
such as access_cost(o,p)) as defined in [25]). In order to derive this cost, the object
manager can use information such as the existence of an index on a behavior of o
that is referenced by the predicate p. The existence of this index helps in selecting
the appropriate access method to access instances of the collection o (i.e. using
the index or performing a sequential scan).

Currently, there is no OM interface defined for TIGUKAT QODBMS. The
definition of this interface for TIGUKAT including derived costs for calls to its

interface is not within the scope of this research.

7.2.2 Execution of Cost Model Functions

In order to compute the cost model function cf for a node o, the node o col-
laborates with the function object ¢f by computing its own cost. This interaction
is described below step by step and the relevant statements in the Algorithm 7.1

are referenced by number of line in order to clarify the discussion,

1.

Execution of the Cost Model Function at the root nade of the OAPT, The
search strategy component of the optimizer executes the cost model funetion
of passing the root of the tree that is being optimized as a parameter, The
root of the tree is denoted as node oy, This exeeution is performed by the

behavioral application

cf. B_execute(oy)

% third line of implementation for B_initSS in Table 6.3
and cf is caleulated by the behavioral application
cf= q.B_getCostModelFune()

Next, the exeention of ¢f fires the computation of the cost for the algebraie
operation on node oy (see step (2)), and the computation of the cost model
function on the children of node oy (see step (3)).

Computing the Algebraic Node Cost on node oy, The node oy knows how to
calculate itself the algebraic node cost for the algebraie operation that the
node implements. This cost is calculated by applying B.cost 10 the wode
oy as illustrated in line (5) of Algorithm 7.1. B_cost exeentes the function
object ancg that is returned by applying B_getCost Funetion to the node o,

This step is performed by the behavioral application
anco. B_execute(oy)

and anco is calculated by the behavioral application
ance = og. B_getCostFunction()

The computation of the algebraic node cost on node oy includes different
optimization issues such as statistics on collections.

Computing the Cost Model Function for the children of node .

The cost model function cf recursively computes the cost of node oy's chil-
dren by executing itself passing oy’s children as parameters as illustrated in

the path expressions given below,

|

ef. B_execute(oy. B_outerReve())) % line (8) of Algorithm 7.1
Joreachl_) (ef B.execute(og. BiinnerArgsi())) % line (14) of Algorithim 7.1

and (3) are combined according to the cost model equation implemented
by the function ¢f, and the resnlt is returned as the cost of executing the

node oy, For example, for the total time cost model function defined in

returned by ef as the cost of exeention of the node oy (as illustrated in line

(20) of Algorithm 7.1).

This process is generalized to be applied to any node o in the QAPT, starting
from the root of the tree, node oy, to the leaf nodes where the recursion bott...ns
ont (see lines (9) and (12) in Algorithm 7.1). Then, in a recursive manner, the
cost of execnting an OAPT is calculated according to its cost model function.
This approach follows an object-oriented paradigm to compute the algebraic cost
of the individual nodes in the OAPT because the nodes know how to calculate
their cost themselves,

Figure 7.4 illustrates this process. The cost model function ¢f that is applied
to the root of this OAPT caleulates the total time of executica. The values that
are returned by the cost model function ¢f after recursively executing itself over
cach node of the OAPT (that was illustrated in Figure 7.3) are shown on the

ArTOWS,

@ = _

el , —= T_asigOp

B name F_hafAROp

8 costFunction L

[-7 Q
.....-...-...ﬁ...-..-....-";

8 _oerRew ‘: 8 innerAry. aull

\.

@ 1 ¢1.B_execute(o)

@ dB_execute(o B outerRcwr)

©) 18 _amecuteio B ionerArgs)

(® :0, .8 costFuncion(.8 execute)

Figure 7.4: Execution of the total time cost model function ¢f on an OAP'F,

Chapter 8

Implementation of TIGUKAT
Query Optimizer

Ths query optimizer is defined as an extension to TIGURAT object moded
by using the object-oriented concepts of subtyping and specialization. We call
TIGUKAT core object model to the minimm semantically complete abject madel.
It is intended to be powerful enongh to support. complex extensions sueh as those
that the guery optimizer requires. There is a enrrent implementation for the
TIGUKAT core object model that consists of libraries of function calls. We refer
the reader to [18] for further details on this implementation
Different alternatives were considered to implement the TIGUKAT query opti

mizer. A natural way to implement this optimizer is to first extend the core object
model and then use an object-oriented programming language (DOPL) built on
top of TIGUKAT core object model implementation. However, an OOPL has not
yet been defined for TIGUKAT. Another alternative to implement the optimizer
is to use an existent QOPL (i.e. C4++4) to call the functions provided by the core
object model implementation. However, because this current implementation is
a pre-beta version, it is not rubust enough to be used as a platforin to implement
the query optimizer. Therefore, a third approach that implements the query opti

mizer as well as the primitive type system by using an existent QOPL was chosen

X4

in s research, This alternative reguires the definition of 4 mapping between the

concepts provided by the conceptnal object model and the tvpe svstem provided

In the OOPL. This mapping is defined i Sections 8.1 and 8.2,

The query optimizer st be able to aceess information abont the ohjectbase

schema during the optimization process. The conceptual maodel specifies that

the objecthase sehema is self contained in the tvpe system. However, hecause an

interface hetween an existent QOPL (i.e. C+4) and the core object model imple-

mentation does not enrrently exist, the current guery optimizer implementation

defines internal structures to store information about the objectbase schema.

Ct 4 was selected as the QOPL to implement TIGUKAT query optimizer,

There were several reasons for this choiee as listed below:

Cotois an OOPL that supports the concepts of abstract data types, en-
capsulation, elass hierarchies with inheritance and polymorphism. These
features are essential in building an extensible object oriented query opti-
mizer. Phe components of the TIGUKAT conceptual object model and of
the query optimizer can be mapped to C++ under certain restrictions that

are mentioned later on in this chapter.

C++ provides good programming concepts such as information hiding,
modularity. code reusability, and extensibility. These are also important
features for the integration of the different modules in which TIGUKAT
OBMS has been divided such as the TQL parser, the guery optimizer. and
the object manager. This constitutes an important reason for the choice of

C++ as the langunage to implement TIGUKAT subsystems (18, 27].

C++ implements object-oriented concepts withont compromising the effi-
cieney of (* language. That makes ("++ one of the most efficient object-
oriented programming languages [14]. This is a very important considera-
tion when selecting the language to implement the query optimizer where
efficiency is essential. Besides, ('++ retains the portability of C which is a

desired feature for future portability to different platforms.

However, there are some strong ditferences between C 4 b and FIGUK AL 1 pe
system that constrain the implementation of the object model to adhere strictly

to the conceptual model. These ditferences are listed helow:

L. TIGUKAT object model supports dvnamie sehema evolution that allows
changes to existing type definitions, creation of new tvpes and classes, and
changes to the class hierarchy at rin tiime, Tn contrast, Ch s a statie by
tvped langnage. This means that when class definitions are chaneed., they
mnst be recompiled. Therefore, using C 44 for implementing the gnery
optimizer leads 1o a static objecthase definition for the optionzer which s
not a problem becanse the optimizer does not require creation of types or
classes on the fly. Besides, the definition of the components of the optumzer

(i.c. T_alg0p) must not be changed while a query is being optimized.

2. In C4+4. a class is a template to specify instances of this class, bat it i not
available at run-time. In contrast. TIGUK AT elearly separates the concepts
of type and class. It defines a class as a container that keep the instanees
of a type, and type is a template that contains the specification of objedts
(behaviors and their associated implementation). This type information is
available at run-time. Then, it is clear that C4 4 programming linguage
and TIGUKAT OBMS differ on the dynamies of class and type delinition,

respectively.

This thesis is intended to show the viability of an extensible query optimizer
as described in Chapter 4. The experimentation consisted in the optimization of
some query examples by giving to the query optimizer the cortesponding, query
object annotated with the equivalent initial OAP'E as input, and returning an
optimized QAPT as output.

In order to support these experiments, the subset of the TIGUKAT type sys
tem that is relevant to the query optimizer as well as the query optimizer archi
tecture were implemented using C+4 (GNU's C+4 implementation called g ¢ 4)

on a Sun SPARC station IPX under UNIX. The query optimizer implementation

S

contains about 5000 lines of C4 + code,

The implementation of the quers optimizer architectore inclides the imple-
mentation of the OAP T that constitutes the search space, a subiset of algebraic
transformation rules, an alechraie henristic search strategy and a total time cost
model funection.

An algebraie heuristic search strategy (defined in Section 6.1.1) was chosen
to be implemented to control the actions over the search space (OAPTs). How-
ever, the framework for defining search strategies is gencral enongh to allow the
inplementation of cnnmerative or randomized search strategios by extending the
T searchStrat hicrarchy.

A total time cost model funetion (defined in Seetion 7.1.1) was implemented
to show the feasibility of modeling the cost function components as objeets, For
this implementation, the algebraie cost funetions were chosen to return a constant
value because of the lack of an objeet manager that derives costs for call to its
interface corresponding to those algebraie operators. The search strategy compo-
nent was extended to support a cost-controlled heuristic search strategy (defined
in Section 6.1.2) to illustrate the nse of the cost function component by the query

optimizer.

8.1 Mapping of TIGUKAT Object Model to C++

In C+4, a class is a user-defined type. The only way to have access to objects
of a class is by a set of functions declared as part of the class. These functions
are called member funetions [44).

A standard methodology to store the specification of classes in (‘44 is to keep
the declaration of a class including the declaration of its member functions in a
file .h and to keep the definition of the member functions in a file .. These files

are named with the class’ name. For example, the declaration of the class A is

in a file called A.C. We follow this standard when implementing the classes for

-

the query optimizer.
The mapping of cach primitive object in FIGUR AT core object model 1o 0

is deseribed below,

8.1.1 Objects

TIGURNT supports strong object tdent ity (see Section 3.0 meanine that Cveny
object hax a nnigue existence within the svstem that is a feature provided by €4
as well, Conceptually, every TIGUKNT object is a composide object meaning that
every objeet has references to other objects, TLE concept is implemented i €y

I,l_\; ““Hii‘]il!g TIGUKAT references 1o ulnjlj‘rih as U4 [minh‘i’s les ulliu"c'l%.

8.1.2 Types

Each non-atomiec tvpe relevant to the query optimizer in the TIGUR AT o
tended object model is mapped 10 a corresponding C 44 elass that s declaped
in a .h file'. These classes are named by T_ < typename <. For exar e, for
the TIGUKAT type T-object. the (‘4 + T_object class is created. On e other
hand, the TIGUKAT atomic types are direetly mapped to the corresponding, (4

types. For example, T_integer is mapped to in.

8.1.3 Type Hierarchy

The root of the (44 class hicrarchy is the T.object elass which corresponds
to the T_object type in TIGUKAT Type System. The Cy y class hierarchy fol
lows the TIGUKAT type hicrarchy by using the C4 4 mechanisin of subwclassing,
in an analogous way to the TIGUKAT mechanism of subtyping. When menibwer
functions are overloaded in a subelass, the C44 mechanism of declaring virtwal
member functions is used in the respective superclass, Currently, the type hier

archy extended by the query optimizer only requires single inheritanee,

'In general, OBMSs that support C4+4 use the h files as the databiase sehema definition.

bl

8.1.4 Collections and Classes

TIGURKAT T.collection and T_class are implemented by the C++ classes
T collection and T_class. respectively.

In TIGUKAT. every type that supports instantiation is associated to a elass

object that manages the instances of that o oes This is iplemented by
defining the member function Boelassey f the C4++ T_type class.
This member function is defined as nee of type T_class.

In TIGUKAT, object ereation v the hehavior Bopew to
the class corresponding to the ty: : irontrast. in (44, object
creation is done by using special - ed constructors. Then, in
the eurrent implementation, whe conarac wd, as part of its definition,
code is included to make sure th. - Ao i red in the corresponding class
to adhere to TIGUKAT concepi - ci e at objects cannot exist without
an associated elass and classes atre Uy maintained by the system.

8.1.5 Behaviors and Functien-

In TIGUKAT, behaviors specify the semantics of an operation, while functions
implement the semanties of behaviors. A behavior defined on the interface of a
type must be explicitly associated with an implementation by the application of
the behavior BLassociate.

In the ('++ implementation, a behavior defined in the interface of a TIGUKAT
type is mapped to a member function declaration on the corresponding (' ++ class
(in file .h), while the implementation of the behavior is modeled as the definition
of the ('+4 member function (in file .(!). Then, in C++, the association of a
behavior with its implementation is implicitly done when the respective member
function is defined. The code in the body of the definition of the member functions

is written in '+ +.

b

8.1.6 Behavioral and Implementation Inheritance

that makes nse of virtual tables to handle overloading of funetion members, In
contrast, the TIGUKAT core ohject model implementation uses the cache table
mechanism to solve overloading and late binding of implementations to behavions

al run-fime.

8.2 Mapping of TIGUKAT Query Optimizer to C++

In order to extend the TIGUKAT base objeet model for query optimization
purposes, the C+4 mechanisms of deriving classes (for modeling FIGUR AT sub
typing) and defining virtual member functions (for overloading of FIGUR AL
hehaviors) are used,

The mapping of the components of the TIGUKAT query aptimizer to €y

is described below.

8.2.1 Search Space

is defined as a derived class of T_function. In order to implement the type
T.algEqRule, the ("++ class T_algEqRule is defined as a derived elass of T rule

which in turn is a derived class of T_object.
8.2.2 Search Strategy

C++ in a way that allows a straightforward translation to a behavioral TIGUKA'T
OOPL when it is defined and implemented. Currently, there is no programming

language for the TIGUKAT system.

L

8.2.3 Cost Model Functions

The C 4+ capability of declaring member functions of type function call. al-
lows to manipulate the address of the funetion to be exeented. However. the
declaration of this type of member functions requires a fixed number and type
of parameters to be specified becanse of the static typed nature of C++. This
featnre is wsed in the implementation of the cost funetions for algebraie operator
context nodes,

A cost function object of class T_costFAlg0p is stored in the member function
B_costFunction that is defined in the interface of the algebraic operator context
nodes of elass T_algOp. This cost function must be execnted in order to obtain the
cost for that node. Sinee the executable code that implements these cost functions
may potentially differ for each algebraic operator, but they have the same number
and type of parameters (T_algOp), and the same return type (T_integer). the
C+ 4+ capability of declaring a member function of type function call is used to

declare the behavior B_executable for them.

91

Chapter 9

Conclusions

This thesis describes an extensible query optimizer architecture for OBMSs, The
identifying characteristic of this design is the use of the ohject oriented philosophy
in providing extensibility. The architecture defines all components of the opti
mizer (search space and transformation rules, cost function, and cost strategies)
as well as the queries themselves as first-class objects. This is consistent both
with the TIGUKAT object model and the object-oriented design philosophy. T
a sense, this is using the medicine that is normally prescribed to others, The
end result, which we believe to be a significant advantage, is that hoth the query
model and the query optimizer hbecome direet extensions of the TIGUKAT ob
ject model which can be managed (stored, changed, queried) just like any other
object.

In order to implement the query optimizer, a subset of the TIGUKAT core
object model relevant to it was implemented using C+ 4. This requires a mapping,
between TIGUKAT and C4+ type systems. The core object model was extended
by using the C++ mechanisms of deriving classes (for modeling subtyping) and
defining virtual member functions (for overloading of behaviors) in order to sup
port the extended object mudel that is required for query optimization purposes,
implementing in this way the TIGUKAT query optimizer. However, hecanse of
the differences between TIGUKAT and C++ in the dynamics of class and type

definition, as well as in their dynamic and static type nature, respectively, the

current implementation loses the full uniformity feature provided by TIGUKAT

abject model,

lowed us to prove that the TIGURAT query optimizer can be built as an extension

to the TIGUKAT core object maodel,

9.1 Future Research

Although the modeling of the cost component of the optimizer is deseribed
in this thesis (Section 7.2.1). further research must be done in the cost infor-
mation that the object manager can provide to the optimizer when using cost-
controlled search strategios. The definition of an interface to the object manager
for TIGUKAT object model is reguired. The work done in [43] can be used as a
basis for defining TIGUKAT object manager interface,

Further research must also be done in defining semantie transformation rules
for TIGUKAT query optimizer. For example, a possible semantic transformation
rule could be that if the class (7 is a subelass of (7, the intersection of those two
classes, 'y and 3, produces the class ('; as a result becanse the object model
restricts each object to belong to only one class.

Future research must be done in defining a methodology to select the “best”
execution algorithms that implement each algebraic node in the OAPT based on
physical information provided by the object manager such as indexes, cluster-
ing, and 50 on. The selection of these algorithms is done by the execution plan
generator! providing the object manager can derive physical information through
function calls that belong to its interface.

Other topics of future research are the exploration of new techniques for op-
timization of behaviors inside queries and the type inferencing mechanism for

transformation rules that involve target-creating algebraic operators.

"The execution plan generator is modeled by the behavior B_genExecPlan that is defined in
the interface of the type T_query.

93

Bibliography

1]

(3]

[6]

[7]

(8]

S. Aronofl. - Geographic Information Systems: A Management Perspecti.

WDL Publications, 1989,

F. Bancilhon. S. Cluet,and €. Delobel. A query Langnage for the O, ohject
oriented database system. In Proe. 2nd. Int. Workshop on Database ro-

gramming Language s, pages 122 138, 1989,

J.A. Blakeley, W.J. MeKenna, and G. Graefe. Experiences bilding the Open
OO0DB query optimizer. In Proc. ACM SIGMOD Int. Conf. on Manago ment
of Data, pages 287 296, 1994,

S. Cluet. Langages ol Optimisation de Requeles pour Systemes de Gestion

de Base de donee oriente-objet. PhD thesis, Universite de Paris Sud, 1991,

5. Cluet and C. Delobel. A general framework for the optimization of ahject
oriented queries. In Proc. ACM SIGMOD Int. Conf. on Managemen! of
Data, pages 383-392, 1992.

E. F. Codd. Relational completeness of data base sublanguages. In Courant
Computer Science Symposium on Dala Base Systems, volwme 6, pages 65 98,

Prentice-Hall, May 1971.

U. Dayal, A. Buchmann, and 1), McCarthy. Rules are objects too: A knowl:
edge model for an active object-oriented database system. In Proc. 2nd Int.

Workshop on Object-Oriented Database Systems, pages 129 143, 1985,

A. Dominguez. Query optimization in multidatabase systems. Master’s the-
sis, University of Alberta, Edmonton, Alberta, Canada, 1993.

(9] 0.C. Freytag, A rile based view of query optimization. In Proe. ACM SIG-

[10]

(1]

[12]

[1:3)

[11]

[15]

[16]

(17]

(18]

[19]

MOD Int. Conf. on Managoment of Data, pages 173 180, 1957,

A V. Gelder and RW. Topor. Safety and Translation of Relational Calenlus
Queries. ACM Transactions on Dalabase Systems, 16(2):235 275, June 1991,
G. Gracfe and D DeWitt, The EXODUS optimizer generator. In Proe.
ACM SIGMOD Int. Counf. on Management of Dala. pages 160 172, 1987,
G. Graefe and 1. Maier. Query optimization in object-oriented database
systems: A prospectus. In Proe. 2nd Int. Workshop on Object-Oriented
Database Systems, pages 358 363, Springer Verlag, 1988,

9th Ini. Conf. on Data Engineering, pages 209 218, 1993,

R. Gupta. A quickstart introduction to C++4. In R. Gupta and E. Horowitz,
editors, Object-Oriented Databases with applications to ('ASE, Networks and
VLSI CAD, pages 324 342, Prentice Hall, 1991,

W. Hasan and H. Pirahesh. Query rewrite optimization in Starburst. Tech-
nical Report TR RJ 6367, IBM Alamden Research Center, August 1988,

Y. loannidis and Y. Cha Kang. Randomized algorithms for optimizing large
join queries. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 312 321, 1990,

Y. loannidis and E. Wong. Query optimization by simnlated annealing. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 9-22, 1987.
B.B. Irani. Implementation of the TIGUKAT object model. Master's thesis,
Department of Computing Science, University of Alberta, Edmonton, Al-
berta, Canada, 1993. Available as University of Alberta Technical Report,
TR93 10.

B.P. Jenq, D. Woelk, W. Kim, and W-L. Lee. Query processing in distributed

Springer Verlag, 1988,

M

[20] T. Keller. G. Graefe, and Do Maier, FEtficient assembly of comples objects,
In Proc. ACM SIGMOD (nt. Conf. on Management of Data, pages 1S 157,
1991.

[21] S.N. Khoshatian and G.I. Copeland. Objeet deatity. In QOPSE A Sy

Conferenee Procecdings, pages 106 116, 1986,

[22] W. Kim. A model of queries for object oriented databases. I Proe, 1ih
Int. Conf. on Viry Large Data Bases, pages 123 132, (980,

[23] R. Krishnamurthy, H. Boral, and €. Zaniolo. Optimization of nonreenrsive
queries. ln Proc. 120 Int. Conj. on Vory Large Dala Bases, pages 125 137,

1986.

[24] R. Lanzelotte and P. Valduriez. Extending the scarch strategy in o query
optimizer. In Proc. [7th Int. Conf. on Very Large Data Bases, pages 363
373, 1991.

[25] R. Lanzelotte, P. Valduriez, and M. Zait. Optimization of objeet oriented
recursive queries using cost-controlled strategies. In Proe. ACM SIGMOLD

Int. Conf. on Management of Data, pages 256 265, 1992,

nonrecursive queries in QODBs. In Proc, 2ud Int. Conf. on Diduction and
Object-Oriented Databases, volume 566 of Lecture Noles in Compuler Sei-
ence, pages 1-21. Springer Verlag, 1991,

Master’s thesis, Department of Computing Scienee, University of Alberta,
Edmonton, Alberta, Canada, 1993, Available as University of Alherta Tech:

nical Report, TR93- 11.

[28] G. Mitchell, U, Dayal, and S.B. Zdonik. Control of an extensible query
optimizer: A planning-based approach. In Proc. 19th Int. Conf. on Viry
Large Data Bases, pages 517 528, 1993,

[29]

[$0]

[31]

[42)

(3

[34]

[35)

[46]

(i. Mitchell, S.B. Zdonik, and U. Dayal. An architecture for query process-
ing in persistent object stores. o Proceedings of the Hawaii International
Conferenee on System Seicnees, volume T, pages 787 798, 1992.

CGi. Mitehell, S.B. Zdonik, and U, Daval. Optimization of object-oriented
queries: Problems and approaches. In A. Dogac, M. T. Ozsu, A.Biliris, and
T. Sellis, editors, Advanees in Objeet-Oriented Database Systems. Springer
Verlag, 1994, (fortheoming).

J. Orenstein, 8. Haradvala, B. Margulies, and D). Sakahara. Query processing
in the ObjectStore database system. In Proc. ACM SIGCMOD Int. Coaf, on
Management of Dala, pages 403 412, 1992,

M. T. Qzsu, R. J. Peters, B. Irani, A. Lipka A. Muioz, and D. Szafron.
TIGUKAT Object Management System: Initial design and current direc-

tions. In Proc. of CASCON'93 Conf., pages 595-611, Oct 1993.

M.T. Ozsu and J. Blakeley. Query processing in object-oriented database
systems. In W. Kim, editor, Databasc Challenges in the 1990s. Addison-
Wesley /ACM Press, 1994, (forthcoming).

M.T. Ozsu. U1 Dayal, and P. Valduriez. An introduction to distributed object
management. In M.T. (ﬁlzm, 1. Dayal, and P. Valduriez, editors, Distributed
Object Management, pages 124, Morgan Kaufmann, 1994.

System. PhD thesis, Department of Computing Science. University of Al-
berta, 1994. (forthcoming).

R.J. Peters, A. Lipka, M.T. Ozsu, and D. Szafron. An extensible query model
and its langnages for a uniform behavioral object management system. In
Proc. Second Int. Conf. on Information and Knowledge Management, pages
403-412, November 1993. A full version of this paper is available as Univer-

sity of Alberta technical report TR93-01.

97

[37]

[38]

[39]

[40]

(41]

[42)

[43]

[44]

[45]

[46]

R.J. Peters, A. Lipka. M.T. Ozsu, and D. Szafron. The query model and
query language of TIGUKAT. Technical Report TR93-01, Department of
Computing Science, University of Alberta, January 1993,

R.J. Peters and M.T. Ozsn. Reflection in a Uniform Behavioral Objeet
Model. In Proc. 12th Int. Conf. on Entity Relationship Approach. pages
37- 49, December 1993,

R.J. Peters, M.T. Ozsu, and D. Szafron. TIGUKAT: An objeet model for
query and view support in object database systems, Technical Report TR92

14, Department of Computing Science, University of Alberta, Octoher 1992,

R.E.Tarjan. Data Structures and Network Algorithms. Society for ndustrial
and Applied Mathematics, 1983,

M. Stonebraker, L.A. Rowe, B. Lindsay, J. Gray, M. Carev, M. Brodie,
P. Bernstein, and D. Beech. Third-generation data base system manifesto.

ACM SIGMOD Rccord, 19(3):31 44, September 1990

D.D. Straube and M.T. QOzsu. Queries and query processing in object -
oriented database systems. ACM Transactions on Information Systems,

8(4):387-430, October 1990.

D.D. Straube and M.T. Qzsu. Query optimization and execution plan gen-
eration in object-oriented data management systems. IKEE Transactions on
Knowledge and Data Eng., (in press), 1992, (A short version appears in Proc,
2nd Int. Conf. on Deductive and Object-Oriented Databases, 1991).

B. Stroustrup. The C++ Programming Language (“nd. edition). Addison
Wesley, 1992.

A. Swami. Optimization of large join queries: Combining heuristics and com-
binatorial techniques. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 367-376, 1989.

A. Swami and A. Gupta. Optimization of large join queries. In Proc. ACM
SIGMOD Int. Conf. on Management of Dala, pages 8 17, 1988,

s

[17] C.D. Tomlin. Ceographic Information Systems and (artographic Modeling.
Prentice-Hall, 1990

(48] 1.D. Yllman. Principles of Database Systems.

second edition 1983,

Computer Science Press,

Appendix A

Architecture by Example

The following example illustrates a possible query on the GIS. They are first

we subscript an operand collection by the variable which ranges over it, and use
"' to denote assignment of intermediate and final results.
All TQL queries are either submitted from within a programming langnage

(embedded TQL) or during a user session. Since embedded TQL is not yet avail

A simple session contre., language called TIGUKAT Control Language (TCL),

that controls the creation of the appropriate ohjects and interprets the optimiza-

101

Example A.1 Return the maps which show the areas where retired people are

living.

TQL statement:
select o
from o in C_map

where exists (select p

where (p.B_age() > 65 and g = p.B_residence()
and q.B_inzone() € 0.B_zones()))
Caleulus formula:
{ 0| C_map(o) A 3p(C_person(p) A Iq(C_dwelling(q)
A p.B.age > 65 A q = p.B_residence A q.B_inzone € o.B_zones))}
Algebraic expression:

Result — C_map, o¢ 7 . < C.person.. C_dwelling. >
P p.B.age > 65 A P » g,

q = p.B_residence A
q.B_inzone € 0.B_zones
Behavioral algebra expression:
resultQ3 — C_map. B_select(/,[C_person, C_dwelling))
Translation into object algebra processing tree (a context):

oapto — (C_map.B_select(f,[C_person, C_dwelling))). B_context

l. Query object creation. The TCL interpreter creates the query (say q1) and
then sets the TQL statement of the query as the source of this query.

ql — C_query.B.new
ql.B_setSource(TQL _statement)

Note that in TIGUKAT, for every (conceptual) behavior B_behavior whoee
value can be changed by users, a pair B_setBehavior/B_getBehavior (set

DY

2. Search strategy specification. The architecture allows the user (or the ap.
plication submitting the query) to set the search strategy and the behaviors
associated with it. In this case. we assume that the svstem defanlts are

used:

ql. B_setSearchStrat(F_heurSS)

3. Cost model specification. The architecture allows the user (or the applica
tion submitting the query) to set the cost model and the behaviors associ

ated with it. In this case, we assume that the system defanlts are nsed:

ql. B_set Cost ModelFunc(F.cost TT)

The cost model is only required when the search strategy is cost-controlled.

4. Compilation of query object. The query is compiled by applying the hehav-

ior B_compile to query ql:

ql.B_compile()

The side-effect of applying the B_compile behavior is the following:

(a) Parsing and calculus-algebra translation

oapt,.B_set Name(F selAlgOp) (1)
oapt,.B_setRcvrType(T class) (2)
oapt,. B_set ArgTypes([T_class,T_class)) (3)
oapt,.B_set Result Type(T.collection) (4)
oapt,.B_set RcvMbrType(T map) (5)
oapt,.B_set ArgMbrTypes([T_person, T_dvelling]) (6)
oapt,.B_set ResultMbr Type(T map) (7)

oapt,. B_set Target Var(o) (8)

(b)

oapt,,. B_setConstraint(f) (9)

q1. B_setInitialOAPT (0apto) (10)
ql. B_set Result(null) (11)

The result of the translation of the caleulus query into an algebra
expression is the generation of an OAPT and setting various behaviors
(expressions (1) (9) above). By and large these expressions are self-
explanatory. The ones that require some explanation are (9)-(11). The
J in expression (9) is a reference to an object of type T_formula which
represents the predicate of the selection operator. Statements (10) and
(11) set the two behaviors of the query object ql. The result of the
query is nnll at this point since it has not yet been executed.
Algebraic optimization

its optimization. This is accomplished by the application of B_optimize

to ql:

JinalOAPT — ql.B_optimize()

The B_optimize behavior carries ont plan optimization on
ql.Binitial OAPT using the search strategy ql.B_searchStrat. This

result is an optimal OAPT that is saved:

ql. B_setOptimizedOAPT(finalOAPT)

this OAPT records the optimal execution plan as part of the query.
This is useful both for later executions which do not need to be op-
timized and for being able to implement operators such as “explain”
which informs the requestor of the optimal execution plan that the

103

optimizer has chosen. These operators are now quite common in state-
of-the-art DRBMSs.
The code for the function object that implements Boptimize is illus

trated in Algorithm A.l.
Algorithm A.1 Optimizer.:

F.optimize{T_query q): T_1ist(T.alg0p)

{
return((ql. B_getSearchSS). B_execute(ql)):

}

Execution plan generation

This is the last step in the TIGUKAT query processing methodology
whereby the algebraically optimized OAPT is submitted to the object
manager for further optimization and exeention. This part is not in
the scope of this research. However, it is planned within the frame
of the TIGUKAT OBMS project that this step will follow the exeen
execution plan by replacing cach individnal algebra operator from the
optimized OAPT with a “best” subtree of Object Manager (OM) calls.
These object manager calls that are part of the set of low level object
manipulation primitives that constitutes the interface to the OM can
be modeled in TIGUKAT as function objects.

The execution plan generation is supported in this architecture by pro-
viding the behavior B_genExecPlan. When B_genkxecPlan is applied
to ql:

ql.B_genExecPlan()

it results in the set of execution plans to be stored as part of the
query. These execution plans can be accessed later by the application
of B_execPlanFamily to query ql.

105

5. Execution of the query objeet. The execution of the query may be invoked
by the user explicitly if the query is already optimized. In the case of ad
hoe queries submitted during a user session, the query is executed when it is
compiled and optimized. Thus, the TCL interpreter applies the B.execute
behavior to ql.

ql. B_setResult(ql. B_execute())

oy, —= T agOp
8 name 7_mloct
& reviType T chms
8 ergTypes (T _chams, T_clams)
B remdType T_coliaction
B revitieTvpe T_map
& orghtieTypes {T_povesn. T_owelingi
8 romied Type T _map
B tergrr or

bafMep +—= T_algOp

8_mome F_slalgy
B _tergetVor o
liwq‘d _mep

T_batAlyp

& nowe
H
& wrgetver 4
8 wrget ol ©_pwmen

preccccaccrccscgocccncnssncene

5 orgethor
8 srgent N

T
H

L)
¢ dueling

S I

B _oserkew wull i B _wwmerAry ol] | Bawrkow wml P wwrAng [| P wtcrr ol) D smerdrg -l
r N\
f e T formula
Pocms <ol a2 ei>
8 UNF < <a2> <at>>
8 rewVer <o.p.g>
B guier ¢
e <o pg>
9 H
" 1 4)
ol —o T _glom a2 —e T stom & —e T stom
D owme. <al> S o <a2> B s <ot>
[e 4 [] o CNF -l [X4, 4 -l
& matVar - <p> 8 rvaVer <p> & watVer <o.¢»
8 grver. =l » gover ¢ b gever o
S o <> b e <p.g> PV <o gs
H 1 :
8 smre Qap.B sentionne S smwer 0.3 _00aen)0_chanatiig B _hfiens

B omuce. (9B _sgp)B_gresturThonish
s

o—e Ty

5_anndiy: <ad>
B_slyOpief: <loufitep. cupe >

p—e T 1
b ety <ol.ad> J

D _olgliphef <hogPoracn>

.

q—o Tww

D ooy <al.ot>
B oy yRe <inefiinriing,

Figure A.1: Object algebra processing tree

106

system of TIGUKAT to model an extensible query optimizer inside the Object
Mudel. The extended type lattice is shown in Figure 4.1.

In the following specifications, we use variables o, p and ¢ in examples as refer-
ences to objects of various particular types. The example behavioral applications
assume left associativity in the absence of qualifying parenthesis. That is, the
behavioral application B_something(o)(p) is equivalent to (B_something(o)){p).

The type specifications are divided into the following components. The name
of the type, its corresponding class, its supertypes, its subtypes, the native be-
haviors defined by the type and the derived behaviors defined by the type. Native
behaviors are those which are introduced by the type (i.e., they are not inherited).
Derived behaviors are those which are defined in terms of existing behaviors (i.e.,

they are not primitive to the type system, but are defined for brevity and ease of
use). The implementations for some of the inherited behaviors are refined in the
subtypes and their extended semantics are given in the refined behaviors section.

Besides defining new types to model query optimization aspects (i.e., T.algOp),
we have added new native behaviors to some of the existent types in the type prim-

107

[Type Signatures]
T-object B_sell: T-object
B_mapsto: T_type
B.conformsTo: T.type — T_boolean
B_equal: T.object — T_boolean
B_notequal: T_object — T _boolean
T-type B.interface: T_collection{T behavior

B_native:
B_inherited:
B_specialize:
B_subtype:
B_subtypes:
B_supertypes:
B_sub-lattice:
B_super-lattice:

T.collection(T behavior)
T_collection(T behavior)
T-type — T_boolean
T_type — T_boolean
T.collection(T_type)
T_collect.on(T_type)
T_poset(T_type)
T_poset(T_type)

B_classof: T.class
B.tmeet: T_type — T_type
B_tjoin: T_type — T.type
B.tproduct: T_type — T_type

Table B.1: Behavioral summary of extended non-atomics primitive types for optimiza.
tion purposes.

itive system (i.e., B_card was added to T_.collection), and overloaded some of the
inherited behaviors (i.e., B.executable for T_query). These new and overloaded
behaviors related to optimization are specifically shown as separate components
in the type specification.

A behavioral summary of the primitive types that have been extended together
with the types that have heen added to the type lattice for query optimization
purposes is given in tables B.1, B.2, B.} and B.4.

108

109

[Ty

[T behavior |

B_arg Types:
B_result Type:
B_semantics:
B_associate:

B_imiplementation:
B_primitiveApply:
B_apply:
B_defines:

B_cost Behavior:

Boname:

- Si‘fgﬁimr@s
T_string

T-1list(T_type)

T_type

Tobject

T-type — T_function — T_bshavior
T_type — T_function

Tobject — T_object

Tobject — T_1list — T.object
T_collection(T type)

T_type — T_list(type) — T.real .

T function

“B_name:

B_argTypes:
B_result Type:
B_comments:
B_source;

B_primitiveExecute:

B_execute:

B_basicExecute:
B_compile:
B_executable:
H_costFunction:

~ B_cost:

Tstring
T-1ist(T.type)
T_type

T.string

T-object

T-object — T_object
T.list — T.object
T.1ist — T_object

T_object
T.list(object) — T_costFunc
T.list(object) — T.integer

T.collection

~ H_typeol:

B.I:
B_select:
B_generate:

B_map:

B_project:

B_union:

B_difference:

H_intersection:

B_product:

B.join:

B_cardinality:
B_calcCard:
B_instSize:

B;;anstSig:

T.type
T_collection

Tformula — T_list(T_collection) — T_collection
Tformula — T.var — T_list(T_collection) —
T-collection

T.1ist(T.behavior) — T_1ist(T.collection) —
T.collection

T-collection — T_collection

T-collection — T_collection

T-collection — T_collection
T-1ist(T_collection) — T_collection

T-formula — T_1ist(T.collection) — T_collection
T.integer

T.integer

T-integer

T_integer

Table B.2: Behavioral summary of extended non-atomics primitive types for optimiza-

tion purposes.

Signatures”)

: : T.alglp
H_npmmn'dﬂ APT: T. 1ist(T. algOp)
B_searchStrat: T_searchStrat
B_transformations: T_l1ist(T_algEqRule)
B.argMbrTypes: T list(T_type)
B_result MbrType: T_type
B.optimize: T_1ist(T_algOp)
B_genExecPlan: T_collection(T function)
B_execPlanFamily: T.collection(T_function)
B_basicExecSave: T_list — T_object
B_basicExecDontSave: T_list — T_object
B.budgetOpt: T_integer
B_lastOpt: T_date
B_lastExec: T_date
.) ____Boresult: T_collection B
[T_context BoouterRevr: T.context T
BinnerArg: T_list(T_context)
B.revrType: T_type
B_.argTypes: T_1ist(T_type)
B.result Type: T_type , _
T.alglp B.outerRevr: T algp T
B.innerArg: T_1ist(T_algOp)
B_reveType: T_type
B.argTypes: T_1ist(T_type)
B_rrsuhTpr: T-type
B_reviMbrType: T_type
B.argMbrTypes: T_list(T_type)
B.resultMbrType: T_type
B_targetVar: T.var
B.targetColl: T_collection
B_constraint: T_object
B_execAlgorithm: T_function
B_splitLeft: T_algOp
BsplitRight: T_algOp
BinkLeft: T.alg0p — T_algOp
B_linkRight: T_iltﬂp — T_algOp
B.assemble: T_algOp — T_1ist(T.algOp) — T.algOp
- B.dissassemble: T_1ist(T.object)
T_searchStrat ~ Bexecule: T_algOp — T.algOp
B_initSS: T.object
B_stopCond: T_boolean
B_setNextState. T_1ist(T_algOp) — T.algOp
B.action: T.algOp — T_1ist(T_algOp)
B.goal: T.collection(T.algOp)
) B_optimal: T.algOp

Table B.3: Behavioral summary of non-atomics types added to the primitive type

system for optimization purposes.

[_Type

[T rule

B.action:

T.object — T_object

T _algEqRule

BIeftSideFunc:
B_rightSideFunc:
H_matchlLeft:
B_matchRight:
HB_rondLeft:
B.cond:
B_checkCondlLeft:
B_checkCond:
B_actionLeftFune:
B_actionLeft:
B_actionRight Func:
B_action:
B.algExpression:

T.alg0p — T function
T.algOp — T_function
T.algOp — T.boolean
T.algOp — T.boolean
T.1ist(T_formula)
T.list(T_formula)
T_algOp — T.boolean
T.algOp — T.boolean
T.algOp — T_function
T.algOp — T.algOp
T-algOp — T_function
T_algOp — T.algOp
T_object

(T formula

~ B_argTypes:
B_result Type:
RB_source:
B_compile:
B_executable:
H_execute:
HB_basicExecute:
B.atoms:
B_CNF:
B.restVar:
B_genVar:
B_refVar:
B_splitRestrDisj:
B_split Restr(onj:

Tnull

T_type

T.string

T_context
T_context

Tonull — T_boolean
T.list(T.atom)

T list(T_1list(T. atom))
T-list(T_var)

T_var

T.list(T_var)
T.collection
T.collection

B_arg Types:
B_result Type:
B_source:
B_compile:
B_executable:
B_execute:
B_basicExecute:
B_atoms:
B_CNF:
B_restVar:
B_genVar:
B_refVar:

"T.null

T-type

T-string

T_context
T_context

T-null — T_boolean
T_list(T_atom)
T.null
T1ist(T_var)

T.var

T.list(T.var)

BaatomRel: T 1ist(T_atom)

____B.algOpRef:

T_algOp

Table B.4: Hebavioral summary of non-atomics types added to the primitive type

system for optimization purposes.

111

T_ abJect

mapsto

conformsTo

equal

Hon

T.type. T_collection, T_behavior. T_function. T_atomic

B_self : T_object
Example: B_self (0)
Svmbal: I,

“nmplv returns the argmm'm obj ject o, T Nis is 0 mathematical

ide nhly «qwralmn for obj jocts.

Lxmnplp B nmpsm(n)
Symbol: o0—

Returns the smglrmn t\pc‘ nhpﬂ which was nsed as a tem
plate to create the argument object o, Every thmI in the

system has a nmp:dn type.

_conformsTo : T-type — T.boolean
Example: H_ mn[nrm-sTu(o)(p)
Symbol: o~p

“,ﬂ,“! first argument object o conforms to the l_\;]li" ;rgn_l;unl
ohject p, the object true is returned. Otherwise false is re

mrm-d

Exampk- H,f‘qual(n)(p)
Symbol: o=p

If the first argument object o is identity equal to the second |
argument object p, the ohject true is returned. Otherwise

false is returned,

B nnlequal T_nbj-ct — T.boolean

Symhnl o # p
Derivation:
~o=p) -

If the first argument object o is identity rrqual to the second
argument object p, the object false is returned. Otherwise

true is retu rned,

T_collection

Supertypes:
SuLtypc-s:

Native Behaviors:
typeof

Native Behaviors: Re

select

generate

project

T object

none

B_typeof : T_type
Example: B_typeof(o)
Symbol:

Returns the type object associated with the argument collec-
tion object 0. Every collection is associated with exactly one
type object, but a type object may be associated with many
collections.

ated to Query Optimization.
B_l : T_collection
Example: B_l(0)

Symbol:

Returns the collection object 0. This is a mathematical iden-
tity operation for the object algebra because of the closure of
the algebra on collections.

_select : T formula — T_11st{T.collection] — T_collection
Example: B_select(o)(p)(q)
Symbol:

Returns a collection object resulting from applying the alge-
braic select operator to the collection object o with formula
p and using the collection objects given in the list ¢ as argu-
ments.

_generate : T formula — T_string — T_1ist — T_collection
Example: B_generate(o)(p)(g)(r)
Symbol:
Returns a collection object resulting from applying the alge-
braic generate operator to the collection object o with formula
p and using the collection objects given in the list r as argu-
ments. The formula p must contain one or more generating
atoms for target variable g.
B map : T11st{T behavior) — T.1ist — T_collection
Example: B_map(o)(p)(gq)
Symbol:
Returns a collection object resulting from applying the se-
quence of behaviors given in the list p to each of the objects
that belong to the collection o using the collection objects
given in the list ¢ as arguments.

_project : T_collection{T behavior) — T.collection
Example: B_project(o)(p)
Symbol:
Returns a collection object containing the collection of ob-
Jects denoted by the collection object o with a new type co-
inciding with the behavioral specification of p.

113

difference

intersection

product

cardinality

calcCard

instSise

B_union : T_collection — T_collection
Example: B_union(o)(p)
Svmbol:

Returns a collection nhjrﬂ ri'sullmg from appl\mg the algi1

braic union operator to the collection ohjects o and q-
B_difference : T_collection — T collection
Example: B_difference(o)(p)

Symbol:

braic difference operator to the collection ohjects o (minuend)

Returns a collection object resulting from applﬁi& the alge
and ¢ (sutrahend).

B_intersection : T_collection — T.collection

Example: B_intersection(o)(p)

Symbol:

Returns a collection ﬂh]ﬁ‘l rmnllmg from .qnplvmg the al- '

gebraic intersection operator to the collection ohjects o and

9-
B_product : T_1ist{T collection) — T_collection
Example: B_product(o)(p)

Symbol: - L L
Returns a collection object containing new object lists
(01,1, ..., pu) resulting from applying the algebraic product
operator to the collection object o nsing the collection ohjects

given in the list p as arguments.
B_join : T formula — T_1ist{T_collection) — T.collection
Example: B_join(o)(p)(q)

Symbol:

Returns a collection Dbprt containing new ohj _pr-rt lint
(01,41, ..., ¢) resulting from applying the algebraic join oper-
ator to the collection object 0 with formula p and using the
collection objects given in the list g as arguments,
B_cardinality : T_integer

Example: B_cardinality(o)

Symbol: -)
ttturns an estimated cardinality of the collection ohject o,
|

t is implemented by a stored ﬁmﬂmn
calcCard : T_integer)
Example: B_calcCard(o)
Symbol: B -
Calculates the cardinality of the collection object 0. As a side
effect, it updates B_card. It is implemented by a computed
function.

_instSize : T_integer
Example: B.instSize(0)
Symbol: -

Returns an estimated sisge in hytﬂ of an instance in the col-
lection object o. It is implemented by a stored function.

calcInstSize

B_calcinstSize : T_integer
Example: H_calclnstSize(o)
Symboal:

Calculates an estimated size in hytmi of an instance in the
collection object 0. As a side effect, it updates B_instSize.

If the instances are i‘ﬂ"ﬂ‘lltmh. the behavior B_calclnstSize
returns failure (i.e., returning -1). Then, the collection will
send a message to ﬂarh mstaan (recursively) asking for its in-
stance size and cardinality. It is implemented by a computed
function.

115

T_behavior

u ty PS ;
Native Behaviors:

argTypes

resultType

semantics

associate

implementation

primitiveApply

defines

T.object
T.algebra

B_name : T_string
Example: B_name(o)
Symbol:

lletnrns the signature name of the argument behavior o,]
B.argTypes : T1ist{T type)

Example: B_argTypes(o)

Symbol:

Returns the list of types that are the argument types of ﬂu;l

signature for the behavior o.
B_result Type : T_type
Example: B_result Type(o)
Symbol:

Returns the type that is the result type of the signature for
the behavior o.

B_semantics : T.object

Example: B_semantics(o)

Symbol: [o]

B_associate : T_type — T _function — T behavior
Example: B_associate(o)(p)(q)
Symbol:

Returns the full semantics of the argument behavior o,]

Associates the function object of the the third argument ¢
with the behavior argument object o for the given type object
p- The behavior has the side-effect of modifying the behavior
o 50 that it executes the associated function ¢ when applied

to an object of type p.

B.implementation : T_type — T function
Example: B_implementation(o)(p)
Symbol:

gument object o for the argument type ohject p,

Lk:mrns the function object associated with the behavior ar-

_primitiveApply : T object — T_object
Example: B_primitiveApply (0)(p)
Symbol:
Applies the behavior object o to the argument object p. One
of the requirements is that the type of p must define hehavior

o as part of its interface.

_defines : T_collection{T_type)
Example: B_defines(o)
Symbol:

Returns the collection of type objects that define the behavior

argument object o as part of their interface,

Lie

Derived Behaviors:
B_apply : Tobject — T_1ist — T_object

apply
Example: B_apply(o)(p)(q)
Symbol:

Derivation:
If the argument list ¢ is null, the apply works the same as

the primitive apply. If there are arguments, they are passed
directly to the execution of the function associated with this

hehavior.

Applies the behavior object o to the object p using the objects
in the list ¢ as arguments. The requirements are that the type
of p must define behavior o as part of its interface and the
type of the abjects in ¢ must conform to the arguments types
defined by the signature of behavior o.

Native Behaviors: Related to Query Optimization.
costBehavior B_costBehavior : T_type — T 1ist(T.type) — T_real
Example: B_costBehavior(o)(p)(q)

Symbol:
It returns a pre-estimated cost of executing the behavior o
on objects of type p with a list of arguments gq.

1R

T_function

SuFtty&: T-object
ubtypes: T-query. T_searchStrat. T_context
Natjve Ehavm’ rs:
name B_name : T_string
Example: B_name(o)
Symbol:)
Returns the name of the function obj _p‘n o.]
argTypes B_argTypes: T 1ist{T type) T
Example: B_argTypes(o)
Symbol:

Returns a list of types which denote the types and ordering
of the argument abjects for the func tmn argument uhjﬁ! o |
resultType B_result Type : T_type -
Example: B_result Type(o)
Symbol: - .
lRetums the result type of the fum tnm argument u‘l_]i‘il o,]

comments B_comments : T_string
Example: B_comments(o)
Symbol:
l;eturna the comments that dmmmm llu l’um tion nh jmt o,
_source : T_object -
Example: B_source(o)
Symbol:)
glfturns the source code of the function argumvm ohj yrt o,
primitiveExecute : T_object — T.object i
Example: B_primitiveExecute(o)(p)
Symbo: _
Executes the function oh_p-rt 0 malng the oh ject P as an ar
gument and returns a result ohject. One requirement is that
the argument p must be compatible with the argnment type
of the function.
compile _compile : T_object
Example: B_compile(o)
Symbol: B B o
Compiles the function argument ohject o and produces an
executable which is returned by H_pxr-rutabk Imluw
executable B_executable : T_object
Example: B_executable(o)
Symbol: o -
Returns the executable code of the function argnment ohject
0.

source

primitiveExecute

basicExecute

mtﬁnﬂmn'

R« atﬂi to Qnery thlmlza.tmn)

119

B.execute : T.1ist — T_object

Example: H_execute(o)(p)

Symbol:

Derivation:

Function currying is abstracted as a list of arguments.

Executes the function ohject o using the objects in the list p
as arguments and returns a result object. One of the require-
ments is that the list of arguments in p must be compatible
with the argument type list for the funrtmn
B_basicExecute : T_11ist — T_object)

Example: B_basicExecute(o)(p)

Symbel:

Derivation:

Function currying is abstracted as a list of arguments.

Executes the function object o using the objects in the list P
as arguments and returns a result obj ject, One of the require-
ments is that the list of arguments in p must be compatible
with the argument type list for the fum‘tmn

Example B. ms!F'unrl‘.mn(a)(p)

Symbol: , N

It returns a cost function object that when is executed returns
a pre-estimated cost of executing the function behavior o with
arguments p. It is lmplememed by a stnred fnnrtmn

_cost : T_11st{T object)] — T.integer

Exampl- B_cost(o)(p)

Symbol:

Executes the cost function ubjeﬂ that is returned by
B_costFunction and returns the estimated cost that results
of this execution. It is implemented by a computed function.

argTypes

result Type

comments

T function
T.adHoc. T_production

i: Replacement for Query Optimization purposes.,

B_name : T_string

Example: B_name(o)

Symbol:) B)

Lﬂémms the name of the gquery object o,]
B.argTypes : T1ist{T type) T T
Example: B_argTypes(o)

Symbol:

Returns a list of types which denote the lun-ns and nnlc-rmg
of the argument objects for the guery object o, The type of
each of the elements of the list that is returned is either the
object T_collection or any of its subtypes (i.e. T_class,
T-bag). (It is lmplﬂm'nted hv a stored l'nm lmn)

BresultType : T-type T
Example: B_result Type(o)

Symbol:

Returns the result type of the execution of the ¢ query object o,
The type that is returned is cither the object T_collection

or any of its subtypes , but T_class (i.e. T.bag). (It is
mlplementpd by a smrpd funrtmn)

Example B_mmnmmzc(n)

Symbol:

%ﬂurns the comments that dﬂmllwm lhr qlwry nh Fﬂ o,
source : T string "”

Example: H_source(o)

Symbol:

Returns the source code for a query o which is a TIGUKAT

Qi:f!ry Languggr (TQL) statement.

20

executable

basicExecute

basicExecDontSav

B_executable : T_object
Example: B_executable(o)
Symbol: -

Returns the code that executes the Execution Plan for the
optimized query object 0. Following TIGUKAT Query
Model, this Execution Plan which consists of the OAPT
annotated with the algorithms that implement each alge-
braic node in the corresponding optimized OAPT, when
the hehavior B_execute is applied. Because algebraic nodes
are functions, the source and executable code of the al-
gorithms that implement them are stored in the B_source
and H_executable bhehaviors réspn'hwly In some cases,
not only one Execution Plan is generated, but a family of
Execution Plans; then, the Object Manager must choose
the “best™ Execution Plan based on cost estimations. The
code that is contained in B.executable is the following:
(OM.B_chooseEP(o0.B_execPlanFamily())). E_FXF(‘H!F()
Additional comments: when specializing T_.query in ad-hoc
and production. this behavior H_executable can have been
optimized or not depending on the type of the query. If it is
an ad-hoc query, then, it is possibly interpreted.

B basicExecute : T_11st{Tobject) — T-object
Example: B-bﬂltﬂ!ﬁ"uh’(ﬂ)(p)
Symbol:

Submits the execution plan (or family of execution plans) ob-
Ject p for the query object o to the Object Manager for pro-
cessing and returns the resulting collection object. In case of
a family is passed to the OM, it must choose the "best” Exe-
cution Plan, before processing it. The code that is executed

is (OM.B_chooseEP(o. B_PxerPhthmnly())) B.EXH‘IHP()
B basicExecSave : T 11st(T.object) — T-object
Example: B_basicExecSave(o)(p)

Symbol:

Works the same as B_basicExecute. Aditionally, it saves the
resulting collection in B_result.

_basicExecDontSave : T_11st({Tobject) — T.object
Ex;mplr B-buanxerDmlSnE(n)(p)
Symbol:

If B_result is null, it works the same as B_basicExecute, Oth-
erwise, it checks the timestamps associated to the resulting
collection stored in B_result and to the input collections to
the query to decide whether to re-execute the query (apply-
ing B_basicExecute to the object 0) or to return the collection
stored in B_result. B_basicExecDontSave does not store the

result in B_result in any case.

121

122

execute B_execute : T_1ist(T_object) — T_object
Example: B_execute(o)(p)
Syvmbol:

Works the same as H_basicExecDontSave. Aditionally, it
saves the new resulting collection in B_result, when the query
o has been re-executed.

compile B_compile : T_object
Example: B_compile(o)
Symbol:

Compiles the source code for a query. The compilation pro
cess involves the following steps: translating the query state.
ment o written in TQL language into an equivalent caleulus
expression; then, translating the calculus expression into an
equivalent algebra expression and checking it for type consis-
tency. In the next step, algebra optimization is performed by
the behavior B_optimize that consists of applying equivalence
preserving rewrite rules to the type consistent algebra expres-
sion. In the last step, the behavior B_genExecPlan generates
an Execution Plan (or a family of Execution Plans) by an-
notating each individual algebra operator node from the op-
timized object algebra query processing tree with one of the
algorithms that implement the corresponding node. These
algorithms use object manager calls that are part of the low
level object manipulation primitives that constitutes the in-
terface to the Object Manager subsystem.

Future research must be done on picking the best algo-
rithms that implement each algebraic node in the QOAPT
based on information provided by the OM such as indexes,
clustering, and s0 on. As side effects of the application
of the behavior B_compile on the query ohject o, the fol-
lowing behaviors are filled: HB_executable, B_initialOAPT,
B_optimizedOAPT, B_transformations, B_argMbrTypes,
B_reveMbrTypes, B_resultMbrType, B_execPlanFamily and
B.result.

Native Behaviors: Related to Query Optimization.

initialOAPT B_initialOAPT : T_algOp

Example: B_initialOAPT (o)

Symbol:

Returns the initial Object Algebra Processing Tree (OAPT)
resulting from the calculus to algebra translation. This initial
OAPT constitutes the initial state of the search space used
for the algebraic optimization of the query object 0. The
initial OAPT must be complete for the optimization search
strategy that we use. This is especially required when using
randomized search strategies. This behavior is implemented
by a stored function.

optimizedOAPT

searchStrat

transformations

costModelFunc

argMbrTypes

resultMbrType

optimise

B_optimizedOAPT : T_1ist(T_algOp)
Example: B_optimizedOAPT (o)
Symbol:

Returns the optimized OAPT (or list of optimized OAPT;)
resuiting from the optimization process for the query object
o. This behavior is implemented by a stored function. -

B_searchStrat : T_searchStrat
Example: B_searchStrat(o)
Symbol:

Returns the search strategy that the optimizer (B_optimize)
uses to control the optimization of the query object o. It
must be determined externally, before B_optimize is applied
(i.e. when the query object o is created). (It is implemented
by a computed function).

B_translormations : T_1ist({T.algEqRule)
Example: B_transformations(o)
Symbol:

Returns the list of transformation rule objects used for the
algebraic optimization of the query object 0. This behavior
is implemented by a stored function.

‘B_costModelFunc : T_costFunc
Example: B_costModelFunc(o)
Symbol:

Returns the cost model function that the optimizer
(B.optimize) uses when the search strategy (B_searchStrat)
is a cost-controlled strategy. Otherwise, it returns null. It
must be determined externally, before B_optimize is applied
(i.e. when the query object o is created).

.argMbrTypes : T 11st{T_type)
Example: B_argMbrTypes(o)
Symbol:

Returns a list whose elements corresponds to the membership
type object for each of the target collections to the query
object o.

-resultMbriype . T_type
Example: B_result MbrType(o)
Symbol:

Returns the membership type object of the resulting collec-
tion from executing the query object o.
_optimize : T 11ist{T-alg0p)

Example: B_optimize(o)
Symbol:

It starts the execution of the algebraic query optimiser
over the query object o, using the search strategy ob-
Ject o.B_searchStrat, and taking the initial OAPT object
0.B_initialOAPT as the initial state of the search space. This
behavior will be invoked by the behavior B_compile.

123

genExecPlan

execPlanFamily

budgetOpt

lastOpt

B.genExecPlan : T.collection(T function)
Example: B_genExecPlan(o)
Svmbol:

Generates an Execution Plan (or a family of execution plans)
from the optimized OAPT object o.B_optimizedOAPT for
the query object 0. The Execution Plan is modeled as a
T_algOp object that executes the query object o, The Fxeen

tion Plan (or a family of Execution Plans) is ereated by an-
notating each individual algebra operator from the optimized
processing tree (OAPT) with the algorithm that implements
it. These algorithms use object manager calls that are part of
the low level object manipulation primitives that constitutes
the interface to the Object Manager subsystem,

Since each node of the OAPT might be implemented by dif

ferent algorithms, a collection of OAPTs might be the result
of applying the behavior B_genExecPlan. This hehavior is
invoked by the behavior B_compile.

As a side effect, H_genExecPlan stores the resulting Execu

tion Plan int B_execPlanFamily behavior.

B_execPlanFamily : T_collection({T function)
Example: B_execPlanFamily (o)
Symbol:

Returns an Execution Plan (or a I'aumlv of execution ;;l;na)

that are generated by B_genExecPlan.
B budgetOpt : T_integer '
Example: B_budgetOpt(o)
Symbol:

Returns the optimization budget that has been assigned to
the query object 0. HB_budgetOpt provides an upper bound
for optimization cost which can be nsed by the search strategy
that controls the optimization of the query o. (It is imphe-
mented by a stored function). A value is assigned to this
behavior by the "user” or the system (i.e., when the query

object is created).

BlastOpt : T date T
Example: H_lastOpt(0)
Symbol:)

Returns the last date in that the query object o was opti-
mized. It can be useful for checking consistency between an
optimized query and the characteristics of the target collec-
tions that were used for its optimization (i.e., variations in

the cardinality of one of the input collertions).

lastExec It lastExec : T_date

Example: B_lastExec(o)
Symbol:

Returns the last date in that the guery object o was executed.
It can be useful for checking consistency hetween the result
stored in B_result and charges in the extensions of the target

collections to the guery.
Native Behaviors: -
result B_result : T_collection

Example: B_result(o)

Symbol:

Returns the query result that was stored in B_result after the
query o was executed indicating to save the result collection
object by applying either B_basicExecSave or H_execute to
the object o, Otherwise, it returns null.

T_adHoc

Supertypes:
Subtypes:

Override
source

executable

execute

optimize

Hehaviors:

126

T_query

none

B_source : T_object
Example: HB_source(o)
Symbal:

It returns the souree code for a query o which is a TIGURAT

Query Language (TQL) statement,
B executable : Tobject
Example: B_executable(o)
Symbol: o)
It returns the executable code for a query o, This code is pos
sibly interpreted. It might have not been optimized hecanse

it is an ad-hoe query.

Blexecute ; T_11st{T object] — T.object
Example: B_execute(o)(p)
Symbol:

It interprets the code,

Example: B_optimize(o)(p)(q)
Symbol: . o e
It starts the execution of the algebraic query optimizer over
the query object o, This behavior will he invoked by the be.
havior B_compile.

127

T_production

Supertypes: T_query
Sui»typﬂs: none
Overriden Behaviors: Replacement for Query Optimization purposes.
source B_source : T_object
Example: HB_source(o)
Symbol:

It returns the source code for a query o which is a TIGUKAT
Query Language (TQL) statement.

executable B_executable . T object
Example: B_executable(o)
Symbol:

It returns the executable code for a production query ob-
ject o which has been compiled. This code will be optimized
once and then executed many times. For this reason, the
optimization process of these queries might incurre in high
compile-time optimization strategies.

execute B_execute : T_1ist(T_object) — T_object

Example: B_execute(o)(p)

Symbol:

[lt executes the compiled code.]
optimize B_optimize : T 1ist{T algOp)

Example: B_optimize(o)

Symbol:

It starts the execution of the algebraic query optimizer to
optimize the query object o. This hehavior will be used by
the behavior B_compile.

T _context

argTypes

resultType

comments

source

execute

basicExecute

T_function
T.alglp

riors: Replacement for Query Optimization purposes.

B_name : T_string

Examplm B_name(o)

Symbol: ,,,

Returns the signature namne of the particular instanee o, (It

is implemented by a stored function)

B_argTypes: T_.1ist{T_type) T

Example: H_argTypes(o)

Symbal:

Returns the list of types corresponding to the argnment types

of the signature for the behavior ohject that the context node

ohjert o is ropresenting. (It is implemented by a storesd fune

|tmn)

B result Ty pe : T-type

Exampie: B_result Type(o)

Symbol:

Returns the type of the result of -;pplvmg the behavior ob-

ject that the context node ohject o is representing. (It is

implemented by a stored ﬁmﬂmn)

B_comments: T_string

Example: B_comments(o)

Symbol:

An ohject of type T_context mmlw-ls the delayed exec ution |

of a behavior object which is possible part of a compasition

of behaviors, also called a path expression. We name this

objects as context nndc‘s

source : T_string

Example: H_source(o)

Symbol: -

Returns the source code of the function b} _p-ﬂ o.
_exccute : T.1ist{T_object) — T object

Examplv B_execute(o)(p)

Symbol:

Executes the function object o using the object p as an argn
ment, and returns a collection object. This collection results
from executing recursively the context tree for which the node
o is the root. The type of p must be compatible with the ar-

gument type of the function.

J_basicExecuie : T_11st{T-object]) — T.object
Example: B_basicExecute(o)(p)
Symbol:

[Works the same as B_execute lh;& is dFﬁan above,

128

compile

executable

costFunction

Native Bebaviors:

outerRevr

innerArg

revrType

129

B_compile : T_object

Example: B_compile(o)

Symbol: .
Compiles the function argument object o and produces an
executable which is returned by H,exr-ru!ablp below.
B_executable : T_object ' -
Example: B_executable(o)

Symbol: _ .
[Returns the executable code for the context node 0. |
B_costFunction : T_11ist{T_object] — T_function S
Example: HB_costFunction(o)(p)

Symbol: o

Returns a cost function object that when is executed returns
a pre-estimated cost of executing the function o with argu-
ments p. The computation of the cost of a context node
object includes calculating recursively the cost of its children
plus the cost of its own execution. It is implemented by a
computed function.

Blcost : T 1ist{T object) — T_Integer
Example: B_cost(o)(p)

Symbol: - -
Executes the cost function object that is returned by
B_costFuanction and returns the estimated cost that results
of this execution. It is implemented by a computed function.
ated to Query Optimization. o
B_outerRcvr : T_context

Example: B_outerRcvr(o)

Symbol: -

Returns a reference to the context node object of type
T-context that has the role of receiver object of the action
of applying on it the behavior (i.e. B_select) that the node
object o is representing. The behavior B.outerRevr might
return a reference to a context subtree.
BlinnerArg : T1ist{T_context)
Example: B.innerArg(o)

Symbol:

Returns a list of references to the context node obj jects of type
T-context that corrapond to the arguments for the behavior
whose delayed execution is represented by the node object o.
Each of the arguments might referenre a context subtree,

_rcvrType : T_type
Example: B_revrType(o)
Symbol: B o
Returns the type of the receiver ohpﬂ for the function ob-
ject that the context node object o is representing. (It is
implemented by a stored function)

T;algOp

T_context

F.eaf, F_select, F_generate, F_map, F_project,
F_difference, F_uanion, F_intersection,
F_product, F_join

Overriden Behaviors: Replacement for Query Optimization purposes.

revrType

resultType

co:nments

B_name : T_string
Example: B_name(o)
Symbol:

Returns the signature name of the particular instance o, (ll
is implemented by a stored function)
B revrType : T_type
Example: B_reveType(o)
Symbol: L o
Returns the type of the receiver object for the algebraic op-
eration behavior that the node object o is representing, The
type that is returned is either the object T_collection or
any of its subtypes (i.e. T_.class, T_bag). (It is implemented
by a stored function)

_argTypes : T_1ist{T_type)
Example: B_argTypes(o)
Symbol:
Returns the list of types corresponding to the argument lvrﬂ‘ﬁ
of the sngnatlm' for the algebraic operator that the node ob.
ject o is representing. The types that are returned are cither
the object T_collection or any of its subtypes (i.c. T class,

T-bag). (It is implemented by a stored I'nnrunn)

B_resultType : T_type
Example: B_result Type(o)
Symbol:

Returns the type object T_collection (or any of its sub-
types, but T_.class) that is the type of the result of applying
the algebraic operator that the node obj jert 0 is representing
because of the closure of the algebra. (It is implemented by
a stored function)

-comments : T_string
Example: B_comments(o)
Symbol:

The type T_algOp is the type of the node objects of an OAPT
which models the delayed execution of a behavioral compo-
sition of algebraic operators. These algebraic operators are
defined as hehaviors in the interface of the type T_collection

(i.e. B_select).

_source : 1_string
Example: B_source(o)
Symbol:

Returns the source code of the function obprl o. B

130

execute

basicExecute

compile

executable

costFunction

outerRevr

131

B_execute : T_1ist(T_collection) — T_.collection
Example: B_execute(o)(p)

Symbol:

Executes the function object o using the objects in the list p
as arguments and returns a collection object. This collection
results from executing recursively the OAPT for which the
node o is the root. As a side effect, the resulting collection is
stored in B_targetColl. One of the requirements is that the
list of arguments in p must be compatible with the argument
type list for the function.

B basicExecute : T1ist{T_collection) — T_collection
Example: B_basicExecute(o)(p)

Symbol:

[1t works the same as H.execute, |
B_compile : T_object

Example: B_compile(o)

Symbol:

t!ompilos the function argument object o and produces an

executable which is returned by B_executable below.
_rxecutable : T_object

Example: B_executable(o)

Symbol:

Returns the code that executes the algorithm that imple-
ments the algebraic operator that the node o is modeling.

—costFunction : T_11st{T object) — T_function
Example: B_costFunction(o)(p)
Symbol:

Returns a cost function object that when is executed returns
a pre-estimated cost of executing the algebraic node o with
arguments p. It is implemented by a stored function.

-cost : T_1ist{T object] — I_integer
Example: B_cost(o)(p)
Symbol:
Executes the cost function object that is returned by
B.costFunction and returns the estimated cost that results
of this execution. It is implemented by a computed function.
B outerRevr : T;Iap
Example: B_outerRevr(o)
Symbol:
Returns a reference to the algebraic operator node object
of type T.algOp that has the role of receiver object of the
action of applying on it the algebraic operation behavior (i.e.
B_select) that the node object o is representing. The behavior
B_outerRcvr might return a reference to an OAP subtree,

innerArgs

rﬂrrMbrType

argMbrTypes

resultMbrType

targetVar

targetColl

constraint

B_innerArgs : T_1ist(T_algOp)
Example: H.innerArgs(o)
Symbol:

objects of type T.algOp that correspond to the argnments
for the algebraic operator that is represented by the nods
object 0. Each of the argnments might reference an QAP
suhtrﬂ‘

Returns a list of references to the dlgl rhraic ulwrdhlr nmlc’

B rev rMbrT) ’w T_typ-
Example: B_reveMbrType(o)
Symbol:

Returns the mﬂnhi-ralnp type ohject of the receiver collection
object for the algebraic operation behavior that the node ob

ject o is representing,.

B_argMbrTypes : T_11ist{T_type)
Example: B_argMbrTypes(o)
Symbol:

Jects corresponding to the argnment collection ohjerts for the

Returns a list whose elements are the membership type th

algebraic operator that the node uh ject o is Fopresenting.

B_resultMbrType : T_type o
Example: B_result MbrType(o)
Symbol:

Returns the memhrrshlp type obj ject of the resulting collec.
tion from wautmg the algebraic operation behavior that the
node object o is errPsnnhng
J_targetVar : T_var
Example: B. targetVar(o)
Symbol:

Returns a reference to the target variable object for the al-

gebraic operator that the nmlf- 0% e eprese nlmg
B_target(oll : T_collection

Example: B_targetColl(0)

Symbol:

Returns a reference to the target collection object that re.
sults from executing the algebraic operator that the node o

is modeling.

B_constraint : T-object -
Example: B_constraint(o)
Symbol:

Returns an object that models a constraint on the algebraic
operator that the context node object o is representing. For
example, a formula that qualifies the select operator, of the
!m of bahvm tll;t must be ;ppln-d l.n lhci l’ﬂ‘ﬂm ud

tbe ;elﬂ't ;nd m;p opernm mpecuwly

132

execAlgorithm

splitLeft

splitRight

linkLeft

asse nble

dissassemble

B_execAlgorithm : T function

Example: B_execAlgorithm(o)

Symbol: e

Returns a function object that implements an execution algo-
rithm for the algebraic operation that the node o represents.

It is implemented by a stored function.

Vative Behaviors: Operations on trees,

B_splitLeft : T_algOp

Example: B_splitLeft(o)

Symbol: 7 .

Returns the subtree that corresponds to the B_outerRevr of
the OAPT 0. As a side effect, it sots to null the behavior
B_outerRevr for the node 0.
BsplitRight - T_1ist{T_alg0p)
Example: H_splitRight(o)
Symbol:

Returns the list of OAPTs that mrrﬁpunds to the
B.innerArgs of the OAPT o. As a side offect, it sets to null
the behavior B_innerArgs for the node o.

BlinkLelt : T_alglp — T-alglp
Example: B_linkLeft(o)(p)
Symbol:

Links the OAPT p 10 the node o as o's left son BouterRevr.
Returns the node o.)
B TinkRight : T 11st{T alg0p) — T-aigop
Exampki B_link Right(o)(p)

Symbol:

[BLinlu the list of OAPTs p to the node o as o's right son

B_innerArgs. Returns the node o.
assemble : T_alglp — T 11st{T_alglp) — T.algop

Example: B_assemble(o)(p)(q)

Symbol: , - , -
Giver the OAPT p, the list of OAPTs ¢ and the node o,
B.assen.ble combines them into a single OAPT with root
s, left son (B_outerRevr) p, and right son (B_innerArgs) q.
Returns the OAPT rooted at o.

B_dis-assemble : T_1ist{T object) }
Exazaple: B_assemble(o)
Symbol:

Breaks the OAPT rooted at o into three parts: an OAPT
containii:g only the node o, and the left and right children of
o. Returns a list containing at most two elements: the ﬁrst
element is the left son (B_outerRcvr), and the second elem

is the right son (B_innerArgs). As a side effect, it sets to o
the behaviors B_outerRevr and BinperArgs for the OAPT

133

T_formula

Supertypes:
S'uEtvEg :

argTypes
resultType

source

compile
executable

execute

basicExecute

(R3]

T function

T.atom

B_name : T_string

Example: H_name(o)

Symbol: - 7 -
LReturns the name of the function object o]
B_argTypes: Tnull T
Example: HB_argTvpes(o)

Symbol:

Returns the object null hecause this function does not h; mJ

any arguments,

B_resultType : T_type
Example: H_n it Type(o)
Symbol:

Returns the type T_boolean that is the result l\ln of HnTI

function object o.

B_source : T_string

Example: B_source(o)

Symbol: ,
Returns the expression that specifies the ﬁlﬂ!!ll'd ohj Ji‘l‘l o,]

B_compile : T_context

Example: B_compile(o)

Symbol:) 7
Compiles the source code of the atom object o and pro-
duces its delayed execution object which is returned by
B_executable below.
B_executable : T_context
Example: HB_executable(o)
Symbol:

Returns the delayed execution object, a context object, for
the expression that specifies the atom object 0. When the
context object is executed, it returns a b«mlnan ohj jeet.
B_execute : T_null — T_boolean

Example: B_execute(o)(p)

Symbol: o
Executes the context object that is stored in H.executable.
The execution of the context node returns a boolean object,
The context object models the delayed execution of the atom
0. The code that is executed is (0.B_exer uubH). B,r-xwu!r-

_basicExecute : T null — T boolean
Example: B_basicExecute(o)(p)
Symbol:

{1t works the same as B_execute.) _ |

135

Native Behaviors:

atoms B.atoms : T_1ist(T. atom)
Example: HB_atoms(o)
Symbol: o

object 0. It iz implemented by a stored function.

lwlfﬂurna the list of almma that are rr-ﬁ-rf-nrﬁ] in th formula

CNF -CNF :T_1ist{T_1ist{T.atom))
Example: B_('NF(0)
Symbol:
Returns a representation for the formula, which is given in
Conjunctive Normal Form. This representation is interpreted
in the following way: the elements of the outer list, which are
list of atoms, are connected hy conjunctions; the elements of
the inner list, which are atoms, are connected by disjunctions.
Assumption: atoms are assumed to be pﬂsill\m
restVar BrestVar: T 11ist{Tvar)
Example: H_restVar(o)
Symbol: _
Returns the list of restricted variables in the atoms that are
referenced by the formula object 0. Restricted variables are
variables that are not generated by any atom in the formula
o. It is implemented by a computed funrtmn
genVar jgenVar : Tvar -
Example: B._genVar(o)
Symbol:
Returns the variable that is generated by one of more atoms
in the formula object 0. A formula can have only one gener-
ated variable because of constraints in the ohject algebra, It
is implemented by a computed function.
refVar _refVar : T11st{T_var) —
Example: B_refVar(o)
Symbol: _ _ .
Returns the list of variables that are referenced in the atoms
of the formula o. It is implemented by a computed function
that performs the union between the list B_restVar and the
Imt containing the generated variable B_genVar.
splitRestrDisj pstrDisj : T-collection -

Exlmple B_split RestrDisj(o)(p)

Symbol: _ _ _
Returns the collection of formulas in CNF form that result
from splitting the formula o into p number of parts which
were mnnﬂ'ted by dujunctmu

splitRestrConj

B_splitRestrC'onj : T_collection
Example: B_split RestrConj(o)(p)
Svmbal:

R,Ftinrin% the collection of formulas in CNF form that result
from splitting the formula o into p number of parts which

were connected by conjunctions,

136

T_atom
Supertypes:
Subtypes:
Overriden_Behaviors:
name

argTypes

resultType

source

compile

executable

execute

basicExecute

137

T_formula

nond

Replacement for Query Optimization purposes,

B_name : T_string

Example: B_name(o)

Symbol:

[Rv-turns the name of the function ohject o.

B_argTypes : Tnull

Example: B_argTypes(o)

Symbol:

Returns the object null because this function does not have

any arguments,

B result Type : T type

Example: B_result Type(o)

Symbol: 7

Returns the type T_boolean that is the result type of the
function ohject o.

B source : T_string

Example: B_source(o)

Symbol: -

Uh-mrns the expression that specifies the aiom object o. J

B_compile : T_context

Example: B_compile(o)

Symbol:

Compiles the source code of the atom object o and pro-

duces its delayed execution object which is returned by

B_executable below..

-executable : T_context

Example: B_executable(o)

Symbol:

Returns the delayed execution object, a context object, for
the expression that specifies the atom object 0. When the

context object is executed, it returns a boolean object.
_execute : Tnull — T boolean

Example: B_execute(o)(p)

Symbol:

Executes the context object that is stored in B_executable.
The execution of the context node returns a boolean object.
The context object models the delayed execution of the atom
o. The code that is executed is (0.B_executable()). B_execute.

-basicExecute : Tnull — T boolean
Example: B.basicExecute(o)(p)
Symbol: .

[t works the same as B_execute. _ ,74|

atoms

CNF

restVar

genVar

refVar

B.atoms : T_1ist(T_atom)
Example: B_atoms(o)
Symbol:

Returns a list containing only one element that is the atom
object o.

B_CNF : Tnull
Example: B_CNF(0)
Svmbol:

Returns the object null because an atom is the minimal build
ing block for formulas.

B_restVar : T_1ist(T.var)
Example: B_restVar(o)
Symbol:

Returns the list of restricted variables in the atoa o, Re
stricted variables are variables that are not generated by the

atom o. It is implemented by a stored function,
BgenVar : Tvar -
Example: B_geaVar(o)

Symbol:

Returns the variable that is generated by the atom o, An
atom can only generate one variable, 1t is implemented by a
stored function.

B_refVar : T_1ist{T var) e
Example: B_refVar(o)
Symbol:

Returns the list of variables that are referenced in the atom
o. It is implemented by a computed function that performs
the union between the list B_restVar and the st containing

the generated variable B_genVar.

13

139

T var

Supertypes: T object

Subtypes: none

Native Beliaviors: Related 1o Query Optimization.

atomRef B atomRef : T 1ist(T atom)
Example: B_atomsRef (o)
Symbol:
l]livt urns the list of atoms that reference the variable object
o,

algOpRef 3. algOpRel : T_algOp

Example: B_algOpRef(o)

Symbaol:

Returns the algebraic node that has the variable object o as
its target variable B_targetVar.

T_rule
Supertypes:

Subtypes:

T_object
T_algEqRule

Native Behaviors: Related to Query Optimization.

cond

checkCond

action

B_cond : T_1ist(T formula)
Example: B_cond(o)
Syvmbol:

Returns an object that models the condition that must he

satisfied by the object pin order to apply the cule o

B checkCond : T_object — T.boolean
Example: B_checkCond(o)(p)
Symbol:

Checks if the condition stored in B.cond holds for the ob
ject p. Il so, the object true is returned. Otherwise, false is

returned.

B_action : T.object — T_object
Example: B_action(o)(p)
Symbol:

tated by the rule object o to the argument ohject p.

Returns the object resulting from applying the action dic |

T_algEqRule

Supertypes:
Subtypes:
Overriden_Behaviors:
cond

checkCond

action

141

T.ruls
nonr

B.cond : T.1ist(T_formula)
Example: B_rcond(o)
Symbul:) -
Returns a function object that implements for the condition
associated to the right side of the rule object 0. (Inherited
from T_rule, but overloaded).

I _cheekTond : T_algOp — T-boolean
Example: B_checkCond(o)(p)
Syn:bhol: o o
Executes the function object stored in HB_cond. If the argu-
ment ohject p holds the condition associated to the right side
of the rule object o, the object true is returned. Otherwise,
false is returned. (Inherited from T_rule. but overloaded). It
is implemented by a computed function.

_action : T_alg0p — T_algOp
Example: B_action(o)(p)
Symbol:
Executes the function object stored in H.actionRightFunc
passing p as argument. It returns the OAPT object resulting
from applying the transformation dictated by the rule ob-
ject o to the argument ohject p. The resulting OAPT have
the shape of the expression given in the left side of the rule.
(Inherited from T_rule, but overloaded).

Native Behaviors: Related to Query Optimization.

leftSideFunc

matchLeft

B_leftSideFunc : T_algOp — T_function

Example: B_leftSide(o)(p)

Symbol: ,

Returns the function object that implements the matching

algorithm that corresponds to the left side expression of the

rule object 0. It is implemented by a stored function.
_matchLeft : T_algOp — T_boolean)

Example: B_matchLeft(o)(p)

Symbol: _

Executes the function object stored in B_leftSideFunc passing

p as argument, If the argument object p matches the left side

of the algebraic equivalence rule, the object true is returned.

?thi-rwisé false is returned. It is implemented by a computed
unction.

rightSideFunc B_rightSideFunc : T_algOp — T_function
Example: B_rightSideFune(o)(p)
Symbol: - B) 7
Returns the function object that implements the matching
algorithin that corre qpumln to the right side expression of
llli‘ ruli)hjl‘ll o, ll is llllph‘llli‘llll‘il h\ H alurnl I'umuun

matchRight
I'xamplﬁ T H. marthlglh(u)(p)
Symbol:
Executes the function ull_]ﬂ’i stored in 0 right SideFune p Iss
ing p as argument. If the argnment object p matehes the
right side of the algebraic equivalence rule, the object true is
returned, Otherwise false is returned. It is implemented by
a computed function.
condLeft B_condLeft : T.118t{T formula)
Example: B_condlLefi(o)
Symbol:

Returns a function nluﬁl that mnplc-mi‘uh- “the condition as
sociated to the left side expression of the rule object o, It is

imnlemented by a stored function.
checkCondLeft B_checkCondleft : T_.alghp — T boolean
Example: B_checkCondLeft(o)(p)
Symbol

guumnt nh _Jprt p hnllls the lrnmllllun ASMN mlml to llw foft suli
of the rule object o, the object true is returned. Otherwise,
false is returned. It is implemented by a rmnpmnl fune l.mn

actionLeftFunc BlactionLeftFunc : T.alghp — T function T
Example: B_actionLeft(o)(p)
Symbol: o o 7
Returns the function object that implements the transfor
mation dictated by the left side of the rule object o to the
argument object p. It is implemented by a mun-cl l'um'lmn

actionLeft BlactionLeft : T_algOp — T_algOp
Example: B_actionLe oft(o)(p)
Symbol:

Executes the function ohject stored in B_leftSideFune passing
p as argument. It returns the OAPT object resulting from
applying the transformation dictated by the rule ohjoct o to
the argument object p. The rexulting OAPT have the shape

of the algebraic expression for the right side of the rule object
o. It is implemented by a computed function. .)

actionRightFune B actionRightFunc : T.alglp — T function
Ex;mplr B_actionRight Func(o)(p)

Symboal:

Returns the function obje Jﬁ't “that implements the transforma-
tion dictated by the nglit side of the rule object 0 to the

argument object p. It is implemented by a stored function.

143

algExpression B_algExpression : T_object
Example: B_algExpression(o)
Symbol:

Returns the algebraic expression that specifies the rule ohject
0.

T_searchStrat

Supertypes:

Subtypes:

Overriden Helaviors:

argTypes

resultType

source

compile

executable

execute

basicExecute

costFunction

T-function

T.enumSS, T_.randomSS. T _heurSS

Replacement for Query Optimization purposes,
B_argTvpes : T 1ist(T type)

Example: H_argTvpes(o)

Symbol:

Returns a list of types which denote the types and ordering
of the arglimvni thI‘I ix for ”ll‘ [iH1s h st r-lll‘p..\ uh INI ",
B_result Type : T type T
Example: B_result Type(o)

Symbol:

lﬂrlurnh the result l\pa! of llu‘ Seare h -\l r.m-;,‘\ nh pwl 0",]
B_source . T object o '
Example: B_source(o)

Symbol:

IHFlurns the source code of the seare h slr.lli-g\ ohj |wl o, l

B_compile: Tobject
Example: B_compile(o)

Symbol:
Compiles the searc h strategy uh_y-rl o and ||rmlm o8 exe
cutable code which is stored in H.executable,

_executable : Tobject -
Example: B_executable(o)
Symbol:
anrnh tl’nrl rianlahk- imln of lln- search st r.ﬂ--gv obj _p-ql 1:1
B_execute : T_1ist{T.alglp) — T-alglp)
Example: B_execute(o)(p)
Symbol:
Executes the search strah-gy object 0 usmg the list of OAPT
objects p as argutnents and returns an "optimal® OAPT ob-
Ject, One requirement is that the list of arguments p must be
compatible with the argument type list for llu- fnmuun

_basicExecute : T 1ist{T algOp) — T alglp
Example: B_basicExecute(o)(p)

Symbol: o

{1t works the same as H_execute, o _]
BcostFunction : T 1ist(T.object) — T function
Example: Birm!l'unrtmn(n)(p)

Symbol: - o

It returns a cost function abject that when is executed returns
a pre-estimated cost of executing the search strategy object o
with arguments p. Tlns mfmnmtinn is mu-ful wlu-n ﬂmuhmg

afqm!ry

Native Behaviors: Related to Query Optimization.

optimal

initSS

stopCond

setNextState

action

B_goal : T_collection(T.alg0p)
Example: B_goal(n)
Symbaol:

Returns the collection of states that have been chosen
as "good” candidates for being returned as the optimized

oartr. _

B_optimal : T_algOp
Example: H_optimal(o)
Symbal:

llh-t urns the “nmimal" OAPT from the collection B.goal.]

H_initSS: Tobject
Example: B_initSS(0)
Symbol: o

Returns the initial state(s) of the search space from where
the search strategy object o starts the search. The result
of applying this hehavior are the T_algOp objects passed as

arguments to the search strategy.

B_stopCond : T boolean
Example: B_stopCond(o)
Symbaol: .

Returns the object true if the condition given to stop the

search process o holds. Otherwise false is returned.
B_setNextState : T 11st{T_algOp) — T-algOp
Example: H_setNextState{o)(p)

Symbol:

action on. It determines in which way the states are inves-
tigated in the search space. If its implementation chooses
the least recent state, then the search strategy is breadth-
first; if it chooses the most recently generated state, then it
implements depth-first search.
Blaction : T_alghp — T_11st{T_alg0p)
Example: H_action(o)(p)

Symbol:) -
Generates a list of successor states for the state p by applying
algebraic equivalence transformation rules on it.

T_heurSS

Supertypes: T_searchStrat
Subtypes: T_CCHeurSs
Overriden Hehaviors: Replacement for Query Optimization purposes.,
initSS H_initSS : T_algop
Example: B_initSS(o)
Symbaol:

Returns the initial OAPT of the search space from where the
search strategy object o will start the search. As a side of
fect, it initializes B_current (B sotCurrent) amd B transfRules
(B_set TransRules).

stopCond B_stopCond : T_boolean
Example: B_stopCond(o)
Symbol:

Returns the "hjl‘ll true if the condition given to stop the
search process o holds. Otherwise false is ret urm‘il

setNextState B_setNextSiate : T 11st{T alglp) — T alglp
Example: H_set NextState{o)(p)
Symbol:

Returns the next state in the search space to he applied and
action on. It determines in which way the states are investi
gated in the search space,

action Blaction : T_algOp — T-1ist{T alg0p) o
Example: B_action(o)(p)
Symbol:

Generates a list of snecessor states for the state | p Inv .qnplv
ing algebraic equivalence transformation rales on p that are
chosen according to heuristics defined for Llu- Meare h

argTypes B argTypes : T 11st{T_type) e _
Exampk B.arg Types(o)
Symbol:

Returns a list of types which denote the I.V[H'h ox and urill-rmg of
thi‘ argument objects for the heuristic search stratogy object

resultType B;mun Type : T_type
Example: B_result Type(o)
Symbol:

Returns the result typc- of the search s.lmhvgy nh;-rl 0. J

source B_source ; T_object -
Example: B_source(o)
Symbol: o

Returns the source code of the heuristic search slmtcagy ob-

ject o,

compile B_compile : Tobject

Example: B_compile(o)

Symbol:

Compiles the heuristic search stratﬁgy obj Frt o and pmdnrns

executable code which is stored in H_executable.

147

executable B_executable : T_object
Example: H_executable(o)
Symbal; -
Returns the execntable code of the heuristic search slratvgj
nin)ﬁ'l .

execute B.execute : T 1ist(T_algOp) — T_alglp
Example: B_execute(o)(p)
Symbol:

Fxecutes the heuristic search hlralng_\, ﬂh_]l"(" o using the Ii-ﬂ
of OAPT objects p as arguments and returns an “optimal®

OAPT object. One requirement is that the list of argnments
p must be compatible with the argnment type list for the

function.
basicExecute B basicExecute : T 1ist{T alg0p) — T.alglp
Example: B_basicExecute(o)(p)
Symbol:) -
{1t works the same as s B_oxecute, |
costFunction B_costFunction : T1ist{T object) — T_function)
Example: B_costFunction(o)(p)
Symbol:

It returns a cost function object that when is executed returns
a pre-estimated cost of executing the heuristic search strategy
object o with arguments p.

ative Hehaviors: Related to Query Optimization.

current B.current : T_algOp
Example: H_current(o)
Symbol:

Returns the current state of the search space that is hﬂng
explored by the search strategy o. It is generated by the be-
havior H_setNextState. (It is implemented by a stored func-

tion).

acceptAction B_acceptAction : T-alghp — I -boolean —
Example: B_acceptAction(o)(p)
Symbol:

Returns true if the OAPT p meets the criteria as defined for
the heuristic search strategy. (i.e. if the OAPT is a bushy or
a linear tree), Otherwise, it rﬂums false.

zrniﬂ!uks T.lht] }

transfRules
Symbnl

Returns the list of transformation rules that are applied by

the search strategy o. It must be set when the search strategy

object o is first created. The list is ordered by priority of the

rule. (It is implemented by a stored function).

chooseRule

B_chooseRule : T_algEqRule
Example: H_chooseRule(o)
Syvmbol:

Returns the current element in the list BotransfRules. The
next element becomes the current one. (1t is implemented by
a computed function).

T_CCHeurSS

()vnrr--Bd::n Behaviors:
current

acceptAction

initSS

stopCond

setNextState

action

T heurSs

none

Replacement for Query Optimization purposes,
B_current : T_algOp

Example: B_current(o)

Symbol:

Returns the current state of the search space that gb@ing
explored by the search strategy o. It is generated by the be-
havior B_setNextState. (It is implemented by a stored func-
tion).

B_acceptAction : T.alglp — T_boolean
Example: B_acceptAction(o)(p)
Symbol:

Returns true if the OAPT p meets the criteria as defined for
the cost-controlled heuristic search strategy. The goal of this
additional criteria is to keep the OAPT with the lowest cost
as the current OAPT.

B_initSS: T_alglp -
Example: B.initSS(o)
Symbol:

Returns the initial OAPT of the search space from where
the search strategy object o will start the search. As a side
effect, it initializes B_current (B_setC'urrent), B_transfRules,
and B_currCost.

B_stopCond : T boolean
Example: B_stop(ond(o)
Symbol:

Returns the object true if the condition given to stop the
search process o holds. Otherwise false is returned.

mextsutmntmp) —Talghp
Example: B_setNextState(o)(p)
Symbol:

Returns the next state in the search space to be appi,iéd and
action on. It determines in which way the states are investi-
gated in the search space.

_action : T_alglp — T_11st{T-algOp))
Example: B_action(o)(p)
Symbol:

Generates a list of successor states for the state p by apply-
ing algebraic equivalence transformation rules on p that are
chosen according to heuristics defined for the search.

_argTypes : T11ist{T_type))
Example: B_argTypes(o)
Symbol: R

Returns a list of types which denote the tyﬁ,i and ordering of
the argument objects for the cost-controlled heuristic search
strategy object o.

149

resultType

source

compile

executable

execute

basicExecute

costFunction

1™

B_result Type : T_type

Example: B_result Tvpe(o)

Symbol: B 7

Returns the result type of the cost-controlled henriste search
strategy object o, J
B_source : T_object
Example: H_source(o)

Symbol: B) B B .
Ef-turns the source code of the cost-controlled heuristic .!ﬂ‘:lﬂ‘h]

strategy object o,

B compile : T_object
Example: B_compile(o)
Symbol:

Compiles the cost- controlled Theuristic se arch aIrnh-g\ "hl

Ject o and produces executable code which is stored in
B_executable, -

B_executable : Tobject
Example: B_rxecutable(o)
Symbol: o) 7 7
Lﬂemrnx the executable code of the cost-controlled heuristic

search strategy object o,

-execute : T_1ist{T_algOp) — T-algOp
Example: H_execute(o)(p)
Symbol:
Executes the cost-controlled heuristic search strategy “oh} ject
o using the list of OAPT objects p as arguments and returns
an "optimal” OAPT object. One requirement is that the list
of arguments p must be compatible with the argnment type
list for the function.
I basicExecute : T _11st{T algOp) — T.alglp
Example: B_basicExecute(o)(p)
&ymhnl B . o

works the same as B_execute. B
rmlﬁnrtm T1ist{T.object) — T function

Exampk B_costFunction(o)(p)
Symbol: _ _ _ _ i
It returns a cost function object that when is executed returns
a pre-estimated cost of executing the cost-controlled hewristic
search strategy object o with l]‘!llill"fllh p.

: Related to Query Optimization.

B.curr('ost : T_integer

Example: B_curr(‘08t(0)

Symbol:

Returns the cost of the current state of the search space ‘that
is being explored by the cost-controlled heuristic search strat-

egy o.

T_enumSS
Supertypes:
Subtypes:

Inherited Behaviors:
goal

optimal

Overriden Behaviors:
initSS

stopCond

setNextState

action

argTypes

T.searchStrat
T_SystemR. T_AugHeur

B_goal : T_collection(T.algOp)

Example: B_goal(o)

Symbol: o

Returns the collection of states that have been chosen

as "good” candidates for being returned as the optimized

OAPT.

B optimal : T_alg0p

Example: B_optimal(o)

Symbol: -

Returns the “optimal™ OAPT from the collection B_goal. I
eplacement for Query Optimization purposes.

H_initSS : T_algOp

Example: B_initSS(o0)

Symbal: -

Returns the initial state of the search space from where the

search strategy abject o will start the search.

B_stopCond : T boolean

Example: B_stopCond(o)

Symbol: -

Returns the object true if the condition given to stop the

search process o holds. Otherwise false is returned.

H.setNextState : T 11st{T_alglp) — T.algOp

Example: B_setNextState{o)(p)

Symbol:

Returns the next state in the search space to be applied and

action on. [t determines in which way the states are inves-

tigated in the search space. If its implementation chooses

the least recent state, then the search strategy is breadth-

first; if it chooses the most recently generated state, then it

implements depth-first search.

B_action : T_alglp — T_1ist{T.algOp)

Example: B_action(o)(p)

Symbol: ,

(ienerates a list of successor states for the state p by applying

algebraic equivalence transformation rules on it.

-argTypes : -type)
Example: B_argTypes(o)
Symbol:

Returns a list of types which denote the types and ordering
of the argument objects for the enumerative search strategy
object o.

resultType

source

compile

executable

execute

basicExecute

B_result Type : T type
Example: B_result Tvpe(o)
Symbaol:

Returns the result type of the search st rategy object o, I
B.source : Toobject ~~ ~

Example: H_source(o)

Symbal:

ohject o,

B.compile : T object
Example: B_compile(o)
Symbol:

Returns the sonrce code uI'Tlh enmmerative search s!mh'g_\']

Compiles the é;unnn*-ral.ivg search steategy object o and pros
duces executable code which is stored in B execntable.
B_executable : T_object”)

Example: B_executable(o)
Symbol:

Returns the executable code of the enmmerative search strat
egy object o, J
B_execute : T _1ist{T_alglp) — T.alghp

Example: B_execute(o)(p)

Symbol: B B 7)
Executes the enumerative search stratogy objoct o using the
list of OAPT objects p as argnments and returns an “op
timal” OAPT object. One requirement is that the list of
arguments p must be compatible with the argument type list
for the function. . -

B_basicExecute : T_11st(T_algOp) — T.algOp

Example: B.basicExecute(o)(p)

Symbol: —

[1t works the same as H_execute, - _,‘,,,]
B_costFunction : T 1ist(Tobject) — T_function
Example: B_costFunction(o)(p)

Symbol:

It returns a cost function object that when is execnted retarns
a pre-estimated cost of executing the enumerativve search
strategy object o with arguments p,

ated to Query Optimization,

B_prune : T_1ist(alg0p) — T.1ist(T_algOp)
Example: HB_prune(o)(p)

Symbol:]) 7
Returns the list of states that results after discarding some
"bad” states from the list p of OAPT objects that was gen
erated by the behavior H_action.

open

current

B_open : T 1ist(T_algOp)
Example: B_open(o)
Symbaol:

Returns the open list of OAPTs for the enumerative search
strategy o. These OAPTs are candidate states to he explored
by the search strategy o. (It is implemented by a stored
function).

B_current : T_algOp
Example: B_current(o)
Symbol:

Returns the current state of the search space that is being
explored by the search strategy o. It is generated by the be-
havior B_set NextState, (It is implemented by a stored func-

tion).

T_randomSS

Supertypes:
Subtypes:

Inherited Behaviors:
goal

optimal

Overriden Behaviors:
initSS

stopCond

setNextState

action

1Ht

T.searchStrat
T-II.T.SA

B_goal : T_collection(T.algOp)
Example: B_goal(o)
Svimbol:

Returns the collection of states that have been chosen
as “good” candidates for being returned as the optimized

OAPT.

B_optimal : T_alg0p
Example: B_optimal(o)
Symbol:

[Returns the "optimal™ OAPT from the collection B goal.]

Replacement for Query Optimization purposes,
B.initSS : T_collection(T.algOp)

Example: B_initSS(o)(p)

Symbol:

Returns the of initial state(s) of the search space that the
search strategy o uses to start the search process For example,
while 11 is characterized by the choice of several start states,
SA has only one initial state.

B_stopCond : T_boolean
Example: B_stopCond(o)
Symbol:

Returns the object true if the condition given to stop the
search process o holds. Otherwise false is returned. It refers
to the global stop condition for the randomized search strat.

egy 0

B_setNextState : T_1{st{T_alglOp) — T algOp
Example: HB_setNextState{o)(p)
Symbol:

Returns the next state in the search space to be applied and
action on. It determines in which way the states are investi-
gated in the search space. If its implementation generates a
new OAPT object, then the search strategy is Herative lin-
provement; if it changes the temperature parameter, then it
implements Simulated Annealing

_action : Talglp — T_1ist{T alg0p)
Example: B_action(o)(p)
Symbol:

Generates a list of neighbor states for the state p by applying
algebraic equivalence transformation rules to the complete
OAPT p. Each of the generated neighbors is a complete
OAPT.

argTypes

resultType

source

compile

executable

execute

basicExecute

costFunction

B_argTypes : T_1ist(T_type)
Example: B_argTypes(o)
Symbol:

Returns a list of types which denote the types and ordering
of the argument objects for the randomized search strategy
ohject o.

B_result Type : T_type
Example: HB_result Type(o)
Symbol:

[Rnturns the result type of the search strategy object o.]

B_source : T_object
Example: B_source(o)
Symbol:

Returns the source code of the randomized search strategy

object 0.

B_compile : T_object
Example: B_compile(o)
Symbol:

Compiles the randomized search strategy object o and pro-

duces executable code which is stored in B_executable,

B_executable: T_object
Example: B_executable(o)
Symbol:

Roturns the executable code of the randomized search strat-
egy ohject o.

B_execute : T_1ist{T_algOp) — T.alglp

Example: B_execute(o)(p)

Symbol:

Derivation:

Executes the randomized search strategy object o using the
list of OAPT objects p as arguments and returns an "op-
timal” OAPT object. One requirement is that the list of
arguments p must be compatible with the argument type list
for the function.

g-bﬂﬂi(‘EX(‘ﬂllP : T.1ist(T.algOp) — T-algOp
Example: B_basicExecute(o)(p)

Symbol:

{1t works the same as B_execute. |
B_costFunction : T_-1ist{T_object) — I-function

Example: B_costFunction(o)(p)

Symbol:

It returns a cost function object that wh :n is executed re-
turns a pre-estimated cost of executing the randomized search
strategy object o with arguments p.

1%

Native Behaviors: Related to Query Optimization.

localStopCond

acceptAction

nmoves

currState

B_localStopCond : T_boolean
Example: B_localStopCond(o)
Svmbol:

Returns the object true when a local minimum has hoen
found. Otherwise false is returned. It refers to the local stop
condition for the randomized search strategy o (i.e. olapsed
time for II, temperature for SA, and so on)

B.acceptAction : T.1ist{algOp) — T boolean
Example: B_accept Action(o)(p)
Svmbol:

Returns true if the criterion for accepting a transformation is
satisfied by the transformed OAPTs,

B_nmoves : T_integer
Example: B_nmoves(o)
Svmbol:

Returns the number of transformations that have been ap
plied to the current state, when searching for its local mini-

mum. It is implemented by a stored function.

B_currState : T_collection(T.algOp)
Example: B_currState(o)
Svmbol:

Returns the current state(s) of the search spm:l' that is heing
explored by the randomized search strategy o, It is generated
by the behavior B_setNextState. (It is implemented by a

stored function).

